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Advisor: Peter C. Angeletti 

Despite ongoing efforts, sub-Saharan Africa faces a higher cervical cancer burden 

than anywhere else in the world. Besides HPV infection, definitive factors of cervical 

cancer are still unclear. Dysbiosis of the cervicovaginal microbiota, particularly involving 

sexually transmitted infections, is associated with increased cervical cancer risk. Notably, 

HIV infection, which is prevalent in sub-Saharan Africa, greatly increases risk of 

cervicovaginal dysbiosis and cervical cancer. To better understand and address cervical 

cancer in sub-Saharan Africa, a better understanding of the regional cervicovaginal 

microbiome is required. In this study, I establish the relationship between cervical cancer, 

HPV, HIV, cervicovaginal infections, and the cervicovaginal microbiome in sub-Saharan 

Africa. 

To investigate the role of the bacterial microbiome in cervical dysplasia, 

cytobrush samples were collected directly from cervical lesions of 144 Tanzanian women 

and analyzed using 16s metagenomic sequencing. I found that cervical microbiota varied 

significantly depending on HIV infection, HPV infection, and the presence of cervical 

lesions. The bacterial family ‘Mycoplasmataceae’ in particular was associated with the 

presence of pre-cancerous cervical lesions. 

Mycoplasmataceae infection in sub-Saharan Africa is not well understood, 

especially when considering the differences between sexually transmitted species. To 



 
 

establish the prevalence of common Mycoplasmataceae cervical infections and evaluate 

their relationship with risk factors for cervical cancer, a cohort of 1160 Tanzanian women 

responded to an epidemiological questionnaire and were tested for HIV, HPV, cervical 

lesions, Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma spp., and 

Lactobacillus iners. I found that Mycoplasmataceae infection was present in 66% of 

women tested. In particular, Mycoplasma hominis was associated with HPV and HIV 

infection, and significantly increased in relative abundance among women with pre-

cancerous cervical lesions.  

The results of this study suggest that intracellular, inflammatory infections like M. 

hominis are prevalent and relate to the development of pre-cancerous cervical lesions. 

The prevalence of cervical cancer in sub-Saharan Africa may be partially attributed to the 

high prevalence of cervical infections like M. hominis. 
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CHAPTER 1 

LITERATURE REVIEW 

INTRODUCTION 

In sub-Saharan Africa, cervical cancer risk is far greater than in developed 

countries. Human Papillomavirus (HPV) is a major health concern worldwide, 

contributing to an estimated 4.8% of all cancers (Formana et al., 2012). This percentage 

drastically increases in less developed regions of the world, with HPV attributing to 

14.2% of all cancers in sub-Saharan Africa (Formana et al., 2012). It is well-established 

that HPV is the causative agent of cervical cancer (De Vuyst et al., 2013). In 2018, 

570,000 women were diagnosed with cervical cancer, and 311,000 deaths were attributed 

to cervical cancer (Arbyn et al., 2020). It is estimated 1 in 70 women worldwide will 

develop cervical cancer before reaching 79 years of age (De Vuyst et al., 2013; 

Fitzmaurice et al., 2015). Cervical cancer disproportionately affects sub-Saharan Africa, 

where 9% of the world's female population accounts for 14% of the world's incident 

cervical cancer and 18% of cervical cancer related deaths (De Vuyst et al., 2013). This 

results in a cervical cancer mortality risk of 2.7%, about 70% higher than the second 

highest region: South-Central Asia (De Vuyst et al., 2013). In 2013, cervical cancer was 

the most common cause of cancer death in women in 46 of 54 sub-Saharan African 

countries (85%) (Fitzmaurice et al., 2015). Only 5 countries outside of sub-Saharan 

Africa count cervical cancer as the most common cause of cancer death in women. 

Despite current efforts against cervical cancer in sub-Saharan Africa, it is estimated the 

number of cervical cancer cases will continue to rise, highlighting the need to bring sub-
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Saharan Africa up to modern standards for HPV treatment and prevention, and to 

understand the factors contributing to cervical cancer in the region (Williamson, 2015). 

 

sub-Saharan Africa faces many unique issues regarding cervical cancer. Screening 

and prevention practices, sociocultural aspects, HPV genotype prevalence, HIV 

prevalence, HIV treatment, sexually transmitted infections (STIs), and the composition of 

the cervicovaginal microbiome are all important factors, which differ in sub-Saharan 

Africa compared to more developed regions. While some of these factors have been 

correlated with increased cervical cancer incidence, it is unclear how or if they contribute 

to HPV pathogenesis. 

 

Screening is the key to early detection and treatment of cervical cancer and 

identifying at-risk populations. Cervical cancer rates in developed countries with 

screening and treatment programs, have cervical cancer rates below 10 per 100,000 

women. In The USA, coverage of these screening programs within a 48 month period is 

94% of women ages 25 to 29 years, decreasing at older ages to 69% at 45 to 49 years and 

55% at 60 to 64 years (Cuzick et al., 2014). In countries without screening programs, 

cervical cancer rates are significantly higher (Fitzmaurice et al., 2015). In sub-Saharan 

Africa, screening methods and their efficiency vary significantly. Because of this, 

coverage is difficult to estimate and largely based on speculation. The most common 

cervical cancer screening method in sub-Saharan Africa is visual inspection with acetic 

acid (VIA) rather than the pap smear, the preferred method in developed countries. VIA 



3 
 

is cost effective, but is known to be less specific since it depends on visual recognition of 

lesions, whereas the pap smear identifies abnormalities at the cellular level (Gaffikin et 

al., 1999). The major factor contributing to the high incidence of cervical cancer in sub-

Saharan Africa is the lack of reliable cervical cytology screening. Historically, 

introduction of population screening programs has reduced cervical cancer incidence by 

25–77% (Gustafsson et al., 1997). Establishing better screening programs is a necessary 

step toward reducing the burden of cervical cancer in sub-Saharan Africa, however this 

alone is not enough to address the issue. Ignoring the contribution of current screening 

efforts in sub-Saharan Africa, even the most drastic decrease in cervical cancer after 

implementation of population screening seen historically (77%) would not bring cervical 

cancer rates as low as those in developed countries with population screening. This 

emphasizes the importance of understanding and addressing what other factors in sub-

Saharan Africa are contributing to cervical cancer. 

 

Besides screening, most factors correlated with developing cervical cancer relate 

to the cervical immune microenvironment. Recent research into the cervicovaginal 

microbiome has uncovered intricate relationships between the bacterial microbiota, HPV, 

HIV, and cervical cancer (Godoy-Vitorino et al., 2018; Huang et al., 2018; Klein et al., 

2019). These relationships suggest that certain cervicovaginal microbes, or the 

microenvironment created by certain microbes, are cofactors of cervical cancer 

progression. HIV is a well-studied factor in sub-Saharan Africa, which influences the 

cervical microbiota (Curty et al., 2017). Cervical cancer is classified as an AIDS-defining 

cancer due to greatly increased risk among HIV positive individuals with low T cell 
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count. Despite extensive study of the prevalence and impact of HIV in sub-Saharan 

Africa, the exact mechanism by which HIV infection contributes to HPV driven cervical 

cancer remains unclear. A better understanding of other correlated factors will help 

clarify the mechanisms which drive cervical cancer, and address how to bring sub-

Saharan Africa in line with other regions. STI screening of genital tract infections like 

chlamydia and gonorrhea has found they are much more prevalent in sub-Saharan Africa, 

while, metagenomic studies of the cervicovaginal microbiome have shown significant 

differences between the commensal and non-commensal components of sub-Saharan 

African microbiomes when compared with low cervical cancer risk areas. Considering 

such infections have been associated with pre-cancerous lesions, it is likely these 

differences, in part, account for sub-Saharan Africa's increased cervical cancer risk 

(Onywera et al., 2019). 

 

Defining differences in cervical microbiota by geographic location, HIV status, 

and cervical cytology using compiled published data is difficult due to major differences 

in cohort makeup, cohort size, sampling and sequencing techniques, and other issues. The 

cervical microbiota varies greatly between individuals. Factors such as age, race, 

menstrual phase, and lifestyle have all been shown to affect the microbiome. Controlling 

for such a large number of factors is difficult, which has hindered the discovery of 

definitive microbiota. Furthermore, the microbiota of the cervix has been shown to be 

significantly different than that of the vagina, thus studies which sample the 

cervicovaginal microbiome do not best represent the microenvironment at the site of 

cervical transformation (Koedooder et al., 2019). For these reasons, the results of studies 
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are considered individually in this review, so that each speaks only for the niche 

represented by its cohort. To better understand and address the relationship between 

HPV, HIV, cervical microbiota, and increased cervical cancer risk, a better understanding 

of the unique sub-Saharan African environment is needed. Here, we discuss current 

knowledge in each of these areas, highlighting factors especially prevalent in sub-Saharan 

Africa which may drive HPV-dependent cervical cancer. 

 

HPV GENOTYPES 

The HPV family includes more than 200 genotypes, over 45 of which are known 

to infect the anogenital region. The regional prevalence and oncogenic potential of HPV 

genotypes varies significantly. Fifteen anogenital HPVs are classified as high-risk for 

development of cervical cancer (Guan et al., 2012). Among these, HPV16 and 18 are the 

predominant oncogenic genotypes, causing approximately 70% of cervical cancer cases 

globally (Ogembo et al., 2015). The relative oncogenic potential of HPV 16 and 18 has 

been shown to be markedly higher than that of other genotypes, followed by 45, 69, 58, 

31, 33, 34, 67, 39, 59, 73, and 52 by decreasing oncogenic potential (Bernard et al., 

2013). Of the global HPV burden, 22.5% of HPV infections are estimated to be produced 

by HPV-16, however, a significant inverse correlation has been observed between overall 

HPV prevalence and the contribution of HPV-16, with the lowest HPV16 proportions in 

the regions with the highest HPV prevalence (Bruni et al., 2010). As such, sub-Saharan 

Africa has been shown to have the lowest HPV-16 contribution to total HPV infections in 

women with normal cervical cytology when compared to other regions, with estimates of 

13.7, 11.3, and 11.1% for Southern, Eastern, and Western Africa, respectively (Bruni et 
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al., 2010). This correlation is even more pronounced in cervical cancer, where HPV16 

and 18 are less frequent in sub-Saharan Africa than in the rest of the world (49.4 vs. 

62.6%), while HPV18 and HPV 45 are two times more frequent (19.3 vs. 9.4% and 10.3 

vs. 5.6%) (Ndiaye et al., 2012). After HPV16 and 18, the most prevalent genital HPV 

genotypes vary between sub-Saharan Africa countries. Overall, HPV 52, 35, 58, 33, 31, 

45, 53, and 51 are the most prominent non-16/18 genotypes in sub-Saharan Africa 

(Formana et al., 2012; Abate et al., 2013; Olesen et al., 2013; Adler et al., 2014; Boumba 

et al., 2014, 2015; McDonald et al., 2014; Mihret et al., 2014; Padalko et al., 2015; Pirek 

et al., 2015; Van Aardt et al., 2015; Bateman et al., 2015; Lebelo et al., 2015; Okonko 

and Ofoedu, 2015). When comparing prevalence with high-income regions, HPV 52, 58, 

33, and 45 stand out as especially prevalent in sub-Saharan Africa (Human 

Papillomavirus and Related Diseases Report WORLD). Because these HPV genotypes 

are only common in sub-Saharan Africa, they have not been as well-researched as 

globally prevalent HPVs such as 16 and 18. Potential differences in pathogenesis in such 

genotypes may contribute to increased cervical cancer in sub-Saharan Africa, where a 

larger percentage of cervical cancer cases are attributed to non-HPV16/18 genotypes. 

 

Accurate detection and identification of HPV genotypes depends upon the 

genotyping method used. Most large studies use one of several established genotyping 

assays, however more recent studies using sequencing-based identification of HPV 

genotypes have found that genotyping assays may only detect as little as 49% of those 

able to be detected with sequencing (Ndiaye et al., 2012). The bias introduced by 

genotyping assays may downplay the significance of certain HPV genotypes in sub-



7 
 

Saharan Africa, especially those which have not been well-researched, such as HPV 34, 

67, 69, and 73. Additionally, the extensive sequence variation within HPV genotypes, 

which has been demonstrated to be especially severe in sub-Saharan Africa, is not 

accounted for by genotyping assays as it is in sequenced-based approaches, and may be 

of clinical importance. Sequence variation of HPV may also contribute to reduced 

efficacy of HPV vaccination in sub-Saharan Africa, while increased genotypic diversity 

of HPV almost certainly does.  

Concurrent cervical infection with multiple HPV genotypes is common in sub-

Saharan Africa, however it is not clear if this represents a specific mechanism driving 

pathogenesis. Data from developed regions suggests multiple infection with HPV 

decreases in cervical cancer cases, however studies in sub-Saharan Africa suggest 

coinfection is more prevalent in cervical cancer and may exacerbate HPV pathogenesis. 

