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Despite ongoing efforts, sub-Saharan Africa faces a higher cervical cancer burden
than anywhere else in the world. Besides HPV infection, definitive factors of cervical
cancer are still unclear. Dysbiosis of the cervicovaginal microbiota, particularly involving
sexually transmitted infections, is associated with increased cervical cancer risk. Notably,
HIV infection, which is prevalent in sub-Saharan Africa, greatly increases risk of
cervicovaginal dysbiosis and cervical cancer. To better understand and address cervical
cancer in sub-Saharan Africa, a better understanding of the regional cervicovaginal
microbiome is required. In this study, I establish the relationship between cervical cancer,
HPV, HIV, cervicovaginal infections, and the cervicovaginal microbiome in sub-Saharan

Africa.

To investigate the role of the bacterial microbiome in cervical dysplasia,
cytobrush samples were collected directly from cervical lesions of 144 Tanzanian women
and analyzed using 16s metagenomic sequencing. | found that cervical microbiota varied
significantly depending on HIV infection, HPV infection, and the presence of cervical
lesions. The bacterial family ‘Mycoplasmataceae’ in particular was associated with the

presence of pre-cancerous cervical lesions.

Mycoplasmataceae infection in sub-Saharan Africa is not well understood,

especially when considering the differences between sexually transmitted species. To



establish the prevalence of common Mycoplasmataceae cervical infections and evaluate
their relationship with risk factors for cervical cancer, a cohort of 1160 Tanzanian women
responded to an epidemiological questionnaire and were tested for HIV, HPV, cervical
lesions, Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma spp., and
Lactobacillus iners. | found that Mycoplasmataceae infection was present in 66% of
women tested. In particular, Mycoplasma hominis was associated with HPV and HIVV
infection, and significantly increased in relative abundance among women with pre-

cancerous cervical lesions.

The results of this study suggest that intracellular, inflammatory infections like M.
hominis are prevalent and relate to the development of pre-cancerous cervical lesions.
The prevalence of cervical cancer in sub-Saharan Africa may be partially attributed to the

high prevalence of cervical infections like M. hominis.
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CHAPTER 1

LITERATURE REVIEW

INTRODUCTION

In sub-Saharan Africa, cervical cancer risk is far greater than in developed
countries. Human Papillomavirus (HPV) is a major health concern worldwide,
contributing to an estimated 4.8% of all cancers (Formana et al., 2012). This percentage
drastically increases in less developed regions of the world, with HPV attributing to
14.2% of all cancers in sub-Saharan Africa (Formana et al., 2012). It is well-established
that HPV is the causative agent of cervical cancer (De Vuyst et al., 2013). In 2018,
570,000 women were diagnosed with cervical cancer, and 311,000 deaths were attributed
to cervical cancer (Arbyn et al., 2020). It is estimated 1 in 70 women worldwide will
develop cervical cancer before reaching 79 years of age (De Vuyst et al., 2013;
Fitzmaurice et al., 2015). Cervical cancer disproportionately affects sub-Saharan Africa,
where 9% of the world's female population accounts for 14% of the world's incident
cervical cancer and 18% of cervical cancer related deaths (De Vuyst et al., 2013). This
results in a cervical cancer mortality risk of 2.7%, about 70% higher than the second
highest region: South-Central Asia (De Vuyst et al., 2013). In 2013, cervical cancer was
the most common cause of cancer death in women in 46 of 54 sub-Saharan African
countries (85%) (Fitzmaurice et al., 2015). Only 5 countries outside of sub-Saharan
Africa count cervical cancer as the most common cause of cancer death in women.
Despite current efforts against cervical cancer in sub-Saharan Africa, it is estimated the

number of cervical cancer cases will continue to rise, highlighting the need to bring sub-



Saharan Africa up to modern standards for HPV treatment and prevention, and to

understand the factors contributing to cervical cancer in the region (Williamson, 2015).

sub-Saharan Africa faces many unique issues regarding cervical cancer. Screening
and prevention practices, sociocultural aspects, HPV genotype prevalence, HIV
prevalence, HIV treatment, sexually transmitted infections (STIs), and the composition of
the cervicovaginal microbiome are all important factors, which differ in sub-Saharan
Africa compared to more developed regions. While some of these factors have been
correlated with increased cervical cancer incidence, it is unclear how or if they contribute

to HPV pathogenesis.

Screening is the key to early detection and treatment of cervical cancer and
identifying at-risk populations. Cervical cancer rates in developed countries with
screening and treatment programs, have cervical cancer rates below 10 per 100,000
women. In The USA, coverage of these screening programs within a 48 month period is
94% of women ages 25 to 29 years, decreasing at older ages to 69% at 45 to 49 years and
55% at 60 to 64 years (Cuzick et al., 2014). In countries without screening programs,
cervical cancer rates are significantly higher (Fitzmaurice et al., 2015). In sub-Saharan
Africa, screening methods and their efficiency vary significantly. Because of this,
coverage is difficult to estimate and largely based on speculation. The most common
cervical cancer screening method in sub-Saharan Africa is visual inspection with acetic

acid (VIA) rather than the pap smear, the preferred method in developed countries. VIA



is cost effective, but is known to be less specific since it depends on visual recognition of
lesions, whereas the pap smear identifies abnormalities at the cellular level (Gaffikin et
al., 1999). The major factor contributing to the high incidence of cervical cancer in sub-
Saharan Africa is the lack of reliable cervical cytology screening. Historically,
introduction of population screening programs has reduced cervical cancer incidence by
25-77% (Gustafsson et al., 1997). Establishing better screening programs is a necessary
step toward reducing the burden of cervical cancer in sub-Saharan Africa, however this
alone is not enough to address the issue. Ignoring the contribution of current screening
efforts in sub-Saharan Africa, even the most drastic decrease in cervical cancer after
implementation of population screening seen historically (77%) would not bring cervical
cancer rates as low as those in developed countries with population screening. This
emphasizes the importance of understanding and addressing what other factors in sub-

Saharan Africa are contributing to cervical cancer.

Besides screening, most factors correlated with developing cervical cancer relate
to the cervical immune microenvironment. Recent research into the cervicovaginal
microbiome has uncovered intricate relationships between the bacterial microbiota, HPV,
HIV, and cervical cancer (Godoy-Vitorino et al., 2018; Huang et al., 2018; Klein et al.,
2019). These relationships suggest that certain cervicovaginal microbes, or the
microenvironment created by certain microbes, are cofactors of cervical cancer
progression. HIV is a well-studied factor in sub-Saharan Africa, which influences the
cervical microbiota (Curty et al., 2017). Cervical cancer is classified as an AIDS-defining

cancer due to greatly increased risk among HIV positive individuals with low T cell



count. Despite extensive study of the prevalence and impact of HIV in sub-Saharan
Africa, the exact mechanism by which HIV infection contributes to HPV driven cervical
cancer remains unclear. A better understanding of other correlated factors will help
clarify the mechanisms which drive cervical cancer, and address how to bring sub-
Saharan Africa in line with other regions. STI screening of genital tract infections like
chlamydia and gonorrhea has found they are much more prevalent in sub-Saharan Africa,
while, metagenomic studies of the cervicovaginal microbiome have shown significant
differences between the commensal and non-commensal components of sub-Saharan
African microbiomes when compared with low cervical cancer risk areas. Considering
such infections have been associated with pre-cancerous lesions, it is likely these
differences, in part, account for sub-Saharan Africa’s increased cervical cancer risk

(Onywera et al., 2019).

Defining differences in cervical microbiota by geographic location, HIV status,
and cervical cytology using compiled published data is difficult due to major differences
in cohort makeup, cohort size, sampling and sequencing techniques, and other issues. The
cervical microbiota varies greatly between individuals. Factors such as age, race,
menstrual phase, and lifestyle have all been shown to affect the microbiome. Controlling
for such a large number of factors is difficult, which has hindered the discovery of
definitive microbiota. Furthermore, the microbiota of the cervix has been shown to be
significantly different than that of the vagina, thus studies which sample the
cervicovaginal microbiome do not best represent the microenvironment at the site of

cervical transformation (Koedooder et al., 2019). For these reasons, the results of studies



are considered individually in this review, so that each speaks only for the niche
represented by its cohort. To better understand and address the relationship between
HPV, HIV, cervical microbiota, and increased cervical cancer risk, a better understanding
of the unique sub-Saharan African environment is needed. Here, we discuss current
knowledge in each of these areas, highlighting factors especially prevalent in sub-Saharan

Africa which may drive HPV-dependent cervical cancer.

HPV GENOTYPES

The HPV family includes more than 200 genotypes, over 45 of which are known
to infect the anogenital region. The regional prevalence and oncogenic potential of HPV
genotypes varies significantly. Fifteen anogenital HPVs are classified as high-risk for
development of cervical cancer (Guan et al., 2012). Among these, HPV16 and 18 are the
predominant oncogenic genotypes, causing approximately 70% of cervical cancer cases
globally (Ogembo et al., 2015). The relative oncogenic potential of HPV 16 and 18 has
been shown to be markedly higher than that of other genotypes, followed by 45, 69, 58,
31, 33, 34, 67, 39, 59, 73, and 52 by decreasing oncogenic potential (Bernard et al.,
2013). Of the global HPV burden, 22.5% of HPV infections are estimated to be produced
by HPV-16, however, a significant inverse correlation has been observed between overall
HPV prevalence and the contribution of HPV-16, with the lowest HPV16 proportions in
the regions with the highest HPV prevalence (Bruni et al., 2010). As such, sub-Saharan
Africa has been shown to have the lowest HPV-16 contribution to total HPV infections in
women with normal cervical cytology when compared to other regions, with estimates of

13.7, 11.3, and 11.1% for Southern, Eastern, and Western Africa, respectively (Bruni et



al., 2010). This correlation is even more pronounced in cervical cancer, where HPV16
and 18 are less frequent in sub-Saharan Africa than in the rest of the world (49.4 vs.
62.6%), while HPV18 and HPV 45 are two times more frequent (19.3 vs. 9.4% and 10.3
vs. 5.6%) (Ndiaye et al., 2012). After HPV16 and 18, the most prevalent genital HPV
genotypes vary between sub-Saharan Africa countries. Overall, HPV 52, 35, 58, 33, 31,
45, 53, and 51 are the most prominent non-16/18 genotypes in sub-Saharan Africa
(Formana et al., 2012; Abate et al., 2013; Olesen et al., 2013; Adler et al., 2014; Boumba
et al., 2014, 2015; McDonald et al., 2014; Mihret et al., 2014; Padalko et al., 2015; Pirek
et al., 2015; Van Aardt et al., 2015; Bateman et al., 2015; Lebelo et al., 2015; Okonko
and Ofoedu, 2015). When comparing prevalence with high-income regions, HPV 52, 58,
33, and 45 stand out as especially prevalent in sub-Saharan Africa (Human
Papillomavirus and Related Diseases Report WORLD). Because these HPV genotypes
are only common in sub-Saharan Africa, they have not been as well-researched as
globally prevalent HPVs such as 16 and 18. Potential differences in pathogenesis in such
genotypes may contribute to increased cervical cancer in sub-Saharan Africa, where a

larger percentage of cervical cancer cases are attributed to non-HPV16/18 genotypes.

Accurate detection and identification of HPV genotypes depends upon the
genotyping method used. Most large studies use one of several established genotyping
assays, however more recent studies using sequencing-based identification of HPV
genotypes have found that genotyping assays may only detect as little as 49% of those
able to be detected with sequencing (Ndiaye et al., 2012). The bias introduced by

genotyping assays may downplay the significance of certain HPV genotypes in sub-



Saharan Africa, especially those which have not been well-researched, such as HPV 34,
67, 69, and 73. Additionally, the extensive sequence variation within HPV genotypes,
which has been demonstrated to be especially severe in sub-Saharan Africa, is not
accounted for by genotyping assays as it is in sequenced-based approaches, and may be
of clinical importance. Sequence variation of HPV may also contribute to reduced
efficacy of HPV vaccination in sub-Saharan Africa, while increased genotypic diversity

of HPV almost certainly does.

Concurrent cervical infection with multiple HPV genotypes is common in sub-
Saharan Africa, however it is not clear if this represents a specific mechanism driving
pathogenesis. Data from developed regions suggests multiple infection with HPV
decreases in cervical cancer cases, however studies in sub-Saharan Africa suggest
coinfection is more prevalent in cervical cancer and may exacerbate HPV pathogenesis.
A study of South African women with cervical cancer found that 65% were coinfected
with at least two HPV genotypes (Lebelo et al., 2015). Of the coinfected cervical cancer
cases, 90.4% included HPV 16, suggesting infection with other HPV genotypes may
contribute to HPV16 driven cervical cancer. Similar results were found in a study of
women in the Democratic Republic of Congo (Boumba et al., 2014). Further work has
shown higher HPV16 viral loads in 70.3% of HPV16 coinfected samples (Lebelo et al.,
2015). In a separate study, Cameroonian women with normal cervical cytology and
multiple HPV infections were found to be about 10% more likely to develop cervical
lesions within a year when compared to women infected with a single HPV type (Pirek et
al., 2015). These results suggest a synergistic effect driving HPV replication and cervical

cancer pathogenesis in cases of multiple HPV infection.



