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The vast and persistent Deepwater Horizon (DWH) spill challenged response capabilities, which required ac-
curate, quantitative oil assessment at synoptic and operational scales. Although experienced observers are a
spill response's mainstay, few trained observers and confounding factors including weather, oil emulsifica-
tion, and scene illumination geometry present challenges. DWH spill and impact monitoring was aided by ex-
tensive airborne and spaceborne passive and active remote sensing.
Oil slick thickness and oil-to-water emulsion ratios are key spill response parameters for containment/cleanup
and were derived quantitatively for thick (>0.1 mm) slicks from AVIRIS (Airborne Visible/Infrared Imaging
Spectrometer) data using a spectral library approach based on the shape and depth of near infrared spectral
absorption features. MODIS (Moderate Resolution Imaging Spectroradiometer) satellite, visible-spectrum
broadband data of surface-slick modulation of sunglint reflection allowed extrapolation to the total slick.
A multispectral expert system used a neural network approach to provide Rapid Response thickness class
maps.
Airborne and satellite synthetic aperture radar (SAR) provides synoptic data under all-sky conditions;
however, SAR generally cannot discriminate thick (>100 μm) oil slicks from thin sheens (to 0.1 μm). The
UAVSAR's (Uninhabited Aerial Vehicle SAR) significantly greater signal-to-noise ratio and finer spatial
resolution allowed successful pattern discrimination related to a combination of oil slick thickness, fractional
surface coverage, and emulsification.
In situ burning and smoke plumes were studied with AVIRIS and corroborated spaceborne CALIPSO (Cloud
Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations of combustion aerosols. CALIPSO
and bathymetry lidar data documented shallow subsurface oil, although ancillary data were required for
confirmation.
Airborne hyperspectral, thermal infrared data have nighttime and overcast collection advantages and were
collected as well as MODIS thermal data. However, interpretation challenges and a lack of Rapid Response
Products prevented significant use. Rapid Response Products were key to response utilization—data needs
are time critical; thus, a high technological readiness level is critical to operational use of remote sensing
products. DWH's experience demonstrated that development and operationalization of new spill response
remote sensing tools must precede the next major oil spill.
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1. Introduction

1.1. Overview

Marine petroleum affects the environment, economy, and quality
of life for coastal inhabitants leading to concerns that include resource
exploration, recovery, transportation, and resultant oil spill contin-
gency planning, mitigation, and remediation (Jensen et al., 1990).
Traditionally, remote sensing has played a secondary support role
in oil spill response and monitoring. However, recent technological

advancements and sensor availability have enabled a more important
role for remote sensing. During the Deepwater Horizon (DWH) spill,
several remote sensing technologies rapidly moved up the technologi-
cal readiness scale (Ramirez-Marquez & Sauser, 2009), propelled by
the spill's scale and urgency.

In this review, we summarize and discuss the role of remote sensing
technologies used in the DWH response with varying degrees of effec-
tiveness. This paper has five sections: 1) oil spill processes relevant
to oil spill response and remote sensing interpretation, 2) passive oil-
spectroscopy and remote sensing, 3) active oil remote sensing, 4) remote
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sensing oil spill impacts, and 5) a final discussion. Each section presents
background, available remote sensing tools, and their DWH application,
with discussion of both airborne and orbital sensors.

1.2. Background: oil slick science

1.2.1. Marine oil sources
Annually, on average 1,300,000 t of oil entered the oceans during

the 1990s with tanker vessel spills accounting for 100,000 t, run-off
140,000 t, and pipeline leaks just 12,000 t (NRC, 2003). Aside from nat-
ural seeps, which contribute an estimated 600,000 t or ~45% of total
emissions, other important sources include vessel operational dis-
charges (NRC, 2003). Oil spills impacting coastal waters are occurrence
with a cumulative total of 447 U.S. oil and chemical spills reported from
1992 to 1999, with 50 between Oct. 1998 and Oct. 1999 (NRC, 2003).
Tanker spills generally have decreased in volume with only 100 t
spilled in 2009, whereas, at least 138,000 t were spilled each year in
the 1970s. Large spills like the Prestige in 2002 (63,000 t) still occur.
In contrast, spills resulting from sabotage and pipeline ruptures are in-
creasing due in part to aging pipeline networks and infrastructure
expanding into ever deeper waters (Jernelöv, 2010).

Although natural seeps are estimated as the largest marine oil
source, few fluxes have been measured. Annually, North American
seeps emit an estimated 160,000 t of oil with California seeps contrib-
uting 20,000 t of oil, ~12% of the North American total emissions
(NRC, 2003). Where oil spills occur in natural seepage areas, such as
the northern Gulf of Mexico, previously generated, remote-sensing
derived maps of seepage-occurrence (Garcia-Pineda et al., 2010) can
aid in discriminating natural from anthropogenic oil slicks. In general,
natural seep oil emissions are highly distinct from most oil spills and
involve persistent and widely dispersed oil emissions that generally
result in very thin sheens (MacDonald et al., 2002).

