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Secrecy Capacity is one of the most important characteristic of a wiretap channel

in wireless communication systems. Therefore, the study of this characteristic wherein

the system has correlated channel gains and study them for different line-of-sight (LOS)

propagation scenarios is of ultimate importance.

The primary objective of this thesis from the mathematical side is to determine the

secrecy capacity for correlated channel gains for the main and eavesdropper channels for

the Gaussian Wiretap channel as a function from main parameters (µ,Σ, ρ). f(h1, h2) is

the joint distribution of the two channel gains at channel use (h1, h2), fi(hi) is the main

distribution of the channel gain hi. The results are based on assumption of the Gaussian

distribution of channel gains (gM , gE). The main task of estimating the secrecy capacity

is reduced to the problem of solving linear partial differential equations (PDE). Different

aspects of the analysis of secrecy capacity considered in this research are the estimation

of Secrecy Capacity mathematically and numerically for correlated SISO systems and a

mathematical example for MIMO systems with PDE.

The variations in Secrecy Capacity are studied for Rayleigh (N-LOS) distribution and

Rician (LOS) distribution. Suitable scenarios are identified in which secure communication

is possible with correlation of channel gains. Also, the new algorithm using PDE has a

higher speed than analog algorithms constructed on the classical statistical Monte-Carlo

methods. Taking into account the normality of the distribution of system parameters, namely

the channel gain (gM , gE), the algorithm is constructed for systems of partial differential

equations which satisfies the secrecy criterion.
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Chapter 1

Introduction & Wireless Security Background

1.1 State-of-the-art Wireless Security

The widely used mathematical solutions for analyzing the operation of transmission channels,

taking into account the presence of an eavesdropper, are random processes and random

variables that allow accurate determination of the basic characteristics of communication

channels. In this research, the same approach will be used – the simulation of transmission

systems in the capacity of random processes.

Another important factor to be considered is the presence of uncertainty, which describes

the ”undeterministic” components of any model. This model considered contains two sources

of uncertainty:

1. The uncertainty of the model itself.

2. Existence of the random noises in the wireless physical layer.

These will be described using random variables and random processes, namely:

1. Uncertainty of the model by assumption, that coefficients of the model are random

variables;

2. Random noises in the wireless physical layer by Additive White Gaussian Noise

(AWGN) in the channel.
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For defining nature of the randomness, the standard notation RV ∼ f(F ) will be used, where

this notation means that the random variable RV has density f (distributed by probability

law F 1).

It can be argued that the protection of information (or minimization of the possibility of

loss of information) is one of the most important tasks in any organization or company. In

this study, the AWGN Wiretap channel which is described below in Fig. 1.1 is considered:

Figure 1.1: Gaussian Wiretap Channel

where parameters of the system are:

• Xn, the input parameter (signal) of the system – vector of the order n× 1;

• gM , gE , the channel gains of the main and eavesdropper channels respectively – matrices

of the size m× n and k × n respectively;

• nM , nE are independent and identically distributed (i.i.d.) Gaussian noises with zero

mean and unit variance – m and k dimensional Gaussian processes.

The mathematical model of the channel in Fig. 1.1 is given by

1For example, F in normal distribution N(0, 1).
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 Y n = gMX
n + nM ,

Zn = gEX
n + nE .

(1.1)

Many authors in their works [8, 9, 35, 37, 38, 39, 41, 42] use separation of the model by

SISO, SIMO, MISO and MIMO by the following notations of the coefficients:

• gM , gE , nM , nE for SISO systems;

• gM,gE,nM,nE for MISO and SIMO systems;

• GM,GE,NM,NE for MIMO and MaMIMO systems.

These designations will not be used, but instead the dimensions of the matrices gM , gE and

vectors nM , nE will be determined. Note that finding a closed form for CS is a difficult task,

and this form is not found for all cases. The main methods for finding this indicator are

described in the table below:

System Existing of closed form Method of estimation CS

SISO Yes Monte Carlo methods; DE

MISO Particularly Monte Carlo methods

SIMO No Monte Carlo methods

MIMO No Monte Carlo methods

Correlated systems No Monte Carlo methods

Table 1.1: Existing ways of estimation of CS for different systems
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1.2 Relationship between Entropy and Mutual Information

1.2.1 Entropy: Statistical Approach

As described in the previous section, the main sources of uncertainty in the mathematical

model are random variables (gM , gE , nM , nE). Therefore, in this thesis, the definition of

uncertainty constructed for random variables will be used. This definition of uncertainty is

used in communication difficulties, and other applied mathematical problems [21].

The entropy of a random variable X with density pX(x) is a function which attempts

to characterize the unpredictability of this random variable [5]. There exist many ways to

define this unpredictability. The definition for entropy as given by Shannon [5, 20] is:

H(X) = −
∫
R

log(pX(x))pX(x)dx. (1.2)

For discrete random variables, entropy is defined as

H(X) = −
∑
i

log(pi)pi, (1.3)

where pi > 0 are all positive probabilities for the values of X.

1.2.2 Mutual Information

Mutual information is a quantity that measures the relationship between two random

variables that are sampled simultaneously. This measure provides how much information is

communicated in one random variable about another and for this work it is very important

to know how much does one random variable tells about another2. The definition of mutual

information is given by conditional entropy between two random variables X and Y :

I(X;Y ) =
∑
x∈RX

∑
y∈RY

P (x, y)log

(
P (x, y)

P (x)P (y)

)
= H(X)−H(X|Y ). (1.4)

2How accurate the distribution of the one variable by some information about the other variable could be
predicted
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In machine learning and deep learning for classification problems, the above definition is

said to be the information gain. The relation described by Eqn.(1.4) is the main relation

between entropy H(X), conditional entropy H(X|Y ) and mutual information I(X;Y ). The

entropy H(X), conditional entropy H(X|Y ) and mutual information I(X;Y ) should satisfy

the relation:

0 ≤ I(X;Y ) ≤ H(X) ≤ 1.

Eqn. (1.4) gives a good understanding of the nature of mutual information in two limit

cases: Y = X and independent X and Y . In the first case

H(X|Y ) = H(X|X) = 0 =⇒ I(X;Y ) = H(X).

In the second case

P (x, y) = P (x)P (y) =⇒ H(X|Y ) = H(X) =⇒ I(X;Y ) = 0.

These two cases correspond to the conditions of total dependence and complete indepen-

dence of random variables or in terms of the correlation between variables Y and Z: ρ = ±1

or ρ = 0. In classification problems, mutual information is called information gain [27] and

characterizes the level of influence of the attributes by response variable, which describe

class of the object.

1.3 Channel Capacity and Secrecy Capacity

1.3.1 Channel Capacity

To consider an arbitrary optimization problem, the target function (index), which depends

on the parameters of the model needs to be determined. This indicator will be the difference

between channel capacities for main channel and eavesdropper. So, one of core terms of this

study is channel capacities, defined by the highest information rate (in units of information

per unit time) that can be achieved with arbitrarily small error probability [5]. According
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to Shannon - Hartley theorem [14] for channels with noise, throughput of this channel is the

limiting transmission rate, which can be achieved with arbitrarily small probability of error.

Some authors consider error probability as the main characteristic of the system. For

example, authors in [36] focus on a different index for secrecy of the channels, namely the

probability of errors. In my research, this characteristic is closely related to the correlation

for channels. This feature is more understandable as it shows the probability that the

eavesdropper will not be able to decode the received message.

Main task in [25] is finding the upper bound of the decoding error for MIMO systems in

Wyners wire-tap channel setting. Authors in [25] show that decoding error in the system

satisfies the relation:

Perror ≤ exp (−nEr) ,

where Perror is the probability of error, n is length of the message, Er is Gallagers random

coding exponent.