A study of South African women with cervical cancer found that 65% were coinfected 

with at least two HPV genotypes (Lebelo et al., 2015). Of the coinfected cervical cancer 

cases, 90.4% included HPV16, suggesting infection with other HPV genotypes may 

contribute to HPV16 driven cervical cancer. Similar results were found in a study of 

women in the Democratic Republic of Congo (Boumba et al., 2014). Further work has 

shown higher HPV16 viral loads in 70.3% of HPV16 coinfected samples (Lebelo et al., 

2015). In a separate study, Cameroonian women with normal cervical cytology and 

multiple HPV infections were found to be about 10% more likely to develop cervical 

lesions within a year when compared to women infected with a single HPV type (Pirek et 

al., 2015). These results suggest a synergistic effect driving HPV replication and cervical 

cancer pathogenesis in cases of multiple HPV infection. 
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In contrast, other publications have suggested HPV16 may be more sensitive to 

attack from other genotypes, and thus may be at higher risk of competition when there is 

more immune suppression (Menon et al., 2016). A meta-study examining global HPV 

prevalence found that multiple HPV infections were, on average, 6% more common in 

women with normal cytology than in those with cervical cancer (Bernard et al., 2013). 

Sub-Saharan Africa was the least represented region by studies included in this analysis, 

allowing for the possibility that synergistic effects in cases of multiple infection are 

primarily found in the genotypes most prevalent in sub-Saharan Africa. Further research 

focusing on the long-term oncogenic potential of different combinations of HPV 

genotypes, is necessary. 

 

HIV 

HIV is the best studied co-factor to cervical cancer and has been strongly linked 

to severe HPV pathogenesis. The association between severe HIV pathogenesis and 

cervical cancer has classified cervical cancer as an “AIDS-defining cancer.” In addition 

to increasing cervical cancer risk, evidence suggests that high HIV prevalence also 

contributes to increased prevalence and circulation of HPV (Williamson, 2015). 

Similarly, the widespread prevalence of multiple HPV infections has been shown to 

contribute to the spread of HIV by increasing susceptibility of HIV acquisition. Multiple 

studies have shown that immune response to HPV increases HIV-susceptible cells in both 

male and female genital tracts, increasing the opportunity for an initial infection to occur 
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based on the local immune microenvironment (Averbach et al., 2010; Tobian et al., 2013; 

Williamson, 2015). The regional relationship between HIV prevalence and cervical 

cancer is shown in Figure 1.1, which demonstrates associations between the two globally, 

highlighting the exceptionally high rates seen in sub-Saharan Africa. 
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Figure 1.1 Comparison of cervical cancer incidence and HIV Prevalence by country. 

Each country is colored by cervical cancer incidence per 100,000 women, as described in 

the bottom left, based on data from GLOBOCAN 2012. Circles within each country's 

borders are colored by HIV prevalence, as described in the bottom left, based on data 

from UNAIDS (2016). Differences in the size of circles within countries is only for 

visibility and does not signify anything meaningful. Countries without HIV prevalence 

circles did not have such data available. Map produced by IARC. 
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Risk factors and predictors of cervical cancer are also increased in HIV+ 

individuals. HPV infection, abnormal Pap smears, and high-grade lesions are 

significantly more common in HIV+ women (Adler et al., 2014; Salazar et al., 2015). In 

addition to the increased rate of productive HPV infection, HIV is associated with a 

higher risk of progression from subclinical to clinical HPV disease (Williamson, 2015). 

Higher HPV viral loads are associated with increased risk of abnormal cervical cytology, 

and are seen among those co-infected with HIV, indicating this may in part be due to an 

undefined mechanism by which HIV infection influences HPV viral replication (Depuydt 

et al., 2012; Wang et al., 2013; Hanisch et al., 2014; Mbulawa et al., 2014). A likely 

factor is a decrease in T-cell surveillance controlling HPV replication with decreasing 

CD4+ cell count as a result of more severe HIV infection. Multiple studies have shown 

an increase in HPV detection, squamous intraepithelial lesions, and cervical 

intraepithelial neoplasia in individuals with AIDS (less than 200 CD4+ cells per μl 

serum) (Hanisch et al., 2013; Ezechi et al., 2014; Memiah et al., 2015; Menon et al., 

2016). Identifying which aspects of the local and systemic effects of HIV infection 

contribute to progression from chronic HPV infection to cervical cancer is crucial to 

understanding the burden of cervical cancer in sub-Saharan Africa. Current knowledge 

suggests effects on the cervical immune microenvironment may be key in this process. 

 

In HIV+ populations, there is a shift in prevalence of HPV genotypes, favoring 

high-risk HPVs (Ezechi et al., 2014). The reasoning for greater prevalence of certain 

HPV genotypes in HIV+ individuals is not currently well-understood. The influence of 

HIV may help explain why coinfection of multiple HPV genotypes is associated with 
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cervical cancer in sub-Saharan Africa, but not elsewhere. Studies from several sub-

Saharan African countries have identified a greater number of multiple HPV infections 

among HIV-positive women (Akarolo-Anthony et al., 2013; Maranga, 2013; Adler et al., 

2014; McDonald et al., 2014; Van Aardt et al., 2015). A study of South African females 

with cervical cancer found multiple HPV infections in 8% of HIV- women and 27% of 

HIV+ women (Van Aardt et al., 2015). In a study of South African adolescent females, 

the prevalence of multiple infections was found to be much higher in both HIV positive 

and negative individuals, with 22% percent prevalence in HIV- and 68.6% in HIV+ 

(Adler et al., 2014). Only 18.8% of all adolescents in this study had an abnormal pap 

smear, and none of them were diagnosed with cervical cancer. This supports the idea that 

exposure to many HPV types occurs early after sexual debut, with certain genotypes 

becoming dominant by the time HPV pathogenesis reaches cervical cancer. Potentially, 

infection with “accessory” HPV genotypes contributes to the early pathogenesis of a 

primary high-risk HPV either directly or through manipulation of the immune 

microenvironment, leading to increased replication and eventual faster or more frequent 

development of cervical cancer. These “accessory” HPV infections may then be cleared 

by a competent immune response, which may explain why multiple infection decreases in 

HIV- cervical cancer cases, but not in HIV+. Based on current evidence, it is yet unclear 

whether early multiple HPV infections expedite progression to cervical cancer. A short-

term longitudinal study (16 months) was unable to find any additive or synergistic effect 

of multiple infection on development of cervical lesions, noting that increased frequency 

of cervical lesions was associated with infection of a single high-risk HPV. Cervical 

cancer development occurs over a period of decades however; looking at such a narrow 
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time frame means these results may be a consequence of only observing cytological 

effects in infections in which a high-risk HPV was already established and progressing 

toward cervical cancer, not early interactions which eventually contribute to lesions 

(Salazar et al., 2015). Further study focusing on interactions and outcomes in HPV 

coinfection, especially among young HIV+ women who have not yet developed cervical 

dysplasia, is desirable to clarify this relationship. 

 

When available, treatment for individuals infected by HIV in sub-Saharan Africa 

is primarily antiretroviral therapy (ART). Unlike high-income regions, a significant 

number of  HIV infected sub-Saharan African individuals go without treatment. ART 

coverage of HIV infected individuals across sub-Saharan Africa ranges from 9-92% 

(UNAIDS, 2019). Studies examining the effects of ART on HPV pathogenesis have had 

mixed results. While previous studies suggest ART has no significant effect on HPV 

genotype detection, more recent studies suggest modern ART reduces the prevalence of 

high-risk HPV's in HIV infected women (Palefsky, 2003; Ezechi et al., 2014; Zeier et al., 

2015). This reduction in high-risk HPV prevalence grows with duration of ART use. 

Besides a reduction of HIV, the effects of ART on cervical microbiota are currently 

unknown, but may be significant, as several studies have found that ART affects the gut 

microbiota. ART does not appear to have a significant effect on cervical lesions and 

tumor development, and only minor effects on limiting progression of lesions and 

preventing recurrence (Ahdieh-Grant et al., 2004; Paramsothy et al., 2009; Dryden-

Peterson et al., 2015; Memiah et al., 2015). A study of Kenyan women found that the 

spread of ART has been accompanied with a decrease in age-specific cancer risk, 
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however an increase in the number of HPV cancers, which is attributed to an aging HIV+ 

population rather than to any effect of ART (Memiah et al., 2015). Compared to the risk 

reduction after ART seen in other AIDS-defining cancers like Kaposi's sarcoma and non-

Hodgkin's lymphoma, the risk of cervical cancer is not significantly affected, and 

recurrence rates remain high with or without treatment (Foulot et al., 2008; Mungo et al., 

2013; Russomano et al., 2013; Cobucci et al., 2015). This suggests that HPV depends on 

immunological status of the host such that ART is only able to indirectly affect HPV 

pathogenesis, potentially through an effect on circulatory CD4+ cell count and microbiota 

composition. 

 

NON-VIRAL MICROBIOTA 

Several studies have proposed that the cervicovaginal microbiota is a co-factor of 

the development of cervical lesions (Guijon et al., 1992; Mitra et al., 2016; Kyrgiou et al., 

2017). The precise mechanism, and the microbes responsible have not been identified, 

but several common STIs have been associated with cervical cancer individually. Health 

of the lower female reproductive tract, and its ability to defend against dysbiosis and 

infection, is directly related to the microbiota present. Its defense mechanisms include 

antimicrobial peptides, a microbiome dominated by Lactobacilli, and a pH of <4.5. An 

imbalance in these defenses can result in physiochemical changes, which produce 

histological alterations of the vaginal mucosa and cervical epithelium (Audirac-Chalifour 

et al., 2016). Communal differences in the cervical microbiome between sub-Saharan 

Africa and developed regions have not been well-established, however the prevalence 

and incidence of pathogenic cervicovaginal microbiota is much higher in sub-Saharan 



15 
 

Africa. Among factors associated with preventing or developing cervical cancer, 

cervicovaginal pathogens are second only to HPV vaccine coverage when comparing 

differential rates in sub-Saharan Africa and North America (Table 1.1). Nearly all studies 

of the cervicovaginal microbiome in sub-Saharan Africa to date have used sequencing of 

the ribosomal RNA 16s amplicon, which only includes bacteria. Because of this, little is 

known of the virome or other non-bacterial members of the microbiome outside of 

targeted screening. Whole genome sequencing (WGS) allows characterization of the 

microbiome in its entirety and has been shown to be more accurate at the detection of 

bacterial species and diversity than 16s (Ranjan et al., 2016). RNA sequencing (RNASeq) 

is another powerful approach to characterize gene expression, which is now being used in 

microbiome studies. Large scale metagenomic studies of sub-Saharan African 

populations using WGS is needed to more fully characterize the microbiome and address 

potential bias introduced by 16s sequencing. These newer methods are likely to improve 

our understanding of these complex microbial networks. 
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Table 1.1 Comparison of factors which may influence cervical cancer in sub-

Saharan Africa and North America 
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NON-COMMENSAL MICROBIOTA 

Chronic inflammation of the cervix is closely associated with developing cervical 

cancer (Giraud et al., 1998; Skapinyecz et al., 2003; Ilhan et al., 2019). Cervicitis can 

result from several different conditions, which often are attributed to infection with non-

commensal microbes. Pelvic inflammatory disease (PID) in women usually results from 

bacterial infection of the cervix ascending to the uterus and oviducts, wherein certain 

bacteria express antigens which induce a chronic inflammatory state. The association 

observed between PID and cervical cancer is thought to be due to development of a 

microbiome rich in inflammation-inducing bacteria at the cervix, causing cervicitis. Not 

surprisingly, PID is more prevalent in HIV-infected women than uninfected (Dehon et 

al., 2016). The overall prevalence of PID is difficult to define in sub-Saharan Africa, 

however diagnosis of PID is more than twice as likely to be attributed to a bacterial 

infection when compared to rates in the developed world (Ross, 2008). This suggests that 

bacterial infections more often contribute to HPV pathogenesis in sub-Saharan Africa. 

 

Bacterial vaginosis (BV) is a dysbiosis of cervicovaginal bacteria which, like PID, 

is associated with cervicitis (Lehtinen et al., 2011; Ogembo et al., 2015). BV alters the 

cervicovaginal microenvironment, which may increase cervical dysplasia as a result of 

anaerobic infection producing nitrosamines, which cause cervical inflammation (Lazenby 

et al., 2014). The microenvironment created by BV has also been identified as a cofactor 

in the persistence of HPV infection (Gillet et al., 2011; Clarke et al., 2012; Guo et al., 

2012; Vriend et al., 2015). Several of the causal bacteria of BV are associated with 

cervical lesions and/or inflammation. The most common causes of BV are: Gardnerella 
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vaginalis, Atopobium vaginae, Mobiluncus curtisii, Mobiluncus mulieris, Megasphaera 

type 1, Megasphaera type 2, Sneathia sanguinegens, Mycoplasma hominis, Mycoplasma 

genitalium, Ureaplasma urealyticum, Bacteriodes fragilis, and bacterial-vaginosis-

associated-bacteria (BVAB) 1-3 (Signat et al., 2011; Audirac-Chalifour et al., 2016). 