1.2.2. Oil slick processes
Experienced observers can discriminate oil from biogenic slicks and

estimate the amount of oil in the slick based on spatial patterns andhow
they change with time. These spatial patterns can be key for validation
of oil slick maps derived from remote sensing data. Oil slick processes
on day to week timescales—a typical oil spill response—(Fig. 1) include
wind and wave advection, compression from waves and currents (into
wind rows or narrow slicks), spreading and surface diffusion, sedimen-
tation and dissolution into the water column, emulsification, evapora-
tion, and photochemical and biological degradation (NRC, 2003).
Weathering describes non-advective processes that alter the oil's chem-
ical and physical characteristics.

Volatilization causes physical and chemical evolution of sheens
and thin oil slicks on hour to day timescales (Leifer et al., 2006)
with the process evolving even more slowly for thicker slicks, partic-
ularly if the upper surface develops a waxy crust (Ross & Buist, 1995).
In the presence of turbulence from winds, wave breaking, or human
activities, oil forms emulsions–oil/water mixtures with significantly
higher viscosity and distinct physical properties (ASCE, 1996). Where
fresh oil surfaces among weathered oil, the two oils tend not to mix,
leading to small-scale heterogeneity (Leifer et al., 2006).

Many oil spill processes depend upon, currents, meteorology, sea
state, and oil properties, like viscosity and slick thickness (ASCE,
1996; Reed et al., 1999). Currents and winds advect oil in a weighted
vector sum direction (Leifer et al., 2006). For example, wind creates
turbulence that increases emulsification, while dissolution is affected
bywater-side turbulence fromwind stress, waves, andwave breaking.
Wave breaking also naturally disperses oil into the water column
(Farmer & Li, 1994).

Although several slick processes suggest that oil slicks should dis-
sipate, in reality, slicks tend to accumulate at current shears due to
Langmuir cells (Lehr & Simecek-Beatty, 2000) and bathymetric effects
or in current convergence zones. Typical wind-driven oil patterns are
asymmetric (Lehr et al., 1984) due to Fay gravitational and surface-
tension driven spreading (Fay, 1971). Spreading is where an oil slick ex-
pands to maximize its surface area. In the upwind direction, spreading
opposes thewind, while the two are synergistic in the downwind direc-
tion, leading to the asymmetry. Spreading is countered by inertia and
viscosity. Weathering increases viscosity, decreasing spreading (Reed
et al., 1999). Also affecting the asymmetry is the wind stress change
as thewind passes fromoil-freewaters to the oil slick. Oil slicks dampen
capillary and short gravity waves, lessening surface roughness (Brekke
& Solberg, 2005). This alters the wind profile, decreasing wind-ocean
momentum transfer, causing oil slicks to “bunch up.”

1.2.3. Oil spill response
In an oil spill's early phases, information on the spill's location often

is acquired from a few, often-conflicting observations, typically made
from airborne platforms. These observations can suffer from numerous
false positives, particularly given the paucity of trained observers. Thus,
first observations frequently are from untrained individuals and in-
creasingly from remote sensing, although both yield false positives
(Fingas & Brown, 1997). Such incoming data can obscure the oil spill's
true location and size (HAZMAT, 1996). Yet, initial response decisions
and resource allocation must be made on the available information.

Initial resource allocation needs to consider likely spill size and re-
source deployment times and thus, the oil's future location and size
when resources will arrive on-scene, i.e., spill modeling and prediction.

Fig. 1. Schematic of important early oil slick processes on time-scales up to a few days for a subsurface hydrocarbon spill. Oil image from AVIRIS image of the Deepwater Horizon spill.
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Moreover, predicting a spill's impact, and thus the best response strategy
(Reed et al., 1999), requires understanding the fate of themany oil com-
ponents with different toxicities. This requires understanding the pro-
cesses affecting slick chemical evolution (Riazi & Al-Enezi, 1999) and
processes affecting its advection, dispersion, and transformation, as
well as the sensitivity of the likely impacted coastal habitats (Jensen
et al., 1990). Despite the significant impact of marine oil spills, many as-
pects remain poorly understood, in part due to difficulties in obtaining
planned release permits, leading to a scarcity of high quality field data.

Oil spill response must address the key question: Howmuch oil has
been released? Secondary, critically important questions are: Where is
the oil? What type of oil was spilled? When (and how) was the oil re-
leased? What types of ecosystems are threatened? Answers are essen-
tial for resource allocation. As oil drifts ever closer to ecologically
sensitive habitats, public concern rises rapidly, particularly if the public
perceives weak organizational capacity and decision making (Albaigés
et al., 2006). Moreover, oil's tendency to spread and volatilize means
some response techniques lose efficacy with time (Nordvik, 1995).