One of the main tasks of my thesis is maximizing the main channel reliability by choosing

”optimal parameters” of the system. Using Eqn(1.4), only one parameter of X – which is

density (or mass function) P (x) of the random variable X can be defined. It is intuitively

clear that the reliability of the channel increases only by changing the properties (distribution)

of X, that is

CS(X) = sup
P (x)∈P

I(X;Y ), (1.5)

where P is the class of the densities (mass functions) of the random variable X. In terms of

the SNR P , let us define class P of the possible distributions in terms of covariance matrix

of the input signal X:

P = {P (x) : Tr(cov(X)) ≤ P} ,

where P (x) is the distribution of the random variable X, cov(X) is the covariance of the

random variable X, Tr(A) is the trace of the matrix A.
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1.3.2 Secrecy Criterion – Secrecy Capacity

Using the definition from Eqn(1.5), one can interpret the reliability of the system (or secrecy

criterion) depicted in Fig.1.1 as a maximization of the capacity of the main channel (X → Y ),

taking into account the minimization of the channel capacity of the second channel (X → Z),

which is the same as maximizing the difference between the channel capacities for the

legitimate and eavesdropper channels.

Hence, the main task is maximizing information rate in Legitimate channel (X → Y )

with minimizing information rate in Eavesdropper channel channel (X → Z).

Using the definition given from Eqn.(1.5), the secrecy capacity can be defined as

CS = sup
P (x)∈P

(I(X;Y )− I(X;Z)) (1.6)

where P is the class of the densities (mass functions) of the random variable X. In fact,

this formula defines maximization of the difference between the channel capacities of two

channels (main and eavesdropper). Channel capacity is given by the following:

I(X;Y ) =
1

2
log(det(I +H ′ΣH))

where H is the channel gain, Σ is the covariance matrix of input signal X:

cov(X) = E((X − EX)′(X − EX))

Note that these equations of the channel capacity define the same result for SI* system,

but different result for MI* systems 3.

Now to explain this concept on a concrete example, which is based on Fig. 1.1. Assume

that the legitimate channel (X → Y ) is the channel between Alice and Bob and eavesdropper

channel (X → Z) is channel between Alice and Eve. Suppose, Alice wants to send message

3SI* systems means SISO and SIMO systems;
MI* systems means MISO, MIMO, MaMIMO systems.
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to Bob maintaining confidentiality of message from Eve. By this description, Bob is the

legitimate receiver and Eve is the eavesdropper.

The idea of Alice is to move information at the highest possible rate with high secrecy.

Perfect secrecy is obtained when Eve fails to decode any confidential information without

taking into account the computing power available. The concept of perfect secrecy precludes

use of any cryptographic technique, because such techniques fail when the eavesdropper has

infinite computing power. Is there any way to obtain perfectly secret communication in

existence of an eavesdropper with infinite computing power? The answer is ”yes” and it

follows from the information-theoretic approach of achieving secret communication. The

’catch’ is that Alice has to send information at a lower rate satisfying the secrecy constraint.

For example, consider a very basic wire-tap channel. Assume that both channels are fixed; the

point to point capacity of the legitimate channel is 5 bits per channel use and eavesdropper

channel is 2 bits per channel use. The fundamental information of the theoretic results state,

that a coding scheme can be constructed for perfectly secret communication if rate of the

code, i.e., the rate of communication, occurs less than the difference of the capacities of the

channels, which is 3 bits per channel use for previous case. The plan of constructing such

coding scheme is to include noise in the encoding process to confuse the eavesdropper.

1.4 Information Theoretic Secrecy: Theory & Real World Problems

The main consideration with each theory is the assumptions on which the theory is based. In

this case, all the main assumptions are based on the mathematical model given by Eqn.(1.1).

By assumption, the model is linear and the noise in two channels have normal (Gaussian)

distribution. One important simplification of the mathematical model in Eqn.(1.1) is that

the channel gains are constants, and therefore do not depend on each other. As described

above, channel capacities of legitimate and eavesdropper channels do not depend on the

other channel. Its model corresponds to the case ρ = 0 in terms of correlation.

To solve another problem, the assumption about fixture of the channel gains should be

changed. Assume that channel gains are correlated random variables with joint distribution
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f(h1, h2), where dimension of the vector h1 corresponds to the dimension of the matrix gM ,

dimension of the vector h2 is the dimension of the matrix gE , respectively.

The main tool for better understanding of the problem is modification of the mathematical

model of the system. It can be done as follows:

• By generalization of the properties of random additive noises nM and nE .

• By generalization of the properties of channel gains gM and gE .

For this study, using the second option with generalization of the properties of channel gains

gM and gE . There exist many works [8, 9, 35, 37, 38, 39, 41, 42] which use generalization

by second option. Using the same generalization of the model in Eqn. (1.1), assuming that

channel gains possess the following property:

(gM , gE) ∼ f(h1, h2), (1.7)

where f(h1, h2) is the density over Euclidean space Rn(m+k). Note that this description of

the problem is more realistic than the constant case of gM and gE . All advantages of this

approach will be discussed in the next section.

1.5 Correlation of Channel Gains

The main assumption about density f(h1, h2) for calculation is given by:

f(h1, h2) = (2π)−Ndet(Σ)−
1
2 e−

1
2

(h−µ)′Σ−1(h−µ), (1.8)

where Σ is a covariance n(m+ k)× n(m+ k) matrix for µ – n(m+ k) vector, which defines

average values of each parameter,

N =
n(m+ k)

2
.
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In particular for n = m = k = 1, matrix Σ and vector µ is given by:

h =

 h1

h2

 , µ =

 µ1

µ2

 ,Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 ,
where ρ is the correlation between channel gains gM and gE .

Consider density f(h1, h2) for n = m = k = 1 with covariance matrix

Σ =

 1 ρ

ρ 1

 .
The density f(h1, h2) changes for different values of correlation coefficient shown in the

Fig.1.2 below. For better understanding of the changes of secrecy capacity as function of ρ,

consider the next representation of the channel gain gE :

gE = µ2 + ρ(gM − µ1) +
√

1− ρ2gA,

where gA ∼ N(0, 1) is one dimensional normal distributed random variable with zero mean

and variance σ2 = 1. Now, assume that ρ→ 1. In this case

gE ≈ µ2 − µ1 + gM .

Here we use next fact about distribution of gE by known value of gM :

gE |gM ∼ N(µ2 − ρ(µ1 − gE), (1− ρ2)σ2).

Therefore µ2 − µ1 > 0 and it implies that

gE − gM ≈ µ2 − µ1 > 0

Now assume that probability that µ1 < 0 and µ2 < 0 is about 0. Using these facts, we
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Figure 1.2: The joint density f(h1, h2) plot for different values of correlation coefficient
ρ = −0.9,−0.5, 0, 0.99.

get

(I(X;Y )− I(X;Y ))+ =
1

2
(log(1 + g2

MR)− log(1 + g2
ER)) = 0

Using this fact, simple conclusion in the case µ2 − µ1 > 0 is obtained

CS = 0.

For a general case, the number of correlation parameters is M = n(m+k)(n(m+k)−1)
2 :

ρ = (ρ1, ..., ρM ).
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The number of correlations between elements of the channel gains gM and gE are

Mb = n2mk.

For simplification of the mathematical part, it can be assumed that elements in the two

channels are independent meaning that the matrix Σ can be represented in the next form

Σ =

 diag(σ2
1(M), ..., σ2

nm(M)) Corr

Corr′ diag(σ2
1(E), ..., σ2

nk(E))

 , (1.9)

where diag(σ2
1, ..., σ

2
l ) is l × l diagonal matrix with diagonal elements σ2

1, ..., σ
2
l , Corr is

covariance matrix between elements of the channel gains gM and gE .

