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This thesis proposes a framework to include human cognitive process in making de-

cision into control loop. Our approach in solving this problem is to add a comple-

mentary control which includes a model of human decision to the controller, capable

of predicting human command accuracy in the near future. The outcome of deci-

sion unit can either be presented to the operator as a directive or may adjust the

issued command toward better results. In order to construct human decision model,

we combined tree approaches of bio-physical connectionist, mathematical abstraction

and behavioral cognitive models in the adaptive gain theory framework. We first

extended the classic DDM to include a layer that represent the change of strategy

from weighted additive to heuristics and proved that such model is mathematically

sound and well defined. Then by the help of adaptive gain theory, we showed that by

collecting feedback signals from operator, we are able to predict her decision quality.

We also presented a prototype for a supervisory controller that includes the dy-

namics of making decisions by humans in the control loop. A two-stage model for

strategy selection and decision making was utilized to cover a range of situations, in

which the operators are required to make proper decisions. A controller was designed

to dispatch the tasks between the system and the operator to keep the operator close

to the best performance region. A case study for a simple one-attribute task was



simulated to show the effectiveness of the proposed controller.

One major assumption in designing complementary control unit was that the

feedback physiological signals can be mapped onto NE-LC gamma plane, hence the

quality of decision at each time is known to controller. In the experiment section, we

relaxed this assumption and showed that by using commercially available technologies,

it is possible to infer the decision strategy and accuracy.
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Chapter 1

Introduction

On September 8, 2011, the largest power outrage in California’s history occurred be-

cause a technician erroneously shut down a power line. None of the automated control

and protection systems could prevent this incident because the human operator had

the authority to override autonomy. While fool-proofing complex cyber-physical net-

works with unprecedented emergency scenarios is a common approach, the important

lesson learned from such an incident is that a comprehensive solution to system con-

trol should include human behavior in the loop. In the current “human-in-the-loop”

perspective, researchers provide only a rough caricature of actual human cognition

and decision making. Without cognitively realistic models of human decision mak-

ing, one cannot appropriately model these systems and develop decision tools to help

human operators cope with abrupt changes and unprecedented situations. Thus, a

fundamental need exists to bridge this critical gap in understanding of human oper-

ator decision making in CPS.

The ultimate goal of this project is to improve the expected performance of CPS,

considering human factors in the control loop. This includes robustness and resilience

of CPS against catastrophic failures. The physical system, human operators, and

the control system together form a so-called human-in-the-loop supervisory control
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system. The proposed research aims to optimize this human-in-the-loop supervisory

control system by mainly controlling the parts that affect human performance. In

other words, the project aims to achieve the goal by affecting human operators status

instead of only controlling physical systems parameters. For this purpose, the first

step is to develop appropriate models for human roles in CPS by integrating cognitive

science perspectives on human decision making. Then, one can focus on searching

reasonable decision-making strategies for the human-in-the-loop supervisory control

system. The proposed research can refine these two steps into the following objectives:

Objective 1: Develop and simulate models for human decision making process,

interacting with cyber-physical network specially under internal and external stress

factors such as emergencies.

Objective 2: Propose a control strategy to maximize the average success rate of

human decision making for CPS.

Furthermore, in order to model actual human decision making, an experiment

is design to empirically validate the theoretical results. That is, in addition to in-

vestigate theoretically, which classes of models perform well, this study aims to test

whether these models capture the decisions that people actually make. The main

feature of the experiment is using commercialized technology to establish the closed

loop control scheme, including the data required from physical and emotional state

of decision maker. In this way, minimal set of effecting factors, i.e. stress and fatigue

were chosen and their effect on decision models investigated.

In Chapters 2, we first review approaches in modeling human decision making

process known as biophysics-based models. Spiking neural network (SNN) models

is neuron-level approach to mimic the process of decision making in the brain by

simulating the dynamics that govern a single neuron activity as well as the dynamics

of synaptic connections. Spiking neural networks mostly use the leaky integrate-
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and-fire (LIF) model for each single neuron, which is essentially a one-dimensional

model without the capability of producing the diverse and intricate range of neuronal

spiking behavior. For that reason, we decided to choose simple model which is

two dimensional dynamical model and by help of mathematical tools, specifically

bifurcation theory, can produce a diverse range of neuronal spiking regimes. Later in

Chapter 5, we simulated the behavior of population of neurons, each modeled with

simple model te get a measure of human decision performance for a sample task.

In Chapter 3, mathematical abstraction methods in describing decision process

are investigated. This approach is built on drift diffusion model (DDM). A DDM is a

mathematical abstraction in which the continuum limit of the sequential probability

ratio test is employed in the sense that it captures the optimal decision time, assum-

ing a fixed accuracy rate and initial conditions. It can account for how behavioral

performance improves over time as a result of the accumulation of information, and

has been successfully applied to predict human accuracy and reaction time. Two sep-

arate approaches in deriving continuous and discrete DDM processes are introduced

and a complete model for multi-cue multi-choice task with strategy selection layer is

proposed. Through mathematically rigorous process, we proved that the proposed

model is well defined and converge in first and second statistical moments.

Chapter 4 deals with the notation of strategy selection which is a common term in

behavioral science. In general, strategy selection is a tool to cope with situation that

flow of information and/or the decision process itself undergo changes that deviate

form optimal practice. One good example is the level of stress in decision maker that

affect her performance in a great deal. Here we specifically focus on locus coeruleus-

norepinephrine (LC-NE) framework, a process in human brain that plays a complex

and specific role in judgment and decision. Combining our proposed DDM model with

LC-NE process and strategy selection practice, we construct a closed loop feedback
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model to mimic the human decision process in an enterprise level control platform.

Chapter 5 gives an example of supervisory and control system that utilize the

proposed decision model. Our purpose in building such example is to show that

constructed model can be used in conjunction with modern AI technologies to enhance

the performance of the system in a great deal. Though some assumptions are made,

specially in terms of biological feed back data ( excitatory-inhibitory gain level) which

are not collectible with today’s commercial technologies. To address this shortcoming,

in Chapter 6 we design an experiment to show that with more accessible data such

as hear-beat variability we can estimate the state of decision maker in terms of using

different strategies in stressful condition. Therefore, even with today’s commercialized

technologies it is viable to use the human cognition in the loop framework for enhanced

system control.

The innovation of the current study stems from the integration of three different

approaches in modeling human process, namely bio-physically inspired models, math-

ematical abstract models and behavioral models into one comprehensive framework

which is capable to pair with system autonomy and improve the overall performance

specifically under stress condition. Having such model in hand and validate it through

experiment, the proposed research may be able to inspire the development of a net-

work supervisory control scheme that facilitates better operator decision making by

helping reduce operator’s error specially during emergency situations.
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Chapter 2

Neuro-Physiological models

Finding a complete description of nervous system dynamics is still a far fetching goal,

however considerable advancements have happened in recent years to construct a

mathematical model that can emulate the physiological properties of a single neuron.

Neurons produce action potential or spike to communicate with each other. Spike

is an abrupt and transient change of membrane voltage. Inputs which are received

through dendritic tree or synapses cause trans-membrane currents and consequently

post-synaptic potentials (PSPs) that tend to change the membrane potential of the

neuron. Large PSPs can be amplified by the voltage sensitive processes embedded in

the neuronal membrane and lead to generation of spike. A typical neuron receives

input from more than 10,000 other neurons and fire spikes with different regimes. So

the fundamental question is why the response of neurons to their inputs are so much

different. Is there a simple model that can describe the response with acceptable

accuracy?

In this chapter we investigate models that are based on of electrophysiology of

neurons which primarily focused on dynamics of membrane voltage in the classic

approach. Then using the mathematical tools provided by dynamical systems and

bifurcation theory, we proceed to know more involved model, named simple model [1].
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The core concept is treating neurons as dynamical systems and using mathematical

tools such as phase analysis and bifurcation theory to find a minimal model, capable

of describing the wide range of neural activities. But first let’s take a quick look

at neuronal electrophysiology to have a better understanding of the dynamics of a

neuron.

2.1 Electrophysiology of Neurons

Neurons use ionic currents to conduct their electrical activities. The transmembrane

ionic currents mostly include one of the four ions, namely sodium(Na+), potassium(K+),

calcium (Ca2+), or chloride (Cl–). The concentration of ions is different on the inside

and the outside of a cell, which is the driving force of their movement. As depicted in

Fig. 2.1, the concentration of (Na+) and (Cl–) is high in extracellular medium while

inside the cell there is more concentration of (K+) and negatively charged molecules

denoted by (A–).

Figure 2.1: Ion concentration and Nernst equilibrium potential [1]

Active (pumping of ions via ionic pumps ) and passive (attraction of (K+) and
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repelling of (Cl–) by impermeable (A–) ) redistribution of ions through membrane

protein channels maintain the stability of membrane voltage in the rest state. The

process involves two opposite forces. For instance, consider (K+) ions. Since the

concentration is lower on the outside, the ions start to flow outward and make the

inside medium more negative. This induces an increasing voltage difference on two

sides of membrane which makes it harder for (K+) currents to flow outward. At one

point the equilibrium is achieved when concentration gradient and electric potential

gradient cancel each other and the net current becomes zero. The value of equilibrium

potential depends on the ionic spices and called the Nernst potential. Based on that

the net current is given by:

IK = gK(V − EK) (2.1)

In which V is membrane potential in volts, gK is the (K+) conductance in (mS/cm2)

and EK is the Nernst potential of (K+). The same type of equation can describe

other ionic currents which lead to the equivalent circuit of Fig. 2.2, for a single neuron.

Note that the capacitance of membrane is in (µF/cm2). Based on electrical equivalent

circuit of Fig. 2.2, the equation that describes the ionic currents is:

CV̇ = I − INa − ICa − IK − ICl

= I − gNa(V − ENa)− gCa(V − ECa)− gK(V − EK)− gCl(V − ECl) (2.2)

If there is no additional source or injected current then I = 0. In this case the

membrane potential is typically bounded by :

EK < ECl < Vrest < ENa < ECa (2.3)
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Figure 2.2: Equivalent electrical circuit representation of a neuron

Also note that INa , ICa < 0 (inward currents) that make the membrane potential

more positive or cause depolarization while IK, ICl > 0 (outward currents) that make

the membrane potential more negative or cause hyperpolarization. At Vrest we have

V̇ = 0 and hence:

Vrest =
gNaENa + gCaECa + gKEK + gClECl

gNa + gCa + gK + gCl

(2.4)

The denominator of 2.4 is the total input conductance, ginp, of the neuron. The

quantity Rinp = 1/ginp is called the input resistance. The bigger value of resistance

results in larger displacement from Vrest due to injection of DC current I.

The input resistance is a function of membrane voltage and time. The common

experiment to see the relationship is holding the membrane voltage at fixed value

Vc by means of voltage-clamp. Then reset the value of voltage to Vs and measure

the instantaneous and asymptotic currents. The instantaneous I-V curves usually

has non-monotone N-shape curve which shows the nonlinear positive feedback trans-
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membrane process and can be assumed fast enough to have instantaneous kinetic [3].

The steady state I-V relation can be monotone or not depending on the properties of

membrane current.

2.1.1 Gated Channels

Ionic channels are large transmembrane protein that facilitate the flow of ions trough

the membrane. The electrical conductance of the channel may be controlled by gating

particles which switch the channels between close and open states [4]. The net current

generated by large population of identical channels can be described by the equation

I = ḡp(V − E) (2.5)

in which parameter p is the average proportion of channels in open state. If the chan-

nel is selective for a single ion, the value of E will the the relevant Nernst potential.

When the gating variable is sensitive to the membrane voltage the channels are called

voltage-gated. Also the gates are divided to activation gates and inactivation gates.

The probability of an activation gate is being open is denoted by variable m and the

probability of inactivation gate in open state is denoted by variable h. Therefore

p = mahb (2.6)

where a and b are the number of activation and deactivation gates respectively. Some

channels do not have inactivation gates(b = 0). Such channels do not inactivate

which results in persistent currents. In contrast channels with inactivation results

in transient currents. The dynamic of activation variable is given by a first order



10

differential equation [3]:

ṁ = (m∞(V )−m)/τ(V ) (2.7)

The values of steady state activation function and time constant can be measured

experimentally. Likewise the dynamics of inactivation variable is described by first

order differential equation

ḣ = (h∞(V )− h)/τ(V ) (2.8)

Inactivation kinetics is usually slower than activation kinetics. h∞(V ) has the same

sigmoid shape of m∞(V ).

2.1.2 Hodgkin-Huxley Equations

Using experimental techniques, Hodgkin and Huxley (1952) determined that giant

squid axon carries three major currents : voltage gated persistent K+ current with

four activation gates, voltage gated transient Na+ current with three activation gates

and one inactivation gate, and ohmic leak current which carried mostly by Cl–. The

model is described by the following set of equations [5].

CV̇ = I − ḡKn
4(V − EK)− ḡNam

3h(V − ENa)− ḡL(V − EL)

ṅ = (n∞ − n)/τn(V )

ṁ = (m∞ −m)/τm(V )

ḣ = (h∞ − h)/τh(V )

(2.9)

Where the steady state and time constant values of gating variables are function

of V and time. It is common to approximate the steady state activation curve by
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Boltzmann function [3], e.g. for m

m∞(V ) =
1

1 + exp{(V1/2 − V )/k}
(2.10)

The parameter V1/2 satisfies m∞(V1/2) = 0.5 and k is the slope factor (negative for

h). Smaller values of |k| results in steeper curves. The time constant is approximated

by Gaussian function

τ(V ) = Cbase + Campexp
−(Vmax − V )2

σ2
(2.11)

Hodgkin-Huxley model is constructed based on evidence gathered from a single

experiment. However for more general modeling purpose, a normal form that univer-

sally describes the neuron behavior is required.

2.2 Integrate and Fire

The most popular neural model is known as integrate-and-fire [6]. In this model,

neurons are integrator units that sum up the incoming PSPs and compare the sum

with a threshold value. If the sum is greater than the threshold, neuron will fire a

spike and then the membrane potential reset to a rest value. In other words, spikes

are generated whenever the membrane potential u crosses the threshold value ϑ. The

firing time is defined as the crossing moment, i.e. u(t(f)) = ϑ.

The standard equation of linear leaky integrate-and-fire neuron is given by [6]:

τm
du

dt
= −u(t) +RI(t) (2.12)

in which τm = RC is membrane time constant and R and C are equivalent resistance
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and capacitance (see Fig 2.2). When u(t(f)) = ϑ , the spike is emitted and the

potential resets to the rest value, ur, after spending refractory period, ∆abs. If it is

assumed that the last spike was emitted at t̂, the value of u(t) is given by:

u(t) = urexp(−
t− t̂
τm

) +
1

C

ˆ t−t̂

0

exp(− s

τm
)I(t− s)ds (2.13)

In general, parameters of the model can be seen as voltage dependent functions

which leads to nonlinear model as follows:

τ
du

dt
= F (u) +G(u)I (2.14)

The input current is sum of external stimuli and postsynaptic current pulse. We will

get back to model the postsynaptic current in the upcoming sections.

2.3 Simple Model

Theoretically, the integrator model is based on Hodgkin-Huxley model of spike gener-

ation in squid giant axon. However, further investigations showed that both integra-

tion and threshold notions are not applicable for the wide range of neural activities.

Surprisingly even for the Hodgkin-Huxley model the threshold value is not well de-

fined. Based on understanding of neuronal behavior given by Hodgkin-Huxley model,

and employing dynamical systems and bifurcation theory, a simple normal model is

constructed as we describe in following sections.
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2.3.1 Bifurcations

Before deriving the minimal model let us briefly review the concept of bifurcation in

planar systems [7]. Consider the following two dimensional dynamical system

ẋ = f(x, y)

ẏ = g(x, y) (2.15)

Functions f and g describe the evolution of two dimensional state variables (x(t), y(t))

on the phase plane. The system 2.15 defines a vector field on the phase plane, since

the direction of change of (x(t), y(t)) is defined at each point. The set of points

where f(x, y) = 0 is called x−nullcline. The x−nullcline partitions the phase plane

into two regions where x moves in opposite directions. y−nullcline is defined in

the same fashion. The intersection of nullclines is equilibrium point. There are

three major types of equilibria namely node, saddle and focus. The equilibrium is

a node if the eigenvalues of the Jacobian matrix of the model, calculated at the

equilibrium point are both real and have the same sign. If they are negative, the

node is stable. The trajectories tend to converge or diverge form the node along

the eigenvector corresponding the eigenvalue having the smallest absolute value. If

the sign of real eigenvalues are not the same the equilibrium is a saddle. Saddles

are unstable. Complex conjugate eigenvalues means the equilibrium is a focus. The

imaginary part of the eigenvalue determines the frequency of rotation of trajectories

around the focus.

A trajectory that forms a closed loop in the phase plane is called periodic orbit.

Sometimes the orbit is isolated and sometimes it is part of a continuum. An isolated

periodic orbit is called limit cycle. Limit cycles can be stable that attract all trajec-
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tories close enough or unstable that repel the nearby trajectories. Note that there is

always at least one equilibrium inside any limit cycle.

To explain the concept of bifurcation, we use two dimensional neuronal model

with state variables (V, n). Remember that n is the activation variable of IK. We

assume that variable m is fast enough and can be replaced by its steady state value.

We also neglect the effect of h. The state equations of resulted INa,p + IK model is

give by [1]:

CV̇ = I − ḡKn(V − EK)− ḡNam∞(V − ENa)− ḡL(V − EL)

ṅ = (n∞ − n)/τn(V ) (2.16)

Where I is injected current. First we investigate the process of saddle-node bifur-

cation. The phase portrait of the model is depicted in Fig 2.3. When the injected

current is small, there are two equilibria in low voltage range, a stable node corre-

sponding to the rest state and a saddle. Increasing the parameter I will move the

V-nullcline upward and at some value of I the saddle and the node coalesce. Further

increase of I results in disappearance of the low voltage equilibria and remaining of

only a limit cycle attractor corresponds to repetitive firing state. This process is

called saddle-node bifurcation.

Finding I − V relationship is another common way to analyze the bifurcation. In

the equilibria, we have

0 = I − ḡKn∞(V − EK)− ḡNam∞(V − ENa)− ḡL(V − EL) (2.17)
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Figure 2.3: Saddle node bifurcation in INa,p + IK model. I = 0 above, I = 4.51
middle, I > 4.51 below [1]
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Using V as free parameter we get

I = ḡKn∞(V − EK) + ḡNam∞(V − ENa) + ḡL(V − EL) (2.18)

The right hand side of 2.18 can be interpreted as steady state current I∞(V ).

Saddle-node on invariant circle bifurcation is a standard saddle-node bifurcation

with one additional condition. The post bifurcation limit cycle attractor happens

to be an invariant homoclinic circle (originate and terminate at the same annihila-

tion point of saddle-node). This type of bifurcation happens in our INa,p + IK model

when the K+ current has long time constant. When the current is fast, it activates

during upstroke and decreases the amplitude of the action potential. Also it is fast

enough to deactivate during the downstroke, resulting in overshoot and creating an-

other upstroke. In contrast, slow current can not be deactivated fast enough during

downstroke and cause undershoot, with V going below resting state. The result is a

limit cycle attractor with infinite period, or firing in zero frequency.

If in the model 2.16, the K+ has lower threshold of activation voltage, the behavior

of neuron changes due to the change of bifurcation to Andronov-Hopf bifurcation. The

phase portrait of Fig 2.4 shows that for small values of I there is just one stable focus

corresponding to rest state. By increasing the input value, the focus loses its stability

and gives birth to a small-amplitude limit cycle attractor. The amplitude of the limit

cycle grows as I increases.

To get the bifurcation diagram, for each input I, the transient period is neglected

and both values of min V (t) and max V (t) is plotted. When I is small, the solution

converges to the stable equilibrium and both maximum and minimum values are equal

to the resting voltage. By increasing the input, the values start to diverge meaning

the existence of a limit cycle attractor with increasing amplitude
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Figure 2.4: Supercritical Anronov-Hopf bifurcation in INa,p + IK model [1]

INa,p + IK model with low threshold and steep activation curve of K+ can exhibit

subcritical Anronov-Hopf bifurcation. The stable equilibrium in this system is sur-

rounded by an unstable limit cycle which is often surrounded by another stable limit

cycle. As the input increases, the unstable limit cycle shrinks to the stable equilib-

rium and makes it lose stability. Which remains is large stable limit cycle attractor,

results in tonic spiking activity.

In contrast the saddle-node and Andronov-Hopf bifurcation result in dramatically

different neurocomputational properties. Particularly, neurons near saddle-node bi-

furcation act as integrators, that fire sooner if the frequency of input goes higher. On

the other hand, near Andronov-Hopf bifurcation the system poses damped oscillations

and acts as a resonator, prefers input with the same frequency of damped oscillation.

Note that exact mathematical definition of bifurcation in multidimensional system is
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not the concern of this study and can be found in related mathematical texts (e.g. [3]).

2.3.2 Normal form

Typically, state variables that describe neuron dynamics are classified into four classes

according to their functionality and time scale. The first class is the membrane voltage

which is the indicator of cell activity. The second class are excitation variables which

are responsible for the upstroke, e.g. activation of Na+ current. The third class are

recovery variables that facilitate the downstroke through repolarization process ,e.g.

inactivation of Na+ current or activation of fast K+ current. and finally adaptation

variables which build up during prolonged spiking and can affect excitability in the

long term.

