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DEVELOPING TECHNIQUES FOR THE IDENTIFICATION OF  

NON-CANONICAL RNA PAIRING AND ANALYSIS OF LCMS DATASETS 

Christopher P. Jurich, M.S. 

University of Nebraska, 2021 

Advisor: Joseph D. Yesselman 

Non-canonical pairing dynamics in ribonucleic acid (RNA) structure and statistical analy-

sis of metabolomics liquid chromatography mass spectrometry (LC-MS) datasets are two diffi-

cult problems that stand as open challenges.  

 RNA folding algorithms are used across various disciplines to predict structures when ex-

perimental elucidation techniques are inconvenient or impractical. Though successful and widely 

adopted, folding algorithms make simplifying assumptions for loop regions due to their complex 

interactions and associated difficulty with generating energy parameters for relevant non-canoni-

cal pairs. Modeling assumptions and a lack of energy parameters for loops limit accuracy in 

these functionally critical regions of RNA. This work describes a new technique for probing non-

canonical loop interactions through the combined analysis of dimethyl sulfate (DMS) and three-

dimensional crystallographic data. We demonstrate that DMS data encodes information about 

non-canonical pairing, which can describe these interactions in an efficient, high throughput 

manner. 

 Metabolomics aims to understand biological processes through the analysis of small mol-

ecule metabolites. The field primarily uses 1H nuclear magnetic resonance (NMR) spectroscopy 

as well as LC-MS to identify and quantitate metabolites. With even simple samples having hun-

dreds or thousands of metabolites, researchers in the field have developed software pipelines to 

make metabolomics studies a tractable task. Numerous packages exist for the analysis of either 
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1H NMR or LC-MS data, but current offerings force researchers to use multiple packages to ana-

lyze both spectral data types. To address the need for a metabolomics package capable of analyz-

ing both spectral types, we have developed new LC-MS functionality for the NMR metabolom-

ics package MVAPACK. 
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Preface 

Understanding non-canonical pairing in ribonucleic acid (RNA) structure1-2 and statistical 

analysis of metabolomics liquid chromatography mass spectrometry (LC-MS) datasets are two 

challenging objectives that rely on computational modeling and tool development.3-4 This thesis 

summarizes my work in (1) identifying experimentally derived markers to characterize non-ca-

noical RNA pairing and (2) adding implementations of field-standard LC-MS processing tech-

niques to the MVAPACK metabolomics software package.5 

RNA plays critical roles throughout the cell, including splicing splicing, translation, tran-

scription regulation, and gene silencing6-8. To perform these functions RNA fold into complex 

structures that can respond to cellular stimuli. A number of experimental techniques have been 

developed to elucidate these structures, including X-Ray Crystallography (XRC), cryoelecton 

microscopy (Cryo-EM), optical melting and cross-linking studies. While these techniques have 

effectively characterized RNA structures for decades, they are slow to perform with single struc-

tures often taking weeks or months to solve. As a result, full elucidation techniques are not viable 

for many projects. 

Researchers have overcome experimental limitations by developing RNA folding algo-

rithms that predict structure from sequence alone. While an XRC or Cryo-EM study could take 

years to perform, an ensemble of potential structures can be predicted in minutes or seconds. 

RNA folding algorithms rely on a simplified thermodynamic model of nucleotide pairing that 

generates secondary structures containing helices and loops. Helices are composed of canonical 

AU/UA and CG/GC as well as wobble GU/UG pairs whereas loops contain nucleotides partici-

pating in other non-canonical pairing modes. RNA folding packages represent the most success-
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ful class of algorithms in all of bioinformatics. They see global accuracies of 60-70% with im-

proved performance for smaller RNAs on the order of 200 nucleotides or less.28 As a result, 

RNA folding algorithms are widely used in primer assembly, mRNA vaccine design, and bioen-

gineering at large. While RNA folding algorithms are largely able to predict which nucleotides 

are contained in helices and loops, they cannot predict non-canonical interactions due to the lack 

of thermodynamic parameters on these pairs set has necessitated modelling assumptions that 

limit accuracy in loop regions. 

Reduced predictive accuracy for loops poses a problem in the field as loops are often 

function critical regions of RNA.16 For example, Sarcin-Ricin (SR) loops anchor elongation fac-

tor G (EF-G) during mRNA-TRNA translocation, enabling the elongation phase of protein syn-

thesis.17 SR loops rely on loop region stability and could not carry out their biological function in 

their absence. Inaccurate prediction of loops limits identification of structure-function relation-

ships, potentially leading to erroneous understanding of RNAs. These limitations can only be 

overcome through mass collection of data for non-canonical pairing modes. Collecting data on 

non-canonical pairing modes would then enable increased predictive accuracy for loop regions 

and advance the state-of-the-art RNA folding algorithms. 

Metabolomics encompasses the comprehensive characterization of small molecule me-

tabolites from a variety of biological samples that includes tissues, cell lysates, and biofluids.18-19 

The composite of these small molecule markers is termed a metabolome and provides insight 

into both regular biological processes and disease states because small molecules are the end 

products of enzymatic reactions and are involved in most cellular processes.20 Unlike other “om-

ics” disciplines including proteomics, genomics and transcriptomics, metabolomics allows high 

resolution measurement of metabolite abundance, giving the field unprecedented quantitative 
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precision.21 Metabolomics relies on both 1H NMR and LC-MS spectroscopy to measure and 

identify the presence of metabolites. With simple metabolomes having hundreds of metabolites, 

researchers in the field have responded by developing software tools for automated metabolom-

ics analysis.22 Despite dozens of software packages being available from both commercial and 

academic developers, most limit their input data to either NMR or LC-MS, forcing a combined 

analysis to incorporate at least two packages. The XCMS, OpenMS and Maven packages offer 

LC-MS functionality but not NMR and the Metabolab, NMRPipe and MVAPACK packages of-

fer NMR functionality but not LC-MS.5,23-27 The inability of the field to offer a package which 

analyzes both NMR and LC-MS data presents an issue as metabolomics researchers must per-

form multiple analyses to gain maximum coverage of the metabolome.  
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CHAPTER 1: PROBING NON-CANONICAL RNA PAIRING THROUGH DMS 
 

1.1 The Role of non-canonical Pairing in RNA 

Previously thought to only be an intermediate between DNA and proteins, RNAs are now 

known to be responsible for a growing list of critical biological functions including translation of 

proteins, gene regulation, and mRNA maturation.1-3 RNA’s roles within the cell require folding 

from primary sequence to secondary structure governed by strong base-base interactions.5 Base 

interactions occur between any two of the four bases adenine (A), cytosine (C), guanine (G) and 

uracil (U), and specific pairings are what define and drive the folded secondary structure of an 

RNA. Of all possible pair combinations, the AU/UA, GC/CG, or canonical pairs, are the most 

stable, with GU/UG wobble pairs having comparable stability depending on context.6 Any other 

pair is non-canonical and less stable than a canonical counterpart. The canonical, wobble and 

non-canonical pairs of an RNA fully describe its secondary structure. With RNA structure driv-

ing functional roles, the field has developed both high- and low-resolution structure elucidation 

techniques to understand structure-function relationships. Though effective, these techniques 

have accompanying constraints that has limited their use. 

X-Ray Crystallography (XRC) and Cryo-EM are high resolution elucidation techniques 

which provide full three-dimensional characterization of a given RNA’s structure.12-13 These 

techniques generate ample structural information but come at the cost of long acquisition times. 

Generating full 3D models can take months to years for a single RNA and is increasingly diffi-

cult for longer strands. Cryo-EM may see decreased runtimes as technology improves, but cur-

rent timelines for high resolution structure elucidation make these techniques impractical for 

high volume usage. Crosslinking is a lower resolution structural elucidation technique which in-

stead reports on spatial distances between nucleotides.15 This technique uses various affinity 
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binding agents to induce the formation of cross-links between proximal nucleotides. Nucleotide 

distance constraints can be derived from these constraints which inform global structure dynam-

ics. Cross-linking is more rapid than XRC or Cryo-EM but produces much lower resolution data. 

Deriving a full structure is still a complicated process and further assumes that cross linking 

agents have minimal impact on global structure conformation. The long timelines of high resolu-

tion techniques and insufficient data quality of low resolution techniques limits usage of these 

protocols for many applications. Researchers in the field have realized these limitations and con-

sequently developed algorithms to predict the structure of RNA. 