In a typical tanker oil spill, the ship's manifest indicates the type of
oil and maximum potential oil spill volume from the hull and/or fuel
tanks minus consumption during transport. Field observations on
how oil is leaking from the vessel, i.e., which fuel compartments
may be breached, can refine worst case release estimates downward.
Although most tanker oil spills release the oil at once, oil and gas well
blowout spills, like the DWH and Ixtoc I, are far more challenging due
to continuous fresh oil release and the lack of a defined, upper-bound
release estimate. Persistent releases can threaten a more extensive
coastline as currents and winds shift.

Oil type is important because lighter crudes rapidly lose much of
their volume due to evaporation (Fingas, 1996), reducing the volume
requiring mitigation, but presenting a sinking risk (Michel & Galt,
1995), for which few mitigation technologies are available. In addi-
tion, many light, petroleum polycyclic aromatic hydrocarbons are
hazardous to health (Boström et al., 2002), increasing inhalation
health risks to response workers and coastal human populations.

The oil spill location in relationship to ecologically sensitive areas
is important, described by an Environmental Sensitivity Index (Jensen
et al., 1990), which is used for contingency planning and response
decisions. Typical wind and current patterns may place greater risk
for more distant than more proximal areas, with the caveat that
ecological impact depends on the oil's composition when it reaches
fisheries and coastal ecosystems.

1.2.4. Oil slick remote sensing for oil spill response
Airborne and satellite remote sensing can aid oil spill response, yet

face significant challenges. Passive approaches detect naturally occurring
reflected and/or emitted electromagnetic radiation. Active approaches
include light detection and ranging (lidar) and radar. Reviews by
Fingas and Brown (1997, 2002) identifiedmany promising remote sens-
ing technologies and sensors, but generally found limited spill response
applicability beyond simple visual observations that confirm known
spill features. In part this is due to generally inadequate coverage, false
positives, and a lack of quantitative slick mapping capabilities.

Still, satellites can play a role in oil spill response by providing pre-
liminary spill assessment for remote locations and synoptic scale
data. This role was enabled significantly by the International Charter
on Space and Major Disasters Agreement, which requires that all sig-
natory countries' space assets be provided during events such as
major oil spills (www.disasterscharter.org, 2000). Severe limitations
can arise from overpass frequency and timing and clear daytime sky re-
quirements for passive reflective sensors (Fingas & Brown, 1997). Also
of significant concern is the trade-off between coarser spatial resolution
and wide swath sensors, such as MODIS (~1 km pixels), with limited
swath but finer spatial resolution sensors, such as the panchromatic
Quickbird (b1 m pixels). Oil slicks exhibit significant small-scale, i.e.,
sub-pixel, heterogeneity that can lead to slick-estimation biases for

coarse resolution sensors. Alternatively, much of the slick may be
missed during infrequent narrow swath data acquisitions at finer spa-
tial resolutions. Nested data collection can address these competing
needs where the fine-scale sensor provides sub-pixel information for
the synoptic view sensor; however, this requires sensor coordination.

Because oil slicks evolve on daily to hourly time-scales, swath
mapping between subsequent multi-day overpasses can be ineffec-
tive. Generally, the primary satellite contribution is oil identification
from radar or visual imagery prior to the arrival of on-scene investiga-
tors or outside of expected areas, (Topouzelis et al., 2007). However,
frequent false positives limit utility. Consideration of ancillary data
can aid spill identification and classification by experienced analysts
(Ivanov & Zatyagalova, 2008). Neural network approaches can discrim-
inate slick-like features from other dark, non-slick features, providing
guidance on potential oil slicks for further investigation (Topouzelis
et al., 2007). The need for confidence level classification protocols
for radar-based detection has been noted; however, there is a need for
contextual information, including assessment of analysis techniques,
contrast, geographic location, winds and other meteorological data
(Ferraro et al., 2010). These evaluations are critical to satellite utility in
allocating airborne resources or indicating further satellite data analysis.

A practical reality is that acceptance of a new spill response tech-
nology requires that the technology has a proven reliability track
record with well-understood physical mechanism(s), and significantly
improved information relative to accepted approaches. Also critical
are Rapid Response Products, where analyzed data are available in a
readily usable form on the order of tens of minutes to hours after acqui-
sition, allowing timely response decisions. Oil spills are highly dynamic
and information ages rapidly, losing most utility in less than a day.

1.3. Oil slick remote sensing of the DWH

The DWH release's persistence and magnitude with an estimated
upper limit release of 1.3×109L oil and gas–oil equivalent (Joye et
al., 2011) provided a unique opportunity for field application and in-
tegration into the response of new sensor technologies. Moreover, the
slick's vast extent (order 104 km2) precluded traditional approaches
from providing a synoptic spill overview, a critical need that remote
sensing partially addressed.