From the dynamical system point of view, the transition from rest to spike is

correspondent to occurring of a bifurcation, i.e. the qualitative change of phase

portrait of the system. Different type of bifurcations result in different excitability

patterns. neurons are considered either integrator or resonator. Showing damped

oscillation of membrane potential is the sign of resonators. This phenomenon does

not exist in integrators. Also, some neurons exhibit the coexistence of resting and

spiking states, while others do not. The latter are named monostable while the former

are called bistable. There is one-to-one correspondence among each of four possible

neuron groups and four type of bifurcation as summarized in Table 2.1.

As seen in previous chapter, all four types of bifurcations mentioned in Table

2.1 can be amenably visualize and analyzed in two dimensional (planar) systems us-

ing phase plane methods. So reducing Hodgkin-Huxley four dimensional model to

two dimensional minimal model, with variables having electrophysiological meaning

is helpful. But to remove one or more gating variables from the basic model, one
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Table 2.1: Neuron dynamics classifications

co-existance of resting and spiking states

YES
(Bi-stable)

NO
(Mono-stable)

subthreshold
oscillation

NO saddle - node
saddle-node

invariant circle

YES
subcritical

Andronov-Hopf
supercritical

Andronov-Hopf

should consider the capability of reduced model in describing all major characteris-

tics of neuronal activities of four general types of neurons, i.e resonator/integrator,

monostable/bistable. However we should not expect that understanding such min-

imal models provides exhaustive information about all electrophysiologal aspects of

neuronal activities.

To build the planar model, we start from minimal model comprising of one am-

plifying and one resonant gating variable (plus ohmic leak current). The amplifying

gating variable is the activation variable m for inward current or the inactivation

variable h of outward current. A small depolarization increases m and decreases h

which in turn cause more depolarization. Similarly, a small hyperpolarization de-

crease m and increase h resulting in less inward current and more hyperpolarization.

This positive feedback loop performs amplifying task.

Inactivation of h for inward current or activation of n for outward current have

resonating effect. A small depolarization decreases h and increase n which in turn

decreases inward and increases outward current and produces net current that resists

the depolarization. Currents with amplifying gating variables can result in bistability,

while resonant gating variables have one stable equilibrium with possible damped

oscillation. A model with at least one amplifying and one resonant gating variable
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should produce all four types of neuronal activities.

Time constants of gating variables are also play an important role. To get spike,

the positive feedback should act faster than negative feedback process. On the other

hand, if an amplifying variable has a slow time constant, fast fluctuations can not

be followed and the cell acts as a low pass filter. Fast resonant gating variables will

damp input fluctuations (sooner than be amplified) and results in stable rest state and

shows a band pass filter characteristics. In practice, the amplifying gating variables

such as m has relatively fast kinetics and can be replaced by the steady state value,

m∞(V ) in the model. This allows to reduce the dimension of the minimal model by

one.

Most of the time it is not easy to find a simple equivalent replacement that de-

scribes the original system in its whole domain, but we can restricts ourselves to a

small critical neighborhood with the most significant effect on the system behavior.

If we assume that all neuronal current models can be reduced to two-dimensional sys-

tem with N-shape for voltage and sigmoid nullcline for recovery variable, the decision

of fire would be made in the bifurcation region. Then to model the sub-threshold

behavior and initial segment of upstroke, we need to consider only a small neighbor-

hood of the left knee of voltage nullcline. The voltage nullcline in the bifurcation

region can be approximated by a quadratic function. Also we approximate the gating

variable with a linear function. The resulted simple model [1]:

v̇ = I + v2 − u if v ≥ 1, then (2.19)

u̇ = a(bv − u) c→ v, u+ d→ u (2.20)

where v and u are membrane voltage and gating variables. The model has four di-

mensionless parameters. Depending on the values of a and b it can be an integrator or
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resonator. Parameters c and d effect the after spike transient behavior by controlling

the high-threshold voltage gated current during the spike. When the spike dynamics

started, the voltage rises quickly until it reaches the maximum value (normalized at

v = 1) and then resets to the after spike value. Equations (2.19) and (2.20) can be

written in more convenient form.

Cv̇ = k(v − vr)(v − vt)− u+ I if v ≥ vpeak, then (2.21)

u̇ = a[b(v − vr)− u] c→ v, u+ d→ u (2.22)

where C is the membrane capacitance, vr is the resting potential and vt is the

instantaneous threshold potential. Parameters k and b are dependent to neuron’s

rhobase and input resistance. The sign of parameter b determines that wether gating

variable is amplifying (b < 0) or resonant (b > 0). The recovery time constant is a.

vpeak is spike cutoff value and c is the voltage reset value. The parameter d is the net

amount of currents activated during the spike and affecting the after-spike behavior.

The output of simulation of simple model and experimental spike curve are shown in

Fig.??. According to the phase portrait, injection of I = 70pA shifts the V nullcline

upward and makes the resting state disappear. The trajectory tends to spiking limit

cycle attractor and when it reaches the vpeak = 35mV it is reset to the after-spike

value, resulting in periodic spiking behavior. Slow afterhyperpolarization (AHP) is

due to the dynamic of recovery variable. Depending to the parameters, the model

can exhibit other type of activities.

At this stage, comparing the dynamics of simple model with well-known integrate-

and-fire model would be useful. In integrate-and-fire model, when the membrane

voltage reaches the preset threshold value, the neuron is said to fire spike. Then
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the potential is reset to a new value and the spike is drown by hand. In contrast,

in simple model, generating spike is due to the dynamics of voltage equation. The

firing threshold is not a parameter but the property of dynamical system near the

bifurcation point. Depending on the type of bifurcation, the firing threshold may not

be well defined as in case of many conductance base models. To summarize, simple

model of 2.21 and 2.22 are capable to produce diverse range of neuronal dynamics as

shown in Fig. 2.5.

2.4 Modeling Population of Neurons

In general, neurons act in large populations. Their collective behavior can be modeled

in two ways. One way is to derive a system of simultaneous differential equations in

the form of 2.21 and 2.22 for each neuron and add the dynamics of intra cellular

agents as well. Foe large populations, this method will give a sophisticated system of

equations which are very time and space expensive to solve. Another method is using

mathematical techniques such as averaging or mean-field to reduce the dimension of

model. In this section we review a famous method developed by Wong [8] to model

the perceptual decision two choice task by several populations of neurons. As depicted

in Fig. 2.6 red and blue populations are selective to choice A and B. There is larger

population of non-selective neurons that selective populations tries to recruit them act

in their favor. The forth group are inhibitory cells that suppress the outputs of other

groups. The underlaying assumption that all neurons receive noisy inputs. Also each

neuron id either inhibitory characterize by GABA mediated current or excitatory with

AMPA and NMDA mediated current. Each selective pool accumulates information

related to one of two possible decisions. Mutual inhibition creates winner takes all

dynamics between two competing accumulator.
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Figure 2.5: Different spiking regime, produced by simple model [1]
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Figure 2.6: Populations of neurons and their interconnection

We will simulate the dynamics of this model later in Chapter 5. But here, we

show that by using averaging techniques, the system of equations can be reduced to

famous drift-diffusion abstract model. If the activity of groups A and B is presented

by the average firing rate, the pool equation can be represented by [8]:

dx1

dt
= −x1

τx
+ (1− x1)γr1 (2.23)

dx2

dt
= −x2

τx
+ (1− x2)γr2 (2.24)

where x1 and x2 are decision variables and r is the firing rate of two competing pools.

Note that firing rate is a function of input current to each neuron ri = φ(Iin) which

itself is a function of both r1 and r2 and noise. One important relation that needs to

be known is the cell input-output relation denoted by H.

r1 = H(i1, i2) (2.25)

r2 = H(i2, i1) (2.26)
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where

i1 = J1x1 − J2x2 + I0 + I1 + Inoise1 (2.27)

i2 = J2x2 − J2x2 + I0 + I2 + Inoise2 (2.28)

where Ji is coupling term and Ii is the stimulus current related to input data

dx1

dt
= −x1

τx
+ (1− x1)γH(i1, i2)

dx2

dt
= −x2

τx
+ (1− x2)γH(i2, i1) (2.29)

Having the reduced model of 2.29 in hand, the question is how this model can explain

the change of performance in decision tasks.

Cortical neural circuits receive dynamic inputs from other structures as well as

neuromodulator transmitters. Neuromodulator include dopamine, serotonin, nore-

pinephrine. Their effect on single neuron are not completely known but one of their

mechanisms is to change the neuronal gain. Remember the fire rate of a neuron is

function of its input currents which is called neuron gain e.g. H in Wong reduced

model. One way to model the change of performance is to modulate inhibitory and

excitatory gains independently and observe the effect on some performance measure.

One common performance criteria is Reward Rate [9]. If a two choice task is pre-

formed several times and the decision time and outcome is collected, the following

performance measure can be defined:

Reward Rate =
< Acc >

DT + NDT + RSI
(2.30)
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where <Acc> is the fraction of trails with correct decision, DT is the time duration

from the onset of stimulus to making the decision in brain, NDT is the sensory and

motor delays and RSI is the time between trails. It is evident that by changing

the voltage controlled conductances gtype related to each reversal potential and leak

conductances gL, neuron gain can be manipulated. Let’s name the excitatory gain γE

and inhibitory gain γI . Note that Dale’s principle force each neuron to be either one

on of them not both. Running model simulation or solving the analytical reduced

model with reward rate criteria will show the effect of modulating the excitatory and

inhibitory gains on decision performance. We will get back to this tasks in upcoming

chapters.
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Chapter 3

Mathematical Abstractions

In the previous chapter, we introduced bio-physiologically inspired model of the de-

cision process. We also investigated models of populations of neurons. We showed

that by means of model reduction techniques and averaging, high dimensional mod-

els can be summarized into efficient low dimensional, and even for two choice task

to one dimensional model. In this Chapter, we tackle the modeling problem in pure

mathematical abstract way. Starting with simple two choice task, we show that drift

diffusion model can capture the dynamics of collecting information and making de-

cision accordingly. Moving toward more complicated multi-cue multi-choice tasks,

we introduce our extension to traditional model and provide mathematically sound

model to mimic the decision making dynamics. In the same way, we extend the

discrete Markov chain approach to multi-cue multi-choice task, using multi-variate

Markov chains and autoregressive models to give an approximation of the process.
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3.1 SPRT approach

3.1.1 Single-cue two-choice task

Mathematical abstract models to describe the process of making decision in human

brain start by analyzing the simple two-alternative forced choice (2AFC) decision

task [9]. Consider a 2-choice task and assume e stands for evidence presented to

decision maker. Let the conditional probabilities p(e|S1) and p(e|S2) denotes the

probabilities of observing evidence e given S1 or S2 is true. The first and second

moments of the probability function are µ and σ. Depending on the similarity of two

decisions, (µ1 − µ2) and signal to noise ratio, µ/σ the two PDFs overlap. According

to Bayes law a posteriori probability p(S1|e) is given by:

p(S1|e) =
p(e|S1)p(S1)

p(e)

Define likelihood ratio as :

LR(e) =
p(e|S1)

p(e|S2)

If equal periors are assumed, i.e. p(S1) = p(S2), then likelihood ratio greater than

one means S1 is more likely to be correct. Hence choosing S1 is the optimal decision

in the sense that it provides overall lower error rates. Now assume multiple piece of

evidence e1, . . . , eN are presented sequentially to the observer. Assuming independent

evidences we have:

LR(e) =
p(S1|e1 . . . eN)

p(S2|e1 . . . eN)
=

N∏
n=1

p(en|S1)

p(en|S2)
(3.1)
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Taking logarithm of 3.1 will give:

In = I(n−1) + log
p(en|S1)

p(en|S2)
(3.2)

where:

I(n−1) =
n−1∑
n=1

log
p(en|S1)

p(en|S2)
(3.3)

Now let δIr has mean µ and variance σ2 which assumed to be finite. Define a family

of random functions, indexed by M = 1, 2, . . . of t ∈ [0, T ], where T is large enough,

as follows:

IM(t) =
1√
M

k∑
r=1

(δIr − µ) +
1

M

k∑
r=1

δIr where k =bMt/T c (3.4)

For any M , IM(t) has the mean value of µbt/T c and variance σ2bt/T c. According to

Donsker invariance principle [10] and the law of large number we get:

IM −→
f
σW(t) + µt as M →∞ (3.5)

where convergence is in the sense of distribution. In other words the process I(t)

satisfies the following stochastic differential equation:

dI = µdt+ σdW(t) (3.6)

which is the expected drift-diffusion process (DDM). The drift and diffusion constants

are dependent to the pi(ei|Si) distributions. In the case of Gaussian, the solution of
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3.6 with initial condition I(0) = 0 is given by:

p(ei|S1) =
1√

2πσ2
exp{−(ei − µ1)2/2σ2} (3.7)

p(ei|S2) =
1√

2πσ2
exp{−(ei − µ2)2/2σ2} (3.8)

Assuming µ1 > µ2, we have:

δIr = log
p1(ei|S1)

p1(ei|S1)
=
µ1 − µ2

σ2

(
ei −

µ1 + µ2

2

)
(3.9)

Taking the first and second moment of 3.9 gives the values of µi and σ2 as it is

assumed. In particular by assuming µ1 = −µ2 = µ the accumulated information is

given by:

In =
n∑
r=1

δIr =
2µ

σ2

n∑
r=1

ei (3.10)

Thus, the decision variable for a noisy evidence can be modeled by one-dimensional

Wiener process bounded by positive and negative thresholds, θA and θB, in which an

integrator accumulates the difference of evidences between two choices [9]. In order to

reflect the effect of bounded accuracy and forgotten information, the DDM integrators

are considered not perfect but leaky as follows:

dx(t) = (µ− λx)dt+ σdW(t) (3.11)

in which x(t) ∈ R is the decision variable, µ is the drift, σ is the diffusion rate, W(t)

is the standard Wiener process, dW(t) is the standard white noise, and R denotes

the set of real numbers. The term λ represents the leak and λ > 0 leads to a stable

Ornstein-Uhlenbeck (O-H) process. The drift rate µ represents the capability of input
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information in discrimination between choices A and B, which in behavioral studies

are known as quality of cue (attribute). For example, in the random dot motion task

designed in [11], the cue is the direction of dots and its quality alters by changing the

proportion of dots moving in the left or right direction. λ tunes the drift based on the

current state and is often connected to memory processes (e.g., primacy and recency

effects), conflict situations (e.g., approach-avoidance), or similarities between choice

alternatives. In the free response paradigm, whenever the decision variable reaches the

positive or negative thresholds, the decision is made, while in interrogation protocol,

after spending the specific amount of time, the decision is made based on the value

of gathered information. DDM has the capability to capture the characteristics of

2AFC in terms of speed or accuracy of decision.

3.1.2 Multi-cue two-choice task

For 2AFC, only one cue, e.g., the direction of dots is concerned. In real world, always

several cues, such as color, sound, and texture, are involved. One method is to

combine and integrate all cues in favor of each choice into single source of evidence and

this source is being used throughout the decision process. More involved treatment

includes separate processes for each cue. In this approach the order of considering

the cues and the process time devoted to each cue are two important aspects. The

time frame of the decision process is divided into subintervals with different lengths

during which the attention focus is only one cue. The order of cues can be assumed

to be deterministic or probabilistic. LetM = {1, 2, . . . ,M} be the index set of cues.

Following the method of [12], we assume that the evidence for cues is accumulated



32

by a piecewise O-H process, i.e.

dx(t) = (µm − λmx(t))dt+ σdWm(t)

m ∈M, tl−1 ≤ t < tl (3.12)

in which the parameters identified by index m are the characteristics of the mth cue.

If finite decision time span is divided into L consecutive time intervals, [tl−1, tl] for

l = 1, . . . , L, we assume that one cue is processed in each time interval based on

the given order schedule. The process of making decision in free response time or

interrogation is the same as a single cue task.

3.1.3 Single-cue multi-choice task

In order to model multi-choice tasks, a more general race model, which is comprised

of separate leaky competing integrators, representing each choice, with mutual inhibi-

tion, was proposed by [13]. Each integrator gathers information in favor of or against

the associated choice based on the value of cue. We assume that the dynamic of each

integrator is governed by the O-H process. Consider K integrator pools, one for each

choice, accumulating the incoming noisy evidence Si in favor of choice i. Each pool

is described by the following form:

dxi = (−kxi −
∑
j 6=i

wxj + Si)dt+ σidWi (3.13)

where w is the mutual inhibition strength among pools. There are two different cate-

gories of decision criteria in choosing among the pools which give the same asymptot-

ically optimal results. One way is to assign a threshold θi to each pool and select the
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one that reaches the threshold sooner under the free response protocol or at the fixed

time choose the pool with higher value of decision variable. Other methods consider

the ratio of the output of the pools such as max-versus-next and max-versus-average.

Reference [12] showed that under a particular parameter range, two-dimensional race

model can be expressed as one dimensional DDM.

3.1.4 Multi-cue multi-choice task

In this study we propose a model for multi-cue multi-choice task which considers the

condition that a decision maker faces different situations and prioritizes some tasks by

weighing associated choices differently based on different choices. The mathematical

model reads:

dxi(t) =

(
− ki,m(t)xi(t)−

∑
j 6=i

wi,j,m(t)xj(t) + Si,m(t)

)
dt

+ σidWi(t), m(t) ∈M, tl−1 ≤ t < tl (3.14)

where ki,m depends on both choice i and cue m, wi,j,m depends on choice i, choice j,

and cue m, and wi,j,m = wj,i,m.

It is known that the O-H process 3.11 has the following asymptotic approxi-

mations on expectation and variance in the long run: limt→∞ E[x(t)] = µ/λ and

limt→∞ E[x2(t)] = σ2/(2λ), where E denotes the expectation operator. Now a natural

question about the multi-cue multi-choice task model 3.14 is that whether or not it

has a similar asymptotic approximations of expectation and variance in the long run.

Unlike 3.11 which is a linear scalar stochastic differential equation (SDE), since 3.14

is a multivariable SDE with a piecewise time-dependent switching between different

cues, the theoretical discussion will be much more involved. In Appendix A, we inves-
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tigated the asymptotic behavior of expectation and variance of 3.14. With some mild

assumptions, it is shown that the model has well defined asymptotic approximation

for its first and second moments.

3.2 Markov chain approach

In this section a method to construct a discrete version of multi-cue multi-choice

Ornstein-Uhlenbeck (O-U) decision model based on the discrete time Markov process

is presented. First, let us review the basics concepts of birth-death chain in simple

single cue two forced choice task(2AFC) which starts with the following random walk

process.

Consider a Markov process Xn, which is a random variable over time interval [0,t].

The time is divided into subintervals of length τ . Suppose the process make a step

change at τ , 2τ , 3τ , . . . . The size of steps are assumed to be ±∆ =
√
t with probabili-

ties pij. The state space of the process is given by S = {−k∆, . . . ,−∆, 0,+∆, . . . ,+k∆}

where k is the number of time steps and ±k∆ are the boundaries showing the de-

cisions S1 and S2 respectively. Transition probability matrix of the process is as

follows:

P =

 PI 0

R Q


where states number 1 and m are correspondent to absorbing states associated with

decisions S1 and S2 and m = 2k + 1. Assuming the initial condition of Z , the
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=

1 m 2 3 . . . m− 2 m− 1
1 1 0 0 0 . . . 0 0
m 0 1 0 0 . . . 0 0
2 p21 0 p21 p23 . . . 0 0
3 0 0 p321 p33 . . . 0 0
...

...
...

...
... . . .

...
...

m− 2 0 0 0 0 . . . pm−2,m−2 pm−2,m−1

m− 1 0 pm−1,m 0 0 . . . pm−1,m−2 pm−1,m−1

probability and expected time to reach each decision is given by [12]:

[Pr(S1), P r(S2)] = Z.(I −Q)−1.R (3.15)

[E(T/S1), E(T/S2)] = τ.[Z.(I −Q)−2.R]./[Pr(S1), P r(S2)] (3.16)

where ./ indicates element wise operation. The increment of the process from time n

to n+ 1 is given by:

Xn+1 −Xn = Zn+1, n = 1, 2, 3, . . .