Thermodynamic RNA folding algorithms predict secondary structure by finding the mini-

mum free energy (MFE) for a sequence. Estimated MFE values are generated using the nearest 

neighbor model which assumes that the energy contribution from a basepair step (or two consec-

utive base pairs) is always the same.7 A total of 36 canonical basepair steps exist and correspond-

ing parameters were determined via high resolution optical melting experiments and NMR ex-

periments.25-26 When combined, the nearest neighbor model and optical melting parameters ena-

ble energy estimation for arbitrary structures. Energy minimization as a technique is the domi-

nant paradigm for RNA folding algorithms and nearest neighbor physics models are utilized in 

MFold, RNAfold, RNAStructure and NUPACK, among others.8-11 Existing RNA folding algo-

rithms have been a massive success for the field, finding widespread adoption for all RNA re-

searchers across disciplines. Despite this success, the nearest neighbor model makes estimations 

and has an incomplete view of basepair energetics. If addressed, RNA folding algorithms could 

see further accuracy improvements.  
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The limited number of canonical pairs allowed for practical generation of energy parameters, 

but 220 basesteps with a single non-canonical pair exist, making an analogous experiment im-

practical from combinatorial explosion alone. Nearest neighbor models address this lack of ex-

plicit parameters for con-canonical interactions via simplifying assumptions. For example, the 

energy penalty associated with junction formation is a heuristic rule, penalizing larger junctions 

regardless of potential sequence identity. These simplifications, combined with a lack of parame-

ters, limit the accuracy of the nearest neighbor model for RNA loop prediction. Reduced accu-

racy for loop prediction poses a problem as RNA loops are often functional critical regions. Im-

proved prediction of RNA loops requires acquisition of new datasets describing these structural 

features and their corresponding non-canonical pairs. The vast number of basepair steps to be 

probed makes optical melting an impractical choice for energy parameter expansion. Other popu-

lar techniques in the field provide limitations with XRC and Cryo-EM being too time consuming 

and cross-linking providing insufficient resolution. An alternative method for structure determi-

nation is dimethyl sulfate (DMS).  

For over 40 years, DMS has been used to describe the structure of RNA without the use 

of next-generation sequencing. DMS has seen increased usage in recent years with next-genera-

tion sequencing has enabling thousands of RNAs to be analyzed in a one pot reaction. Dimethyl 

sulfate mutational profiling with sequencing (DMS-MaPseq) chemical mapping offers high 

throughput RNA structure elucidation via exposure to the small molecule DMS.16 DMS selec-

tively methylates the N1 of adenine and N3 of cytosine (Figure 1.1) via electrophilic substitution 

when these nitrogens are solvent exposed. Methylated nucleotides undergo mutations when the 

RNA are reverse transcribed by group II intron reverse transcriptase (TGIRT), resulting in a pool 

of mutated complementary deoxyribose nucleic acids (cDNAs). The mutational frequency at 
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each given nucleotide can be related to the rate of methylation on the RNA.27 Sequencing and 

analysis of cDNA pools yields reactivity profiles which provide nucleotide level information for 

each analyzed RNA. Each nucleotide receives a value that correlates with its mutational rate, 

with lower values being widely accepted as markers of pairing since the N1’s and N3’s of paired 

nucleotides are unlikely to react with DMS. DMS-MaPseq data will likely report on non-canoni-

cal pairings as the N1 of A and N3 of C are central to the hydrogen bonds that drive pairing for 

these nucleotides.18 The high throughput capability of DMS-MaPseq is suited to developing a 

fundamental model of RNA non-canonical pairing. Thousands of RNA can be processed in par-

allel, enabling wide coverage of possible non-canonical pairing modes in a single experiment.  
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Figure 1.1: DMS Modification of Adenosine and Cytosine 

 
DMS selectively methylates the N1 of A (left) and N3 of C (right) when these atoms are solvent 

accessible. 
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Secondary structure junction motifs are an ideal system to gather data on non-canonical 

RNA pairing. A junction is composed of two or more loops flanked by two Watson-Crick pairs 

(Figure 1.2). Secondary structure is typically described via dot-bracket notation which represents 

nucleotides in helices with parentheses, “(“ or “)”, and nucleotides in loops with dots, “.”. Junc-

tions additionally use ampersands to show that looped regions share flanking pairs. A junction 

with two loops of size 3 and 2 has the following dot-bracket notation “(…(&)..)”. Despite not 

participating in canonical pairing, loop nucleotides often contain stabilize a junction via non-ca-

nonical interactions with other loop nucleotides. The exact non-canonical interactions seen vary 

by the size and number of constituent loops, but small, symmetrical motifs are conducive to sym-

metrical pairing.10 For example, a junction with two size 3 loops will typically have 2 closing ca-

nonical pairs and 3 non-canonical loop pairs. Junctions also play critical biological roles and as a 

result have been widely catalogued in databases like the protein data bank (PDB). The PDB pro-

vides 3D atomic data for RNAs which allows for easy classification of non-canonical pairs types 

through the X3DNA software tool.11 To combine the abilities of DMS chemical mapping and 

X3DNA classifications, we have developed RNA libraries which provide multiple instances of 

junctions with known 3D structures and pair types. By performing a deep dive on this combined 

dataset, we have demonstrated that DMS chemical mapping encodes data that identifies the non-

canonical pairing mode a nucleotide is participating in. 
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Figure 1.2: Junction Motifs Provide Ideal Opportunities to Create non-canonical Pairs 

 

Junctions are structural motifs wherein two or more loop regions are enclosed by the same flank-

ing pairs. These motifs vary in size and are characterize by the size and number of loops present 

with I being a 2x2, II being a 2x3, III being a 1x0 and IV being a 4x4. As seen in III, junctions 

may have loops of size zero, also known as bulges. The proximity of loop nucleotides promotes 

non-canonical interactions which have been highlighted with orange dotted lines in I. 
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 Transcriptomics experiments probe entire transcriptomes from cells and resulting se-

quencing data has been made public for a variety of organisms. Despite public availability, these 

datapoints are not ideal for a deep dive into junction pairing dynamics. The RNA for these pub-

lished datasets are typically from biological sources and have relatively few junctions with 

known non-canonical pairing.19 In addition, these structures have many complex tertiary interac-

tions that will complicate analysis as long-range interactions are always a potential explanation 

for deviations in expected DMS signal. Another key issue with natural RNAs is the lack of re-

peated junction motifs. Whether a pattern of DMS reactivity is an anomaly or a consistent pattern 

can only be determined through the comparison of multiple instances of the same junction. The 

lack of repeats for each junction sequence limits the confidence of patterning associated with 

each junction. Larger sequences are also more likely to adopt multiple conformations either lo-

cally or globally, adding further challenge to potential analyses.20 As a result, designing a syn-

thetic library is an attractive option to enable a deep dive into non-canonical RNA pairing.  

Synthetic RNA libraries are the optimal choice for analyzing junction dynamics as we 

can design stable sequences which provide multiple examples of junctions of interest. This ap-

proach addresses other limitations of analyzing existing data as smaller sequence size limits the 

potential for tertiary interactions. Smaller sequence size is also advantageous for predictive pur-

poses as thermodynamic folding algorithms are known to be much more accurate for smaller 

RNA strands than larger ones.21 Mass pools of sequences can then be generated with higher con-

fidence that the strands and motifs will form into the predicted structures. Engineering a se-

quence pool also provides the benefit of sequence repeats as each junction of interest can be re-

peated and implemented across different sequence contexts. Observing the same junction across 

different sequences provides further confidence that a pattern is meaningful and repeatable.    
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To effectively probe non-canonical RNA pairing, we have developed and performed 

DMS chemical mapping on a synthetic RNA library with 7,807 different junctions. This library 

was designed specifically to have as many instances of junctions as possible with a total of 7,807 

unique sequence motifs being present 6.72 times on average (Figure 5). The resulting DMS data 

has been normalized, aggregated and analyzed to identify unique and unexpected patterns of 

pairing. By combining these patterns with pairing classifications of solved PDB structures we 

have identified repeatable patterns that can be confidently tied to specific pairing modes. In gen-

eral, we demonstrate that DMS reactivities provide information about non-canonical pairing 

modes in 3D RNA structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

Figure 1.3: Synthetic RNA Libraries Provide Useful Data For Pairing Analysis 

 

Synthetic RNA libraries are generated from pools of junction sequences as seen on the left. Each 

motif is repeated multiple times across different RNA constructs to mass generate data for each 

junction analyzed.  
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1.2 Materials and Methods 

1.2.1 Library Design 

The objective for our RNA library was to sample a wide set of non-canonical pairings 

and create multiple instances of each pair type. We designed our library to span a wide range of 

RNA junctions. Each junction was inserted into an average of 10 distinct RNA constructs, to en-

able identification of trends. We started with all combinations of junctions that had AU or CG 

closing pairs and loops of up to size three which corresponds to a total of 115,584 junctions.. 