Airborne human observations met the primary DWH response for
thick oil identification, (Section 2.1.1). These were supplemented by
an expert system using multispectral imaging, which provided maps
of oil thickness classes (Section 2.2.1) and hyperspectral visible to
short wave infrared (SWIR) data, which were analyzed to make quan-
tified thickness maps for the response (Section 2.2.2). The former al-
ready was operational at the beginning of the DWH spill. Limited
airborne spatial and temporal coveragewas extended and supplemented
by satellite passive visible data (Section 2.2.3). Satellite thermal
(Section 2.2.4) and airborne hyperspectral thermal data (Section 2.3.4)
were collected but lacked Rapid Response Products to enable integration
into the response. Airborne multispectral thermal imaging data aided
thick oil identification (Section 2.3.4).

Active approaches include airborne and spaceborne SAR
(Section 3.1.2) with several satellite SAR sensors offering Rapid
Response Products. Post-spill analysis of spaceborne and airborne lidar
data (Section 3.2.3) demonstrated remote sensing of near-surface
submerged oil. Post-spill remote sensing data can support ecosystem
recovery through hyperspectral vegetation maps and airborne SAR
ecosystem oiling maps to monitor impacts (Section 4.1). Hyperspectral
remote sensing and lidar data provided information on in situ burning
and smoke (Sections 4.1.2 and 4.1.3) and demonstrated a remote
sensing capability for monitoring in situ burning, although ancillary
datawere critical to interpretation for these applications. Thermal spec-
trometry provided a measure of air quality information (Section 4.2.2).
Approaches such as laser-induced fluorescence (Section 3.1.3.2), which
applies to thin sheens, saw little DWH application.
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2. Passive remote sensing of oil slicks

2.1. Background: oil slick spectroscopy

2.1.1. Visible appearance of oil slicks
In an oil spill's initial phases, its trajectory, location, and magni-

tude are known poorly with experienced observers and remote sens-
ing instruments unlikely to be on site. Weather and orbital positions
and remoteness may delay satellite observations and the arrival on-
scene of experienced observers. Thus, initial reports often are
conflicting with uncertain accuracy. This is because many common
marine phenomena, including “ice, internal waves, kelp beds, natural
organics, pollen, plankton blooms, cloud shadows, jellyfish, algae,
and guano washing off rocks have all been reported as oil by untrained
observers” (HAZMAT, 1996), as well as wind shadows, weed beds,
and oceanic fronts (Fingas & Brown, 2011). Thin sheens are particularly
susceptible to misidentification, as they appear similar to non-oil bio-
logical slicks. In fact, the sea surface's upper 1 mm is well described as
a gelatinous biofilm (Cunliffe & Murrell, 2009).

To aid in standardizing reporting, the visual appearance of con-
firmed oil slicks with respect to slick thickness is defined by Oil
Slick Thickness Codes (Table 1); Codes 1 to 3 are for oil slick appear-
ances governed by optical effects, with Codes 4 and 5 based on true
color (ASTM, 1996; Bonn Agreement, 2004). The thinnest slicks or
sheens (Code 1) have a silvery-gray appearance due to increased re-
flectance relative to seawater. Rainbow slicks (Code 2) have oil thick-
ness near to, or a few integer multiples of the wavelength of light.
Metallic slicks (Code 3) have oil color but sky reflection is dominant.
Differences between the Bonn and ASTM (American Society of Test
Materials) codes result from not specifying how slick appearance var-
ies with petroleum type, and viewing and solar angles (Lehr, 2010;
Taft et al., 1995)

Slicks thicker than 50 μm (Codes 4 and 5) exhibit the oil's true
color and thus are dominated by absorption, not sky reflectance or
thin film optical processes. Because most oil is in thick slicks, ~90%
according to Hollinger and Mennella (1973), the Thickness Codes
provide little guidance for volume assessment of the thicker oil slick
portions, which are most suitable for mitigation. Unfortunately, slick

Table 1
Oil appearance and thickness.
From Bonn Agreement (2004, 2009).

Code Description/appearance Bonn, layer thickness (μm) ASTM, layer thickness (μm) Bonn, liters per km2

1 Sheen (silvery/gray) 0.04 to 0.30 0.1–0.3 40 to 300
2 Rainbow 0.30 to 5.0 0.3–0.5 300 to 5000
3 Metallic 5.0 to 50 ~3 5000 to 50,000
4 Discontinuous true oil color 50 to 200 >50 50,000 to 200,000
5 Continuous true oil color 200 to >200 200,000 to >200,000

Fig. 2. Sample Deepwater Horizon spill aerial photos on 23 June 2010 of A Sheen and thin slick. B. Fresh surfaced oil in thin slick. C. Distant slick. D. Same as C, but closer, showing
wake bunch-up and sheen coverage asymmetry. E. Dispersant application. F. Possible weak Langmuir slick organization and cloud shadows. Platform (P1) identified in E and F to aid
orientation. Images courtesy of Ben Holt.
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4.2. Oil slick ecosystem impact remote sensing of the DWH

4.2.1. In situ burning and well flaring
In situ burning was used widely (411 burns) during the DWH spill,

consuming 4–5×107L of oil (Lehr et al., 2010). Elevated brightness
temperatures were evident in multiple MODIS scenes during the spill
(Fig. 15A). Warmer areas corresponded with MODIS visible indication
of thick oil where in situ burning would be more likely. However,
increased brightness temperatures stayed close to background bright-
ness temperatures and did not exceed the 37 °C threshold used for
MODIS daytime fire detection (Giglio et al., 2003). Only the pixel con-
taining flaring at the DWHwell site resulted in an obvious fire detection
based on elevated brightness temperature (Fig. 15A), in part because in
situ burning covered a very small fraction of a MODIS pixel.