Take Xt/τ =
∑t/τ

i=1 Zi. Since Zi are independently and identically distributed, if we

assume Pr[Zi = +∆] = Pr[Zi = −∆] = 0.5 we get E(Xt/τ ) = 0 and V ar(Xt/τ ) =

(t/τ)V ar(Zi) = t∆2/τ = t. Now if we let τ → 0 the random walk converges in

distribution to standard Wiener process W (t) which from central limit theorem has

normal distribution with mean zero and variance t. In general, Markov processes with

continuous time set and continuous state space are called diffusion processes and the

standard Wiener process is the simplest diffusion process [14]. The Wiener process

with drift is given by:

V (t) = µt+ σW (t) (3.17)
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where σ is a positive number. Also

dV (t) = V (t+ τ)− V (t) = µτ + σdW (t) (3.18)

in which V (t) is normally distributes with mean µt and variance σ2t. To derive more

general form where the probability of stepping up and down at each time step are

not equal, we define infinitesimal first and second moment of the process as follows:

µ(x, t) = lim
τ→0

E[dX(t)|X(t) = x]

τ
(3.19)

σ2(x, t) = lim
τ→0

E[dX(t)2|X(t) = x]

τ
(3.20)

note that by finding these two moments which are called drift and diffusion terms,

the process V (t) is determined. The drift and diffusion coefficients for the Wiener

process are simply µ(x, t) = µ and σ2(x, t) = σ2. In cognitive tasks the drift term is

related to stimulus intensity, since larger drift may results in less decision time and

diffusion term in related to the noise intensity in presented stimulus. For the sake of

discretization the transition probabilities of the Markov process is given by [12]:

pi,i−1 =
1

2

(
1− µ

σ

√
τ
)

(3.21)

pi,i+1 =
1

2

(
1 +

µ

σ

√
τ
)

(3.22)

with
√
τ = ∆/σ and (−1/

√
τ) ≤ µ/σ ≤ (+1/

√
τ) to keep the p between zero and

one. Note that here it is assumed pii = 0 or the process is not allowed to stay in

the current stage at the next time step. However if this is not the case, the process

can still characterized by drift-diffusion form [15]. In this case the Markov chains is
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known as Birth-Death process and characterized in continuous domain by Ornstein-

Uhlenbeck (O-U) process. Here, the velocity of information accumulation is assumed

to be damped proportional to the current state while the new random information is

added, leads to:

X(t+ τ) = (1− τγ)X(t) + V (t+ τ) (3.23)

or in difference form:

dX(t) = −τγX(t) + V (t+ τ) (3.24)

Let V (t) be a Wiener process with drift δ and diffusion coefficient σ2. According to

3.18, it follows:

dX(t) = (δ − γX(t))τ + σdW (t) (3.25)

In O-U process, the drift rate µ(x, t) = δ− γx, comprises of two parts. The constant

part determines the direction of the process while the linear part causes the decay of

the process depending on the current state. Again the transition probabilities can be

determined as follows [12]:

pi,j =



1
2α

(
1− δ−γ(−k∆+(i−1)∆)

σ2

√
τ
)

if j − i = −1

1
2α

(
1 + δ−γ(−k∆+(i−1)∆)

σ2

√
τ
)

if j − i = +1

1− 1
α

if j = i

0 otherwise

(3.26)

where ∆ = ασ
√
τ and α > 1 is a free parameter. Accordingly the first passage time
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distribution for reaching the boundaries for choices S1 or S2 is given by:

[Pr(T = t|S2, P r(T = t|S1))] = ZQn−1R./Z(I −Q)−1R (3.27)

where t = nτ .

To investigate the multi-cue task, the drift rate within the trail is not constant.

More valid cues are represented by larger drift rates. The change of drift rate can

be deterministic, i.e. based on predetermined schedule, or probabilistic. In the latter

case a probability distribution should be assign to the drift rate. Here we consider

the deterministic version, since we propose a theory on changing strategy and deter-

ministic cue schedule and time will fit to it.

Assume decision time interval [0,t] is divided to set of L consecutive time intervals,

namely {[tl−1, tl]} for l = 1, 2, . . . , L. Note that this time partitioning should not be

confused with time discretization variable τ . Consider a set of cues M = {mk} are

available with k = 1, 2, 3, . . . , K and at the start of each time partition tl the attentions

focus will be changed to one of the cues namely cl. Since each cue represents a drift

rate, the process is a piecewise (O-H). In terms of transition probability matrix P ,

at each switching time, the elements of matrices R and Q would change which is

denoted by subscript l. If the switching times replaced by nl = btl/τc the probability

of selecting S1 is determined by extending 3.16 as follows [12]:

Pr(S1) ≈ Z

n1∑
i=1

Qi−1
c1
RS1,c1 (3.28)

+ ZQn1
c1

n2∑
i=n1+1

Qi−(n1+1)
c2

RS1,c2 + . . .

+ ZQn1
c1
. . . QnL−1−nL−2

cL−1

nL∑
i=nL−1+1

Qi−(nL−1+1)
nL

RS1,cL
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in which RS1 is the first column of matrix R and Z is the initial probability vector.

Qck are the transition matrix block based on the specification of cue ck as defined

before. Similarly the time required to reach the decision is given by [12]:

E[TS1|S1] ≈ τ

Pr(S1)
(

n1∑
i=1

Qi−1
c1
RS1,c1 (3.29)

+ ZQn1
c1

n2∑
i=n1+1

Qi−(n1+1)
c2

RS1,c2 + . . .

+ ZQn1
c1
. . . QnL−1−nL−2

cL−1

nL∑
i=nL−1+1

Qi−(nL−1+1)
nL

RS1,cL)

Expressions for probability of making decision S2 and related expected time can be

derived by replacing the vector RS1 with RS2 .

3.2.1 Multi-Choice tasks

Consider the following system of equations based on 3.23:

X1(t+ τ) = ((1− τγ1)X1(t)− τγ2X2(t)) + V1(t+ τ) (3.30)

X2(t+ τ) = (−τγ2X1(t) + (1− τγ1)X2(t)) + V2(t+ τ) (3.31)

Let X1 represents accumulating data for choice S1 and X2 for choice S2 with V1+V2 =

0. Assuming that any information for one choice acts against the other choice, i.e.

X1 +X2 = 0, the system is representing two choice task with drift rate of γ2 − γ1.

Now assume there are S choices and the process of accumulations are governed
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by equations of the form 3.30. In the vector form:

dX(t) = X(t+ τ)−X(t) = −τΓ(t)X(t) + V(t+ τ) (3.32)

Let each Vi process has the mean of δi and variance of σ2
i to get:

dX(t) = (δes − ΓX(t))τ + ΣdW(t) (3.33)

where X ∈ RS is column vector, Γ and Σ ∈ RS×S are S by S matrices and es is a

1× s column vector with all elements equal to one.

If we take the same approach of discretization as we did in two- choice model,

we get a conventional S-th order Markov chain of m states which has O(mS) states

and therefore parameters. The number of transition probabilities (to be estimated)

increases exponentially with respect to the order S (the number of choices) of the

model. Therefor we propose to follow the approach of [16] for multi -choice task

modeling.

3.2.2 Autoregressive Model

By definition an autoregressive process is a random process that its value in each time

step is linearly dependent on its own previous values plus a stochastic term [17]. The

notion AR(p) indicates an autoregressive process of order p defined as:

X(t) = c+

p∑
i=1

φiXt−i + W(t) (3.34)
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in which φi are the parameters of the model, c is a constant and W (t) is white noise.

It is easy to see that (O-U) process in discrete time can be modeled by AR(1) by

rearranging 3.23.

X(t+ 1) = µt+ (1− γ)X(t) + σW(t) (3.35)

Knowing this fact, it is rational to consider a model in the order of AR(n) for discrete

version of multi-choice task. The model for multi-variate Markov chains proposed by

[16] and later extended by [18] employs this approach. The following assumptions are

required to estimate multi-variate Markov chains. Let x(n)(k) be the state probability

distribution vector of the kth sequence at time n. If the k-th sequence is in state j

with probability one then we state:

x(n)(k) = ej = (0, . . . , 0, 1︸︷︷︸
j-th

, 0, . . . , 0)T (3.36)

Moreover, assume:

x(n+ 1)(j) = λjjP
(jj)x(n)(j) +

S∑
k=1,k 6=j

P (jk)λjkx(n)(k), for j = 1, 2, · · · , S (3.37)

where

λjk ≥ 0, 1 ≤ j, k ≤ S,
S∑
k=1

λjk = 1 for j = 1, 2, · · · , S (3.38)

These assumptions mean that the state probability distribution of the j-th chain at

time (n + 1) depends only on the weighted average of itself, P (jj)x(n)(j), and other

chains, P (jk)x(n)(k), at time n. Here P (ij) is one step transition matrix of the states
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from the jth sequence to the states of the ith sequence. In vector form:

X(n+ 1) ≡



x(1)(n+ 1)

x(2)(n+ 1)

...

x(S)(n+ 1)


=



λ11P
(11) λ12P

(12) . . . λ1SP
(1S)

λ21P
(21) λ22P

(22) . . . λ2SP
(21)

...
...

...
...

λS1P
(S1) λS2P

(S1) . . . λSSP
(SS)





x(1)(n)

x(2)(n)

...

x(S)(n)


(3.39)

≡ QX(n)

The proof is based on Perron-Frobenius theorem and is given in [18]. It requires that

P (jj) and Λ = [λjk]
T are irreducible. Since all λij are assumed to be non-negative, the

model only considers positive correlation among sequences. This means an increase

in a state probability in any of the sequences at time n can only increase the state

probabilities at time n+ 1. Let’s define variable z be negatively correlated with x as

follows:

z(n+ 1) =
1

m− 1
(1− x(n+ 1))

Here 1 is a vector of all ones and (m − 1) is for normalization factor for number

of state m ≥ 2. We extend the model 3.39 to consider both negative and positive

correlation as follows:



x(1)(n+ 1)

x(2)(n+ 1)

...

x(S)(n+ 1)


= Λ+



x(1)(n)

x(2)(n)

...

x(S)(n)


+

1

m− 1
Λ−



1− x(1)(n)

1− x(2)(n)

...

1− x(S)(n)


(3.40)
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with

Λ+ =



λ1,1P
(11) λ1,2I . . . λ1,SI

λ2,1I λ2,2P
(2,2) . . . λ2,SI

...
...

...
...

λS,1I λS,2I . . . λSSP
(SS)


(3.41)

and

Λ− =



λ1,−1P
(11) λ1,−2I . . . λ1,−SI

λ2,−1I λ2,−2P
(2,2) . . . λ2,−SI

...
...

...
...

λS,−1I λS,−2I . . . λSSP
(SS)


(3.42)

for λ(i,j) ≥ 0 for i = 1, 2, . . . , S and j = ±1,±2, . . . ,±S and
∑+S
−S λi,j = 1.

Equivalently:

X(n+ 1) = H×X(n) +
1

m− 1
J× 1 ≡MsX(n) + b (3.43)

where

Hij =


(λi,j − λi,−j

m−1
)P (ii) if i = j

(λi,j − λi,−j
m−1

)I otherwisw

(3.44)

and

Jij =


λi,−jP

(ii) if i = j

λi,−jI otherwisw

(3.45)
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Using 3.43 recursively we get:

X(n+ 1) = M
(n+1)
S X(0) +

n∑
k=0

Mk
Sb (3.46)

where M0
s = I. If for certain matrix norm, we have ||Ms|| < 1 then the model 3.43

reaches to a stationary distribution. For instance by considering || · ||∞ norm which

defined as:

||M ||∞ = max
i

(
n∑
j=1

|Mij|

)

we have:

lim
n→∞

X(n) = lim
n→∞

n∑
k=0

Mk
Sb = (I −MS)−1b (3.47)

Also note that :

||MS||∞ ≤ max
1≤k≤S

{
m

∣∣∣∣λk,k − λk,−k
m− 1

∣∣∣∣+
∑
k 6=i

∣∣∣∣λk,i − λk,−i
m− 1

∣∣∣∣
}

(3.48)

which helps to control the rate of convergence by setting the right hand side of 3.48 less

than specific value α. To estimate the parameters of model 3.43 the final stationary

distribution, namely X̂ and state transition probability matrices, P (ii) should be given.

These parameters can be calculated from previously recorded data of the sequences.

Knowing them the following linear program should be solved to get parameters of Λ.

min
λ

∑
i

∣∣∣[bj,k − x̂(j)
]
i

∣∣∣ (3.49)

subject to:
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bj,k =
S∑
k=1

(
(λj,k −

λj,−k
m− 1

)∆j,kx̂
(k) +

1

m− 1
λj,k∆j,k1

)
(3.50)

S∑
k=−S

λj,k = 1, ∀j = 1, 2, . . . , S. (3.51)

λj,k ≥ 0, ∀k = ±1, . . . ,±S, j = 1, 2, . . . S (3.52)

m

∣∣∣∣λk,k − λk,−k
m− 1

∣∣∣∣+
∑
k 6=i

∣∣∣∣λk,i − λk,−i
m− 1

∣∣∣∣ ≤ α for k = 1, 2, . . . , S. (3.53)

∆jk =


P (jj) if j = k

I if j 6= k

(3.54)

Note that by choosing || · ||1 we need to solve linear program 3.49 for each Markov

process i to find proper λ’s. To do this, the preliminary estimates of final stationary

distribution and state transition matrices are required.
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Chapter 4

Cognitive approach in modeling decision

In this Chapter, we introduce the third approach in modeling decision process which

is widely used by behavioral scientists. Here, effective factors and patterns in human

behavior and performance are studied to construct normative models [19]. The ad-

vantage of this approach is the capability of including strategy selection feature into

the process of decision making. In other words, the strategy layer provides tools to

understand how the process of making decision, as a whole, can be effected by chang-

ing the strategy. After reviewing the main concept of cognitive approach, we focus on

constructing a model that can take advantage of bio-physical modeling, mathematical

abstraction and cognitive modeling approaches. We claim that such model is capable

to satisfy the basic requirements of closed loop control system.

Recently, some research has been aimed at unifying three approaches of bio-

physical model, mathematical abstraction and cognitive models, specifically in the

locus coeruleus-norepinephrine (LC-NE) framework [20]. The locus coeruleus (LC)

is a part of the human brain that plays a complex and specific role in the control of

behavior. Norepinephrine (NE) is a neurotransmitter released by LC that adjusts the

function of layers of neurons. The LC-NE system is believed to be an essential part of

the brain in the process of decision making [21]. In this chapter we specifically used
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the adaptive gain theory framework to propose a feedback control model, includes the

human decision process.

4.1 Behavioral models

In classical multi-cue multi-choice theories, it assumed that humans shall process all

available information, namely cues and their validities, and by carefully computing

the weighted sum associated with each choice, make a correct judgment [22]. This

view known as weighted additive (WADD) and dominated literature for a long time.

The core concept behind the wide acceptance of this approach is “more information

is always better”. Accordingly any procedure that relies on employing less amount of

information for the sake of saving time of cognitive effort is inherently less accurate

in results (accuracy-effort trade-off).

Staring in late 1990’s, this classical view challenged by series of studies that shown

relying on one good reason and ignoring the rest can produce more accurate results,

e.g. [23]. In other words, using heuristics might be somewhat more efficient than ra-

tional decision. Those findings were in stark contradiction with the view of heuristics

are best to avoid. Surprisingly, less information and computation can actually lead

to higher accuracy, or less-is-more effect holds. In that sense, the word heuristics is

congruent with its Greek origin “serving to find out or discover”. It is worthy to note

less-is-more dose not imply that the less information one uses, the better accuracy is

expected. Rather, it means there is a point that more information and computation

becomes counterproductive.

There are two general ways to depart from linear regression (WADD) to heuris-

tics. The passage is summarized in Table 4.1. We can either ignore weights associated

with each cue or neglect some cues themselves. The former is called Tallying in which
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Table 4.1: Decision strategies spectrum [2]

Strategy
Description

Weighted Additive (WADD)
Linear summation of cues multiplied by
weight

Tallying
Equal wights for all cues

Eliminated by aspects (EBA)
Eliminate all choices that do not exceed a
specified value on the first cue

Lexicographic (LEX)
Select a choice with highest cue on the cue
with highest validity

Take The Best (TTB)
Special case of LEX for two choices with bi-
nary cue value

equal or random weights are assigned to all cues. The latter in its extreme case be-

comes take-the-best strategy, which means ignoring all cues but the most valid one.

Heuristics would overcome WADD in the case of low predictability of a criterion,

small sample sizes relative to the number of available cues, and dependency between

cues, which are not infrequent in environment, specifically in the case of emergen-

cies [24]. One important assumption is the existence of so called adaptive toolbox [25],

which comprised of collection of heuristics and building blocks an individual has at

its disposal for construction heuristics. Mental capacities such as recognition memory

are used to construct heuristics constantly. The extend that one uses heuristics are

brilliantly defined by Simon’s scissors analogy: “Human rational behavior (and the

rational behavior of all physical symbol systems) is shaped by a scissors whose two

blades are the structure of task environments and the computational capabilities of

the actor”. In our work this analogy translated to indigenous human factors and ex-

ogenous system characteristics during emergencies. According to [26] environmental
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structures that might affect the strategy selection include:

1. Uncertainty: How well a criterion can be predicted

2. Redundancy: The correlation between cues

3. Sample size: Number of observation compare to number of cues

4. Variability in wights: The distribution of the cue weights

Higher values of uncertainty, redundancy and variability increase the success rate of

heuristics while low sample size has the same effect.

4.2 From WADD to Heuristics

Behavioral scientists have introduced normative models to explain the process of

decision-making in multi-cue tasks. In normative models, each cue is assumed to

have a utility or validity [qm] which is defined as the conditional probability that

a choice based on this cue is correct, given that the cue discriminates between the

choice alternatives [27]. Each cue also has a value [cm,i] in favor of or against the

choice represented by pool i which for simplicity is assumed to be 1 or 0. Validity

of each cue is multiplied by its value and the sum for each choice is calculated. The

choice with the largest sum is selected. As mentioned earlier WADD is defined as a

subsection of larger category named compensatory methods which in essence are the

discretized versions of race model 3.13 without noise, where cue validity is equivalent

to binary drift rate. Another approach called non-compensatory or heuristics employs

only a limited number of cues and ignores others. The decision to select which of these

two approaches is called strategy selection. In other words strategy is defined as a
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Table 4.2: Cue information for hiring example

Cues
con. int. ini. cre. com.

Cue validity 0.706 0.688 0.667 0.647 0.6
Cue value for choice 1 1 0 0 0 1
Cue value for choice 2 0 1 1 0 0
Cue value for choice 3 0 1 0 1 0

decision on how to make decisions. For better understanding of strategy selection,

let us illustrate the method with the following example.

Assume a manger has to make a decision of hiring a new employee. There are five

distinct criteria: conscientiousness, intelligence, initiative, creativity, communication

skills (multi-cue task) and three finalists to choose from (multi-choice). The company

have a good estimation of a probability of a good hire if the hiring is made based on

one specific cue (cue validity). Using WADD approach and Table 4.2 information we

calculated the value of each candidate as follows:

Vj =
5∑
1

qici,j

V 1 = 1.0306 V 2 = 1.355 V 3 = 1.335

The algorithm will results in hiring candidate 2. To add strategy layer to the

model, let’s assume the manager has control by defining a custom weight factor, β

for each department that redistributes validities based on soft-max rule:

wj =
eβqj∑5
1 e

βqi

Larger values of β changes the validity distribution in favor of larger values. Cue

weights with two different weight factor are presented in Table 4.3. Using WADD
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Table 4.3: Cue information with different weight factors

Cues
con. int. ini. cre. com.

Cue validity 0.706 0.688 0.667 0.647 0.6
Cue value for choice 1 1 0 0 0 1
Cue value for choice 2 0 1 1 0 0
Cue value for choice 3 0 1 0 1 0
Cue weight (β = 5) 0.211 0.193 0.174 0.157 0.124
Cue weight (β = 35) 0.501 0.267 0.128 0.063 0.012

Table 4.4: Candidate values recalculated

base β = 5 β = 35
V 1 1.0306 0.335 0.513
V 2 1.355 0.367 0.395
V 3 1.335 0.330 0.330

with weight factors results in different choices as shown in Table 4.4.

Vj =
5∑
1

wβi ci,j

By controlling β the manager can change the strategy from compensatory that

fairly considers all cues based on their validities to non-compensatory that heavily

leans towards large validities and ignores others.

4.3 Adaptive Gain Control Theory

Intuitively, human performance on most tasks is best with an intermediate level of

arousal and is worse with too little or too much arousal or stress. This inverted

U-shape relationship is confirmed by the classic Yerkes-Dodson curve [28]. The un-

derlying brain mechanism that controls phenomena such as arousal and motivation

is provided by several brain stem neuromodulatory nuclei with wide distribution and

ascending projection to the neocortex. These neurons play crucial roles in cogni-



52

tive behavior by releasing neurotransmitters, such as dopamine (DA), serotonin, and

norepinephrine (NE). Any disturbance in such basic and pervasive functions causes

trouble in cognition, emotion, and behavior. In addition to their direct effect on

post synaptic neurons in the form of excitation or inhibition, these neurotransmitters

modulate the effect of other neurotransmitters such as glutamate and gamma amino

butyric acid (GABA) by change of neuronal gain or activity function [29]. Our focus

in this study is to model the role of locus coeruleus (LC) neurons which release NE,

and its different modes of activities during the process of decision-making. In partic-

ular, we focus on adaptive gain control theory proposed by [21] and try to formulate

it in the control framework.

Experiments showed two distinguished modes of activity in LC neurons. In tonic

mode, an elevated baseline activity is recognized without any bursts, while in phasic

mode bursts of activities have been recorded during moderate baseline. Accurate

decision processes are usually accompanied by bursts in the phasic mode [30]. By

increasing the level of baseline activity in LC, engagement in the specific task and

consequently the performance decrease. This is the LC tonic mode which is associ-

ated with more destructibility and greater tendency to respond to not relevant stimuli.

These findings lead to hypothesis that LC phasic activity can be modeled as a tempo-

ral attentional filter which facilitates behavioral responses in the task-related decision

process. However the information-processing function that the tonic mode may serve

needs more speculation.