Comparative genomic analysis has shown that the shift in microbial diversity as a result 

of BV is more pronounced in women infected with HIV, suggesting BV is more severe in 

this population and thus more likely to drive HPV pathogenesis (Spear et al., 2008). In 

sub-Saharan Africa, BV prevalence is estimated to range from 20 to 50% in reproductive 

aged women, making it the most common cause of cervicovaginal dysbiosis. This 

prevalence suggests BV, or the cervical microenvironment created by BV, could be a 

major contributor to increased malignant HPV pathogenesis in the region, especially 

among HIV+ women (Msuya et al., 2002; Lewis, 2011; Swanepoel et al., 2013). Further 

study is necessary to determine if general inflammation caused by conditions like BV and 

PID is sufficient to promote HPV pathogenesis, or if specific microbes which contribute 

to the diseases are responsible. 

 

STIs also alter the cervicovaginal microenvironment. Several sexually transmitted 

microbes have been associated with cervicitis and persistence of HPV infection (Gillet et 

al., 2011; Lehtinen et al., 2011; Clarke et al., 2012; Guo et al., 2012; Ogembo et al., 

2015; Vriend et al., 2015). Among these, Neisseria gonorrhoeae, Chlamydia trachomatis, 

Trichomonas vaginalis, and Syphilis are particularly common in sub-Saharan Africa. 

Sub-Saharan Africa accounts for a disproportionate 20, 9.9, 31.7, and 32.2% of 

worldwide cases of the aforementioned infections respectively, resulting in significantly 
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higher incidence than in high-income regions (Table 1.1) (Guijon et al., 1992; Lewis, 

2011; Rodriguez-Cerdeira et al., 2012; Swanepoel et al., 2013). This issue is exacerbated 

by the large HIV+, immunocompromised population, which is more readily infected. 

Screenings of sub-Saharan African women estimate 70–80% of those infected with 

discharge-causing infections remain asymptomatic (Sylverken et al., 2016; Barnabas et 

al., 2018). This contributes to increased transmission, but also allows infections to persist 

for longer before treatment, meaning persistence of a cervical microenvironment 

conducive to cervical lesions and HPV persistence. Less screened infectious microbes 

such as Mycoplasma spp., Ureaplasma spp., and Leptotrichia amnionii have been shown 

to be involved in cervicitis in HIV+ women (Linhares et al., 2000; Dehon et al., 2016; 

Mitra et al., 2016). Mycoplasma infection has also been directly associated with pre-

cancerous cervical lesions (Klein et al., 2019). When screening for STIs, Mycoplasma 

genitalium is more often included, however Mycoplasma hominis, which is similar to M. 

genitalium in pathogenesis, is rarely screened for. Thus, a good estimate of Mycoplasma 

prevalence in sub-Saharan Africa is not well-established. In sub-Saharan African cohort 

studies which include M. hominis detection, prevalence of M. hominis ranges from 17 to 

67.5%, far exceeding M. genitalium (Agbakoba et al., 2007; Redelinghuys et al., 2013; 

Kouegnigan Rerambiah et al., 2015a; Sylverken et al., 2016). This is significantly higher 

than what has been shown in North America and may be due to the HIV+ population 

acting as a reservoir for M. hominis infection (Djigma et al., 2011). 
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COMMENSAL MICROBIOTA 

The cervicovaginal microbiome has been shown to most often fall into one of 

seven general community state types (CSTs) (Salas and Chang, 2014; Mitra et al., 2016). 

These CSTs are characterized by the relative abundance of various species of 

Lactobacillus and anaerobic bacteria and are separated into healthy and dysbiotic groups. 

The healthy CSTs are all Lactobacillus dominated; type 1 is dominated by L. crispatus, 

type 2 by L. gasseri, type 3 by L. iners, and type 5 by L. jensenii. Common dysbiotic 

CSTs are characterized by an abundance of anaerobic bacteria; type 6 is dominated by 

Gardnerella vaginalis, type 4 is characterized by a high abundance of anaerobic bacteria 

and low abundance of Lactobacillus species, and type 7 is characterized by high 

abundance of both Gardnerella vaginalis and Lactobacillus species. These cervicovaginal 

CSTs have been previously associated with significantly different prevalence of infecting 

HPV genotypes (Brotman et al., 2014; Mitra et al., 2015; Dareng et al., 2016; Reimers et 

al., 2016). L. crispatus dominated microbiomes (type 1) are considered to be the most 

protective against HPV and HIV, and have been shown to be significantly less likely to 

have HIV, HSV-2, any HPV, or high-risk HPV than other CSTs (Borgdorff et al., 2014). 

L. crispatus produces lactic acid, antimicrobial compounds, and inhibits inflammation 

(Graver and Wade, 2011; Hickey et al., 2012; Rose et al., 2012; Aldunate et al., 2013; 

Petrova et al., 2013). These represent likely mechanisms by which L. crispatus, and 

potentially other microbes, are able to influence HPV infection and progression of HPV-

associated diseases. A study of Rawandan women found that women with the L. 

crispatus dominated CST had the lowest prevalence of HIV/STIs, with a slight increase 

in the L. iners dominated CST, and a significant increase in the dysbiotic CSTs (types 4, 
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6, and 7) (Borgdorff et al., 2014). Similar results have been found in studies of Nigerian 

and South African women, supporting an association between HPV pathogenesis and 

decreased abundance of Lactobacillus spp. (Dareng et al., 2016; Onywera et al., 2019). L. 

crispatus is much less abundant in sub-Saharan Africa than in high-income regions 

(Jespers et al., 2015a). Instead, L. iners is the most abundant “protective” cervicovaginal 

microbe, especially in HIV+ women without dysbiosis. L. iners dominated microbiomes 

have been shown to be less protective against cervicovaginal infections, and closer to 

dysbiotic CST rates of HPV infection and cervical dysplasia (Norenhag et al., 2020). This 

suggests that differences in commensal microbiota in sub-Saharan Africa are also 

contributing to the prevalence and transmission of cervicovaginal infection and dysbiosis 

in the region. 

 

CONCLUSION 

Cervical cancer, a preventable and treatable cancer, remains the cancer with the 

highest incidence in women in 27 countries, and the leading cause of cancer death in 

women in 45 countries, most of which are in sub-Saharan Africa. Efforts to determine the 

most cost-effective strategies to reduce cervical cancer burden through human 

papillomavirus vaccination and screening are ongoing and will hopefully lead to a 

continued decrease in cervical cancer incidence in the most affected areas of the world. 

However, it is expected that the number of women with cervical cancer in sub-Saharan 

Africa will increase as more women get access to HIV therapy, increasing the life 

expectancy of HIV+ women (Williamson, 2015). There is therefore an urgent need to roll 

out better cervical screening programs. To accomplish this, a better understanding of the 
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region's unique factors contributing to cervical cancer is necessary to improve 

identification and treatment of at-risk individuals before the onset of disease. Current 

screening and vaccination in sub-Saharan Africa is sparse, irregular, and does not 

consider factors beyond HIV and cervical lesion status. In considering the factors 

contributing to sub-Saharan Africa's disproportionate burden of cervical cancer, the 

disparity between HPV prevalence, HPV genotype prevalence, and sociocultural factors 

in sub-Saharan Africa and high-income regions is much less than the disparity seen in 

vaccination and cervicovaginal infection and dysbiosis, suggesting that disruption of the 

cervicovaginal microbiome may be the most significant factor and predictor of cervical 

cancer in sub-Saharan Africa. Research up to this point suggests that latent, basal layer 

infections of HPV's are activated when the host is immunocompromised, leading to 

increased HPV replication and development of abnormal cytology. HIV and dysbiosis of 

the cervicovaginal microbiome are the most common factors in sub-Saharan Africa able 

to activate HPV via effects on the cervical immune microenvironment. ART may help 

reduce these effects by restoring immune competence, however it does not return 

activated HPVs to full latency. Transition to cervical cancer is associated with a single 

HPV genotype becoming dominant, however data suggests coinfection with multiple 

HPV genotypes or other cervical pathogens plays an important role early on, potentially 

contributing to the early pathogenesis of a primary high-risk HPV either directly or 

through manipulation of the immune microenvironment, leading to increased replication 

and eventual faster or more frequent development of cervical cancer. This process is 

likely mediated by expression of inflammatory and wound healing cytokines such as IL1, 

IL6, TNFα, and IFNγ, leading to cell stress and genetic instability, increasing the risk of 
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mutation or integration of the episomal HPV genome (Figure 1.2). These infections are 

likely cleared by a competent immune response, which may explain why multiple 

infection decreases in HIV- cervical cancer cases, but not in HIV+, immunocompromised 

individuals. A better understanding of the early events influencing HPV control and 

persistence in the genital tract is needed to test this theory. In sub-Saharan Africa 

particularly, further research on the impact of HIV on these early events is desirable. 

Identification of the microbial risk factors for development of cervical cancer will allow 

for improved identification of those at elevated risk, while improving design and 

application of primary and secondary preventative treatment and screening.  
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Figure 1.2 Model for the cervical microbial and immune microenvironment driving 

cervical cancer. Microbial dysbiosis and infection at the cervical epithelium results in 

increased local expression of inflammatory and wound healing cytokines (IL1 and IL6). 

Chronic expression of these cytokines can result in increased genetic instability and 

reduced tumor-suppressor protein function in infected cells. These conditions increase 

HPV replication, while also increasing risk of mutation and integration of the HPV 

genome. Thus, the cervical microbiota can increase the risk for events necessary in the 

transformation of cells by HPV. 
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CHAPTER 2 

RELATIONSHIP BETWEEN THE CERVICAL MICROBIOME, HIV STATUS, 

AND PRECANCEROUS LESIONS 

 

ABSTRACT 

Nearly all cervical cancers are causally associated with human papillomavirus 

(HPV). The burden of HPV-associated dysplasia in sub-Saharan Africa is influenced by 

HIV. To investigate the role of the bacterial microbiome in cervical dysplasia, cytobrush 

samples were collected directly from cervical lesions of 144 Tanzanian women. The V4 

hypervariable region of the 16S rRNA gene was amplified and deep sequenced. Alpha 

diversity metrics (Chao1, PD whole tree, and operational taxonomic unit [OTU] 

estimates) displayed significantly higher bacterial richness in HIV-positive patients (P = 

0.01) than in HIV-negative patients. In HIV-positive patients, there was higher bacterial 

richness in patients with high-grade squamous intraepithelial lesions (HSIL) (P = 0.13) 

than those without lesions. The most abundant OTUs associated with high-grade 

squamous intraepithelial lesions were Mycoplasmatales, Pseudomonadales, and 

Staphylococcus. We suggest that a chronic Mycoplasma infection of the cervix may 

contribute to HPV-dependent dysplasia by sustained inflammatory signals. 
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IMPORTANCE 

HPV is known to be the causal agent in the majority of cervical cancers. 

However, the role of the cervical bacterial microbiome in cervical cancer is not clear. To 

investigate that possibility, we collected cervical cytobrush samples from 144 Tanzanian 

women and performed deep sequencing of bacterial 16S rRNA genes. We found that 

HIV-positive patients had greater bacterial richness (P = 0.01) than HIV-negative 

patients. We also observed that women with high-grade squamous intraepithelial lesions 

(HSIL) had greater cervical bacterial diversity than women with cytologically normal 

cervices. Data from our precise sampling of cervical lesions leads us to propose that 

Mycoplasma contributes to a cervical microbiome status that promotes HPV-related 

cervical lesions. These results suggest a greater influence of the bacterial microbiota on 

the outcome of HPV infection than previously thought. 

 

INTRODUCTION 

Human papillomavirus (HPV) is the causative agent responsible for 99% of 

cervical cancers (Formana et al., 2012). HPV contributes to about 4.8% of all cancers 

(Formana et al., 2012). The disease burden of HPV is most dramatic in developing 

regions of the world, with HPV contributing to 14.2% of cancers in sub-Saharan Africa 

(Formana et al., 2012). Cervical cancer disproportionately affects sub-Saharan Africa, 

where 9% of the world’s female population over 15 years old accounts for 14% of the 

world’s incidence of cervical cancer and 18% of cervical cancer-related deaths (De Vuyst 
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et al., 2013). The current study uses cervical swab samples obtained from Tanzania, 

which has among the highest cervical cancer mortality rates by country. 

 

sub-Saharan Africa also has among the highest HIV rates in the world. The 

association between HIV and cervical cancer has been better studied than any other factor 

associated with HPV-related cancers. HIV infection has been strongly linked to increased 

risk of infection with HPV and the severity of HPV pathogenesis (Adler et al., 2014; 

Salazar et al., 2015; Williamson, 2015). High-risk HPV genotypes are more prevalent in 

HIV-positive (HIV+) women, suggesting that HIV infection provides an environment 

where these high-risk HPVs can better establish infection and replicate (McDonald et al., 

2014). A likely factor in this is a decrease in T-cell surveillance, which results in an 

increase in HPV replication with decreasing CD4+ cell count, and other changes in the 

cervical immune microenvironment as HIV infection progresses. Multiple studies have 

shown an increase in HPV detection in cervical intraepithelial neoplasms in individuals 

with less than 200 CD4+ cells per μl of serum (Hanisch et al., 2013; Ezechi et al., 2014; 

Memiah et al., 2015; Menon et al., 2016). Thus, the cervical immune microenvironment 

may be a cofactor in suppression of cervical cancer. 