Limiting the size of loops to three is conducive to stability as loops become less stable as they 

grow in size and foster RNA-RNA tertiary contacts with other strands in the pool.19 These con-

straints left 112,896 possible junctions and we next removed sequence motifs that did not have 

an A or C in their loops as these are the only nucleotides sensitive to DMS modification. This re-

sults in 109,760 junctions. We then filtered out junctions with low predicted stability by placing 

each candidate junction into three sets of hypothetical helices and checking if their predicted 

structures were consistent with the desired secondary structure. RNA folding algorithms are ac-

curate for small strands and a junction that misfolds suggests it may not fold properly in our final 

RNA constructs.20 To further reduce the number of junction possibilities, we only kept junctions 

with at least one CG/GC closing pair. The resulting junction counts are seen in Table 1.1 

 

 

 

 

 

 



 22 

Junction Size Summary 

Left Loop Size Right Loop Size Number of Sequences 

0 1 18 

1 0 18 

2 0 78 

0 2 80 

1 1 93 

2 1 288 

1 2 288 

0 3 331 

3 0 352 

1 3 1002 

3 1 1016 

2 2 1172 

3 2 3350 

2 3 3355 

3 3 13750 

Summary of junction counts after closing pair, loop identity and stability requirements were en-

forced. 
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After establishing a refined pool of junctions of varying size up to a left and right loop 

both with size 3 (denoted 3x3), a subset were chosen for use in designing RNA constructs. All 

junctions with three or fewer unpaired nucleotides were chosen which include the following 

sizes: 0x1, 1x0, 1x1, 0x2, 2x0, 1x2, 2x2, 3x0 and 0x3. Larger junctions entries were prioritized 

by the number of A’s or C’s in the junctions to give us the most DMS active nuclotides. 

Each junction in the selected pool was then repeated 10 times and randomly selected into 

groups of six which were separated by seven helices. Each construct has a common start 5’ se-

quence, common 3’ sequence and a GAAA normalization hairpin. Three canonical pairs were 

used to connect the 6 junctions, normalization hairpin and common start and end sequences for 

each construct. Connecting helices were randomly generated and contained only AU and CG 

pairs. A candidate RNA was only kept if it was predicted secondary structure utilizing Vienna’s 

folding algorithm matched the hypothetical target structure. Constructs with four or more con-

secutive GC pairs were also discarded even if predicted to fold properly with candidate motifs 

being returned to the original pool. Having more than three consecutive GC pairs is known to 

cause issues with premature stops during reverse transcription in the DMS workup of the 

RNA.20,24 

To ensure both broad coverage of non-canonical pairings and ease of analysis our goal 

was to generate a 7,500 sequence library. We found 7,500 to be the ideal size due to price and 

difficulty of designing larger libraries. With our design protocol we generated over 8,000 se-

quences. The final subset of 7,500 were selected using requirements designed to ensure success-

ful sequencing and analysis. Sequences were selected such that the overall pool length variance 

is less than 10% to reduce PCR bias. Additionally we ensured that the Levenshtein edit distance 

between each construct is at least 10.21 Levenshtein distance describes the minimum edit distance 
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between two RNA strands and is important that individual sequence reads must be differentiated 

between possible RNA constructs. When a pool satisfying these requirements was created, there 

were approximately 8,000 sequences and the final pool was selected giving preference to those 

designs with lower ensemble defect calculated by Vienna’s RNAfold. Selected sequences were 

then converted into DNA sequences by replacing uracil (U) with thymine (T) and adding the T7 

promoter to the front of each sequence. The sequence pool was ordered from Agilent (product 

number G7220A).  

 

1.2.2 Probing Libraries with DMS 

The 7,500 sequence library was ordered through Agilent as a dry oligo pool. We resolv-

ated the oligo pool with 50 uL of 1X Tris-EDTA (TE) buffer from Fischer Bioreagents, part 

number BP2473-1. We PCR amplified the library with primers TTCTAATACGACTCAC-

TATAGG, GTTGTTGTTGTTGTTTCTTT. We used q5 master mix from New England Bi-

oLabs, product number M0492L. 

Step Temperature Time Cycles 

Initial Denaturation 98 C 2 mins 1 

Denaturation 98 C 2 mins 18 

Annealing 57 C 30 secs 18 

Extension 72 C 30 secs 18 

Hold 4 C INF  

 

 We puried the double stranded product by 2% agarose gel. What kit did we use to purify 

the double stranded product.  

Resulting double stranded DNA (dsDNA) is then purified and mixed with 0.4 M Sodium 

Cacodylate (from Electron Microscopy Sciences, part number 11655) and 250 mM MgCl2 (from 
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Alfa Aesar J61014) to re-fold RNA. Folded RNA is mixed with 2.5 uL of DMS (15 %/%) and 

left to react for 6 minutes The reaction was quenched by BME from Agros Organics, part num-

ber 125470010. Reaction is purified by spin column and the concentration is measured by qubit 

(what kit was the procedure). The purified RNA is reverse transcribed by TGIRT-III for 2 hours. 

Product cDNA is again purified by spin column. Downstream PCR is next performed before an 

egel. A final spin column purification is performed before concentration is measured by qubit 

and the product is diluted down to 1 nM. 

The prepared library was sent to the University of Kansas Medical Center for sequencing 

on an Illumina NovaSeq 6000 system. Library was part of a 1.13 billion read chip and received 

approximately 50 million of these reads directly. Resulting data was deposited in gunzipped fastq 

files. 

 

1.2.3 Data Processing and Analysis 

The zipped fastq files were decompressed and partitioned equally into 500 groups to 

make analysis practical on available hardware. Partitioning was performed by placing the nth 

read into the n modulo 500th file. For example, the 1st, 501st, 1001st , etc. read were placed into 

the first partition, the 2nd, 502nd, 1002nd were placed into the second partiation, and so on. Bar-

coding was performed on each of the 500 partitions using the novobarcode de-multiplexing ap-

plication from novocraft. Once de-multiplexed, each of the 500 partitions was analyzed with the 

DREEM software package to align the reads in each partition to one of the 7,500 sequences in 

the pool.17 The DREEM pipeline further built mutational histograms for each of the 7,500 se-

quences in each of the 500 partitions. A mutational histogram is a representation of the mutation 

rates observed for each nucleotide in a sequence. These mutation rates are later used to generate 
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the reactivity profiles for each construct. Mutational histograms were finally combined across all 

partitions to yield 7,500 unique mutational histograms for the entire pool. 

Normalization was performed using a GAAA tetraloop present in each of the 7,500 con-

structs. This normalization scheme takes the average reactivity of the three A’s in the tetraloop 

and uses this value as the normalization factor the entire construct. This average is set to one and 

the other values in the construct are divided by this value. Once normalized, the A and C reactiv-

ity values for each of the motif sequences are aggregated and grouped across all constructs. This 

process was carried out with the assistance of a python script which decomposes each designed 

RNA into a motif graph which keeps track of the reactivity values across different constructs. 

The result is a number of measurements for each of the A’s and C’s in a given motif sequence. 

 

1.2.4 Combining DMS Data with Solved Junction Structures 

We curated a set junction motif structures from XRC PDB entries. Interactions with pro-

teins, ligands, and other RNAs are known to impact three-dimensional conformation and as a re-

sult were removed from the set of PDB entries. A final quality cutoff was to remove entries 

where the resolution was greater than 4.0 Å. RNA pairing is driven by hydrogen bonds which oc-

cur on the range of 3.0 Å or less, meaning resolution worse than 4.0 Å could provide misleading 

results.22 This sampling of the PDB resulted in 659 unique sequence motifs with a total of 1,342 

unique PDB entries.  

We applied the X3DNA analysis tool to each of the 1,342 junctions to generate pair clas-

sifications the non-canonical base pairs present in each junction.14 Only pairs with at least one A 

or C were kept and their corresponding DMS values were extracted from previous analysis such 

that each pair, its classification and its values are all combined. For each pair, a number of values 
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were computed including pairwise minimum value, maximum value and the ratio of the higher 

and lower value when both nucleotides in the pair are DMS active. The ratio of a non-canonical 

pair where both nucleotides are DMS active (i.e. AA, CA, AC, CC) is calculated as follows with 

reactivities r1 and r2: 

𝑟𝑎𝑡𝑖𝑜 = 	
max	(𝑟!, 𝑟")
min	(𝑟!, 𝑟")

 

Note that for this equation the minimum value is 1, representing a pair with equal DMS reactivi-

ties and a higher value corresponds to a pair where the two DMS values are very different.  

 

1.3 Results and Discussion 

1.3.1 CC Pairs 

DMS values for CC pairs signal if the pair is in one of two pairing conformations. Con-

ventional analysis of DMS suggests that since CC pairs do not form canonical pairings, both nu-

cleotides should have high reactivities as both N3’s would not participate in pairing and thus be 

solvent exposed. During our analysis of CC pairs and their reactivity ratios, we saw a bi-modal 

set of values with ratios either being close to one or much higher than one. Two indicative exam-

ples of these values are shown in Figure 1.4.  

