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Lincoln, Nebraska

August, 2021



BOOTSTRAP PERCOLATION ON RANDOM GEOMETRIC GRAPHS

Alyssa Whittemore, Ph.D.

University of Nebraska, 2021

Adviser: Xavier Pérez Giménez

Bootstrap Percolation is a discrete-time process that models the spread of in-

formation or disease across the vertex set of a graph. It was introduced in 1979 by

Chalupa, Leith and Reich as a simple model of dynamics of ferromagnetism. We

consider the following version of this process: Initially, each vertex of the graph is

set active with probability p or inactive otherwise. At each time step, every inactive

vertex with at least k active neighbors becomes active. Active vertices will always

remain active. The process ends when it reaches a stationary state. If all the vertices

eventually become active, then we say we achieve percolation.

We analyze the Bootstrap Percolation process on a Random Geometric Graph.

Random Geometric Graphs provide a simplified abstract model of spatial networks,

and are particularly suitable to describe wireless ad-hoc networks.

More precisely, a Random Geometric Graph is obtained by choosing n vertices

uniformly at random from the unit d-dimensional cube or torus, and joining any two

vertices by an edge if they are within a certain distance, r, from each other. Until now,

very little was known about Bootstrap Percolation on Random Geometric Graphs,

other than some initial results in a paper by Bradonjić and Saniee (2012).

We obtain precise results that characterize the final state of the Bootstrap Per-

colation process in terms of the parameters p and r asymptotically almost surely as

the number n of vertices tends to infinity. We show that, a.a.s., the process is either

stationary from the very beginning (i.e. no inactive vertex ever changes to active) or



almost all vertices eventually become active. Moreover, we prove that in the latter

case the only obstacle to achieve full percolation is the presence of vertices of degree

less than k. Indeed, as soon as r is large enough to guarantee that the minimum

degree is at least k, a.a.s., the process is either stationary or attains percolation. Fi-

nally, we study a version of the model with a restricted focus of infection (i.e. active

points can initially occur in a small region of the torus), and obtain analogous results

for that case.
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Chapter 1

Introduction

Bootstrap Percolation on Random Geometric Graphs combines two random pro-

cesses: the Bootstrap Percolation Model and the model of Random Geometric Graphs.

Here we informally describe each process, discuss their applications and mention some

previously known results.

1.1 Random Geometric Graphs

A Random Geometric Graph is a type of random graph where the vertices are

points in a metric space and adjacencies are determined by the distance between

two points. They were first introduced by Gilbert in his 1961 paper “Random Plane

Networks” [19]. In this paper, Gilbert used a Poisson point process to pick the points

in the Euclidean plane to be the vertices of the graph (this gives a graph on infinitely

many vertices). Then for a distance r, two vertices are adjacent if the Euclidean

distance between the vertices is at most r. Typically, this distance r is a function of

the number of vertices n of the graph. Since 1961, there have been extensive results

involving random geometric graphs, including results concerning random geometric

graphs on different metric spaces, with different probability distributions, and with

varied adjacency rules (see [5] for examples of different models).
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r = 0.05 r = 0.075

r = 0.1 r = 0.2

Figure 1.1: Random geometric graphs on the same set of n = 200 randomly placed
vertices in [0, 1]2 with the euclidean norm and different values of r.

There are several applications of random geometric graphs which has cemented

them as a prevailing object of research in mathematics, computer science, engineering,

and more. Random geometric graphs can be used as mathematical models for large

spacial networks, specifically when the network relies on the geometry of its space.

Examples of applications of these graphs include wireless networks (such as ad-hoc

networks, cell phone networks and wireless internet), transportation networks, power

grids, social networks, neural networks, and uses in statistics. In particular, random

geometric graphs can help decide whether a collection of data comes from single

or multiple distributions by analyzing the data as points in a space and deciding
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if their layout is “typical” (see [39, 20]). Computer scientists and engineers also

use these graphs as theoretical models of wireless ad-hoc networks to better design

communication protocols (see [28, 40, 22, 26, 37, 32, 41]). Random geometric graphs

are also used frequently in percolation theory since they can be used as a continuous

version of site percolation on the lattice.

We may think of the random geometric graph as a process where, given a random

set of points, the radius that decides adjacency, r, starts at 0 and grows larger, so

that one edge is in increasing order of length. In the 1999 paper “On k-Connectivity

for a Geometric Random Graph” [33], Penrose proves an important result that states

asymptotically almost surely (see Definition 2.1), the random geometric graph be-

comes k-connected at the same time that the minimum degree becomes k. In partic-

ular, in [33, 35] and more recently in [36], Penrose discusses the existence of isolated

vertices (the case where k = 1) in random geometric graphs (and in the case of [36],

soft random geometric graphs, a similar type of random graph where two vertices are

adjacent with some probability if their distance is at most r; note that for random

geometric graphs, this probability is 1).

Frequently, the metric space for the graph is taken to be the unit cube in Rd with

general norm or `p norms; however, our focus will be on random geometric graphs on

the d-dimensional unit torus with a distance given by a slight adjustment of any given

norm on Rd. Focusing on the torus allows us to avoid complexities created by the

edges and corners of the cube, affecting some graph properties such as the minimum

degree of the set of vertices.

Other important results may be found in books and surveys such as [30, 34, 42].
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1.2 Bootstrap Percolation

Bootstrap Percolation is a model of the spread of information or disease within

a network. It has been particularly seen as a model of a certain type of cellular

automata. Let G be a graph and let k ∈ N. Designate a subset of the vertices,

A0 ⊆ V (G) (the initial seed) to begin as active (or infected). Then in each time step,

a vertex becomes activated if, in the last time step, at least k of its neighbors were

active. Once a vertex is active, it remains active forever. We want to know: if time

goes on, will all of the graph’s vertices become activated? If that happens, we say A0

percolates G.

There are a few ways in which an initial seed A0 may be chosen: (1) A0 can be

chosen in a non-random way where each vertex in A0 is explicitly selected, or (2) A0

can be chosen randomly. We can choose A0 randomly by either randomly choosing a

subset of vertices of a specific size or by choosing each vertex to be in A0 independently

with some probability p. These two methods of choosing A0 randomly lead to similar

models by choosing an appropriate size of A0 or and appropriate p value. In the case

of choosing A0 of a certain size, one might be interested in minimal percolating sets.

In the case of choosing each vertex in A0 independently with probability p, one might

be interested in finding threshold results with respect to p.

Bootstrap percolation was first introduced by Chalupa, Leath, and Reich in

1979 [16], analyzing the percolation model on a Bethe lattice as a simplified model

of ferromagnetism. Since then, this percolation model has been studied on various

random and deterministic families of graphs.

One of the most frequently studied graphs with respect to bootstrap percolation

is the m-dimensional grid, denoted [n]m. In [1], Aizenman and Lebowitz analyze the

number of vertices on an m-dimensional grid that are eventually activated. In [25],
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t = 0 t = 1 t = 2

Figure 1.2: The first two time steps of the bootstrap percolation process on [6]2 with
k = 2, where filled vertices are active.

Holroyd found a percolation threshold on the 2-dimensional grid for k = 2, which

was then improved by Gravner, Holroyd, and Morris in 2010 [21], and then further

improved by Hartarsky and Morris in 2019 [23]. In [14], Cerf and Cirillo study finite

size scaling on the 3 dimensional grid for k = 3. In [8], Balogh, Bollobás, and Morris

give a percolation threshold for m-dimensional grids for fixed m and k. Further work

on the m-dimensional grid can also be seen in [10, 15, 7].

Balogh, Peres, and Pete studied bootstrap percolation on infinite trees in 2006

[11], finding a threshold relating to the branching number of the tree. In the same

paper, they also looked at bootstrap percolation on non-amenable Cayley graphs. In

2006, Balogh and Bollobás [6] found a sharp threshold on the n-dimensional hyper-

cube. These results were then expanded in 2009 by Balogh, Bollobás, and Morris

[9] to find results on a hypercube for majority bootstrap percolation, a related per-

colation model where vertices become activated if more than half of their neighbors

are active. Sausset, Toninelli, Biroli, and Tarjus studied bootstrap percolation on

hyperbolic lattices in 2009 [38].

In 2012, Janson,  Luczak, Turova, and Vallier gave a sharp threshold for bootstrap

percolation on the Erdős-Rényi graph G (n, p), the graph with n vertices and each pair
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of vertices are adjacent independently with probability p. They analyzed how many

steps the process takes before it stops and showed that asymptotically almost surely

the barrier between full percolation and near percolation is the existence of vertices of

degree less than the percolation parameter, k. A threshold for bootstrap percolation

on a d-regular graph for k < d was found in 2007 by Balogh and Pittel [12]. In 2010,

Amini [4] looked at bootstrap percolation on graphs with given vertex degrees, where

the degree of a vertex determines whether it is initially active and its own percolation

parameter. Amini and Fountoulakis analyzed bootstrap percolation on power-law

random graphs to find how large the initial seed must be for percolation to occur.

In 2016, Candellero and Fountoulakis give a percolation threshold for hyperbolic

random graphs. Amin Abdullah and Fountoulakis showed in 2014 [3] that there is

a percolation threshold in the preferential attachment graph of the size of the initial

seed that depends on the number of vertices in the graph.

In 2012, Bradonjić and Saniee [13] studied bootstrap percolation on random

geometric graphs in the supercritical regime of connectivity (above the connectivity

threshold) and where the percolation parameter k depends on n. In 2020, Koch

and Lengler [29] analyze bootstrap percolation on geometric inhomogeneous random

graphs with a power-law degree sequence, giving a threshold with respect to p and

finding the amount of time it takes for a constant fraction of the vertices to become

active.

In this dissertation, we study bootstrap percolation on the random geometric

graph with a constant bootstrap percolation parameter, k, giving percolation and

near percolation thresholds for p, the probability each vertex is initially active, for

varied values of r, the upper bound of edge lengths in the random geometric graphs.
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Chapter 2

Preliminaries

Bootstrap percolation on random geometric graphs introduces two sources of

randomness, one from the random geometric graph and one from the choice of ini-

tially active set in the bootstrap percolation process. We will begin this chapter by

formally describing the random geometric graph, continue by defining the bootstrap

percolation process, and finally combining the two. We end this chapter with a list

of probability results we will use throughout this dissertation.

We will frequently use the phrase “asymptotically almost surely” (abbreviated

as a.a.s.).

Definition 2.1. A family of events {En}n∈N happens a.a.s. if and only if P(En)→ 1

as n→∞.

We wish to remind the readers of the following definitions:

• fn = O(gn) as n → ∞ if there exist constants C > 0 and n0 ∈ N so that

|fn| ≤ C |gn| for all n ≥ n0.

• fn = Ω(gn) as n→∞ if gn = O(fn).

• fn = Θ(gn) as n→∞ if fn = O(gn) and fn = Ω(gn).
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• fn = o(gn) (or fn � gn) as n → ∞ if for every constant ε0 > 0, there is an

n0 ∈ N so that |fn| ≤ ε0 |gn| for all n ≥ n0.

• fn = ω(gn) (or fn � gn) as n → ∞ if for every constant K > 0, there is an

n0 ∈ N so that |fn| ≥ K |gn| for all n ≥ n0.

We will later consider ε > 0 to be a sufficiently small constant. We will use the

notation Oε, Ωε, and Θε to express that the constants in the definitions of the O, Ω,

and Θ notations depend on ε.

2.1 Random Geometric Graphs

We will consider our vertices to be placed in a metric space S and distance to be

given by distance function dist(·, ·). A geometric graph is a graph in which n vertices

v1, v2, . . . , vn are placed in S so that vi ∼ vj if and only if dist(vi, vj) ≤ r for a given

distance r. We will consider r = r(n), but will frequently hide the dependency on

n. If we place the n vertices randomly, this graph is said to be a random geometric

graph.

Let Xn = (X1, X2, . . . , Xn) be an n-tuple of points in S. The version of the

random geometric graph that we will be analyzing is on S = Td, the d-dimensional

unit torus, [0, 1)d, for a fixed d ≥ 2. Since our space is the torus, we will adapt norms

from Rd into distance functions on Td in the following way:

Given any norm ‖·‖ defined on Rd and any two points x, y ∈ Td, define

dist(x, y) = inf{‖x+ z − y‖ : z ∈ Zd}. (2.1)

This dist function defines a pseudometric on Td. We will see soon that there are only

a finite amount of z ∈ Zd that need to be considered, so we can change the inf to a



9

min in the definition of dist. For a given norm ‖·‖ and for A ⊆ Td, define

diam(A ) := sup{dist(x, y) : x, y ∈ A }. (2.2)

In both cases of dist and diam, we may find it useful to specify the norm, and thus

we will use notation such as dist∗ and diam∗ to signify we are using the norm ‖·‖∗ in

the definition of dist∗ and diam∗. We will specifically define

dist∞(x, y) := min{‖x+ z − y‖∞ : z ∈ Zd},

and

diam∞(A ) := sup{dist∞(x, y) : x, y ∈ A },

where ‖·‖∞ is the `∞ norm.

The following Lemma is a well-known fact that, for instance, can be found in

Section 6.2 (p. 249) in Hoffman’s book Analysis in Euclidean Space [24]:

Lemma 2.1. Equivalence of Norms

For any two norms ‖·‖ and ‖·‖∗ on Rd, there exists a constant β > 0 so that for any

point x ∈ Rd,

1

β
‖x‖ ≤ ‖x‖∗ ≤ β ‖x‖ .

We may also switch the role of ‖·‖ and ‖·‖∞ for the same β > 0.

Remark 2.1. Using Lemma 2.1, for any norm on Rd and two points in Td, we may

equivalently define dist as:

dist(x, y) = min{‖x+ z − y‖ : z ∈ Zd}. (2.3)
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To see that these definitions are indeed the same, let β > 0 be the constant so that for

any x ∈ Td, 1
β
‖x‖∞ ≤ ‖x‖ ≤ β ‖x‖∞ and suppose ‖x− y + z‖∞ > β2. Then we must

have that ‖x− y + z‖ > 1
β
β2 = β. But dist(x, y) ≤ ‖x− y‖ ≤ β ‖x− y‖∞ ≤ β since

x, y ∈ [0, 1)d. Thus, we only need to consider z ∈ Zd so that ‖x− y + z‖ ≤ β2, or

equivalently (using the reverse triangle inequality and Lemma 2.1), ‖z‖ ≤ β2 + β, of

which there are finitely many, so the infimum in equation (2.1) is actually a minimum.

This also gives us that dist(·, ·) on Td is a metric and the topology on Td that we

consider is the quotient topology of the usual topology on Rd.

Lemma 2.2. Consider the general norms ‖·‖ and ‖·‖∗, and dist(·, ·), dist∗(·, ·),

diam(·), and diam∗(·) defined as in equations (2.2) and (2.3).

(i) Strong Equivalence of Metrics

There exists a β > 0 so that for all x, y ∈ Td,

1

β
dist∗(x, y) ≤ dist(x, y) ≤ β dist∗(x, y).

We may also switch the roles of dist and dist∗ in this equation for the same

β > 0.

(ii) There exists a β > 0 so that for a subset A ⊆ Td,

1

β
diam∗(A ) ≤ diam(A ) ≤ β diam∗(A ).

Remark 2.2. We will particularly consider the case in Lemma 2.2 where ‖·‖∗ = ‖·‖∞,

which tells us:
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(i) There exists a β > 0 so that for all x, y ∈ Td,

1

β
dist∞(x, y) ≤ dist(x, y) ≤ β dist∞(x, y).

(ii) There exists a β > 0 so that for a subset A ⊆ Td,

1

β
diam∞(A ) ≤ diam(A ) ≤ β diam∞(A ).

Proof of Lemma 2.2.

(i) By Lemma 2.1, there exists a β > 0 so that for every x ∈ Rd, 1
β
‖x‖∗ ≤

‖x‖ ≤ β ‖x‖∗. Let x, y ∈ Td. There exists a z0 so that ‖z0‖ ≤ β2 + β and

dist(x, y) = ‖x+ z0 − y‖. By Lemma 2.1, we have that

dist(x, y) = ‖x+ z0 − y‖ ≥
1

β
‖x+ z0 − y‖∗ ≥

1

β
dist∗(x, y).

By a symmetric argument, we have that

dist∗(x, y) ≥ 1

β
dist(x, y).

Therefore,

1

β
dist∗(x, y) ≤ dist(x, y) ≤ β dist∗(x, y).

(ii) Let A ⊆ Td and A ′ the closure of A under the usual quotient topology, which

coincides with the topology given by dist. If A = A ′, then A is closed, and

hence compact since Td is compact. Thus A × A is also compact under the

product topology. Note that dist(·, ·) and dist∞(·, ·) are continuous since they

are metrics. So then the sets {dist(x, y) : x, y ∈ A } and {dist∗(x, y) : x, y ∈



12

A } attain their supremum, which is thus the maximum. Thus diam(A ) =

max{dist(x, y) : x, y ∈ A } and diam∗(A ) = max{dist(x, y) : x, y ∈ A }. Then

there must exist x1, y1 ∈ A so that diam(A ) = dist(x1, y1). By Lemma 2.2(i),

there exists a β > 0 so that for all x, y ∈ A , 1
β

dist∗(x, y) ≤ dist(x, y) ≤

β dist∗(x, y). Thus, we have

diam(A ) = dist(x1, y1) ≤ β dist∗(x1, y1) ≤ β diam∗(A ).

Similarly, we also have that there exists x2, y2 ∈ A so that diam∗(A ) =

dist∗(x2, y2). Then we have

diam∗(A ) = dist∗(x2, y2) ≤ β dist(x2, y2) ≤ β diam(A ).