4.3.1 LC-NE Framework

Studies on neuromodulatory effect of NE on the performance of making decision given

by [31] showed that the decision network can move from unaroused states through high
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performance to impulsive states and eventually lose the inhibition driven race model

behavior by varying the gain of inhibitory and excitatory neurons. Furthermore,

after making the decision in decision layer, the temporary increase in the gain γE

of neurons in behavioral layer makes them act as a binary units to reduce the effect

of noise and delay in eliciting response. In other word, the phasic bursts make the

multilayer complex decision network to act as a single layer network when there

exists a strong evidence in favor of the decision. In contrast, LC tonic mode, due

to elevated baseline activity, causes indiscriminate persistent increase in gain that

renders more sensitivity to irrelevant stimuli. With respect to the current task, such

distraction is clearly disadvantageous, however it paves the road for exploration of

other opportunities and accumulates evidence toward other decisions.

Using a detailed population-level model of LC neurons and abstract connectionist

network, Reference [30] showed that change in electrical coupling among LC neu-

rons can produce the above mentioned two modes of activity. Within LC, increased

coupling gain, resulted from activation of the target decision unit, facilitates phasic

mode, which in turn causes the alternation of gain function in neurons receiving NE in

each layer of the behavioral network, namely input, decision layer itself, and response

layer. This positive feedback loop leads to better performance. In contrast, reduced

coupling strength in LC neurons causes a modest increase in baseline activity due

to non-decisive random input into the LC neuron and diminished bursting activity.

Employing this mechanism, decision maker optimizes the performance in a broader

sense, which is the trade-off between exploitation of current utility or exploration

of other opportunities. The question is what will drive the gain change or baseline

excitatory drive to change the mode of LC neurons?

LC neurons have strong projection on two other frontal brain areas, namely or-

bitofrontal cortex (OFC) and anterior cingulate cortex (ACC), which are responsible
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for evaluation of reward and cost [32]. OFC neurons are activated by rewarding

stimuli and their response varies in proportion to the amount of reward. ACC is

responsive to a variety of negatively valenced signals from pain to perceived errors

in performance, in addition to task difficulty and conflicts in processing. The main

feature which plays a significant role in decision making is the ability of integration

of rate of reward over extended periods. Due to mutual projection between LC and

OFC and ACC, it has been suggested that OFC and ACC may drive the LC acti-

vation in phasic mode. They also regulate the transition between phasic and tonic

modes [21]. When evaluations in ACC and OFC indicate that the current task util-

ity decreases steadily, they facilitate transition to the tonic mode to search for other

possible sources instead of focusing on the current task. This is done by diminishing

the phasic bursts that render concentration on the current task. In case that ACC

evaluates the utility is adequate enough, the phasic mode would continue.

The dilemma of either exploitation of current resource or exploration of other op-

portunities requires both long-term and short-term evaluation of utility. It is assumed

that OFC and ACC outputs are integrated over two time scales in order of seconds

and minutes respectively [21]. For example, for 2AFC a simple engagement index is

defined as:

Ei = (1− 1

1 + eus
)

1

1 + eul
(4.1)

in which ul and us are long and short term utilities of the decision. Ei sets a threshold

for changing the mode of LC neurons as depicted in Fig. 4.1.
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Figure 4.1: Change of LC mode based on long and short term utilities.

Figure 4.2: Brain parts that govern decision process
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4.4 Adaptive gain with strategy layer

To fit the strategy selection into adaptive gain theory, it is hypothesized that ACC

and OFC also calculate the cue weight factor [wm] on the basis of initial cue validities

[qm] [20]. LC neurons on their phasic mode facilitate adjustments of the weights

factors in favor of most valid cues by tuning the linear gains γE and γI . It has been

believed that attentional controls such as cue order schedule and processing time

are performed in prefrontal cortex (PFC) [33]. Hence, the cue order schedule and

process time distribution are determined in PFC. The projection of NE to all these

areas ratifies the role of LC neurons in attention and making decisions. Figure 4.2

summarized the roles of each part of brain in LC-NE framework.

Returning to our multi-cue multi-task race model, the strategy selection problem

is a process that controls the probability distribution of considering each cue and the

time assigned to it in the order schedule. We employ the idea presented in [20] to

find such probability distribution. Assume that a weight factor is initially assigned

to each cue on the basis of given initial cue validities. Then the weight factors are

calculated according to the following softmax rule:

am =
eγIqm∑M
i=1 e

γIqi
(4.2)

in which γI is the linearized inhibitory gain factor. We use the normalize vector [wm]

as the probability distribution of cue processing time and order: pm = am/max [am].

Note that by increasing γI , the probability of choosing the cue with highest validity

and the time interval assigned to it increase. Here, the gain can be interpreted as

the control parameter that changes the strategy from compensatory to heuristics. To

explain the propose model, we assume that the decision maker acquire information in
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Figure 4.3: Schematic diagram of decision model

sequential manner, similar to DDM. Cue validities are determined by OFC and ACC

based on past associations. The OFC and ACC relay their activation to LC which

in turn tune the gain tuple[γE, γI ]. As discussed in chapter 1, this neuro-modulation

process can change the performance of decision maker which is shown in terms of

reward rate. Figs.4.3 depicts the schematic diagram of the proposed model with

decision process modeled by DDM.

The big advantage of proposed model in control is giving measures that moderate

the performance of decision maker LC activity has large correlation with non-cognitive

factors such as arousal, affect and stress For instance by controlling the environmental

factors and recording the stress level, one can estimate the mode of LC Having this

modeling tool in hand, it is viable to think about having human decision model in

the control loop. Our proposed model features can be summed up as follows.

• The model uses both DDM formalization and physiologic models
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Figure 4.4: Proposed adaptive gain control and strategy selection framework

• Connects abstract notation of decision making to measurable control signals

• By capturing the LC mode, the decision strategy can be estimated

• By controlling the factors such as stress and fatigue, it is possible to keep the

performance near its optimum value

• This idea is a way to put more realistic decision model in to the plant control

loop

Fig.4.4 summarize the extended adaptive gain theory with strategy selection layer.

In the next Chapter we use this closed-loop model to mimic the process of decision

in an enterprise level supervisory and control system.
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Chapter 5

Human Decision in the Loop

The goal in this chapter is to propose a modeling approach in conjunction with

supervisory-control-and-data-acquisition (SCADA) actions (human responses and au-

tonomous controls) and non-SCADA actions to facilitate the integration of the pro-

posed human decision-making scheme into cyber-physical network control loop.

Although the SCADA control center typically possesses a multi-echelon hierar-

chical architecture, seeking an appropriate tool to address such hierarchical control

with humans in the loop tends to be challenging. One approach in solving the prob-

lem is assigning weight to autonomy and human decision based on factors like threat

level [34]. However it is hard to justify that higher level of autonomy in high threat

levels would results in better control outcome or vice versa. Also since there is no

human decision model involved, it is assumed that the trained operator in healthy

condition would issue eligible commands.

Second approach is to design a complementary control, namely decision unit which

adds a model of human decision to the controller that can predict human command in

the near future. The outcome of decision unit can either be presented to the operator

as a directive or may adjust the issued command toward better results. Thus far

some research have been conducted in the latter area using model-predictive control
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(MPC) framework [35]. To predict the human decision, common practice is assuming

a given probability distribution for decisions in different condition, based on previous

recorded data.

As part of the human-system integration, here we proposed a two-step approach.

In this context, it is assumed that a human operator may influence the system in

different levels as a function of indigenous system states or exogenous factors such

as emergencies. Thus, the system should possess sliding levels of autonomy [36]. It

is also assumed that in a normal situation, plant can complete the designated task

autonomously. However the trained human operator has the authority to differ from

the automation and issue commands that change the plant state trajectories. Tra-

ditional control scheme requires that the operator be constantly aware of the states

of the plant and notice any anomaly sufficiently soon so that the issued corrections

guarantee safe operation. Such a condition does not hold during emergencies, and the

assumption that vindicates the human operator’s full authority is invalid. To over-

come this issue, an augmented control system architecture will be proposed so that

it can evaluate the operator’s decision together with other synthesized control solu-

tions generated by computational control models, considering the human operator’s

working condition/states, such as stress, fatigue, etc.

The goal of the augmented control system is to enable an optimal selection of

multiple strategies, including both the operator’s decision and the control model’s

adjusted decision, so that even in critical emergency situations, the supervisory con-

trol system can judge the reliability of the operator’s decision and select an optimal

solution.
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5.1 Human-Cognition-in-the-Loop Supervisory Control

In this section, we give an application scenario for the human decision model intro-

duced in the previous sections. Specifically, we describe a human-cognition-in-the-

loop control system that pursues two main tasks: The first task is to employ the

proposed human decision model to evaluate the reliability of the human operator’s

decision, and then to combine it with the decision given by a decision support system.

The second task is to dispatch the work loads specifically in critical situation between

the human operator and decision support system in a way that the operator remains

close to his/her best performing condition.

5.1.1 Augmented supervisory system

Consider a regular industrial plant, e.g., a manufacturing plant, whose states are

affected by external variables (uncontrollable) and the control signal input. Generally,

when the plant is simple enough, the control signal can be given by a controller

(implemented with a control algorithm); and thus the plant and the controller form a

control loop which makes sure the industrial process operates normally. In addition,

this process may be monitored by one or several human operators, who are responsible

for intervening in the automated process whenever they think it is necessary. This

paradigm is adopted in almost every automatic industrial process, such as supervisory

control and data acquisition (SCADA) systems.

Human interactions with the automated system form another control loop outside

of the primary loop of the automated system, as shown in Fig. 5.1. Here, we refer to

the industrial instrument as Plant 1, and the automated system as Plant 2.

It is a common practice to trust the decision of human operator based on superi-

ority of human judgment compared to autonomy. However, there are circumstances
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Figure 5.1: Common Human-in-the-loop control scheme

where the reliability of human decision is questionable, such as when emergencies

happen, the quality of the working environment deteriorates, the human operator

has been working for long hours, or when the human operator suffers from any phys-

ical or mental problem. Therefore, in certain important contexts, a special decision

support system may be necessary. As known, the decision support system has been

widely adopted in different scenarios, and has been an important application of arti-

ficial intelligence (AI) and expert systems technology [37, 38]. Examples range from

car autopilot systems to electrical power companies online evaluation tools that pre-

dict system’s near future states. Thus far, such decision support systems only act

as a reference for human operators to make decisions. For instance, the decision

support system may alert the operator and provide a list of recommended actions

for the operator to take, such as fault diagnosis of possible locations, or emergency

shut-down/braking. However, employing the cognitive decision model, the quality of

human judgment and thus the reliability of his/her decisions can be evaluated, which
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allows the system to reevaluate human decision and even not to follow it.

Here, we propose an augmented supervisory decision-making process, in which

the human decision model introduced in the previous sections is used to evaluate

the reliability of the human operator’s decisions, and accordingly the operator’s de-

cision and the decision support system’s output are integrated. As shown in Fig. 5.2,

the decision support system plays the role of an AI operator, whose decision is de-

noted as DecisionA. Similarly, the human operator’s decision is denoted as DecisionH .

The human operator is paired with a supervisory controller to evaluate his/her judg-

ment quality and then integrate his/her DecisionH with the decision support system’s

DecisionA into a final decision. Here, we simply choose one of the decisions as the

final decision.

5.2 Case study

Let us consider a simple case, i.e., the human operator and the decision support

system only need to determine whether or not to interrupt the current automated

process. Furthermore, let us assume that each decision is only right or wrong, and

there is nothing in between. With this assumption we can replace the qualitative

term reliability with quantitative term accuracy and further normalize the accuracy

of a decision into probability of making correct decision.

Next, we assume that the accuracy of DecisionA is provided along with DecisionA

by the decision support system. The accuracy can be given based on the recorded

performance of the system. By the help of the cognitive model, we would be able

to justify an accuracy measure pertained to human decision. Thus, the so-called su-

pervisory system is responsible for determining which decision to choose according to

the accuracies of the two options.Computation of the accuracy of the human opera-
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Figure 5.2: Human-cognition-in-the-loop control framework

tor’s DecisionH along with the supervisory dispatching task is described in the next

subsection.

The supervisory controller comparing tasks is implemented as follows. Given

each decision A or H with their pertaining accuracies aA and aH , the probability of

selecting DecisionA is set to pA = (1− aH)aA and thus the probability of taking the

human operator’s DecisionH is pH = 1 − pA. The overall expected accuracy of the

augmented human-cognition-in-the-loop decision-making process is therefore given by

a = pHaH +pAaA. Table 5.1 shows the behavioral pattern of the augmented decision-

making process. It can be seen that when aA > aH , the overall accuracy a increases
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Table 5.1: Accuracy of the augmented decision-making process

aH/aA 30% 60% 90%

30% pA = 21%, a = 30% pA = 42%, a = 42.6% pA = 63%, a = 67.8%
60% pA = 12%, a = 56% pA = 24%, a = 60% pA = 36%, a = 70.8%
90% pA = 3%, a = 88.2% pA = 6%, a = 88.2% pA = 9%, a = 90%

significantly; while when aA < aH , the overall accuracy a decreases only slightly. In

practice, we may configure the system to choose DecisionH whenever aA < aH , so

that the overall accuracy never decreases.

5.2.1 Human decision accuracy

In order to assign an accuracy measure to human decision, we need to limit ourselves

to a specific task in which human attention as well as his/her internal states and work

area specification are well defined. Here we simulate 2AFC framework with random

dot experiment [39] in which the operator is required to make a decision based on the

single cue, i.e., to detect a direction of motion of dots correctly. Our assumption here

is that the operator choose the Take the Best strategy and his/her vision is the best

cue at the time. Next we build a neuronal model as described in section 2.4 to emulate

the process of decision-making in the sensory-motory brain areas. Note that, this is

basically a single cue double choice task and can be abstracted with DDM in the form

of (3.11). The complexity of a task is simply defined by the proportion of dots moving

in the desired correct direction and random moving dots. The model consists of three

types of neuronal population: primary visual cortex (V1) that gathers the information

Si, the middle temporal area (MT), and the lateral intraparietal cortex (LIP). The

detailed description of the model can be found in [40]. Visual stimulus is given in

the form of gray scale video feed and the performance of the model in detection of

the direction is analyzed. The human operator’s accuracy aH is estimated using the
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Figure 5.3: The region of operator high performance in Γ plane for moving dot task
with complexity 50%

reward rate 2.30.

To obtain the best performance area in the Γ plane, we simulate the reward rate of

the detection task over the range of inhibitory and excitatory gains, i.e., (γiI , γ
i
E) tuple

as described in Sections 2 and 3. An example of high accuracy region for the task

with complexity 50% is given in Fig. 5.3. The main outcome of this simulation is to

provide a clue of the quality of human decision in different situations and a variety of

job complexities. Fortunately there are some technologies available that can roughly

determine the condition of human internal state by using parameters such as skin

conductance and hear bit and in more advanced setup EEG signals. If by any means

this condition can be mapped to the Γ reference plane, we can think of designing a

controller to keep the operator performance in the vicinity of high performance region

rather than just choosing between DecisionA and DecisionH .
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5.2.2 Controller design

To achieve this goal we equip the so-called supervisory controller with work dispatch-

ing capability. Let us assume that a sequence of tasks m1,m2, . . . arrive at the

control center (where the human operator and decision support system make deci-

sions) one after another, where mi is a vector containing all relevant information of

task i including a measure for task complexity mi. The accuracy aH(mi,Γi) of the

human operator not only depends on the complexity mi of task mi, but also his/her

internal state Γi = {γiI , γiE} at the time of task mi, Since the operator is equipped

with sensors that show his/her decision accuracy in Γ plain for the incoming task,

the supervisory controller has the updated data of operator decision accuracy aH by

looking into his/her Γ plain profile. Note that large neural models for human accuracy

measurements are offline models and can be updated periodically based on operator

workload or his/her physical or mental condition.

To give an example we ran the neural model simulation on Tesla K40 GPU with

K40MGPUs for each node in the Holland Computing Center (HCC) at University

of Nebraska-Lincoln (UNL) to obtain sample Γ profiles. The MATLAB 2017a script

was run on iMAC, intelCore i5, with 8 GB memory and macOS X version 10.12.5.

Furthermore, we assume that the accuracy aA of DecisionA is given by aA(mi) =

0.95×mi, such that accuracy aA for the decision support system solving a simplest task

mi = 0.95 is 90%. Tasks with complexities mi, i = 1, 2, . . . , are uniformly randomly

generated in the range [0.75, 0.95] and the supervisory controller dispatches them to

one operator with a given Γ profile. To simulate the effect of stress and fatigue, we

assume that the assignment of tasks affects the human operator’s performance in

the following way. If the human operator is assigned task mi, his/her internal state

Γi will diverge from the ridge of high performance by a random distance δΓ0
i after
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Figure 5.4: Γ gain plain trajectory of operator

completing the task; if the human operator skips task mi, his/her internal state will

be brought closer to the ridge by a random δΓ1
i .

It can be seen from Fig. 5.4 that the system ensures that the γE and γI gains are

kept close to the region of the best performance. As the operator continues to work,

his/her accuracy fluctuates, as shown in Fig. 5.5, which is a representative situation

under emergencies. In addition, it is clear that the overall accuracy is kept above 0.5,

and with a much smaller variance due to the effect of the supervisory controller. As

compared in Fig. 5.5 and Fig. 5.6, through proper arrangement of the assignment of

tasks and a decent decision support system, a higher and much more stable overall

accuracy a can be achieved.
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Figure 5.5: Human operator’s accuracy aH

100 200 300 400 500 600 700 800 900 1000

task i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a
v
e

ra
g

e
 s

u
c
c
e

s
s
 r

a
te

 p

Figure 5.6: Overall accuracy a



70

Chapter 6

Experiment

In the previous chapters we proposed a control framework that incorporates human

decision model and its accuracy into the control loop. To do so, we assumed that

human biological data that maps the decision performance, here reward rate, onto

gamma plane is available. We also noted that the effect of external parameters such

as emergencies and internal states such as stress and fatigue on decision performance

are well studied and can be used by our platform. In this section we aim to design

an experiment that validate our approach. In this way, we relied on type of infor-

mation that could be gathered with today’s conventional technologies, i.e. instead

of cellular level gamma plane gain-performance relation we used more accessible bio-

physiological data such as heart beat and skin conductances. In our experiment, we

tried to change decision maker internal states by manipulation her stress and anxiety

level and show the dynamics of changing strategy during the course of experiment. In

brief, the aims for this experiment are twofold. First, to validate operationalizations

of stress by assessing whether gathered physiological data show clear evidences of

change of stress level. Second, to determine whether stressful condition induces more

heuristic processing and choice.



71

6.1 Effect of stress

Among human factors, one critical aspect that may influence decision making strategy

is stress. Stress is used to describe experiences that are challenging emotionally and

physiologically [41]. Higher cognitive areas of the brain that play a key role in decision

making are target of stress, hence the acute and chronic effects of stressful experiences

influence how they respond. The effect of stress in daily life is twofold. “Good stress”

generally refers to those experiences that accompanied by sense of accomplishment,

whereas “bad stress” or “being stressed out” refers to the sense of lack of control

and mastery and leads to irritating, emotionally draining and physically exhausting

condition.

As described before, emergencies impose limits on time to make a decision and

on the flow of information to the decision maker. Therefore emergency situations are

likely to impose stress on decision makers. It is assumed that stress influences impor-

tant components of information flow by altering: 1) perceptions of the information

and 2) how attention will be allocated to the factors relevant to making decisions.

Moderate levels of stress actually enhance aspects of cognition [42]. However, higher

levels can negatively impact perception [43] and attention [44]. Also, experiment

results in [45] concluded that the effect of stress are beneficial when the task re-

quires exclusive focusing on target information, while tasks that require integration

of information from several sources are vulnerable to the adverse effects of stress.

As described in chapter 4, our proposed cognitive model is capable of embed-

ding stress into the decision models. Employing dynamic cue weights, we proposed

a method to mirror the effect of stress on perception and attention. Since we are

interested in modeling actual human decision making, empirically validating the ca-

pabilities of proposed model is important. That is, in addition to testing theoretically
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which classes of models perform well, the need to test whether these models capture

the decisions that people actually make. Many studies have investigated the cir-

cumstances under which people use optimizing versus heuristic strategies to make

judgments and decisions [46,47]. In particular, people seem to shift to more heuristic

strategies under high time pressure [48,49]. Here instead, we are focused on imposing

acute stress via physical stressor and high demand cognition tasks.

6.2 Experiment set-up

Our experiment set-up is inspired by the work presented in [50]. The referenced study

was focused on high-arousal negative affective states that are typically associated

with anxiety, fear and disgust, which represented by the term emotional stress. In

contrary, our experiment is focused on cognitive stress which include information

overload, accelerated sense of time, self-criticism and a sense of being out of control

that is intensified by physical stress. The main goal is to investigate the effect of

stress on changing the strategy of selecting candidate with specific set of skills.

In this study the well-established Montreal imaging stress task [51] along with cold

pack stressor [52] were employed to induce acute stress in healthy participants. Indi-

vidual self-rated stress response in the form of visual analog scale (VAS) [on the scale

of 0 = “not at all” to 100 = “extremely”] were used to report the subjective impres-

sion of feeling, stress and anxiety level through the course of experiment. Previous

studies (e.g. [53]) showed strong correlation between subjective impression of stress

and some biological data, commonly used to objectively assess the level of stress.