Analysis with X3DNA showed that CC pairs with high ratios participated in a form of 

weak pairing where a single hydrogen bond is formed. This hydrogen bond interacts with the N3 

of one cytosine but does not see participation from the other cytosine’s N3. The specific orienta-

tion leaves one N3 shielded from solvent and the other N3 solvent exposed.  As a result, the 

DMS reactivities for each C vary and result in a high ratio for the pair. This pairing mode is seen 

in the CCCG&CCCG motif on the left side of Figure 1.4. One of the weak pairing C-C pairs is 

shown in Figure 1.4 with the dotted line marking the hydrogen bond.  
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 CC pairs with ratios close to 1 tended to not participate in pairing at all. This dynamic is 

seen on the right side of  Figure 1.4 with the GACU&ACCC junction motif. The relevant CC 

pair from this motif features two C’s that are too far apart to form a single hydrogen bond as in 

the CCCG&CCCG motif. Because both of the N3’s are solvent exposed, the resulting in a ratio 

is closer to 1.   
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Figure 1.4: C-C DMS Values Correspond to Weak or No Pairing 

 

Two examples of CC pairing. The junction motif on the left features a CC pair with weak paring 

and a corresponding high DMS reactivity ratio. The relevant CC pair is shown in the bottom left 

with the DMS active N3’s circled in black and the sole hydrogen bond represented by a dashed 

black line. The junction motif on the right features a CC pair with no pair and a DMS reactivity 

ratio near 1. Bottom right shows an enhanced view of the relevant pair with DMS active N3’s 

circled in black.  
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1.3.2 GA Pairs 

DMS values for GA pairs provide binary information as to whether the nucleotides are 

participating in pairing or not. Analysis of GA pairs is limited to the magnitude from the DMS 

active adenine. In our analysis, we identified two modes of reactivity being either near zero or 

very high which correspond to being involved in a pair or sheared, respectively.  

Inspection of 3D structures showed that GA pairs whose adenine had reactivity near zero 

tended to form a non-canonical GA pair. An example structure is shown in the left pane of Fig-

ure 1.5 with the GGC&GAC motif. The relevant GA pair is in close proximity and forms stabi-

lizing hydrogen bonds, limiting solvent access to the involved adenine leading to a reactivity of 

0.18. This pair’s spatial arrangement is highlighted in the bottom left of Figure 1.5 with the DMS 

active N1 of adenine highlighted with a black circle.  

GA pairs whose adenine had much higher reactivity adopted an alternate non-pairing 

configuration that exposes the N1 of adenine. An example structure is shown in the right pane of 

Figure 1.5 with the CGAG&CGAG motif. In this instance, the sheared conformation of the pair 

leaves the N1 of adenine exposed to solvent leading to a high reactivity value of 2.17. The ar-

rangement of these nucleotides is shown in the bottom right of the figure where the exposed N1 

of adenine is highlighted with a black circle.  
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Figure 1.5: GA Pairing Modes Exhibit Differing DMS Value Ratios 

 

Two examples of GA pairing demonstrating the two modes observed in our curated PDB dataset. 

The junction on the right features a pairing mode which keeps the N1 of adenine hidden from 

solvent. The relevant pair is shown in plane in the bottom left. A motif with a sheared GA pair is 

shown on the left side of the figure. There a sheared conformation leaves the N1 of adenine ex-

posed to solvent and able to react with DMS. An enhanced view of the relevant pair in the bot-

tom right shows the N1 of adenine with a black circle.  
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DMS reactivity also identify a variety of junction topologies for junctions that do not 

have 3D crystallography data. Examples of different topologies are shown in Figure 1.6 and the 

selected junctions are indicative examples of patterns repeated observed in the full dataset.  

Many observed junctions did conform to established intuition of DMS reactivity with ca-

nonically paired nucleotides having low reactivity values and non-canonically paired nucleotides 

having higher values as seen in row I of Figure 1.6. This highlights a key point that our analysis 

does not suggest that the current interpretation of DMS reactivity values is inaccurate. Instead, 

the established wisdom is largely correct but needs further refinement for some non-canonical 

interactions.  

Row II of Figure 1.6 shows junctions which demonstrate the ability of non-canonically 

paired nucleotides to assume lower DMS reactivity values. As demonstrated by the analysis of 

GA pairs, lower DMS values are still consistent with non-canonical pairing. Given this, junctions 

with DMS profiles similar to those in row II correspond to well-formed structures with non-ca-

nonical interactions that shield the N1’s and N3’s of their respective adenine and cytosines. This 

finding represents a significant advance in our understanding of DMS reactivity as the C in the 

left loop of the bottom left structure in Figure 1.6 would previously be assumed to participate in 

a canonical pair elsewhere in its structure. 
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Figure 1.6: DMS Reactivity Values Identify Diverse Junction Topologies 

 

The above junctions show the superposition of DMS reactivity profiles for each of the included 

junction motifs across a number of instances in the designed RNA library. Reactivity values for 

each nucleotide are shown as boxplots and are color coded with blue and red corresponding to 

adenine and cytosine, respectively. Each boxplot diagram is shown with its corresponding sec-

ondary structure and likely non-canonical basepairs are shown in dotted orange lines for the three 

symmetrical junctions presented.  
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Combining DMS data and X3DNA pair classifications enabled direct comparisons between 

3D non-canonical pairs and reactivity values. In contrast to conventional analysis of DMS reac-

tivity, values provide more information than a bi-modal classification of participation in canoni-

cal pairing or a lack thereof. Our deep dive into the CC and GA pairs demonstrates that low reac-

tivity DMS values can be associated with non-canonical pairings and that DMS values additional 

encode information about 3D pairing modes. 

Beyond specific pairing examples, analysis of our designed RNA library shows that the cur-

rent analysis of DMS reactivities is not wholly lacking. Many observed junctions conformed to 

conventional wisdom with canonically paired and loop nucleotides adopting low and high DMS 

reactivity values, respectively. A number of loop nucleotides did record low reactivity values, 

however, and it is clear the bi-modal classification does not always hold. The junction profiles 

presented in Figure 1.6 also demonstrate that DMS reactivity profiles are consistent across differ-

ent sequence contexts. This finding also suggests that low reactivity values for loop nucleotides 

are not an anomaly as each motif compiled into the boxplot diagrams would need to misfold sim-

ilarly across all instances for this to occur.  
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1.4 Summary and Future Directions 

 Our deep dive into DMS patterns of non-canonically paired nucleotides demonstrates that 

there is a wealth of structural information demanding further analysis. Importantly, the existence 

of patterns for both CC and GA pairs shows that DMS can provide information on non-canonical 

pairs with one or two DMS active nucleotides. Of the ten possible non-canonical pairs, only GG 

and UU cannot be analyzed via DMS reactivity studies. As a result, further studies provide an 

opportunity to significantly improve experimental coverage of non-canonical pairs. Our work has 

demonstrated that DMS studies can efficiently canvas the vast space of possible junctions. The 

creation of only a few more junction libraries could provide enough values to build robust da-

tasets describing non-canonical pairing. 

Improved datasets then provide opportunity to enhance the efficacy computational mod-

eling. DMS reactivities are frequently combined with in silico prediction algorithms to guide 

higher precision folding.23 Existing approaches use DMS values as an additional constraint, as-

suming that reactivities correlate with the “pairedness” of a given nucleotide. The understanding 

that lower DMS reactivity values are consistent with non-canonical pairing will improve algo-

rithm accuracy as these values will no longer fuel the prediction of erroneous pairs. 

Beyond incorporation into thermodynamic folding models, non-canonical DMS datasets 

provide an opportunity to develop algorithms for the prediction of reactivity profiles. The ability 

to predict a DMS profile for an RNA provides an alternate method for structure elucidation and 

validation. Direction comparison of predicted and actual DMS reactivity profiles is rapid and 

would reduce reliance on the imperfect thermodynamic models common in the field.  
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CHAPTER 2: Developing LC-MS Functionality for MVAPACK 
 

2.1 The Need For Complete Metabolomics Software Suites 

Metabolomics aims to understand cellular processes through the comprehensive charac-

terization of small molecule metabolites.1 Small molecules are the final product of many cell 

processes and can be found in a variety of tissues, cell lysates and biofluids.2-4 An organism’s 

metabolome is the composite of these small molecules and is typically composed of thousands of 

metabolites.5 The vast number of known metabolites and their corresponding high abundances in 

the cell make the metabolome a robust proxy for understanding fundamental processes and dis-

ease states alike. Accurate identification and measurement of small molecules is critical to char-

acterizing an organism’s metabolome. Need for high fidelity metabolite measurement has made 