Therefore we have

1

β
diam∗(A ) ≤ diam(A ) ≤ β diam∗(A ).

If A 6= A ′, then diam(A ) ≤ diam(A ′) for any norm. Let ε > 0. Since

A ′×A ′ is compact, we know that there exists x0, y0 ∈ A ′ so that diam(A ′) =

dist(x0, y0). Thus for every x, y ∈ A , we must have that dist(x, y) ≤ dist(x0, y0)

and there exists a sequence of elements in A ×A that converge to (x0, y0). Thus,

diam(A ) ≥ diam(A ′)− ε.

Since this is true for every ε > 0 it must be that diam(A ) = diam(A ′). There-

fore, the Lemma statement must also hold for A .
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We will consider the (uniform) random geometric graph G (Xn; r) to be the ran-

dom geometric graph where we choose each Xi to be a point in Td uniformly at

random; we place n vertices in Td by letting vertex i ∈ V be at point Xi; and for any

two vertices i, j ∈ V , i ∼ j if and only if dist(i, j) ≤ r. In other words, we are placing

n vertices uniformly at random in Td and connecting two vertices if they are within

distance r of each other. Almost surely, the vertices are in general position, so no two

vertices are at the same point, no b+ 1 vertices are on the same b-dimensional affine

space, no d+ 2 vertices are on a single ball, and the distance between any two points

is unique.

We consider the random geometric graph process to be the coupling (G (Xn; r))r≥0,

where r ∈ [0,∞) and each graph is on the same (random) vertex set V , with vertex

positions given by Xn. We may think of r as a time parameter, where we increase

r from 0 so that we may add edges in increasing length, (a.a.s.) a single edge at a

time. On the d-dimensional torus [0, 1)d, which we call Td, G (Xn; diam(Td)) is the

complete graph (though the complete graph may be achieved with a smaller r).

We will be interested in the time in the process (G (Xn; r))r≥0 in which the

minimum degree of the graph is k:

rδ≥k = min{r : deg(i) ≥ k for all i ∈ V }.

A graph is said to be k-connected if removing fewer than k vertices leaves the graph

connected. We may then also define the time in the process (G (Xn; r))r≥0 in which

the graph becomes k-connected:

rk-conn = min{r : G (Xn; r) is k-connected}.
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In 1999, Penrose proved that a.a.s., the precise instant where a random geometric

graph becomes k-connected is the same time that the minimum degree becomes k:

Theorem 2.1. [33] A.a.s., rδ≥k = rk-conn.

2.2 Bootstrap Percolation

Given a graph G (V,E) with vertex set V with |V | = n, edge set E, a subset

of vertices A0 ⊆ V , and a bootstrap parameter k ∈ N, the k-bootstrap percolation

process, Bk(G ;A0) is defined as follows: at each time step t = 0, 1, 2, . . ., we define

the set At ⊆ V , which we call active vertices. We call vertices in V \ At inactive

vertices. The vertices in A0 are considered initially active. At time step t + 1, a

vertex v ∈ V \ At turns active (or becomes activated) if v has at least k neighbors in

At, and we place v in At+1. Once a vertex is active, it remains active, so At ⊆ At+1

for every t = 0, 1, 2, . . .. In other words, for t ≥ 0,

At+1 = At ∪ {v ∈ V \ At : v has at least k neighbors in At}.

We set A∞ =
⋃∞
t=0 At, so A∞ is the set of all vertices that begin as initially active or

eventually become activated in Bk(G ;A0).

We call a set of vertices A ⊆ V stable1 if each vertex in V \ A has at most

k − 1 neighbors in A. Once the k-bootstrap percolation process reaches a stable

set of vertices, the process becomes stationary since no inactive vertex will become

activated. Both ∅ and V are stable sets. We define [A] :=
⋂
A⊆A′⊆V
A′ stable

A′. Note that [A]

is stable and [A] is the smallest stable set containing A. It is easy to check that in

Bk(G ;A0), we have A∞ = [A0].

1This definition of stable differs from the normal definition of a stable set of vertices in graph
theory.
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Given a graph G (V,E), k ∈ N, and A0 ⊆ V , we say that Bk(G ;A0) percolates

(or achieves percolation) if A∞ = V . If we consider a sequences of graphs Gn(Vn, En)

where |Vn| = n, we say that Bk(Gn;A0,n) nearly percolates (or achieves near percola-

tion) if A∞,n = (1− o(1))n, or in other words, all but a vanishing fraction of vertices

are eventually active.

Here, we will be choosing the vertices in A0 randomly so that each vertex in V is

included in A0 independently with probability p = p(n). We note that p will depend

on n but we will hide this dependency in the notation. In order to emphasize that

our A0 is random, we will sometimes denote it with A0(p). Then A∞(p) = [A0(p)] is

the final set of active vertices in Bk(G ;A0(p)).

We may also think of this process in a slightly different way, where we add vertices

to the set A0 one at a time. In order to do this, we will consider the random vector

Wn = (W1,W2, . . . ,Wn) where each Wi for i ∈ [n] are i.i.d. uniform random variables

taking values in [0, 1]. We then define the random set

A0(Wn; p) = {vi ∈ V : Wi ≤ p}.

Then for 0 ≤ p ≤ 1, A0(Wn; p) is distributed as A0(p). In addition, the process

(A0(Wn; p))0≤p≤1 adds one vertex at a time, since almost surely, Wi 6= Wj for i 6= j.

Then A∞(Wn; p) = [A0(Wn; p)] is distributed as A∞(p).

2.3 Bootstrap Percolation on Random Geometric Graphs

We will now look at the k-bootstrap percolation process on a uniform random

geometric graph, which is denoted by Bk(G (Xn; r);A0(p)) using the notation given

in Sections 2.1 and 2.2 above. We will frequently hide arguments that do not differ

from the normal definition of Bk(G (Xn; r);A0(p)), and write it as Bk. There are
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two sources of randomness here: (1) how we place the vertices (this is given by Xn),

and (2) which vertices begin as initially active (these are vertices in A0(p)). We will

be concerned with values of the parameters r = r(n) and p = p(n), both of which

may depend on the number of vertices (n) in the random geometric graph. We will

use the notation r and p with the assumption that both parameters depend on n.

We will consider a sequence of processes (Bk(G (Xn; r);A0(p)))n∈N and analyze what

happens as n→∞.

Little has been studied in the intersection of Bootstrap Percolation and Random

Geometric Graphs. In the introduction of a 1997 paper [35], Penrose describes a

situation similar to bootstrap percolation with k = 1 while analyzing random minimal

spanning trees. In a 2012 paper [13], Bradonjić and Saniee consider r =
√

B logn
πn

for

B > 1, the supercritical regime of connectivity, and take k to depend on n, specifically

for k to be logarithmic in n.

The following definition is found on page 18 of Janson,  Lucsak, and Rucinski’s

book Random graphs [27], but is adapted to our situation:

Definition 2.2. Thresholds A function p∗(n) is a threshold for a graph property P

of Bk(G (Xn; r);A0(p)) if

lim
n→∞

P(P holds for Bk(G (Xn; r);A0(p))) =


0, if p

p∗
→ 0, and

1, if p
p∗
→∞,

or if the roles of 0 and 1 are reversed. A function p∗(n) is a sharp threshold for a

graph property P of Bk(G (Xn; r);A0(p)) if for every ε > 0,

lim
n→∞

P(P holds for Bk(G (Xn; r);A0(p))) =


0, if p

p∗
≤ 1− ε, and

1, if p
p∗
≥ 1 + ε,
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or if the roles of 0 and 1 are reversed. A function p∗(n) that is a threshold, but

not a sharp threshold, for property P of Bk(G (Xn; r);A0(p)) is said to be a coarse

threshold for property P of Bk(G (Xn; r);A0(p)).

We will define the following:

pnonstuck = min{p ∈ [0, 1] : A1(p) \ A0(p) 6= ∅},

pperco = min{p ∈ [0, 1] : Bk(G (Xn; r);A0(p)) percolates}.

In the proofs of the theorems from Chapter 3, as is common with Random Ge-

ometric Graphs, we will tesselate Td into d-dimensional cubes called cells with side

length Sr.

We say that a cell c is active if every vertex inside c is active. A cell c is called a

seed if there are at least k initially active vertices within distance (1− diam(Td)S) r

from the center of c. A cell is called a concentrated seed if there are at least k initially

active vertices inside of it. A vertex v is called stuck if it is not initially active and it

does not have k or more initially active neighbors. Then a cell c is called stuck if all

cells within distance (1 + diam(Td)S) r from the center of c have less than k initially

active vertices total. This ball of radius (1 + diam(Td)S) r centered at the center of

the cell c is called c’s ball of activation. If there are at least k initially active vertices

in c’s ball of activation, then we say that c is nonstuck.

We will be finding the volume of d-dimensional balls frequently in this paper.

For any norm, we will call the volume of the unit d-dimensional ball in that norm ξ.

Then the volume of a d-dimensional ball of radius r is ξrd.

For example, using the Euclidean norm the volume of the d-dimensional ball of

radius r is

√
πd

Γ
(
d
2

+ 1
)rd, where Γ(x) =

∫∞
0
tx−1e−t dt for x > 0. We would only be
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concerned with Γ(x) where 2x ∈ N, and in this case, for m ∈ N,

Γ(m) = (m− 1)!, and

Γ

(
m− 1

2

)
=

(
m− 3

2

)(
m− 5

2

)
· · · 1

2
π

1
2 .

Then in this case, ξ =
√
πd

Γ( d2+1)
.

2.4 Useful Probability Results

Lemma 2.3. Chernoff Bounds

Let X =
n∑
i=1

Xi, where Xi
d∼ Bernoulli(p) with µ = EX = pn. Then for any ε > 0,

P(X ≥ (1 + ε)µ) ≤ e−ε
2µ/(2+ε),

and for 0 < ε < 1,

P(X ≤ (1− ε)µ) ≤ e−ε
2µ/2

and

P(|X − µ| ≥ εµ) ≤ 2e−ε
2µ/3.

These can be seen from Theorem 2.1, Corollary 2.2, and Corollary 2.3 (pages

27 and 28) in Janson,  Luczak, and Rucinski’s book Random Graphs [27]. Chernoff

Bounds will be used frequently in the proofs of the main results.

Lemma 2.4. Markov Inequality

Let X ≥ 0 be a random variable and t > 0. Then P(X ≥ t) ≤ EX
t

. If in addition

EX > 0, then P(X > t) < EX
t

.

This result can be found on page 8 of Janson,  Luczak, and Rucinski’s book
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Random Graphs [27]. The special case of this result that states P(X > 0) ≤ EX

is referred to as the “First Moment Method”. This Lemma and the next resulting

Lemma will be used many times throughout this dissertation.

Lemma 2.5. Suppose X ∼ Bin(m, p) for m ∈ N and p ∈ [0, 1]. Then for any k ∈ N

with k ≤ m,
m∑
j=k

(
m

j

)
pj(1− p)m−j ≤

(
m

k

)
pk.

Proof. Let Y =
(
X
k

)
. Then using Markov’s Inequality (Lemma 2.4) for Y , we have

m∑
j=k

(
m

j

)
pj(1− p)m−j = P(X ≥ k) = P(Y ≥ 1) ≤ EY = E

(
X

k

)
=

(
m

k

)
pk.

Lemma 2.6. Harris-Kleitman Inequality

Define P(n) = {x : x ⊆ {1, 2, . . . , n}}. If A,B ⊆ P(n) are increasing families and

C,D ⊆P(n) are decreasing families, then the following inequalities hold:

P(A ∩B) ≥ P(A)P(B)

P(C ∩D) ≥ P(C)P(D)

P(A ∩ C) ≤ P(A)P(C).

The Harris-Kleitman Inequality is discussed in Chapter 6 of Alon and Spencer’s

book The Probabilistic Method [2]. This will be used in the proof of Theorem 3.5.
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Chapter 3

Main Results

The first result states that for
d

√
1

n
� r � 1, a.a.s., there is a near percolation

threshold for p at p∗ =
1

(n)1/k(a)1−1/k
, where a = ξnrd, so a is the average degree.

Theorem 3.1. Suppose that each vertex inside the torus begins as activated inde-

pendently with probability p. Consider p∗ = 1

(n)1/k(a)1−1/k and r = d

√
a
ξn

. Then for

1 � a ≤ n and p/p∗ → 0, a.a.s., no initially inactive vertex becomes activated and

for 1� a� n and p/p∗ →∞, a.a.s., Bk nearly percolates.

The second result shows that a.a.s., there is not a sharp near percolation threshold

for p when d

√
1
n
� r � 1. Theorems 3.1 and 3.2 imply that a.a.s., there is a coarse

near percolation threshold for p.

Theorem 3.2. Suppose that each vertex inside the torus begins as activated with

probability p independently. Consider p∗ = 1

(n)1/k(a)1−1/k and r = d

√
a
ξn

. Then for

1� a� n and p = γp∗ with constant γ, a.a.s.

α ≤ P(Bk is nonstuck) ≤ 1− α

where α = α(γ) is a constant and α ∈ (0, 1).
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The third result shows that for r past the threshold for k-connectivity, a.a.s.,

as soon as Bk(G (Xn; r);A0(p)) becomes nonstuck, it must percolate. When r is a

bit less than the threshold for k-connectivity, then a.a.s., Bk(G (Xn; r);A0(pnonstuck))

must percolate completely except for vertices of degree less than k that were not

initially activated.

Theorem 3.3. Consider Bk(G (Xn; r);A0(p)).

(i) For d

√
1
n
� r � 1, a.a.s., Bk(A0(pnonstuck)) nearly percolates.

(ii) Let rδ≥k ≤ r � 1. Then a.a.s. pnonstuck(r) = pperco(r).

(iii) For r′ = d

√
logn+(k−1) log logn−ω

ξn
, where ω → ∞ and ω = o(log log n), whenever

r′ ≤ r � 1, a.a.s., Bk(A0(pnonstuck)) percolates completely except possibly for

some subset of vertices with degree less than k.

In order to prove the above results, we will prove similar, more general results.

Instead of activating every vertex in G (Xn; r) independently with probability p, we

will only activate vertices of G (Xn; r) that are inside some d-dimensional cube L ⊆ Td

of side length ` = `(n), a restricted area of infection, independently with probability

p. As with parameters r and p that depend on n, when we write `, it is assumed that

` depends on n. We also note that the following results still hold when L is a ball

of radius ` = `(n) or other nice shapes of volume on the order of `d. Since we are

now only initially activating vertices that fall in L, we will denote the set of initially

active vertices by A0(p;L).

Theorem 3.4 is the same as Theorem 3.1, but with the restricted area of infection

L. Here, we consider a = O(n`d), which is equivalent to r = O(`); and a � n`d,

which is equivalent to r � `.
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Theorem 3.4. Let L (the restricted area of infection) denote a d-dimensional cube

in the torus so that diam∞(L) = `(n). Suppose that each vertex inside L begins

as activated independently with probability p. Consider p∗ = 1

(n`d)1/k(a)1−1/k and

r = d

√
a
ξn

. Then for 1 � a ≤ O(n`d) and p/p∗ → 0, a.a.s., no initially inactive

vertex becomes activated and for 1 � a � n`d and p/p∗ → ∞, a.a.s., Bk(A0(p;L))

nearly percolates.

Theorems 3.5 and 3.6 are the same as Theorems 3.2 and 3.3 respectively, but

with the restricted area of infection L.

Theorem 3.5. Suppose that each vertex inside L (a cube so that diam∞(L) = `(n)

inside the torus, the restricted area of infection) begins as activated with probability

p independently. Consider p∗ = 1

(`dn)1/k(a)1−1/k and r = d

√
a
ξn

. Then for 1 � a � `dn

and p = γp∗ with constant γ, a.a.s.

α ≤ P(Bk(A0(p;L)) is nonstuck) ≤ 1− α

where α = α(γ) is a constant and α ∈ (0, 1).

Theorem 3.6. For the following two parts, consider a restricted area of infection L,

a cube so that diam∞(L) = `(n) in the torus.

(i) For d

√
1
n
� r � `, a.a.s., Bk(A0(pnonstuck)) nearly percolates.

(ii) Let rδ≥k < r � `. Then a.a.s. pnonstuck(r) = pperco(r).

(iii) For r′ = d

√
logn+(k−1) log logn−ω

ξn
, where ω → ∞ and ω = o(log log n), whenever

r′ ≤ r � `, a.a.s., Bk(A0(pnonstuck;L)) percolates completely except possibly

for some subset of vertices with degree less than k.
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Once we have proved Theorems 3.4, 3.5, and 3.6, then Theorems 3.1, 3.2, and

3.3 are immediate since we may take ` = 1 (so L = Td).
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Chapter 4

Proof of Theorem 3.4

Theorem 3.4. Let L (the restricted area of infection) denote a d-dimensional cube

in the torus so that diam∞(L) = `(n). Suppose that each vertex inside L begins

as activated independently with probability p. Consider p∗ = 1

(n`d)1/k(a)1−1/k and

r = d

√
a
ξn

. Then for 1 � a ≤ O(n`d) and p/p∗ → 0, a.a.s., no initially inactive

vertex becomes activated and for 1 � a � n`d and p/p∗ → ∞, a.a.s., Bk(A0(p;L))

nearly percolates.