 

Changes in the cervicovaginal bacterial microbiome have been suggested to 

contribute to the development of precancerous cervical lesions (Guijon et al., 1992; Gillet 

et al., 2011; Clarke et al., 2012; Guo et al., 2012; Vriend et al., 2015; Mitra et al., 2016; 

Kyrgiou et al., 2017). Chronic inflammation of the cervix (cervicitis), which is a result of 
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cervicovaginal pathogens, leads to conditions like pelvic inflammatory disease (PID) and 

bacterial vaginosis (BV), both of which are associated with persistent HPV infection and 

cervical cancer (Giraud et al., 1998; Skapinyecz et al., 2003). Both PID and BV are more 

prevalent in sub-Saharan Africa and in HIV-positive populations (Msuya et al., 2002; 

Lewis, 2011; Swanepoel et al., 2013). Comparative genomic analyses in women infected 

with HIV have shown that a shift in microbial diversity as a result of BV is detectable; 

whether this shift directly affects formation of precancerous cervical lesions is not clear 

(Spear et al., 2008). Given that cervical cancer rates are expected to rise in sub-Saharan 

Africa as the HIV-positive population receives life-extending antiretroviral therapy 

(ART), it is even more important to understand the risk factors associated with the 

cervical microbiome. There are previous studies that have analyzed how cervical 

microbiota differ at different stages of cervical cytology or as a function of HIV status 

(Lee et al., 2013; Borgdorff et al., 2014; Oh et al., 2015; Audirac-Chalifour et al., 2016; 

Curty et al., 2017). The current study defines bacterial communities associated with 

cervical lesions and with HIV, which represents a significant advance. Cervical cytology 

is graded by pap smear screening for nuclear abnormalities according to the Bethesda 

guidelines. 

 

In this study, we utilized 16S rRNA gene deep sequencing on a set of 144 cervical 

swab samples from a cohort of Tanzanian women to gain an understanding of the 

differences in the cervical bacterial community composition as a function of cervical 

cytology grade and HIV status. The data presented here identify bacterial taxonomies 

associated with high-grade cervical lesions. In these studies, cervical lesions were 
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sampled directly by cytobrush, instead of cervicovaginal lavage sampling. The rationale 

behind this approach was that the sites of the lesions are where tumors form, thus bacteria 

associated with lesion sites are more likely to be relevant to the process of disease 

progression than those associated with other regions. 

 

RESULTS 

Demographics. Of the 144 patient samples, 41 were HIV positive (HIV+) and 

103 were HIV negative (HIV−), with an average patient age of 37 years old. Of these 144 

samples, 134 had HPV tests and deep sequencing reads of >1,000. The frequencies of 

HPV+ and HPV− samples with respect to HIV status are plotted in Figure 2.1A. There 

were 8 HIV− HPV− samples and 87 HIV− HPV+ samples, but there were no HIV+ 

HPV− samples and 39 HIV+ HPV+ samples. Among HIV− samples, HPV had a 

statistically significant effect (P = 0.02) on the cervical microbiome (Figure 2.1B and C). 

Those microbes which were enriched in HPV+ samples were Bacteriodetes and 

fusobacteria. Also, there was a decrease in Actinobacteria. Cervical cytology was 

determined to be negative for intraepithelial lesion or malignancy (NILM) in 23 samples, 

low-grade squamous intraepithelial lesions (LSIL) in 72 samples, and high-grade 

squamous intraepithelial lesions (HSIL) in 50 samples. Visual inspection with acetic acid 

(VIA), the standard for cervical lesion detection in Tanzania, was carried out immediately 

following sample collection. Twenty-six patients were found to be VIA positive for 

cervical lesions and 115 were VIA negative. All VIA-positive samples were identified as 

LSIL or HSIL, while several VIA-negative samples were found to be NILM, LSIL, or 

HSIL by pap smear. Odds ratios were used to identify risk factors for testing VIA 
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positive. Testing HIV+, HSIL, having >5 sexual partners, and having been infected with 

a sexually transmitted infection (STI) were identified as significant risk factors for 

positive VIA status (P = 0.0001, P = 0.038, P = 0.006, and P = 0.0008, respectively). 
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Figure 2.1 Effect of HPV status upon the cervical microbiome diversity. (A) A total 

of 134 cohort DNA samples were genotyped for HIV and HPV status. The frequency of 

samples were graphed as the following groups: HIV− HPV− (n = 8), HIV− HPV+ 

(n = 87), HIV+ HPV− (n = 0), and HIV+ HPV+ (n = 39). Taxonomic groups were 

determined by analysis of 16S deep sequencing results of bacterial DNAs. (B) Alpha 

diversity is graphed as a function of HIV− HPV− (n = 8) and HIV− HPV+ (n = 87). A t 

test showed a significant difference between the HPV− and HPV+ groups (P = 0.02). (C) 

Bacterial diversity is graphed with each phylum represented as a different color. The 

color code representing each bacterial phylum is shown in the legend to the right. 
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Cervical bacteria composition and richness. Samples rarefied to an even depth 

(1,000 reads) were used to generate 813 operational taxonomic units (OTUs). To assess 

whether the sampling depth was adequate, rarefaction curves were generated using 

observed OTUs for HIV status and cervical cytology (see Figure S1 in appendix). 

Rarefaction curves for both did not converge but showed a diminishing rate of new OTU 

identification as the number of reads per sample increased, implying that sampling depth 

was adequate for evaluating dominant members of the cervical bacterial community. 

Good’s coverage test showed that the sequencing depth was able to characterize 99.4% of 

the bacterial community on average. 

 

The taxonomic analysis of the reads revealed the presence of six main phyla 

(relative abundance of >1%) in the cervical epithelium, regardless of HIV or cervical 

cytology status (Figure 2.2). Firmicutes was the predominant phylum across all sampling 

groups, accounting for 41.3% of total reads. The average relative abundance of 

Firmicutes decreased slightly in HIV+ samples compared to HIV− samples (44.4% to 

40.2%) and varied by cervical cytology, though no obvious trend was apparent. When 

considering only the HIV+ samples, the relative abundance of Firmicutes appeared to 

decrease in patients with cervical lesions. Firmicutes reads were primarily from the genus 

Lactobacillus, which accounted for 21.9% of total reads. Tenericutes accounted for 1.5% 

of total reads and showed a clear increase in relative abundance with increasing severity 

of cervical lesions. In HIV− patients, Tenericutes increased from 0.3% of reads in NILM 

patients to 1.3% in HSIL patients (Figure 2.2C). In HIV+ patients, the shift is larger; the 

relative abundance of Tenericutes increased from 0.2% in NILM patients to 5.0% in 
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HSIL patients (Figure 2.2D). Tenericutes reads were primarily assigned to the 

Mycoplasma and Ureaplasma genera, which account for 1.1% and 0.2% of total reads, 

respectively. Proteobacteria, fusobacteria, Bacteroidetes, and Actinobacteria had smaller 

or less consistent shifts in relative abundance between HIV and cervical cytology 

categories. The relative abundance of Tenericutes and Bacteroidetes were significantly 

different between HIV+ and HIV− groups (P = 0.020 and P = 0.017, respectively). No 

other phyla reached significance on the basis of HIV status or cervical cytology. 

Comparison of the relative abundance of bacterial families (Figure 2.3) found that 

Mycoplasmataceae and Prevotellaceae were significantly more abundant in HIV+ 

patients (P = 0.03 and P = 0.07, respectively). No families were found to be significantly 

different in abundance on the basis of cervical cytology alone. However, when analyzed 

among HIV+ patients, Prevotellaceae was found to be significantly more abundant in 

cervical lesions (P = 0.068). 
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Figure 2.2 Phylum-level taxonomy of the cervical bacterial community composition 

as a function of HIV status and cervical cytology. (A) Phylum-level bacterial 

taxonomy of the cohort is displayed by HIV status. (B) Phylum-level bacterial taxonomy 

of the cohort is displayed as a function of cervical cytology. (C) Phylum-level taxonomy 

of HIV-negative patients as a function of cervical cytology grade. (D) Phylum-level 

taxonomy of HIV-positive patients as a function of cervical cytology grade. Each phylum 

is represented as a percentage of the total. 
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Figure 2.3 Relative abundance heatmap of family-level taxonomy of the cervical 

bacterial community composition as a function of HIV status and cervical cytology. 

(A) Fold effect of HIV+ on the family-level bacterial taxonomy within the cohort 

(normalized to 1). (B) Relative abundance heatmap of the family-level taxonomy of 

cohort versus cervical cytology. (C) Relative abundance heatmap of the family-level 

taxonomy of the cohort by cervical cytology, separated by HIV status. The data are 

presented as percentages of the total. The scale is shown to the right of the heatmap. 
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 Cervical bacterial diversity estimates. Alpha diversity metrics, Chao1, observed 

OTUs, and PD Whole Tree, displayed higher (P = 0.009) bacterial richness in HIV+ 

patients than in HIV− patients (Figure 2.4). A subset of these samples was matched such 

that the HIV− and HIV+ groups consisted of the same number of samples, with the same 

average age, and the same contribution of each cervical cytology to help to control for 

effects of these confounding variables and to ensure that differences in diversity estimates 

are not due to differences in sample size. In this matched subset, estimates also displayed 

higher (P = 0.003) bacterial richness in HIV+ patients. 
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Figure 2.4 Alpha diversity measurements of cohort subgroups. (A) Relationship 

between HIV status and alpha diversity of cervical bacteria. (B) Relationship between 

cervical cytology and bacterial alpha diversity in HIV− individuals. (C) Relative 

abundance of genus-level reads differentiated by cervical cytology in HIV+ and HIV− 

individuals. Statistical significance is indicated as follows: ns, not significant; *, P < 0.1; 

**, P < 0.05; ***, P < 0.01. (D) Relative bacterial diversity of cervical microbiota 

graphed as a function of HIV status. Each color represents a different taxonomic family 

as defined by deep sequencing of the 16S gene. 
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 Alpha diversity metrics were similar (P > 0.50) for the samples from patients at 

different cervical cytology grades (NILM, LSIL, or HSIL) in both matched and 

unmatched sets. When alpha diversity metrics were compared between cervical cytology 

groups separately for HIV+ samples, LSIL and HSIL trended toward a higher diversity 

compared to NILM (P = 0.198 and P = 0.261, respectively). Analysis of age-matched, 

HIV+ NILM/HSIL pairs maintained this trend (P = 0.264; Chao1 P = 0.13). Comparison 

of the relative abundance of genus-level reads between these groups showed a noticeably 

more diverse profile for HSIL samples, which lack the dominance of Lactobacillus and 

Haemophilus seen in NILM samples. 

 

Beta diversity analysis showed that bacterial communities were quite varied 

between samples (Figure 2.5); no discrete communities characterized a large number of 

samples. On average, the cervical bacterial communities of HIV-positive patients were 

shown to be significantly different from the communities of HIV-negative patients (P = 

0.001). Similarly, patients who tested positive for HPV tended to have different bacterial 

communities from those who tested negative for HPV (P = 0.008). Bacterial communities 

were also shown to differ significantly depending on cervical cytology among HIV-

positive patients (P = 0.05). 
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Figure 2.5 Heatmap of the Bray-Curtis distances between each sample (beta 

diversity). Samples are grouped into a similarity tree based on the abundance of each 

OTU. Lower values (red) indicate more similarity. HIV status and cervical cytology of 

each sample are indicated by color beneath each column and beside each row (HIV+ 

[red], HIV− [blue], NILM [green], LSIL [yellow], HSIL [orange]). 
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 Bacteria associated with cervical cytology states and/or HIV status. Linear 

discriminant analysis effect size (LEfSe) was used to identify bacterial taxonomies which 

differentiate cervical microbiota in normal individuals (NILM) from microbiota in 

patients with precancerous lesions (HSIL). The sum of reads at each taxonomic rank was 

considered. Gammaproteobacteria, s24_7, Paraprevotellaceae (nonverified taxonomy), 

and Finegoldia associated with NILM cervices, while Pseudomoriadaceae, 

Staphylococcus, and Mycoplasmatales associated with precancerous lesions. 

Mycoplasmatales were dominant among Tenericutes, resulting in the significant 

association seen between the phylum and cervical lesions. A distance-based redundancy 

analysis (db-RDA) analysis of bacterial communities as a function of HIV and/or cervical 

cytology is summarized in Figure S2. LEfSe was then used to compare HIV+, age-

matched pairs of NILM and HSIL patients to determine which bacteria may influence the 

development of lesions in high-risk, HIV+ populations. Mycoplasmatales were most 

strongly associated with cervical lesions in HIV+ patients, followed by Parvimonas and 

Streptococcus. In NILM patients, an abundance of Lactobacillus, especially 

Lactobacillus iners was found, and somewhat less significantly Finegoldia. LEfSe 

analysis of samples by HIV found several bacteria to be associated with being HIV+ 

(Figure 2.6C). An abundance of non-Lactobacillus bacilli was the most significant 

differentiating taxonomy between HIV-positive and -negative samples. Mycoplasma was 

also associated with HIV+ individuals, supporting the significant difference in relative 

abundance between HIV-positive and -negative groups shown previously using a direct 

Kruskal-Wallis comparison. Interestingly, Ureaplasma (a member of Mycoplasmatales) 

and Lactobacillus reuteri were associated with HIV− patients, while other members of 
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their respective families were associated with HIV+ patients. This suggests the existence 

of metabolic niches in the cervical microbiome which may be populated by pathogenic or 

nonpathogenic bacteria. 
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Figure 2.6 LEfSe linear discriminant analysis (LDA) scores. Microbes associated with 

cervical cytology status and/or HIV status are displayed. (A) Taxonomies differentiating 

bacterial microbiota in cytologically normal versus HSIL cervices. (B) Taxonomies 

differentiating bacterial microbiota in cytologically normal versus HSIL cervices in age-

matched HIV+ patients. (C) Taxonomies differentiating bacterial microbiota in HIV− 

versus HIV+ cervices. 
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DISCUSSION 

We found that HPV was in high abundance in the cohort (Figure 2.1A). All of the 

patients who were HIV positive were positive for one or more HPVs (Figure 2.1A). 