1H nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS) 

standard techniques for any metabolomics studies.6-7 

1H NMR and LC-MS are complementary techniques that make coverage of the metabo-

lome a tractable task.8 Although identification and measurement of isolated small molecules by 

either technique is highly accurate today, biological mixtures feature increased noise and interac-

tions that complicate analysis. The rapid runtimes, non-destructive nature, and high reproducibil-

ity of NMR make it ideal for identifying new biomarkers in a metabolomics study.9 In contrast, 

the greater volume and labelling capabilities of LC-MS make the technique effective for further 

analysis of the metabolome once biologically relevant metabolites have been identified (Figure 

2.1).10 For both NMR and LC-MS, the volume of data produced is impractical for manual analy-

sis. Researchers in the field have addressed the abundance of generated data through the devel-

opment of software pipelines that automate analysis and aggregation of metabolite measure-

ments. 
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Metabolomics software packages make metabolomics analyses a tractable task by auto-

mating metabolite identification, quantitation, and statistical analysis. Software pipelines begin 

with automated peak picking that enables rapid identification of metabolites across dozens of bi-

ological replicates.11 With modern computational power, selection of metabolite peaks is per-

formed in minutes and results in a high dimensional description of the metabolome. Making 

sense of the resulting peak features is then achieved via the preparation of a feature matrix which 

aggregates metabolite abundances across all replicates in a study. Ensuring accurate grouping of 

features is another non-trivial task that relies on statistical models to cluster analogous metabolite 

peaks across different samples. Feature matrices are further refined by selecting only metabolite 

features which appear consistently within a biological replicate group and vary versus other 

groups. The resulting feature matrix contains metabolites which describe the underlying biologi-

cal differences between groups. Feature matrices contain hundreds of metabolites and the field 

has turned to statistical models like principal component analysis (PCA), partial least squares 

(PLS) and orthogonal projection onto latent structures (OPLS) to enable rapid visualization of 

these high dimensional spaces (Figure 2.2).12 Distilling metabolomic spectral data into statistical 

models for convenient visualization and analysis is universal in the field, and this functionality is 

provided by dozens of software packages. 

Despite the abundance of metabolomics packages, most limit users to analyzing either 

NMR or LC-MS data. OpenMS, XCMS, and Maven are popular programs for analyzing LC-MS 

data but have no facilities for raw NMR data.13-15 NMRProcFlow, NMRPipe and MVAPACK all 

provide solutions for NMR metabolomics analyses but leave users unable to work with LC-MS 

data.16-18 The lack of a metabolomics software package offering both LC-MS and NMR function-
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ality forces researchers to either limit their analyses to one spectral type or invest time into learn-

ing multiple software packages. Creating a package capable of analyzing both 1H NMR and LC-

MS data would alleviate these problems, allowing users to leverage the information provided by 

both spectral types. We believe MVAPACK is an ideal software package to address these needs. 

MVAPACK features a modular approach with existing PCA, OPLS and PLS modeling capabili-

ties. As a result, end-to-end analysis of LC-MS data would not require re-implementation of 

these techniques.  

Adding field standard LC-MS processing techniques to MVAPACK will transform the 

package into a unique one stop shop for metabolomics analysis. The wealth of available LC-MS 

processing techniques provides ample algorithmic options for each step of analysis. As a result, 

adding LC-MS processing to MVAPACK has been an exercise in implementation rather than 

novel algorithm development. The following chapter outlines my work in adding field-standard 

LC-MS processing techniques to MVAPACK. 
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Figure 2.1: LC-MS Data Allows High Precision Metabolite Identification 

 

 

 
LC-MS data is a three dimensional description of both the retention time and mass-to-charge ra-
tio of sampled compounds. Access to both dimesnions enables high precision identification of 
metabolites.  
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Figure 2.2: PCAs Allow Visualization of High Dimensional Spaces 

 

 

PCA plots cluster samples using their similarities in variance. Here each dot represents all of the 

peaks in a given experimental replicate. Replicates are color coded and the green and red ellipses 

correspond to the 95% confidence levels for each respective group. The black ellipse is the 95% 

confidence interval for all data in the PCA analysis. 
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2.2 Materials and Methods 

 MVAPACK’s new LC-MS functionality utilizes previously published algorithms ac-

cepted as standard in the metabolomics community. This functionality is incorporated consist-

ently with the rest of MVAPACK, utilizing a modular approach where each step of the LC-MS 

data pipeline is performed by a single function call with multiple choices for analytical method. 

The steps are as follows: (1) Extracted Ion Chromatogram (EIC) generation, (2) peak picking, (3) 

peak matrix generation, (4) peak matrix normalization, (5) peak matrix imputation and (6) peak 

matrix filtration. An overview of the new LC-MS functionality added to MVAPACK is pre-

sented in Figure 2.3. 
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Figure 2.3: MVAPACK LC-MS Pipeline Overview 

 

 

 

A summary of MVAPACK’s LC-MS processing functionality. Six total steps are performed to 

go from raw LC-MS data to a filtered feature matrix. 

 

 

 

 

 

 

 

 

 



 45 

 

2.2.1 EIC Generation 

An EIC is a group of LC-MS intensities (cts) with very similar mass-to-charge ratios 

(mz) ordered by retention time (rt) in ascending order. EIC generation is essential for peak pick-

ing as the initially 3D LC-MS data is simplified to a collection of 2D spectra (Figure 2.4). In our 

implementation,  we utilize a strategy similar to that described in XCMS.24 A single function call 

to create_eics() converts a replicate file containing raw scans into an EIC file with uni-

form binning. The width of mz binning is a user specified value with a default of 0.05 daltons. 

Acceptable input file formats include the partially binary encoded .mzML and .mzXML as well 

as the plaintext proteoWizard .txt format.19 

Replicate files often exceed 10 gigabytes (GB) and a backend C++ parser was written to 

ensure reasonable EIC generation times. Octave is a high level language whose scripts are inter-

preted by a Java Virtual Machine (JVM). Using a JVM is convenient for language implementa-

tion purposes but comes at the cost of execution speed. Additionally, decompressing the binary 

encoded portions of .mzML and .mzXML files is a difficult task in Octave. The C++ language is 

known for high performance and ability to work with binary data, making it a clear choice for a 

parser backend. Octave additionally provides an application program interface (API) to com-

municate with compiled C++ code. Developing a C++ backend allowed MVAPACK’s LC-MS 

functionality to overcome Octave’s performance bottlenecks and integration with the Octave 

C++ API hides implementation details from end-users. 

 Our implementation identifies the supplied file format and performs validation checks 

prior to EIC generation. Checks are specific to each of the three possible file formats and ensure 

the data is not mal-formed. Once input data is validated, EICs are generated by sorting each data 
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point into its appropriate mz bin. Multiple points often exist within the same mz bin and the sin-

gle value with the highest intensity is kept for each retention time point within a given EIC. This 

step is designed to remove baseline noise points. After generation, EICs are saved to a plaintext 

file so that replicates files do not have to be parsed again for future analysis.  
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Figure 2.4: EICs Isolate Single Peaks 

 

EIC generation reduces 3D LC-MS data to a collection of 2D spectra. The above example shows 

how a sample peak shown in red is extracted from the full spectra on the left to make a 2D spec-

tra on the right. 
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2.2.2 Peak Picking 

The next step in MVAPACK’s LC-MS pipeline is peak picking via the  

pick_peaks() function. Selected peaks correspond to individual metabolites and are used in 

the final feature matrix, making accurate peak picking a priority. Additionally, ordinary repli-

cates have in excess of 20,000 EICs, which adds performance considerations to our implementa-

tion. To provide users with EIC peak picking that is both accurate and efficient, we have devel-

oped two wave-form based options for selecting LC-MS peaks in MVAPACK. 

The first option for peak picking is a Gaussian second derivative wavelet similar to that 

described in XCMS.14 Applying a wavelet to a raw signal series creates a waveform describing 

the curvature of the original signal at each point. As seen in Figure 2.5, a Gaussian second deriv-

ative transform will cross zero near peak boundary regions. Locations of zero crossings are im-

pacted by the size of the wavelet being used so the full width at half maximum (FWHM) of the 

raw signal is taken and used to inform the Gaussian second derivative wavelet size. Using this 

description of peak curvature, peaks are defined as regions between zero crossings where the 

maximum peak value of the raw series is above some signal-to-noise or intensity threshold. The 

default cutoff in MVAPACK is being greater than 10 times the average intensity in the current 

EIC. To address performance concerns, we built a C++ function to apply the Gaussian second 

derivative wavelet to the raw signal. Like the C++ backend parser used for EIC generation, this 

code utilizes Octave’s C++ API and is an implementation detail that users do not need to worry 

about. 

The second option for peak picking is a Savitzky-Golay filter. Savitzy-Golay filters per-

form a smoothing of the raw signal by making each point in a waveform the weighted average of 

nearby points.20 Like the Gaussian second derivative transform, Savitzky-Golay filtration creates 
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a waveform that measures the slope of the original signal. It also sees zero crossing similar to the 

Gaussian second derivative transform in peak regions. As a result, Savitzky-Golay peak picking 

uses an identical protocol for actual peak picking wherein the area between zero crossings is in-

tegrated to arrive at the total intensity for the peak. Octave provides a performant Savitzky-Golay 

filter implementation which we use in MVAPACK. 