We are going to tesselate the torus Td into equally sized cells. If c is a cell, we

will define the side length of the cell to be s := diam∞(c). We would like for all

vertices in two topologically connected cells to be within distance r of each other (so

they are adjacent in G (Xn; r)). For a cell c, let β > 0 be the value so that diam(c) ≤

β diam∞(c) = βs given by Lemma 2.2. Consider two topologically connected, equally

sized cells c1 and c2. We would like

max{dist(x, y) : x ∈ c1, y ∈ c2} ≤ 2 diam(c) ≤ 2β diam∞(c) = 2βs ≤ r.

Thus, we may take1 s = r
2β

. So for s = Sr, we have S = 1
2β

. If m is the number

1We want 1
s to be an integer, so we really want to take s = 1

d2β/re ∼
r
2β , but we will omit roofs

and ceilings for clarity.
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of cells in Td, then m = (2β)dξ n
a
. There are mL := Θ(m`d) = Θ

(
(2β)dξn`d

a

)
cells

intersecting L.

4.1 For p� p∗ and 1� a ≤ n`d

Consider p � p∗ and 1 � a ≤ n`d. For any cell c, let Yc be the number

of vertices in c’s ball of activation. Then Yc ∼ Bin

(
n,
(

1 + diam(Td)
2β

)d
· a
ξn

)
. Call

µ := EYc =
(

1 + diam(Td)
2β

)d
· a
ξ

the average number of vertices in a cell’s ball of

activation. Define a cell to be typical if it has at most 2µ vertices inside its ball

of activation. If a cell is not typical, call it atypical. Let an atypical cell be called

atypical type i if it has between 2iµ and 2i+1µ vertices inside its ball of activation.

First note that the number of typical cells is at most m. Let Yc,act be the number

of active vertices in cell c’s ball of activation. Note that only cells whose balls of

activation intersects L may be nonstuck. Then for a typical cell c and by Lemma 2.5,

the probability that c is nonstuck is

P(Yc,act ≥ k|Yc ≤ 2µ) ≤
2µ∑
j=k

(
2µ

j

)
pj(1− p)2µ−j ≤

(
2µ

k

)
pk ∼ (2µ)k

k!
pk

= o


((

1 + diam(Td)
2β

)d
· 2
ξ

)k
(a)k

k!
·

(
1

(`dn)1/k (a)1−1/k

)k


= o

( a

`dn

)
.

Thus, for Z0 the number of typical cells that are nonstuck, we have that the

expected number of typical cells that are nonstuck is

E(Z0) = P(Yc,act ≥ k|Yc ≤ 2µ) ·mL ≤ o
( a

n`d

)
·Θ
(

(2β)dξn`d

a

)
= o(1).
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Thus, by the first moment method (Lemma 2.4), a.a.s., there are no typical cells that

are nonstuck in L.

Define Ti(c) to be the event that cell c is atypical type i and Tns(c) to be the

event that cell c is nonstuck. By linearity of expectation, for i ≥ 1, we have that if

Zi is the number of nonstuck atypical cells in L of type i, then for

Zi,c =


1, if cell c is nonstuck and atypical type i

0, otherwise

we have

EZi =
∑

c cell in L

EZi,c = mLP(Zi,c = 1) = mLP(Ti(c))P(Tns(c)|Ti(c)).

Note that

P(Ti(c)) ≤ P(Yc ≥ 2iµ) ≤ e
−(2i−1)2µ

3

by a Chernoff bound (Lemma 2.3), and by Lemma 2.5,

P(Tns(c)|Ti(c)) ≤ P(Yc,act ≥ k|Yc = 2i+1µ) ≤
(

2i+1µ

k

)
pk ≤ (2i+1µ)kpk.

Thus, we have

P(Zi,c = 1) ≤ e
−(2i−1)2µ

3 (2i+1µ)kpk

and

EZi ≤ qi := mLe
−(2i−1)2µ

3 (2i+1µ)kpk.

Then

qi+1

qi
= e−

µ
3

((2i+1−1)2−(2i−1)2)2k = o(1),
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since (2i+1 − 1)2 − (2i − 1)2 > 0 for all i ≥ 1 and µ → ∞. Define Zi≥1 to be the

number of nonstuck atypical cells. Then

E(Zi≥1) =
∞∑
i=1

EZi ≤
∞∑
i=1

qi ∼ q1

= mLe
−µ

3 (4µ)kpk = Θ

(
n

µ
µkpk`d

)
e−µ/3

= Θ

`dn((1 +
diam(Td)

2β

)d
a

ξ

)k−1

o((p∗)k)

 e−µ/3

= Θ

(
`dn (a)k−1 o

(
1

`dn (a)k−1

))
e−µ/3

= o
(
e−µ/3

)
= o(1).

Then asymptotically almost surely (by Lemma 2.4) there are no nonstuck atypical

cells in L. Thus, asymptotically almost surely, there are no nonstuck cells in L which

implies all cells in L are stuck. So all cells must be stuck and thus, for p� p∗, a.a.s.,

Bk does not almost percolate.

4.2 For p� p∗ and 1� a� n`d

Consider p � p∗ and 1 � a � n`d. For any cell c, let Wc be the number of

vertices in the cell. Then Wc ∼ Bin
(
n, a

(2β)dξn

)
. Call ν := EWc = a

(2β)dξ
, the average

number of vertices in a cell. Define a cell to be typical if it has at least ν
2

vertices inside

the cell. If a cell has less than ν
2

vertices, call it atypical. Then by a multiplicative

Chernoff bound (Lemma 2.3), we have

P
(
Wc ≤

ν

2

)
≤ e−ν/8 = e

−a
8·(2β)dξ .
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Let Qatyp be the number of atypical cells in Td. Then E(Qatyp) ≤ m · e−a/(8·(2β)dξ).

Then by Markov’s Inequality (Lemma 2.4), we have that

P(Qatyp ≥ m · e−a/(16·(2β)dξ)) ≤ e−a/(16·(2β)dξ) → 0

as n → ∞. Thus, a.a.s., the number of atypical cells is less than m · e−a/(16·(2β)dξ) =

o(m).

Lemma 4.1. A.a.s. the largest topologically connected component of typical cells

contains (1− o(1))m cells.

Proof. Note that the event that a cell is typical is not independent from other cells. To

overcome that, we couple our model with a slightly different model involving a Poisson

point process. More precisely, let n0 = n− n3/4 and N be a Poisson random variable

with expectation n0. In the Poisson model, we drop N points in the torus uniformly

at random and independently. We define cells and typical cells as before. Note that in

this model each cell receives a Poisson number of points (with expectation n0/m ∼ ν)

and each cell is typical independently of each other. Moreover the probability that a

cell is typical is

P(Poisson(n0/m) ≥ ν/2) = 1− o(1).

We will prove that the lemma holds for this Poisson model. We can extend it to the

uniform model as follows. If N ≤ n (which happens with probability 1 − e−n1/2
=

1 − o(1)), then we can add n − N points to the Poisson model chosen uniformly at

random from the torus. This gives us the usual uniform model on n points. Since

typical sets in the Poisson model are a subset of typical sets in this uniform model,

if the event in the statement holds for the Poisson model then it also holds for the

uniform model. Otherwise, if N > n, just resample n uniform points from the torus.
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In that case the two models are not related, but this only happens with probability

o(1). To prove the result in the Poisson model, we can simply use some well-known

percolation results. Let m′ = d
√
m. We can identify the cells with points in the grid

[m′]d and declare a point open if the corresponding cell is typical and closed otherwise.

We declare two points of [m′]d adjacent if their `1 distance is 1 (i.e. the two points

differ by 1 in one coordinate and are identical in all other coordinates). (Note that we

are ignoring some adjacencies between cells and only considering adjacent those cells

sharing a d− 1-dimensional face. Also we are not considering adjacencies around the

torus.) This is precisely the usual Bernoulli site percolation on [m′]d with parameter

p = 1−o(1). By Thm 1.1 of [17] a.a.s. there is a unique giant component of open sites

with all but a o(1) fraction of the sites. This proves the statement for the Poisson

model, since adding additional adjacencies between cells can only help. Also in view

of the earlier coupling, the result also holds for the uniform model.

Let M = τm for some τ ∈ (0, 1). Then a.a.s., if X is the number of typical cells

in the giant component, X ≥ M . Let D be the giant component and let ML be the

number of cells in D ∩ L (so ML = Θ(τmL)).

Let p be so that p = ω(p∗) but p = o
(

1
a

)
. Note that a � n`d, so there are p’s

that satisfy this. For larger p, the result follows by monotonicity. Let Uc,seed be the

event that cell c is a concentrated seed. Then

P
(
Uc,seed|Wc ≥

ν

2

)
≥
(
ν/2

k

)
pk(1− p)

ν
2
−k ∼ νk

2kk!
pk,

noting that since p = o
(

1
a

)
,

(1− p)ν/2−k = e−νp/2(1+O(p)) = eo(1) → 1.
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Let Qtyp,seed be the number of typical cells that are seeds in D∩L (the intersection

of the giant component D and L). We have

P(Qtyp,seed = 0) ≤
ML∏
i=1

(
1− P

(
Uc,seed|Wc ≥

ν

2

))
,

where we may bound the probability by restricting to ML cells. We also note that

for the set of cells in D∩L, {ci}i=1,...,ML
, the collection of events {Uci,seed}i=1,...,ML

are

independent of each other. Thus,

P(Qtyp,seed = 0) ≤
ML∏
i=1

(
1− P

(
Uc,seed|Wc ≥

ν

2

))
≤
(

1− (1 + o(1))
νk

2kk!
pk
)ML

≤ e−(1+o(1))ML
νk

2kk!
pk .

Note that

MLν
kpk = Θ

(
(2β)dξτ`dn

a

)
·
(

a

(2β)dξ

)k
pk = ω

(
`dnak

a
· 1

`dnak−1

)
= ω(1).

Therefore P(Qtyp,seed) ≤ e−(1+o(1))ML
νk

2kk!
pk → 0. Hence, a.a.s., we will have a typical

cell in D∩L that is a seed. Then, by the definition of the giant component, a.a.s., the

giant component will become activated and thus, the graph nearly percolates. This

completes the proof of Theorem 3.4.
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Chapter 5

Proof of Theorem 3.5

Theorem 3.5. Suppose that each vertex inside L (a cube so that diam∞(L) = `(n)

inside the torus, the restricted area of infection) begins as activated with probability

p independently. Consider p∗ = 1

(`dn)1/k(a)1−1/k and r = d

√
a
ξn

. Then for 1 � a � `dn

and p = γp∗ with constant γ, a.a.s.

α ≤ P(Bk(A0(p;L)) is nonstuck) ≤ 1− α

where α = α(γ) is a constant and α ∈ (0, 1).

In the first part of this proof, we will show that there is a constant α1 = α1(γ) ∈

(0, 1) so that P(Bk(A0(p;L)) is nonstuck) ≥ α1. In the second part, we will show that

there is a constant α2 = α2(γ) ∈ (0, 1) so that P(Bk(A0(p;L)) is nonstuck) ≤ 1−α2.

Then, if we let α = min{α1, α2}, the theorem is proved.

5.1 The Lower Bound

We are going to tesselate the torus Td into equally sized cells. If c is a cell, we

will define the side length of the cell to be s := diam∞(c). We would like for all

vertices in two topologically connected cells to be within distance r of each other (so



32

they are adjacent in G (Xn; r)). For a cell c, let β > 0 be the value so that diam(c) ≤

β diam∞(c) = s given by Lemma 2.2. Consider two topologically connected, equally

sized cells c1 and c2. We would like

max{dist(x, y) : x ∈ c1, y ∈ c2} ≤ 2 diam(c) ≤ 2β diam∞(c) = 2βs ≤ r.

Thus, we may take1 s = r
2β

. This gives us S = 1
2β

. If m1 is the number of cells in

Td, then m1 = (2β)dξ n
a
. We also have that there are m1,L := Θ(m`d) = Θ

(
(2β)dξn`d

a

)
cells intersecting L. In addition, the volume of a cell is a

(2β)dξn
.

Let Yc be the number of vertices in cell c. Then Yc ∼ Bin
(
n, a

(2β)2ξn

)
, so EYc =

a
(2β)dξ

. Call a cell typical if it has between 1
2
EYc and 3EYc vertices in it. Note that a

multiplicative Chernoff bound (Lemma 2.3) gives us that

Pr(cell c is atypical) = Pr(Yc ≤
1

2
EYc) + Pr(Yc ≥ 3EYc)

≤ e
− a

8(2β)dξ + e
− a

(2β)dξ ≤ 2e
− a

8(2β)dξ .

Let Qatyp be the number of atypical cells. Then

E(Qatyp) ≤ 2(2β)dξn

a
e
− a

8(2β)dξ = o(m).

By Markov’s Inequality, we have that

P
(
Qatyp ≥

2(2β)dξn

a
e
− a

16(2β)dξ

)
≤

2(2β)dξn
a

e
− a

8(2β)dξ

2(2β)dξn
a

e
− a

16(2β)dξ

= e−
a

256π → 0.

Thus, a.a.s., the number of atypical cells is at most 2(2β)dξn
a

e
− a

16(2β)dξ , and therefore

1We again want 1
s to be an integer, so we really want to take s = 1

d2β/re ∼
r
2β , but we will omit

roofs and ceilings for clarity.



33

the number of typical cells intersecting L is at least m1,L

(
1− 2e

− a

16(2β)dξ

)
, which is

at least 0.9n`
d

a
for sufficiently large n.

Let Tc denote the number of initially active vertices in cell c. Then for a cell c

in L,

P(Tc = k) =

(
Θ(a)

k

)
pk(1− p)Θ(a)−k

∼ Θ(ak)

k!
γk(p∗)k

= Θ

(
γka

k!n`d

)
,

since (1 − p)Θ(a)−k → 1 as n → ∞. Let Tseed denote the number of concentrated

seeds. Then since the probability that a cell is a concentrated seed is independent of

whether other cells are concentrated seeds, we have

P(Tseed = 0) ≤
∏

c typical in L

P(Tc < k) ≤
(

1−Θ

(
γka

k!n`d

))0.9n`
d

a

≤ e
−0.9Θ

(
γk

k!

)
.

By the definition of a typical cell, we know that the constants that appear in Θ
(
γk

k!

)
are bounded (both above and below). Note that if the graph has a concentrated seed,

then Bk is nonstuck. So

P(Bk is nonstuck) ≥ 1− P(Tseed = 0) ≥ 1− e
−.9Θ

(
γk

k!

)
=: α1(γ).

5.2 The Upper Bound

We are going to again tesselate the torus into cells of equal size. We would like

for vertices in a cell c to only be adjacent to other vertices either in c or the cells

topologically connected to c. In particular, we do not require two vertices in the same
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cell to be adjacent. We will take s := diam∞(c) = 2βr, where β > 0 is the constant

so that 1
β

diam∞(c) ≤ diam(c) ≤ β diam∞(c). Then diam(c) ≥ 2r and S = 2β.

Define a tile to be a cube composed of 2d cells (in a 2× 2× · × 2︸ ︷︷ ︸
d

arrangement).

We will create 2d different tilings created with these tiles where each will partition

the torus in a different way. Note that each cell is in 2d tiles and each of these 2d tiles

appears in a different tiling.

The volume of a tile is 2d(2βr)d = (4β)da
ξn

and there are ξn
(4β)da

tiles in a single

tiling. Let Yt be the number of vertices in a tile t. Then Yt ∼ Bin
(
n, (4β)da

ξn

)
, so the

average number of vertices in a tile is µ := EYt = (4β)da
ξ

. Say a tile is of type i if

2iµ ≤ Yt ≤ 2i+1µ for i ≥ 1 and of type 0 if Yt ≤ 2µ. Call a tile stuck if it has less

than k active vertices inside it. Call a tile nonstuck if it has at least k active vertices

inside it.

Let Ej be the event that all tiles intersecting L are stuck for tiling j with j =

1, 2, . . . , 2d. We will focus on one tiling. Let Lj denote the tiles intersecting L in tiling

j. Note that |Lj| ≤ (` + 4βr)d ξn
(4β)da

. Let Xi,j be the number of tiles in Lj of type

i. Note that Xi,j is at most the number of tiles in tiling j with 2iµ or more vertices.

Define

Xi,j,t =


1, tile t in Lj is type i

0, otherwise

.

Then using a multiplicative Chernoff bound, for i ≥ 1,

EXi,j = E
∑
tile t

Xi,j,t =
∑

tile t∈Lj

EXi,j,t =
∑

tile t∈Lj

P(2iµ ≤ Yt ≤ 2i+1µ)

≤
∑

tile t∈Lj

P(Yt ≥ 2iµ) ≤
∑

tile t∈Lj

e
− (2i−1)2µ

2i+1 ≤ (`+ 4βr)d
ξn

(4β)da
e
− 4d(2i−1)2a

ξ(2i+1) .
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Set

bi =


(`+ 4βr)d ξn

(4β)da
, i = 0,

(`+ 4βr)d ξn
(4β)da

e
− (4β)d(2i−1)2a

2ξ(2i+1) , i ≥ 1.

Then by a Markov inequality, for i ≥ 1

P(Xi,j > bi) <
EXi,j

bi
≤

(`+ 4βr)d ξn
(4β)da

e
− (4β)d(2i−1)2a

ξ(2i+1)

(`+ 4βr)d ξn
(4β)da

e
− (4β)d(2i−1)2a

2ξ(2i+1)

= e
− (4β)d(2i−1)2a

2ξ(2i+1) .

Note that P(X0,j > b0) = 0 since b0 is the number of tiles in Lj. Set

Zi,j =


1, Xi,j > bi

0, Xi,j ≤ bi

and let Z =
∑2d

j=1

∑∞
i=0 Zi,j. Note that

EZ = E
2d∑
j=1

∞∑
i=0

Zi,j =
2d∑
j=1

∞∑
i=0

EZi,j =
2d∑
j=1

∞∑
i=0

P(Xi,j > bi) ≤
2d∑
j=1

(
0 +

∞∑
i=1

e
− (4β)d(2i−1)2a

2ξ(2i+1)

)
.