Among the HIV− samples, HPV was associated with at least a 10-fold increase in 

Bacteriodetes and fusobacteria as well as a decrease in Actinobacteria (Figure 2.1B and 

C). Previous studies support the conclusion that HPV affects the microbiome (Lee et al., 

2013). 

 

Certain members of the cervicovaginal microbiome are known to protect against 

infection and pathogenesis. The primary defense mechanisms of the cervicovaginal 

mucosa are antimicrobial peptides, a pH of less than 4.5, and a microbiome dominated by 

lactobacilli. An imbalance in these defenses can result in physiochemical changes that 

produce alterations of the vaginal mucosa and cervical epithelium (Audirac-Chalifour et 

al., 2016). In particular, an abundance of Lactobacillus crispatus shows an inverse 

relationship with detectable or symptomatic HIV, HPV, or herpesvirus infection 

(Borgdorff et al., 2014). This suggests that other cervicovaginal microbes may be 

important in preventing or enhancing the acquisition and pathogenesis of such infections. 

Microbes that are associated with enhanced pathogenesis have largely gone unidentified 

or unstudied, especially in the population most at risk, HIV-positive women in sub-

Saharan Africa. 
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In this study, HIV was shown to have a significant effect on the cervical 

microbiome, increasing bacterial richness and decreasing beta diversity. These results are 

similar to what has been reported for the cervicovaginal microbiome and suggest that 

changes in the cervical epithelium microenvironment brought on by HIV exert some 

selective pressure on cervical bacterial communities (Lee et al., 2013; Borgdorff et al., 

2014; Oh et al., 2015; Audirac-Chalifour et al., 2016; Curty et al., 2017). Mycoplasma 

was significantly more abundant in HIV-positive patients and was found to be one of the 

main categories of bacteria that differentiate the cervical microbiota of HIV-positive and 

HIV-negative individuals (Figure 2.3). Interestingly, bacteria of the order Bacilli, of 

which Lactobacillus is a member, were strongly associated with HIV-positive patients. 

The absence of Bacilli reads classified as Lactobacillus among the significant factors of 

HIV-positive cervical microbiota suggests that this may be due to a shift from protective 

to nonprotective Bacilli in HIV+ individuals. When the cohort was analyzed without 

taking HIV status into account, cervical cytology did not appear to have a statistically 

significant association with differences in the cervical microbiome (Figure 2.4B). 

However, when HIV was controlled for by separating analysis by groups of HIV-positive 

or HIV-negative patients only, differences in cervical bacterial communities that varied 

on the basis of cervical lesion status began to reach statistical significance (Figure 2.4C). 

This suggests that development of precancerous cervical lesions is associated with a 

certain microbiota. Among these microbiota, Mycoplasmatales stood out as the most 

significant differentiator between the cervical microbiota of a cervix with precancerous 

lesions from a cervix without precancerous lesions (Figure 2.6). Bacteria belonging to the 

order Mycoplasmatales also showed the clearest linear increase in abundance with 
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development of more severe lesions in both HIV-positive and HIV-negative populations. 

The most common Mycoplasmatales to infect the urogenital tract of women are 

Mycoplasma genitalium and Mycoplasma hominis. M. genitalium and M. hominis are 

noncommensal bacteria commonly associated with cervicitis, BV, PID, and HIV 

infection, though M. genitalium has been much better studied (Irwin et al., 2000; 

Mavedzenge and Weiss, 2009; Soni et al., 2010). It is not well understood whether HIV 

promotes Mycoplasma infection or persistence of an otherwise transient infection in an 

HIV-negative individual. One study found that HIV-positive women cleared M. 

genitalium infections more slowly than HIV-negative women did, and the infection 

recurred in 39% of the patients after clearance (Vandepitte et al., 2013). The role of M. 

genitalium infection in influencing initial infection of HIV also remains unclear; 

however, a strong association between the severity of M. genitalium infection and HIV 

shedding from the cervix has been shown (Manhart et al., 2008). What is clear is that M. 

genitalium infects the epithelia, disrupting tight junctions, and inducing a chronic 

inflammatory response. The potential for M. genitalium to influence replication of HIV 

suggests that host innate responses to M. genitalium infection may influence pathogenesis 

of other sexually transmitted infections. Induction of HPV in this way is particularly 

interesting based on the association between Mycoplasma and cervical lesions. Infection 

with M. genitalium increases the rate of infection with an HPV genotype associated with 

a high risk of developing cervical cancer (Ye et al., 2018). Recent work has shown that 

Mycoplasma also increases the risk of development of cervical lesions, supporting the 

association we report in this study (Ye et al., 2018). Mycoplasma can establish persistent, 

intracellular infections in epithelial cells, which may lead to bacterial vaginosis and/or 
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cervicitis. M. genitalium has been established as an independent, causal microbe 

responsible for cervicitis (Taylor-Robinson and Jensen, 2011). This suggests that 

Mycoplasma may act as both an intracellular and extracellular stressor, particularly if 

coinfection with HPV has taken place. This interaction would most likely involve 

inflammatory cytokines induced by Mycoplasma infection. Further study is needed to 

determine whether the inflammatory cytokines induced by Mycoplasma infection include 

cytokines that are associated with precancerous cervical lesions. 

 

Mycoplasma is a low-abundance microbe that has been shown to cause cervicitis. 

However, the lack of significant associations in previous metagenomic studies is largely 

due to a lack of optimization of statistical analyses for the presence of low-abundance 

microbes. In our study, Mycoplasma was a prominent result, likely due to the large HIV-

positive proportion of the cohort, wherein immunosuppression allowed higher abundance 

of the bacteria to accumulate. There was a linear increase in the abundance of 

Mycoplasmatales from NILM to HSIL seen in both HIV-positive and -negative groups. 

 

In this study, we took great effort to control for variation in the cervical 

microbiome so as to reduce confounding effects that might obscure the bacterial 

communities that were associated with HPV pathogenesis. The HIV-positive population 

is of particular interest, since they appear to show changed cervical microbiota associated 

with HPV pathogenesis (Fig. 2.2, 2.3, 2.4, and 2.6). Future studies, recruiting a cohort of 

all HIV-positive women with and without cervical lesions would be desirable in order to 
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better characterize HIV-associated microbiota which promote HPV infection and 

progression to cervical cancer. Currently, few cervical microbiome cohort studies have 

been conducted in HIV-positive populations. It is clear that variables such as diet, genetic 

background, antibiotics or ART, can dramatically affect the microbiota and thus should 

be carefully controlled at the point of recruitment to the study. 

 

Longitudinal studies of the cervical microbiome are needed to understand how microbe 

populations change over time, particularly in individuals with HSIL. Long-term 

longitudinal studies will allow determination of early changes in the cervical microbiota 

that may help predict the development of precancerous lesions. Because progression of 

HPV infection to cervical cancer is a process that takes decades, and in many individuals 

never reaches cancer at all, such a study would need to be large. Studies of the cervical 

microbiome can be further improved using metagenomic sequencing, rather than 16S or 

other targeted sequencing techniques that lack depth. 16S amplification ignores microbes 

that lack a gene to match the primers, for example, viruses, archaea, and eukaryotes are 

not accounted for. Because only a portion of one gene is being sequenced, the microbes 

present may be estimated only to the genus level or to a higher taxonomic level. Since the 

majority of medium- or large-scale cervicovaginal microbiome studies have used this 

method, the role of nonbacterial components of cervicovaginal microbiome in HPV 

infection and disease has not been characterized. 
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As the world’s HIV-positive population grows, cervical cancer is expected to 

become an even more significant problem, despite increasing coverage of antiretroviral 

treatment (ART). Compared to the risk reduction after ART seen in other AIDS-defining 

cancers like Kaposi’s sarcoma and non-Hodgkin’s lymphoma, the risk of cervical cancer 

is not significantly affected, and recurrence rates remain high with or without treatment 

(Foulot et al., 2008; Mungo et al., 2013; Russomano et al., 2013; Cobucci et al., 2015). 

Understanding microbes that influence this environment will help identify cervical 

microbiota associated with low- and high-grade cervical lesions. This may allow certain 

cervical microbiota to be used as diagnostic markers for those at high risk of developing 

cervical cancer and for the development of preventative probiotic or antibiotic treatments 

that could control the cervical microbiome by promoting bacterial colonization with a 

microbiota associated with healthy cervical cytology. Our studies have identified a 

unique microbiota associated with HSIL. Data derived from our precise sampling of 

cervical lesions lead us to propose that Mycoplasma contributes to a cervical microbiome 

status that promotes HPV-related cervical lesions. These results suggest a greater 

influence of the bacterial microbiota on the outcome of HPV infection than previously 

thought. 

 

MATERIALS AND METHODS 

 Participants and ethical precautions. This study reports findings derived from a 

larger cross-sectional cohort study analyzing demographics of HPV and cervical cancer 

in HIV-positive and -negative women from rural and urban Tanzania. 
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The cervical microbiome study participants were part of a larger ongoing study to 

follow HIV- and HPV-associated cervical dysplasia in women at Ocean Road Cancer 

Institute (ORCI), the only cancer treatment hospital in Tanzania. Between March 2015 

and February 2016, female patients undergoing cervical cancer screening were 

approached for enrollment in the study. Those who were pregnant, menstruating, under 

18, reported being sick in the past 30 days, or had a preexisting, non-HIV, immunologic 

defect were excluded from the study. Disease histories as well as physical examinations 

were carried out to rule out any clinical symptoms or visible signs for these conditions. 

Samples were collected at three sites in Tanzania: ORCI in Dar es Salaam and rural 

clinics in Chalinze and Bagamoyo. A total of 144 cervical cytobrush samples obtained 

from these women were sequenced, of which 134 samples produced at least 1,000 reads 

and complete demographic data was available for the women. Of these, 132 had complete 

HIV data and cervical cytology reads. 

 

Demographic data collection. All study participants gave informed consent and 

were evaluated by study clinicians. A set of pretested, standardized questionnaires was 

used to gather demographic data. All personal identifiers were removed from samples to 

ensure patient confidentiality. With the permission of the patients, medical history was 

retrospectively retrieved from hospital medical records. More than 30 variables were 

identified and assessed in the questionnaire. The current study uses only data collected 

regarding age and laboratory test results (pap smears, visual inspection with acetic acid 

[VIA], CD4 count, genotyping of HPV, results of serological testing for HIV-1). 
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Specimen collection, HIV, CD4, and pap tests. Blood samples were collected 

via venipuncture into acid-citrate-dextrose tubes and processed using centrifugation at the 

on-site study laboratory within 6 h of being drawn. The separated plasma was tested at 

the ORCI, as part of standard of care, using Standard Diagnostics HIV-1/2 3.0 detection 

kit and BD products CD4 FITC, CD8 PE, and CD3 Per CP antibodies to test the CD4 

counts using a BD Accuri C6 Plus. Cervical cytobrush samples and pap smears were 

collected from all patients. Pap smears were examined by at least three trained cytologists 

and classified according to the pap classification protocol: negative for intraepithelial 

lesion or malignancy (NILM); atypical squamous cells of undetermined significance 

(ASC-US); low-grade squamous intraepithelial lesions (LSIL); atypical squamous cells 

but cannot exclude high-grade lesions (ASC-H); high-grade squamous intraepithelial 

lesions (HSIL). Cervical cytobrush specimens were placed in lysis buffer and then 

shipped to the Nebraska Center for Virology at the University of Nebraska-Lincoln 

(UNL) for processing. 

 

DNA isolation, 16S rRNA library preparation, and sequencing of the V4 

region. Cervical cytobrush samples were vortexed and separated from the brush with 

lysis buffer. DNA was extracted from the lysis buffer using the Qiagen Tissue extraction 

kit (Dneasy) according to the manufacturer’s protocol. The DNA concentration was 

determined by UV spectrophotometer at 260/280 nM. 
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DNA was then used for tag sequencing of the V4 hypervariable region of the 16S 

rRNA gene. A 250-bp section of the V4 region was amplified using universal primers 

described in (Kozich et al., 2013). The PCRs were performed in 25 μl. The cycling 

conditions were as follows: an initial denaturation of 98°C for 3 min, followed by 25 

cycles, with 1 cycle consisting of denaturation at 98°C for 30 s, annealing at 55°C for 

30 s, and extension at 68°C for 45 s, and then a final elongation of 68°C for 4 min. 

Following amplification, PCR products were analyzed on a 2% agarose gel to confirm 

correct product size. Normalized amplicons (1 to 2 ng/μl) from 144 samples were pooled 

together using an epMotion M5073 liquid handler (Eppendorf AG, Hamburg, Germany). 