Beyond wavelet transformation strategy, both the Gaussian second derivative transform 

and Savitzky-Golay filter have the same behavior. Each method is capable of selecting multiple 

peaks per EIC up to a specified number. Likewise, each approach finds the rt, mz, max intensity, 

integration and width for each peak. Integrations are performed via trapezoidal integration in the 

regions between zero crossings and widths are found by measuring the FWHM for each peak. 

The result of the pick_peaks() function is a matrix containing all peaks for a repli-

cate. Each row of the matrix corresponds to a single peak with columns holding values for the 

mz, rt, intensity, integration and width. MVAPACK offers a utility function named 

save_peaks() that exports a peak matrix to a comma separated values (CSV) format. 
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Figure 2.5: Gaussian Derivative Transforms Identify Peak Regions 

 

The application of a Gaussian second derivative wavelet (in green) to a raw EIC (in blue). Inte-

gration of the peak is performed on the area between zero crossings where the maximum inten-

sity satisfies a specified cutoff.  
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2.2.3 Matrix Generation 

 After selecting peaks from each replicate, MVAPACK provides the generate_ma-

trix()  function to aggregate metabolite features globally.  Matrix generation is critical for 

downstream statistical analysis via PCA, OPLS or PLS and requires clustering in two dimensions 

across all available replicates. Peak clustering is a difficult but necessary task as both biological 

and instrument-based noise lead to drift even in high quality datasets.21 Similar to EIC generation 

and peak picking, this step requires both performance and accuracy. For MVAPACK, we have 

provided users with two implementation options: an OpenMS style root mean square difference 

(RMSD) approach as well as an ObiWarp correlated time warping method.13,22 

The OpenMS RMSD approach views peaks as points in an (rt,mz) coordinate space and 

groups replicate peaks with low corresponding distances. The distance between two peaks from 

different replicates is defined below: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 	5
(𝑚𝑧! −𝑚𝑧")

𝑚𝑧_𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟

"

+
|𝑟𝑡! − 𝑟𝑡"|

𝑟𝑡_𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟	 

Where mz1 and rt1 corresponds to p1 and mz2 and rt2 correspond to p2, respectively. The 

mz_scale_factor and rt_scale_factor are constants set by the user with default values of 0.05 dalt-

son and 90 seconds, respectively. This RMSD metric addresses the anisotropic nature of LC-MS 

data. Drifts in retention time are common and expected to be larger whereas drifts in mz ratio are 

rare and expected to be very low.21 Taking the square of the mz difference and the absolute value 

of the retention time difference allows larger changes in retention time and penalizes changes in 

mz ratio. Using a smaller mz_scale_factor and a larger rt_scale_factor further promotes align-

ments that avoid changes in mz but allow movement in retention time space.  
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Each candidate peak is merged into the existing cluster with the lowest RMSD distance. 

Distances are calculated by looping through candidate peaks and making every possible peak vs 

cluster comparison. The result is a large number of comparisons which would be slow to perform 

if implemented in Octave. We have implemented this part of MVAPACK’s LC-MS pipeline in 

C++ to make rapid peak alignment possible. This routine is called through the Octave C++ API 

and this implementation detail is hidden from the user.  

 The other option for peak clustering is the ObiWarp time warping algorithm. ObiWarp 

takes a top down approach to feature grouping, viewing each replicate as a matrix of raw intensi-

ties to globally align via warping of retention times.22 Time warping is a popular technique used 

by dozens of alignment algorithms in the field.23 ObiWarp’s implementation was made fully 

open source by its creators and as a result has been included in a number of packages including 

BioConductoR, XCMS and Maven.14,15 This algorithm aggregates a replicate’s intensities into a 

matrix and minimizes the correlated difference between a given replicate and a reference repli-

cate via retention time adjustments. Correlated distances can be measured with Pearson’s corre-

lation coefficient, covariance, dot product or Euclidean distance. ObiWarp already being written 

in C++ allowed for convenient inclusion into MVAPACK as an efficient method for peak clus-

tering. Beyond implementation details, this algorithm’s top-down approach makes it ideal for da-

tasets where large retention time drifts occur. Unlike the RMSD approach, it is effective at per-

forming accurate multi-minute alignments.  
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Figure 2.6: Matrix Generation

 

The feature clustering step of MVAPACK’s LC-MS data pipeline aligns peaks across different 

replicates. Seen on the left are collections of peaks color coded to represent different replicates. 

The right shows the aligned peaks which have been clustered to eliminate differences in retention 

times. Each black dot corresponds to a cluster of peaks across different replicates.  
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2.2.4 Feature Normalization 

LC-MS metabolomics data experiences significant variance from both biological and in-

strumental sources. Despite its prevalence, signal fluctuations must be addressed to enable accu-

rate inter-replicate quantitation and downstream statistical analysis.24 Without normalization, sta-

tistical models have difficulty discerning biologically significant signal variation from random 

noise. Metabolomics researchers have developed a consensus approach of first taking the base 

two logarithm of peak intensities before applying normalization schemes to minimize the varia-

tion present in datasets (Figure 2.2.7). We have developed the normalize_matrix()  func-

tion to combat this variation. Our implementation in MVAPACK provides three protocols for 

normalization: maximum value normalization, p-norm normalization and quantile normalization. 

Maximum value normalization adjusts for peak variation by setting the most intense peak 

in each replicate to one and scaling the reset of the peaks to that value. It is the simplest approach 

available in MVAPACK and is useful for datasets with lower variation. This normalization 

scheme will not be effective for many datasets but tends not to distort the underlying data signifi-

cantly. 

P-norm normalization is a normalization scheme frequently used to adjust high dimen-

sional machine-learning regression models.26 Each replicate’s normalization factor is generated 

by summing the cumulative intensity of peaks. This method makes use of Octave’s built in norm 

function and creates a normalization factor that includes information about all peaks in the repli-

cate. 

Quantile normalization is a higher order technique standard in many LC-MS metabolom-

ics packages. This normalization scheme assumes that each replicate has comparable distribu-
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tions of intensities and makes their respective composites identical.27 MVAPACK’s quantile nor-

malization implementation first sorts all intensities in each replicate within a matrix where each 

column represents a different replicate. Each intensity value is then set to the average intensity 

found in each row. Although this approach sees more change to the underlying values, the lack 

of parameterization provides a strong check against overfitting. 
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Figure 2.7: Matrix Normalization 

 Two distributions of un-normalized peak intensities are seen on the left with different replicates 

being colored in black and blue, respectively. After normalization, differences between replicate 

peak intensities are eliminated as seen by the green distributions on the right. 
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2.2.5 Peak Imputation  

In addition to inter-replicate variation, LC-MS metabolomics experiments experience 

random missing peaks for both biological and instrumental reasons. Peaks are known to be miss-

ing completely at random (MCAR) in up to 20% of replicates even in high quality LC-MS da-

tasets.28 Filling in missing values is critical for final statistical models which see performance de-

creases when feature values are missing.29  We have provided the impute() function in 

MVAPACK to give users techniques for imputing their LC-MS peak matrices. The impute() 

function has three available protocols: mean imputation, mean distribution imputation and kNN 

imputation. 

Mean imputation sets missing peak to the average of other intensities for the same feature 

within a given replicate group. The mean approach is a simple first order technique for address-

ing missing values. An example is shown in Figure 2.2.8. A major limitation to mean imputation 

is the tendency for this technique to create imputed features with artificially low variation. In 

particular, the more peaks missing from a given feature, the greater the reduction in variation. 

The side effect of reduced variation is less pronounced when more replicates are present in an 

experimental group. 

Mean distribution imputation behaves similarly to mean imputation and but also adds sto-

chastic noise to the imputed peaks to reduce the variation reduction effect. This protocol 

measures both the mean and standard deviation of the existing features for a given experimental 

group. The measured mean and standard deviation are used to establish a hypothetical value dis-

tribution for each feature which is sampled to impute missing peaks. Adding random noise ad-

dresses the tendency of mean imputation to artificially lower feature variation, preserving exist-

ing trends in the feature matrix. 
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kNN imputation is a machine learning method for imputation that predicts missing values 

using observed relationships between peak intensities.30 Unlike both mean and mean distribution, 

kNN considers more than the non-zero peak values for a given feature. kNN instead identifies 

patterns between peaks within each replicate and uses these patterns to inform imputation. Simi-

lar to mean distribution, kNN imputation incorporates variation into its estimates as neighbor 

peaks used will vary in relative abundances between replicates. 
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Figure 2.8: Peak Imputation Accounts For Missing LC-MS Peaks 

 

The top matrix describes  shows a feature matrix with a number of missing peaks highlighted in 

red. The bottom matrix has imputed these missing values with the mean values for each of the 

existing peaks in each replicate group, highlighted in green. 
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2.2.6 Peak Filtration 

 Peak filtration is performed as a final processing step to select metabolites that best de-

scribe variation in the biological system at hand. Desirable metabolite features have low varia-

tion within their experimental groups and large variation across experimental groups. Features 

with these characteristics are useful for building statistical models and understanding biological 

processes alike (Figure 2.2.9). We have developed the filter_features() function for 

MVAPACK users to select significant peaks. This function has three filtering modes: maximum 

variance, max fold change, and analysis of variance (ANOVA). 