1.6 Main Results & Contributions

Main results of this thesis is reducing the task of finding the secrecy capacity with correlated

channel gains using Eqn. (1.8) to the task of solving of the partial differential equations.

Different LOS scenarios are simulated for identifying the scenarios where good secrecy is

possible. The basic methods for finding secrecy capacity at present are statistical methods

(Monte Carlo methods) [41, 45] that require the execution of a large number of operations

(iterations). In this way, the speed of the algorithm is significantly reduced.

In this research, the use of differential equations in partial derivatives to find the secrecy

capacity for SISO & MIMO systems is proposed. This approach greatly reduces the number

of operations for calculations of secrecy capacity. This approach has some common ideas

with work [32], but the authors of this work consider the deterministic case (gM and gE).

The novelty of work [32] considers the impact of small variations in channel gains on the

secrecy rate of a wiretap channel, in which it is assumed that imperfect channel knowledge is

available at the transmitter. Hence, the main result of is focused in considering the secrecy

capacity with varying channel gains. The main results are formulated in Theorem 1, in

which the increment of secrecy capacity is defined as a function of the increments of gM and
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gE :

∆CS =
gMP

g2
MP + σ2

M

∆gM −
gEP

g2
EP + σ2

E

∆gE + o(max(∆gM ,∆gE)), (1.10)

where ∆CS = CS(gM + ∆gM , gE + ∆gE)− CS(gM , gE). Using this approach, the authors

construct an algorithm for calculating secrecy capacity, which is based on the following

formula:

CS(gM + ∆gM , gE + ∆gE) ≈ CS(gM , gE) +
gMP

g2
MP + σ2

M

∆gM −
gEP

g2
EP + σ2

E

∆gE .

A more statistical model, which is considered in this study, secrecy capacity is the

function from 3 main parameters:

CS = CS(ρ, µ,Σ).

Using properties of the expectation and properties of density of the multivariate normal

distribution, it is proved that secrecy capacity CS satisfies the next first order partial

differential equation (PDE):

∂CS
∂ρ

+

n(m+k)∑
i=1

ui(ρ, µ,Σ)
∂CS
∂µi

= u0(ρ, µ,Σ)CS , (1.11)

where ∂y
∂x is partial derivative of the function y by variable x. Using this equation, it is

easy to estimate the values of SC in every finite region of the set parameters (ρ, µ,Σ). For

uniqueness of the solution, it is necessary to determine the boundary conditions. In this

case, these conditions are most easily determined for the following parameter values:

µi = 0; ρ = 0.

For defining the boundary conditions, results of the work [32] can be used. Also, boundary

values for CS can by used by Monte Carlo method or some other estimations.

Consider estimation of the secrecy capacity, based on Eqn.(1.11). Assume that µ ∈ R2,
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and the correlation parameter ρ is fixed. In this case, the last equation can be rewritten as

∂CS
∂µ1

+ u2(ρ, µ,Σ)
∂CS
∂µ2

= u0(ρ, µ,Σ)CS .

Figure 1.3: Grid of the points in the (µ1, µ2) plane for estimation of the secrecy capacity CS

Fig.1.3 represents grid of the points on (µ1, µ2) plane for estimation of secrecy capacity

CS , where red dots indicate boundary condition points, blue dots indicate interior points.

Values for secrecy capacity in the interior points can be calculated, using the estimation:

CS(ρ, µ)− CS(ρ, µ−∆1µ)

∆µ1
+ u2(ρ, µ,Σ)

CS(ρ, µ)− CS(ρ, µ−∆2µ)

∆µ2
≈

u0(ρ, µ,Σ)CS(ρ, µ),
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where

∆1µ =

 ∆µ1

0

 ,∆2µ =

 0

∆µ2

 .
Using this approximation, estimation of secrecy capacity CS in points (µ1,i, µ2,j) is obtained

by the next recurrent formula:

CS,i,j =
∆µ−1

1 CS,(i−1),j + ∆µ−1
2 u2,i,jCS,i,j−1

∆µ−1
1 + u2,i,j∆µ

−1
2 − u0,i,j

=

∆µ2CS,(i−1),j + ∆µ1u2,i,jCS,i,j−1

∆µ2 + u2,i,j∆µ1 − µ2µ1u0,i,j
≈

∆µ2CS,(i−1),j + ∆µ1u2,i,jCS,i,j−1

∆µ2 + u2,i,j∆µ1
.

For complexity of the classical algorithm calculated by Monte Carlo method and the

algorithm comparison, consider the parameters of the system: N – number of iterations in

the Monte Carlo method, M1 – number of points in µ1 axis, M2 – number of points in µ2

axis. Using these parameters, the number of flops in the tow algorithm is received:

NClassical = M1 ∗M2 ∗N,

NNewAlgo. = (M1 +M2 − 1) ∗N + 3 ∗M1 ∗M2.

Thus, the developed algorithm has much faster performance under the condition

N � max(M1,M2).

1.7 Other Generalizations of the Main Model

H. Mahdavifar and A. Vardy [19], instead of constructing the vector v ∈ (0, 1)n by setting

vR = e, vA = u, and vB = 0; set vR = e, vA = u, and vB = s, where s is a fixed binary

vector known a priori to all the parties. The authors then showed that there exists a choice
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such that following qualities hold

lim
k→∞

I(U ;Z)

k
= 0, lim

n→∞
Rn = C(W ∗)− C(W ).

Mahdavifar’s and A. Vardy’s results also extend to discrete memory-less channels with

non-binary input.

O.O. Koyluoglu, C.E. Koksal and H.E. Gamal [13] studied scaling behavior of the

capacity of wireless networks under secrecy constraints. For extended networks with the

path loss model, legitimate nodes and the eavesdropper were randomly placed in the network

according to Poisson point processes. It is shown that when λe = o
(
(log n)−2

)
, almost all

nodes achieve a secure rate of Ω
(

1√
n

)
, showing that securing the transmissions does not

entail a loss in the per-node throughput for the model, where transmissions from other

users are considered as noise at receivers. Their achievability argument is based on the

novel secure multi-hop forwarding strategy where forwarding nodes are chosen such that no

eavesdroppers exist in appropriately constructed secrecy zones around them and independent

randomization is employed in each hop. Tools from percolation theory were used to establish

the existence of a sufficient number of secure highways allowing for network connectivity.

Finally, a time division approach was used to accomplish an end-to-end secure connection

between almost all source-destination pairs.

With regards to digital communication, ref.[2] describes the transfer of bit-streams from

one geographical location to another in different physical environments, such as wired pairs,

coaxial cable, optical fiber and radio. The approach of this book is to extract the general

principles underlying a range of media and applications and present them in a single structure.

This has to do with the design of a variety of systems, including voice and video digital

cellular phones, digital cable television, wireless local area networks, digital subscriber loop,

metallic Ethernet, modems for voice-band data and satellite communications system.

As a continuation, it is interesting to get acquainted with work [22], which considers the

use of artificial interference to reduce the likelihood that a confidential message transmitted
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between two multi-antenna nodes will be intercepted by a passive interceptor. In this article,

part of the transmit power is used to broadcast an information signal, which should be

enough to guarantee a certain data rate for the intended receiver, and the remaining power is

used to broadcast the artificial noise to mask the desired signal from a potential interceptor.

A modified water filling algorithm has been proposed that balances the required transmit

power with the number of spatial measurements sufficient to prevent the eavesdropping

device from recognizing the transmitted information. There is also an increase in secrecy in

modeling the proposed transmission scheme.