In contrast, other publications have suggested HPVV16 may be more sensitive to
attack from other genotypes, and thus may be at higher risk of competition when there is
more immune suppression (Menon et al., 2016). A meta-study examining global HPV
prevalence found that multiple HPV infections were, on average, 6% more common in
women with normal cytology than in those with cervical cancer (Bernard et al., 2013).
Sub-Saharan Africa was the least represented region by studies included in this analysis,
allowing for the possibility that synergistic effects in cases of multiple infection are
primarily found in the genotypes most prevalent in sub-Saharan Africa. Further research
focusing on the long-term oncogenic potential of different combinations of HPV

genotypes, is necessary.

HIV

HIV is the best studied co-factor to cervical cancer and has been strongly linked
to severe HPV pathogenesis. The association between severe HIV pathogenesis and
cervical cancer has classified cervical cancer as an “AIDS-defining cancer.” In addition
to increasing cervical cancer risk, evidence suggests that high HIV prevalence also
contributes to increased prevalence and circulation of HPV (Williamson, 2015).
Similarly, the widespread prevalence of multiple HPV infections has been shown to
contribute to the spread of HIV by increasing susceptibility of HIV acquisition. Multiple
studies have shown that immune response to HPV increases HIV-susceptible cells in both

male and female genital tracts, increasing the opportunity for an initial infection to occur



based on the local immune microenvironment (Averbach et al., 2010; Tobian et al., 2013;
Williamson, 2015). The regional relationship between HIV prevalence and cervical
cancer is shown in Figure 1.1, which demonstrates associations between the two globally,

highlighting the exceptionally high rates seen in sub-Saharan Africa.



10

°
°

CClincidence® HIV Prevalence

>30.2 >17%
206-30.2 06-17%
|| 136206 03-0.6%
| 79-136 <03%

[ ] <29

*rate per 100,000 women
No data :] Not applicable

Figure 1.1 Comparison of cervical cancer incidence and HIV Prevalence by country.
Each country is colored by cervical cancer incidence per 100,000 women, as described in
the bottom left, based on data from GLOBOCAN 2012. Circles within each country's
borders are colored by HIV prevalence, as described in the bottom left, based on data
from UNAIDS (2016). Differences in the size of circles within countries is only for
visibility and does not signify anything meaningful. Countries without HIV prevalence

circles did not have such data available. Map produced by IARC.
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Risk factors and predictors of cervical cancer are also increased in HIV+
individuals. HPV infection, abnormal Pap smears, and high-grade lesions are
significantly more common in HIV+ women (Adler et al., 2014; Salazar et al., 2015). In
addition to the increased rate of productive HPV infection, HIV is associated with a
higher risk of progression from subclinical to clinical HPV disease (Williamson, 2015).
Higher HPV viral loads are associated with increased risk of abnormal cervical cytology,
and are seen among those co-infected with HIV, indicating this may in part be due to an
undefined mechanism by which HIV infection influences HPV viral replication (Depuydt
et al., 2012; Wang et al., 2013; Hanisch et al., 2014; Mbulawa et al., 2014). A likely
factor is a decrease in T-cell surveillance controlling HPV replication with decreasing
CD4+ cell count as a result of more severe HIV infection. Multiple studies have shown
an increase in HPV detection, squamous intraepithelial lesions, and cervical
intraepithelial neoplasia in individuals with AIDS (less than 200 CD4+ cells per pl
serum) (Hanisch et al., 2013; Ezechi et al., 2014; Memiah et al., 2015; Menon et al.,
2016). Identifying which aspects of the local and systemic effects of HIV infection
contribute to progression from chronic HPV infection to cervical cancer is crucial to
understanding the burden of cervical cancer in sub-Saharan Africa. Current knowledge

suggests effects on the cervical immune microenvironment may be key in this process.

In HIV+ populations, there is a shift in prevalence of HPV genotypes, favoring
high-risk HPVs (Ezechi et al., 2014). The reasoning for greater prevalence of certain
HPV genotypes in HIV+ individuals is not currently well-understood. The influence of

HIV may help explain why coinfection of multiple HPV genotypes is associated with
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cervical cancer in sub-Saharan Africa, but not elsewhere. Studies from several sub-
Saharan African countries have identified a greater number of multiple HPV infections
among HIV-positive women (Akarolo-Anthony et al., 2013; Maranga, 2013; Adler et al.,
2014; McDonald et al., 2014; Van Aardt et al., 2015). A study of South African females
with cervical cancer found multiple HPV infections in 8% of HIV- women and 27% of
HIV+ women (Van Aardt et al., 2015). In a study of South African adolescent females,
the prevalence of multiple infections was found to be much higher in both HIV positive
and negative individuals, with 22% percent prevalence in HIV- and 68.6% in HIV+
(Adler et al., 2014). Only 18.8% of all adolescents in this study had an abnormal pap
smear, and none of them were diagnosed with cervical cancer. This supports the idea that
exposure to many HPV types occurs early after sexual debut, with certain genotypes
becoming dominant by the time HPV pathogenesis reaches cervical cancer. Potentially,
infection with “accessory” HPV genotypes contributes to the early pathogenesis of a
primary high-risk HPV either directly or through manipulation of the immune
microenvironment, leading to increased replication and eventual faster or more frequent
development of cervical cancer. These “accessory” HPV infections may then be cleared
by a competent immune response, which may explain why multiple infection decreases in
HIV- cervical cancer cases, but not in HIV+. Based on current evidence, it is yet unclear
whether early multiple HPV infections expedite progression to cervical cancer. A short-
term longitudinal study (16 months) was unable to find any additive or synergistic effect
of multiple infection on development of cervical lesions, noting that increased frequency
of cervical lesions was associated with infection of a single high-risk HPV. Cervical

cancer development occurs over a period of decades however; looking at such a narrow
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time frame means these results may be a consequence of only observing cytological
effects in infections in which a high-risk HPV was already established and progressing
toward cervical cancer, not early interactions which eventually contribute to lesions
(Salazar et al., 2015). Further study focusing on interactions and outcomes in HPV
coinfection, especially among young HIV+ women who have not yet developed cervical

dysplasia, is desirable to clarify this relationship.

When available, treatment for individuals infected by HIV in sub-Saharan Africa
is primarily antiretroviral therapy (ART). Unlike high-income regions, a significant
number of HIV infected sub-Saharan African individuals go without treatment. ART
coverage of HIV infected individuals across sub-Saharan Africa ranges from 9-92%
(UNAIDS, 2019). Studies examining the effects of ART on HPV pathogenesis have had
mixed results. While previous studies suggest ART has no significant effect on HPV
genotype detection, more recent studies suggest modern ART reduces the prevalence of
high-risk HPV's in HIV infected women (Palefsky, 2003; Ezechi et al., 2014; Zeier et al.,
2015). This reduction in high-risk HPV prevalence grows with duration of ART use.
Besides a reduction of HIV, the effects of ART on cervical microbiota are currently
unknown, but may be significant, as several studies have found that ART affects the gut
microbiota. ART does not appear to have a significant effect on cervical lesions and
tumor development, and only minor effects on limiting progression of lesions and
preventing recurrence (Ahdieh-Grant et al., 2004; Paramsothy et al., 2009; Dryden-
Peterson et al., 2015; Memiah et al., 2015). A study of Kenyan women found that the

spread of ART has been accompanied with a decrease in age-specific cancer risk,
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however an increase in the number of HPV cancers, which is attributed to an aging HIV+
population rather than to any effect of ART (Memiah et al., 2015). Compared to the risk
reduction after ART seen in other AIDS-defining cancers like Kaposi's sarcoma and non-
Hodgkin's lymphoma, the risk of cervical cancer is not significantly affected, and
recurrence rates remain high with or without treatment (Foulot et al., 2008; Mungo et al.,
2013; Russomano et al., 2013; Cobucci et al., 2015). This suggests that HPV depends on
immunological status of the host such that ART is only able to indirectly affect HPV
pathogenesis, potentially through an effect on circulatory CD4+ cell count and microbiota

composition.

NON-VIRAL MICROBIOTA

Several studies have proposed that the cervicovaginal microbiota is a co-factor of
the development of cervical lesions (Guijon et al., 1992; Mitra et al., 2016; Kyrgiou et al.,
2017). The precise mechanism, and the microbes responsible have not been identified,
but several common STIs have been associated with cervical cancer individually. Health
of the lower female reproductive tract, and its ability to defend against dysbiosis and
infection, is directly related to the microbiota present. Its defense mechanisms include
antimicrobial peptides, a microbiome dominated by Lactobacilli, and a pH of <4.5. An
imbalance in these defenses can result in physiochemical changes, which produce
histological alterations of the vaginal mucosa and cervical epithelium (Audirac-Chalifour
et al., 2016). Communal differences in the cervical microbiome between sub-Saharan
Africa and developed regions have not been well-established, however the prevalence

and incidence of pathogenic cervicovaginal microbiota is much higher in sub-Saharan
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Africa. Among factors associated with preventing or developing cervical cancer,
cervicovaginal pathogens are second only to HPV vaccine coverage when comparing
differential rates in sub-Saharan Africa and North America (Table 1.1). Nearly all studies
of the cervicovaginal microbiome in sub-Saharan Africa to date have used sequencing of
the ribosomal RNA 16s amplicon, which only includes bacteria. Because of this, little is
known of the virome or other non-bacterial members of the microbiome outside of
targeted screening. Whole genome sequencing (WGS) allows characterization of the
microbiome in its entirety and has been shown to be more accurate at the detection of
bacterial species and diversity than 16s (Ranjan et al., 2016). RNA sequencing (RNASeq)
is another powerful approach to characterize gene expression, which is now being used in
microbiome studies. Large scale metagenomic studies of sub-Saharan African
populations using WGS is needed to more fully characterize the microbiome and address
potential bias introduced by 16s sequencing. These newer methods are likely to improve

our understanding of these complex microbial networks.
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Table 1.1 Comparison of factors which may influence cervical cancer in sub-

Saharan Africa and North America

North America Sub-Saharan Africa % Difference in Fold difference
sub-Saharan Africa

HPV Vaccine Coverage® 35.6% 1.2% 3% 29.7-
Neisseria gonorrhoeae Incidence 250.3 5,500 2,121% 21.2+
HIV Prevalence 0.3% 4.38% 1,460% 14.6+
Smoking Prevalence® 15.67% 2.3% 15% 6.8~
Trichomonas vaginalis Prevalence® 3.1% 20.2% 652% 6.5+
cervical cancer Incidence?® 6.6 35.18 533% 5.3+
Chlamydia trachomatis Incidence 456.1 2160 474% 4.7+
Proportion of Adenccarcinoma cervical cancer 18% 5.5% 30.6% 3.3-
Fertility® 1.9 4.7 247% 2.8+
HPV Prevalence (NILM) 13.8% 22.9% 166% 1.7+
Anti-Retroviral Therapy Coverage 59% 40.2% 68% 1.6-
Bacterial Vaginosis 29.2% 41.4% 142% 1.4+
HPV 16/18 Prevalence in cervical cancer 71.4% 62.8% 88% 1.4-

2Women aged 10-20, full-course.

bin surveyed females 15+

“Women ages 14+.

9Age standardized rate per 100k women per year.
©Children per woman.
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NON-COMMENSAL MICROBIOTA

Chronic inflammation of the cervix is closely associated with developing cervical
cancer (Giraud et al., 1998; Skapinyecz et al., 2003; Ilhan et al., 2019). Cervicitis can
result from several different conditions, which often are attributed to infection with non-
commensal microbes. Pelvic inflammatory disease (PID) in women usually results from
bacterial infection of the cervix ascending to the uterus and oviducts, wherein certain
bacteria express antigens which induce a chronic inflammatory state. The association
observed between PID and cervical cancer is thought to be due to development of a
microbiome rich in inflammation-inducing bacteria at the cervix, causing cervicitis. Not
surprisingly, PID is more prevalent in HIV-infected women than uninfected (Dehon et
al., 2016). The overall prevalence of PID is difficult to define in sub-Saharan Africa,
however diagnosis of PID is more than twice as likely to be attributed to a bacterial
infection when compared to rates in the developed world (Ross, 2008). This suggests that

bacterial infections more often contribute to HPV pathogenesis in sub-Saharan Africa.