Pooled libraries were sequenced using the Illumina MiSeq platform using the dual-index 

sequencing strategy outlined by (Kozich et al., 2013). 

 

HPV genotyping. To determine HPV status, DNA samples were subjected to 

HPV redundant primer using the GP5+/GP6+ primer set, which detect up to 40 different 

mucosal HPVs (Clifford et al., 2005; Ng’andwe et al., 2007; Chisanga et al., 2015). 

Samples found to be HPV positive were genotyped for HR-HPVs (types 16, 18, 30, 31, 

33, 35, 39, 45, 51, 52, 56, 58, 59, and 66) and LR-HPVs (types 6 and 11) using a low-cost 

multiplex PCR assay (Samwel et al., 2019). 

 

Data processing and bacterial community analysis. The sequencing data 

obtained from the sequencer was subsequently analyzed using the Illumina MiSeq data 

analysis pipeline developed by the Fernando lab (described in detail at 
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https://github.com/FernandoLab). Briefly, initial quality filtering was carried out to 

remove sequences that had ambiguous bases, incorrect lengths, and inaccurate 

assemblies. Subsequently, the quality-filtered reads were run through the UPARSE 

pipeline (http://www.drive5.com/uparse/) and subjected to chimera filtering and OTU 

clustering (at a similarity threshold of 97%), followed by the generation of an OTU table. 

Taxonomy was assigned to the OTUs using the assign_taxonomy.py command available 

in QIIME using the latest version of the Greengenes database (May 2013). 

 

Statistical analyses. The OTU table was rarefied across samples to the lowest 

sample depth (1,000 reads) using QIIME based on the Mersenne Twister pseudorandom 

number generator. All statistical analyses were performed with samples at an even depth. 

Bar charts summarizing average taxonomic makeup of samples by HIV status and 

cervical cytology were constructed from the rarefied OTU table in QIIME. Heatmaps 

showing the relative abundance of bacterial taxonomic families were constructed using 

the “plot_ts_heatmap” command using the mctoolsR package for R. Differences in 

bacterial families by HIV status or cervical cytology were evaluated using the 

“taxa_summary_by_sample_type” command in mctoolsR using Kruskal-Wallis. Families 

with less than 1% abundance were excluded in this analysis. Alpha diversity estimators 

Chao1, observed OTUs, and PD whole tree and rarefaction curves were calculated for the 

overall bacterial community using QIIME. Good’s coverage test was performed to 

evaluate whether adequate sampling depth was achieved. Mean alpha diversity estimates 

for HIV-positive, HIV-negative, NILM, LSIL, and HSIL groups were compared using 

nonparametric two-sample t tests using Monte Carlo permutations in QIIME. The 
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weighted and unweighted UniFrac distance matrix for bacterial communities were 

calculated using QIIME. Even depth across samples avoided biases that could be 

encountered when using the UniFrac metric (Lozupone et al., 2011). Bacterial 

community composition differences were evaluated using the unweighted UniFrac 

distance matrix as an input for a distance-based redundancy analysis (db-RDA) in 

QIIME, where HIV status, cervical cytology, and HPV status were used as main effects. 

A heatmap was generated using the heatmap.2 command in the “ggplots” package for 

“R” using the Bray-Curtis distance matrix to visualize relationships between samples. 

Significance was declared at P ≤ 0.1 throughout this study. The linear discriminant 

analysis effect size (LEfSe) was used to identify specific OTUs that differed HIV status 

and cervical cytology (Segata et al., 2011). LEfSe uses a nonparametric factorial Kruskal-

Wallis rank sum test followed by a linear discriminant analysis to identify both 

statistically significant and biologically relevant features. The relative abundances of the 

OTUs were used as input for LEfSe. Demographic data were examined using odds ratio 

and an associated P value to test for factors associated with HIV status and/or a positive 

VIA status. All P values are reported as FDR-corrected P values. 

 

Ethics statement. All human subject protocols were approved by safety 

committees at the Ocean Road Cancer Institute (ORCI) and UNL in accordance with the 

Helsinki Declaration. Participation by patients was entirely voluntary, and written patient 

consent was required for inclusion in the study. 
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CHAPTER 3 

MYCOPLASMA CO-INFECTION IS ASSOCIATED WITH CERVICAL 

CANCER RISK 

 

ABSTRACT 

 Tanzania faces one of the highest cervical cancer burdens in the world. Recent 

work has suggested that the bacterial family Mycoplasmataceae is associated with higher 

levels of HPV, HIV, and pre-cancerous cervical lesions. Mycoplasmataceae infection in 

Tanzania is not well understood, especially when considering the differences between 

sexually transmitted species. To establish the prevalence of common Mycoplasmataceae 

cervical infections and evaluate their relationship with risk factors for cervical cancer, 

1160 Tanzanian women responded to an epidemiological questionnaire and were tested 

for HIV, HPV, cervical lesions, Mycoplasma genitalium, Mycoplasma hominis, 

Ureaplasma spp., and Lactobacillus iners. A subset of 134 women were used for 16s 

metagenomic sequencing of cervical DNA to establish the relative abundance of 

Mycoplasmataceae and Lactobacillus present. PCR detection of bacteria at the cervix 

found Ureaplasma spp. in 51.4% of women, M. hominis in 34%, M. genitalium in 2.3%, 

and L. iners in 75.6%. M. hominis and M. genitalium infection were significantly more 

prevalent among women with HPV and HIV. M. hominis prevalence was similar despite 

severity of cervical lesions, however abundance of M. hominis increased significantly in 

women with cervical lesions. These results emphasize the importance of understanding 

the relationship between M. hominis and HPV-related cervical pathogenesis. 
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INTRODUCTION 

 Cervical cancer mortality is higher in Eastern Africa than in any other region of 

the world (Formana et al., 2012). In Tanzania, cervical cancer is the most prevalent 

cancer in females (Human Papillomavirus and Related Diseases Report WORLD). 

Tanzania faces many issues which contribute to the burden of cervical cancer, including 

high HPV prevalence, high HIV prevalence, low condom use, irregular preventative 

screening, and lack of full implementation of the pap smear. In Europe and the U.S. 

preventative screening for cervical cancer is usually done by HPV testing or checking for 

lesions in the cervical epithelium via a pap smear. In Tanzania however, cervical 

screening is mainly visual inspection with acetic acid (VIA), which is markedly less 

sensitive for early detection of cervical lesions than the pap smear and does not grade 

lesions by severity. Cervical lesions detected during screening are usually associated with 

HPV infection, however recent studies have proposed that the cervical microbiome may 

be an important co-factor for the development of pre-cancerous and cancerous lesions 

(Mitra et al., 2016). Currently, it is not understood how, or which cervical microbiota 

contribute to cervical lesions, though in a previous study we found that the bacterial 

family Mycoplasmataceae was the most significant differential cervical bacteria between 

women with normal cervical cytology and those with pre-cancerous lesions in Tanzania 

(Klein et al., 2019). Mycoplasmataceae are the smallest known bacteria, in both physical, 

and genomic size. During infection of the cervicovaginal epithelium, Mycoplasmataceae 

establish a persistent, intracellular infection which can lead to inflammatory cytokine 

mediated tissue injury. Although it is currently unknown if there is a mechanistic 

relationship between HPV and Mycoplasmataceae, the nature of Mycoplasma infection 
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allows for direct interaction with HPV during co-infection of a single cell, and indirect 

interaction through cytokine responses. 

 

Mycoplasmataceae is comprised of the genera Mycoplasma and Ureaplasma, 

which include several sexually transmitted species with global prevalence. Most notably, 

M. hominis, M. genitalium, and U. urealyticum are relatively common sexually 

transmitted infections (STIs) associated with cervical inflammation (Byers et al., 2009; 

Dehon et al., 2016; Onywera et al., 2019). Among Mycoplasma, only M. genitalium is 

sometimes included in regular STI screening, although M. hominis is believed to have 

similar pathogenesis. As a result, M. hominis has received significantly less study, and its 

relationship with HPV, HIV, and cervical lesions remains unclear. The prevalence of M. 

genitalium, M. hominis, and U. urealyticum in Tanzania has not previously been 

established in a large and diverse cohort, nor has it been considered alongside established 

risk factors for cervical dysplasia. 

 

It has been suggested that high levels of cervicovaginal dysbiosis and 

transmission of Mycoplasma and other STIs in Eastern Africa is in part due to the 

commensal cervicovaginal bacteria in the region. Specifically, L. iners is the most 

prevalent cervicovaginal Lactobacillus in Eastern Africa, especially in HIV+ women, but 

has been shown to be less protective against cervicovaginal infection than other 

Lactobacillus (Jespers et al., 2015b). Whether a cervical microbiome dominated by L. 

iners is conducive to infection and proliferation of Mycoplasmataceae, and the 
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relationship between the bacteria and HPV pathogenesis, remains unclear. This study 

aims to establish the prevalence of common Mycoplasmataceae species in Tanzania and 

evaluate their relationship with L. iners and risk factors for cervical cancer, including 

HPV, HIV, and lifestyle factors. 

 

RESULTS 

 Cohort demographics. DNA was successfully isolated from the cervical 

cytobrush samples of 1060 women. Complete data of cervical cytobrush DNA, pap-

smear, VIA, HIV status, and epidemiological questionnaire response was available for 

1002 women. Women with incomplete data were included in analyses where the missing 

data was not relevant. The cohort averaged 38.3 years old, ranging from 18 to 73. A large 

majority (92.3%) of the women screened reported at least one previous pregnancy, and 

84.1% were sexually active within the 3 months preceding sampling. 67.4% of the cohort 

reported the use of at least one type of birth control, although it is unclear if they had 

recently used birth control at time of sampling. 17.6% of the cohort had tested positive 

for HIV and was on antiretroviral therapy at the time of sampling. Using a multiplex 

HPV genotyping PCR, we found that 46.1% of the cohort tested positive for at least one 

HPV genotype, and 38.2% of HPV positive women were coinfected with at least two 

genotypes. 

 

There was a significant difference between the identification of cervical lesions 

between VIA and pap smear. Only 17% of women with pap smears graded HSIL had 
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lesions identified by VIA. Additionally, although 88.9% of the cohort tested negative for 

cervical lesions by VIA, only 20.1% of the cohort was graded NILM by pap smear. The 

majority of women had pap smears exhibiting low-grade cervical dysplasia: ASCUS 

(24.8%) and LSIL (30.8%). More severe cervical dysplasia was apparent in 24.4% of 

women (14.9% ASC-H, 9.5% HSIL). 

Mycoplasma Screen. Table 3.1 shows the breakdown of all data collected in this 

study and the variation of cervical cancer risk factors and Mycoplasmataceae prevalence 

within each group. PCR detection of Mycoplasmataceae at the cervix found a high 

prevalence of the bacterial family among Tanzanian women, 66% of whom tested 

positive for at least one Mycoplasmataceae. Ureaplasma spp. was the most prevalent 

Mycoplasmataceae, detectable in 51.4% of the cohort, followed by Mycoplasma hominis 

in 34%, and Mycoplasma genitalium in only 2.3% of women. Lactobacillus iners was 

more prevalent than Mycoplasmataceae, detectable in 75.6% of women. Detection of any 

Mycoplasmataceae significantly increased the likelihood of detection of other 

Mycoplasmataceae species in that individual (Supplemental 1). Women with L. iners also 

had higher prevalence of Ureaplasma spp. and M. hominis than woman without L. iners. 

Both M. hominis and M. genitalium were more common in women who reported 

previously having been diagnosed with an STI, though it is unclear if the STI was 

Mycoplasma related (Supplemental 1.3 and 1.4). Mycoplasma was prevalent amongst all 

age groups. 
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Table 3.1 Prevalence of Mycoplasma, HPV, HIV, and epidemiological factors. Values 

are listed as percentage of women positive for the condition labeled in each column. The 

cohort is broken down into sub-groups in each row, depending on results from testing or 

survey. A one-proportion Z-test was used to identify prevalence in subgroups that differ 

significantly from the cohort average. Values were considered significant when p < 0.05 

and are labeled with a `*`. The column ‘LSIL+’ includes LSIL and ASCUS pap smear 

results for ease of interpretation. Similarly, the column ‘HSIL+’ includes HSIL and 

ASC-H pap smear results. 

 

  

n Urea-

plasma 

spp. 