[30] discusses the use of artificial noise to reduce the likelihood that a message transmitted

between two multi-antenna nodes will be intercepted by an undetected interceptor. The

effectiveness of the relative signal-to-interference-plus-noise- ratio (SINR) of one transmitted

data stream as a performance metric is shown.

In [31], the potential secrecy of composite listening channels was studied in the case

of arbitrary sets of uncertainties (not necessarily countable or final states) and continuous

input / output alphabets. The secrecy of a composite Gaussian MIMO listening channel

was established while limiting the spectral norm on the interception channel. In this case,

the channel does not have to be degraded.

The secrecy capacity is given in closed form:

CS =
∑

i:gi>λ+ε

ln
gi
ε

+
∑

i:gi>λ+ε

ln
2ε+ (ε+ gi)zi
2gi + (ε+ gi)zi

,

where gi are eigenvalues of the matrix of the channel to the legitimate receiver, fixed and

known to the transmitter; ε > 0;

zi = max

(√
1 +

4εgi
(ε+ gi)2

(
gi − ε
λ
− 1

))
− 1, λ > 0.

It was shown that the property of saddle point is preserved, so that the composite

bandwidth is equal to the worst-case value, and the transmission of signals over the worst

channel reaches the composite bandwidth. Also, the isotropic interceptor shown is the worst
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case, and the transmission of signals on the eigenmodes of the legitimate channel is optimal.

The results apply to non-isotropic sets of uncertainties. It is shown that the presence of a

maximum element in a set of uncertainties is sufficient for a saddle point to exist, so that

the composite bandwidth is equal to the worst, and signaling on the worst channel reaches

the bandwidth of the entire class of channels. In addition, these results are summarized to

include legitimate channel uncertainty.

In [15], a method for ensuring secure communication by sending artificial noise by a

transmitting antenna of a legitimate receiver is proposed. The path loss component in the

far-field zone is considered and one concept of the field of wiretap channel secrecy is presented,

that can be useful in developing security solutions at the physical level. Experimentally, by

constructing a mathematical model, it was shown that the proposed method can provide

high security in practical conditions, especially when the attacker’s location is near the

intended receiver. According to the authors, the proposed method can be combined with

the existing method of forming a beam mask to further improve secrecy.

The Poisson process is an integral part in describing the functioning of communication

networks. In article [34], the Poisson process of both secondary users and eavesdroppers

is considered, and the effect of stochastic interference on fundamental limits of secure

communication in a cognitive radio network is analyzed. A closed form for the secret

capacitance between the main transmitter and receivers is obtained:

Cs = max

{
log2

(
1 +

P

||xi − xj ||α(W + IP )

)
− log2

(
1 +

P

||xi − e∗||α(W + IE)

)
, 0

}
,

where ||xi − xj || is the distance between node xi and node xj , and α is the loss exponent of

medium, P is the transmit power of primary nodes, IP is the interference powers of P , IE is

the interference power of eavesdroppers from the cognitive users. Based on the theory of

stochastic geometry, the influence of spatial Poisson process of primary and intercepting

nodes on the secrecy capacity CS and the probability of failure between a node and its

neighbors are shown.
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1.8 Thesis Outline

The thesis is devoted to the case when the channel gains are multi-normally distributed:

(gM , gE) ∼ N(µ,Σ).

The outline of the thesis is described as follows. Chapter 2 reviews the main systems

related to the wireless transfer of information. We will consider two main wiretap transmission

systems – Shannon’s Cipher System and Wyner’s Wiretap Channel. This chapter describes

the difference between these systems and their mathematical models. Also the MIMO

channel is introduced and methods are described for finding the main characteristics of

MIMO systems. Another part of this section is the description of the influence of random

perturbations in the MIMO system – nM and nE .

Chapter 3, partly, is an overview of methods of finding the secrecy capacity for SISO

and MIMO systems with correlated channel gains gM and gE . Also, this chapter describes

the main work devoted to these systems, where the channels have different distributions –

exponential distribution, Rayleigh and Rician distributions, Gaussian and normal distribu-

tions. In this chapter a new method for finding the secrecy capacity with the use of Partial

Differential Equations is considered. We find systems of partial differential equations for the

secrecy capacity in the parameter areas µi, σj , ρk. Two algorithms for constructing systems

of partial differential equations for SISO and MIMO systems in the areas of average values

of channels gains (µ1, ..., µn(k+m)) are considered.

Chapter 4 of the thesis is devoted to numerical examples, in which the interrelation

between the secrecy capacity and the main parameters of the system (µi, σj , ρk) is analyzed

in detail. A comparison of the Monte Carlo method and the method based on PDE, is

carried out. Line of Sight (LOS) and Non-Line of Sight (N-LOS) scenarios are considered

and graphs plotted similarly for Rayleigh and Rician distributions are evaluated. Chapter 4

is followed by the Conclusion and Future Research.
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Chapter 2

History of Physical Layer Security & Related Works

2.1 Security at the Physical Layer

Wireless networks have become an indispensable part of our daily life, widely used in civilian

and military applications. Security is a critical issue in wireless applications where people

rely heavily on wireless networks for transmission of important/private information, such as

credit card transactions or banking related data communications.

Most commonly used security methods rely on cryptographic techniques employed at

the upper layers in the Open Systems Interconnection (OSI) model of a wireless network. If

two users do not have their private key in the symmetric cryptosystem, a secure channel is

required for the key exchange. Instead of using an additional channel, the physical layer

methods can be employed here to distribute secret keys, to supply location privacy and

to supplement upper-layer security algorithms. The application of physical layer security

schemes makes it more difficult for attackers to decipher transmitted information.

The model described in Eqn.(1.1) consists of two main operations – ⊕ and ⊗. The first

operation means the matrix multiplication by vector. Consider the operation ⊕ in sense

of binary signals, where each single-input channel Xi ∈ {0, 1}. This assumption becomes a

number of different input signals if equal,

NX = 2|X| = 2n.

Also, the number of changed bytes after operation ⊕ is equal NX = 2|X| = 2n bytes by
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assumption Yi, Zi ∈ {0, 1}. Using this assumption, one can conclude, that number of different

matrices, which cover all possible cases, are

NX⇒Y = 2m∗2
n
.

In all calculations below, let’s now use constraints about channel gains gM and gE , which are

displayed in the form of a joint distribution of (gM , gE). This assumption greatly simplifies

all mathematical calculations.

2.2 Physical Layer Security over the Years

The problem considered in this research was also considered in some other works [10, 35],

which will be mentioned below in the literature review. The novelty of this work is the

generalization of the model Eqn. (1.1) according to the assumption of the correlation

between the channel gains gM and gE . As will be shown below, the presence of correlation

for channels can lead to both increase and decrease of the secrecy capacity CS . Therefore,

it is not surprising that many works [40, 43] are devoted to the these systems – Shannons

Cipher System, Wyner’s Wiretap Channels, Gaussian Wiretap Channels, MIMO Wiretap

Channels and Ma-MIMO Wiretap Channels.

2.2.1 Shannon’s Cipher System

Consider the classical Shannons Cipher System, which is described as follows: let Xn =

(X1, ..., Xn) be a message where each letter takes values on a finite set X . This message

is securely communicated from a transmitter to a receiver, both of which have access to a

common secure key K = Uk of purely k random bits independent of Xn. The transmitter

computes the cryptogram

Y = Fun(Xn, Uk)

and sends it to the receiver over a public channel. The cryptogram may have variable

length. The encryption function Fun is invertible for any fixed length of the message n. The
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receiver, knowing Y and Uk, computes Xn. The functions Fun and Fun−1 are published.

Figure 2.1: Shannon’s model of a secrecy system.