Bacterial vaginosis (BV) is a dysbiosis of cervicovaginal bacteria which, like PID,
is associated with cervicitis (Lehtinen et al., 2011; Ogembo et al., 2015). BV alters the
cervicovaginal microenvironment, which may increase cervical dysplasia as a result of
anaerobic infection producing nitrosamines, which cause cervical inflammation (Lazenby
et al., 2014). The microenvironment created by BV has also been identified as a cofactor
in the persistence of HPV infection (Gillet et al., 2011; Clarke et al., 2012; Guo et al.,
2012; Vriend et al., 2015). Several of the causal bacteria of BV are associated with

cervical lesions and/or inflammation. The most common causes of BV are: Gardnerella
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vaginalis, Atopobium vaginae, Mobiluncus curtisii, Mobiluncus mulieris, Megasphaera
type 1, Megasphaera type 2, Sneathia sanguinegens, Mycoplasma hominis, Mycoplasma
genitalium, Ureaplasma urealyticum, Bacteriodes fragilis, and bacterial-vaginosis-
associated-bacteria (BVAB) 1-3 (Signat et al., 2011; Audirac-Chalifour et al., 2016).
Comparative genomic analysis has shown that the shift in microbial diversity as a result
of BV is more pronounced in women infected with HIV, suggesting BV is more severe in
this population and thus more likely to drive HPV pathogenesis (Spear et al., 2008). In
sub-Saharan Africa, BV prevalence is estimated to range from 20 to 50% in reproductive
aged women, making it the most common cause of cervicovaginal dysbiosis. This
prevalence suggests BV, or the cervical microenvironment created by BV, could be a
major contributor to increased malignant HPV pathogenesis in the region, especially
among HIV+ women (Msuya et al., 2002; Lewis, 2011; Swanepoel et al., 2013). Further
study is necessary to determine if general inflammation caused by conditions like BV and
PID is sufficient to promote HPV pathogenesis, or if specific microbes which contribute

to the diseases are responsible.

STls also alter the cervicovaginal microenvironment. Several sexually transmitted
microbes have been associated with cervicitis and persistence of HPV infection (Gillet et
al., 2011; Lehtinen et al., 2011; Clarke et al., 2012; Guo et al., 2012; Ogembo et al.,
2015; Vriend et al., 2015). Among these, Neisseria gonorrhoeae, Chlamydia trachomatis,
Trichomonas vaginalis, and Syphilis are particularly common in sub-Saharan Africa.
Sub-Saharan Africa accounts for a disproportionate 20, 9.9, 31.7, and 32.2% of

worldwide cases of the aforementioned infections respectively, resulting in significantly
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higher incidence than in high-income regions (Table 1.1) (Guijon et al., 1992; Lewis,
2011; Rodriguez-Cerdeira et al., 2012; Swanepoel et al., 2013). This issue is exacerbated
by the large HIV+, immunocompromised population, which is more readily infected.
Screenings of sub-Saharan African women estimate 70-80% of those infected with
discharge-causing infections remain asymptomatic (Sylverken et al., 2016; Barnabas et
al., 2018). This contributes to increased transmission, but also allows infections to persist
for longer before treatment, meaning persistence of a cervical microenvironment
conducive to cervical lesions and HPV persistence. Less screened infectious microbes
such as Mycoplasma spp., Ureaplasma spp., and Leptotrichia amnionii have been shown
to be involved in cervicitis in HIV+ women (Linhares et al., 2000; Dehon et al., 2016;
Mitra et al., 2016). Mycoplasma infection has also been directly associated with pre-
cancerous cervical lesions (Klein et al., 2019). When screening for STIs, Mycoplasma
genitalium is more often included, however Mycoplasma hominis, which is similar to M.
genitalium in pathogenesis, is rarely screened for. Thus, a good estimate of Mycoplasma
prevalence in sub-Saharan Africa is not well-established. In sub-Saharan African cohort
studies which include M. hominis detection, prevalence of M. hominis ranges from 17 to
67.5%, far exceeding M. genitalium (Agbakoba et al., 2007; Redelinghuys et al., 2013;
Kouegnigan Rerambiah et al., 2015a; Sylverken et al., 2016). This is significantly higher
than what has been shown in North America and may be due to the HIV+ population

acting as a reservoir for M. hominis infection (Djigma et al., 2011).
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COMMENSAL MICROBIOTA

The cervicovaginal microbiome has been shown to most often fall into one of
seven general community state types (CSTs) (Salas and Chang, 2014; Mitra et al., 2016).
These CSTs are characterized by the relative abundance of various species of
Lactobacillus and anaerobic bacteria and are separated into healthy and dysbiotic groups.
The healthy CSTs are all Lactobacillus dominated; type 1 is dominated by L. crispatus,
type 2 by L. gasseri, type 3 by L. iners, and type 5 by L. jensenii. Common dysbiotic
CSTs are characterized by an abundance of anaerobic bacteria; type 6 is dominated by
Gardnerella vaginalis, type 4 is characterized by a high abundance of anaerobic bacteria
and low abundance of Lactobacillus species, and type 7 is characterized by high
abundance of both Gardnerella vaginalis and Lactobacillus species. These cervicovaginal
CSTs have been previously associated with significantly different prevalence of infecting
HPV genotypes (Brotman et al., 2014; Mitra et al., 2015; Dareng et al., 2016; Reimers et
al., 2016). L. crispatus dominated microbiomes (type 1) are considered to be the most
protective against HPV and HIV, and have been shown to be significantly less likely to
have HIV, HSV-2, any HPV, or high-risk HPV than other CSTs (Borgdorff et al., 2014).
L. crispatus produces lactic acid, antimicrobial compounds, and inhibits inflammation
(Graver and Wade, 2011; Hickey et al., 2012; Rose et al., 2012; Aldunate et al., 2013;
Petrova et al., 2013). These represent likely mechanisms by which L. crispatus, and
potentially other microbes, are able to influence HPV infection and progression of HPV-
associated diseases. A study of Rawandan women found that women with the L.
crispatus dominated CST had the lowest prevalence of HIV/STIs, with a slight increase

in the L. iners dominated CST, and a significant increase in the dysbiotic CSTs (types 4,
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6, and 7) (Borgdorff et al., 2014). Similar results have been found in studies of Nigerian
and South African women, supporting an association between HPV pathogenesis and
decreased abundance of Lactobacillus spp. (Dareng et al., 2016; Onywera et al., 2019). L.
crispatus is much less abundant in sub-Saharan Africa than in high-income regions
(Jespers et al., 2015a). Instead, L. iners is the most abundant “protective” cervicovaginal
microbe, especially in HIV+ women without dysbiosis. L. iners dominated microbiomes
have been shown to be less protective against cervicovaginal infections, and closer to
dysbiotic CST rates of HPV infection and cervical dysplasia (Norenhag et al., 2020). This
suggests that differences in commensal microbiota in sub-Saharan Africa are also
contributing to the prevalence and transmission of cervicovaginal infection and dysbiosis

in the region.

CONCLUSION

Cervical cancer, a preventable and treatable cancer, remains the cancer with the
highest incidence in women in 27 countries, and the leading cause of cancer death in
women in 45 countries, most of which are in sub-Saharan Africa. Efforts to determine the
most cost-effective strategies to reduce cervical cancer burden through human
papillomavirus vaccination and screening are ongoing and will hopefully lead to a
continued decrease in cervical cancer incidence in the most affected areas of the world.
However, it is expected that the number of women with cervical cancer in sub-Saharan
Africa will increase as more women get access to HIV therapy, increasing the life
expectancy of HIV+ women (Williamson, 2015). There is therefore an urgent need to roll

out better cervical screening programs. To accomplish this, a better understanding of the
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region's unique factors contributing to cervical cancer is necessary to improve
identification and treatment of at-risk individuals before the onset of disease. Current
screening and vaccination in sub-Saharan Africa is sparse, irregular, and does not
consider factors beyond HIV and cervical lesion status. In considering the factors
contributing to sub-Saharan Africa's disproportionate burden of cervical cancer, the
disparity between HPV prevalence, HPV genotype prevalence, and sociocultural factors
in sub-Saharan Africa and high-income regions is much less than the disparity seen in
vaccination and cervicovaginal infection and dysbiosis, suggesting that disruption of the
cervicovaginal microbiome may be the most significant factor and predictor of cervical
cancer in sub-Saharan Africa. Research up to this point suggests that latent, basal layer
infections of HPV's are activated when the host is immunocompromised, leading to
increased HPV replication and development of abnormal cytology. HIV and dysbiosis of
the cervicovaginal microbiome are the most common factors in sub-Saharan Africa able
to activate HPV via effects on the cervical immune microenvironment. ART may help
reduce these effects by restoring immune competence, however it does not return
activated HPVs to full latency. Transition to cervical cancer is associated with a single
HPV genotype becoming dominant, however data suggests coinfection with multiple
HPV genotypes or other cervical pathogens plays an important role early on, potentially
contributing to the early pathogenesis of a primary high-risk HPV either directly or
through manipulation of the immune microenvironment, leading to increased replication
and eventual faster or more frequent development of cervical cancer. This process is
likely mediated by expression of inflammatory and wound healing cytokines such as IL1,

IL6, TNFa, and IFNYy, leading to cell stress and genetic instability, increasing the risk of
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mutation or integration of the episomal HPV genome (Figure 1.2). These infections are
likely cleared by a competent immune response, which may explain why multiple
infection decreases in HIV- cervical cancer cases, but not in HIV+, immunocompromised
individuals. A better understanding of the early events influencing HPV control and
persistence in the genital tract is needed to test this theory. In sub-Saharan Africa
particularly, further research on the impact of HIV on these early events is desirable.
Identification of the microbial risk factors for development of cervical cancer will allow
for improved identification of those at elevated risk, while improving design and

application of primary and secondary preventative treatment and screening.
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Figure 1.2 Model for the cervical microbial and immune microenvironment driving
cervical cancer. Microbial dysbiosis and infection at the cervical epithelium results in
increased local expression of inflammatory and wound healing cytokines (IL1 and IL6).
Chronic expression of these cytokines can result in increased genetic instability and
reduced tumor-suppressor protein function in infected cells. These conditions increase
HPV replication, while also increasing risk of mutation and integration of the HPV
genome. Thus, the cervical microbiota can increase the risk for events necessary in the

transformation of cells by HPV.
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CHAPTER 2

RELATIONSHIP BETWEEN THE CERVICAL MICROBIOME, HIV STATUS,

AND PRECANCEROUS LESIONS

ABSTRACT

Nearly all cervical cancers are causally associated with human papillomavirus
(HPV). The burden of HPV-associated dysplasia in sub-Saharan Africa is influenced by
HIV. To investigate the role of the bacterial microbiome in cervical dysplasia, cytobrush
samples were collected directly from cervical lesions of 144 Tanzanian women. The V4
hypervariable region of the 16S rRNA gene was amplified and deep sequenced. Alpha
diversity metrics (Chaol, PD whole tree, and operational taxonomic unit [OTU]
estimates) displayed significantly higher bacterial richness in HIV-positive patients (P =
0.01) than in HIV-negative patients. In HIV-positive patients, there was higher bacterial
richness in patients with high-grade squamous intraepithelial lesions (HSIL) (P = 0.13)
than those without lesions. The most abundant OTUs associated with high-grade
squamous intraepithelial lesions were Mycoplasmatales, Pseudomonadales, and
Staphylococcus. We suggest that a chronic Mycoplasma infection of the cervix may

contribute to HPV-dependent dysplasia by sustained inflammatory signals.
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IMPORTANCE

HPV is known to be the causal agent in the majority of cervical cancers.
However, the role of the cervical bacterial microbiome in cervical cancer is not clear. To
investigate that possibility, we collected cervical cytobrush samples from 144 Tanzanian
women and performed deep sequencing of bacterial 16S rRNA genes. We found that
HIV-positive patients had greater bacterial richness (P = 0.01) than HIV-negative
patients. We also observed that women with high-grade squamous intraepithelial lesions
(HSIL) had greater cervical bacterial diversity than women with cytologically normal
cervices. Data from our precise sampling of cervical lesions leads us to propose that
Mycoplasma contributes to a cervical microbiome status that promotes HPV-related
cervical lesions. These results suggest a greater influence of the bacterial microbiota on

the outcome of HPV infection than previously thought.