Let qi := e
− (4β)d(2i−1)2a

2ξ(2i+1) for i ≥ 1. Note that (2i+1−1)2

(2i+1+1)
− (2i−1)2

(2i+1)
> 0, so

qi+1

qi
= e

− (4β)da
2ξ

(
(2i+1−1)2

(2i+1+1)
− (2i−1)2

(2i+1)

)
→ 0

as n→∞ since a→∞. So

EZ ≤
2d∑
j=1

∞∑
i=1

e
− (4β)d(2i−1)2a

2ξ(2i+1) ∼
2d∑
j=1

e−
(4β)d(2−1)2a

2ξ(2+1) =
2d∑
j=1

e−
(4β)da

6ξ = 2de−
(4β)da

6ξ .
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Then

P(Z ≥ 1) ≤ EZ < 2de−
(4β)da

6ξ → 0

as n → ∞ since a → ∞. Thus with high probability, for all j = 1, 2, . . . , 2d, for all

i ≥ 0,

Xi,j ≤ bi.

Consider Ti(t) to be the event that tile t is of type i and Tns to be the event that

tile t is nonstuck. Using Lemma 2.5 and the upper bound on the number of vertices

in a tile of type i, we see that

P(Tns(t)|Ti(t)) ≤
2i+1µ∑
q=k

(
2i+1µ

q

)
pq(1− p)2i+1µ−q

≤
(

2i+1µ

k

)
pk ∼ (2i+1µ)k

k!
(γp∗)k

=
1

k!

(
2i+1(4β)dγ

ξ

)k
a

n`d
.

Note that the probability that a tile on the boundary of L has k or more active

vertices is bounded above by the probability that a tile lying inside L has k or more

active vertices, so we can treat all tiles as if they are inner tiles.

Define a configuration to be an assignment of vertices in the tiles of the tilings.

Set

C := {C a configuration : 0 ≤ Xi,j ≤ bi}.

Fix C ∈ C . Note that (`+4βr)d

`d
= 1 + o(1) since a� n`d. Let Ts(t) be the event that

tile t is stuck. Recall that Ej is the event that all tiles intersecting L are stuck for
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tiling j with j = 1, 2, . . . , 2d. Then a.a.s.,

P(Ej|C) =
∞∏
i=0

∏
tile t∈Lj
of type i

P(Ts(t)|Ti(t))

=
∞∏
i=0

∏
tile t∈Lj
of type i

(1− P(Tns(t)|Ti(t))

≥
∞∏
i=0

∏
tile t∈Lj
of type i

(
1− 1

k!

(
2i+1(4β)dγ

ξ

)k
a

n`d

)

≥
∞∏
i=0

(
1− 1

k!

(
2i+1(4β)dγ

ξ

)k
a

n`d

)bi

=
∞∏
i=0

exp

(
−bi

(
1

k!

(
2i+1(4β)dγ

ξ

)k
a

n`d

)(
1 +O

(
(2i)k

a

n`d

)))

= exp

(
−
∞∑
i=0

bi

(
1

k!

(
2i+1(4β)dγ

ξ

)k
a

n`d

)(
1 + o(2ik)

))

= exp

(
−
∞∑
i=0

ξ

(4β)dk!
· (`+ 4βr)d

`d

(
2i+1(4β)dγ

ξ

)k
e
− (4β)d(2i−1)2a

2ξ(2i+1)
(
1 + o(2ik)

))

= exp

(
− ξ

(4β)dk!
· (`+ 4βr)d

`d

(
2 · (4β)dγ

ξ

)k( ∞∑
i=0

2ike
− (4β)d(2i−1)2a

2ξ(2i+1)
(
1 + o(2ik)

)))

∼ exp

(
− ξ

(4β)dk!

(
2 · (4β)dγ

ξ

)k
(1 + o (1))

)

≥ exp

(
− 2ξ

(4β)dk!

(
2 · (4β)dγ

ξ

)k)
=: (α2(γ))1/2d .

Activate each vertex in L independently with probability p. Let

xi =


1, vertex i is initially active

0, vertex i is initially inactive

and say that x := (xi)
n
i=1 ∈ Ej for each j = 1, 2, . . . , 2d if Ej holds for the given vertex
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activation. Note that conditional on the configuration C, each Ej is decreasing in p

since if y ⊆ x (or in other words, the set of y’s activated vertices are contained in

the set of x’s activated vertices), then y ∈ Ej as well. Then, by the Harris-Kleitman

inequality (Lemma 2.6), we have that

P

 2d⋂
j=1

Ej

∣∣∣∣∣∣C
 ≥ 2d∏

j=1

P(Ej|C) =
(

(α2(c))1/2d
)2d

= α2(c).

Let E :=
⋂2d

j=1Ej. Earlier we proved P(having a configuration in C ) = 1 − o(1).

Then for C ∈ C ,

P(E|C) ≥ α2(c)

P(E ∩ C) ≥ α2(c)P(C)∑
C∈C

P(E ∩ C) ≥ α2(c)
∑
C∈C

P(C)

P

(⋃
C∈C

(E ∩ C)

)
= P(E ∩ C ) ≥ α2(c)P(C )

So,

P(E) ≥ P(E ∩ C ) ≥ α2(c)P(C )

and hence P(E) ≥ α2(c). Then since a.a.s.,

P(Bk is stuck) ≥ P(E),

we have that

P(Bk is nonstuck) ≤ 1− α2(c).

This completes the proof of Theorem 3.5.
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Chapter 6

Proof of Theorem 3.6

Theorem 3.6. For the following two parts, consider a restricted area of infection L,

a cube so that diam∞(L) = `(n) in the torus.

(i) For d

√
1
n
� r � `, a.a.s., Bk(A0(pnonstuck)) nearly percolates.

(ii) Let rδ≥k < r � `. Then a.a.s. pnonstuck(r) = pperco(r).

(iii) For r′ = d

√
logn+(k−1) log logn−ω

ξn
, where ω → ∞ and ω = o(log log n), whenever

r′ ≤ r � `, a.a.s., Bk(A0(pnonstuck;L)) percolates completely except possibly

for some subset of vertices with degree less than k.

In the following proof parts, we will be tessellating the torus Td into cubic cells

of equal size where for c a cell, diam∞(c) = Sr for a given S > 0, which will be taken

to be small. We then define the following terms:

A cell is called dense if it has at least k vertices inside it. Otherwise, it will be

called sparse. We will then create a graph of cells denoted Gcells(Bk(G (Xn; r);A0(p)))

(or simply Gcells), where the vertices

Vcells = {c : c is a cell of G (Xn; r) in the tessellation of Td}
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and cells c1, c2 ∈ Vcells are adjacent if the distance between the center of c1 and the

center of c2 is at most
(
1− diam([0, 1]d)S

)
r. Then we also create a graph of dense

cells, denoted Gdense cells(Bk(G (Xn; r);A0(p))) (or simply Gdense cells), the subgraph of

Gcells induced by the dense cells. More precisely, we have the vertices are

Vdense cells = {c : c is a dense cell of G (Xn; r) in the tessellation of Td}

and for c1, c2 ∈ Vdense cells ⊆ Vcells, c1 and c2 are adjacent if c1 ∼Gcells
c2.

We will take S = ε, where ε > 0 is a sufficiently small constant. Then diam∞(cell) =

εr and thus by Remark 2.2, we know that there exists a β > 0 so that εr
β
≤

diam(cell) ≤ βεr.

We will use the following definition mostly in parts (b) and (c):

Definition 6.1. Let D1 be the largest component of dense cells in the graph of dense

cells. Define cells in the graph of cells whose corresponding cell in the graph of dense

cells is in D1 to be good. If a cell is not good, but is sparse and adjacent to a good

cell in the graph of cells, then that cell is called bad. If a cell is not adjacent to a

good cell in the graph of cells, it is called ugly. Note that an ugly cell can be sparse

or dense.

Lemma 6.1.

(i) Suppose that r � d

√
1
n
. Then a.a.s. the largest component of the subgraph of

the graph of cells induced by dense cells contains (1 − o(1))m cells (in other

words, all but a vanishing fraction of the cells are good).

(ii) Suppose that r ≥ r′. Then a.a.s. all the components of the graph of cells

induced by ugly cells must have diameter at most Qεr (where Q > 0 is a

constant depending only on the dimension d and the norm ‖ · ‖), and any
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two such components must be at distance at least Ar from each other (where

constant A > 0 can be chosen arbitrarily large).

(iii) Suppose that r ≥ B d

√
logn
ξn

for some constant B > 1. Then, for sufficiently small

ε > 0, a.a.s. the dense cells of the graph of cells induce a connected component,

and every sparse cell is adjacent to some dense cell (that is, all dense cells are

good and all sparse cells are bad, but there are no ugly cells).

Proof. The proof of part (i) is identical to that of Lemma 4.1, but replacing the

role of typical cells by that of dense cells. Note that the only facts that we used

about typical cells were that a cell is typical with probability 1− o(1), and also that

typicality cannot be destroyed by adding additional points. Dense cells satisfy these

two properties, and thus the argument follows with virtually no changes.

Parts (ii) and (iii) are proved in [31] for `p norms, but the proof for general norms

is the same. A proof of part (iii) for the 2-dimensional case appeared in [18].

We also note that we prove this theorem in three parts: (a), (b), and (c), but

these parts do NOT correspond to parts (i), (ii), and (iii) in Theorem 3.6. In part

(a), we prove that if B d

√
logn
ξn
≤ r � `, with B > 1, then a.a.s., p̂nonstuck = p̂perco. In

part (b), we show that if d

√
1
n
� r ≤ d

√
1.1 logn
ξn

, then a.a.s., Bk(A0(p̂nonstuck)) nearly

percolates. In part (c), we use results from (b) to prove that if r′ ≤ r ≤ d

√
1.1 logn
ξn

,

then a.a.s., the only surviving inactive vertices are vertices of degree less than k that

are initially inactive. Then parts (a) and (b) together give us (i), (a) and (c) together

give us (ii) and (iii).

We finally mention that parts (a) and (b) are broken into subsections. While

the definitions given in (a) and (b) are contained within each section, they will span

throughout their subsections.
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6.1 Proof of Theorem 3.6(a)

Suppose r ≥ B d

√
logn
ξn

for B > 1 and set r = d

√
a
ξn

, and thus the average degree

a = ξnrd. Then a ≥ Bd log n > log n. Note that we also have a ≤ o(n) and a� n`d.

Let p∗ = 1
(n`d)1/k(a)1−1/k , the threshold from Theorem 3.4. Let ε > 0 be sufficiently

small, and in particular, small enough so that ε < B−1
B diam([0,1]d)

. Suppose p = γp∗ for

γ = ε−1/2k. This value of p will “typically” be past p̂nonstuck, since γ will be very

large. We will tesselate the unit torus into cubic cells of equal size so that for a cell

c, s := diam∞(c) = εr. So S = ε. Note that the volume of each cell c is εdrd = εda
ξn

.

Thus, there are m := 1
εdrd

= ξn
εda

cells in Td. As a reminder, we will use Θε or Oε to

tell us the constants in Θ or O depend on ε.

We will define “bad” events E0, E1,p . . . , E5,p and show that P (E0 ∪ (∪5
i=1Ei,p)) is

small and that if none of E0, E1,p, . . . , E5,p happen, then p̂nonstuck = p̂perco. We define

E0, E1,p, . . . , E5,p as:

E0 = event that some cell is not adjacent to a dense cell or Gdense cells

is not connected

E1,p = event that there is no seed box intersecting L at time p

E2,p = event that there is some wishy-washy box intersecting L at time p

E3,p = event that some superbox intersecting L has more than k active vertices

at time p

E4,p = event that some superbox intersecting L with an atypical cell has exactly

k active vertices at time p

E5,p = event that some superbox with no atypical cell intersecting the boundary

of L has at least k active vertices at time p
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where typical, box, seed box, wishy-washy box, and superbox are defined in their first

respective subsections below.

6.1.1 P(E0) = o(1)

Note that E0 is the event that some cell is not adjacent to a dense cell or Gdense cells

is not connected. If every cell is adjacent to a dense cell and the graph of dense cells

is connected, then if one cell’s vertices all become active, then percolation will be

achieved. Since ε < B−1
B diam([0,1]d)

, we have that
(
B − εB diam([0, 1]d)

)d − 1 > 0. Let

ζ > 0 be so that ζ ≤
(
B − εB diam([0, 1]d)

)d−1. Define event T1 to be the event that

there exists a topologically connected set of at least (1+ ζ) ξ
εdBd

sparse cells. Consider

b ≥ (1+ζ) ξ
εdBd

with b ≤
(

1
εd
− diam([0, 1]d)

)d
ξ. Let J be the number of topologically

connected sets of b cells (call them c1, c2, . . . , cb) that are all sparse. Further, define

Si to be the event that cell ci is sparse. Then

P

(
b⋂
i=1

Si

)
=

b∏
i=1

P

(
Si

∣∣∣∣∣
i−1⋂
j=1

Sj

)
≤

b∏
i=1

P(Si) =
b∏
i=1

k−1∑
j=0

(
n

j

)
(εdrd)j(1− εdrd)n−j

=
b∏
i=1

k−1∑
j=0

O

(
njεdj

aj

nj

)
(1− εdrd)n−j ≤

b∏
i=1

k−1∑
j=0

O
(
εdjaj

)
e−ε

drdn

≤
b∏
i=1

k−1∑
j=0

O
(
εdjaj

)
e−ε

dBd logn
ξ =

b∏
i=1

k−1∑
j=0

O
(
εdjaj

)
n−

εdBd

ξ

≤
b∏
i=1

O

(
akn−

εdBd

ξ

)
≤ O

( ak

n
εdBd

ξ

)(1+ζ) ξ

εdBd


= O

(
a
k(1+ζ)ξ

εdBd

n(1+ζ)

)
.

We would like to bound the number of topologically connected sets of b cells. For

each of these connected sets, we wish to designate a specific cell c′. We will choose

c′ to be the cell with a point whose 1st coordinate is closest to 0. If such a unique
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cell does not exist, call the set of these cells Ξ1. Then for each i > 2, define Ξi to be

the cells in Ξi−1 that contain a point whose ith coordinate is closest to 0. If |Ξi| = 1,

then let that cell be c′, otherwise continue the process. Note that there will have to

be such a designated cell c′ at or before step i = d.

There are Θ
(
ξn
εda

)
ways we can choose c′ and there are Θ

(
1
εd

)
ways to choose

each of the other cells. Thus, there are Θ
(
ξn
εda
·
(

1
εd

)b)
= Θε

(
n
a

)
of these topologically

connected sets of b cells. Then

EJ = O

(
a
k(1+ζ)ξ

εdBd

n(1+ζ)

)
·Θε

(n
a

)
= Oε

(
a
k(1+ζ)ξ

εd
Bd−1

nζ

)
= o(1).

Then by Lemma 2.4 we have P(T1) = P(J ≥ 1) = o(1). Thus, a.a.s., there are no

topologically connected sets of at least (1 + ζ) ξ
εdBd

cells that are all sparse.

Next, let T2 be the event that there is a cell that is not adjacent to a dense cell.

Let c be a cell. The number of cells in a ball of radius (1− diam([0, 1]d)ε)r is

(1− ε diam([0, 1]d))drdξ

εdrd
=

(
1

ε
− diam([0, 1]d)

)d
ξ ≥ (1 + ζ)

ξ

εdBd
.

Note that the number of cells c is adjacent to in Gcells is at least b, so P
(
T2|T1

)
= 0.

Then

P(T2) = P(T2|T1)P(T1) + P
(
T2|T1

)
P
(
T1

)
≤ P(T1) = o(1).

Thus, a.a.s., for every cell c, there must be a dense cell that is adjacent to c.

Let T3 be the event that Gdense cells is not connected. Recall:

Lemma 6.1. (iii) Suppose that r ≥ B d

√
logn
ξn

for some constant B > 1. Then, for

sufficiently small ε > 0, a.a.s. the dense cells of the graph of cells induce a connected

component, and every sparse cell is adjacent to some dense cell (that is, all dense

cells are good and all sparse cells are bad, but there are no ugly cells).
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Then by Lemma 6.1 (iii), P(T3) = o(1).

Then

P(E0) = P(T2 ∪ T3) ≤ P(T2) + P(T3) = o(1).

Therefore, a.a.s., all cells are adjacent to a dense cell in Gcells and Gdense cells is con-

nected.

6.1.2 P(E1,p) ≤ eΘ(1/
√
ε) + o(1)

Event E1,p is the event that there is no seed box intersecting L at time p. Let

Yc be the number of vertices in a cell c. Note that EYc = εd

ξ
a. Define a cell to be

typical if it has between εd

2ξ
a and 2εd

ξ
a vertices. Otherwise, call the cell atypical. Then

by Lemma 2.3, the probability that a cell c is atypical is

P
(
Yc ≤

εd

2ξ
a

)
+ P

(
Yc ≥

2εd

ξ
a

)
≤ e−

εda
8ξ + e−

εda
3ξ

≤ 2e−
εda
8ξ ≤ 2e−

εd logn
8ξ = 2n−

εd

8ξ .

Then for Yatyp the number of atypical cells,

EYatyp ≤
1

εdrd

(
2n−

εd

8ξ

)
= 2

n1− ε
d

8ξ

εd

ξ
a
≤ 2

n1− ε
d

8ξ

εd

ξ
log n

.