This is an apt description of the Shannons Cipher System. Now, if a wiretapping attacker

has access to the cryptogram, can attempt to identify the secure key without knowledge of

the transmitter or the receiver. The attacker can use knowledge of the statistics of Xn.

Pioneer work in Shannon cipher system considered Ciphertext-only attack, where Eve

(the eavesdropper) is assumed to have access to the ciphertext c. The target for Eve would be

to try to recover the secret key k, the plaintext (original signal) Xn, or possibly some partial

information about the plaintext. This is the weakest form of an attack that is considered in

work [40].

2.2.2 Wyner’s Wiretap Channel

Wyner introduced the notion of the wire-tap channel (Fig. 2.2) in study [43]. Alice wants

to communicate a message X to Bob through a communication channel V : X → Y . Eve

also has access to what Alice transmits via a wire-tappers channel W : X → Z and the aim

of Alice is to keep the message hidden from Eve while maximizing the rate of information

transmitted to Bob.

Rate =
1

n
log(|M |)
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Figure 2.2: Wyner’s wiretap channel

Wyner [43] showed that, given any input distribution PX , Alice can communicate reliably

to Bob at any rate up to

I(X;Y )− I(X;Z)

What is the difference between Shannon and Wyner models? The Shannon model sends an

encrypted message Xn by some transformation1, and the eavesdropper (Eve) tries to decrypt

it, or decrypt only part of this message. In Wyner’s model, the message is sent without

encryption, but the eavesdropper channel is statistically worse than legitimate channel (Bob

channel). Wyner proves that secure communication is possible in this case. Therefore, two

main differences between Shannon and Wyner models can be specified:

• In Shannon cipher model, plain-text Xn is encrypted, the characteristics of the

legitimate channel (Bob) and eavesdropper channel (Eve) are the same. Hence,

statistical (probabilistic) characteristics of the signals Y and Z are the same, because

Y = Z.

• Wyner’s model assumes that the channels for Bob and Eve have different properties

(statistical properties). This means that statistical (probabilistic) characteristics of

the signals Y and Z are different.

1Defined by operations ⊕ and ⊗
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2.2.3 Gaussian Wiretap Channel & the MIMO Wiretap Channel

In the previous two subsections, the systems without noise (without external influences)

were considered. The main mathematical model of this work includes random additional

noises nM and nE . These two additional terms change properties of the system and also as

showed in other studies, difference in distribution of the terms nM and nE generate varying

values for the secrecy capacity.

Main pioneer work related to wiretap channels describe single input single output (SISO)

systems. But with the development of real systems, it became clear that considering these

systems is not enough for real-life problems. Therefore, the main work from the last two

decades is devoted to more complex systems, namely multi-input multi-output (MIMO)

systems.

The account of noise in the system for the time being is an integral part of any model,

since none of the created systems are perfect. Initial work related to the transmission of

information [40, 43] did not take into account the presence of noise for two reasons:

1. At the time of the release of these two papers, the probability theory and random

processes theory was not widely used in applied problems.

2. The authors of these works have considered idealized systems, which excluded the

presence of other objects except Alice, Bob and Eve.

Ruoheng Liu and H. V. Poor [28] in paper ”Multi-antenna Gaussian broadcast channels

with confidential messages” investigated the secrecy capacity region of a generally non-

degraded Gaussian BC with confidential messages for two users, where the transmitter

has t antennas and each user has a single antenna. For this model, they have proposed

a secret dirty-paper coding scheme and introduced a computable Sato-type outer bound.

Furthermore, authors have proved that boundary of the secret dirty paper coding rate region

is consistent with the Sato-type outer bound for multiple-antenna Gaussian BC, and hence,
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have obtained the secrecy capacity region for the MGBC-CM.

CMG
S = co

 ⋃
0≤β≤1

ΣMG−2(β)

 .
Unlike the single-antenna Gaussian BC-CM case, in which only the superior user can

obtain confidential information at a positive secrecy rate, the result has illustrated that

both users can achieve strictly positive rates with information-theoretic secrecy through

a multiple-antenna Gaussian BC if attenuation vectors imposed on user 1 and user 2 are

linear independent. Therefore, it becomes more practical and more attractive to achieve

information-theoretic secrecy in wireless networks by employing multiple transmit antennas

at the physical layer.

The authors of [45] investigated security of the physical layer of a system with multiple

inputs and multiple outputs, consisting of one source and one destination in the presence of

an interceptor, where each node is equipped with several antennas. Two schemes for selecting

a transmitting antenna (optimal antenna selection and sub-optimal antenna selection) are

considered, which work depending on whether the source has information about state of

the global channel as the main channel and the channel that is being listened to. For

performance comparison, a standard space-time transmission scheme is considered. The

expressions in a closed form for the probability of zero secrecy capacity for the space-

time transmission, optimal antenna selection and sub-optimal antenna selection schemes in

conditions of Rayleigh fading are obtained. It is shown that the generalized order of secrecy

diversity of the space-time transmission, sub-optimal antenna selection and optimal antenna

selection schemes are the product of the number of antennas at source and destination:

dOAS = dSAS = MNd,

where M and Nd represent the number of antennas at source and destination, respectively.

It has been experimentally shown that the optimal antenna selection scheme is superior to

both the sub-optimal antenna selection scheme and the space-time transmission scheme in
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terms of probability of zero secrecy, confirming the safety benefits of using optimal choice of

antennas against eavesdropping.

2.3 Importance of the Available CSI at Transmitter

Channel state information (CSI) is a collection of properties of a communication link. This

information describes how a signal propagates from the transmitter to receiver and represents

different effects of: scattering, fading, and power decay with distance. CSI makes it possible

to adapt transmissions to current channel conditions, which is crucial for achieving reliable

communication with high data rates in MIMO systems.

In general, the CSI can divided by two levels:

• Instantaneous CSI (or short-term CSI) defined by current channel conditions;

• Statistical CSI (or long-term CSI) defined by statistical characterization of the channel,

calculated over a long-term period.

It should also be noted that all information about the channel is concentrated on the

parameters gM , gE , nM and nE . As it is noted in the introduction, the systems belong to

one of two types:

• Full Channel CSI: In this case, the exact values of the parameters gM , gE are known.

Hence, these parameters have constant matrices.

• Partial Channel CSI: In this case, consider a system under uncertainty (partial infor-

mation), namely assuming that the parameters are not constants, but are random

variables with some distribution.

Most of the real-world systems belong to the second type, since, it is impossible to

accurately determine parameters of the system. In this case, uncertainty of the system lies

in the assumption given by Eqn.(1.8).
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A. Mukherjee and A. L. Swindlehurst [23] have presented beam-forming based approaches

for improving the secrecy of wireless communications between two multi-antenna nodes

Qint = E{Hbaz
′z′HHH

ba + nbn
H
b }.

The algorithms allocate transmit power in order to achieve a target SINR for a desired

user, and then broadcast the remaining available power as artificial noise in order to disrupt

interception of the signal by a passive eavesdropper. The proposed approaches rely heavily on

availability of accurate CSI, and their performance can be quite sensitive leading to imprecise

channel estimates. As a result, the authors conducted a detailed second-order perturbation

analysis in order to precisely quantify the effects of inaccurate CSI. Simulations were used

to demonstrate validity of the analysis, and to illustrate the sensitivity of algorithms that

depend on precise CSI. To reduce impact of CSI errors, Mukherjee and Swindlehurst proposed

two robust beam-forming schemes that are able to recover a large fraction of the SINR lost

due to channel estimation errors. These techniques were shown to perform very well for

moderate CSI errors, but ultimately a large enough channel mismatch can eliminate the

secrecy advantage of using articial noise.