INTRODUCTION

Human papillomavirus (HPV) is the causative agent responsible for 99% of
cervical cancers (Formana et al., 2012). HPV contributes to about 4.8% of all cancers
(Formana et al., 2012). The disease burden of HPV is most dramatic in developing
regions of the world, with HPV contributing to 14.2% of cancers in sub-Saharan Africa
(Formana et al., 2012). Cervical cancer disproportionately affects sub-Saharan Africa,
where 9% of the world’s female population over 15 years old accounts for 14% of the

world’s incidence of cervical cancer and 18% of cervical cancer-related deaths (De Vuyst
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et al., 2013). The current study uses cervical swab samples obtained from Tanzania,

which has among the highest cervical cancer mortality rates by country.

sub-Saharan Africa also has among the highest HIV rates in the world. The
association between HIV and cervical cancer has been better studied than any other factor
associated with HPV-related cancers. HIV infection has been strongly linked to increased
risk of infection with HPV and the severity of HPV pathogenesis (Adler et al., 2014;
Salazar et al., 2015; Williamson, 2015). High-risk HPV genotypes are more prevalent in
HIV-positive (HIV+) women, suggesting that HIV infection provides an environment
where these high-risk HPVs can better establish infection and replicate (McDonald et al.,
2014). A likely factor in this is a decrease in T-cell surveillance, which results in an
increase in HPV replication with decreasing CD4+ cell count, and other changes in the
cervical immune microenvironment as HIV infection progresses. Multiple studies have
shown an increase in HPV detection in cervical intraepithelial neoplasms in individuals
with less than 200 CD4+ cells per ul of serum (Hanisch et al., 2013; Ezechi et al., 2014;
Memiah et al., 2015; Menon et al., 2016). Thus, the cervical immune microenvironment

may be a cofactor in suppression of cervical cancer.

Changes in the cervicovaginal bacterial microbiome have been suggested to
contribute to the development of precancerous cervical lesions (Guijon et al., 1992; Gillet
et al., 2011; Clarke et al., 2012; Guo et al., 2012; Vriend et al., 2015; Mitra et al., 2016;

Kyrgiou et al., 2017). Chronic inflammation of the cervix (cervicitis), which is a result of
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cervicovaginal pathogens, leads to conditions like pelvic inflammatory disease (PID) and
bacterial vaginosis (BV), both of which are associated with persistent HPV infection and
cervical cancer (Giraud et al., 1998; Skapinyecz et al., 2003). Both PID and BV are more
prevalent in sub-Saharan Africa and in HIV-positive populations (Msuya et al., 2002;
Lewis, 2011; Swanepoel et al., 2013). Comparative genomic analyses in women infected
with HIV have shown that a shift in microbial diversity as a result of BV is detectable;
whether this shift directly affects formation of precancerous cervical lesions is not clear
(Spear et al., 2008). Given that cervical cancer rates are expected to rise in sub-Saharan
Africa as the HIV-positive population receives life-extending antiretroviral therapy
(ART), it is even more important to understand the risk factors associated with the
cervical microbiome. There are previous studies that have analyzed how cervical
microbiota differ at different stages of cervical cytology or as a function of HIV status
(Lee et al., 2013; Borgdorff et al., 2014; Oh et al., 2015; Audirac-Chalifour et al., 2016;
Curty et al., 2017). The current study defines bacterial communities associated with
cervical lesions and with HIV, which represents a significant advance. Cervical cytology
is graded by pap smear screening for nuclear abnormalities according to the Bethesda

guidelines.

In this study, we utilized 16S rRNA gene deep sequencing on a set of 144 cervical
swab samples from a cohort of Tanzanian women to gain an understanding of the
differences in the cervical bacterial community composition as a function of cervical
cytology grade and HIV status. The data presented here identify bacterial taxonomies

associated with high-grade cervical lesions. In these studies, cervical lesions were
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sampled directly by cytobrush, instead of cervicovaginal lavage sampling. The rationale
behind this approach was that the sites of the lesions are where tumors form, thus bacteria
associated with lesion sites are more likely to be relevant to the process of disease

progression than those associated with other regions.

RESULTS

Demographics. Of the 144 patient samples, 41 were HIV positive (HIV+) and
103 were HIV negative (HIV—), with an average patient age of 37 years old. Of these 144
samples, 134 had HPV tests and deep sequencing reads of >1,000. The frequencies of
HPV+ and HPV— samples with respect to HIV status are plotted in Figure 2.1A. There
were 8 HIV— HPV— samples and 87 HIV— HPV+ samples, but there were no HIV+
HPV— samples and 39 HIV+ HPV+ samples. Among HIV— samples, HPV had a
statistically significant effect (P = 0.02) on the cervical microbiome (Figure 2.1B and C).
Those microbes which were enriched in HPV+ samples were Bacteriodetes and
fusobacteria. Also, there was a decrease in Actinobacteria. Cervical cytology was
determined to be negative for intraepithelial lesion or malignancy (NILM) in 23 samples,
low-grade squamous intraepithelial lesions (LSIL) in 72 samples, and high-grade
squamous intraepithelial lesions (HSIL) in 50 samples. Visual inspection with acetic acid
(VIA), the standard for cervical lesion detection in Tanzania, was carried out immediately
following sample collection. Twenty-six patients were found to be VIA positive for
cervical lesions and 115 were VIA negative. All VIA-positive samples were identified as
LSIL or HSIL, while several VIA-negative samples were found to be NILM, LSIL, or

HSIL by pap smear. Odds ratios were used to identify risk factors for testing VIA
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positive. Testing HIV+, HSIL, having >5 sexual partners, and having been infected with
a sexually transmitted infection (STI) were identified as significant risk factors for

positive VIA status (P = 0.0001, P = 0.038, P = 0.006, and P = 0.0008, respectively).
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Figure 2.1 Effect of HPV status upon the cervical microbiome diversity. (A) A total

of 134 cohort DNA samples were genotyped for HIV and HPV status. The frequency of

samples were graphed as the following groups: HIV— HPV— (n=38), HIV- HPV+

(n=87), HIV+ HPV— (n=0), and HIV+ HPV+ (n=39). Taxonomic groups were

determined by analysis of 16S deep sequencing results of bacterial DNAs. (B) Alpha

diversity is graphed as a function of HIV— HPV— (n=8) and HIV- HPV+ (n=87). A t

test showed a significant difference between the HPV— and HPV+ groups (P = 0.02). (C)

Bacterial diversity is graphed with each phylum represented as a different color. The

color code representing each bacterial phylum is shown in the legend to the right.
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Cervical bacteria composition and richness. Samples rarefied to an even depth
(1,000 reads) were used to generate 813 operational taxonomic units (OTUS). To assess
whether the sampling depth was adequate, rarefaction curves were generated using
observed OTUs for HIV status and cervical cytology (see Figure S1 in appendix).
Rarefaction curves for both did not converge but showed a diminishing rate of new OTU
identification as the number of reads per sample increased, implying that sampling depth
was adequate for evaluating dominant members of the cervical bacterial community.
Good’s coverage test showed that the sequencing depth was able to characterize 99.4% of

the bacterial community on average.

The taxonomic analysis of the reads revealed the presence of six main phyla
(relative abundance of >1%) in the cervical epithelium, regardless of HIV or cervical
cytology status (Figure 2.2). Firmicutes was the predominant phylum across all sampling
groups, accounting for 41.3% of total reads. The average relative abundance of
Firmicutes decreased slightly in HIV+ samples compared to HIV— samples (44.4% to
40.2%) and varied by cervical cytology, though no obvious trend was apparent. When
considering only the HIV+ samples, the relative abundance of Firmicutes appeared to
decrease in patients with cervical lesions. Firmicutes reads were primarily from the genus
Lactobacillus, which accounted for 21.9% of total reads. Tenericutes accounted for 1.5%
of total reads and showed a clear increase in relative abundance with increasing severity
of cervical lesions. In HIV— patients, Tenericutes increased from 0.3% of reads in NILM
patients to 1.3% in HSIL patients (Figure 2.2C). In HIV+ patients, the shift is larger; the

relative abundance of Tenericutes increased from 0.2% in NILM patients to 5.0% in
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HSIL patients (Figure 2.2D). Tenericutes reads were primarily assigned to the
Mycoplasma and Ureaplasma genera, which account for 1.1% and 0.2% of total reads,
respectively. Proteobacteria, fusobacteria, Bacteroidetes, and Actinobacteria had smaller
or less consistent shifts in relative abundance between HIV and cervical cytology
categories. The relative abundance of Tenericutes and Bacteroidetes were significantly
different between HIV+ and HIV— groups (P = 0.020 and P = 0.017, respectively). No
other phyla reached significance on the basis of HIV status or cervical cytology.
Comparison of the relative abundance of bacterial families (Figure 2.3) found that
Mycoplasmataceae and Prevotellaceae were significantly more abundant in HIV+
patients (P = 0.03 and P = 0.07, respectively). No families were found to be significantly
different in abundance on the basis of cervical cytology alone. However, when analyzed
among HIV+ patients, Prevotellaceae was found to be significantly more abundant in

cervical lesions (P = 0.068).
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Figure 2.2 Phylum-level taxonomy of the cervical bacterial community composition
as a function of HIV status and cervical cytology. (A) Phylum-level bacterial
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of HIV-negative patients as a function of cervical cytology grade. (D) Phylum-level
taxonomy of HIV-positive patients as a function of cervical cytology grade. Each phylum
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Figure 2.3 Relative abundance heatmap of family-level taxonomy of the cervical

bacterial community composition as a function of HIV status and cervical cytology.

(A) Fold effect of HIV+ on the family-level bacterial taxonomy within the cohort

(normalized to 1). (B) Relative abundance heatmap of the family-level taxonomy of

cohort versus cervical cytology. (C) Relative abundance heatmap of the family-level

taxonomy of the cohort by cervical cytology, separated by HIV status. The data are

presented as percentages of the total. The scale is shown to the right of the heatmap.
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Cervical bacterial diversity estimates. Alpha diversity metrics, Chaol, observed
OTUs, and PD Whole Tree, displayed higher (P = 0.009) bacterial richness in HIV+
patients than in HIV— patients (Figure 2.4). A subset of these samples was matched such
that the HIV— and HIV+ groups consisted of the same number of samples, with the same
average age, and the same contribution of each cervical cytology to help to control for
effects of these confounding variables and to ensure that differences in diversity estimates
are not due to differences in sample size. In this matched subset, estimates also displayed

higher (P = 0.003) bacterial richness in HIV+ patients.
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a Diversity among HIV+

Figure 2.4 Alpha diversity measurements of cohort subgroups. (A) Relationship

between HIV status and alpha diversity of cervical bacteria. (B) Relationship between

cervical cytology and bacterial alpha diversity in HIV— individuals. (C) Relative

abundance of genus-level reads differentiated by cervical cytology in HIV+ and HIV—

individuals. Statistical significance is indicated as follows: ns, not significant; *, P < 0.1;

** P <0.05; *** P < 0.01. (D) Relative bacterial diversity of cervical microbiota

graphed as a function of HIV status. Each color represents a different taxonomic family

as defined by deep sequencing of the 16S gene.
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Alpha diversity metrics were similar (P > 0.50) for the samples from patients at
different cervical cytology grades (NILM, LSIL, or HSIL) in both matched and
unmatched sets. When alpha diversity metrics were compared between cervical cytology
groups separately for HIV+ samples, LSIL and HSIL trended toward a higher diversity
compared to NILM (P = 0.198 and P = 0.261, respectively). Analysis of age-matched,
HIV+ NILM/HSIL pairs maintained this trend (P = 0.264; Chaol P = 0.13). Comparison
of the relative abundance of genus-level reads between these groups showed a noticeably
more diverse profile for HSIL samples, which lack the dominance of Lactobacillus and

Haemophilus seen in NILM samples.