Define an α-box to be a cube with diam∞(α-box) = αr so that each cell is either

in the box or not in the box and the α-boxes partition the cells. We will consider

diam(Td)-boxes. We will call a diam(Td)-box a seed box if it contains exactly k initially

active points and all its cells are typical. Thus, if there exists a seed box intersecting

L, all of the vertices in that box will become active.

Define event F to be the event that all except at most a o(1) fraction of diam(Td)-
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boxes have all its cells typical. Let Y be the number of diam(Td)-boxes that do not

have all its cells typical. Then

EY ≤ EYatyp ≤ 2
n1− ε

d

8ξ

εd

ξ
a
.

Using Markov’s Inequality (Lemma 2.4), we see that

P

(
Y >

√
2

n
εd

8ξ

· n
εd

ξ
a

)
≤
√

2

n
εd

8ξ

→ 0

as n→∞. So a.a.s.,

Y ≤
√

2

n
εd

8ξ

· n
εd

ξ
a

= o
(n
a

)
= o (# of diam(Td)-boxes) .

Thus, a.a.s., F holds. So there are Θ
(
n`d

a

)
diam(Td)-boxes with all its cells typical.

Let Yb,seed be the event that a diam(Td)-box b with all its cells typical is a seed. Then

P(Yb,seed) ≤ Θ(pkak).

Then since pa→ 0,

P(E1,p|F ) = P(no seed box|F ) ≤ (1−Θ((pa)k))Θ(n`d/a) =
(

1−Θ
(
γk

a

n`d

))Θ(n`d/a)

≤ e−Θ(γk) = e−Θ(1/
√
ε).

Therefore,

P(E1,p) = P(E1,p|F )P(F ) + P(E1,p|F ) + P(F )

≤ P(E1,p|F ) + P(F )

≤ e−Θ(1/
√
ε) + o(1).
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6.1.3 P(E2,p) = O(
√
ε)

Event E2,p is the event that there is some wishy-washy box intersecting L at time

p. Almost surely, the points are in general position. Define the circumcenter of k

points to be the center of the smallest ball containing the k points. Note that the

circumcenter is a point, not necessarily a vertex, and need not be unique. The radius

of this ball is called the circumradius. We will call a cell containing the circumcenter

of the k points the circumcell. Define a superbox to be 3d 1-boxes arranged in a

3× 3× · · · × 3︸ ︷︷ ︸
d

formation. Define a 1-box (a cube whose `∞ diameter is 1r) to be a

wishy-washy box if the following properties hold:

• all cells in the superbox centered on the 1-box are typical,

• there exist exactly k active vertices in the superbox so that

– the circumcell for those k points is in the 1-box,

– the center of the circumcell sees the k active vertices inside the superbox

within distance (1 + diam(Td)ε) r (the circumcell is nonstuck),

– at least one active vertex in the superbox is not within distance (1− diam(Td)ε) r

of the center of the circumcell (the circumcell is not a seed)

Wishy-washy boxes are situations where there are k active vertices near each other,

but there may not be a vertex that sees all of them, so it would be possible for those

k initially active vertices to not infect any other vertices.

Let s be a superbox centered on 1-box b. Define mb to be the number of 1-boxes

in Td. Then mb = nξ
a

. Note that there are Θ
(
n`d

a

)
superboxes completely contained

in L.

Define Z(b) to be the event that all cells in b’s associated superbox s are typical.

Note that the number of 1-boxes with an atypical cell in its associated superbox is at
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most 3d times the number of atypical cells since there are 3d 1-boxes in each superbox.

For Yatyp the number of atypical cells, we have that EYatyp = o
(
n
εda

)
= o(m) from

above. Let Z1(b) be the event that there is an atypical cell in b’s associated superbox

s . Then take Z1 to be the number of 1-boxes with an atypical cell in its associated

superbox. Then

EZ1 = mb · P(Z1(b)).

Then since EZ1 ≤ 3dEYatyp = o(m), we have that

P(Z1(b)) ≤ o(m)

mb
=
o
(
n
εda

)
Θ
(
n
a

) = o

(
1

εd

)
= o(1).

Thus, P(Z(b)) = 1− o(1).

In order for a 1-box to be wishy-washy, there must be k points in the associated

superbox so that the circumcell is in the 1-box. Note that the circumradius ρ ≤ r, else

no point will be within range of all k initially active vertices, and hence the circumcell

is nonstuck. Note that for any two points x, y in the circumcell c, by Lemma 2.2

there exists a β > 0 so that dist(x, y) ≤ β dist∞(x, y) ≤ β diam∞(c) = εβr. We

must also have that the circumradius ρ > (1 − εβ)r, otherwise the circumcell c is

a seed. Therefore a 1-box is wishy-washy when the circumradius of the k initially

active points in the associated superbox satisfies (1− βε)r ≤ ρ ≤ r.

Let Wb be the event that box b is wishy-washy and let Ab be the event that b’s

associated superbox s contains exactly k active vertices. Then

P(Wb |Ab) = P ((1− εβ)r < ρ ≤ r|Ab) ≤ P(ρ ≤ r|Ab)− P(ρ ≤ (1− βε)r|Ab).

Let q ∈ Td be the corner of s with the lowest value in each coordinate. Then

consider a slightly smaller cube t ⊆ s so that q ∈ t and diam∞(t ) = (1 − εβ)3r.
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Consider the event At to be the event that all of the k initially active vertices in s

fall in t . Then1

P(ρ ≤ (1− βε)r|Ab) = P(ρ ≤ (1− εβ)r|At )P(At ) + P(ρ ≤ (1− εβ)r|At )P(At )

= P(ρ ≤ r|Ab)(1− P(At ) + P(ρ ≤ (1− εβ)r|At )P(At ).

Note that P(At ) ≤ kdεβ = Θ(ε). Then

P(Wb |Ab) = P(ρ ≤ r|Ab)− P(ρ ≤ (1− βε)r|Ab)

= P(ρ ≤ r|Ab)P(At )− P(ρ ≤ (1− βε)r|At )P(At )

≤ P(At ) ≤ Θ(ε).

Note that there are at most 3d 1
εd
· 2εd

ξ
a = 2·3da

ξ
vertices in a superbox that has all

its cells typical. Then

P(Ab |Z(b)) ≤
(2·3da

ξ

k

)
pk(1− p)

2·3da
xi
−k ≤ Θ(ak)pk

= Θ(ak)γk(p∗)k = Θ

(
ak√
ε

)
1

n`dak−1
= Θ

(
a√
εn

)
.

Thus,

P(Wb) = P(Wb |Ab)P(Ab |Z(b))P(Z(b))

≤ Θ(ε)Θ

(
a√
εn

)
(1− o(1)) ∼ Θ

(√
εa

n

)
.

Let W be the number of wishy-washy boxes. Then

1Here we are noting that P(ρ ≤ (1 − εβ)r|At ) = P(ρ ≤ r|Ab) since they are equivalent if we
apply a stretch by a factor of 1

1−εβ .
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EW ≤ mbWb ≤
nξ

a
·Θ
(√

εa

n

)
= O(

√
ε).

Therefore, by Lemma 2.4, P(E2,p) = O(
√
ε).

6.1.4 P(E3,p) = o(1)

Event E3,p is the event that some superbox intersecting L has more than k active

vertices at time p. Note that a superbox has area 3drd = 3da
ξn

. Let Ys be the number

of vertices in a superbox s . Then define µ := E(Ys) = 3da
ξ

. Let A(b) be the number

of initially active vertices in b’s associated superbox s . We will split the following

parts of the proof into two cases, each having a different definition of what it means

for a superbox to be typical or atypical. Define Yatyp to be the number of atypical

superboxes, let Ytyp(b) be the event that b’s associated superbox is typical, and

call Ytyp the number of typical superboxes. Let ms ,L be the number of superboxes

intersecting L and Ytyp,L be the number of typical superboxes intersecting L. Then

ms ,L = Θ
(
n`d

a

)
. Finally, let Z3,L be the number of typical superboxes intersecting L

with more than k active vertices. The cases we consider are: Case (1) where ξ ≤ 3d

and Case (2) where ξ > 3d.

In Case (1): Here, ξ ≤ 3d. We will call a superbox typical if it has at most 3µ

vertices, and atypical otherwise. By Lemma 2.3,

P(Ys ≥ 3µ) ≤ e−
3da
ξ ≤ e

−3d logn
ξ = n−

3d

ξ .

Then

E(Yatyp) ≤ n−
3d

ξ · nξ
a

=
ξ

n
3d

ξ
−1a

= o(1),

since ξ ≤ 3d. Thus, P(Yatyp > 0) ≤ o(1), so a.a.s., all superboxes are typical and
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hence, a.a.s., Ytyp = Θ(mb), so Ytyp,L = Θ(ms ,L) = Θ
(
n`d

a

)
. At time p and for a

1-box b whose associated superbox intersects L, using Lemma 2.5 we have

P(A(b) > k|Ytyp(b)) =

3µ∑
j=k+1

(
3µ

j

)
pj(1− p)3µ−j

≤
(

3µ

k + 1

)
pk+1 ≤ (3µ)k+1ε

−(k+1)
2k

(
1

(n`d)k+1/k(a)k−1/k

)
=

(
3d+1

ξ

)k+1

ε
−(k+1)

2k
(a)k+1

(n`d)k+1/k(a)k−1/k

=

(
3d+1

ξ

)k+1

ε
−(k+1)

2k
(a)1+1/k

(n`d)k+1/k
.

For Case (2): Here, we have ξ > 3d. We will call a superbox typical if it has at

most 3ξµ vertices and atypical otherwise. By Lemma 2.3,

P(Ys ≥ 3ξµ) ≤ e−
(3ξ−1)2µ

3ξ+1 = e
− (3ξ−1)23da

3ξ2+ξ ≤ e
− (3ξ−1)23d logn

3ξ2+ξ = n
− (3ξ−1)23d

3ξ2+ξ .

Then

E(Yatyp) ≤ n
− (3ξ−1)23d

3ξ2+ξ · nξ
a

=
ξ

n
(3ξ−1)23d

3ξ2+ξ
−1
a

= o(1),

since ξ ≥ 3d and hence (3ξ−1)2

3ξ2+ξ
≥ 1.

Thus, P(Yatyp > 0) ≤ o(1), so a.a.s., all superboxes are typical hence, a.a.s.,

Ytyp = Θ(mb), so Ytyp,L = Θ(ms ,L) = Θ
(
n`d

a

)
. At time p and for a 1-box b whose
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associated superbox intersects L, using Lemma 2.5, we have

P(A(b) > k|Ytyp) =

3ξµ∑
j=k+1

(
3ξµ

j

)
pj(1− p)3ξµ−j

≤
(

3ξµ

k + 1

)
pk+1 ≤ (3ξµ)k+1ε

−(k+1)
2k

(
1

(n`d)k+1/k(a)k−1/k

)
=

(
3d+1ξ

ξ

)k+1

ε
−(k+1)

2k
(a)k+1

(n`d)k+1/k(a)k−1/k

=
(
3d+1

)k+1
ε
−(k+1)

2k
(a)1+1/k

(n`d)k+1/k
.

So in both Case (1) and Case (2), we have Ytyp = Θ(mb), Ytyp,L = Θ
(
n`d

a

)
,

and

P(A(b) > k|Ytyp) ≤ Θ

(
ε
−(k+1)

2k
a1+1/k

(n`d)k+1/k

)
.

Then

E(Z3,L) = ms ,LP(A(b) > k) = ms ,LP(Ytyp(b))P(A(b) > k|Ytyp(b))

≤ Θ

(
n`d

a

)
·Θ
(
ε
−(k+1)

2k
(a)1+1/k

(n`d)k+1/k

)
= Θ

(
ε
−(k+1)

2k
(a)1/k

(n`d)k−1+1/k

)
= o(1).

Then by Lemma 2.4,

P(E3,p) ≤ P(Z3,L > 0)P(Ytyp = mb) + P(Yatyp > 0)

≤ o(1)(1− o(1)) + o(1) = o(1).

At time p, a.a.s., there is no superbox in L with more than k active vertices and

so a.a.s., all superboxes in L have at most k active points.
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6.1.5 P(E4,p) = o(1)

Event E4,p is the event that some superbox intersecting L with an atypical cell

has exactly k active vertices at time p. Since E(Yatyp) ≤ 2n
1− ε

d

8ξ

εd

ξ
a

and each atypical cell

is in 3d different superboxes, we have that

E(Z1) ≤ 2 · 3dn
1− ε

d

8ξ

εd

ξ
a

= o
(n
a

)
.

Take Z1,L to be the number of superboxes intersecting L that have an atypical cell.

Then

E(Z1,L) = o

(
n`d

a

)
.

Let Z2(b) be the event that b’s associated superbox is typical but contains an atypical

cell and let Z2 be the number of 1-boxes whose associated superbox is typical but

contains an atypical cell. In Case (1), we have

P(Ab |Z2(b)) ≤
(

3µ

k

)
pk(1− p)3µ−k ≤ (3µ)k(γp∗)k

= Θ

(
(a)kε−1/2 1

n`d(a)k−1

)
= Θ

(
ε−1/2 a

n`d

)
,

and in Case (2), we have

P(Ab |Z2(b)) ≤
(

3ξµ

k

)
pk(1− p)3ξµ−k ≤ (3ξµ)k(γp∗)k

= Θ

(
(a)kε−1/2 1

n`d(a)k−1

)
= Θ

(
ε−1/2 a

n`d

)
.
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Note that E(Z2) ≤ E(Z1). Define Z4,L to be the number of typical superboxes inter-

secting L with some atypical cell and k active vertices at time p. Then we have

E(Z4,L) = ms ,LP(Z2(b) ∩ Ab) = ms ,LP(Z2(b)) · P(Ab |Z2(b))

≤ ms ,LP(Z1(b)) ·Θ
(
ε−1/2 a

n`d

)
= E(Z1,L) ·Θ

(
ε−1/2 a

n`d

)
= o

(
n`d

a

)
·Θ
(
ε−1/2 a

n`d

)
= o(1).

Let Z5 be the number of superboxes intersecting L with an atypical cell and k active

vertices at time p. Thus,

E(Z5) ≤ E(Yatyp) + E(Z4,L) ≤ o(1) + o(1) = o(1).

Therefore, P(E4,p) = P(Z5 > 0) ≤ o(1) by Lemma 2.4 and a.a.s., there is no superbox

intersecting L with an atypical cell that has k active vertices at time p.

6.1.6 P(E5,p) = o(1)

Event E5,p is the event that some superbox with no atypical cell intersecting

the boundary of L has at least k active vertices at time p. If we can rule out this

situation, then a superbox that has k active vertices in it must occur on the interior
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of L. There are O
(
`
r

)
= O

(
d

√
`dn
a

)
superboxes on the boundary of L. Then

P(A(b) ≥ k|Z(b)) =

3µ∑
j=k

(
3µ

j

)
pj(1− p)3µ−j

≤
(

3µ

k

)
pk ≤ (3µ)kε−1/2

(
1

(n`d)(a)k−1

)
=

(
3d+1

ξ

)k
· 1√

ε
· a
n`d

.

Let Z6 be the number of superboxes on the boundary of L with no atypical cell

and at least k initially active vertices. Then

E(Z6) = O

(
d

√
`dn

a

)
P(A(b) ≥ k|Z(b))P(Z(b))

= O

(
d

√
`2n

a

)(
3d+1

ξ

)k
· 1√

ε
· a
n`d

(1− o(1))

= Oε

(
d

√
a

n`d

)
= o(1).

Therefore, P(E5,p) = P(Z6 > 0) ≤ o(1) by Lemma 2.4, and hence a.a.s., there are no

superboxes on the boundary of L with no atypical cell that have k or more active

vertices.
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6.1.7 Showing a.a.s., p̂nonstuck = p̂perco

Then

P

(
E0 ∩

(
5⋂
i=1

Ei,p

))
= 1− P

(
E0 ∪

(
5⋃
i=1

Ei,p

))

≥ 1−

(
E0 +

5∑
i=1

P(Ei,p)

)

≥ 1−
(
o(1) + e−Θ(1/

√
ε) + o(1) + Θ(

√
ε) + o(1) + o(1) + o(1)

)
= 1− o(1)− e−Θ(1/

√
ε) −Θ(

√
ε).

Note that the right hand side above can be made arbitrarily close to 1 by picking ε

sufficiently small.

Claim: If E0, E1,p . . . , E5,p do not hold, then p̂nonstuck = p̂perco ≤ p.

Once the claim is proved, then we have that P(p̂nonstuck = p̂perco) can be made

arbitrarily close to 1, so a.a.s., p̂nonstuck = p̂perco, which finishes the proof of part (a).

Proof of Claim. Since E1,p fails, we have a seed box in L at time p. Thus, it must be

p̂perco ≤ p, since a seed box gives us percolation. We also know that p̂nonstuck ≤ p̂perco.

Since E3,p, E4,p, and E5,p fail, the events E3,q, E4,q, and E5,p fail for any q ≤ p as well

since the active vertices at time q are a subset of the active vertices at time p, and the

failure of these events are monotonically decreasing. At time p̂nonstuck, let v be one of

the first vertices that becomes nonstuck. Since E5,p̂nonstuck fails, this vertex must not

be in a superbox that intersects the boundary of L. Then since E3,p̂nonstuck fails, there

must be exactly k active vertices in the ball of activation of the cell containing v.

Consider the box that contains the center cell of this k-cloud. Since E4,p̂nonstuck fails,

this center cell must be typical. We want to show that this box is not wishy-washy.