2.4 Literature Review

Consider now the main results, which are related to calculation CS in the models described

above.

Main goal of [12] is defining secrecy capacity for MIMO systems with complex-value

matrices gM and gE . Also, authors of this work have considered complex-valued noises

nM and nE – assuming nM , nE are independent CN(0, I) processes2. For solving SC, the

authors have used generalized eigenvalues of two matrices (gM , gE), which are defined as

solutions of the equation

det(gM − λgE) = 0

2CN(0, I) is a complex-valued Gaussian process with average 0 and covariance matrix I
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with corresponding eigenvectors. Main results of the article are focused on finding SC on

limit case (P →∞). For example, the authors proved that limit value of secrecy capacity

for P →∞ is approximately equal

CS ≈ C0(P ) +
∑
σj>0

log(σ2
j ) +O(1),

where σj is generalized singular values of the (gM , gE) problem. Also, the authors have

considered different cases for rank of the matrices gM and gE and proven that in some cases

CS depends only on full-rank sub-matrices g′M and g′E . This is a very informative result for

a reducing partial-information system to a full-rank system.

The main focus of study [17] is MIMO systems, which can be described by complex-valued

generalization of the system given by Eqn.(1.1). Principal results of the work are based on

the novel global optimization algorithm called branch-and-bound with reformulation and

linearization technique. For simplification of the problem, authors have used the linearization

of log(x):

log(x) =
∑
i∈Ind

Ii(x)(aix+ bi),

where ai, bi are some constants, Ind is a subset of indexes. Using this method, authors

reduce the problem to a corresponding linear problem, which can also be obtained from

Taylor series:

log(1 + x) =
∞∑
i=1

(−1)i−1x
i

i
.

The results, obtained in [17] can be used for numerical calculation of SC, but not for

contained closed form of SC.

Authors of the work [26] have described the general state of the problem of finding the

secrecy capacity for different types of systems (SISO, MISO, MIMO) and define main ways

for finding the SC estimations for each of these systems. Authors have shown the existence

of the closed form for secrecy capacity only for two types of the system – SISO and SIMO

systems. Also, authors have used different definitions for the channel capacity for AWGN
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channel:

I(X) = log(det(I + Σg′MgM )).

This representation changes the calculation of secrecy capacity, because

log(det(I + Σg′MgM )) 6= log(det(I + g′MΣgM )).

Thus, one can conclude that the closeness of secrecy capacity also depends on the form in

which its value is calculated.

The main work of [44] is the assessment of secrecy capacity for SISO systems. In Theorem

2 of this work, a closed form of secrecy capacity for a MISO system with uncorrelated noise

is given, which has the form

CS,MISO =
M∑
i=1

CS,SISO(i),

where CS,SISO(i) is value of secrecy capacity between uncorrelated sub-channels (SISO

subsystems). The authors of these study have shown that the MIMO system with uncorrelated

noise can be considered as several unconnected SISO systems. At the same time, the authors

found a closed form of secrecy capacity for these systems. Also, the authors of this work

have considered the case of uncorrelated gM and gE and shown that the value of CS for

SISO system in limit case for P →∞ can be estimated as

CS ≈
P

2

Eg2
M

E(gM + gE)
.

Using the notation about joint distribution of gM and gE , this relation can be rewritten in

the form

CS ≈
P

2

σ2
1 + µ2

1

µ1 + µ2
,

where gM ∼ N(µ1, σ
2
1), gE ∼ N(µ2, σ

2
2).

F. Oggier and B. Hassibi [24] considered the problem of computing perfect secrecy
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capacity of a multiple antenna channel, based on a generalization of the wire-tap channel to

a MIMO broadcast wire-tap channel. The model was described by the following broadcast

channel

Y = gMX + nM , Z = gEX + nE ,

where Y, nM and Z, nE are respectively k × 1 vectors. Besides, F. Oggier and B. Hassibi

have solved the optimization problem

min
A

max
KX

I(X;Y |Z)

by computing optimal A in a closed form expression, and by showing that optimal KX is

low rank.

T. Liu and S. Shamai [18] presented an alternative characterization using a channel

enhancement argument. They considered a canonical version of the channel (vector Gaussian

wiretap channel)

yr[m] = x[m] + wr[r], ye[m] = x[m] + we[m],

where x[m] is the real input vector of length t, wr[m] and we[m] are additive Gaussian

noise vectors with zero mean and covariance matrices Kr and Ke, respectively, and are

independent across the index m. The noise covariance matrices Kr and Ke are assumed to

be positive definite. T. Liu and S. Shamai proved that, if there exists a positive semi-definite

matrix, then the secrecy capacity of a degraded vector Gaussian wiretap channel can be

written as

C =
1

2
log det

(
I +K∗xK

−1
r

)
− 1

2
log det

(
I +K∗xK

−1
e

)
.

The characterization relies on an extreme entropy inequality recently proved in the context

of multi-antenna broadcast channels, and is directly built on the physical intuition regarding

the optimal transmission strategy in this communication scenario.

G. Geraci et al [7] proposed a linear precoder for the down-link of a multi-user MIMO

system with multiple users that potentially act as eavesdroppers. The proposed precoder is
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based on regularized channel inversion (RCI) with a regularization parameter α and power

allocation vector chosen in such a way that the achievable secrecy sum-rate is maximized. The

authors considered worst-case scenario for multi-user MIMO system, where the transmitter

assumes users to co-operate to eavesdrop on other users

Rs =
K∑
k=1

[
log2

(
1 +

|h+
k wk|2

γσ2 +
∑
j 6=k |h+

k wj |2|

)
− log2

(
1 +
||Hkwk||

2

γσ2

)]+

.

They derive the achievable secrecy sum rate and obtain closed-form expression for the

optimal regularization parameter αLS of the precoder using large-system analysis. Authors

showed that the RCI precoder with αLS outperforms several other linear precoding schemes,

and it achieves a secrecy sum-rate that has same scaling factor as the sum-rate achieved

by optimum RCI precoder without secrecy requirements. Geraci et al proposed a power

allocation algorithm to maximize the secrecy sum-rate for fixed α. They then extend the

algorithm to maximize the secrecy sum-rate by jointly optimizing α and the power allocation

vector. The jointly optimized precoder outperforms RCI with αLS and equal power allocation

by up to 20 percent at practical values of the signal-to-noise ratio and for 4 users and 4

transmit antennas.

In [4], the new analytical and closed expressions for the probability of a strictly positive

secrecy capacity and a lower bound for secure outage probability for the recently proposed

κ − µ fading model were presented. In particular, analytical expressions were obtained

for i.i.d. channel coefficients without parameter limitations. Analytical and closed-form

expressions were tested by reducing to known particular cases and Monte-Carlo simulations.

Since the proposed κ−µ fading model is a very general statistical model that includes many

well-known distributions, in the article, the authors obtained new equations that can be

used to characterize the secrecy of several different attenuation channels and calculating the

probability of failures in wireless systems subject to co-channel interference and background

noise, and calculation of the probability of failures in scenarios with limited interference.

The utility of new formulations has been illustrated by examining the probability of strictly
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positive secrecy capacity and a lower bound of secure outage selectivity based on actual

channel measurements conducted for a diverse range of wireless applications such as cellular

device-to-device, peer-to-peer, vehicle-to-vehicle and body-centric fading channels.

2.5 Summary

Secrecy capacity is one of the most important indicators that characterizes the reliability of

the MIMO3 system. However, at present, there are few major problems that prevent the

calculation of this indicator to be simplified:

• Absence of a closed form for secrecy capacity CS for the MIMO system.

• Absence of a closed form for secrecy capacity CS for an arbitrary system with correlated

channels.