Beta diversity analysis showed that bacterial communities were quite varied
between samples (Figure 2.5); no discrete communities characterized a large number of
samples. On average, the cervical bacterial communities of HIVV-positive patients were
shown to be significantly different from the communities of HIV-negative patients (P =
0.001). Similarly, patients who tested positive for HPV tended to have different bacterial
communities from those who tested negative for HPV (P = 0.008). Bacterial communities
were also shown to differ significantly depending on cervical cytology among HIV-

positive patients (P = 0.05).
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Figure 2.5 Heatmap of the Bray-Curtis distances between each sample (beta
diversity). Samples are grouped into a similarity tree based on the abundance of each
OTU. Lower values (red) indicate more similarity. HIV status and cervical cytology of
each sample are indicated by color beneath each column and beside each row (HIV+

[red], HIV— [blue], NILM [green], LSIL [yellow], HSIL [orange]).
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Bacteria associated with cervical cytology states and/or HIV status. Linear
discriminant analysis effect size (LEfSe) was used to identify bacterial taxonomies which
differentiate cervical microbiota in normal individuals (NILM) from microbiota in
patients with precancerous lesions (HSIL). The sum of reads at each taxonomic rank was
considered. Gammaproteobacteria, s24_7, Paraprevotellaceae (nonverified taxonomy),
and Finegoldia associated with NILM cervices, while Pseudomoriadaceae,
Staphylococcus, and Mycoplasmatales associated with precancerous lesions.
Mycoplasmatales were dominant among Tenericutes, resulting in the significant
association seen between the phylum and cervical lesions. A distance-based redundancy
analysis (db-RDA) analysis of bacterial communities as a function of HIV and/or cervical
cytology is summarized in Figure S2. LEfSe was then used to compare HIVV+, age-
matched pairs of NILM and HSIL patients to determine which bacteria may influence the
development of lesions in high-risk, HIVV+ populations. Mycoplasmatales were most
strongly associated with cervical lesions in HIV+ patients, followed by Parvimonas and
Streptococcus. In NILM patients, an abundance of Lactobacillus, especially
Lactobacillus iners was found, and somewhat less significantly Finegoldia. LEfSe
analysis of samples by HIV found several bacteria to be associated with being HIV+
(Figure 2.6C). An abundance of non-Lactobacillus bacilli was the most significant
differentiating taxonomy between HIV-positive and -negative samples. Mycoplasma was
also associated with HIV+ individuals, supporting the significant difference in relative
abundance between HIV-positive and -negative groups shown previously using a direct
Kruskal-Wallis comparison. Interestingly, Ureaplasma (a member of Mycoplasmatales)

and Lactobacillus reuteri were associated with HIV— patients, while other members of
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their respective families were associated with HIV+ patients. This suggests the existence
of metabolic niches in the cervical microbiome which may be populated by pathogenic or

nonpathogenic bacteria.
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Figure 2.6 LEfSe linear discriminant analysis (LDA) scores. Microbes associated with
cervical cytology status and/or HIV status are displayed. (A) Taxonomies differentiating
bacterial microbiota in cytologically normal versus HSIL cervices. (B) Taxonomies
differentiating bacterial microbiota in cytologically normal versus HSIL cervices in age-
matched HIV+ patients. (C) Taxonomies differentiating bacterial microbiota in HIV—

versus HIV+ cervices.
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DISCUSSION

We found that HPV was in high abundance in the cohort (Figure 2.1A). All of the
patients who were HIV positive were positive for one or more HPVs (Figure 2.1A).
Among the HIV— samples, HPV was associated with at least a 10-fold increase in
Bacteriodetes and fusobacteria as well as a decrease in Actinobacteria (Figure 2.1B and
C). Previous studies support the conclusion that HPV affects the microbiome (Lee et al.,

2013).

Certain members of the cervicovaginal microbiome are known to protect against
infection and pathogenesis. The primary defense mechanisms of the cervicovaginal
mucosa are antimicrobial peptides, a pH of less than 4.5, and a microbiome dominated by
lactobacilli. An imbalance in these defenses can result in physiochemical changes that
produce alterations of the vaginal mucosa and cervical epithelium (Audirac-Chalifour et
al., 2016). In particular, an abundance of Lactobacillus crispatus shows an inverse
relationship with detectable or symptomatic HIV, HPV, or herpesvirus infection
(Borgdorff et al., 2014). This suggests that other cervicovaginal microbes may be
important in preventing or enhancing the acquisition and pathogenesis of such infections.
Microbes that are associated with enhanced pathogenesis have largely gone unidentified
or unstudied, especially in the population most at risk, HIV-positive women in sub-

Saharan Africa.
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In this study, HIV was shown to have a significant effect on the cervical
microbiome, increasing bacterial richness and decreasing beta diversity. These results are
similar to what has been reported for the cervicovaginal microbiome and suggest that
changes in the cervical epithelium microenvironment brought on by HIV exert some
selective pressure on cervical bacterial communities (Lee et al., 2013; Borgdorff et al.,
2014; Oh et al., 2015; Audirac-Chalifour et al., 2016; Curty et al., 2017). Mycoplasma
was significantly more abundant in HIV-positive patients and was found to be one of the
main categories of bacteria that differentiate the cervical microbiota of HIV-positive and
HIV-negative individuals (Figure 2.3). Interestingly, bacteria of the order Bacilli, of
which Lactobacillus is a member, were strongly associated with HIVV-positive patients.
The absence of Bacilli reads classified as Lactobacillus among the significant factors of
HIV-positive cervical microbiota suggests that this may be due to a shift from protective
to nonprotective Bacilli in HIV+ individuals. When the cohort was analyzed without
taking HIV status into account, cervical cytology did not appear to have a statistically
significant association with differences in the cervical microbiome (Figure 2.4B).
However, when HIV was controlled for by separating analysis by groups of HIVV-positive
or HIV-negative patients only, differences in cervical bacterial communities that varied
on the basis of cervical lesion status began to reach statistical significance (Figure 2.4C).
This suggests that development of precancerous cervical lesions is associated with a
certain microbiota. Among these microbiota, Mycoplasmatales stood out as the most
significant differentiator between the cervical microbiota of a cervix with precancerous
lesions from a cervix without precancerous lesions (Figure 2.6). Bacteria belonging to the

order Mycoplasmatales also showed the clearest linear increase in abundance with
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development of more severe lesions in both HIV-positive and HIV-negative populations.
The most common Mycoplasmatales to infect the urogenital tract of women are
Mycoplasma genitalium and Mycoplasma hominis. M. genitalium and M. hominis are
noncommensal bacteria commonly associated with cervicitis, BV, PID, and HIV
infection, though M. genitalium has been much better studied (Irwin et al., 2000;
Mavedzenge and Weiss, 2009; Soni et al., 2010). It is not well understood whether HIV
promotes Mycoplasma infection or persistence of an otherwise transient infection in an
HIV-negative individual. One study found that HIV-positive women cleared M.
genitalium infections more slowly than HIV-negative women did, and the infection
recurred in 39% of the patients after clearance (Vandepitte et al., 2013). The role of M.
genitalium infection in influencing initial infection of HIV also remains unclear;
however, a strong association between the severity of M. genitalium infection and HIV
shedding from the cervix has been shown (Manhart et al., 2008). What is clear is that M.
genitalium infects the epithelia, disrupting tight junctions, and inducing a chronic
inflammatory response. The potential for M. genitalium to influence replication of HIV
suggests that host innate responses to M. genitalium infection may influence pathogenesis
of other sexually transmitted infections. Induction of HPV in this way is particularly
interesting based on the association between Mycoplasma and cervical lesions. Infection
with M. genitalium increases the rate of infection with an HPV genotype associated with
a high risk of developing cervical cancer (Ye et al., 2018). Recent work has shown that
Mycoplasma also increases the risk of development of cervical lesions, supporting the
association we report in this study (Ye et al., 2018). Mycoplasma can establish persistent,

intracellular infections in epithelial cells, which may lead to bacterial vaginosis and/or
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cervicitis. M. genitalium has been established as an independent, causal microbe
responsible for cervicitis (Taylor-Robinson and Jensen, 2011). This suggests that
Mycoplasma may act as both an intracellular and extracellular stressor, particularly if
coinfection with HPV has taken place. This interaction would most likely involve
inflammatory cytokines induced by Mycoplasma infection. Further study is needed to
determine whether the inflammatory cytokines induced by Mycoplasma infection include

cytokines that are associated with precancerous cervical lesions.

Mycoplasma is a low-abundance microbe that has been shown to cause cervicitis.
However, the lack of significant associations in previous metagenomic studies is largely
due to a lack of optimization of statistical analyses for the presence of low-abundance
microbes. In our study, Mycoplasma was a prominent result, likely due to the large HIV-
positive proportion of the cohort, wherein immunosuppression allowed higher abundance
of the bacteria to accumulate. There was a linear increase in the abundance of

Mycoplasmatales from NILM to HSIL seen in both HIV-positive and -negative groups.

In this study, we took great effort to control for variation in the cervical
microbiome so as to reduce confounding effects that might obscure the bacterial
communities that were associated with HPV pathogenesis. The HIV-positive population
is of particular interest, since they appear to show changed cervical microbiota associated
with HPV pathogenesis (Fig. 2.2, 2.3, 2.4, and 2.6). Future studies, recruiting a cohort of

all HIV-positive women with and without cervical lesions would be desirable in order to
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better characterize HIV-associated microbiota which promote HPV infection and
progression to cervical cancer. Currently, few cervical microbiome cohort studies have
been conducted in HIV-positive populations. It is clear that variables such as diet, genetic
background, antibiotics or ART, can dramatically affect the microbiota and thus should

be carefully controlled at the point of recruitment to the study.

Longitudinal studies of the cervical microbiome are needed to understand how microbe
populations change over time, particularly in individuals with HSIL. Long-term
longitudinal studies will allow determination of early changes in the cervical microbiota
that may help predict the development of precancerous lesions. Because progression of
HPV infection to cervical cancer is a process that takes decades, and in many individuals
never reaches cancer at all, such a study would need to be large. Studies of the cervical
microbiome can be further improved using metagenomic sequencing, rather than 16S or
other targeted sequencing techniques that lack depth. 16S amplification ignores microbes
that lack a gene to match the primers, for example, viruses, archaea, and eukaryotes are
not accounted for. Because only a portion of one gene is being sequenced, the microbes
present may be estimated only to the genus level or to a higher taxonomic level. Since the
majority of medium- or large-scale cervicovaginal microbiome studies have used this
method, the role of nonbacterial components of cervicovaginal microbiome in HPV

infection and disease has not been characterized.
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As the world’s HIV-positive population grows, cervical cancer is expected to
become an even more significant problem, despite increasing coverage of antiretroviral
treatment (ART). Compared to the risk reduction after ART seen in other AIDS-defining
cancers like Kaposi’s sarcoma and non-Hodgkin’s lymphoma, the risk of cervical cancer
is not significantly affected, and recurrence rates remain high with or without treatment
(Foulot et al., 2008; Mungo et al., 2013; Russomano et al., 2013; Cobucci et al., 2015).
Understanding microbes that influence this environment will help identify cervical
microbiota associated with low- and high-grade cervical lesions. This may allow certain
cervical microbiota to be used as diagnostic markers for those at high risk of developing
cervical cancer and for the development of preventative probiotic or antibiotic treatments
that could control the cervical microbiome by promoting bacterial colonization with a
microbiota associated with healthy cervical cytology. Our studies have identified a
unique microbiota associated with HSIL. Data derived from our precise sampling of
cervical lesions lead us to propose that Mycoplasma contributes to a cervical microbiome
status that promotes HPV-related cervical lesions. These results suggest a greater
influence of the bacterial microbiota on the outcome of HPV infection than previously

thought.

MATERIALS AND METHODS

Participants and ethical precautions. This study reports findings derived from a
larger cross-sectional cohort study analyzing demographics of HPV and cervical cancer

in HIV-positive and -negative women from rural and urban Tanzania.
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The cervical microbiome study participants were part of a larger ongoing study to
follow HIV- and HPV-associated cervical dysplasia in women at Ocean Road Cancer
Institute (ORCI), the only cancer treatment hospital in Tanzania. Between March 2015
and February 2016, female patients undergoing cervical cancer screening were
approached for enrollment in the study. Those who were pregnant, menstruating, under
18, reported being sick in the past 30 days, or had a preexisting, non-HIV, immunologic
defect were excluded from the study. Disease histories as well as physical examinations
were carried out to rule out any clinical symptoms or visible signs for these conditions.
Samples were collected at three sites in Tanzania: ORCI in Dar es Salaam and rural
clinics in Chalinze and Bagamoyo. A total of 144 cervical cytobrush samples obtained
from these women were sequenced, of which 134 samples produced at least 1,000 reads
and complete demographic data was available for the women. Of these, 132 had complete

HIV data and cervical cytology reads.

Demographic data collection. All study participants gave informed consent and
were evaluated by study clinicians. A set of pretested, standardized questionnaires was
used to gather demographic data. All personal identifiers were removed from samples to
ensure patient confidentiality. With the permission of the patients, medical history was
retrospectively retrieved from hospital medical records. More than 30 variables were
identified and assessed in the questionnaire. The current study uses only data collected
regarding age and laboratory test results (pap smears, visual inspection with acetic acid

[VIA], CD4 count, genotyping of HPV, results of serological testing for HIV-1).
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Specimen collection, HIV, CD4, and pap tests. Blood samples were collected
via venipuncture into acid-citrate-dextrose tubes and processed using centrifugation at the
on-site study laboratory within 6 h of being drawn. The separated plasma was tested at
the ORCI, as part of standard of care, using Standard Diagnostics HIV-1/2 3.0 detection
kit and BD products CD4 FITC, CD8 PE, and CD3 Per CP antibodies to test the CD4
counts using a BD Accuri C6 Plus. Cervical cytobrush samples and pap smears were
collected from all patients. Pap smears were examined by at least three trained cytologists
and classified according to the pap classification protocol: negative for intraepithelial
lesion or malignancy (NILM); atypical squamous cells of undetermined significance
(ASC-US); low-grade squamous intraepithelial lesions (LSIL); atypical squamous cells
but cannot exclude high-grade lesions (ASC-H); high-grade squamous intraepithelial
lesions (HSIL). Cervical cytobrush specimens were placed in lysis buffer and then
shipped to the Nebraska Center for Virology at the University of Nebraska-Lincoln

(UNL) for processing.