M. 

homin

is 

M. 

genital

ium 

L. iners HPV+ HIV+ NILM LSIL* HSIL* Age 

Total 1060 51.4 34 2.3 75.6 46.1 17.6 20.1 55.5 24.4 38.3 

    
          

HPV   
          

HPV+ 489 53.6 42.9* 2.2 82.4* -- 24.8* 17.3 52.6 30.1* 36.9 

HPV- 571 49.6 26.3* 2.3 69.7* -- 11.4* 22.4 58.1 19.5* 39.5 

1 HPV 302 55.3 38.1 1* 79.8 -- 19.4 20.7 51.7 27.6 37.2 

2+ HPV 187 50.8 50.8* 4.3 86.6* -- 33.5* 11.9* 54 34.1* 36.5 

    
          

HIV   
          

HIV+ 181 60.8* 64.6* 6.1* 81.8* 65.2* -- 16.9 60.1 23 39.2 

HIV- 847 49.5 27.6* 1.5 74.3 42.3* -- 20.8 54.6 24.6 38.1 

    
          

Cytology   
          

NILM 208 48.6 32.7 2.4 75.5 39.9 14.9 -- -- -- 38.4 

ASCUS 257 53.3 36.6 1.2 77.8 34.6* 19.5 -- -- -- 37.6 

LSIL 319 48.9 32.3 2.8 74.9 35.7* 18.8 -- -- -- 38.8 

ASC-H 155 55.5 35.5 1.3 75.5 41.3 14.8 -- -- -- 37.6 

HSIL 98 55.1 33.7 2 66.3 50 19.8 -- -- -- 39.5 

    
          

VIA   
          

0 873 51.1 33.7 2.3 75.6 44.3 14.7* 21 55.7 23.3 38 

1 109 49.5 35.8 2.8 79.8 63.3* 33* 15.7 55.6 28.7 37.1 
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Age   
          

18-29 209 54.5 33.5 2.4 83.7* 52.6 10.6* 21.4 53.4 25.2 25.8 

30-39 374 50.3 37.7 2.9 76.7 50 20.9 18.1 55.5 26.4 34.5 

40-49 321 51.1 33.6 2.2 74.8 41.7 19.2 21.6 58.1 20.3 44.1 

50+ 133 51.9 27.1 0.8 59.4* 36.1* 16 21.4 53.4 25.2 54.8 

    
          

Last Sex   
          

< 3 months 876 52.9 35.3 2.5 77.4 47.1 15.7 19.6 56.7 23.7 37.4 

4-12 months 81 48.1 32.1 1.2 65.4 38.3 29.1* 17.5 50 32.5 39.6 

> 12 months 85 42.4 23.5* 1.2 64.7* 44.7 26.2 28.2 50.6 21.2 46.6 

    
          

Sex 

Partners 

  
          

 1-2 455 47.9 25.5* 1.5 71.4* 38.5* 8.9* 20 59.1 20.9 38.6 

 3-5 465 54.8 40.2* 2.8 77.4 52.9* 21.4* 19.2 54.3 26.5 37.7 

> 5 102 52 44.1* 2.9 82.4 50 36.6* 26.2 47.5 26.3 39.3 

    
          

Pregnancies   
          

0 80 47.5 32.5 2.5 76.3 52.5 8.9* 20.3 58.2 21.5 32.5 

 1-2 319 53.9 36.4 2.8 82.8* 50.5 19.2 21 57.1 21.9 32.9 

 3-5 492 51 33.3 2 72.8 45.3 19.3 21.1 55.7 23.2 39.8 

> 5 151 51 32.5 2 68.2 37.1* 13.2 15.4 51 33.6* 47.7 

    
          

Birth 

Control 

  
          

No 340 49.7 33.8 3.2 73.2 47.1 21.4 20.7 56.8 22.5 38.3 

Yes 702 52.6 34.2 1.9 76.5 45.9 15.8 19.9 55.1 25 38.3 

    
          

Birth 

Control 

Type 

  
          

Pills 370 51.6 34.6 1.4 75.1 42.7 17 19 56.6 24.4 40.7 

Injection 416 54.6 35.8 2.6 78.1 48.8 15.9 20 50* 30* 37.4 

Condom 44 43.2 40.9 4.5 81.8 61.4* 47.6* 27.3 50 22.7 35.9 

Implant 124 57.3 37.9 1.6 78.2 42.7 12.9 19.1 64.2* 16.7* 33.9 

Loop 70 47.1 24.3 2.9 67.1 42.9 2.9* 20.6 47.1 32.3 43.8 

Natural 12 41.7 33.3 0 91.7* 41.7 16.7 25 58.3 16.6 40.1 

    
          

STI Self-

Report 

  
          

No recent 939 51.8 33.2 1.9 75.5 45.4 15.1* 19.7 57 23.3 38.2 

Yes recent 73 53.4 38.4 4.1 75.3 50.7 37.5* 27.4 42.5* 30.1 39 
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PCR 

Detection 

  
          

Ureaplasma 

spp. 

545 -- 38 2.9 80.6* 48.1 20.8 18.9 54.9 26.2 38.1 

M. hominis 360 57.5* -- 3.9 83.6* 58.3* 33.3* 19.3 55.8 24.9 37.7 

M. 

genitalium 

24 66.7 58.3* -- 83.3 45.8 45.8* 23.8 57.1 19.1 35.5 

L. iners 801 54.8 37.6* 2.5 -- 50.3* 19 20.2 56.4 23.4 37.4 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 
 

Effects of HIV Infection. Being HIV+ increased odds of detection of all 

Mycoplasmataceae and L. iners. Mycoplasma hominis and genitalium infections were 

especially prevalent among HIV+ women when compared to HIV- (odds ratio (OR) 4.8 

and 4.2 respectively), while Ureaplasma spp. and L. iners were only slightly more 

common (OR 1.6 for both). This data supports previous research suggesting the HIV+ 

population acts as a reservoir for M. hominis infection (Djigma et al., 2011). Mycoplasma 

was still quite prevalent among HIV- women (49.5%, 27.6%, 1.5% prevalence 

respectively for Ureaplasma spp., M. hominis, and M. genitalium respectively). 

 

 Effects of HPV Infection. Women infected with at least one HPV genotype were 

significantly more likely to have cervical dysplasia, especially high-grade lesions (OR 

1.3773 for non-NILM, OR 2.7108 for HSIL). HPV+ women were also more likely to be 

infected with M. hominis (OR 2.1, P<0.0001), while M. genitalium and Ureaplasma did 

not have a significant increase in prevalence associated with HPV (Figure 3.1). 

Commensal bacteria L. iners, was more likely to be present in HPV+ women (OR 2.0, 

P<0.00001). Co-infection with 2 or more different HPV genotypes was associated with 

higher prevalence of M. hominis and M. genitalium than women infected by 1 HPV 

genotype. Multiple HPV infection was much more common amongst HIV+ women, 

however this increase in Mycoplasma prevalence was also apparent in HIV- women with 

multiple HPV when compared to HIV-, single HPV women. 
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 Effects of Cervical Cytology. Mycoplasmataceae were not significantly more or 

less prevalent among women with cervical dysplasia (Figure 3.1). Multivariate analysis 

of cervical cytology found that prevalence of HPV, number of pregnancies, use of 

injection-based birth control, and self-reporting of a previous STI varied significantly 

between cytology groups (Figure S3.1). Only HPV prevalence had an obvious positive 

relationship with severity of cervical lesions, while having more than 5 pregnancies or 

using injection-based birth control were associated with increased odds of high-grade 

cervical lesions. 
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Figure 3.1 Relationship between Mycoplasmataceae abundance and cervical cancer 

risk factors. (a) Overall prevalence of the screened Mycoplasmataceae and Lactobacillus 

species in the cohort; (b) Comparison of prevalence between HIV+ and HIV- women; (c) 

Comparison of prevalence between HPV+ and HPV- women; (d) Comparison of 

prevalence between women based on cervical cytology. 
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 Effects of Other Factors. Sexual history was an important factor for detection of 

Mycoplasmataceae and L. iners. Women with 3 or more unique previous sex partners 

were significantly more likely to be infected with M. hominis, HPV, and HIV and were 

more likely to test HSIL. Prevalence of M. hominis and L. iners was significantly higher 

among women who had been sexually active during the 3 months prior to sampling 

(Figure S3). Self-reported condom use was very low, especially for HIV- women (2.6%), 

contributing to increased transmission of Mycoplasma among sexually active women. 

Aging was associated with a significant decrease (P=0.0004) in L. iners prevalence, 

decreasing from 83.7% in women 18-29 to 59.4% in women 50+. Age did not appear to 

be related with a shift in Mycoplasmataceae prevalence, though women aged 50+ did 

have somewhat lower prevalence of M. hominis and M. genitalium, possibly related to 

menopause or decreased sexual activity. L. iners prevalence also decreased in women 

with 3 or more previous pregnancies, however this may have been influenced by a higher 

average age among high gravidity women. 

 

 Relative Abundance. A subset of 104 cervical samples was analyzed via 16s 

metagenomic sequencing to establish the relative abundance of Mycoplasmataceae and L. 

iners present. Each sample was rarefied to an even depth of 1,000 reads. After 

rarefication, women with more than 5 reads from Ureaplasma spp., M. hominis, M. 

genitalium, or L. iners were considered positive for that bacteria. The prevalence of each 

bacteria was similar to results from PCR screening, though no M. genitalium reads were 

present among the subset of samples tested. By using the number of reads generated we 

were able to determine the relative abundance of each bacteria in each woman’s cervical 
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microbiome. Using this, we estimated the relative abundance of the screened bacteria 

within cervical cytology groups by adjusting the prevalence of a bacteria by the average 

relative abundance of that bacteria in positive samples of each cytology grade. When 

looking at the relative abundance of Mycoplasmataceae in women with cervical 

dysplasia, it becomes apparent that a significantly larger portion of the cervical 

microbiota is M. hominis (Figure 3.2). M. hominis is the only Mycoplasmataceae which 

increases linearly with the development of more severe cervical lesions. Ureaplasma spp. 

were most abundant among HSIL women, however LSIL had a lower abundance than 

NILM women. L. iners was least abundant among HSIL women, but significantly more 

abundant in LSIL than NILM women. Lactobacillus crispatus is considered to be the 

most protective cervicovaginal microbe. Though we did not PCR screen for L. crispatus, 

no women with L. crispatus reads by 16s had M. hominis, suggesting L. crispatus 

protects against Mycoplasma infection, while L. iners does not. 
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Figure 3.2 Relative abundance of Mycoplasma based on cervical cytology. Abundance 

among infected is the mean of positive 16s samples (n) adjusted by prevalence determined by 

PCR screen. Error bars represent standard error of the mean. (a) Expected number of M. 

hominis 16s DNA reads for 100 Tanzanian women of varying cervical cytology; (b) Expected 

number of Ureaplasma spp. 16s DNA reads for 100 Tanzanian women of varying cervical 

cytology; (c) Expected number of L. iners 16s DNA reads for 100 Tanzanian women of varying 

cervical cytology. 
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DISCUSSION 

 In this study, we found that cervical Mycoplasma infection is prevalent among 

Tanzanian women. Even though M. genitalium is more often screened for as a 

cervicovaginal infection, we found that M. hominis and Ureaplasma spp. were 

significantly more common in Tanzania. Similar results have been found in M. hominis 

and M. genitalium screens from other sub-Saharan African countries (You et al., 2002; 

Agbakoba et al., 2007; Redelinghuys et al., 2013; Kouegnigan Rerambiah et al., 2015b). 

The primers we used to detect Ureaplasma spp. included both U. urealyticum and U. 

parvuM. U. urealyticum is known to be a cervicovaginal pathogen, however U. parvum is 

sometimes commensal in the uterus. Because we took our samples partially from the 

endocervix, it is likely U. parvum originating from the internal cervical os may also have 

been detected. For this reason, we did not consider Ureaplasma spp. as a non-commensal 

infection and focus on the importance of M. hominis as a common, poorly understood 

cervical infection in Tanzania.  

 

Women who reported having had an STI were more likely to have a M. hominis 

or M. genitalium infection, however most women with such an infection did not report 

any history of STI’s. This indicates that most M. hominis and M. genitalium infections 

are asymptomatic, and thus go untreated. Currently, it is unclear how long a Mycoplasma 

infection of the cervix can persist while untreated. We detected higher prevalence of M. 

hominis among sexually active women, even those with a single long-term partner, 

suggesting sex may be important for persistence of M. hominis infection. Despite similar 

prevalence, significantly higher abundance of M. hominis in the presence of cervical 
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lesions, especially high-grade cervical lesions, suggests that proliferation of M. hominis 

and development of cervical lesions have some form of mechanistic relationship. It is 

possible proliferation of M. hominis drives the formation of cervical lesions, or that 

cervical lesions create a microenvironment that favors proliferation of M. hominis. 

Longitudinal sampling of M. hominis abundance and cervical cytology would help to 

clarify this relationship. M. hominis may also contribute to HPV-driven cervical lesion 

formation by increasing persistence of the pathogens during co-infection. We found that 

prevalence of M. hominis was significantly higher among HPV+ women, which could 

result from prolonged persistence increasing the likelihood of sampling an infection. This 

idea is supported by previous studies which have identified cervical pathogens, including 

Mycoplasma, as cofactors in the persistence of HPV infection (Gillet et al., 2011; Clarke 

et al., 2012; Guo et al., 2012; Vriend et al., 2015). The intracellular nature of 

Mycoplasma infection is particularly interesting when considering its relationship with 

HPV. Intracellular bacterial infections may directly interact with HPV replication in 

epithelial cells, while also contributing to the epithelium’s immune microenvironment by 

influencing cytokine expression. The data presented here highlights the need for further 

research into M. hominis prevalence and pathogenesis, especially related to HPV, HIV, 

and cervical cancer. 