The absence of a closed form for secrecy capacity causes the construction of methods for

approximation of CS . Most works [8, 9, 35, 37, 42] use the Monte Carlo method for this

aim. However, this method, as a statistical method, is very slow. Therefore, other methods

should be used to improve the results. The following table lists the main methods used to

evaluate CS .

3Or SISO, SIMO, MISO systems
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Study System Description

Zang et al [44] Uncorrelated MIMO and
correlated SISO

Estimate CS,MIMO of
MIMO system by CS,SISO
of the SISO subsystems.
Find estimation of the
SISO system in terms of
moments of gM and gE in
limit case P →∞

Sedighizad et al [32] Uncorrelated SISO Estimation of ∆CS by
∆gM and ∆gE . Novel
approach for estimation of
CS by DE

Schaefer et al [31] Uncorrelated MIMO Find closed form of the CS
for composite Gaussian
MIMO listening channel
with specific form of
channel gains gM and gE

Shu et al [34] Uncorrelated MIMO Considered effect of
stochastic interference on
the fundamental structure
of the CS in MIMO system

Liu & Poor [28] Uncorrelated MIMO Define upper and lower
bounds for CS by
computable Sato-type outer
bounds

Khisti & Wornell [12] Uncorrelated MIMO Estimation of the CS by
singular values of (gM , gE)
in limit case P →∞

Li & Petropulu [16] Uncorrelated MISO Find a closed form of CS
for MISO system with
additional conditions for
channel gains

Table 2.1: Main results of estimation of CS for different system
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Chapter 3

Fading Gaussian Wiretap Channel with Correlation of Channel Gains

3.1 Non-Convexity of the Secrecy Capacity Expression

The main task of finding the optimal distribution between channels in the MIMO system is

to maximize Eqn.(1.6). For systems considered in this research, the given problem can be

rewritten in the following form:

CS =
1

2
sup

tr(Σ)≤P
(log(det(I + g′MΣgM ))− log(det(I + g′EΣgE))), (3.1)

Let’s define the optimization problem by matrix Σ, under the constraint tr(Σ) ≤ P . The

above Eqn.(3.1) is related to Non-Convex optimization problems. Thus, it is impossible to

use standard methods of convex optimization for finding the solution for a given task. In

addition, the closed form of the solution can only be found in critical cases for k = m = 1 or

n = 1.

J. Li, A. Petropulu [16] have investigated the problem of finding the optimal input

covariance matrix that achieves secrecy capacity subject to a power constraint. For general

cases, the authors derive the necessary conditions for the optimal solution consisting of a

set of equations. For the case in which transmitter has two antennas, the derived necessary

conditions can result in a closed form solution. If the difference is indefinite and has all

negative eigenvalues except one positive eigenvalue, they prove that the optimal input

covariance matrix has rank one and can be obtained in closed form. For other cases, Li and

Petropulu prove that the solution is a fixed point of mapping from a convex set to itself and
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provide an iterative procedure to search for it.

MIMO network is a more complicated system and there is no closed form for determination

of secrecy capacity for this system. In this case, authors have found many different ways to

estimate SC for MIMO systems. One of the most used methods is the Monte Carlo method,

which allows to determine precisely the secrecy capacity. But it should be noted that this

method, although it is the most effective for MIMO systems, has a low efficiency if used for

Massive MIMO systems (Ma-MIMO).

3.2 Bounds on Secrecy Capacity over Correlated Fading Channels with

Full CSI

As noted in the previous section, for MIMO systems, there is no closed form for secrecy

capacity. Therefore, in this case, one can either find estimation of the secrecy capacity using

statistical methods (for example, the Monte Carlo method) or build bounds of the secrecy

capacity, using properties of the function log and determinant of the matrix. Let’s consider

a few results, which corresponds to finding Upper Bound for MIMO systems with correlated

gains for different regimes. One of the simplest of these bounds can be found from the

relations:

log(1 + x) ∼ x, x→ 0.

log(1 + x) ∼ log(x), x→∞;

Using these simple relations, the estimation for SC for critical values of SNR (SNR→ 0

or SNR→∞) can be built. In the first case from Eqn. (3.1)

CS ≈ sup
tr(Σ)≤P

(det(g′MΣgM )− det(g′EΣgE)).
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In the second case

CS ≈ sup
tr(Σ)≤P

(log(det(g′MΣgM ))− log(det(g′EΣgE))).

Main aim of [8] is the calculation of SC for correlated channels with exponential and

Rayleigh distributions. For the exponential distribution CS is calculated in closed form for

P →∞:

C limS (exp) =
1

2
log

(
−4(1− ρ)Φ(u)

κu

)
,

where Φ(u) is given in [8]. The same result for P →∞ is given for Rayleigh distribution:

C limS (Ray) = log(1 + κ) + log

(
1

2
+

√
1

4
− ρκ

(1 + κ)2

)
.

The authors of the study [9] have got the same results as the authors of the work [8]

about limit distribution for P →∞ for exponential and Rayleigh distribution.

The research [37] considers correlated Rayleigh distribution, and the authors define

secrecy capacity by next relation:

CS = E(log(1 + γMP (γM , γE))− log(1 + γEP (γM , γE))),

where

P (γM , γE) =



[
0.5

√
ψ
(

4
λ + ψ

)
− 0.5φ

]+

, if γE > 0,[
1
λ −

1
γE

]
, if γE = 0,

0, otherwise,

where ψ = 1
γE
− 1

γM
, φ = 1

γE
+ 1

γM
. The authors of this research have defined the upper

bound limits for secrecy capacity of correlated Rayleigh distribution.

In the research [39], authors have defined secrecy capacity for log-normal correlated
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channels. In this case, authors prove that limit secrecy capacity for P →∞ is defined as

C limS =
Q

ξ
[FY (y)]∞µE ,

where constants Q, ξ and function FY (y) are defined in the paper.

Note that the papers [8, 9, 35, 37, 38] describes SISO systems. The research [41] describes

case of the vectors’ gE and gM normal distribution. In this case the distribution of vectors’

gE and gM have χ2 distributions. Hence, the authors of this paper have calculated results

for the SISO system with correlated χ2 distributions. Also, the authors have not got a closed

form for secrecy capacity, but defined CS as a series. This result can be used for estimation

of CS by finite sum.

The main achievement of the research [9] is the calculation of boundaries for the secrecy

capacity for MIMO system with correlated ergodic fading channels at high SNR. This paper

is a continuation of work [10], in which the authors in detail have described the bounds for

realizations of complex Gaussian random processes gM and gE . In particular, they have

proved that the closed form for upper bound of CS for limit case P →∞, ρ→ 1 exists and

can be expressed as

lim
ρ→1

C + P (k, ρ) =

 log(k), k > 1,

0, k ≤ 0,

where k is defined by fraction of two channels’ average values:

k =
EgM
EgE

.

The main result of this study shows a relation between secrecy capacity for SISO systems

for different values of ρ in the limit case P →∞:

(1− ρ)CS(k, 0) ≤ CS(k, ρ) ≤ CS(k, 0).

This result can be chosen only for high regime SNR, because for low regime SNR and when
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|ρ| < 1 by definition of the joint distribution

CS(k, ρ) > 0 ∀k.

S. Shafiee, N. Liu and S. Ulukus [29] determined the secrecy capacity of the 2-2-1 Gaussian

MIMO wire-tap channel, which is characterized by Eqn.(1.1) by solving for the optimum

joint distribution for the auxiliary random variable and the channel input in the Csiszar –

Korner formula. They projected a lower bound on the secrecy capacity by evaluating the

Csiszar-Korner formula for a specific selection of the auxiliary random variable and the

channel input. However, for some case, authors have shown that the optimal transmission

scheme is unit-rank, i.e., beam-forming is optimal. Shafiee, Liu and Ulukus showed the

optimality of the proposed achievable scheme by constructing a tight upper bound that

meets it

max
S≥0:tr(S)≤P

U(S, a)

for any a with ||a|| < 1, where U(S, a) is defined as

U(S, a) =
1

2
log
|I +N−1HSH

T |
(1 + gTSg)

.