 Maximum variance, or coefficient of variation (CV), describes the variation present 

within an experimental group for a given feature. Maximum variance is measured for each ex-

perimental group by dividing the standard deviation of the group’s intensities by the mean of the 

group’s intensities. A feature is only kept when CV’s for each experimental group are below a 

given cutoff, typically 0.20 or 0.15. The maximum variation filter directly targets features with 

low inter-group variation. 

 Max fold change describes the variation present between experimental groups for each 

feature. First, the ratio of average intensity differences between each of the experimental groups 

is found. The max fold change is the greatest of these values and a feature is only kept when it is 

above a specified cutoff, usually 2. The max fold change filter directly targets features with high 

variation between experimental groups.  

 ANOVA measures variance both within and between experimental groups. Unlike maxi-

mum variance and max fold change, ANOVA relies on the F statistical test to classify grouped 

variation.31 As a result, the ANOVA test generates a p-value which indicates if the variation is 
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statistically significant. A feature is only kept when this p-value is below a specified cutoff. The 

default value is 0.05, corresponding to a 95% probability that the variation is significant. 
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Figure 2.9: Peak Filtration Selects Significant Features 

 

 

This example feature matrix is composed of two experimental groups with five replicates each. 

Max variance (CV) and fold change has been calculated for each of the features and only those 

with CV below 0.20 and fold change greater than 2 are kept. 
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2.3 Results and Discussion 

This work represents an expansion of MVAPACK’s functionality to handle both 1H 

NMR and LC-MS datasets. LC-MS processing has been implemented as a modular process with 

six sequential steps: (1) EIC generation, (2) peak picking, (3) peak matrix generation, (4) peak 

matrix normalization, (5) peak matrix imputation and (6) peak matrix filtration. Each step has 

been implemented with user-friendly wrapper functions that make use of different protocols con-

venient. Different analytical techniques for each step can be specified with the same function 

calls, limiting the learning curve for these new functions. Octave compatible C++ code has also 

been developed to improve performance for EIC generation, peak picking and matrix generation. 

Using C++ for performance critical aspects of the pipeline makes MVAPACK’s performance 

competitive with existing commercial and open-source packages. This performance is helpful for 

widespread adoption as users will not have to sacrifice analytical run time to analyze both 1H 

NMR and LC-MS data. The included techniques also represent standard approaches in the field 

for LC-MS metabolomics analysis. Protocols have been borrowed form established packages like 

XCMS, OpenMS, Maven and ObiWarp, allowing users to directly translate existing processing 

scripts from other packages for use in MVAPACK while still using existing analytical tech-

niques.13-15,21 This potential for easy conversion is another strength of MVAPACK’s new func-

tionality as users will not have to limit their analytical options to process both spectral data types. 

Adding an LC-MS pipeline has made MVAPACK a unique one-stop shop for metabo-

lomics analysis. MVAPACK users can now extract metabolite features from both spectral data 

types, providing a unique analytical offering not seen elsewhere in the metabolomics community. 

This work represents a unique effort in the field that enables users greater coverage of the metab-
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olome without having to make large sacrifices in terms of execution speed or processing abili-

ties. New functionality has also been implemented in manner consistent with existing NMR 

functionality, providing a convenient experience for end-users. As a result, LC-MS data can now 

incorporated into a study with only minor alterations to existing MVAPACK scripts. Using a 

wrapper function approach is also conducive to the addition of new functionality over time. The 

presented work represents the development of an LC-MS infrastructure for MVAPACK, opening 

the door for future developers to new analytical protocols with ease. 

 

2.4 Summary and Future Directions 

 MVAPACK’s new LC-MS functionality has been implemented in a consistent, modular 

format that opens the door for the addition of new protocols. MVAPACK’s LC-MS functionality 

represents common techniques in the field, but a number of additional algorithms and processing 

steps can still be included. While every LC-MS processing package provides facilities for peak 

picking, alignment, and so forth, few provide multiple options for each step. MVAPACK’s cur-

rent offering is comparable to existing package in terms of analytical techniques, but further ad-

dition of published protocols would elevate the package. BioConductoR is the poster child for 

this concept, providing dozens of techniques for each step of LC-MS metabolomics processing. 

The clear next step for this project is the addition of more protocols for each processing step. 

Providing users with more options will lead to increase usage in the community as researchers 

see the value in using MVAPACK. As a result, combined 1H NMR and LC-MS studies will be-

come more prevalent and enhanced coverage of the metabolome will be seen throughout the 

field. 



 65 

 An additional next step is to validate MVAPACK’s LC-MS functionality through data 

benchmarking. Comparing the package’s results on the same datasets versus existing analytical 

techniques will first aid future development. Documenting current performance is important for 

the addition of new functionality so that improvements and pessimization can be directly identi-

fied. The analysis of benchmark data provides the opportunity to profile performance and iden-

tify bottlenecks and potential bugs in the package. Benchmarking also allows future developers 

to understand the strengths and weaknesses of newly added functionality. Validation is also im-

portant for user confidence and widespread adoption. Users will be more likely to adopt a new 

package if they are confident in its ability to accurately characterize their datasets.  
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CHAPTER 3: Creating Synthetic Data to Validate MVAPACK’s New Functionality 
 

3.1 The Need for Synthetic LC-MS Datasets 

Benchmarking LC-MS metabolomics software is a critical final step to method develop-

ment.1 Using benchmarks allows developers to understand algorithm behavior and provides users 

assurance that a package can be used reliably in their own work. Critical analysis of an LC-MS 

package also informs potential users about the strengths and weaknesses of a given implementa-

tion, guiding its usage in a metabolomics study. Despite the importance of benchmarking, there 

is no clear consensus on how algorithm performance should be measured.2 

A common benchmarking technique is to run a previously analyzed dataset through new soft-

ware and compare results. This approach is suitable if existing software provides a robust de-

scription of the benchmark dataset, but it is difficult to know if the original analysis obtained full 

and accurate coverage of the data. Biological noise, quantitation limits, and complex inter-me-

tabolite interactions result in unidentified and missing peaks in even the simplest of LC-MS da-

tasets.3 The lack of an established ground truth in experimental datasets poses a direct problem to 

comparative validation. While various software packages will correctly analyze large, easily 

identifiable peaks, the propensity for mischaracterization of edge cases to occur reduces the effi-

cacy of current benchmarking approaches. Given the inherent nature of noise and missing peaks 

in experimental LC-MS datasets, an alternative approach could improve validation and bench-

marking of new software. 

 Using simulated LC-MS data directly addresses issues with conventional benchmarking 

of metabolomics software. Simulated data has ground truth, with each peak’s waveform and me-

tabolite identity being fully characterized.4 Full understanding of simulated spectra enables 

straightforward assessment of algorithmic performance. Features selected by an algorithm can be 
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compared directly to the known peak population in the spectra enabling calculations of false pos-

itive and false negative rates. Ground truth understanding becomes especially useful when syn-

thetic datasets incorporate noise and missing values to mimic the qualities of real spectra. Reduc-

ing spectral quality enables stress testing of peak picking, imputation, and normalization meth-

ods, providing feedback on their sensitivity to these factors.6 These goals cannot be achieved 

with experimental data as missing values and noise are not tunable factors. Despite the clear ad-

vantages of using simulated LC-MS data for benchmarking and validating metabolomics soft atic 

for MVAPACK’s validation and benchmarking phase.8 To achieve our goal of validating 

MVAPACK, we developed our own synthetic LC-MS data using existing simulation software as 

a starting point. 

 To effectively validate MVAPACK, we have created a synthetic dataset that contains 

wide metabolite variation and spectral quality. Using the existing ViMMS software package as a 

source of peaks, we have built an idealized metabolite peak library.5 To emulate the size and ex-

perimental grouping characteristics seen in real LC-MS metabolomics experiments, two groups 

of ten replicates were created from the same base set of metabolite features. Each replicate’s fea-

tures were given multipliers to ensure measurable and significant variation in the overall system. 

Lastly, we probe MVPACK’s ability to deal lower spectral quality data through the creation of 8 

additional dataset versions with varying levels of missing peaks and added noise. 