 

Our data supports previous research suggesting L. iners is an especially common 

commensal cervical bacteria in sub-Sahara African countries. Increased prevalence of 

commensal L. iners among HIV+, HPV+, and Mycoplasmataceae+ women suggests that 

L. iners does not protect the cervix from infection, as other Lactobacillus species are 
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believed to do. This is further evidenced by our 16s data, where co-detection of M. 

hominis and L. iners was common, but M. hominis and L. crispatus were never detected 

together. 

 

This study highlights the need to account for significant regional differences in 

cervicovaginal microbiota, especially Mycoplasma. The high prevalence of M. hominis 

and its association with risk factors for cervical cancer (HPV, HIV, and cervical lesions) 

demonstrates the importance of better understanding M. hominis pathogenesis. Our 

results suggest screening for Mycoplasma is especially important in Tanzania, 

particularly among women at high risk for cervical cancer. Establishing a screening and 

treatment protocol to address the prevalence of asymptomatic Mycoplasma infection 

could reduce transmission of HPV and HIV by reducing susceptibility to infection, and 

potentially prevent progression of cervical lesions. Long-term, longitudinal studies are 

needed to clarify whether Mycoplasma becomes abundant at the cervix preceding or 

following the development of lesions, which would help to clarify if Mycoplasma is 

driving formation of cervical lesions or benefitting from the microenvironment associated 

with lesions. 

 

MATERIAL AND METHODS 

 Participants and ethical precautions. This study reports findings derived from 

an ongoing cross-sectional cohort study analyzing demographics of HPV and cervical 

cancer in HIV-positive and -negative women from rural and urban Tanzania. Between 



71 
 

March 2015 and February 2017, female patients undergoing cervical cancer screening 

were approached for enrollment in the study. Those who were pregnant, menstruating, 

under 18, reported being sick in the past 30 days, or had a preexisting, non-HIV, 

immunologic defect were excluded from the study. Disease histories and physical 

examinations were used to rule out any clinical symptoms or visible signs for these 

conditions. Samples were collected at three sites in Tanzania: Ocean Road Cancer 

Institute (ORCI) in Dar es Salaam and rural clinics in Chalinze and Bagamoyo. After 

collection of cervical samples and demographic data, samples from 1060 women were 

screened for Mycoplasma species and Lactobacillus iners. A subset of 132 women were 

also used for 16s metagenomic sequencing. 

 

Demographic data collection. This study was approved for human subjects work 

by the University of Nebraska-Lincoln Institutional Review Board (IRB) under protocol 

ID: 14709. All study participants gave informed consent and were evaluated by study 

clinicians. A set of pretested, standardized questionnaires was used to gather 

demographic data. All personal identifiers were removed from samples to ensure patient 

confidentiality. With the permission of the patients, medical history was retrospectively 

retrieved from hospital medical records. More than 30 variables were identified and 

assessed in the questionnaire, including time since last sexual intercourse, number of 

sexual partners, number of pregnancies, use and type of birth control, and self-reported 

history of STI infections. 

Specimen collection, HIV and pap tests. Blood samples were collected via 

venipuncture into acid-citrate-dextrose tubes and processed using centrifugation at the 
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on-site study laboratory within 6 h of being drawn. The separated plasma was tested at 

the ORCI, as part of standard of care, using Standard Diagnostics HIV-1/2 3.0 detection 

kit. Cervical cytobrush samples and pap smears were collected from the cervical 

transformation zone of all patients. Pap smears were examined by at least three trained 

cytologists and classified according to the pap classification protocol: negative for 

intraepithelial lesion or malignancy (NILM); atypical squamous cells of undetermined 

significance (ASC-US); low-grade squamous intraepithelial lesions (LSIL); atypical 

squamous cells but cannot exclude high-grade lesions (ASC-H); high-grade squamous 

intraepithelial lesions (HSIL). Cervical cytobrush specimens were placed in lysis buffer 

and then shipped to the Nebraska Center for Virology at the University of Nebraska-

Lincoln (UNL) for processing. 

 

DNA isolation. Cervical cytobrush samples were vortexed and separated from the 

brush with lysis buffer. DNA was extracted from the lysis buffer using the Qiagen Tissue 

extraction kit (Dneasy) according to the manufacturer’s protocol. The DNA concentration 

was determined by UV spectrophotometer at 260/280 nM. 

 

HPV genotyping. To determine HPV status, DNA samples were genotyped for 

HR-HPVs (types 16, 18, 30, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 66) and LR-HPVs 

(types 6 and 11) using a low-cost multiplex PCR assay (Samwel et al., 2019). 

Mycoplasmataceae and L. iners Screen. A multiplex PCR targeting M. 

genitalium, M. hominis, and Ureaplasma spp. was adapted from (Stellrecht et al., 2004), 
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with the addition of primers targeting L. iners established in (Kusters et al., 2015). 

Primers were mixed with sample DNA and Qiagen Multiplex PCR Master Mix according 

to the manufacturer’s protocol.  

 

The PCRs were performed in 25 μl. The cycling conditions were as follows: an 

initial denaturation of 95°C for 15 minutes, followed by 35 cycles, with 1 cycle 

consisting of denaturation at 94°C for 15 s, and annealing and extension at 60°C for 1 

minute, then a final elongation of 72°C for 5 minutes. After amplification, DNA samples 

were run in 0.5% agarose gels containing Ethidium Bromide at 95 volts for 1 hour. Gels 

were then imaged using a Bio Rad ChemiDoc MP Imaging System to visualize bands. 

 

Statistical Analyses. Multivariate analysis of variance (MANOVA) using one 

variable selected as fixed versus the other remaining dependent variables collected 

(Ureaplasma spp., M. hominis, M. genitalium, L. iners, HPV, HIV, Age, time since last 

sexual activity, number of sex partners, number of pregnancies, self-reporting of STI 

infection, use of birth control, and type of birth control used) was used to identify 

significant differences between women with different cervical cytology, HIV, or HPV 

status. The birth control types considered were pills, injections, condoms, implants, loop, 

and natural. Odds ratios were calculated to identify groups with significantly increased 

odds of HPV, HIV, or Mycoplasmataceae. A p value of 0.05 was the maximum 

considered to be significant throughout the study. 
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16S rRNA library preparation, and sequencing of the V4 region. DNA 

samples were used for tag sequencing of the V4 hypervariable region of the 16S rRNA 

gene. A 250-bp section of the V4 region was amplified using universal primers described 

in reference 40. The PCRs were performed in 25 μl. The cycling conditions were as 

follows: an initial denaturation of 98°C for 3 min, followed by 25 cycles, with 1 cycle 

consisting of denaturation at 98°C for 30 s, annealing at 55°C for 30 s, and extension at 

68°C for 45 s, and then a final elongation of 68°C for 4 min. Following amplification, 

PCR products were analyzed on a 2% agarose gel to confirm correct product size. 

Normalized amplicons (1 to 2 ng/μl) from 144 samples were pooled together using an 

epMotion M5073 liquid handler (Eppendorf AG, Hamburg, Germany). Pooled libraries 

were sequenced using the Illumina MiSeq platform using the dual-index sequencing 

strategy outlined by (Kozich et al., 2013). 

 

16S data processing and bacterial community analysis. The sequencing data 

obtained from the sequencer was subsequently analyzed using the Illumina MiSeq data 

analysis pipeline developed by the Fernando lab (described in detail at 

https://github.com/FernandoLab). Briefly, initial quality filtering was carried out to 

remove sequences that had ambiguous bases, incorrect lengths, and inaccurate 

assemblies. Subsequently, the quality-filtered reads were run through the UPARSE 

pipeline (http://www.drive5.com/uparse/) and subjected to chimera filtering and OTU 

clustering (at a similarity threshold of 97%), followed by the generation of an OTU table. 

Taxonomy was assigned to the OTUs using the assign_taxonomy.py command available 

in QIIME using the Greengenes database (May 2013). The OTU table was rarefied across 
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samples to the lowest sample depth (1,000 reads) using QIIME based on the Mersenne 

Twister pseudorandom number generator. All statistical analyses were performed with 

samples at an even depth. 

 

Ethics statement. All human subject protocols were approved by safety 

committees at the Ocean Road Cancer Institute (ORCI) and UNL in accordance with the 

Helsinki Declaration. Participation by patients was entirely voluntary, and written patient 

consent was required for inclusion in the study. 
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GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 

Understanding the factors which work with HPV infection to be sufficient for 

development of cervical cancer is a longstanding goal in this field. It is believed that 

HPV-dependent cervical cancer pathogenesis is affected by factors including HPV 

prevention and treatment practices, HPV genotype, HIV infection, human genetics, 

sociocultural factors, and the cervical microbiome. The work presented in this 

dissertation analyzed the cervical microbiota of 1160 Tanzanian women in relation to 

these risk factors for cervical cancer. In particular, Mycoplasma hominis was identified 

for its association with cervical cancer risk factors. 

 

Women infected with at least one HPV genotype showed a shift in cervical 

microbiota which was more pronounced in those infected with multiple HPV genotypes. 

Though the nature of this relationship is unclear, cervical pathogens, including 

Mycoplasma, can act as cofactors in the persistence of HPV infection through yet-

unknown mechanisms. M. hominis prevalence was significantly higher among HPV+ 

women, and higher still among women with multiple HPV genotypes, which could result 

from prolonged persistence increasing the likelihood of sampling an infection.  

 

We also showed that HIV has a significant effect on the cervical microbiome, 

suggesting that changes in the cervical microenvironment brought on by HIV exert some 

selective pressure on cervical bacterial communities. The HIV+ population is of 

particular interest due to their greatly increased risk of cervical cancer, and more 
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pronounced changes in the cervical microbiota in the presence of cervical lesions. A 

significant increase in Mycoplasma prevalence among HIV+ women may contribute to 

the increased cervical cancer risk seen among this group, though further study is 

necessary to establish a mechanistic relationship which supports this idea. M. genitalium 

infection’s ability to increase HIV viral shedding suggests that host innate responses to 

M. genitalium infection may similarly influence pathogenesis of other sexually 

transmitted infections. Induction of HPV in this way is particularly interesting based on 

the association between Mycoplasma and cervical lesions shown in this study, and 

warrants further research. 

 

The majority of the 66% of Tanzanian women that tested positive for at least one 

Mycoplasmataceae were asymptomatic and untreated. This represents a large reservoir of 

Mycoplasma which persistently infects the population for an indeterminant amount of 

time, influencing the cervical immune microenvironment in both HIV+ and HIV- 

populations. The intracellular nature of these persistent Mycoplasmataceae infections is 

particularly interesting when considering a relationship with HPV pathogenesis, as it 

allows the bacteria to act as both an intracellular and extracellular stressor. Further study 

is needed to determine whether cytokine expression induced by persistent Mycoplasma 

infection in sub-Saharan Africa includes cytokines associated with developing cervical 

lesions (IL1, IL6, TNFα, IFNγ) at sufficient levels to influence HPV pathogenesis and 

cervical dysplasia. Mycoplasma infection also causes genomic stress on its host cell, 

which may increase the mutation and integration rate of HPV in a coinfected cell. This 
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warrants investigation as another mechanism contributing to cervical cancer risk in 

Mycoplasma and HPV coinfected women. 

 

Among sexually transmitted Mycoplasmataceae, M. genitalium is the most 

studied and screened infection, however this study shows that M. genitalium is relatively 

uncommon among sub-Saharan African populations in comparison to M. hominis and 

Ureaplasma spp. Considering taxonomic differences in prevalence and pathogenesis is 

particularly important, as this study found different species of Mycoplasmataceae were 

differentially associated with cervical cancer risk factors. In particular, while all 

Mycoplasmataceae had similar prevalence among women with and without cervical 

lesions, M. hominis stood out as the only Mycoplasmataceae that greatly increased in 

relative abundance with more severe cervical lesions. This suggests that proliferation of 

M. hominis and development of cervical lesions have some form of mechanistic 

relationship. Long-term, longitudinal studies are needed to clarify whether M. hominis 

becomes abundant at the cervix preceding or following the development of lesions, which 

would help to clarify if M. hominis is driving formation of cervical lesions or benefitting 

from the microenvironment associated with lesions. 

 

The high prevalence of M. hominis and its association with risk factors for 

cervical cancer demonstrates the importance of better understanding Mycoplasma 

pathogenesis and establishing a screening and treatment protocol to address the 

prevalence of asymptomatic Mycoplasma infection. This study emphasizes the need to 
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account for significant regional differences in cervicovaginal microbiota and suggests 

that the cervical microbiota could be used as a diagnostic marker for cervical cancer. 

With sufficient understanding, there is potential for the development of preventative 

probiotic or antibiotic treatments that could reduce cervical cancer risk by promoting 

colonization with cervical microbiota associated with healthy cytology. These results 

suggest a greater influence of the bacterial microbiota on the outcome of HPV infection 

than previously thought, and highlight M. hominis as a common, poorly understood 

cervical infection in sub-Saharan Africa. 
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Figure S3.1 MANOVA analysis of factors in realtionship cervical cytology 
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Figure S3.2 MANOVA analysis of factors in relationship to Ureaplasma spp. detection 
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Figure S3.3 MANOVA analysis of factors in relationship to M. hominis detection 
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Figure S3.4 MANOVA analysis of factors in relationship to M. genitalium detection 
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Figure S3.5 MANOVA analysis of factors in relationship to L. iners detection 
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