In this experiment, VAS measure is accompanied by measuring skin conductance,

saliva alpha-amylase content and the change of blood pressure activity to investi-

gate the effectiveness of the stressor tasks both subjectively and objectively, because
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Table 6.1: Attributes and benefits for choice task

Attribute Benefit

Conscientiousness 82%
Intelligence 80%
Initiative 76%
Creativity 69%
Communicative skills 57%
Agreeableness 44%

while they’re often correlated, it is important to measure the physiology to avoid

bias with subjective self-report. The selection of skin conductance and blood activity

bio-markers are based on data available by measuring device. The saliva analysis

was meant to confirm the results rigorously. Participant were asked to perform main

decision tasks in two separate sessions before and after the stressor tasks.

6.2.1 Decision-making task

The decision-making task consists of a series of MouselabWEB matrices [54]. Each

matrix will represent a pool of job applications, with a column for each applicant(see

Fig. 6.1). The rows represent attributes of the applicants, and the cell of the matrix

is each applicant’s quality score between 1 to 5. The candidates are rated based on

their qualifications in six cues, which are: conscientiousness, intelligence, initiative,

creativity, communication skills, and agreeableness. However, the information in the

cells will be covered, such that participants must use the mouse to place the cursor

over a cell to reveal its contents. Once the cursor leaves the cell, the contents are

covered again. The attributes differ in their abilities to predict worker productivity.

Table 6.1 shows the predictive benefits of the attribute scores. It assumed that

according to previous hires, candidates with high quality scores for attributes with

high benefit values are more likely to be productive workers (pre-determined cue
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Figure 6.1: choice task screen

validities). The participant must choose the best applicant from the pool and must

search for information to make this choice. MouselabWEB allows us to measure the

search behavior (e.g., which cells were entered for how long and which cell was entered

next). Each time the task is administered, participants will experience between six

pools of applicants. Note that the order of cues are the same for all participants

and no feed back is given about their performance on selecting candidates during the

experiment.

6.2.2 Stressor task

To impose stress on participants, we combined two stressors. First, we had the

participants complete the cold pressor arm wrap task in which we wrapped their

dominant arm in a cold pack (1 degree Celsius/35 degrees Fahrenheit) for up to 2

minutes. The wrap is constructed from heavy fabric with a cooled gel (CryoMax
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pack) affixed to its inner surface. A plastic sheet placed between the participants

skin and the cold pack. This entire apparatus will be strapped onto the participants

arm with velcro affixed to the outer surface of the arm wrap.

After the cold pressor arm wrap task, we used the Montreal imaging stress task,

which asks participants to solve increasingly difficult math problems under time pres-

sure. We incentivized participants to try hard at the tasks by telling them that they

can receive $20 if they get all of the problems correct and a lower amount if they

are incorrect. The program also provides negative feedback if they are incorrect by

showing the decreasing performance bar at the top of the screen.

6.2.3 Biological data

Three types of biological data were collected to measure the level of stress in addi-

tion to visual analogue scale. The reason of analyzing biological data is to show if

participants are aware of their stress level The physiological measures of stress and

their corresponding technologies that used in this study are:

1. Salivary alpha-amylase (sAA)

2. Skin response; electrodermal activity (EDA)

3. Blood activity; photoplethysmography (PPG)

Salivary biomarkers have received special attention since they are readily accessible

and easily obtained. Salivary alpha-amylase (sAA) has been proposed as a sensitive

biomarker for stress-related changes in the body that reflect the activity of the sym-

pathetic nervous system (SNS), and a growing body of research is accumulating to

support the validity and reliability of this parameter [55].
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More recent research relied on skin measurements for stress detection because of

easy instrument interface [56]. The skin response primarily focused on is electrodermal

activity(EDA), more known as galvanic skin response(GSR). During increased stress,

perspiration increases, causing resistance to current flow to drop, inversely affecting

conductivity of skin. Skin conductance naturally increases over time, so transient

increases are targeted for EDA, i.e. the rapid transient peaks that occur due to

stressor. Recorded values are typically in the range of microsiemence (µS).

Inter-beat interval (IBI) and heart rate variability (HRV) are commonly used

factors to examine stress [57] . IBI and HRV provides more information than HR

alone. HRV is the measure of standard deviation in IBI of successive R waves in a

heart beat. In stressful situations, HRV is a product of change in autonomic nerve

activity, which is composed of sympathetic and parasympathetic modulation. The

function of the sympathetic nervous system (SNS) as it relates to the heart is to speed

HR to provide an increase in blood supply to the body. Photoplethysmography (PPG)

is optical technique to detect blood volume changes in microvasculature. With this

optical approach, heart rate (HR) and blood volume pulse (BVP) can be calculated.

Hence, PPG provides a cheaper alternative to ECG measurements.

For skin conductance and PPG measurements we used Empatica’s E4 wrist-

band [58]. The E4 wristband contains multiple sensors that allow for convenient

and comfortable sensing on the wrist. The saliva analysis were performed on Salivary

Bioscience Laboratory (UNL SBL).

6.2.4 Method

Twenty young adults (13 men, 7 women) participated in the study. Participants

were students of various departments at the University of Nebraska - Lincoln and
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Figure 6.2: Time line of experiment

were recruited through email, online recruiting system and flayers. They were paid

flat show-up fee of $5 and up to more $15 based on their performance of Montreal

imaging stress task.

When scheduling, we asked participants not to eat or drink anything 10 minutes

before the session. Upon arrival to the lab, participants provide informed consent

and rinse their mouths out with water at a nearby water fountain. When they return

to the testing room, we attached an Empatica E4 wristband to measure PPG and

skin conductance. The participant asked to complete a questionnaire about issues

related to the saliva collection and a series of visual analog scales rating their current

mood, stress level and anxiety level from 0 to 100. Next, we have participants com-

plete a decision-making task (described above) for 15 cases, followed by the visual

analog scales. Then, we collected a saliva sample via passive drool. Next, partici-

pants will experience the cold pack stressor task for 2 minutes, followed by math task

and the visual analog scales, and a saliva sample. Participants then performed the

decision-making task again, followed by the visual analog scales, and a saliva sample.

Finally, participants completed the perceived stress scale [59], perceived stress reac-

tivity scale [60], and maximizing scale [61], along with demographic questions (gender,

race/ethnicity, nationality, college major, etc.) The general time line of experiment

is given in Fig. 6.2.
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Figure 6.3: VAS results

6.3 Stressor task results

We are seeking to validate the hypothesis, claims that the stressor task was successful

in increasing the level of stress in participants, processing the collected data. We

analyzed VAS and biomarkers gathered in different instances indicated in experiment

time line.

6.3.1 Visual analog scale (VAS)

Figure 6.3 shows the average levels of stress and their variances, indicated by par-

ticipants at 4 different instances, namely at the start (A), before (B) and after (C)

stressor task and at the end of choice task 2 (D). We select our null hypothesis as the

scores at points B and C has no meaningful difference.

Since the number of participants are not large enough to draw significant conclu-

sion about the effect of stress on the scores between points B and C, instead of regular

t-test (gives p-value = 0.02), we used Bayesian estimation [62] to provide complete

distributions of credible values for the effect size, group means and their difference,
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Figure 6.4: Estimated distribution of differences and effect size, Highest Posterior
Density (HPD) Interval is selected to be 94%

standard deviations and their difference, and the normality of the data. To do so, we

chose a Student-t distribution to describe the distributions of the scores in groups B

and C with the degree of freedom ν exponentially distributed with the mean value

of 30. This allocates high prior probability over the regions of the parameter that

describe the range from normal to heavy-tailed data under the Student-T distribu-

tion. For the sake of simplicity, we assumed the same degree of freedom for both

groups. We choose each group mean to be normally distributed with mean value of

empirical mean (X̄) and standard deviation of twice empirical standard deviation i.e.

µk ∼ N (x̄, 2s) for k = 1, 2. It is also assumed the each group has a prior standard

deviation distributed uniformly between [1,10]. Having prior distribution with the

above mentioned parameters in hand, now we can fit each group to the distribution

and find some useful information such as the distribution of difference between means

and standard deviation of two groups. As a joint measure of the groups, it is also

common to estimate the effect size, which is the difference in means scaled by the

pooled estimates of standard deviation.

As shown in Fig. 6.4 participant subjective impression of their stress level were

moderately changed in average before and after stress task. The variances, although

remained the same. Fig. 6.5 summarizes the VAS stress response before and after

stressor task.
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Figure 6.5: Change of the average value of stress level in VAS; group1: before stress,
group2: after stress. Difference of mean = 18.05±6.51, Difference of stds = 1.34±1.84

6.3.2 Inter-beat intervel (IBI)

Inter-beat interval (IBI) data is collected with E4 wrist band which utilizes photo-

plethysmography to detect the length of time interval between two consecutive heart

beats. The data is collected throughout the experiment and analyzed in three in-

stances of 400 seconds before the stress task as baseline, 400 seconds after the stress

task and the last 400 seconds of the experiment

Common measures that evaluate the effect of stress on IBI categorized in three

major groups, i.e. time domain measures, frequency domain measures and non-linear

measures. In [57] a complete survey of relevant studies and selected measures is given.

There is strong evidence that suggests IBI is impacted by stress and can be used for the

objective assessment of psychological stress, however reports on the effect of stress on

different measures are not conclusive. Here, based on the similarity of our experiment

to some other reports in terms of stressor tasks [63,64] and recording time interval, we

selected three frequency measures, namely low frequency (LF) band [0.04, 0.15 Hz]

and high frequency (HF) band [0.15, 0.4 Hz] power content and the ratio of LF/HF
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to be analyzed. We used the normalized value for LF and HF band power in order to

make the Bayesian estimation method converge. Note that, with small data sets, due

to high fluctuation in absolute values, performing posterior probability estimation is

not accurate. In time domain, we chose to analyze the standard deviation (SDNN)

and root mean of squared of differences (RMSSD) of the IBI series.

For the baseline interval, 400 seconds before the start of stress task is selected

in hope that all participant were experiencing the same cognitive condition after

diminishing transients at the start of the experiment. The stress interval is selected

to be the 400 seconds after the start of stressor task. Finally we analyzed the last 400

seconds of experiment when participants were asked to complete demographic and

personality questions without any stress factor in effect.

6.3.2.1 Frequency domain analysis

Figure 6.6 depicts the frequency analysis of sample IBI performed by Python PyHRV

library. As mentioned before, the absolute and normalized power of the sequence in

each frequency band and the ratio of the power of low frequency and high frequency

band are calculated in each time interval.

Figure 6.7 summarize the differences among frequency domain measures in three

instances, i.e. baseline, stress and the end as defined above. We performed same

Bayesian estimation techniques to investigate any significant change in these three

measures. As indicated in Fig. 6.8 there is meaningful difference between the mean

value of LF norm at baseline and stress periods. Our results show slight decrease in

low frequency power content after imposing stress. The reverse effect is observed for

the HF norm. Here, a slight decrease in power content is observable.

Since both normalized low and high frequency power content changed after impos-
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Figure 6.6: Sample frequency domain analysis of IBI in 400 seconds period

ing stress, we expect a meaningful change of LF/HF ratio, however the ratio measure

is not significantly effected by stress as shown by the statistical model results. The

difference of the mean of the ratios are 0.06± 0.39.

To get better perspective, we repeated the same statistical analysis to compare

the difference estimated distributions at baseline and the end of the experiment. As

presented in Fig. 6.9, we observed the same trend for LF and HF norms, even with

more distinction in the difference of mean value. Regarding to LF/HF ratio, the

amount of decrease is more than before. Fig. 6.10 summarizes the IBI frequency

domain results in more clear setup.

6.3.2.2 Time domain analysis

We performed the same statistical analysis for SDNN and RMSSD measures at three

instances; baseline, stress and end interval. The results are shown in Fig. 6.11. As

expected, the estimated difference is more distinctive between the baseline and end

of experiment. Both measures show slight decline.
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Figure 6.7: Change of frequency measures in three 400 sec. intervals; baseline, stress
and end

6.3.3 Salivary Alpha-Amylase (sAA)

As mentioned in the experiment time line, saliva samples were collected in three in-

stances. The first one was the end of first choice task which is considered as baseline.

The second sample was collected after the stressor tasks and before the start of second

choice task. The final sample is collected at the end of second choice task. Fig 6.12

shows the box plot of the salivary alpha-amylase (sAA) in (U/mL) in aforementioned

three instances. While the median and average of sAA did not change significantly,

the stress plot shows the larger number of samples reside in inter-quartile range. The

statistical modeling of sAA did not show any significant change of average or stan-
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Figure 6.8: Estimated distribution of difference (group1-group2) average, standard
deviation and effect size of LFnorm (top) and HFnorm (middle) annd LF/HF ratio
(bottom) in IBI trail; group1: baseline, group2: stress

dard deviations among three instances. For instance, the estimated mean difference

between baseline and end group was 1.31± 5.70 and between baseline and stress was

1.82± 6.91.

6.3.4 Skin conductance (EDA)

Sudden increase of skin conductance were recorded for 16 out of 20 participants that

experienced stressor task. The conductance measure of one participants did not show

any sudden change while two others show multiple surges. Fig 6.13 shows two sample

graphs of normalized skin conductances.
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Figure 6.9: Estimated distribution of difference (group1-group2) average, standard
deviation and effect size of LFnorm (top) and HFnorm (middle) and LF/HF ratio
(bottom) in IBI trail; group1: baseline, group2: end

6.3.5 Effect of stressor; Discussion

The VAS, IBI and EDA results support our claim about the effectiveness of stressor

task. However the following considerations should be taken into account. Based on

the presented results, data gathered with E4 wrist band can be used to indicate the

stressful condition of participants. More specifically, frequency response parameters

of heart-beat variability in low and high frequency bands showed measurable changes

after imposing physical and mental stressor. While the effect begins in a short period

of time (400 seconds) after the start of stressor task, it gets more prominent when the

participants continue to work (choice task 2). This steady increase of effects can be

attributed to long time constant, with respect to selected time interval to assess the
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Figure 6.10: Estimated difference (group1-group2) of mean and its standard deviation
for LFnorm, HFnorm and LF/HF ratio in IBI trail; group1: baseline, group2: end

data, or accumulating effect of stress and fatigue, performing cognitive demanding

job.

In spite of several reports of sAA as a stress biomarker, our results of sAA analysis

were not conclusive. Another important issue is analyzing sAA, which need lab works

and can not be performed in near online fashion. Thus we would not advise using
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(a) SDNN (b) RMSSD

Figure 6.11: Estimated difference (group1-group2) of mean and its standard deviation
for SDNN and RMSSD; group1: baseline, group2: end

Figure 6.12: Box plot of sAA

sAA as stress indicator in our control framework. The reason that we include such

analysis here was to confirm the effectiveness of stressor task via more sophisticated

method, which somehow was not successful.

Sensitivity of skin conductance (EDA) to stress is less stable than IBI, since it

relays on sudden change and the effect diminishes fast compare to more steady effect
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Figure 6.13: Sample EDA graphs for two participants; red line indicates the start of
stressor task

of IBI. Although 85% of our small group showed transient surge in their EDA report

right after stressor task, some smaller abrupt changes were detected in other non-

relevant times for 3 participants. According to our results, we recommend using

EDA as a complementary measure along with IBI to annotate the start of increasing

stress level. It is worthy to note that almost all participants were aware of their level

of stress according to VAS results.

6.3.6 Decision task results

To analyze the decision task data, we took three approaches. In the first one, the

effect of stress on the length of time, spent on data acquisition and the frequency

of reaching each data point, summed over all participants were investigated. Here,

our hypothesis postulates that by imposing stress, the time of data acquisition and

frequency of reaching data decreased, implying transition from WADD to heuristics.

In the second approach, we focused on each participant strategy in processing data

and making decision in sessions one and two. Since the data were prioritize based

on their values, reaching out to boxes with high-value data more frequently and



89

spending lengthier time investigating them, while ignoring boxes with less valuable

data indicates heuristically leaning strategy. In contrast, looking for all cues and

employing them in the decision process is a sign of WADD strategy.

The third approach is based on transition among boxes. Row transition is the

sign of attribute based search, while column transition is about searching different

attributes of a same candidate and more likely compromise low score in one cue with

higher scores of other cues. In that sense, consecutive row transition implies leaning

toward heuristics and vice-versa. To characterize this, we used search index [65]

defined as:

search index =
alternative-based transitions− attribute-based transitions

alternative-based transitions + attribute-based transitions

Higher index means using WADD strategy and lower one indicates heuristic strategy.

Figure. 6.14 shows the general trend of retrieving data in the process of making

decision summed over all participants in tasks one and two. The graphs depict total

time and frequency of visiting for each data point in the matrix. The results indicates

decreased amount of time and frequency of reaching data in general. The same trend

observed if data were grouped by each decision, in task one and two as depicted in

Fig. 6.15. Here, the sum of time and frequency of visiting data points for 15 tasks in

each session, for each participant is presented. To analyze the relationship between

average value of measured parameters, an independent sample t-test was conducted.

There was a significant difference in total time measured in session 1 (mean = 230616

msec , SD = 95035.667 ) and total time measured in session 2 (mean= 153171 msec ,

SD = 71706.386 ) ; t(12) = 3.903, p= 0.0002 with 99.8% confidence. The same trend

observed in total frequency of reaching data points in session 1 (mean = 449.86, SD =

193.17) and session 2 (mean = 370 , SD = 173.81 ); t(9) = 1.836, p = 0.071 with 95%
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Figure 6.14: Time and frequency of retrieving data, summed over all participants,
choice tasks 1 and 2

confidence. Based on the results, participants spend more time and more frequently

accessed to the data in session 1 (on average) which support the hypothesis of WADD

against heuristics.

As mentioned before, the time and frequency of accessing data of each row (at-

tribute base search) can be interpreted as the tendency of using heuristics. We

grouped the average time and frequency of data acquisition for 15 choices, based

on each cue among all participants. The results are depicted in Fig. 6.16. As ex-

pected most valuable cue, indicated by letter ‘b’, were assessed more in both sessions.

Time and frequency were decreased steadily based on the values of cues from cue ‘b’
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(a) Frequency (b) Time

Figure 6.15: Time and frequency of retrieving data for each decision task, summed
over all participants, choice tasks 1 and 2

Frequency - session 1 Time - session 1

Frequency - session 2 Time - session 2

Figure 6.16: Sum of time and frequency of retrieving data, averaged for each partici-
pant, choice tasks 1 and 2. The value of cues decreases from left to right

to ‘g’ respectively.
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Another interesting feature is the difference of total allocated time between most

valuable cue and the least valuable one in each session, i.e.( sum b - sum g). Since

the total time and frequency of reaching data are different in sessions one and two,

we normalized the calculated difference by dividing it to the total time and total

frequency of each session. There is no significant difference in normalized total time

difference measured in session 1 (mean = 0.2454 , SD = 0.2364 ) and total normalized

time difference measured in session 2 (mean= 0.2623 , SD = 0.2541 ) ; t() = 0.8439,

p= 0.3990. In terms of frequency, the difference is even less stark compare to time;

t() = 0.7584, p = 0.4485. The average normalized frequency difference in session 1

was 0.2620 with SD = 0.2282 and for session 2 was 0.2767 with SD = 0.2490.

The results of analyzing search index are mixed as presented in Fig. 6.17. While

some participants showed clear indication of changing strategy from higher index val-

ues in session 1 to lower ones in session 2, others showed the reverse trend. According

to t-test results there is no significant difference between average search index in ses-

sion 1 (mean = 0.144, SD = 0.407) and session 2 (mean = 0.1211, SD = 0.450) with

p = 0.867.

The final piece of data that we analyzed is the accuracy of decisions made in

sessions 1 and 2. Since the data were designed in way that there is a best choice in

each task, based on WADD strategy, it was possible to calculate the percentage of

correct answer of each participant in each session. According to the results there is

a significant difference between the number of correct answers of each participants in

15 choice tasks in session 1 (mean = 0.16 , SD = 0.077) and same number of tasks in

session 2 (mean = 0.13, SD = 0.057); t(4) = 1.506, p = 0.141 with 80% confidence.
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Figure 6.17: Search index of participants in session 1 and 2

6.3.6.1 Decision task results; Discussion

Based on our results, total time spend on making decision and frequency of visiting

data points have strong correlation with the level of stress. Both measures showed

significant decrease in session 2 on average. Since one of the main difference between

WADD and heuristics is the amount of cognitive effort required in decision process,

one can conclude that the strategy changed from WADD to heuristics, going from

session 1 to 2. The decision accuracy results showed that the change of strategy

worsen the level of accuracy, however not in a strong way, meaning the stress factor

played a relatively destructive role. In other word the notion of good stress which

lead to better concentration and more accurate decision is not the case here.