DNA isolation, 16S rRNA library preparation, and sequencing of the V4
region. Cervical cytobrush samples were vortexed and separated from the brush with
lysis buffer. DNA was extracted from the lysis buffer using the Qiagen Tissue extraction
kit (Dneasy) according to the manufacturer’s protocol. The DNA concentration was

determined by UV spectrophotometer at 260/280 nM.
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DNA was then used for tag sequencing of the V4 hypervariable region of the 16S
rRNA gene. A 250-bp section of the V4 region was amplified using universal primers
described in (Kozich et al., 2013). The PCRs were performed in 25 pl. The cycling
conditions were as follows: an initial denaturation of 98°C for 3 min, followed by 25
cycles, with 1 cycle consisting of denaturation at 98°C for 30 s, annealing at 55°C for
30 s, and extension at 68°C for 45 s, and then a final elongation of 68°C for 4 min.
Following amplification, PCR products were analyzed on a 2% agarose gel to confirm
correct product size. Normalized amplicons (1 to 2 ng/ul) from 144 samples were pooled
together using an epMotion M5073 liquid handler (Eppendorf AG, Hamburg, Germany).
Pooled libraries were sequenced using the Illumina MiSeq platform using the dual-index

sequencing strategy outlined by (Kozich et al., 2013).

HPV genotyping. To determine HPV status, DNA samples were subjected to
HPV redundant primer using the GP5+/GP6+ primer set, which detect up to 40 different
mucosal HPVs (Clifford et al., 2005; Ng’andwe et al., 2007; Chisanga et al., 2015).
Samples found to be HPV positive were genotyped for HR-HPVs (types 16, 18, 30, 31,
33, 35, 39, 45, 51, 52, 56, 58, 59, and 66) and LR-HPVs (types 6 and 11) using a low-cost

multiplex PCR assay (Samwel et al., 2019).

Data processing and bacterial community analysis. The sequencing data
obtained from the sequencer was subsequently analyzed using the Illumina MiSeq data

analysis pipeline developed by the Fernando lab (described in detail at
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https://github.com/FernandoLab). Briefly, initial quality filtering was carried out to
remove sequences that had ambiguous bases, incorrect lengths, and inaccurate
assemblies. Subsequently, the quality-filtered reads were run through the UPARSE
pipeline (http://www.drive5.com/uparse/) and subjected to chimera filtering and OTU
clustering (at a similarity threshold of 97%), followed by the generation of an OTU table.
Taxonomy was assigned to the OTUs using the assign_taxonomy.py command available

in QIIME using the latest version of the Greengenes database (May 2013).

Statistical analyses. The OTU table was rarefied across samples to the lowest
sample depth (1,000 reads) using QIIME based on the Mersenne Twister pseudorandom
number generator. All statistical analyses were performed with samples at an even depth.
Bar charts summarizing average taxonomic makeup of samples by HIV status and
cervical cytology were constructed from the rarefied OTU table in QIIME. Heatmaps
showing the relative abundance of bacterial taxonomic families were constructed using
the “plot_ts heatmap” command using the mctoolsR package for R. Differences in
bacterial families by HIV status or cervical cytology were evaluated using the
“taxa_summary by sample type” command in mctoolsR using Kruskal-Wallis. Families
with less than 1% abundance were excluded in this analysis. Alpha diversity estimators
Chaol, observed OTUs, and PD whole tree and rarefaction curves were calculated for the
overall bacterial community using QIIME. Good’s coverage test was performed to
evaluate whether adequate sampling depth was achieved. Mean alpha diversity estimates
for HIV-positive, HIV-negative, NILM, LSIL, and HSIL groups were compared using

nonparametric two-sample t tests using Monte Carlo permutations in QIIME. The
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weighted and unweighted UniFrac distance matrix for bacterial communities were
calculated using QIIME. Even depth across samples avoided biases that could be
encountered when using the UniFrac metric (Lozupone et al., 2011). Bacterial
community composition differences were evaluated using the unweighted UniFrac
distance matrix as an input for a distance-based redundancy analysis (db-RDA) in
QIIME, where HIV status, cervical cytology, and HPV status were used as main effects.
A heatmap was generated using the heatmap.2 command in the “ggplots” package for
“R” using the Bray-Curtis distance matrix to visualize relationships between samples.
Significance was declared at P <0.1 throughout this study. The linear discriminant
analysis effect size (LEfSe) was used to identify specific OTUs that differed HIV status
and cervical cytology (Segata et al., 2011). LEfSe uses a nonparametric factorial Kruskal-
Wallis rank sum test followed by a linear discriminant analysis to identify both
statistically significant and biologically relevant features. The relative abundances of the
OTUs were used as input for LEfSe. Demographic data were examined using odds ratio
and an associated P value to test for factors associated with HIV status and/or a positive

VIA status. All P values are reported as FDR-corrected P values.

Ethics statement. All human subject protocols were approved by safety
committees at the Ocean Road Cancer Institute (ORCI) and UNL in accordance with the
Helsinki Declaration. Participation by patients was entirely voluntary, and written patient

consent was required for inclusion in the study.



54

CHAPTER 3

MYCOPLASMA CO-INFECTION IS ASSOCIATED WITH CERVICAL

CANCER RISK

ABSTRACT

Tanzania faces one of the highest cervical cancer burdens in the world. Recent
work has suggested that the bacterial family Mycoplasmataceae is associated with higher
levels of HPV, HIV, and pre-cancerous cervical lesions. Mycoplasmataceae infection in
Tanzania is not well understood, especially when considering the differences between
sexually transmitted species. To establish the prevalence of common Mycoplasmataceae
cervical infections and evaluate their relationship with risk factors for cervical cancer,
1160 Tanzanian women responded to an epidemiological questionnaire and were tested
for HIV, HPV, cervical lesions, Mycoplasma genitalium, Mycoplasma hominis,
Ureaplasma spp., and Lactobacillus iners. A subset of 134 women were used for 16s
metagenomic sequencing of cervical DNA to establish the relative abundance of
Mycoplasmataceae and Lactobacillus present. PCR detection of bacteria at the cervix
found Ureaplasma spp. in 51.4% of women, M. hominis in 34%, M. genitalium in 2.3%,
and L. iners in 75.6%. M. hominis and M. genitalium infection were significantly more
prevalent among women with HPV and HIV. M. hominis prevalence was similar despite
severity of cervical lesions, however abundance of M. hominis increased significantly in
women with cervical lesions. These results emphasize the importance of understanding

the relationship between M. hominis and HPV-related cervical pathogenesis.
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INTRODUCTION

Cervical cancer mortality is higher in Eastern Africa than in any other region of
the world (Formana et al., 2012). In Tanzania, cervical cancer is the most prevalent
cancer in females (Human Papillomavirus and Related Diseases Report WORLD).
Tanzania faces many issues which contribute to the burden of cervical cancer, including
high HPV prevalence, high HIV prevalence, low condom use, irregular preventative
screening, and lack of full implementation of the pap smear. In Europe and the U.S.
preventative screening for cervical cancer is usually done by HPV testing or checking for
lesions in the cervical epithelium via a pap smear. In Tanzania however, cervical
screening is mainly visual inspection with acetic acid (VIA), which is markedly less
sensitive for early detection of cervical lesions than the pap smear and does not grade
lesions by severity. Cervical lesions detected during screening are usually associated with
HPV infection, however recent studies have proposed that the cervical microbiome may
be an important co-factor for the development of pre-cancerous and cancerous lesions
(Mitra et al., 2016). Currently, it is not understood how, or which cervical microbiota
contribute to cervical lesions, though in a previous study we found that the bacterial
family Mycoplasmataceae was the most significant differential cervical bacteria between
women with normal cervical cytology and those with pre-cancerous lesions in Tanzania
(Klein et al., 2019). Mycoplasmataceae are the smallest known bacteria, in both physical,
and genomic size. During infection of the cervicovaginal epithelium, Mycoplasmataceae
establish a persistent, intracellular infection which can lead to inflammatory cytokine
mediated tissue injury. Although it is currently unknown if there is a mechanistic

relationship between HPV and Mycoplasmataceae, the nature of Mycoplasma infection
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allows for direct interaction with HPV during co-infection of a single cell, and indirect

interaction through cytokine responses.

Mycoplasmataceae is comprised of the genera Mycoplasma and Ureaplasma,
which include several sexually transmitted species with global prevalence. Most notably,
M. hominis, M. genitalium, and U. urealyticum are relatively common sexually
transmitted infections (STIs) associated with cervical inflammation (Byers et al., 2009;
Dehon et al., 2016; Onywera et al., 2019). Among Mycoplasma, only M. genitalium is
sometimes included in regular STI screening, although M. hominis is believed to have
similar pathogenesis. As a result, M. hominis has received significantly less study, and its
relationship with HPV, HIV, and cervical lesions remains unclear. The prevalence of M.
genitalium, M. hominis, and U. urealyticum in Tanzania has not previously been
established in a large and diverse cohort, nor has it been considered alongside established

risk factors for cervical dysplasia.

It has been suggested that high levels of cervicovaginal dysbiosis and
transmission of Mycoplasma and other STIs in Eastern Africa is in part due to the
commensal cervicovaginal bacteria in the region. Specifically, L. iners is the most
prevalent cervicovaginal Lactobacillus in Eastern Africa, especially in HIV+ women, but
has been shown to be less protective against cervicovaginal infection than other
Lactobacillus (Jespers et al., 2015b). Whether a cervical microbiome dominated by L.

iners is conducive to infection and proliferation of Mycoplasmataceae, and the
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relationship between the bacteria and HPV pathogenesis, remains unclear. This study
aims to establish the prevalence of common Mycoplasmataceae species in Tanzania and
evaluate their relationship with L. iners and risk factors for cervical cancer, including

HPV, HIV, and lifestyle factors.

RESULTS

Cohort demographics. DNA was successfully isolated from the cervical
cytobrush samples of 1060 women. Complete data of cervical cytobrush DNA, pap-
smear, VIA, HIV status, and epidemiological questionnaire response was available for
1002 women. Women with incomplete data were included in analyses where the missing
data was not relevant. The cohort averaged 38.3 years old, ranging from 18 to 73. A large
majority (92.3%) of the women screened reported at least one previous pregnancy, and
84.1% were sexually active within the 3 months preceding sampling. 67.4% of the cohort
reported the use of at least one type of birth control, although it is unclear if they had
recently used birth control at time of sampling. 17.6% of the cohort had tested positive
for HIV and was on antiretroviral therapy at the time of sampling. Using a multiplex
HPV genotyping PCR, we found that 46.1% of the cohort tested positive for at least one
HPV genotype, and 38.2% of HPV positive women were coinfected with at least two

genotypes.

There was a significant difference between the identification of cervical lesions

between VIA and pap smear. Only 17% of women with pap smears graded HSIL had
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lesions identified by VIA. Additionally, although 88.9% of the cohort tested negative for
cervical lesions by VIA, only 20.1% of the cohort was graded NILM by pap smear. The
majority of women had pap smears exhibiting low-grade cervical dysplasia: ASCUS
(24.8%) and LSIL (30.8%). More severe cervical dysplasia was apparent in 24.4% of

women (14.9% ASC-H, 9.5% HSIL).

Mycoplasma Screen. Table 3.1 shows the breakdown of all data collected in this
study and the variation of cervical cancer risk factors and Mycoplasmataceae prevalence
within each group. PCR detection of Mycoplasmataceae at the cervix found a high
prevalence of the bacterial family among Tanzanian women, 66% of whom tested
positive for at least one Mycoplasmataceae. Ureaplasma spp. was the most prevalent
Mycoplasmataceae, detectable in 51.4% of the cohort, followed by Mycoplasma hominis
in 34%, and Mycoplasma genitalium in only 2.3% of women. Lactobacillus iners was
more prevalent than Mycoplasmataceae, detectable in 75.6% of women. Detection of any
Mycoplasmataceae significantly increased the likelihood of detection of other
Mycoplasmataceae species in that individual (Supplemental 1). Women with L. iners also
had higher prevalence of Ureaplasma spp. and M. hominis than woman without L. iners.
Both M. hominis and M. genitalium were more common in women who reported
previously having been diagnosed with an STI, though it is unclear if the STI was
Mycoplasma related (Supplemental 1.3 and 1.4). Mycoplasma was prevalent amongst all

age groups.