The finer spatial resolution of airborne remote sensing provides
significant advantages for monitoring in situ burns, although sensor
saturation is much more likely. An extreme example of saturation is
in the 3.4-m AVIRIS data acquired over the DWH well site (Fig. 15B).

Flares cause saturation through much of AVIRIS's spectral range, in
some cases, saturating a majority of AVIRIS NIR bands (Fig. 15C).
Blackbody emission curves were fit to the unsaturated bands of flare
spectra, indicating temperatures potentially in excess of 1700 °C.
Smoke cover was a dominant feature in AVIRIS images acquired over
in situ fires. Smoke absorption greatly reduced emitted fire radiance
at wavelengths shorter than 1200 nm, butminimally attenuated emit-
ted radiance at longer wavelengths. Due to the low reflectance of solar
irradiance by water and smoke, fires were easily detectable using a
ratio of the 2280 and 450 nm bands (Fig. 15E). Fire increases the
2280-nm band radiance (Dennison & Roberts, 2009), thereby
increasing the band ratio above 0.2. A fire temperature retrieval algo-
rithm (Dennison & Matheson, 2011) fit to AVIRIS spectra acquired
over an in situ burn found effective temperatures of up to 1025 °C.

Fires from in situ DWH burns produced smoke plumes (Fig. 16D)
that were characterized by the CALIOP lidar on 10 July 2010. Records
show in situ burning on both 9 and 10 July (Lehr et al., 2010). On 10
July CALIOP recorded an aerosol layer rapidly rising to ~2 km altitude

Fig. 16. A–C. CALIPSO LIDAR, Radarsat 1 SAR, and AVIRIS data for (1854 UTC) 10 July; (2341 UTC) 9 July, 23:41; and (1530 UTC) 9 July, respectively. Size scale on B and C. B. Slick
outlines from SAR image for (0343 UTC) and (1158 UTC) 11 July from ASAR, and CosmoSkyMed2, respectively. D. Wind speed, u, and direction for three meteorology stations, 42040
and 42364 (on B), and Burl1. Time of CALIPSO, and Radarsat1 overpasses and AVIRIS flights indicated (C, S, and A, respectively). E. Normalized, mean SAR return for 18-pixel wide
swath along CALIPSO track, and second order polynomial fit (red) to non-slick pixels (red). F. CALIPSO LIDAR backscatter for 532 nm and 1064 nm, subsurface return, and modeled
sea surface backscatter for the Gulf of Mexico. Data key on panel.
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near the incident site that was consistent with smoke. The aerosol
layer gradually thickened towards land, leading to cloud formation
~10 km north of the shoreline (Fig. 16B).

This CALIPSO satellite overpass was during a period of persistent
calm to light (0–5 m s−1) WSW winds (Fig. 16D) and followed
AVIRIS flights on 9 July (1530 UTC) at the incident site that showed
a strong smoke plume spreading WNW (Fig. 16). Smoke advection
in the 9 July AVIRIS scene was most consistent with ESE winds at
the Burl1 weather station, located at East Pass, Louisiana (28.905°N,
89.43°W). Such light winds generally imply minimal surface slick ad-
vection, explaining the good relationship between a 10 July RadarSat1
SAR image and CALIPSO backscatter (Fig. 16F). SAR images from 11
July showed a similar shaped oil slick outline near the DWH incident
site, shifted ~10–15 km further south (see outlines in Fig. 16B, blue—
ASAR 0343 UTC 11 July, green—CosmosSkyMed2, 1158 UTC, 11 July).

4.2.2. Oil slick trace gases remote sensing of the DWH
The airborne ASPECT sensor suite includes a FTIR spectrometer for

trace gas identification based on MIR and TIR spectral signatures from
high spectral-resolution, along-track data. Using an extensive spectral
library, trace gases with column abundances in the ppm-meter range
can be identified through amultiple linear regression analysis through
a trained filter. ASPECT flies at a low altitude, 1000 m, decreasing the
effect of atmospheric temperature profiles on the signatures.

ASPECT data were obtained during 86 repeat DWH overflights that
included coverage of in situ burns and the spill site (Fig. 7H). TIR data
allowed positive detection of CO2, CO, and methanol while acetalde-
hyde was detected in the MIR (3660 nm). Other pollutants were
below system detection levels. The methanol feature was located per-
sistentlywithin 1.5 kmof thewell site andwas interpreted asmethanol
evaporation from rising fluids from thewell cap.Methanol was injected
into the well cap to reduce hydrate formation; however, significant oil,
gas, and methanol escaped the cap (Kroutil et al., 2011).