Another investigated parameter is the length of time difference spent on most and

least valuable cues. In order to compare the level of difference, we normalized it by

dividing to the average total time and frequency for task in each session. While in

both session, most valuable cue is visited more, in session 2 the difference was more
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Table 6.2: Summary of choice task results

measure mean (session 1) mean (session 2) t p-val

total time 230616 ±95035 153171 ±71706 3.903 2 ×10−4

total frequency 449.86 ±193.17 370 ±173.81 1.836 0.071
norm. diff. time 0.2454 ±0.2364 0.2623 ±0.2541 0.8439 0.3990
norm. diff. Freq. 0.2620 ±0.2282 0.2767 ±0.2490 0.7584 0.4485
search index 0.144 ±0.407 0.121 ±0.450 – 0.867
accuracy 0.16 ±0.077 0.13 ±0.057 1.506 0.141

observable on average, however we were not successful to capture a significant change

as an indication of the change of strategy to heuristics, in which the less valuable cues

are more probable to ignore. Another measure that not respond well to our change

of strategy hypothesis was search index. We expected the large number of transitions

based on alternatives (here candidate) as a sign of WADD while the large number of

transitions based on cues indicates heuristic approach. However our results were nor

consistent with such explanation. Table 6.2 summarized the results.
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Chapter 7

Conclusion

Human operator may influence the system in different levels as a function of indige-

nous system states or exogenous factors such as emergencies and stress. Traditionally,

it is also assumed that in normal situation, automated system can complete the des-

ignated task automatically. However the trained human operator has the authority to

differ from the automation and issue commands that change plant state trajectories.

This scheme requires the operator be constantly aware of the states of system and

notice any anomaly sufficiently soon, thus the issued corrections guarantee the safe

operation, the condition that not always hold specially during emergencies, and the

basic assumption that vindicates human operator full authority is jeopardized.

Our approach in solving this problem is to proposed a complementary control

which adds a model of human decision to the controller, capable of predicting hu-

man command’s accuracy in the near future. Using insights from mathematical and

computational neurosience as well as behavioral normative modeling approach, this

work proposed a comprehensive model for general multi-cue multi-choice task to be

utilized in the human in the loop control framework. This model also includes a

layer of strategy selection to cover a range of strategies from weighted additive to

heuristics in a continuous fashion. The LC-NE dynamics in adaptive gain theory
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provided a platform to form a closed loop control system that collects bio-physically

relevant data and use it to make prediction in terms of the strategy and accuracy.

The outcome of decision unit can either be presented to the operator as a directive

or may adjust the issued command toward better results. In this study, a controller

was designed to dispatch the tasks between the system and the operator to keep the

operator close to the best performance region. A case study for a simple one-attribute

task was simulated showed the effectiveness of the proposed controller.

One major assumption in designing complementary control unit was that the

feedback physiological signals can be mapped onto NE-LC gamma plane and hence the

quality of decision at each time is known to controller. In the experiment section, we

relaxed this assumption and showed that by using commercially available technologies,

it is possible to infer the decision strategy and accuracy. To do so, we first proved that

by means of physical and mental stressor task, it is possible to manipulate the level

of stress in participants. By analyzing the heart beat variability data in frequency

domain we were able to detect the stressful situation objectively. Second, we proved

the change of strategy from more comprehensive WADD to simpler heuristics by

processing the total time and frequency of assessing data points.

Transforming the way that people interact with complex engineered systems is the

primary objective of developing focused research for cyber-physical systems or CPS.

However, without touching human factors that might affect the whole system life pro-

cess, this type of research merely results in a one-way, non-personalized solution. Due

to significantly increasing presence of CPS in a human living environment to improve

quality of life (e.g., smart buildings and communities), ignoring human factors in anal-

ysis and synthesis of sophisticated CPS becomes implausible. Alternatively, with the

recent advances in cognitive computing (both algorithms and hardware) and hierar-

chical autonomous technology (condition monitoring and hybrid control), it becomes
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possible to incorporate human factors into complex cyber-physical system-of-systems

engineering. Inspired by this observation, new two-way human-system engineering in

modeling, supervision, and synthesis for human-in-the-loop cyber-physical networks

is required. This work deemed to fulfill this goal, by proposing a cognitive hierarchi-

cal synthesis framework that address human, cyber, and physical system interaction

through behavioral dynamics, decision making, and hybrid control techniques. The

proposed framework will provide a brand new vision on human roles in system engi-

neering that may in turn benefit CPS for humanization of system operation, super-

vision, and control processes. Future research would include more diverse normative

models for selecting strategies and more involved connectionist models that include

a variety of biophysical factors. Also increasing the number of participants will add

more confidence to the reported results.
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Appendix A

Expectation and variance of multi-cue multi-choice model

We have proposed the following leaky integrator race model to describe the dynamics

of multi-cue multi-choice tasks. This model combines the race model and time and

order scheduling concept as follows:

dxi(t) =

(
− ki,m(t)xi(t)−

∑
j 6=i

wi,j,m(t)xj(t) + Si,m(t)

)
dt

+ σidWi(t), m(t) ∈M, tl−1 ≤ t < tl (A.1)

where ki,m depends on both choice i and cue m, wi,j,m depends on choice i, choice j,

and cue m, and wi,j,m = wj,i,m.

The model can be slightly simplified by ignoring the non uniform impact of tasks

on different integrators as follows:

dxi(t) =

(
− km(t)xi(t)−

∑
j 6=i

wm(t)xj(t) + Si,m(t)

)
dt

+ σidWi(t), m(t) ∈M, tl−1 ≤ t < tl (A.2)

Note that task with index m is selected according to cue ordering schedule and
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processed during the assigned time interval. The criteria of absolute threshold or

max-versus-next or max-versus-average are considered to select the choice among the

members of a decision vector stacked by xi.

In this section, we develop some mathematical preliminaries used for asymptotic

analysis of mean-value and variance of the multi-cue multi-choice model A.1 using

the paracontraction-based semiconvergence theory developed in [66,67]. Throughout

the paper, let Rn×m denote the set of all n-by-m real matrices, Rn the set of all

n-dimensional real column vectors, and ‖ · ‖ the vector/matrix 2-norm.

A.1 Paracontraction

Definition 1 Let W : D → Rn×n and D ⊆ Rm. W is called parameter-dependent

paracontracting (PDPC) at z ∈ D if for any x ∈ Rn, ‖W (z)x‖ ≤ ‖x‖ and the equality

holds if and only if W (z)x = x at z ∈ D. W is called PDPC if it is PDPC at every

point in D.

Definition 1 is an extension of matrix paracontraction to parameter-dependent

matrix functions. It is clear that if W is a constant matrix, then PDPC becomes the

definition of paracontraction in [68, 69]. References [66, 67] discuss the relationship

between paracontraction and discrete-time semistability, and give some neccessary

and sufficient conditions to connect both, which will be summarized as follows. Ref-

erence [66] further uses this condition to design optimal semistable controllers for

network systems. Note that our condition of PDPC is slightly different from pseudo-

contraction in [70] or set-contraction in [71] or uniform paracontraction in [72] since

A.1 is a parameter-dependent system across L time spans with possibly time-varying
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parameters, given the fact that A.1 consists of L piecewise stochastic differential equa-

tions with each one having a possibly different expectation, variance, and threshold.

The next result gives the necessary and sufficient conditions to check paracontrac-

tion practically. To state it, let rank(A) denote the rank of matrix A, AT denote the

transpose of A, and ker(A) denote the null space of A.

Lemma 1 Let W : D → Rn×n and D ⊆ Rm. Then the following statements are

equivalent:

i) W is PDPC.

ii) ‖W (z)‖ ≤ 1 and rank(WT(z)W (z) − In) = rank(W (z) − In + WT(z) − In) =

rank

 WT(z)W (z)− In

W (z)− In +WT(z)− In

 for every z ∈ D.

iii) ‖W (z)‖ ≤ 1 and rank(WT(z)W (z)−In) = rank(W (z)−In) = rank

WT(z)W (z)− In

W (z)− In


for every z ∈ D.

Proof. The equivalence between i) and ii) follows from Remark 3.2 of [67] and the fact

that ker(A) = ker(B) if and only if rank(A) = rank(B) = rank

A
B

 for A ∈ Rn×m

and B ∈ Rn×l. The equivalence between i) and iii) follows from Lemma 3.2 of [67]

and the fact that ker(A) = ker(B) if and only if rank(A) = rank(B) = rank

A
B

. �
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A.2 Asymptotic Analysis of Discrete-Time Systems

A.2.1 Discrete-time switched linear systems

In this section, we will discuss some asymptotic properties of discrete-time switched

linear systems with time-varying parameters and external inputs given by the sequen-

tial form

Xk+1 = Wpk(zk)Xk + bpk(zk), k = 0, 1, 2, . . . (A.3)

where Xk ∈ Rq is the state, Wpk(·) ∈ Rq×q, {pk}∞k=0 ⊆ Σ, Σ is an index set, {zk}∞k=0 ⊆

D ⊆ Rm is the parameter set, and bpk(·) ∈ Rq is the external input.

Note that ker(Wpk(zk)− Iq) is a subspace for every k ≥ 0 and every zk ∈ D. Since

a subspace cannot lie in any subspace of lesser dimension, it follows that there exists

a positive integer N = Nzk such that
⋂∞
k=N ker(Wpk(zk)−Iq) =

⋂∞
k=l ker(Wpk(zk)−Iq)

for all l ≥ N . Similarly, it follows that there exists a positive integer N = Nz such

that
⋂∞
k=N ker(Wpk(z) − Iq) =

⋂∞
k=l ker(Wpk(z) − Iq) for all l ≥ N . In general, Nzk

and Nz may not be equal. Nevertheless, we found out that both are equal for the

discrete-time system that we will construct for asymptotic approximation of A.1 later

(see the proof of Theorem 1). Hence, in this work we make the following standing

assumption:

Assumption 1 For (A.3), there exists a positive integer N such that
⋂∞
k=N ker(Wpk(zk)−

Iq) =
⋂∞
k=l ker(Wpl(zk)− Iq) =

⋂∞
k=N ker(Wpk(z)− Iq) =

⋂∞
k=l ker(Wpl(z)− Iq) for all

l ≥ N , any zk ∈ D, and any z ∈ D.

Assumption 1 implies that the fixed-point subspace of the parameter-dependent ma-
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trix sequence {Wpk(zk)}∞k=0 will be similar to that of a parameter-independent matrix

sequence after certain time period. A sufficient condition to guarantee Assumption 1

is that there exists a positive integer N , independent of zk ∈ D and z ∈ D, such

that ker(Wpk(zk) − Iq) = ker(Wpk(z) − Iq) for all k ≥ N , any zk ∈ D, and any

z ∈ D. The following result gives an alternative, more general condition to guarantee

Assumption 1.

Lemma 2 Consider (A.3), where Wpk(·) ∈ Rq×q, pk ∈ Σ, and zk ∈ D. Let Jpk ⊆ Σ be

an admissible set such that every element in Jpk appears infinitely often in the sequence

{pk}∞k=0 for (A.4). If Jpk = {1, 2, . . . , j} and rank(A) = rank(B) = rank

A
B

, where

A =



W1(w1)− Iq

W2(w2)− Iq
...

Wj(wj)− Iq


, B =



W1(wj+1)− Iq

W2(wj+1)− Iq
...

Wj(wj+1)− Iq


for every wi ∈ D, i = 1, 2, . . . , j + 1, then Assumption 1 holds.

Proof. Since Jpk = J = {1, 2, . . . , j} is independent of zk, it follows from the definition

of Jpk that there exists a positive integer Nzk such that
⋂∞
k=Nzk

ker(Wpk(zk) − Iq) =⋂∞
k=l ker(Wpk(zk)− Iq) =

⋂
p∈J ker(Wp(znp)− Iq) for every zk ∈ D and every l ≥ Nzk .

Let N = min{Nzk :
⋂∞
k=Nzk

ker(Wpk(zk) − Iq) =
⋂
p∈J ker(Wp(znp) − Iq),∀zk ∈ D}.

Such an N is well defined due to the facts that Jpk is independent of zk and Jpk = J .

Then
⋂∞
k=N ker(Wpk(zk)− Iq) =

⋂∞
k=l ker(Wpl(zk)− Iq) =

⋂
p∈J ker(Wp(znp)− Iq) for

all l ≥ N and any zk ∈ D.
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Note that the rank condition holds if and only if
⋂
p∈J ker(Wp(wp)− Iq) =⋂

p∈J ker(Wp(wj+1) − Iq) for every wi ∈ D, i = 1, 2, . . . , j + 1 (recall that ker(A) =

ker(B) if and only if rank(A) = rank(B) = rank

A
B

). Note that by taking zk = wj+1

for all k = 0, 1, 2, . . ., we have
⋂∞
k=N ker(Wpk(wj+1)−Iq) =

⋂∞
k=l ker(Wpl(wj+1)−Iq) =⋂

p∈J ker(Wp(wj+1)− Iq) for every wj+1 ∈ D and every l ≥ N . Finally, since zk ∈ D

is arbitrary, taking znp = wp, p ∈ J , yields the conclusion. �

Under Lemma 2, let N be the minimum one such that
⋂∞
k=N ker(Wpk(zk)− Iq) =⋂∞

k=l ker(Wpl(zk) − Iq) for all l ≥ N and all zk ∈ D. Now, using superposition for

linear systems and Assumption 1, we can decompose (A.3) into two subsystems

xk+1 = Wpk(zk)xk, x0 = X0, k = 0, 1, 2, . . . (A.4)

yk+1 = yk +
k∏
i=0

Wpk−i(zk−i)bpk(zk), y0 = 0, (A.5)

where Xk = xk + yk, K = RRT
∏N−1

i=0 WpN−1−i(zN−1−i), R = [s1, s2, . . . , sr] ∈ Rq×r,

{s1, s2, . . . , sr} be an orthonormal basis for
⋂∞
k=N ker(Wpk(zk)− Iq),

r = dim(
⋂∞
k=N ker(Wpk(zk) − Iq)), and dimS denotes the dimension of subsapce S.

We call (A.4) the homogeneous subsystem of (A.3) and (A.5) the non-homogeneous

subsystem of (A.3).

A.2.2 Homogeneous subsystem

In this subsection, we consider the convergence behavior of the homogeneous subsys-

tem (A.4), i.e., under what conditions does (A.4) converge asymptotically? To this

end, define the positive limit set of (A.4) with respect to {zk}∞k=0 as ωp(x0, {zk}) =

{x∗ ∈ Rq : ∃{xqk}∞k=0 ⊆ {xk}∞k=0, limk→∞ xqk = x∗} for every x0 ∈ Rq and every
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{zk}∞k=0 ⊆ D, where x∗ is called an accumulation point of (A.4). Finally, the omega

limit set Ωp(x0) of (A.4) is defined as Ωp(x0) =
⋃
zk∈D ωp(x0, {zk}).

The next result shows that the positive limit set ωp(x0, {zk}) of (A.4) is embedded

in this subspace when the matrices in (A.4) are PDPC.

Lemma 3 Consider (A.4), where Wpk(·) ∈ Rq×q is PDPC, pk ∈ Σ, and zk ∈ D.

Assume that Assumption 1 holds, Wpk(·) is continuous, Σ is finite, and D is compact.

Then for every x0 ∈ Rq and every zk ∈ D, ωp(x0, {zk}) is nonempty and Ωp(x0) ⊆⋃
z∈D

⋂∞
k=N ker(Wpk(z)− Iq).

Proof. Consider (A.4) and let x0 ∈ Rq and zk ∈ D. Since Wpk(·) is PDPC, it follows

from Lemma 1 and (A.4) that ‖xk+1‖ ≤ ‖xk‖ for every k = 0, 1, 2, . . ., which implies

that {xk}∞k=0 is bounded and, hence, has an accumulation point x∗ ∈ ωp(x0, {zk}).

Thus, ωp(x0, {zk}) is nonempty. Let {xqk}∞k=0 be a subsequence of {xk}∞k=0 such that

limk→∞ xqk = x∗.

We claim that x∗ ∈
⋃
z∈D

⋂∞
k=N ker(Wpk(z)− Iq). Suppose that

x∗ 6∈
⋃
z∈D

⋂∞
k=N ker(Wpk(z)− Iq). Note that pk ∈ Σ and by assumption, Σ is finite.

Let J ⊆ Σ be the set of all positive integers that appear infinitely often in {pk}∞k=N .

Without loss of generality, assume that J = {1, . . . , n}. Then for every k ≥ N , there

exists σ ∈ J such that x∗ ∈ ker(Wpk(z)− Iq) for pk < σ and x∗ 6∈ ker(Wpk(z)− Iq) for

pk ≥ σ. Since every element in J appears infinitely often in {pk}∞k=N , for each k ≥ N

there exists a smallest integer rk ≥ qk ≥ N such that prk+1
≥ σ and limk→∞ xrk exists.

Note that xrk − x∗ = Wα1(zα1)Wα2(zα2) · · ·Wαp(zαp)(xqk − x∗) for some 1 ≤ αi < σ,

1 ≤ i ≤ p, we have ‖xrk − x∗‖ ≤ ‖xqk − x∗‖ for all k ≥ N , which shows that

limk→∞ xrk = x∗. Now there is at least one number in {σ, σ + 1, . . . , n} that occurs
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infinitely often among the numbers prk+1
, k ≥ N . Without loss of generality, assume

that this number is σ.

Consider a new sequence {yk}∞k=N of {xrk}∞k=N for which prk+1
= σ. Then both

{yk}∞k=N and {Wσ(zk)yk}∞k=N are subsequences of {xk}∞k=N . Since zk ∈ D and D is

compact, it follows that there exists a subsequence {znk}∞k=N of {zk}∞k=N such that

limk→∞ znk = z∗ ∈ D. Hence, ‖x∗‖ = limk→∞ ‖ynk‖ = limk→∞ ‖Wσ(znk)ynk‖ =

‖Wσ(z∗)x∗‖. Now it follows from the PDPC of Wσ(·) that x∗ = Wσ(z∗)x∗, which

contradicts the fact that x∗ 6∈ ker(Wpk(z
∗) − Iq) for all pk ≥ σ and z∗ ∈ D. Thus,

x∗ ∈
⋃
z∈D

⋂∞
k=N ker(Wpk(z)− Iq). �

Hence, Lemma 3 indicates the possible structures for all the limit points of (A.4).

If
⋂∞
k=N ker(Wpk(z) − Iq) = {0} and Σ is finite, then by Lemma 3, limk→∞ xk = 0.

Otherwise, if
⋂∞
k=N ker(Wpk(z)−Iq) 6= {0}, then we have the following decomposition

result for xm when m is sufficiently large.

Lemma 4 Consider (A.4), where Wpk(·) ∈ Rq×q is PDPC, pk ∈ Σ, and zk ∈ D.

Assume that Assumption 1 holds and
⋂∞
k=N ker(Wpk(z)− Iq) 6= {0} for z ∈ D. Then

for every m ≥ N and every zk ∈ D, xm of (A.4) can be decomposed as

xm = RRTxN−1 + (Wpm(zm)−RRT)

(Wpm−1(zm−1)−RRT) · · · (WpN (zN)−RRT)xN−1. (A.6)

Proof. By the definition of R and Assumption 1, we have (Wpm(z) − Iq)R = 0q×r

and hence, (Wpm(zm)− Iq)R = 0q×r for every m ≥ N , where 0q×r denotes the q × r

matrix whose entries are all zeros. Next, it follows from Corollary 3.2 of [67] that

ker(WT
pm(zm)− Iq) = ker(Wpm(zm)− Iq) for every m ≥ N . Now (WT

pm(zm)− Iq)R =
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0q×r for every m ≥ N . Hence, RTWpm(zm) = (WT
pm(zm)R)T = RT. Therefore, for

every i ≥ N , we have (Wpi+1
(zi+1) − RRT)(Wpi(zi) − RRT) = Wpi+1

(zi+1)Wpi(zi) −

RRT. By induction,

m∏
i=0

Wpm−i(zm−i)−RRT

N−1∏
i=0

WpN−1−i(zN−1−i)

=

(m−N∏
i=0

Wpm−i(zm−i)−RRT

)(N−1∏
i=0

WpN−1−i(zN−1−i)

)

=

(m−N∏
i=0

(Wpm−i(zm−i)−RRT)

)(N−1∏
i=0

WpN−1−i(zN−1−i)

)
. (A.7)

Right-multiplying x0 on both sides of (A.7) yields (A.6). �

Note that the decomposition (A.6) has multiple structures Wpm(zm) − RRT for

every m ≥ N . The following result gives a PDPC property for them.

Lemma 5 Consider (A.4), where Wpk(·) ∈ Rq×q is PDPC, pk ∈ Σ, and zk ∈ D.

Assume that Assumption 1 holds and
⋂∞
k=N ker(Wpk(z)− Iq) 6= {0} for z ∈ D. Then

for every i ≥ N , Wpi(zi)−RRT is PDPC for any zi ∈ D.

Proof. Let R = [s1, s2, . . . , sr] ∈ Rq×r, span{sr+1, sr+2, . . . sq} = span{s1, s2, . . . , sr}⊥,

and Q = [sr+1, sr+2, . . . sq] ∈ Rq×(q−r), where q − r = dim(span{s1, s2, . . . , sr}⊥) and

spanS denotes the span of set S. Next, let x 6∈ ker(Wpk(zk) − RRT − Iq), k ≥

N . Then x = Ry1 + Qy2 for some y1 ∈ Rr×1 and some y2 ∈ R(q−r)×1. Note that

Wpk(zk)R = R for all k ≥ N . Then it follows that (Wpk(zk)−RRT)x = Wpk(zk)Qy2.