 

 

3.2 Materials and Methods 

3.2.1 Data Generation 
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Simulated metabolite peaks from the ViMMS software package were used as the base 

feature set for our LC-MS metabolomics dataset. ViMMS generates data by first sampling the 

human metabolome databank (HMDB) and then using kernel density machine learning algo-

rithms to predict the shapes of metabolite peaks. The package generates isotoped features for 

over 19,000 known metabolites and we initially created all possible metabolites. To ensure well-

defined peak waveforms in the final data, the profiles of each metabolite were manually in-

spected and 7,000 peaks with multiple isotopic peaks were selected. Common reasons for peak 

exclusion were large baseline noise, baseline drift, the existence of too many small peaks in an 

extracted ion chromatogram (EIC), or a lack of data points within a single EIC.7 Selected peaks 

were idealized through Gaussian fitting. Fitted models were used to generate the ideal EICs for 

each of the molecules (Figure 3.1). At this point, we had created a base library of metabolites for 

building simulated spectra. 

To ensure our synthetic dataset has overall behavior similar to LC-MS metabolomics da-

tasets, we designed our dataset to have two groups of ten replicates each. After the master set of 

all metabolite EICs was created, each replicate was generated by systematically varying the in-

tensities of each EIC. We randomly selected 935 of the 4,680 metabolites to vary at statistically 

significant levels across replicate groups. Significance of metabolite variation is tied to coeffi-

cient of variation (CV), defined as the standard deviation of multipliers divided by the average of 

these multipliers as well as fold change, the ratio of average metabolite intensity between groups. 

In our dataset, significant features have CV < 20% for both groups and fold change greater than 

or equal to two. Multipliers with a desired variance level can be generated trivially by creating a 

set of random multipliers and keeping them if their measured CV is on a desired range. The 935 

metabolites with significant variation were each given multipliers with CV < 20% and all others 
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were given CV’s > 30%. Significant metabolites were given inter-group fold changes between 

2.2 and 4 whereas non-significant were given values ranging from 0 to 1.7. Combining fold 

changes and CV’s, we arrived at a full multiplier set for each of the 4,680 metabolites in each of 

the twenty simulated replicates. The full multiplier set was validated for significance through the 

generation of principal component analysis (PCA) plots.  

 After creating the base set of replicates, we created eight additional sets with identical 

raw peaks but varying levels of noise and missing features. We created versions of the simulated 

data with varying quality to stress test MVAPACK’s processing abilities. The addition of noise 

was implemented at the metabolite EIC level by randomly adding signal to the baseline of each 

waveform. We added baseline noise as a percentage of the maximum intensity in each EIC and 

used levels of 0%, 5% and 10% (Figure 3.2). Missing peaks were removed at random from the 

subset of significant peaks at rates of 0%, 10% and 20%. Removal of significant peaks was per-

formed such that at most 20% of the peaks were missing from each feature across all replicates 

in an experimental group. This choice was made to ensure that significant peaks are kept in the 

analysis as features with more than 20% of peaks missing are discarded in MVAPACK. Between 

noise and missing value possibilities, we generated a total of nine distinct datasets with varying 

levels of data quality. 

3.2.2 Analysis with MVAPACK 

 Data was analyzed with MVAPACK using a standard processing script. After data was 

converted from .mzML format to EICs, peak picking was performed using a Gaussian Second 

Derivative wavelet transform and a signal-to-noise cutoff of 10 was used.9 Peak alignment was 

performed using an OpenMS-style root mean square deviation (RMSD) approach and default 

mass-to-charge (mz) and retention time (rt) scaling factors of 0.05 daltons and 120 seconds were 



 73 

used, respectively.10 A non-parametric quantile normalization scheme was used to normalize the 

resulting data matrix and missing peaks were imputed using basic mean imputation.11 The result-

ing data matrices for each of the nine conditions were modelled using principal components anal-

ysis (PCA).8 
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Figure 3.1: Idealized EICs Are Generated For Each Metabolite 

 

Idealized metabolite EICs for the molecule anthracene. Three different peaks are seen which 

have each been idealized to a Gaussian waveform. 
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Figure 3.2: Noise Is Added at Three Levels to Vary Spectra Quality 

 

 

Three levels of noise that have been added to the EICs during replicate generation. Noise is gen-

erated by creating an array of random values on the range of [0, %max_peak] which is then 

added to the baseline.  

 

 

 

 

 

 

 

 

 

 

 



 76 

3.3 Results and Discussion 

 Our protocol led to the successful creation of a simulated LC-MS dataset that contains 

both significant variation amongst metabolite peaks as well as varying levels of quality. When 

analyzed with MVAPACK, we saw strong agreement between expected results and the pack-

age’s characterization of the data. PCA plots describe the degree to which variation is explaina-

ble via high level components. Pearson R2 values are generated for each component with better 

data having the sum of the first two components as close to one as possible. Figure 3.3 shows 

that for the base case with no additional noise or peaks removed, MVAPACK performs well, 

showing a cumulative R2 of 0.904 for a dataset expected to have a cumulative R2 of 0.940. This 

close agreement in terms of variation explained suggests that MVAPACK is accurately charac-

terizing the data it analyzes when there is high spectral quality. Analysis of spectra with varying 

quality suggests that MVAPACK still processes the data well regardless of noise levels but 

struggles as peaks are removed at random (Figure 3.4). Specifically we saw that cumulative R2 

pessimization was driven only by the number of missing peaks. For a given missing peak level, 

pessimization was nearly constant with respect to changes in noise level. Missing peaks are a 

problem for MVAPACK however, seeing pessimization of 13% and 25% for data with 10% and 

20% of peaks missing, respectively. This finding suggests that the imputation models in 

MVAPACK needs improvement.  
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Figure 3.3: MVAPACK’s PCA Model Closely Matches the Idealized Version 

 

 

The above data is for the simulated data case with no noise and no missing peaks. The left shows 

the PCA plot generated by MVAPACK and the right shows the idealized version. 
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Figure 3.4: MVAPACK’s Performance Across Spectral Quality Level 

 

 

Summary of MVAPACK’s pessimization across varying spectral quality. Pessimization is de-

fined as the difference of the ideal model’s first two component R2 and the same first two com-

ponent R2 from MVAPACK’s model.  
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3.4 Summary and Future Directions 

 Here we describe the successful generation of a synthetic LC-MS dataset for the purpose 

of validating a metabolomics software package. By using ViMMS as a source for peak infor-

mation, we have created data that closely mirrors feature sets seen in real LC-MS datasets. Ideal-

izing these peaks has also enabled high precision tuning of spectral quality. Creating nine differ-

ent sets of data with spectral quality has been critical for understanding MVAPACK’s perfor-

mance sensitivity. While it performs well when all peaks are present, performance decreases are 

seen as peaks are randomly removed. In addition, we saw that MVAPACK is robust to the addi-

tion of baseline noise. This study suggests that further refinement is needed for MVAPACK’s 

imputation algorithms. 

 Further improvement can be made to our simulated data through the addition of baseline 

drift as well as retention time drift. Both are common features of LC-MS data and their inclusion 

would enable further stress testing of MVAPACK and other algorithms. Retention time drift in 

particular is worthwhile to investigate as feature alignment is a major component of most metab-

olomics packages and is challenging to benchmark especially with real experimentally acquired 

datasets.  
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CHAPTER 4: Summary of Work 

 This thesis described my work in identifying markers of non-canonical pairing in DMS 

data as well as developing LC-MS functionality for the MVAPACK metabolomics package and 

its subsequence validation through simulated LC-MS data.  

We demonstrated that DMS experiments do encode information about 3D structure and 

specifically non-canonical pairings. Presented examples for CC and GA pairs show that low val-

ues which previously would have been previously interpreted as canonical pairing can be con-

sistent with non-canonical pairing modes. This work opens the door for further studies of rela-

tionships between DMS reactivity modes and non-canonical pairing as well as the establishment 

of quantitative models. 

We also successfully added functionality for LC-MS metabolomics analysis to 

MVAPACK, making it a one-stop shop for metabolomics. New functionality represents popular 

techniques in the field, providing users with re-implementations of previously described algo-

rithms. Implementation was performed in a granular manner such that future developers can in-

corporate additional analytical techniques. Adding other algorithms is the clear next step for this 

project as providing more choices for users will lead to more widespread usage in the metabo-

lomics community. 

We generated a simulated LC-MS dataset for validating MVAPACK. This data is de-

signed to test the package’s ability to generate full PCA models from metabolomics LC-MS data. 

Our approach features both empirically informed EICs as well as finely tuned intensities and 

spectral quality levels. Tuning these parameters is critical for the dataset as it allows for stress 

testing and robust assessment of MVAPACK or any other metabolomics package. Further work 

for this project would include the addition of baseline drift as well as retention time drift. 
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