4.3. Vegetation and ecosystem impacts remote sensing of the DWH

Extensive AVIRIS data for the DWH spill (Fig. 7A) were collected,
including pre-oil inundation of the entire Gulf coast and are being
analyzed to identify previously stressed ecosystems and derive
dominant species in conjunction with ground reference observations
and to identify oiled vegetation based on its spectral signature
(Kokaly et al., 2010). These data are essential for interpreting post-
oil spill effects and can aid resource allocation and remediation efforts
by directing resources to the more resilient portions of the coastal
ecosystem. Analysis of HICO DWH data (Sonia Gallegos, Naval Re-
search Laboratory, Pers. Comm., 2011) in conjunction with MODIS
and Landsat data will aid in extending AVIRIS ecosystem data.

Radar backscatter from vegetation relates to the physical structure
and dielectric properties of the backscatter media, including canopy
structure. The UAVSAR results for oil-affected wetlands (Fig. 12B) in
Barataria Bay show both a sensitivity to oiled vegetation and the
potential for L-band radar's use in measuring oil on the soil or lower
canopy in areas where the upper canopy is not directly oiled (Jones
et al., 2011; Ramsey et al., 2011). For example, the UAVSAR radar
detected the signature of oiled vegetation on the windward (SE)
side of a Bay Jimmy Island but not on the leeward side (Fig. 12B,
inset), a result consistent with true color images of the area (Jones
et al., 2011). The oil-impacted shoreline exhibited higher cross-
polarization (HV) returns relative to the co-polarized (HH and VV)
returns (green band in Fig. 12B). This oiled shoreline signature was
observed throughout northeastern Barataria Bay (Ramsey et al.,
2011), where DWH oil impacts were among the highest in May and
June 2010. These results show that high resolution UAVSAR data
can complement AVIRIS hyperspectral data to improve detection of
impacted areas earlier and to characterize more fully the impacts.

5. Discussion

5.1. Oil slick remote sensing

In the DWH response, remote sensing aided efforts to address a
key question: How much oil was on the sea surface? AVIRIS demon-
strated a method to estimate quantitatively oil slick thickness, but
could only cover less than a third of the slick at best. Thus, total
slick estimates used MODIS data to scale the AVIRIS-derived oil quan-
tities (Clark et al., 2010). Unfortunately, synergistic AVIRIS and
MODIS data only were available on a few days due to cloud cover,
technical problems, etc. Both MODIS and SSAR data were useful for
response flight planning, particularly for finding oil slick locations
that were poorly predicted and for identifying oil movements
towards coastal ecosystems. However, the limited ability of satellite
data to discriminate thick oil slicks from thin oil sheens prevented
their playing a more direct role.

For the foreseeable future, remote sensing most likely will augment
rather than replace experienced airborne observers for several reasons.
First, each oil spill is unique, preventing easy application of remote sens-
ing without significant human interpretation, and second direct visual
airborne observations can provide insights and opportunistic observa-
tions of the oil spill over a wider range of conditions. Still, remote sens-
ing can address the shortage of experienced observers within the high
operational pace demanded by large-scale oil spills and also reduce ob-
server biases. Approaches such as NIR imaging spectroscopy that re-
quire significant computation face challenges to translation into Rapid
Response Products; however, computer improvements promise im-
proved integration into future robust oil spill response.

5.1.1. Passive airborne oil slick remote sensing
As noted, because an oil slick's visible appearance depends far

more strongly on the oil-to-water emulsion ratio and air content
than to thickness, hyperspectral visible reflectance approaches that
neglect emulsion levels are not robust. Moreover, passive visible ob-
servations are susceptible to false oil detection. In contrast, oil thick-
ness measurements using NIR C\H absorption features were found
robust from 0.1 to 20 mm. Critical to AVIRIS's success was its high sig-
nal to noise ratio and fine (10-nm) spectral resolution; sensors with
poorer performance would make the spectral library approach far
less likely to estimate the correct thickness. Currently, a spectral
library is needed for each oil, i.e., an oil sample is required. Further
study could enable derivation of the “spectral library” from known
or assumed oil properties.

TIR oil detection is far more susceptible to false positives than vis-
ible slick detection, sharing similar problems from sea state depen-
dence, cloud interference, and difficulty in discriminating from
other sea surface features, as well as sea-surface thermal variations
and temperature-profile dependent atmospheric correction. Current
airborne and satellite TIR only provide loose discrimination between
thin slicks and very thin oil sheens (Grierson, 1998). Thus, awaiting
daylight and passive reflective imagery is often more practical. One
advantage of airborne TIR is that clouds above the airplane are far
colder and have lower emissivity and thus, do not interfere with
airborne TIR remote sensing data under cloudy skies.