Hence, x 6∈ ker(Wpk(zk) − RRT − Iq) if and only if Wpk(zk)Qy2 6= Ry1 + Qy2, or,

equivalently, (Wpk(zk)− Iq)Qy2 6= Ry1. Note that it follows from Corollary 3.2 of [67]

that ran(Wpk(zk) − Iq) ∩ ker(Wpk(zk) − Iq) = {0q×1}. Since (Wpk(zk) − Iq)Qy2 ∈
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ran(Wpk(zk)−Iq) and Ry1 ∈ ker(Wpk(zk)−Iq), it follows that (Wpk(zk)−Iq)Qy2 6= Ry1

if and only if either (Wpk(zk)− Iq)Qy2 6= 0q×1 or Ry1 6= 0q×1.

If (Wpk(zk) − Iq)Qy2 6= 0q×1, then it follows from the PDPC of Wpk(zk) that

‖Wpk(zk)Qy2‖2 < ‖Qy2‖2 ≤ ‖Ry1‖2 + ‖Qy2‖2 = ‖Ry1 + Qy2‖2, i.e., ‖(Wpk(zk) −

RRT)x‖ < ‖x‖. Therefore, by definition, Wpk(zk)−RRT is PDPC for every k ≥ N .

Alternatively, if Ry1 6= 0q×1, then ‖Ry1‖ > 0. Since Wpk(zk) is PDPC, it follows

that ‖Wpk(zk)Qy2‖2 ≤ ‖Qy2‖2 < ‖Ry1‖2 + ‖Qy2‖2 = ‖Ry1 +Qy2‖2, i.e., ‖(Wpk(zk)−

RRT)x‖ < ‖x‖. Hence, using the similar arguments as above, one can show that

Wpk(zk)−RRT is PDPC for every k ≥ N in this case. �

When Σ is finite, Lemma 5 can be further strengthened as follows.

Lemma 6 Consider (A.4), where Wpk(·) ∈ Rq×q is PDPC, pk ∈ Σ, and zk ∈ D.

Assume that Assumption 1 holds,
⋂∞
k=Nz

ker(Wpk(z)− Iq) 6= {0} for z ∈ D, and Σ is

finite.

i) Then for any zk = z ∈ D when k ≥ N , maxk≥N ‖(Wpk(z)− RRT)x‖ < ‖x‖ for

all x 6∈ ker(Wpk(z)−RRT − Iq).

ii) If, in addition, Wpk(·) is continuous for every k ≥ N and D is compact, then

for every k ≥ N , maxk≥N maxzk∈D ‖(Wpk(zk) − RRT)x‖ < ‖x‖ for all x 6∈

ker(Wpk(zk)−RRT − Iq).

Proof. i) Let x ∈ Rq. Note that it follows from the proof of Lemma 5 that x 6∈

ker(Wpk(z)−RRT− Iq) if and only if (Wpk(z)− Iq)Qy2 6= 0q×1 or Ry1 6= 0q×1, where

x = Ry1 +Qy2.
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If (Wpk(z) − Iq)Qy2 6= 0q×1, then it follows from the PDPC of Wpk(z) that

maxk≥N ‖Wpk(z)Qy2‖ = ‖Wp∗k
(z)Qy2‖ < ‖Qy2‖ ≤ (‖Ry1‖2 + ‖Qy2‖2)1/2 = ‖Ry1 +

Qy2‖, i.e., maxk≥N ‖(Wpk(z)−RRT)x‖ < ‖x‖.

Alternatively, if Ry1 6= 0q×1, then ‖Ry1‖ > 0. Thus, it follows from the PDPC of

Wpk(z) that maxk≥N ‖Wpk(z)Qy2‖ = ‖Wp∗k
(z)Qy2‖ ≤ ‖Qy2‖ < (‖Ry1‖2+‖Qy2‖2)1/2 =

‖Ry1 +Qy2‖, i.e., maxk≥N ‖(Wpk(z)−RRT)x‖ < ‖x‖.

ii) The proof is similar to that of i), and hence, is omitted. �

Based on Lemma 5, we have the following further result on the structure of⋂∞
k=N ker(Wpk(zk)−RRT − Iq).

Lemma 7 Consider (A.4), where Wpk(·) ∈ Rq×q is PDPC, pk ∈ Σ, and zk ∈ D.

Assume that Assumption 1 holds and
⋂∞
k=N ker(Wpk(z)− Iq) 6= {0} for z ∈ D. Then

for every m ≥ N and every zk ∈ D,
⋂∞
k=m ker(Iq −Wpk(zk) +RRT) = {0}.

Proof. Let x ∈ Rq. If x ∈
⋂∞
i=m ker(Iq − Wpi(zi) + RRT), then Wpi(zi)x = (Iq +

RRT)x for every i ≥ m. Since ‖Wpi(zi)x‖2 = ‖x‖2 + 2‖RTx‖2 + ‖RRTx‖2 and

‖Wpi(zi)x‖ ≤ ‖x‖, it follows that RTx = 0r×1. Hence, by the PDPC of Wpi(·),

Wpi(zi)x = x, which implies that x ∈ ker(Wpi(zi) − Iq) for every i ≥ m. Conse-

quently, x ∈
⋂∞
i=m ker(Wpi(zi)− Iq), where m ≥ N . Since

⋂∞
k=N ker((Wpk(zk)− Iq) =⋂∞

k=m ker(Wpk(zk) − Iq) for every m ≥ N and the column vectors of R form an or-

thonormal basis for
⋂∞
k=N ker(Wpk(zk) − Iq), it follows that there exists y ∈ Rr such

that x = Ry. Since RTx = 0r×1, it follows that RTRy = 0r×1; and, hence, Ry = 0q×1.

Finally, x = Ry = 0q×1. � Using the above results, one can have the following result

on the convergence of (A.4) with a finite index set.

Lemma 8 Consider (A.4), where Wpk(·) ∈ Rq×q is PDPC, pk ∈ Σ, and zk ∈ D.

Assume that Assumption 1 holds and Σ is finite.
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i) Then for any x0 ∈ Rq and any zk = z ∈ D when k ≥ N , limk→∞ xk =

RRTxN−1 ∈
⋂∞
k=N ker(Wpk(z)− Iq).

ii) If, in addition, Wpk(·) is continuous for every k ≥ N and D is compact, then for

any x0 ∈ Rq and any zk ∈ D, limk→∞ xk = RRTxN−1 ∈
⋂∞
k=N ker(Wpk(zk)−Iq).

Proof. Let zk ∈ D. First, if
⋂∞
k=N ker(Wpk(zk) − Iq) = {0}, then it follows from

Lemma 3 that limk→∞ xk = 0. Now we assume that
⋂∞
k=N ker(Wpk(zk) − Iq) 6= {0}.

Define Wm as

Wm =

(m−N∏
i=0

(Wpm−i(zm−i)−RRT)

)

×
(N−1∏

i=0

WpN−1−i(zN−1−i)

)

for every m ≥ N . Then it follows from Lemma 4 that for every x0 ∈ Rq and every

m ≥ N ,

Wmx0 = xm −RRTxN−1. (A.8)

We claim that for any x ∈ Rq, limm→∞Wmx = 0q×1. Suppose, conversely, that

there exists x ∈ Rq such that Wmx does not converge to 0q×1 as m → ∞. By

Lemma 5, Wpk(zk) − RRT is PDPC for every k ≥ N . Since ‖Wpk(zk)‖ ≤ 1 due to

Lemma 1, we have:

‖Wmx‖ ≤ (
m−N∏
i=0

‖Wpm−i(zm−i)−RRT‖)(
N−1∏
i=0

‖WpN−1−i(zN−1−i)‖)‖x‖ ≤ ‖x‖

Thus, {Wmx}∞m=Nz
is a bounded sequence in Rq. It follows from Bolzano-Weierstrass
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Theorem that there exists a subsequence {mk}∞k=0 such that limk→∞Wmkx = w 6=

0q×1, where m0 ≥ N .

Let Wmkx = skw + dk, where dk ∈ span{w}⊥. Note that wTWmkx = sk‖w‖2

and dT
kWmkx = ‖dk‖2. Taking the limit on both sides of these two equations

yields limk→∞ sk = 0 and limk→∞ dk = 0q×1. Next, it follows from Lemma 7 that⋂∞
i=mk

ker(Iq −Wpi(zi) + RRT) = {0q×1} for every k = 0, 1, 2, . . .. Since w 6= 0q×1,

it follows that w 6∈
⋂∞
i=mk

ker(Iq −Wpi(zi) + RRT). Hence, for every k = 0, 1, 2, . . .,

there exists i > mk such that w 6∈ ker(Iq −Wpi(zi) + RRT). Let nk = min{i : i >

mk,w 6∈ ker(Iq −Wpi(zi) +RRT)}. Then it follows that

Wnkx =

( nk−mk−1∏
i=0

(Wpnk−i
(znk−i)−RRT)

)

×
(mk−N∏

i=0

(Wmk−i(zmk−i)−RRT)

)

×
(N−1∏

i=0

WpN−1−i(zN−1−i)

)
x

= sk(Wpnk
(znk)−RRT)w

+

( nk−mk−1∏
i=0

(Wpnk−i
(znk−i)−RRT)

)
dk. (A.9)

i) Note that by assumption, zk = z ∈ D for all k ≥ N . Taking the norm on both

sides of (A.9) yields

‖Wnkx‖ ≤ |sk| max
nk≥N

‖(Wpnk
(z)−RRT)w‖+ ‖dk‖. (A.10)

Since w 6∈ ker(Iq−Wpnk
(z)+RRT), it follows from Lemma 6 that maxnk≥N ‖(Wpnk

(z)−
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RRT)w‖ < ‖w‖. Hence, by (A.10),

lim sup
k→∞

‖Wnkx‖ ≤ lim sup
k→∞

|sk| max
nk≥N

‖(Wpnk
(z)−RRT)w‖

+ lim sup
k→∞

‖dk‖

≤ max
nk≥N

‖(Wpnk
(z)−RRT)w‖

< ‖w‖. (A.11)

Note that ‖Wnkx‖ is monotonically decreasing in terms of k. Then it follows that

limk→∞ ‖Wnkx‖ = ‖w‖. Consequently, for any subsequence {sk}∞k=0 of {nk}∞k=0,

limk→∞ ‖Wskx‖ = ‖w‖. On the other hand, it follows from (A.11) that there ex-

ists a subsequence {qk}∞k=0 of {nk}∞k=0 such that limk→∞ ‖Wqkx‖ < ‖w‖, which is

a contradiction. Hence, limm→∞Wmx0 = 0q×1 for every x0 ∈ Rq. Finally, by

(A.8), limm→∞ xm = limm→∞Wmx0 + RRTxNz−1 = RRTxNz−1 = x∞ and x∞ ∈⋂∞
k=N ker(Wpk(z)− Iq) due to Lemma 3.

ii) The proof of the second part is similar to that of i) by replacing Wpk(z) and

maxnk≥N ‖(Wpnk
(z) − RRT)w‖ with Wpk(zk) and maxnk≥N max zk ∈ D‖(Wpnk

(zk) −

RRT)w‖ for all k ≥ N , respectively. �

Now combining Lemmas 1 and 8, we have the following convergence result for

(A.4).

Theorem 1 Consider (A.4), where Wpk(·) ∈ Rq×q, pk ∈ Σ, and zk ∈ D. Assume

that Assumption 1 holds and Σ is finite. Furthermore, assume that for every p ∈ Σ

and every z ∈ D, ‖Wp(z)‖ ≤ 1 and rank(WT
p (z)Wp(z) − Iq) = rank(Wp(z) − Iq) =

rank

[
WT
p (z)Wp(z)− Iq WT

p (z)− Iq

]
.
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i) Then for any x0 ∈ Rq and any zk = z ∈ D when k ≥ N , limk→∞ xk =

RRTxN−1 ∈
⋂∞
k=N ker(Wpk(z)− Iq).

ii) If, in addition, Wpk(·) is continuous for every k ≥ N and D is compact, then for

any x0 ∈ Rq and any zk ∈ D, limk→∞ xk = RRTxN−1 ∈
⋂∞
k=N ker(Wpk(zk)−Iq).

Proof. The results are the direct consequence of Lemmas 1 and 8. �

Remark 1 Unlike the existing results in the literature [68–71,73–75] where the exis-

tence of the limit for (A.4) is only confirmed, but not explicitly calculated, Theorem 1

has two advantages of 1) giving a clue on how to verify paracontraction practically,

since both conditions ‖Wp(z)‖ ≤ 1 and rank(WT
p (z)Wp(z)− Iq) = rank(Wp(z)− Iq) =

rank

[
WT
p (z)Wp(z)− Iq WT

p (z)− Iq

]
in Theorem 1 can be checked numerically by

using the singular value decomposition of Wp(z), and 2) having the explicit limit ex-

pression limk→∞ xk = RRTxN−1, which turns out to be a crucial property of studying

the convergence performance of (A.5) for the sake of asymptotic approximation of the

first and second moment equations for (3.14), while the existing results do not have

this property, and hence, cannot be used for asymptotic approximation of (3.14).

A.2.3 Non-homogeneous subsystem

To discuss the convergence property of (A.5), first note that under Assumption 1,

if
⋂∞
k=N ker(Wpk(z) − Iq) =

⋂∞
k=N ker(Wpk(zk) − Iq) = Rq, then it follows that

Wpk(z) = Wpk(zk) = Iq for all k ≥ N . In this case, it follows from (A.5) that yk =∑k
j=0

∏j
i=0Wpj−i(zj−i)bpj(zj) for all k < N and yk =

∑N−1
j=0

∏j
i=0Wpj−i(zj−i)bpj(zj) +
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(
∏N−1

i=0 WpN−1−i(zN−1−i))(
∑k

j=N bpj(zj)) for all k ≥ N . Hence, the asymptotic prop-

erty of yk is closely related to the term
∑k

j=N bpj(zj), i.e., if
∑∞

j=N bpj(zj) converges,

then limk→∞ yk exists.

Now we consider the case where
⋂∞
k=N ker(Wpk(z) − Iq) =

⋂∞
k=N ker(Wpk(zk) −

Iq) 6= Rq under Assumption 1 and Wpk(·) is PDPC. The key idea here is to derive

an appropriate upperbound for
∏m−N

i=0 (Wpm−i(zm−i) − RRT) by utilizing its PDPC

property proved in Lemmas 5 and 7.

Lemma 9 Consider (A.5), where Wpk(·) ∈ Rq×q is PDPC, pk ∈ Σ, zk ∈ D, and

bpk ∈ Rq. Assume that Assumption 1 holds and Σ is finite. Furthermore, assume that

for every z ∈ D,
⋂∞
k=N ker(Wpk(z)− Iq) 6= Rq.

i) For any zk = z ∈ D when k ≥ N , there exists a subsequence {mk}∞k=0 ⊆

{N,N + 1, . . .} such that m0 = N , 1 ≤ mk+1−mk ≤M for all k ≥ 0 and some

M ≥ 1, and c(z) = maxk≥0 ‖
∏mk+1−mk

i=0 (Wpmk+1−i
(z)−RRT)‖ < 1.

ii) If, in addition, Wpk(·) is continuous for every k ≥ N and D is compact, then

there exists a subsequence {mk}∞k=0 ⊆ {N,N + 1, . . .} such that m0 = N , 1 ≤

mk+1 −mk ≤M for all k ≥ 0 and some M ≥ 1, and

c̄ = maxk≥0 maxzk∈D ‖
∏mk+1−mk

i=0 (Wpmk+1−i
(zmk+1−i)−RRT)‖ < 1.

Proof. Let x ∈ Rq and x 6= 0. It follows from Lemma 7 that for any m ≥ N ,

x 6∈
⋂∞
k=m ker(Iq −Wpk(zk) + RRT). Hence, for given m0 = N , there exists m1 ≥

m0 + 1 such that x 6∈ ker(Iq − Wpm1
(zm1) + RRT). Let m1 be the minimum one

of such a positive integer. By Lemma 5, Wpk(zk) − RRT is PDPC for every k ≥ N .

Hence, if
∏m1−1−m0

i=0 (Wpm1−1−i(zm1−1−i)−RRT)x 6= 0, then ‖
∏m1−m0

i=0 (Wpm1−i
(zm1−i)−
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RRT)x‖ = ‖(Wpm1
(zm1)−RRT)

∏m1−1−m0

i=0 (Wpm1−1−i(zm1−1−i)−RRT)x‖ < ‖
∏m1−1−m0

i=0 (Wpm1−1−i(zm1−1−i)−

RRT)x‖ ≤ ‖
∏m1−1−m0

i=0 (Wpm1−1−i(zm1−1−i)−RRT)‖‖x‖ ≤ ‖x‖. Otherwise, if
∏m1−1−m0

i=0 (Wpm1−1−i(zm1−1−i)−

RRT)x = 0, then ‖
∏m1−m0

i=0 (Wpm1−i
(zm1−i)−RRT)x‖ = 0 < ‖x‖. Thus,

∥∥∥∥m1−m0∏
i=0

(Wpm1−i
(zm1−i)−RRT)

∥∥∥∥
= max

x 6=0

‖
∏m1−m0

i=0 (Wpm1−i
(zm1−i)−RRT)x‖
‖x‖

< 1.

Similarly, for this m1, one can construct a minimum positive integer m2 ≥ m1 + 1

such that x 6∈ ker((Iq −Wpm2
(zm2) +RRT) and ‖

∏m2−m1

i=0 (Wpm2−i
(zm2−i)−RRT)‖ <

1. By induction, we have a subsequence {mk}∞k=0 such that mk+1 − mk ≥ 1 and

‖
∏mk+1−mk

i=0 (Wpmk+1−i
(zmk+1−i)−RRT)‖ < 1 for all k ≥ 0.

Next, we claim that lim supk→∞(mk+1 −mk) <∞. Suppose that this is not true.

Let Jzk be the one defined in Lemma 2. Clearly 1 ≤ |Jzk | ≤ |Σ| < ∞, where |S|

denotes the cardinality of S. Then it follows that for ε = |Σ|, there exists K ≥ 1 such

that mK+1−mK ≥ ε+2 = |Σ|+2 and Jzk ⊆ {pmk : K ≤ k ≤ K+1}. By the definition

of mk, we have x 6∈ ker(Iq−WpmK
(zmK )+RRT), x 6∈ ker(Iq−WpmK+1

(zmK+1
)+RRT),

and x ∈ ker(Iq − Wpmk
(zmk) + RRT) for x 6= 0 and mK + 1 ≤ k ≤ mK+1 − 1.

Hence, x ∈
⋂mK+1−1
k=mK+1 ker(Iq −Wpk(zk) + RRT) ⊆

⋂
m∈Jzk

ker(Iq −Wm(zk) + RRT).

Thus,
⋂
m∈Jzk

ker(Iq − Wm(zk) + RRT) 6= {0}. On the other hand, for sufficiently

large K, mK + 1 ≤ N ′ ≤ mK+1 − 1, and every ` ≥ N ′,
⋂∞
k=N ′ ker(Iq −Wpk(zk) +

RRT) =
⋂∞
k=` ker(Iq − Wpk(zk) + RRT) =

⋂
m∈Jzk

ker(Iq − Wm(zk) + RRT). By

Lemma 7,
⋂
m∈Jzk

ker(Iq−Wm(zk)+RRT) = {0}, which is a contradiction. Therefore,

lim supk→∞(mk+1 −mk) <∞.

i) For zk = z ∈ D when k ≥ N , it follows that ‖
∏mk+1−mk

i=0 (Wpmk+1−i
(z)−RRT)‖ <

1 for all k ≥ 0 sincemk ≥ N for all k ≥ 0. In this case, maxk≥0 ‖
∏mk+1−mk

i=0 (Wpmk+1−i
(z)−
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RRT)‖ < 1 due to the facts that 1 ≤ mk+1 −mk ≤ M , ‖Wpmk+1−i
(z) − RRT‖ ≤ 1,

pmk+1−i ∈ Σ, and Σ is finite.

ii) For zk ∈ D, since ‖
∏mk+1−mk

i=0 (Wpmk+1−i
(zmk+1−i)−RRT)‖ < 1 for every k ≥ 0,

zk is arbitrary, and D is compact, it follows that there exist z∗k ∈ D and {m∗k}∞k=0 such

that maxzk∈D ‖
∏mk+1−mk

i=0 (Wpmk+1−i
(zmk+1−i)−RRT)‖ = ‖

∏m∗k+1−m
∗
k

i=0 (Wpm∗
k+1
−i(z

∗
m∗k+1−i

)−

RRT)‖ < 1 for every k ≥ 0. Hence, maxk≥0 ‖
∏m∗k+1−m

∗
k

i=0 (Wpm∗
k+1
−i(z

∗
m∗k+1−i

)−RRT)‖ <

1 due to the facts that 1 ≤ m∗k+1 − m∗k ≤ M , ‖Wpm∗
k+1
−i(z

∗
m∗k+1−i

) − RRT‖ ≤ 1,

pm∗k+1−i ∈ Σ, and Σ is finite. �

Lemma 9 regroups the product
∏m−N

i=0 (Wpm−i(zm−i) − RRT) according to a con-

structed subsequence {mk}∞k=0 to have a desired upperbound. Using this result and

summation of infinite series, we have a convergence property for (A.5).