Suppose E2,q holds for q < p, i.e., there is a wishy-washy box at time q. Since E3,p
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fails, we know there are not k+1 (or more) active vertices in a superbox, and thus, the

wishy-washy box must remain wishy-washy. Thus, we have that E2,p holds. However,

since E2,p fails, it must be that E2,q fails for any q < p as well. Thus, the box must

not be wishy-washy. Since E4,q fails for any q < p, this box must not have an atypical

cell. The center cell is typical and becomes active. Then since E0 fails, all dense cells

become active, and then all sparse cells become active as well. Therefore, we have

percolation and hence p̂perco = p̂nonstuck.

Thus, for r ≥ B d

√
logn
ξn

with B > 1 and `� r, a.a.s., p̂nonstuck = p̂perco.

6.2 Proof of Theorem 3.6(b)

Let r = d

√
a
ξn

with a < 1.1 log n and p∗ = 1
(n`d)1/k(a)1−1/k . Note that a = o(n) and

a� n`d. Suppose p = γp∗ for γ = ε−1/2k. Let ε > 0. We will tesselate the unit torus

into cubic cells of equal size so that for a cell c, s := diam∞(c) = εr. So S = ε. Note

that the volume of each cell c is εdrd = εda
ξn

, so there are m := 1
εdrd

= ξn
εda

cells in Td.

Let D1 be the largest component of dense cells in the graph of dense cells. If

there are two “largest” components, we may pick one arbitrarily. We will define “bad”

events E0, E1,p . . . , E5,p and show that P (E0 ∪ (∪5
i=1Ei,p)) is small and that if none of
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E0, E1,p . . . , E5,p happen, then p̂nonstuck = p̂near perco. We define E0, E1,p . . . , E5,p as:

E0 = event that |D1| ≤ (1− f)m, for some f = o(1),

E1,p = event that there is no seed box intersecting L at time p,

E2,p = event that there is some wishy-washy box intersecting L at time p,

E3,p = event that some superbox intersecting L has more than k active vertices

at time p,

E4,p = event that some superbox intersecting L with an atypical cell has exactly

k active vertices at time p,

E5,p = event that some superbox with no atypical cell intersecting the boundary

of L has at least k active vertices at time p,

where typical, box, seed box, wishy-washy box, and superbox are defined in their first

respective subsections below.

6.2.1 P(E0) = o(1)

Event E0 is the event that |D1| ≤ (1− f)m for some f = o(1). Recall:

Lemma 6.1. (i) Suppose that r � d

√
1
n
. Then a.a.s. the largest component of the

subgraph of the graph of cells induced by dense cells contains (1 − o(1))m cells (in

other words, all but a vanishing fraction of the cells are good).

Note that Lemma 6.1(i) tells us P(E0) = o(1). Thus, a.a.s., the largest component

of dense cells contains all except o(m) cells.
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6.2.2 P(E1,p) ≤ e−Θ(1/
√
ε) + o(1)

Event E1,p is the event that there is no seed box intersecting L at time p. Define

a cell to be typical if it has between εd

2ξ
a and 2εd

ξ
a vertices and the cell is in the largest

component D1. Let Yc be the number of vertices in a cell c. Then by Lemma 2.3, we

have

P
(
Yc ≤

εd

2ξ
a or Yc ≥

2εd

ξ
a

)
= P

(
Yc ≤

εd

2ξ
a

)
+ P

(
Xc ≥

2εd

ξ
a

)
≤ e−

εda
8ξ + e−

εda
3ξ ≤ 2e−

εda
8ξ .

Cells are atypical for one of two reasons: (1) the number of vertices in the cell is

not in the correct range, or (2) the cell is not in the largest dense component. Then

for Yatyp the number of atypical cells, a.a.s.,

EYatyp ≤
1

ε2r2

(
2e−

εda
8ξ

)
+ f

(
1

ε2r2

)
= 2

nξ

εda
e
εda
8ξ + f

nξ

εda

=

(
2

eεda8ξ
+ f

)
nξ

εda
= o(m).

Then by Markov’s Theorem, we have that

P

(
Yatyp >

√
2

e
εda
8ξ

+ f · nξ
εda

)
≤
√

2

e
εda
8ξ

+ f → 0

as n→∞. So a.a.s.,

Yatyp ≤
√

2

e
εda
8ξ

+ f · nξ
εda

= o

(
nξ

εda

)
= o(m).

Define an α-box to be a cube with diam∞(α-box) = αr so that each cell is either

in the box or not in the box and the α-boxes partition the cells. We will consider
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diam(Td)-boxes. We will call a diam(Td)-box a seed box if it contains exactly k initially

active points and all its cells are typical. Thus, if there is a seed box, all of the vertices

in the box will become activated since there are k initially active vertices inside it

and any two vertices in the seed box are adjacent.

Define event F to be the event that all except at most a o(1) fraction of diam(Td)-

boxes have all its cells typical. Let Y be the number of diam(Td)-boxes that do not

have all its cells typical. Then

EY ≤ EYatyp ≤
(

2

eεda8ξ
+ f

)
nξ

εda
.

Again, using Lemma 2.4, we see that

P

(
Y >

√
2

e
εda
8ξ

+ f · nξ
εda

)
≤
√

2

e
εda
8ξ

+ f → 0

as n→∞. So a.a.s.,

Y ≤
√

2

e
εda
8ξ

+ f · nξ
εda

= oε

(n
a

)
= oε (# of diam(Td)-boxes) .

Thus, a.a.s., F holds. So there are Θ
(
n`d

a

)
diam(Td)-boxes with all its cells typical.

Let Yb,seed be the event that a diam(Td)-box b with all its cells typical is a seed. Then

P(Yb,seed) ≤ Θ(pkak).

Then since pa→ 0,

P(E1,p|F ) = P(no seed box|F ) = (1−Θ((pa)k))Θ(n`d/a)

=
(

1−Θ
(
γk

a

n`d

))Θ(n`d/a)

= e−Θ(γk) ≤ e−Θ(1/
√
ε).
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Therefore,

P(E1,p) = P(E1,p|F )P(F ) + P(E1,p|F )P(F )

≤ P(E1,p|F ) + P(F )

≤ e−Θ(1/
√
ε) + oε(1),

which is small.

6.2.3 P(E2,p) = O(
√
ε)

Event E2,p is the event that there is some wishy-washy box intersecting L at time

p. Almost surely, the points are in general position. Define the circumcenter of k

points to be the center of the smallest ball containing the k points. Note that the

circumcenter is a point, not necessarily a vertex, and need not be unique. The radius

of this ball is called the circumradius. We will call a cell containing the circumcenter

of the k points the circumcell. Define a superbox to be 3d 1-boxes arranged in a

3× 3× · · · × 3︸ ︷︷ ︸
d

formation. Define a 1-box to be a wishy-washy box if the following

properties hold:

• all cells in the superbox centered on the 1-box are typical, and

• there exist exactly k active vertices in the superbox so that

– the circumcell for those k points is in the 1-box,

– the center of the circumcell sees the k active vertices in the superbox within

distance (1 + diam(Td)ε) r (the circumcell is nonstuck),

– at least one of the active vertices in the superbox is not within distance

(1− diam(Td)ε) r (the circumcell is not a seed).
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Wishy-washy boxes are situations where there are k active vertices near each other,

but there may not be a vertex that sees all of them, so it would be possible for those

k initially active vertices to not infect any other vertices.

Let s be a superbox centered on 1-box b. Define mb to be the number of 1-boxes

in Td. Then mb = nξ
a

. Note that there are Θ
(
n`d

a

)
superboxes completely contained

in L.

Define Z(b) to be the event that all cells in b’s associated superbox s are typical.

Note that the number of 1-boxes with an atypical cell in its associated superbox is at

most 3d times the number of atypical cells since there are 3d 1-boxes in each superbox.

For Yatyp the number of atypical cells, we have that EYatyp = o
(
n
εda

)
= o(m) from

above. Let Z1(b) be the event that there is an atypical cell in b’s associated superbox

s . Then take Z1 to be the number of 1-boxes with an atypical cell in its associated

superbox. Then

EZ1 = mb · P(Z1(b)).

Then since EZ1 ≤ 3dEYatyp = o(m), we have that

P(Z1(b)) ≤ o(m)

mb
=
o
(
n
εda

)
Θ
(
n
a

) = o

(
1

εd

)
= o(1).

Thus, P(Z(b)) = 1− o(1).

In order for a 1-box to be wishy-washy, there must be k points in the associated

superbox so that the circumcell is in the 1-box. Note that the circumradius ρ ≤ r, else

no point will be within range of all k initially active vertices, and hence the circumcell

is nonstuck. Note that for any two points x, y in the circumcell c, by Lemma 2.2

there exists a β > 0 so that dist(x, y) ≤ β dist∞(x, y) ≤ β diam∞(c) = εβr. We

must also have that the circumradius ρ > (1 − εβ)r, otherwise the circumcell c is

a seed. Therefore a 1-box is wishy-washy when the circumradius of the k initially
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active points in the associated superbox satisfies (1 − βε)r ≤ ρ ≤ r. Let Wb be the

event that box b is wishy-washy and let Ab be the event that b’s associated superbox

s contains exactly k active vertices. Then

P(Wb |Ab) = P ((1− εβ)r < ρ ≤ r|Ab) ≤ P(ρ ≤ r|Ab)− P(ρ ≤ (1− βε)r|Ab).

Let q ∈ Td be the corner of s with the lowest value in each coordinate. Then

consider a slightly smaller cube t ⊆ s so that q ∈ t and diam∞(t ) = (1 − εβ)3r.

Consider the event At to be the event that all of the k initially active vertices in s

fall in t . Then2

P(ρ ≤ (1− βε)r|Ab) = P(ρ ≤ (1− εβ)r|At )P(At ) + P(ρ ≤ (1− εβ)r|At )P(At )

= P(ρ ≤ r|Ab)(1− P(At ) + P(ρ ≤ (1− εβ)r|At )P(At ).

Note that P(At ) ≤ kdεβ = Θ(ε). Then

P(Wb |Ab) = P(ρ ≤ r|Ab)− P(ρ ≤ (1− βε)r|Ab)

= P(ρ ≤ r|Ab)P(At )− P(ρ ≤ (1− βε)r|At )P(At )

≤ P(At ) ≤ Θ(ε).

Note that there are at most 3d 1
εd
· 2εd

ξ
a = 2·3da

ξ
vertices in a superbox that has all

2Here we are noting that P(ρ ≤ (1 − εβ)r|At ) = P(ρ ≤ r|Ab) since they are equivalent if we
apply a stretch by a factor of 1

1−εβ .
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its cells typical. Then

P(Ab |Z(b)) ≤
(2·3da

ξ

k

)
pk(1− p)

2·3da
xi
−k ≤ Θ(ak)pk

= Θ(ak)γk(p∗)k = Θ

(
ak√
ε

)
1

n`dak−1
= Θ

(
a√
εn

)
.

Thus,

P(Wb) = P(Wb |Ab)P(Ab |Z(b))P(Z(b))

≤ Θ(ε)Θ

(
a√
εn

)
(1− o(1)) ∼ Θ

(√
εa

n

)
.

Let W be the number of wishy-washy boxes. Then

EW ≤ mbWb ≤
nξ

a
·Θ
(√

εa

n

)
= O(

√
ε).

Therefore, by Lemma 2.4, P(E2,p) = O(
√
ε).

6.2.4 P(E3,p) = o(1)

Event E3,p is the event that some superbox intersecting L has more than k active

vertices at time p. Note that a superbox has area 3drd = 3da
ξn

. Let Ys be the number

of vertices in a superbox s . Then define µ := E(Ys) = 3da
ξ

. Let A(b) be the number

of initially active vertices in b’s associated superbox s . We will split the following

parts of the proof into two cases, each having a different definition of what it means

for a superbox to be typical or atypical. Define Yatyp to be the number of atypical

superboxes, let Ytyp(b) be the event that b’s associated superbox is typical, and

call Ytyp the number of typical superboxes. Let ms ,L be the number of superboxes

intersecting L and Ytyp,L be the number of typical superboxes intersecting L. Then
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ms ,L = Θ
(
n`d

a

)
. Finally, let Z3,L be the number of typical superboxes intersecting L

with more than k active vertices. The cases we consider are: Case (1) where ξ ≤ 3d

and Case (2) where ξ > 3d.

In Case (1): Here, ξ ≤ 3d. We will call a superbox typical if it has at most

3µ vertices. Otherwise, the superbox is atypical. Call an atypical superbox atypical

of type i if it has between 3iµ and 3i+1µ vertices inside it. Then by Lemma 2.3,

P(Ys ≥ 3µ) ≤ e−
3da
ξ .

Then using Lemma 2.5, we have

P(A(b) > k|Ytyp(b)) =

3µ∑
j=k+1

(
3µ

j

)
pj(1− p)3µ−j

≤
(

3µ

k + 1

)
pk+1 ≤ (3µ)k+1ε

−(k+1)
2k

(
1

(n`d)k+1/k(a)k−1/k

)
=

(
3d+1

ξ

)k+1

ε
−(k+1)

2k
(a)k+1

(n`d)k+1/k(a)k−1/k

=

(
3d+1

ξ

)k+1

ε
−(k+1)

2k
(a)1+1/k

(n`d)k+1/k
.

For Case 2: Here ξ > 3d. We will call a superbox typical if it has at most

3ξµ vertices and atypical otherwise. We will call an atypical superbox atypical of

type i if the superbox has between 3iξµ and 3i+1ξµ vertices. Then by Lemma 2.3,

P(Ys ≥ 3ξµ) ≤ e−
(3ξ−1)2µ

3ξ+1 = e
− (3ξ−1)23da

3ξ2+ξ .
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Then using Lemma 2.5, we have

P(A(b) > k|Ytyp(b)) =

3ξµ∑
j=k+1

(
3ξµ

j

)
pj(1− p)3ξµ−j

≤
(

3ξµ

k + 1

)
pk+1 ≤ (3ξµ)k+1ε

−(k+1)
2k

(
1

(n`d)k+1/k(a)k−1/k

)
=
(
3d+1

)k+1
ε
−(k+1)

2k
(a)k+1

(n`d)k+1/k(a)k−1/k

=
(
3d+1

)k+1
ε
−(k+1)

2k
(a)1+1/k

(n`d)k+1/k
.

Thus, in both Case (1) and Case (2), we have

P(A(b) > k|Ytyp(b)) ≤ Θ

(
ε−

k+1
2k

a1+1/k

(n`d)k+1/k

)
.

So

P(Ytyp(b) ∩ A(b) > k) = P(A(b) > k|Ytyp(b)) · P(Ytyp(b))

≤ Θ

(
e−

k+1
2k

a1+1/k

(n`d)k+1/k

)
.

Then

E(Z3,L) ≤ Θε

(
n`d

a

)
·Θ
(
ε
−(k+1)

2k
(a)1+1/k

(n`d)k+1/k

)
= Θε

(
ε
−(k+1)

2k
(a)1/k

(n`d)k−1+1/k

)
= o(1).

Let Zi(b) be the event that 1-box b’s associated superbox is atypical of type i.

Call Zi the number of superboxes that are atypical of type i. Define Z1,i to be the

number of superboxes intersecting L that are atypical of type i that have more than
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k active vertices inside of it. Then let

Z1,i(b) =


1, b’s associated superbox is type i and has more than k active vertices,

0, otherwise.

Then Z1,i =
∑

b in L

Z1,i(b) and

EZ1,i =
∑

b in L

EZ1,i(b) =
∑

b in L

P(Z1,i(b) = 1)

=
∑
b in L

P(Zi(b))P(A(b) > k|Zi(b)).

Let Z2,L be the number of atypical superboxes intersecting L with more than k active

vertices and let s be b’s associated superbox. We then break into cases again.

For Case (1), by Lemma 2.3,

P(Zi(b)) = P(3iµ ≤ Ys < 3i+1µ) ≤ P(Ys ≥ 3iµ) ≤ e
− (3i−1)2µ

1+3i ,

and using Lemma 2.5,

P(A(b) > k|Zi(b)) ≤ P(A(b) > k|Ys = 3i+1µ)

=

3i+1µ∑
j=k+1

(
3i+1µ

j

)
pj(1− p)3i+1µ−j

∼
(

3i+1µ

k + 1

)
pk+1(1− p)3i+1µ−k−1

≤ (3i+1µp)k+1.
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So

EZ1,i ≤ Θ

(
n`d

a

)
e
− (3i−1)2µ

1+3i (3i+1µp)k+1.

Define qi = Θ
(
n`d

a

)
e
− (3i−1)2µ

1+3i (3i+1µp)k+1. Then

qi+1

qi
= Θ(3k+1) exp

(
µ

(
(3i − 1)2

1 + 3i
− (3i+1 − 1)2

1 + 3i+1

))
= o(1)

since

(3i − 1)2

1 + 3i
− (3i+1 − 1)2

1 + 3i+1
=

33i+1 − 33i+2 + 32i − 32i+2 + 2 · 3i+1

32i+1 + 3i+1 + 3i + 1

=
−6 · 33i − 8 · 32i + 6 · 3i

32i+1 + 3i+1 + 3i + 1

≤ −6 · 27i − 8 · 9i + 6 · 3i < 0

for all i ≥ 0 and µ→∞.

Then

E(Z2,L) =
∞∑
i=1

EZ1,i ≤
∞∑
i=1

qi ∼ q1

= Θ

(
n`d

a

)
e−µ(9µp)k+1 = Θ

(
n`d

a

)
e−

3da
ξ

(
3da

ξ
γp∗
)k+1

= Θ

(
n`d

a

)
e−Θ(a)γk+1 ak+1

(n`d)1+1/kak−1/k

= Θ(γk+1)e−Θ(a)
( a

n`d

)1/k

= o(ε−1/2) = oε(1).