Although airborne TIR remote sensing has focused on oil identifi-
cation from thermal signatures, hyperspectral TIR data has the poten-
tial to derive quantitative oil slick thickness using an approach similar
to that used for NIR imaging spectroscopic data. Furthermore, lab
spectra suggest that some of these features can discriminate between
oil types (Byfield, 1998). However, as with NIR spectral features,
TIR oil emissivity depends on oil–water emulsions (Salisbury et al.,
1993). Significant work is needed to address complexities from atmo-
spheric corrections, which must consider relevant emissions and
absorptions for the thermal profile.
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Usually, hyperspectral TIR data are analyzed with an in-scene
atmospheric compensation algorithm that uses only the data itself
without recourse to ancillary atmospheric data or models (Young
et al., 2002). Data then are searched for spectral features of interest
using generalized least-squares regression on a spectral covariance
matrix derived from the data.

An alternate TIR approachwith the potential to indicate oil thickness
is Apparent Thermal Inertia, ATI. If the oil and seawater properties (the
latter is sea state dependent) are known, then the sea surface's thermal
lag relates in some predictable manner to oil slick thickness (Asanuma
et al., 1986). However, ATI derivation likely is complicated by the oil
slick's changing properties, including the oil-to-water emulsion ratio,
which affects slick emissivity (Salisbury et al., 1993).

5.1.2. Passive satellite oil slick remote sensing
Current passive satellite approaches suffer from false identifica-

tion, infrequent overpasses, coarse spatial resolution, cloudiness sen-
sitivity, and limited ability to distinguish between biogenic sheens, oil
sheens, and thick oil slicks and that are thousands of times thicker.
Multiple satellites now allow for repeat data on one to several day
time-scales (clouds permitting). However, significant oil advection
can occur during this revisit time, reducing satellite data utility,
given the need for timely resource allocation. Further, analysis ap-
proaches that assume all spectral features are either sea surface or
oil, e.g., Chen and Chang (2010) are incorrect, leading to false positives
and potential resource misallocation and thus, are not useful for spill
response. As a result, satellite data largely plays a support role, guiding
airborne and surface observers.

The success of AVIRIS quantitative oil spill thickness mapping
suggests that the proposed Hyperspectral InfraRed Imager (HyspIRI)
satellite mission could similarly aid oil spill response. HyspIRI is a
Tier 2, NRC earth decadal survey satellite that will provide 60-m
data in 210 channels from 380 to 2500 nm and 8 channels from 4
to 12 μm with 145 and 600-km swaths, respectively, with a planned
3-day revisit utilizing sensor pointing (HyspIRI, 2011).

5.1.3. Active satellite and airborne oil slick remote sensing
The most common active oil spill remote sensing approach is all

weather SSAR. Marine slicks are detectable for wind speeds from
2–3 to 10 m s−1 for incidence angle range from 20° to 45°, with an
optimum wind speed range from 3.5 to 7.0 m s−1 (Garcia-Pineda et
al., 2009). SSAR's numerous false positives are a drawback and it gen-
erally only provides a binary indication of slick extent, providing little
useful response guidance. Such data are of minimal use for improving
oil spill models as they largely represent advection of thin sheen
areas, rather than the thick oil that contains most of the volume
(Hollinger & Mennella, 1973). In a spill response, the primary remote
sensing objective is not to find sheens, but to identify thick oil, particu-
larly as it approaches coastal ecosystems, and also outside the spatial
envelope where oil was believed to exist. SSAR primarily supported
these goals by guiding surveillance flights on multiple cloudy days
when MODIS data were unavailable.

Due to its higher sensitivity than SSAR, the UAVSAR data showed a
relationship to oil slick characteristics such as thickness, emulsifica-
tion, and coverage. The underlying mechanism is Bragg scattering
from a layer with the dielectric properties of a mixture of oil and
water (Minchew et al., 2012). Observed radar backscatter variations
within the slick relate to varying sea-surface dielectric characteristics
due to different oil slick compositions, emulsion levels, and to vari-
able oil modification of the short-wavelength ocean wave field.
UAVSAR data showed that a low noise, fully polarimetric radar instru-
ment can differentiate between different oil slick properties to a
greater level than earlier airborne SAR or SSAR. These results support
controlled studies to separate the effects of thickness, surface cover-
age, and oil properties on the radar backscatter, which could provide
an oil remote sensing tool for cloudy and night conditions.

LIF allows discrimination between oil and non-oil slicks, preventing
false positives, but, in a planned oil release study, LIF underestimated
total oil by factors of 2 to 5 (Lennon et al., 2006). Several factors could
have confounded the analysis including unresolved heterogeneity,
atmospheric corrections, and sea state and upper ocean optics, and
chemical weathering changes. Although, LIF approaches largely are
appropriate to very thin sheens, the majority of the oil lies in the thick
oil slicks. Thus, LIF poorly matched DWH needs.

Airborne bathymetric lidar and spaceborne lidar both demonstrated
an exciting new capability to remote sense near-surface, submerged oil.
Development of an operational lidar technology will provide much
needed field data to understand oil spill processes better related to oil
dispersion and shallow sub-surface oil.