59

Table 3.1 Prevalence of Mycoplasma, HPV, HIV, and epidemiological factors. Values

are listed as percentage of women positive for the condition labeled in each column. The

cohort is broken down into sub-groups in each row, depending on results from testing or

survey. A one-proportion Z-test was used to identify prevalence in subgroups that differ

significantly from the cohort average. Values were considered significant when p < 0.05

and are labeled with a "*'. The column ‘LSIL+’ includes LSIL and ASCUS pap smear

results for ease of interpretation. Similarly, the column ‘HSIL+’ includes HSIL and

ASC-H pap smear results.

n Urea- M. M. L. iners HPV+ HIV+ NILM LSIL* HSIL*  Age
plasma homin  genital
spp. is ium

Total 1060 51.4 34 2.3 75.6 46.1 17.6 20.1 55.5 244 38.3
HPV

HPV+ 489 53.6 42.9% 2.2 82.4* - 24.8* 17.3 52.6 30.1* 36.9
HPV- 571 49.6 26.3* 2.3 69.7* - 11.4* 224 58.1 19.5* 39.5
1HPV 302 55.3 38.1 1* 798 - 19.4 20.7 51.7 27.6 37.2
2+ HPV 187 50.8 50.8% 43 86.6% - 33.5%  11.9* 54 34.1* 36.5
HIV

HIV+ 181 60.8* 64.6* 6.1* 81.8* 65.2% - 16.9 60.1 23 39.2
HIV- 847 49.5 27.6* 15 74.3 423* - 20.8 54.6 24.6 38.1
Cytology

NILM 208 48.6 327 2.4 75.5 39.9 149 - - - 384
ASCUS 257 53.3 36.6 12 77.8 34.6* 195 - - - 37.6
LSIL 319 48.9 323 2.8 749 35.7% 188 - - - 38.8
ASC-H 155 55.5 35.5 13 75.5 413 148 - - - 37.6
HSIL 98 55.1 337 2 66.3 50 198 - - - 395
VIA

0 873 51.1 337 2.3 75.6 443 14.7* 21 55.7 23.3 38
1 109 49.5 35.8 2.8 79.8 63.3* 33* 15.7 55.6 287 37.1
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Age

18-29 209 54.5 33.5 24 83.7* 52.6 10.6* 214 53.4 25.2 25.8
30-39 374 50.3 37.7 29 76.7 50 20.9 18.1 55.5 26.4 34.5
40-49 321 51.1 33.6 22 74.8 41.7 19.2 21.6 58.1 20.3 441
50+ 133 51.9 27.1 0.8 59.4* 36.1* 16 214 53.4 25.2 54.8
Last Sex

< 3 months 876 529 35.3 2.5 77 .4 471 15.7 19.6 56.7 23.7 374
4-12 months 81 48.1 32.1 1.2 65.4 38.3 29.1* 17.5 50 325 39.6
> 12 months 85 42.4 23.5* 1.2 64.7* 447 26.2 28.2 50.6 21.2 46.6
Sex

Partners

1-2 455 479 25.5% 15 71.4* 38.5% 8.9* 20 59.1 20.9 38.6
3-5 465 54.8 40.2% 2.8 77.4 52.9% 21.4* 19.2 54.3 26.5 37.7
>5 102 52 44.1* 29 82.4 50 36.6% 26.2 47.5 26.3 39.3
Pregnancies

0 80 47.5 325 25 76.3 52.5 8.9* 20.3 58.2 21.5 325
1-2 319 53.9 36.4 2.8 82.8* 50.5 19.2 21 57.1 21.9 329
3-5 492 51 33.3 2 72.8 453 19.3 21.1 55.7 23.2 39.8
>5 151 51 325 2 68.2 37.1* 13.2 154 51 33.6* 47.7
Birth

Control

No 340 49.7 33.8 3.2 73.2 47.1 214 20.7 56.8 225 38.3
Yes 702 52.6 34.2 1.9 76.5 459 15.8 19.9 55.1 25 38.3
Birth

Control

Type

Pills 370 51.6 34.6 14 75.1 427 17 19 56.6 244 40.7
Injection 416 54.6 35.8 2.6 78.1 48.8 159 20 50* 30* 374
Condom 44 43.2 409 45 81.8 61.4* 47.6* 27.3 50 227 35.9
Implant 124 57.3 37.9 1.6 78.2 427 12.9 19.1 64.2* 16.7* 33.9
Loop 70 471 24.3 29 67.1 429 2.9* 20.6 47.1 32.3 43.8
Natural 12 417 33.3 0 91.7* 417 16.7 25 58.3 16.6 40.1
STI Self-

Report

No recent 939 51.8 33.2 19 75.5 454 15.1* 19.7 57 23.3 38.2
Yes recent 73 53.4 384 4.1 753 50.7 37.5*% 274 42.5* 30.1 39
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PCR
Detection

Ureaplasma 545 - 38 29 80.6* 48.1 20.8 18.9 54.9 26.2 38.1
spp-

M. hominis 360 57.5* -- 39 83.6* 58.3* 33.3* 19.3 55.8 249 37.7

M. 24 66.7 58.3* -- 83.3 45.8 45.8% 23.8 57.1 19.1 355
genitalium

L. iners 801 54.8 37.6* 25 - 50.3* 19 20.2 56.4 23.4 37.4
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Effects of HIV Infection. Being HIV+ increased odds of detection of all
Mycoplasmataceae and L. iners. Mycoplasma hominis and genitalium infections were
especially prevalent among HIV+ women when compared to HIV- (odds ratio (OR) 4.8
and 4.2 respectively), while Ureaplasma spp. and L. iners were only slightly more
common (OR 1.6 for both). This data supports previous research suggesting the HIV+
population acts as a reservoir for M. hominis infection (Djigma et al., 2011). Mycoplasma
was still quite prevalent among HIV- women (49.5%, 27.6%, 1.5% prevalence

respectively for Ureaplasma spp., M. hominis, and M. genitalium respectively).

Effects of HPV Infection. Women infected with at least one HPV genotype were
significantly more likely to have cervical dysplasia, especially high-grade lesions (OR
1.3773 for non-NILM, OR 2.7108 for HSIL). HPV+ women were also more likely to be
infected with M. hominis (OR 2.1, P<0.0001), while M. genitalium and Ureaplasma did
not have a significant increase in prevalence associated with HPV (Figure 3.1).
Commensal bacteria L. iners, was more likely to be present in HPVV+ women (OR 2.0,
P<0.00001). Co-infection with 2 or more different HPV genotypes was associated with
higher prevalence of M. hominis and M. genitalium than women infected by 1 HPV
genotype. Multiple HPV infection was much more common amongst HIV+ women,
however this increase in Mycoplasma prevalence was also apparent in HIV- women with

multiple HPV when compared to HIV-, single HPV women.
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Effects of Cervical Cytology. Mycoplasmataceae were not significantly more or
less prevalent among women with cervical dysplasia (Figure 3.1). Multivariate analysis
of cervical cytology found that prevalence of HPV, number of pregnancies, use of
injection-based birth control, and self-reporting of a previous STI varied significantly
between cytology groups (Figure S3.1). Only HPV prevalence had an obvious positive
relationship with severity of cervical lesions, while having more than 5 pregnancies or
using injection-based birth control were associated with increased odds of high-grade

cervical lesions.
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Figure 3.1 Relationship between Mycoplasmataceae abundance and cervical cancer
risk factors. (a) Overall prevalence of the screened Mycoplasmataceae and Lactobacillus
species in the cohort; (b) Comparison of prevalence between HIV+ and HIV- women; (c)
Comparison of prevalence between HPV+ and HPV- women; (d) Comparison of

prevalence between women based on cervical cytology.
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Effects of Other Factors. Sexual history was an important factor for detection of
Mycoplasmataceae and L. iners. Women with 3 or more unique previous sex partners
were significantly more likely to be infected with M. hominis, HPV, and HIV and were
more likely to test HSIL. Prevalence of M. hominis and L. iners was significantly higher
among women who had been sexually active during the 3 months prior to sampling
(Figure S3). Self-reported condom use was very low, especially for HIV- women (2.6%),
contributing to increased transmission of Mycoplasma among sexually active women.
Aging was associated with a significant decrease (P=0.0004) in L. iners prevalence,
decreasing from 83.7% in women 18-29 to 59.4% in women 50+. Age did not appear to
be related with a shift in Mycoplasmataceae prevalence, though women aged 50+ did
have somewhat lower prevalence of M. hominis and M. genitalium, possibly related to
menopause or decreased sexual activity. L. iners prevalence also decreased in women
with 3 or more previous pregnancies, however this may have been influenced by a higher

average age among high gravidity women.

Relative Abundance. A subset of 104 cervical samples was analyzed via 16s
metagenomic sequencing to establish the relative abundance of Mycoplasmataceae and L.
iners present. Each sample was rarefied to an even depth of 1,000 reads. After
rarefication, women with more than 5 reads from Ureaplasma spp., M. hominis, M.
genitalium, or L. iners were considered positive for that bacteria. The prevalence of each
bacteria was similar to results from PCR screening, though no M. genitalium reads were
present among the subset of samples tested. By using the number of reads generated we

were able to determine the relative abundance of each bacteria in each woman’s cervical
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microbiome. Using this, we estimated the relative abundance of the screened bacteria
within cervical cytology groups by adjusting the prevalence of a bacteria by the average
relative abundance of that bacteria in positive samples of each cytology grade. When
looking at the relative abundance of Mycoplasmataceae in women with cervical
dysplasia, it becomes apparent that a significantly larger portion of the cervical
microbiota is M. hominis (Figure 3.2). M. hominis is the only Mycoplasmataceae which
increases linearly with the development of more severe cervical lesions. Ureaplasma spp.
were most abundant among HSIL women, however LSIL had a lower abundance than
NILM women. L. iners was least abundant among HSIL women, but significantly more
abundant in LSIL than NILM women. Lactobacillus crispatus is considered to be the
most protective cervicovaginal microbe. Though we did not PCR screen for L. crispatus,
no women with L. crispatus reads by 16s had M. hominis, suggesting L. crispatus

protects against Mycoplasma infection, while L. iners does not.
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Figure 3.2 Relative abundance of Mycoplasma based on cervical cytology. Abundance
among infected is the mean of positive 16s samples (n) adjusted by prevalence determined by
PCR screen. Error bars represent standard error of the mean. (a) Expected number of M.
hominis 16s DNA reads for 100 Tanzanian women of varying cervical cytology; (b) Expected
number of Ureaplasma spp. 16s DNA reads for 100 Tanzanian women of varying cervical
cytology; (c) Expected number of L. iners 16s DNA reads for 100 Tanzanian women of varying

cervical cytology.
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DISCUSSION

In this study, we found that cervical Mycoplasma infection is prevalent among
Tanzanian women. Even though M. genitalium is more often screened for as a
cervicovaginal infection, we found that M. hominis and Ureaplasma spp. were
significantly more common in Tanzania. Similar results have been found in M. hominis
and M. genitalium screens from other sub-Saharan African countries (You et al., 2002;
Agbakoba et al., 2007; Redelinghuys et al., 2013; Kouegnigan Rerambiah et al., 2015b).
The primers we used to detect Ureaplasma spp. included both U. urealyticum and U.
parvuM. U. urealyticum is known to be a cervicovaginal pathogen, however U. parvum is
sometimes commensal in the uterus. Because we took our samples partially from the
endocervix, it is likely U. parvum originating from the internal cervical os may also have
been detected. For this reason, we did not consider Ureaplasma spp. as a non-commensal
infection and focus on the importance of M. hominis as a common, poorly understood

cervical infection in Tanzania.

Women who reported having had an STI were more likely to have a M. hominis
or M. genitalium infection, however most women with such an infection did not report
any history of STI’s. This indicates that most M. hominis and M. genitalium infections
are asymptomatic, and thus go untreated. Currently, it is unclear how long a Mycoplasma
infection of the cervix can persist while untreated. We detected higher prevalence of M.
hominis among sexually active women, even those with a single long-term partner,
suggesting sex may be important for persistence of M. hominis infection. Despite similar

prevalence, significantly higher abundance of M. hominis in the presence of cervical
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lesions, especially high-grade cervical lesions, suggests that proliferation of M. hominis
and development of cervical lesions have some form of mechanistic relationship. It is
possible proliferation of M. hominis drives the formation of cervical lesions, or that
cervical lesions create a microenvironment that favors proliferation of M. hominis.
Longitudinal sampling of M. hominis abundance and cervical cytology would help to
clarify this relationship. M. hominis may also contribute to HPV-driven cervical lesion
formation by increasing persistence of the pathogens during co-infection. We found that
prevalence of M. hominis was significantly higher among HPV+ women, which could
result from prolonged persistence increasing the likelihood of sampling an infection. This
idea is supported by previous studies which have identified cervical pathogens, including
Mycoplasma, as cofactors in the persistence of HPV infection (Gillet et al., 2011; Clarke
etal., 2012; Guo et al., 2012; Vriend et al., 2015). The intracellular nature of
Mycoplasma infection is particularly interesting when considering its relationship with
HPV. Intracellular bacterial infections may directly interact with HPV replication in
epithelial cells, while also contributing to the epithelium’s immune microenvironment by
influencing cytokine expression. The data presented here highlights the need for further
research into M. hominis prevalence and pathogenesis, especially related to HPV, HIV,

and cervical cancer.