For Case (2), by Lemma 2.3,

P(Zi(b)) = P(3iξµ ≤ Ys < 3i+1ξµ) ≤ P(Ys ≥ 3iξµ) ≤ e
− (3iξ−1)2µ

1+3iξ ,
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and using Lemma 2.5,

P(A(b) > k|Zi(b)) ≤ P(A(b) > k|Ys = 3i+1ξµ)

=

3i+1ξµ∑
j=k+1

(
3i+1ξµ

j

)
pj(1− p)3i+1ξµ−j

∼
(

3i+1ξµ

k + 1

)
pk+1(1− p)3i+1ξµ−k−1

≤ (3i+1ξµp)k+1.

So

EZ1,i ≤ Θ

(
n`d

a

)
e
− (3iξ−1)2µ

1+3iξ (3i+1ξµp)k+1.

Define qi = Θ
(
n`d

a

)
e
− (3iξ−1)2µ

1+3iξ (3i+1ξµp)k+1. Then

qi+1

qi
= Θ(3k+1) exp

(
µ

(
(3iξ − 1)2

1 + 3iξ
− (3i+1ξ − 1)2

1 + 3i+1ξ

))
= o(1)

since

(3iξ − 1)2

1 + 3iξ
− (3i+1ξ − 1)2

1 + 3i+1ξ
=

6 · 3iξ − 6 · 32iξ2 − 6 · 33iξ3

1 + 3iξ + 3i+1ξ + 32i+1ξ2

≤ 6 · 3i − 6 · 9iξ2 − 6 · 27iξ3

≤ 6ξ3(3i − 9i − 27i) < 0

for all i ≥ 0 and µ→∞.
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Then

E(Z2,L) =
∞∑
i=1

EZ1,i ≤
∞∑
i=1

qi ∼ q1

= Θ

(
n`d

a

)
e−

(3ξ−1)2µ
1+3ξ (9ξµp)k+1 = Θ

(
n`d

a

)
e−

3da
ξ

(
3da

ξ
γp∗
)k+1

= Θ

(
n`d

a

)
e−Θ(a)γk+1 ak+1

(n`d)1+1/kak−1/k

= Θ(γk+1)e−Θ(a)
( a

n`d

)1/k

= o(ε−1/2) = oε(1).

Thus, in both Case (1) and Case (2), we have E(Z2,L) = o(1).

Let Z3,L be the number of superboxes intersecting L with more than k active

vertices. Therefore,

E(Z3,L) = E(Z3,L) + E(Z2,L)

≤ oε(1) + oε(1) = oε(1).

Then P(E3,p) ≤ o(1). At time p, a.a.s., there is no superbox contained in L with

more than k active vertices and so a.a.s., all superboxes contained in L have at most

k active points.

6.2.5 P(E4,p) = o(1)

Event E4,p is the event that some superbox intersecting L with an atypical cell

has exactly k active vertices at time p. Since E(Yatyp) = o (m) and each atypical cell

is in 3d different superboxes, we have that

E(Z1) ≤ 3do (m) = oε

(n
a

)
.
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Thus,

E(Z1,L) = o

(
n`d

a

)
= o(ms ,L).

Let Z2(b) be the event that b’s associated superbox is typical but contains an atypical

cell and Z2 be the number of 1-boxes whose associated superbox is typical but contains

an atypical cell. In Case (1), we have

P(Ab |Z2(b)) ≤
(

3µ

k

)
pk(1− p)3µ−k ≤ (3µ)k(γp∗)k

= Θ

(
(a · γ)k · 1

n`dak−1

)
= Θ

(
a√
εn`d

)
,

and in Case (2), we have

P(Ab |Z2(b)) ≤
(

3ξµ

k

)
pk(1− p)3ξµ−k ≤ (3ξµ)k(γp∗)k

= Θ

(
(a · γ)k · 1

n`dak−1

)
= Θ

(
a√
εn`d

)
.

Note that E(Z2,L) ≤ E(Z1,L). Define Z4,L to be the number of typical superboxes

intersecting L with some atypical cell and exactly k active vertices at time p. Then

we have

E(Z4,L) = ms ,LP(Z2(b) ∩ Ab) = ms ,LP(Z2(b))P(Ab |Z2(b))

= E(Z1,L) ·Θ
(

a√
εn`d

)
= o

(
n`2

a

)
·Θ
(

a√
εn`2

)
= o(1).

Define Z4,i to be the number of superboxes intersecting L that are atypical of type i

with exactly k active vertices and again let s be the superbox that is centered at box
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b. Then define

Z4,i(b) =


1, b’s associated superbox is atypical of type i and has k active vertices,

0, otherwise.

Finally, let Z4,L be the number of atypical superboxes intersecting L with exactly k

active vertices and Z5,L be the number of superboxes intersecting L with exactly k

active vertices. Then we have

EZ4,i =
∑

b in L

EZ4,i(b) =
∑

b in L

P(Zi(b) ∩ Ab)

=
∑

b in L

P(Zi(b)) · P(Ab |Zi(b)).

In Case (1), from above we have

P(s is type i) ≤ e
− (3i−1)2µ

1+3i

We also have

P(Ab |Zi(b)) ≤
(

3i+1µ

k

)
pk(1− p)3i+1µ−k ≤ (3i+1µp)k.

So

EZ4,i ≤ Θ

(
n`d

a

)
e
− (3i−1)2µ

1+3i (3i+1µp)k.

Define qi = Θ
(
n`d

a

)
e
− (3i−1)2µ

1+3i (3i+1µp)k. Then

qi+1

qi
= Θ(3k) exp

(
µ

(
(3i − 1)2

1 + 3i
− (3i+1 − 1)2

1 + 3i+1

))
= o(1),
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since (3i−1)2

1+3i
− (3i+1−1)2

1+3i+1 < 0 for all i ≥ 0 and µ→∞. So

E(Z4,L) =
∞∑
i=1

EZ4,i =
∞∑
i=1

qi ∼ qi

= Θ

(
n`d

a

)
e−µ(9µp)k = Θ

(
n`d

a

)
e−

3d

ξ
a

(
3d

ξ
aγp∗

)k
= Θ

(
n`d

a

)
e−Θ(a)ε−1/2 · ak

n`dak−1
= Θ(ε−1/2)e−Θ(a) = o(ε−1/2) = oε(1).

In Case (2), from above we have

P(s is type i) ≤ e
− (3iξ−1)2µ

1+3iξ

We also have

P(Ab |Zi(b)) ≤
(

3i+1ξµ

k

)
pk(1− p)3i+1ξµ−k ≤ (3i+1ξµp)k.

So

EZ4,i ≤ Θ

(
n`d

a

)
e
− (3iξ−1)2µ

1+3iξ (3i+1ξµp)k.

Define qi = Θ
(
n`d

a

)
e
− (3iξ−1)2µ

1+3i (3i+1ξµp)k. Then

qi+1

qi
= Θ(3k) exp

(
µ

(
(3iξ − 1)2

1 + 3iξ
− (3i+1ξ − 1)2

1 + 3i+1ξ

))
= o(1),
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since (3iξ−1)2

1+3iξ
− (3i+1ξ−1)2

1+3i+1ξ
< 0 for all i ≥ 0 and µ→∞. So

E(Z4,L) =
∞∑
i=1

EZ4,i =
∞∑
i=1

qi ∼ qi

= Θ

(
n`d

a

)
e−

(3ξ−1)2µ
1+3ξ (9ξµp)k = Θ

(
n`d

a

)
e
− (3ξ−1)23d

ξ+3ξ2
a (

3daγp∗
)k

= Θ

(
n`d

a

)
e−Θ(a)ε−1/2 · ak

n`dak−1
= Θ(ε−1/2)e−Θ(a) = o(ε−1/2) = oε(1).

So in both Case (1) and Case (2), we have that E(Z4,L) = o(1). Let Z5 be

the number of superboxes intersecting L with an atypical cell and k active vertices

at time p. Thus,

E(Z5,L) ≤ E(Z4,L) + E(Z4,L) = oε(1) + o(1) = o(1).

Therefore, P(E4,p) = P(Z5 > 0) ≤ o(1) by Lemma 2.4 and a.a.s., there is no superbox

with an atypical cell that has k active vertices at time p.

6.2.6 P(E5,p) = o(1)

Event E5,p is the event that some superbox with no atypical cell intersecting

the boundary of L has at least k active vertices at time p. If we can rule out this

situation, then a superbox that has k active vertices in it must occur on the interior

of L. There are O
(
`
r

)
= O

(
d

√
`dn
a

)
superboxes on the boundary of L. Note that

P(A(b) ≥ k|Z(b)) =

3µ∑
j=k

(
3µ

j

)
pj(1− p)3µ−j

≤
(

3µ

k

)
pk ≤ (3µ)kε−1/2

(
1

n`dak−1

)
=

(
3d+1

ξ

)k
· 1√

ε
· a
n`d



75

Let Z6 be the number of superboxes on the boundary of L with no atypical cell and

at least k initially active vertices. So

E(Z6) = O

(√
`dn

a

)
P(A(b) ≥ k|Z(b))P(Z(b))

= O

(√
`dn

a

)(
3d+1

ξ

)k
· 1√

ε
· a
n`d

(1− o(1))

= Oε

(
d

√
a

n`d

)
= o(1).

Therefore, P(E5,p) = P(Z6 > 0) ≤ o(1) by Lemma 2.4, and hence a.a.s., there are no

superboxes on the boundary of L with no atypical cell that have k or more active

vertices.

6.2.7 Showing a.a.s., Bk(A0(p̂nonstuck)) nearly percolates

Then

P

(
E0 ∩

(
5⋂
i=1

Ei,p

))
= 1− P

(
E0 ∪

(
5⋃
i=1

Ei,p

))

≥ 1−

(
E0 +

5∑
i=1

P(Ei,p)

)

≥ 1−
(
o(1) + e−Θ(1/

√
ε) + oε(1) + Θ(

√
ε) + o(1) + o(1) + o(1)

)
= 1− o(1)− e−Θ(1/

√
ε) −Θ(

√
ε).

Claim: If E0, E1,p . . . , E5,p do not hold, then Bk(A0(p̂nonstuck)) nearly percolates.

Proof of Claim. Since E1,p fails, we have a seed box at time p. Thus, it must be that

Bk nearly percolates, since a seed box in L percolates to the vertices in the good and

bad cells. Since E3,p, E4,p, and E5,p fail, then events E3,q, E4,q, and E5,p fail for any
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q ≤ p as well since the active vertices at time q are a subset of the active vertices

at time p. At time p̂nonstuck, let v be one of the first vertices that becomes nonstuck.

Since E5,p fails, this vertex must not be in a superbox that intersects the boundary

of L. Then since E3,p̂nonstuck fails, there must be exactly k active vertices in the ball of

activation of the cell containing v. Consider the box that contains the center cell of

this k-cloud. Since E4,p̂nonstuck fails, this center cell must be typical. We want to show

that this box is not wishy-washy. Suppose E2,q holds for q < p, i.e., there is a wishy-

washy box contained in L at time q. Since E3,p fails, we know there are not k+ 1 (or

more) active vertices in a superbox contained in L, and thus, the wishy-washy box

must remain wishy-washy. Thus, we have that E2,p holds. However, since E2,p fails, it

must be that E2,q fails for any q < p as well. Thus, the box must not be wishy-washy.

Since E4,q fails for any q < p, this box must not have an atypical cell. The center cell

is typical and becomes active. Then since E0 fails, we have percolation of all but o(1)

cells, and hence all but o(1) vertices. Thus Bk(A0(p̂near perco)) nearly percolates.

Therefore

P(Bk(A0(p̂nonstuck))nearly percolates) = 1− o(1)− e−Θ(1/
√
ε) −Θ(

√
ε).

Thus taking ε sufficiently small, we have that

P(Bk(A0(p̂nonstuck))nearly percolates)→ 1 as n→∞.

So a.a.s., Bk(A0(p̂nonstuck)) nearly percolates.
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6.3 Proof of Theorem 3.6(c)

Consider the same tessellation of Td as in Section 6.2. Take

r′ = d

√
log n+ (k − 1) log log n− ω

ξn

where ω → ∞ and ω = o(log log n). Suppose r′ ≤ r ≤ d

√
1.1 logn
ξn

, and consider the

process on Bk(G (Xn, r);A0(p̂nonstuck)). Define a simple obstruction to be a vertex of

degree less than k. Consider the graph of cells restricted to only ugly cells, call it

G[U ].

Recall:

Lemma 6.1. (ii) Suppose that r ≥ r′. Then a.a.s. all the components of the graph

of cells induced by ugly cells must have diameter at most Qεr (where Q > 0 is a

constant depending only on the dimension d and the norm ‖ · ‖), and any two such

components must be at distance at least Ar from each other (where constant A > 0

can be chosen arbitrarily large).

It is sufficient for us to take A > 100.

Consider one connected component of G[U ]. Suppose there are j ≥ 2 vertices in

all of the ugly cells in this connected component of ugly cells that are not initially

active, call the set of these vertices J . Without loss of generality, take the vertices v1

and v2 to be the two vertices in J that are the furthest apart from one another. Call

ρ = dist(v1, v2). Then by Lemma 6.1(ii), ρ ≤ Qεr. Let the ball of radius y centered

at point x be denoted by B(x, y). Set UJ = B(v1, ρ) ∩ B(v2, ρ). Then all vertices in

J must fall in UJ , else v1 and v2 would not be the two vertices in J with maximum
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distance. We will consider the following parts of the torus:

T1 = B(v1, r
′ − ρ) \ UJ ,

T2 = (B(v1, r
′) ∩B(v2, r

′)) \ (UJ ∪ T1),

T3 = B(v1, r
′) \B(v2, r

′),

T4 = B(v2, r
′) \B(v1, r

′),

T0 = (Td \ (B(v1, r
′) ∪B(v2, r

′)) ∪ UJ .

Note that each of T0, T1, T2, T3, and T4 are mutually disjoint and Td =
⋃4
i=0 Ti.

Figure 6.1: A possible obstruction caused by connected components of ugly cells.

T1 T2T3 T4

r′ − ρ

r′

ρ

v1 v2

r′UJ
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Suppose the number of vertices in Ti for i = 1, . . . , 4 is ti. We will denote the

volume of Ti to be |Ti| for i = 0, . . . , 4, and the volume of UJ to be denoted by |UJ |.

Lemma 6.2. We have that |T1| = O((r′)d), |T2| = Θ((r′)d−1ρ), |T3| = |T4| =

Θ((r′)d−1ρ), and |T0| = 1− (ξ(r′)d + C(r′)d−1ρ) for some C > 0.

Proof. Note that |T1| = ξ(r′ − ρ)d = O((r′)d). We have that

B(v1, r
′) \B(v1, r

′ − ρ) ⊆ T3 ⊆ B(v2, r
′ + ρ) \B(v2, r

′).

Then

|T3| ≤ ξ(r′ + ρ)d − ξ(r′)d = Θ((r′)d−1ρ)

and

|T3| ≥ ξ(r′)d − ξ(r′ − ρ)d = Θ((r′)d−1ρ).

Therefore |T3| = Θ((r′)d−1ρ). By symmetry, we also have |T4| = Θ((r′)d−1ρ).

We also have that

T2 = B(v1, r
′) \ (B(v1, r

′ − ρ) ∪ T3),

so

|T2| = ξ(r′)d − (ξ(r′ − ρ)d + Θ((r′)d−1ρ))

= ξ
(
(r′)d − (r′)d + Θ((r′)d−1ρ)−Θ((r′)d−1ρ)

)
= Θ((r′)d−1ρ).

Note that |UJ | = Θ(ρd). Then there must be positive constants c1 and c2 so

that c1ρ
d ≤ |UJ | ≤ c2ρ

d. Since |T4| = Θ((r′)d−1ρ), there must be positive constants

c3 and c4 so that c3(r′)d−1ρ ≤ |T4| ≤ c4(r′)d−1ρ. Furthermore, there must exist
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nonnegative constants c5 and c6 so that c5εr
′ ≤ ρ ≤ c6εr

′. Note that c3 > c1(c6ε)
d−1

and c4 > c2(c5ε)
d−1 since ε is small. Therefore, we have

|T0| = 1− |B(v1, r
′)| − |T4|+ |UJ |

≤ 1− ξ(r′)d − c3(r′)d−1ρ+ c1ρ
d ≤ 1− ξ(r′)d − c3(r′)d−1ρ+ c1 · (c6ε)

d−1(r′)d−1ρ

= 1−
(
ξ(r′)d + Θ((r′)d−1ρ)

)
,

and similarly

|T0| = 1− |B(v1, r
′)| − |T4|+ |UJ |

≥ 1− ξ(r′)d − c4(r′)d−1ρ+ c2ρ
d ≥ 1− ξ(r′)d − c4(r′)d−1ρ+ c2 · (c5ε)

d−1(r′)d−1ρ

= 1−
(
ξ(r′)d + Θ((r′)d−1ρ)

)
.

Thus, |T0| = 1 −
(
ξ(r′)d + Θ((r′)d−1ρ)

)
, so there exists a constant C > 0 so that

|T0| = 1−
(
ξ(r′)d + C(r′)d−1ρ

)
.

Let J be defined as before. Define J to be a non-simple obstruction with v1 and

v2 defined as above so that 0 ≤ t1, t2, t3, t4 < k. These bounds on t1, t2, t3, and t4 are

necessary for J to remain active, since if any of the sets T1, T2, T3, or T4 had more than

k vertices, these k vertices would become active, which would then activate either v1

or v2 giving us a contradiction.