5.2. Applications of quantitative oil slick thickness mapping

Oil remote sensing can improve our understanding of natural
marine hydrocarbon seepage (Washburn et al., 2005), assess vessel
operations and spill inputs, and improve oil spill science (Adamo
et al., 2009). Quantitative oil thickness mapping will allow true mass
transport determination, rather than slick pattern advection or sheen
advection, improving oil spill advection and emulsification models.
Cheng et al. (2010), showed the need for modeling improvements
from repeat SSAR data despite a lack of SSAR thickness information.

5.3. Real world application of remote sensing technology to oil slicks

Clearly the appropriate time for developing new oil spill remote
sensing approaches is not during the response, when the main goal
is mitigating damage. During a response, there is a strong bias to allo-
cate response resources based on proven and widely accepted, i.e.,
defensible, technologies because time is unavailable to evaluate a
technology's accuracy or applicability. The transition to operational
readiness from a lab or field demonstrated technology, much less
from a theoretical technology, is significant. Many steps are required
to validate technology in the appropriate environment, including inte-
gration with critical hardware and analysis software before reaching
operational technology readiness (Ramirez-Marquez & Sauser, 2009).

Technologies with proven and accessible Rapid Response Products,
like MODIS, are far more likely to contribute to spill response. Data
fusion of ancillary data such asmeteorology can be highly helpful; how-
ever, data coordination logistics during a spill are challenging.

Oil spills provide an opportunity to field test new approaches under
real world conditions (Clark et al., 2010), as does the post-spill period
for monitoring technologies (Ud Din et al., 2008). Although oil spills
occur frequently, they are unpredictable and highly challenging for
data collection mobilization, particularly for small oil spills.

Large spills present a more feasible target; however, careful cali-
bration/validation studies may be impossible during oil spills. A key
step in most remote sensing applications is field validation, which
generally requires a planned release. Although large test facilities
can play a role, they cannot recreate many real-world characteristics
of a marine oil spill from a remote sensing perspective. In this regard,
natural marine hydrocarbon seeps provide real world oil slicks for
studying oil slick processes (Leifer et al., 2006) without release
permits.

In the DWH response, field-testing of the NIR approach was ap-
proved because of its prior success with oil slicks in AVIRIS Katrina
data (Swayze et al., 2007), physics-based mechanism, and lab studies.
Furthermore, spatial patterns in the derived oil-thickness maps
(Fig. 9) were consistent with oil slick processes; key to confidence in
the approach. Symmetric oil thickness (e.g., Fig. 8) would have necessi-
tated more detailed validation data, as for the Ocean Imaging system in
the Coal Oil Point seepfield (Svejkovsky et al., 2009). Thus, evaluation of
a remote sensing approachmust demonstrate consistency with oil slick
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processes (Fig. 1) in the marine environment under real world condi-
tions (water vapor, waves, winds, platform vibration, etc.).

Where multiple sensors provided overlapping data, significant
benefit was gained in interpretation, such as AVIRIS and CALIPSO, or
AVIRIS and MODIS. However, other attempted synergistic data collec-
tions, such as UAVSAR and AVIRIS were thwarted by logistics. Thus,
best oil spill response would involve an operational readiness for
multiple sensor integration such that logistical details are not bottle-
necks, of which ASPECT is an example.

Some technologies played a minor role in the DWH spill response
because they lacked a reliable track record, a well-understood under-
lying physical mechanism, a Rapid Response Product, significant con-
tribution beyond other approaches, or largely were mismatched with
primary response needs of thick oil mapping. The extensive DWH re-
mote sensing data should be analyzed to enable improvement of new
and existing remote sensing technologies.

6. Conclusions

New remote sensing technologies and techniques were developed
during the first decade of the 21st century and were used during the
Deepwater Horizon spill. Actively supporting the response were the
MODIS andMERIS visible satellite sensors, and to a lesser extent satellite
SAR. Airborne remote sensing platforms also were important including
multispectral expert systems, hyperspectral airborne sensors, ultrasen-
sitive L-band airborne radar, and airborne thermal infrared spectrome-
ters. Particularly important was the development of the AVIRIS
hyperspectral approach to quantify oil thickness, a previously unobtain-
able achievement with revolutionary potential for oil spill science.

Technology incorporation into oil spill response requires strong
confidence in robustness and reliability. Rapid Response Products,
such as the Ocean Imaging expert system and MODIS satellite data
were critical for the timely response needs to support decision-
making. Promising technologies without a rapid response capability
largely were not useful during the spill, although important data
clearly were collected for post-spill interpretation.

Oil spills present rare field test opportunities for new technologies,
in part, because planned releases are difficult to permit and conse-
quently are rare. The need for increased and long-term oil spill science
research clearly was demonstrated during the Deepwater Horizon
spill—the appropriate time for developing new oil spill remote sensing
technology is not during a spill response. A paradigm shift in oil spill
research is critical to move technologies from the research and theo-
retical levels to operational readiness prior to the next large oil spill.
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