Our data supports previous research suggesting L. iners is an especially common
commensal cervical bacteria in sub-Sahara African countries. Increased prevalence of
commensal L. iners among HIV+, HPV+, and Mycoplasmataceae+ women suggests that

L. iners does not protect the cervix from infection, as other Lactobacillus species are
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believed to do. This is further evidenced by our 16s data, where co-detection of M.
hominis and L. iners was common, but M. hominis and L. crispatus were never detected

together.

This study highlights the need to account for significant regional differences in
cervicovaginal microbiota, especially Mycoplasma. The high prevalence of M. hominis
and its association with risk factors for cervical cancer (HPV, HIV, and cervical lesions)
demonstrates the importance of better understanding M. hominis pathogenesis. Our
results suggest screening for Mycoplasma is especially important in Tanzania,
particularly among women at high risk for cervical cancer. Establishing a screening and
treatment protocol to address the prevalence of asymptomatic Mycoplasma infection
could reduce transmission of HPV and HIV by reducing susceptibility to infection, and
potentially prevent progression of cervical lesions. Long-term, longitudinal studies are
needed to clarify whether Mycoplasma becomes abundant at the cervix preceding or
following the development of lesions, which would help to clarify if Mycoplasma is
driving formation of cervical lesions or benefitting from the microenvironment associated

with lesions.

MATERIAL AND METHODS

Participants and ethical precautions. This study reports findings derived from
an ongoing cross-sectional cohort study analyzing demographics of HPV and cervical

cancer in HIV-positive and -negative women from rural and urban Tanzania. Between
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March 2015 and February 2017, female patients undergoing cervical cancer screening
were approached for enrollment in the study. Those who were pregnant, menstruating,
under 18, reported being sick in the past 30 days, or had a preexisting, non-HIV,
immunologic defect were excluded from the study. Disease histories and physical
examinations were used to rule out any clinical symptoms or visible signs for these
conditions. Samples were collected at three sites in Tanzania: Ocean Road Cancer
Institute (ORCI) in Dar es Salaam and rural clinics in Chalinze and Bagamoyo. After
collection of cervical samples and demographic data, samples from 1060 women were
screened for Mycoplasma species and Lactobacillus iners. A subset of 132 women were

also used for 16s metagenomic sequencing.

Demographic data collection. This study was approved for human subjects work
by the University of Nebraska-Lincoln Institutional Review Board (IRB) under protocol
ID: 14709. All study participants gave informed consent and were evaluated by study
clinicians. A set of pretested, standardized questionnaires was used to gather
demographic data. All personal identifiers were removed from samples to ensure patient
confidentiality. With the permission of the patients, medical history was retrospectively
retrieved from hospital medical records. More than 30 variables were identified and
assessed in the questionnaire, including time since last sexual intercourse, number of
sexual partners, number of pregnancies, use and type of birth control, and self-reported

history of STI infections.

Specimen collection, HIV and pap tests. Blood samples were collected via

venipuncture into acid-citrate-dextrose tubes and processed using centrifugation at the
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on-site study laboratory within 6 h of being drawn. The separated plasma was tested at
the ORCI, as part of standard of care, using Standard Diagnostics HIV-1/2 3.0 detection
kit. Cervical cytobrush samples and pap smears were collected from the cervical
transformation zone of all patients. Pap smears were examined by at least three trained
cytologists and classified according to the pap classification protocol: negative for
intraepithelial lesion or malignancy (NILM); atypical squamous cells of undetermined
significance (ASC-US); low-grade squamous intraepithelial lesions (LSIL); atypical
squamous cells but cannot exclude high-grade lesions (ASC-H); high-grade squamous
intraepithelial lesions (HSIL). Cervical cytobrush specimens were placed in lysis buffer
and then shipped to the Nebraska Center for Virology at the University of Nebraska-

Lincoln (UNL) for processing.

DNA isolation. Cervical cytobrush samples were vortexed and separated from the
brush with lysis buffer. DNA was extracted from the lysis buffer using the Qiagen Tissue
extraction kit (Dneasy) according to the manufacturer’s protocol. The DNA concentration

was determined by UV spectrophotometer at 260/280 nM.

HPV genotyping. To determine HPV status, DNA samples were genotyped for
HR-HPVs (types 16, 18, 30, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 66) and LR-HPVs

(types 6 and 11) using a low-cost multiplex PCR assay (Samwel et al., 2019).

Mycoplasmataceae and L. iners Screen. A multiplex PCR targeting M.

genitalium, M. hominis, and Ureaplasma spp. was adapted from (Stellrecht et al., 2004),
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with the addition of primers targeting L. iners established in (Kusters et al., 2015).
Primers were mixed with sample DNA and Qiagen Multiplex PCR Master Mix according

to the manufacturer’s protocol.

The PCRs were performed in 25 pl. The cycling conditions were as follows: an
initial denaturation of 95°C for 15 minutes, followed by 35 cycles, with 1 cycle
consisting of denaturation at 94°C for 15 s, and annealing and extension at 60°C for 1
minute, then a final elongation of 72°C for 5 minutes. After amplification, DNA samples
were run in 0.5% agarose gels containing Ethidium Bromide at 95 volts for 1 hour. Gels

were then imaged using a Bio Rad ChemiDoc MP Imaging System to visualize bands.

Statistical Analyses. Multivariate analysis of variance (MANOVA) using one
variable selected as fixed versus the other remaining dependent variables collected
(Ureaplasma spp., M. hominis, M. genitalium, L. iners, HPV, HIV, Age, time since last
sexual activity, number of sex partners, number of pregnancies, self-reporting of STI
infection, use of birth control, and type of birth control used) was used to identify
significant differences between women with different cervical cytology, HIV, or HPV
status. The birth control types considered were pills, injections, condoms, implants, loop,
and natural. Odds ratios were calculated to identify groups with significantly increased
odds of HPV, HIV, or Mycoplasmataceae. A p value of 0.05 was the maximum

considered to be significant throughout the study.
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16S rRNA library preparation, and sequencing of the V4 region. DNA
samples were used for tag sequencing of the V4 hypervariable region of the 16S rRNA
gene. A 250-bp section of the V4 region was amplified using universal primers described
in reference 40. The PCRs were performed in 25 pl. The cycling conditions were as
follows: an initial denaturation of 98°C for 3 min, followed by 25 cycles, with 1 cycle
consisting of denaturation at 98°C for 30 s, annealing at 55°C for 30 s, and extension at
68°C for 45 s, and then a final elongation of 68°C for 4 min. Following amplification,
PCR products were analyzed on a 2% agarose gel to confirm correct product size.
Normalized amplicons (1 to 2 ng/ul) from 144 samples were pooled together using an
epMotion M5073 liquid handler (Eppendorf AG, Hamburg, Germany). Pooled libraries
were sequenced using the Illumina MiSeq platform using the dual-index sequencing

strategy outlined by (Kozich et al., 2013).

16S data processing and bacterial community analysis. The sequencing data
obtained from the sequencer was subsequently analyzed using the Illumina MiSeq data
analysis pipeline developed by the Fernando lab (described in detail at
https://github.com/FernandoLab). Briefly, initial quality filtering was carried out to
remove sequences that had ambiguous bases, incorrect lengths, and inaccurate
assemblies. Subsequently, the quality-filtered reads were run through the UPARSE
pipeline (http://www.drive5.com/uparse/) and subjected to chimera filtering and OTU
clustering (at a similarity threshold of 97%), followed by the generation of an OTU table.
Taxonomy was assigned to the OTUs using the assign_taxonomy.py command available

in QIIME using the Greengenes database (May 2013). The OTU table was rarefied across
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samples to the lowest sample depth (1,000 reads) using QIIME based on the Mersenne
Twister pseudorandom number generator. All statistical analyses were performed with

samples at an even depth.

Ethics statement. All human subject protocols were approved by safety
committees at the Ocean Road Cancer Institute (ORCI) and UNL in accordance with the
Helsinki Declaration. Participation by patients was entirely voluntary, and written patient

consent was required for inclusion in the study.
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GENERAL CONCLUSIONS AND FUTURE DIRECTIONS

Understanding the factors which work with HPV infection to be sufficient for
development of cervical cancer is a longstanding goal in this field. It is believed that
HPV-dependent cervical cancer pathogenesis is affected by factors including HPV
prevention and treatment practices, HPV genotype, HIV infection, human genetics,
sociocultural factors, and the cervical microbiome. The work presented in this
dissertation analyzed the cervical microbiota of 1160 Tanzanian women in relation to
these risk factors for cervical cancer. In particular, Mycoplasma hominis was identified

for its association with cervical cancer risk factors.

Women infected with at least one HPV genotype showed a shift in cervical
microbiota which was more pronounced in those infected with multiple HPV genotypes.
Though the nature of this relationship is unclear, cervical pathogens, including
Mycoplasma, can act as cofactors in the persistence of HPV infection through yet-
unknown mechanisms. M. hominis prevalence was significantly higher among HPV+
women, and higher still among women with multiple HPV genotypes, which could result

from prolonged persistence increasing the likelihood of sampling an infection.

We also showed that HIV has a significant effect on the cervical microbiome,
suggesting that changes in the cervical microenvironment brought on by HIV exert some
selective pressure on cervical bacterial communities. The HIV+ population is of

particular interest due to their greatly increased risk of cervical cancer, and more
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pronounced changes in the cervical microbiota in the presence of cervical lesions. A
significant increase in Mycoplasma prevalence among HIV+ women may contribute to
the increased cervical cancer risk seen among this group, though further study is
necessary to establish a mechanistic relationship which supports this idea. M. genitalium
infection’s ability to increase HIV viral shedding suggests that host innate responses to
M. genitalium infection may similarly influence pathogenesis of other sexually
transmitted infections. Induction of HPV in this way is particularly interesting based on
the association between Mycoplasma and cervical lesions shown in this study, and

warrants further research.

The majority of the 66% of Tanzanian women that tested positive for at least one
Mycoplasmataceae were asymptomatic and untreated. This represents a large reservoir of
Mycoplasma which persistently infects the population for an indeterminant amount of
time, influencing the cervical immune microenvironment in both HIV+ and HIV-
populations. The intracellular nature of these persistent Mycoplasmataceae infections is
particularly interesting when considering a relationship with HPV pathogenesis, as it
allows the bacteria to act as both an intracellular and extracellular stressor. Further study
is needed to determine whether cytokine expression induced by persistent Mycoplasma
infection in sub-Saharan Africa includes cytokines associated with developing cervical
lesions (IL1, IL6, TNFa, IFNy) at sufficient levels to influence HPV pathogenesis and
cervical dysplasia. Mycoplasma infection also causes genomic stress on its host cell,

which may increase the mutation and integration rate of HPV in a coinfected cell. This
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warrants investigation as another mechanism contributing to cervical cancer risk in

Mycoplasma and HPV coinfected women.

Among sexually transmitted Mycoplasmataceae, M. genitalium is the most
studied and screened infection, however this study shows that M. genitalium is relatively
uncommon among sub-Saharan African populations in comparison to M. hominis and
Ureaplasma spp. Considering taxonomic differences in prevalence and pathogenesis is
particularly important, as this study found different species of Mycoplasmataceae were
differentially associated with cervical cancer risk factors. In particular, while all
Mycoplasmataceae had similar prevalence among women with and without cervical
lesions, M. hominis stood out as the only Mycoplasmataceae that greatly increased in
relative abundance with more severe cervical lesions. This suggests that proliferation of
M. hominis and development of cervical lesions have some form of mechanistic
relationship. Long-term, longitudinal studies are needed to clarify whether M. hominis
becomes abundant at the cervix preceding or following the development of lesions, which
would help to clarify if M. hominis is driving formation of cervical lesions or benefitting

from the microenvironment associated with lesions.

The high prevalence of M. hominis and its association with risk factors for
cervical cancer demonstrates the importance of better understanding Mycoplasma
pathogenesis and establishing a screening and treatment protocol to address the

prevalence of asymptomatic Mycoplasma infection. This study emphasizes the need to



account for significant regional differences in cervicovaginal microbiota and suggests
that the cervical microbiota could be used as a diagnostic marker for cervical cancer.
With sufficient understanding, there is potential for the development of preventative
probiotic or antibiotic treatments that could reduce cervical cancer risk by promoting
colonization with cervical microbiota associated with healthy cytology. These results
suggest a greater influence of the bacterial microbiota on the outcome of HPV infection
than previously thought, and highlight M. hominis as a common, poorly understood

cervical infection in sub-Saharan Africa.
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Figure S3.1 MANOVA analysis of factors in realtionship cervical cytology
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Figure S3.2 MANOVA analysis of factors in relationship to Ureaplasma spp. detection
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Figure S3.3 MANOVA analysis of factors in relationship to M. hominis detection
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Figure S3.4 MANOVA analysis of factors in relationship to M. genitalium detection
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Figure S3.5 MANOVA analysis of factors in relationship to L. iners detection
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