Lemma 6.3. A.a.s., there are no non-simple obstructions.

Proof. Let X = the number of non-simple obstructions and Xt1,t2,t3,t4 = the number

of non-simple obstructions with parameters t1, t2, t3, and t4. Then

X =
∑

0≤t1,t2,t3,t4<k

Xt1,t2,t3,t4 .
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Take t = t1 + t2 + t3 + t4. Then there are t vertices in
⋃4
i=1 Ti. Then there are Θ(nt+2)

ways to choose each of these t vertices, v1, and v2. Further, let D be the distance

between v1 and v2. Note that the cumulative distribution function FD(ρ) = ξρd and

thus the probability density function is d
dρ
FD(ρ) = ξdρd−1. Then by Lemma 6.2, we

have3

EXt1,t2,t3,t4 = O(1)nt+2

∫ Qεr

0

((r′)d)t1((r′)d−1ρ)t2+t3+t4(1− (ξ(r′)d + C(r′)d−1ρ)n−t−2ρd−1 dρ

= O(1)nt+2((r′)d)t
∫ Qεr

0

( ρ
r′

)t2+t3+t4
e−(ξ(r′)d+C(r′)d−1ρ)n+O(n(r′)2d)ρd−1 dρ

= O(1)n2(n(r′)d)t
∫ Qεr

0

( ρ
r′

)t−t1
e−(ξ(r′)d+C(r′)d−1ρ)nρd−1 dρ

= O(1)n2(log n)t
eω

n(log n)k−1

∫ Qεr

0

( ρ
r′

)t−t1
e−C(r′)d−1ρnρd−1 dρ,

where in the last line we use that n(r′)d = Θ(log n) and e−π(r′)dn = eω

n(logn)k−1 . Substi-

tuting y = (r′)d−1ρn and again using that n(r′)d = Θ(log n), we have

EXt1,t2,t3,t4 = O(1)eωn(log n)t−k+1

∫ Qεr(r′)d−1n

0

(
y

(r′)dn

)t−t1
e−Cy

y

(r′)d−1n
· dy

(r′)d−1n

= O(1)neω(log n)t1−k+1

(
1

(r′)d−1n

)d ∫ Qεr(r′)d−1n

0

yt−t1+d−1e−Cy dy

= O(1)neω(log n)t1−k+1

(
r′

Θ(log n)

)d ∫ Θε(logn)

0

yt−t1+d−1e−Cy dy

= O(1)neω(log n)t1−k+1−dΘ(log n)

n

∫ Θε(logn)

0

yt−t1+d−1e−Cy dy

= O(1)eω(log n)t1−k+2−d
∫ Θε(logn)

0

yt−t1+d−1e−Cy dy

3We wish to clarify that dρ in the integral below is the differential of ρ, not the dimension d
multiplied by ρ.
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Since t− t1 + d− 1 is a constant and C > 0, e−Cy � yt−t1+d−1, and thus

∫ ∞
0

yt−t1+d−1e−Cy dy and

∫ ∞
0

yt−t1+d−1e−Cy dy −
∫ Θε(logn)

0

yt−t1+d−1e−Cy dy

are both constants. Thus,

EXt1,t2,t3,t4 = O(1)eω(log n)t1−k+2−d
∫ ∞

0

yt−t1+1e−Cy dy

= O(1)eω(log n)t1−k+2−d.

Since t1 < k, 2 ≤ d, and ω = o(log log n), we have that EXt1,t2,t3,t4 = o(1). Thus,

EX =
∑

0≤t1,t2,t3,t4<k

EXt1,t2,t3,t4 =
∑

0≤t1,t2,t3,t4<k

o(1) = o(1).

Thus, a.a.s., no non-simple obstructions happen.

Since G(n, r, pnonstuck(r)) is non-stuck, we know that all vertices in good and bad

cells will eventually be active. Define a survivor to be a vertex that never becomes

active. Then any survivors must happen in an ugly cell. By Lemma 6.1(ii), we know

that clusters of ugly cells are far apart from one another (at least distance 100r). If

a cluster has one survivor, this must be because that survivor has degree less than k,

so this is a simple obstruction. If a cluster has two or more survivors, find the two

survivors that are furthest away from each other and call them v1 and v2. Call the

set of survivors in this cluster J . Consider UJ , Ti, and ti for i = 0, . . . , 4 as defined

above. Note that all survivors must fall in UJ . It must be that each of t2, t3, t4 < k,

else v1 or v2 would not be a survivor. If t1 ≥ k, then v1 and v2 are both not survivors.

Thus, t1 < k and this gives a non-simple obstruction, which by Lemma 6.3, do not

occur a.a.s. Therefore, the only survivors must be the vertices of degree less than k



83

that were not initially activated.
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List of Global Symbols

r: In G (Xn, r), the value so that for any two vertices v1, v2 ∈ V , if dist(v1, v2) ≤ r,

then the edge v1v2 ∈ E. 8

Xn: Xn = (X1, X2, . . . , Xn); the set of (uniformly) random points in Td that define

the n vertices in G (Xn, r) so that vertex i ∈ V is at point Xi. 8

Td: The d-dimensional unit torus [0, 1)d. 8

G (Xn; r): The random geometric graph defined on n vertices placed (uniformly) at

random (where vertex i is given by the point Xi) in Td so that for any two

vertices v1, v2 ∈ V , if dist(v1, v2) ≤ r, then the edge v1v2 ∈ E. 12

rδ≥k: min{r : deg(i) ≥ k for all i ∈ V }. 13

rk-conn: min{r : G (Xn; r) is k-connected}. 13

Bk(G ;A0): At each time step t = 0, 1, 2, . . ., we define the set At ⊆ V , which we call

active vertices. We call vertices in V \ At inactive vertices. The vertices in A0

are considered initially active. At time step t + 1, a vertex v ∈ V \ At turns

active (or becomes activated) if v has at least k neighbors in At, and we place

v in At+1. Once a vertex is active, it remains active, so At ⊆ At+1 for every

t = 0, 1, 2, . . .. In other words, for t ≥ 0,

At+1 = At ∪ {v ∈ V \ At : v has at least k neighbors in At}.
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We set A∞ =
⋃∞
t=0 At, so A∞ is the set of all vertices that begin as initially

active or eventually become activated in B(G ;A0). 14

A0(p): The set of initially active vertices where each vertex is independently initially

active with probability p. 15

Wn: (W1,W2, . . . ,Wn) where each Wi for i ∈ [n] are i.i.d. uniform random variables

taking values in [0, 1]. 15

A0(Wn; p): {vi ∈ V : Wi ≤ p}. 15

pnonstuck: min{p ∈ [0, 1] : A1(p) \ A0(p) 6= ∅}. 17

pperco: min{p ∈ [0, 1] : Bk(G (Xn; r);A0(p)) percolates}. 17

ξ: The volume of the unit d-dimensional ball in the given norm ‖·‖. 17

Gcells(Bk(G (Xn; r);A0(p))): The graph of cells where the vertices

Vcells = {c : c is a cell of G (Xn; r) in the tessellation of Td}

and cells c1, c2 ∈ Vcells are adjacent if the distance between the centers of c1 and

the center of c2 is at most
(
1− diam([0, 1]d)S

)
r. 39

Gdense cells(Bk(G (Xn; r);A0(p))): The graph of dense cells where the vertices

Vdense cells = {c : c is a dense cell of G (Xn; r) in the tessellation of Td}

and for c1, c2 ∈ Vdense cells ⊆ Vcells, c1 and c2 are adjacent if c1 ∼Gcells
c2. 39
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List of Theorem 3.4 Symbols

m: 4dC(d)n
a
; the total number of cells in Td. 24

mL: Θ
(

(2β)dξn`d

a

)
; the number of cells intersecting L. . 24

Yc: for a cell c, the number of vertices in c’s circle of activation. 25

µ: EYc =
(

1 + diam(Td)
2β

)d
· a
ξ
; the expected number of vertices in c’s circle of activation.

25

Yc,act: The number of active vertices in cell c’s circle of activation. 25

Z0: The number of typical (with respect to µ) cells that are nonstuck. 25

Ti(c): The event that cell c is atypical (with respect to µ) type i. 26

Tns(c): The event that cell c is nonstuck. 26

Zi: The number of nonstuck atypical (with respect to µ) cells in L of type i. 26

Zi,c:


1, if cell c is nonstuck and atypical (with respect to µ) type i

0, otherwise

. 26

Zi≥1: The number of nonstuck atypical (with respect to µ) cells. 26

Wc: The number of vertices in cell c. 27

ν: EWc = a
(2β)dξ

; the expected number of vertices in a cell. 27
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Qatyp: The number of atypical (with respect to ν) cells in Td. 27

Uc,seed: The event that cell c is a concentrated seed. 29

Qtyp,seed: The number of typical cells that are seeds in D ∩ L. 29
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List of Theorem 3.5 Symbols

m1: In section 5.1, (2β)dξ n
a
; the number of cells in Td. 32

m1,L: In section 5.1, (2β)dξn`d

a
; the number of cells intersecting L. 32

Yc: The number of vertices in cell c. 32

Qatyp: The number of atypical cells. 32

Tc: The number of initially active vertices in cell c. 33

Tseed: The number of concentrated seeds. 33

Yt: The number of vertices in tile t. 34

µ: EYt = (4β)da
ξ

; the average number of vertices in a tile. 34

Ej: The event that all tiles intersecting L are stuck for tiling j. 34

Lj: The tiles intersecting L in tiling j. 34

Xi,j: The number of tiles in Lj of type i. 34

Xi,j,t:


1, tile t in Lj is type i

0, otherwise

. 34

bi:


(`+ 4βr)d ξn

(4β)da
, i = 0,

(`+ 4βr)d ξn
(4β)da

e
− (4β)d(2i−1)2a

2ξ(2i+1) , i ≥ 1.

. 34
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Zi,j:


1, Xi,j > bi

0, Xi,j ≤ bi

. 35

Z:
∑2d

j=1

∑∞
i=0 Zi,j. 35

qi: e
− (4β)d(2i−1)2a

2ξ(2i+1) . 35

Ti(t): The event that tile t is of type i. 36

Tns(t): The event that tile t is nonstuck. 36

C : {C a configuration : 0 ≤ Xi,j ≤ bi}. 36

Ts(t): The event that tile t is stuck. 36
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List of Theorem 3.6(a) Symbols

p∗: 1
(n`d)1/k(a)1−1/k . 42

γ: ε−1/2k. 42

m: 1
εdrd

= ξn
εda

; the number of cells in Td. 42

E0: The event that some cell is not adjacent to a dense cell of Gdense cells is not con-

nected. 42

E1,p: The event that there is no seed box intersecting L at time p. 42

E2,p: The event that there is some wishy-washy box intersecting L at time p. 42

E3,p: The event that some superbox intersecting L has more than k active vertices

at time p. 42

E4,p: The event that some superbox intersecting L with an atypical cell has exactly

k active vertices at time p. 42

E5,p: The event that some superbox with no atypical cell intersecting the boundary

of L has at least k active vertices at time p. 42

T1: The event that there exists a topologically connected set of at least (1 + ζ) ξ
εdBd

sparse cells. 43

J: The number of topologically connected sets of b cells that are all sparse. 43
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Si: The event that cell ci is sparse. 43

T2: The event that there is a cell that is not adjacent to a dense cell. 44

T3: The event that Gdense cells is not connected. 44

Yc: The number of vertices in a cell c. 45

Yatyp: The number of atypical cells in Td. 45

F : The event that all except at most a o fraction of diam(Td)-boxes have all its cells

typical. 45

Y : The number of diam(Td)-boxes that do not have all its cells typical. . 45

Yb,seed: The event that a diam(Td)-box b with all its cells typical is a seed. 46

Z(b): The event that all cells in 1-box b’s associated superbox s are typical. 47

Z1(b): The event that there is an atypical cell in 1-box b’s associated superbox s . 47

Z1: The number of 1-boxes with an atypical cell in its associated superbox. 47

Wb : The event that 1-box b is wishy-washy. 48

Ab : The event that 1-box b’s associated superbox s contains exactly k active vertices.

48

At : The event that all of the k initially active vertices in s fall in t . 48

W: The number of wishy-washy boxes. 49

Ys : The number of vertices in superbox s . 50

µ: EYs = 3da
ξ

; the average number of vertices in a superbox. 50
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A(b): The number of initially active vertices in 1-box b’s associated superbox. 50

Yatyp: The number of atypical superboxes. 50

Ytyp(b): The event that 1-box b’s associated superbox is typical. 50

Ytyp: The number of typical superboxes. 50

ms ,L: The number of superboxes intersecting L. 50

Ytyp,L: The number of typical superboxes intersecting L. 50

Z3,L: The number of typical superboxes intersecting L with more than k active ver-

tices. 50

Z1,L: The number of superboxes intersecting L that have an atypical cell. 53

Z2(b): The event that 1-box b’s associated superbox is typical but contains an atyp-

ical cell. 53

Z2: The number of 1-boxes whose associated superbox is typical but contains an

atypical cell. 53

Z4,L: The number of typical superboxes intersecting L with some atypical cell and

exactly k active vertices at time p. 53

Z5: The number of superboxes intersecting L with an atypical cell and exactly k

active vertices at time p. 54

Z6: The number of superboxes on the boundary of L with no atypical cell and at

least k initially active vertices. 55



93

List of Theorem 3.6(b) Symbols

p∗: 1
(n`d)1/k(a)1−1/k . 57

γ: ε−1/2k. 57

D1: The largest component of dense cells in the graph of dense cells. 57

E0: The event that |D1| ≤ (1− f)m for some f = o(1). 57

E1,p: The event that there is no seed box intersecting L at time p. 57

E2,p: The event that there is some wishy-washy box intersecting L at time p. 57

E3,p: The event that some superbox intersecting L has more than k active vertices

at time p. 57

E4,p: The event that some superbox intersecting L with an atypical cell has exactly

k active vertices at time p. 57

E5,p: The event that some superbox with no atypical cell intersecting the boundary

of L has at least k active vertices at time p. 57

Yc: The number of vertices in a cell c. 58

Yatyp: The number of atypical cells in Td. 59

F : The event that all except at most a o(1) fraction of diam(Td)-boxes have all its

cells typical. 60
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Y : The number of diam(Td)-boxes that do not have all its cells typical. 60

Yb,seed: The event that a diam(Td)-box b with all its cells typical is a seed. 60

mb :
nξ
a

; the number of 1-boxes in Td. 62

Z(b): The event that all cells in 1-box b’s associated superbox s are typical. 62

Z1(b): The event that there is an atypical cell in 1-box b’s associated superbox s . 62

Z1: The number of 1-boxes with an atypical cell in its associated superbox. 62

Wb : The event that box b is wishy-washy. 62

Ab : The event that 1-box b’s associated superbox s contains exactly k active vertices.

62

W: The number of wishy-washy boxes. 64

Ys : The number of vertices in a superbox s . 64

µ: EYs = 3da
ξ

; the average number of vertices in a superbox. 64

A(b): The number of initially active vertices in 1-box b’s associated superbox s . 64

Yatyp: The number of atypical superboxes. 64

Ytyp(b): The event that 1-box b’s associated superbox is typical. 64

Ytyp: The number of typical superboxes. 64

ms ,L: The number of superboxes intersecting L. 64

Ytyp,L: The number of typical superboxes intersecting L. 64

Z3,L: The number of typical superboxes intersecting L with more than k active ver-

tices. 64
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Zi(b): The event that 1-box b’s associated superbox is atypical of type i. 66

Zi: The number of superboxes that are atypical of type i. 66

Z1,i: The number of superboxes intersecting L that are atypical of type i and that

have more than k active vertices. 66

Z1,i(b):


1, b’s associated superbox is type i and has more than k active vertices,

0, otherwise.

.

66

Z2,L: The number of atypical superboxes intersecting L with more than k active

vertices. 67

Z3,L: The number of superboxes intersecting L with more than k active vertices. 70

Z2(b): The event that 1-box b’s associated superbox is typical but contains an atyp-

ical cell. 71

Z2: The number of 1-boxes whose associated superbox is typical but contains an

atypical cell. 71

Z4,L: The number of typical superboxes intersecting L with some atypical cell and

exactly k active vertices at time p. 71

Z4,i: The number of superboxes intersecting L that are atypical of type i with exactly

k active vertices. 71

Z4,i(b):


1, b’s associated superbox is atypical of type i and has k active vertices,

0, otherwise.

.

71
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Z4,L: The number of atypical superboxes intersecting L with exactly k active vertices.

72

Z5,L: The number of superboxes intersecting L with exactly k active vertices. 72

Z6: The number of superboxes on the boundary of L with no atypical cell and at

least k initially active vertices. 74
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List of Theorem 3.6(c) Symbols

J: The set of j vertices in all of the ugly cells in a single connected component of

ugly cells. 77

B(x, y): The ball of radius y centered at point x. 77

UJ : B(v1, ρ) ∩B(v2, ρ). 77

T1: B(v1, r
′ − ρ) \ UJ . 77

T2: (B(v1, r
′) ∩B(v2, r

′)) \ (UJ ∪ T1). 77

T3: B(v1, r
′) \B(v2, r

′). 77

T4: B(v2, r
′) \B(v1, r

′). 77

T0: (Td \ (B(v1, r
′) ∪B(v2, r

′)) ∪ UJ . 77

ti: The number of vertices in Ti. 78

|Ti|: The volume of Ti. 78

|UJ |: The volume of UJ . 78
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