Lemma 10 Consider (A.5), where Wpk(·) ∈ Rq×q is PDPC, pk ∈ Σ, zk ∈ D, and

bpk ∈ Rq. Assume that Assumption 1 holds and Σ is finite. Furthermore, assume that

for every z ∈ D,
⋂∞
k=N ker(Wpk(z)− Iq) 6= Rq.

i) If supk≥N+1 ‖bpk(zk)‖ <∞, then for any x0 ∈ Rq and any zk = z ∈ D when k ≥ N ,

limk→∞(yk−RRT(
∏N−1

i=0 WpN−1−i(zN−1−i))(
∑k

j=N+1 bpj(zj))−
∑N

k=0

∏k
i=0 Wpk−i(zk−i)bpk(zk)) =

y∞ exists and ‖y∞‖ ≤ M c(z)
(1−c(z))2YN , where M = supk≥0(mk+1 − mk) and YN =

‖
∏N−1

i=0 WpN−1−i(zN−1−i)‖ supk≥N+1 ‖bpk(zk)‖.

ii) If supk≥N+1 ‖bpk(zk)‖ <∞, and in addition, Wpk(·) is continuous for every k ≥ N

and D is compact, then for any x0 ∈ Rq and any zk ∈ D,

limk→∞(yk−RRT(
∏N−1

i=0 WpN−1−i(zN−1−i))(
∑k

j=N+1 bpj(zj))−
∑N

k=0

∏k
i=0Wpk−i(zk−i)bpk(zk)) =

y∞ exists and ‖y∞‖ ≤M c̄
(1−c̄)2YN .
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Proof. i) Consider (A.7). Since zk = z ∈ D when k ≥ N , it follows that

∥∥∥∥ ∞∑
k=1

mk∑
m=m1

(m−m0∏
i=0

(Wpm−i(zm−i)−RRT)

)

×
(m0−1∏

i=0

Wpm0−1−i(zm0−1−i)

)∥∥∥∥
≤

∞∑
k=1

mk∑
m=m1

∥∥∥∥m−m0∏
i=0

(Wpm−i(zm−i)−RRT)

∥∥∥∥
≤

∞∑
k=1

k∑
j=1

(mj −mj−1)(c(z))k

≤
∞∑
k=1

kM(c(z))k

= M
c(z)

(1− c(z))2
(A.12)

where we used the fact that
∑∞

k=1 kx
k = x/(1− x)2 for |x| < 1. Then it follows from

(A.12) that
∑∞

m=N(
∏m−N

i=0 (Wpm−i(zm−i)−RRT))(
∏N−1

i=0 WpN−1−i(zN−1−i)) converges.

Note that it follows from (A.5) that form ≤ N , ym =
∑m

k=0(
∏k

i=0Wpk−i(zk−i)bpk(zk)).

Hence, it follows from (A.7) that for all m ≥ N + 1,

ym−RRT(
∏N−1

i=0 WpN−1−i(zN−1−i))(
∑m

j=N+1 bpj(zj)) =
∑N

k=0

∏k
i=0 Wpk−i(zk−i)bpk(zk)+∑m

j=N+1Wjbpj(zj). Note that

∥∥∥∥ ∞∑
j=N+1

Wjbpj(zj)

∥∥∥∥ =

∥∥∥∥ ∞∑
j=N+1

( j−N∏
i=0

(Wpj−i(zj−i)−RRT)

)

×
(N−1∏

i=0

WpN−1−i(zN−1−i)

)
bpj(zj)

∥∥∥∥
≤

∞∑
k=1

k∑
j=1

(mj −mj−1)(c(z))kYN

≤M
c(z)

(1− c(z))2
YN .
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Consequently,

lim
k→∞

(yk−RRT(
N−1∏
i=0

WpN−1−i(zN−1−i))(
k∑

j=N+1

bpj(zj))−
N∑
k=0

k∏
i=0

Wpk−i(zk−i)bpk(zk)) = y∞

and ‖y∞‖ ≤ M c(z)
(1−c(z))2YN . The proof of ii) is similar to that of i), and hence, is

omitted. �

Theorem 2 Consider (A.5), where Wpk(·) ∈ Rq×q, pk ∈ Σ, zk ∈ D, and bpk ∈

Rq. Assume that Assumption 1 holds and Σ is finite. Furthermore, assume that

for every z ∈ D,
⋂∞
k=N ker(Wpk(z) − Iq) 6= Rq, and for every p ∈ M and ev-

ery z ∈ D, ‖Wp(z)‖ ≤ 1 and rank(WT
p (z)Wp(z) − Iq) = rank(Wp(z) − Iq) =

rank

[
WT
p (z)Wp(z)− Iq WT

p (z)− Iq

]
.

i) If supk≥N+1 ‖bpk(zk)‖ <∞, then for any x0 ∈ Rq and any zk = z ∈ D when k ≥ N ,

limk→∞(yk−RRT(
∏N−1

i=0 WpN−1−i(zN−1−i))(
∑k

j=N+1 bpj(zj))−
∑N

k=0

∏k
i=0Wpk−i(zk−i)bpk(zk)) =

y∞ exists and ‖y∞‖ ≤M c(z)
(1−c(z))2YN .

ii) If supk≥N+1 ‖bpk(zk)‖ <∞, and in addition, Wpk(·) is continuous for every k ≥ N

and D is compact, then for any x0 ∈ Rq and any zk ∈ D,

lim
k→∞

(yk−RRT(
N−1∏
i=0

WpN−1−i(zN−1−i))(
k∑

j=N+1

bpj(zj))−
N∑
k=0

k∏
i=0

Wpk−i(zk−i)bpk(zk)) = y∞

exists and ‖y∞‖ ≤M c̄
(1−c̄)2YN .

Proof. The results are the direct consequence of Lemmas 1 and 10. �
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A.3 Asymptotic Approximation of Mean-Value Multi-Cue

Multi-Choice Tasks

A.3.1 Asymptotic approximation of expectation

It is known that the O-H process (3.11) has the following asymptotic approximations

on expectation and variance in the long run: limt→∞ E[x(t)] = µ/λ and limt→∞ E[x2(t)] =

σ2/(2λ), where E denotes the expectation operator. Now a natural question about

the multi-cue multi-choice task model (A.2) or the extended version (A.1) is that

whether or not (A.2) or (A.1) has a similar asymptotic approximations of expecta-

tion and variance in the long run.

Consider the extended multi-cue multi-choice model (A.1). Let n denote the

number of choices i, i.e., i = 1, 2, . . . , n, and define tL+1 =∞. Since index m ∈M is

selected according to the cue ordering and assigned time interval [tl−1, tl), a piecewise

constant switching signal α : R → M is defined as α(t) = m for t ∈ [tl−1, tl),

l = 1, 2, . . . , L + 1. Then xi,m(t) in (3.14) can be characterized by xi,α(t)(t). Let

Xα(t)(t) = [x1,α(t)(t), x2,α(t)(t), . . . , xn,α(t)(t)]
T ∈ Rn be a column vector stacking xi,m(t)

together, where (·)T denotes the transpose operation. Then (A.1) can be rewritten

as a vector-valued differential equation form:

dXα(t)(t) = Aα(t)Xα(t)(t)dt+ Sα(t)dt+BdW(t) (A.13)

where ki,α(t) ∈ R, wi,j,α(t) ∈ R, Aα(t) = −
∑n

i=1 ki,α(t)eie
T
i −

∑n
i=1

∑n
j=1,j 6=iwi,j,α(t)eie

T
j ,

wi,j,α(t) = wj,i,α(t), ei denotes the ith column of In, Sα(t) = [S1,α(t), S2,α(t), . . . , Sn,α(t)]
T ∈

Rn, B ∈ Rn×n is an n-by-n diagonal matrix whose ith diagonal element is σi, and

W(t) = [W1(t),W2(t), . . . ,Wn(t)]T ∈ Rn. Note that Aα(t) is symmetric and when
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ki,α(t) = kα(t) and wi,j,α(t) = wα(t), (A.1) becomes (A.2), and hence, in this case

Aα(t) = (wα(t)−kα(t))In−wα(t)eeT, where e denotes the n-dimensional column vector

whose elements are all ones.

Let Y (t) = E[Xα(t)(t)]. Then it follows from [76] that the first moment equation

for (A.1) is given by

Ẏ (t) = Aα(t)Y (t) + Sα(t). (A.14)

Using the variation of constants formula, (A.14) has the following solution form for

every t ≥ s:

Y (t) = e
´ t
s Aα(τ)dτY (s) +

ˆ t

s

e−
´ τ
s Aα(σ)dσSα(τ)dτ. (A.15)

Now we consider two cases.

Case 1) rank

[
Am −Sm

]
= rank(Am) for every m ∈ M. In this case, the equation

AmX = −Sm has a solution X = Y ∗m for every m ∈ M. Let α(t) = ml ∈ M for

t ∈ [tl−1, tl), l = 1, 2, . . . , L + 1, and define Φml(t, tl−1) = e
´ t
tl−1

Aα(τ)dτ = eAml (t−tl−1)

for t ∈ [tl−1, tl), l = 1, 2, . . . , L + 1. Then it follows from (A.14) that for every

l = 1, 2, . . . , L+ 1,

Y (t)− Y ∗ml = Φml(t, tl−1)(Y (tl−1)− Y ∗ml−1
), t ∈ [tl−1, tl). (A.16)

Next, we will give a sufficient condition on how an asymptotic approximation of the

expectation for (A.2) and (A.1) is achieved, i.e., a condition to guarantee the existence

of limt→∞(Y (t)− Y ∗ml).
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Corollary 1 Consider (A.2) and (3.14). Assume that rank

[
Ap −Sp

]
= rank(Ap)

for every p ∈M. Let ApY
∗
p = −Sp for every p ∈M.

i) For (A.1), assume that for every p ∈M, Ap = −
∑n

i=1 ki,peie
T
i −∑n

i=1

∑n
j=1,j 6=iwi,j,peie

T
j is negative-semidefinite. Then for any 0 < TD ≤ tl −

tl−1 ≤ T∆, l = 1, 2, . . . , L, limt→∞(Y (t)−Y ∗ml) = RRT(Y (tN−1)−Y ∗mN−1
), where

Y (t) is given by (A.15), the column vectors of R form an orthonormal basis for⋂∞
l=N ker(Λml(z)T−1

ml
), z ∈ [TD, T∆], N is given by Assumption 1, Tp ∈ Rn×n is

an orthogonal matrix to diagonalize −
∑n

i=1 ki,peie
T
i −

∑n
i=1

∑n
j=1,j 6=iwi,j,peie

T
j ,

and Λp(z) is the corresponding diagonal matrix.

ii) For (A.2), assume that for every p ∈ M, max{wp, (1 − n)wp} ≤ kp. Then

for any 0 < TD ≤ tl − tl−1 ≤ T∆, l = 1, 2, . . . , L, limt→∞(Y (t) − Y ∗ml) =

RRT(Y (tN−1) − Y ∗mN−1
), where the column vectors of R form an orthonormal

basis for
⋂∞
l=N ker(Λml(z)T−1), z ∈ [TD, T∆], and T ∈ Rn×n is an orthogonal

matrix to diagonalize (wp − kp)In − wpeeT.

Proof. i) Let λi,p, i = 1, . . . , n, be the eignevalues of Ap = −
∑n

i=1 ki,peie
T
i −∑n

i=1

∑n
j=1,j 6=iwi,j,peie

T
j . Then it follows from the symmetry of Ap that there ex-

ists an orthogonal matrix Tp ∈ Rn×n such that Ap = Tpdiag(λ1,p, λ2,p, . . . , λn,p)T
−1
p ,

where diag denotes a diagonal matrix and p ∈ M. Now we have Φml(t, tl−1) − In =

eAml (t−tl−1) − In = TmlΛml(t − tl−1)T−1
ml

, where Λml(t − tl−1) = diag(eλ1,ml
(t−tl−1) −

1, eλ2,ml
(t−tl−1) − 1, . . . , eλn,ml (t−tl−1) − 1), t ∈ [tl−1, tl). Hence, for any 0 < TD ≤

zl = tl − tl−1 ≤ T∆, l = 1, 2, . . . , L, and any z > 0, ker(Φml(t, tl−1) − In) =

ker(TmlΛml(zl)T
−1
ml

) = ker(TmlΛml(z)T−1
ml

) holds for t ∈ [tl−1, tl) and l = 1, 2, . . . , L+1.
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Thus, if L <∞, then forN = L+1,
⋂L+1
l=N ker(TmlΛml(zl)T

−1
ml

) =
⋂L+1
l=N ker(TmlΛml(z)T−1

ml
)

for any zl ∈ [TD, T∆] and any z ∈ [TD, T∆]. Therefore, Assumption 1 holds. Other-

wise, if L =∞, then for sufficiently largeN and anym ≥ N ,
⋂∞
l=N ker(TmlΛml(zl)T

−1
ml

) =⋂∞
l=N ker(TmlΛml(z)T−1

ml
) =

⋂∞
l=m ker(TmlΛml(zl)T

−1
ml

) =
⋂∞
l=m ker(TmlΛml(z)T−1

ml
) for

any zl ∈ [TD, T∆] and any z ∈ [TD, T∆]. Therefore, Assumption 1 holds (the verifica-

tion of Assumption 1 can also be done by using Lemma 2).

Hence, ‖eApδ‖ = e(max1≤i≤n λi,p)δ for every δ ≥ 0. Thus, ‖eApδ‖ ≤ 1 for every δ ≥ 0

if and only if max1≤i≤n λi,p ≤ 0.

On the other hand, note that rank(e2Apδ − In) = rank(Tpdiag(e2λ1,pδ − 1, e2λ2,pδ −

1, · · · , e2λn,pδ − 1)T−1
p ) = rank(Tpdiag(eλ1,pδ − 1, eλ2,pδ − 1, · · · , eλn,pδ − 1)T−1

p ) =

rank(eApδ − In). Moreover,

rank

[
e2Apδ − In eApδ − In

]
= rank

e2Apδ − In

eApδ − In

 =

rank

Tpdiag(e2λ1,pδ − 1, e2λ2,pδ − 1, · · · , e2λn,pδ − 1)T−1
p

Tpdiag(e
λ1,pδ − 1, eλ2,pδ − 1, · · · , eλn,pδ − 1)T−1

p

 =

rank(Tpdiag(eλ1,pδ − 1, eλ2,pδ − 1, · · · , eλn,pδ − 1)T−1
p ) = rank(eApδ − In)

for every δ ≥ 0. Now let Wp(z) = eApz, where z ∈ D and D = [TD, T∆]. Then the

conclusion is a direct consequence of Theorem 1.

ii) The conclusion is a direct consequence of i) and the fact that for every p ∈M,

Ap = (wp − kp)In −wpeeT has the diagonalization form T−1ApT = diag((1− n)wp −

kp, wp − kp, . . . , wp − kp). �

Case 2) rank

[
Am −Sm

]
6= rank(Am) for some m ∈ M. In this case, the equation

AmX = −Sm does not have a solution X for some m ∈ M. Hence, one cannot use
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Corollary 1 to establish the convergence for Y (t). Note that it follows from (A.15)

that Y (t) = Φml(t, tl−1)Y (tl−1) +
´ t
tl−1

Φ−1
ml

(τ, tl−1)dτSml . Next, it also follows from

the proof of Corollary 1 that Φ−1
ml

(τ, tl−1) = e−Aml (τ−tl−1) = Φml(−τ,−tl−1) for all

τ ∈ [tl−1, tl). Let bml(t, tl−1) =
´ t
tl−1

Φ−1
ml

(τ, tl−1)dτSml for every t ∈ [tl−1, tl). Similar

to (A.4) and (A.5), we can decompose Y (t) into the following two subsystems for

every t ∈ [tl−1, tl)

Y1(t) =Φml(t, tl−1)Y1(tl−1), Y1(t0) = Y (t0) (A.17)

Y2(t) =Y2(tl−1) + bml(t, tl−1)

+ Φml(t, tl−1)bml−1
(tl−1, tl−2)

+ Φml(t, tl−1)
l−2∑
s=1

s−1∏
k=0

Φml−1−k(tl−1−k, tl−2−k)

× bml−1−s(tl−1−s, tl−2−s), Y2(0) = 0 (A.18)

where Y (t) = Y1(t) + Y2(t). Then the following conclusion is immediate.

Corollary 2 Consider (A.2) and (A.1). Assume that rank

[
Ap −Sp

]
6= rank(Ap)

for some p ∈M.

i) For (A.1), assume that for every p ∈M, Ap = −
∑n

i=1 ki,peie
T
i −
∑n

i=1

∑n
j=1,j 6=iwi,j,peie

T
j

is negative-semidefinite. Then for any 0 < TD ≤ tl − tl−1 ≤ T∆, l = 1, 2, . . . , L,

limt→∞(Y (t)−RRTY1(tN−1)−RRT(
∏N−1

i=0 WmN−1−i(zN−1−i))(
∑l

j=N+1 bmj(zj))−∑N
k=0

∏k
i=0 Wmk−i(zk−i)bmk(zk)) exists, where Wp(z) = eApz, zk = tk− tk−1, and

bmk(zk) = bmk(tk, tk−1).

ii) For (A.2), assume that for every p ∈ M, max{wp, (1 − n)wp} ≤ kp. Then for
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any 0 < TD ≤ tl − tl−1 ≤ T∆, l = 1, 2, . . . , L, limt→∞(Y (t) − RRTY1(tN−1) −

RRT(
∏N−1

i=0 WmN−1−i(zN−1−i))(
∑l

j=N+1 bmj(zj))−
∑N

k=0

∏k
i=0Wmk−i(zk−i)bmk(zk))

exists.

Proof. Note that bmk(tk, tk−1) = e−Amk (tk−tk1
). Hence, for any tk − tk−1 ∈ [TD, T∆],

‖e−Amk (tk−tk1
)‖ ≤ maxp∈M e−min1≤i≤n λi,pT∆ < ∞. The results now are the direct

consequence of Theorem 2 for (A.18) and Corollary 1 for (A.17). �

A.3.2 Asymptotic approximation of variance

Let Z(t) = E[Xα(t)(t)X
T
α(t)(t)] denote the second moment matrix. Then it follows

from [76] that the second moment equation for (A.1) is given by

Ż(t) = Aα(t)Z(t) + Z(t)AT
α(t) + U(t)Y T(t) + Y (t)UT(t)

+BBT (A.19)

Define the covariance matrix V (t) = Z(t) − Y (t)Y T(t). Then it follows from (A.14)

and (A.19) that

V̇ (t) = Aα(t)V (t) + V (t)AT
α(t) +BBT (A.20)

Equation (A.20) is a (switched) Lyapunov differential equation [77]. It follows from

Lemma 3.1 of [77] that for any t ≥ s,

vecV (t) =

(
e
´ t
s Aα(τ)dτ ⊗ e

´ t
s Aα(τ)dτ

)
vecV (s)

+

( ˆ t

s

e−
´ τ
s Aα(σ)dσ ⊗ e−

´ τ
s Aα(σ)dσdτ

)
vecBBT (A.21)
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where vec denotes the vectorization operation [78, p. 439] and ⊗ denotes the Kro-

necker product.

Similar to (A.17) and (A.18), we can decompose vecV (t) into the following two

subsystems for every t ∈ [tl−1, tl)

U1(t) =Φml(t, tl−1)U1(tl−1), U1(t0) = vecV (0) (A.22)

U2(t) =U2(tl−1) + bml(t, tl−1)

+ Φml(t, tl−1)bml−1
(tl−1, tl−2)

+ Φml(t, tl−1)
l−2∑
s=1

s−1∏
k=0

Φml−1−k(tl−1−k, tl−2−k)

× bml−1−s(tl−1−s, tl−2−s), U2(0) = 0 (A.23)

where V (t) = vec−1(U1(t) + U2(t)), Φml(t, tl−1) = Φml(t, tl−1) ⊗ Φml(t, tl−1) and

bml(t, tl−1) = (
´ t
tl−1

Φ−1
ml

(τ, tl−1)dτ)vecBBT. Hence, by considering two cases of which

rank

[
Ap ⊕ Ap −vecBBT

]
= rank(Ap ⊕ Ap) for every p ∈M and

rank

[
Ap ⊕ Ap −vecBBT

]
6= rank(Ap ⊕ Ap) for some p ∈ M, one can have two

similar results as Corollaries 1 and 2 for (A.22) and (A.23), where ⊕ denotes the

Kronecker sum. Since there is no specific technical difficulty here, we do not present

these results here.

Finally, we define the asymptotic approximate solutions to (A.14) and (A.20). For

Case 1) of (A.14), Let

1Y (t) = Y ∗α(t) +RRT(Y (tN−1)− Y ∗mN−1
) fort ≥ tN−1
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and

1Y (t) = Y ∗α(t) +RRT(Y (t)− Y ∗α(t)) fort < tN−1

For Case 2) of (A.14), let

2Y (t) = RRTY1(tN−1) +RRT(
N−1∏
i=0

WmN−1−i(zN−1−i))(
l∑

j=N+1

bmj(zj))+

N∑
k=0

k∏
i=0

Wmk−i(zk−i)bmk(zk) +
∞∑

j=N+1

Wjbα(t)(zj)

for t ≥ tN−1 and

2Y (t) = RRTY1(t) +
l∑

k=0

k∏
i=0

Wmk−i(zk−i)bmk(zk)

for t < tN−1. Similarly we have 1V (t) and 2V (t) for (A.20). Then we call iY (t)

and iV (t) the asymptotic approximate solutions to (A.14) and (A.20), respectively,

i = 1, 2.
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