The upper bound is developed by considering the secrecy capacity of a channel where the

eavesdroppers signal is given to the legitimate receiver. Even though this upper bound

is well-defined for a general MIMO wire-tap channel, explicit estimation and tightening

of this upper bound has been possible by restricting ourselves to the 2-2-1 case. For the

lower-bound, by selecting a certain correlation structure for additive noises, they have shown

that beam-forming is optimal for the upper bound as well. Furthermore, authors have shown

that optimal beam-forming directions in the lower and upper bounds are the same. Finally,

Shafiee, Liu and Ulukus have shown that two bounds meet yielding the secrecy capacity.

Their derivation is specific to the 2-2-1 case and they have not been able to show that these

lower and upper bounds meet in the general MIMO channel. This is because the unit-rank
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(beam-forming) property of the optimum transmit matrices is essential in the derivations,

while beam-forming is not likely to be the optimal strategy when the number of transmit

and receive antennas is more than two.

E. Ekrem and S. Ulukus [6] characterized the secrecy capacity region of the Gaussian

MIMO multi-receiver wiretap channel. They showed the achievable rate with a variant of

dirty-paper coding with Gaussian signals

m∑
k=1

µkΣ
∗
k −

m∑
k=1

µkΣk ≥ 0.

Before reaching this result, the authors first visited the scalar case, and showed the necessity

of a new proof for the converse. In particular, they showed that the extensions of existing

converses for the Gaussian scalar broadcast channels fall short of resolving the ambiguity

regarding the auxiliary random variables. E. Ekrem and S. Ulukus showed that, unlike

the stand-alone use of the entropy-power inequality, the use of relationships either between

MMSE and mutual information or between Fisher information and differential entropy

resolves this ambiguity. Extending this methodology to degraded vector channels, they

found the secrecy capacity region of the degraded Gaussian MIMO multi-receiver wiretap

channel,

Σk ≤
1

2
log

∣∣∣∑k
i=1Ki +

∑
k

∣∣∣∣∣∣∑k−1
i=1 Ki +

∑
k

∣∣∣ − 1

2
log

∣∣∣∑k
i=1Ki +

∑
Z

∣∣∣∣∣∣∑k−1
i=1 Ki +

∑
Z

∣∣∣ , k = 1,K,

where the union is over all positive semi-definite matrices Ki
K
i=1 that satisfy

K∑
i=1

Ki = S.

Once they obtained the secrecy capacity region of the degraded MIMO channel, they

generalized it to arbitrary channels by using the channel enhancement method and some

limiting arguments.

A scenario where a source node wishes to broadcast two confidential messages for two

respective receivers via a Gaussian MIMO broadcast channel, while a wire-tapper also receives
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the transmitted signal via another MIMO channel is considered by Bagherikaram, Motahari

and Khandani [1]. They considered the secure vector Gaussian degraded broadcast channel

and established its capacity region. Their achievable scheme was the secret superposition of

Gaussian codes. Instead of solving a non-convex problem, the authors used the notion of an

enhanced channel to show that secret superposition of Gaussian codes is optimal – convex

hull of the closure of all (Σ1,Σ2) satisfying

Σ1 ≤ I(X;Y1|U)− I(X;Z|U), Σ2 ≤ I(U ;Y2)− I(U ;Z).

for the joint distribution P (u)P (x|u)P (y1, y2, z|x).

To characterize secrecy capacity region of the vector Gaussian degraded broadcast channel,

they only enhanced the channels for legitimate receivers, and channel of the eavesdropper

remained unchanged. Then, Bagherikaram et al have extended the result of the degraded

case to the non-degraded case. The authors showed that the secret superposition of Gaussian

codes along with successive decoding cannot work when the channels are not degraded

and developed a Secret Dirty Paper Coding (SDPC) scheme and showed that SDPC is

optimal for this channel. They investigated practical characterizations for the specic scenario

in which the transmitter and the eavesdropper can afford multiple antennas, while both

intended receivers have a single antenna. The authors characterized the secrecy capacity

region in terms of generalized eigenvalues of the receivers’ channel and the eavesdropper

channel. For high SNR they showed that the capacity region is a convex closure of two

rectangular regions.

The research [3] is devoted to integral representations for finding the density and

distribution function for the class of multi-dimensional Rayleigh and Rician distributions

with a generalized correlation structure:

- Rayleigh CDF

F (r1, r2, ..., rN ) =

∞∫
0

exp (−t)
N∏
k=1

1−Q

√t
√
ρ2
k

σk
,
rk
σk

 dt,
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where ρk is the correlation coefficient, σ2 =
1−ρ2k

2 , Q is 1st order Marcum Q-function;

- Rician CDF

F (ω1, ω2, ..., ωN ) =

∞∫
0

exp (−t) exp(−(m2
1 +m2

2))I0

(
2
√
t
√
m2

1 +m2
2

)

×
N∏
k=1

1−Q

√t
√
ρ2
k

σk
,
ω

σk

 dt,
where m1 and m2 are means of two Gaussian distributions.

It should be noted that for this solution the computational complexity does not increase

with the number of correlated RVs. In addition, CDF is computed directly and with one

integration that does not require multiple (N for N-dimensional distribution) integrations

to calculate CDF from PDF. To verify the accuracy of the theoretical results, numerical

simulation results were used.

3.3 Expected Secrecy Capacity with Correlation of Channel Gains: Using

PDE

3.3.1 SISO Systems

In this section, let’s try to reduce the calculation of secrecy capacity using Partial Differential

equations (PDE). Assume that the average value of SC is equal to

CS =

∫
R2

C(h1, h2)f(h1, h2)dh, (3.2)

where dh = dh1dh2, f(h1, h2) is the joint density for channel gains (gM , gE), C(h1, h2) is the

secrecy capacity for system with given level of h1 and h2. Most authors use the following

definition of the function C(h1, h2):

C(h1, h2) = (log(1 + h′1Σh1)− log(1 + h′2Σh2))+, (3.3)
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In this subsection for simplification, the case n = m = k = 1 is described.

Consider the case of normal distribution of the signals for

f(h1, h2) =
1

2π
√

det(Σ)
e−

1
2

(h−µ)′Σ−1(h−µ), (3.4)

where

h =

 h1

h2

 , µ =

 µ1

µ2

 ,Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 . (3.5)

Now let’s find the partial derivative of CS by µi, i = 1, 2:

∂CS
∂µi

=

∫
R2

C(h1, h2)
∂

∂µi
f(h1, h2)dh. (3.6)

Consider term under the integral :

∂

∂µi
f(h1, h2) = f(h1, h2)

∂

∂µi

(
−1

2
(h− µ)′Σ−1(h− µ)

)
=

−f(h1, h2)
(
IiΣ
−1(h− µ)

)
=

f(h1, h2)
(
IiΣ
−1(µ− h)

)
,

∂

∂ρ
f(h1, h2) = f(h1, h2)

∂

∂ρ

(
−1

2
(h− µ)′Σ−1(h− µ)

)
=

f(h1, h2)
∂

∂ρ

− 1

2(1− ρ2)
(h− µ)′

 σ−2
1 −ρσ−1

1 σ−1
2

−ρσ−1
1 σ−1

2 σ−2
2

 (h− µ)

 =

f(h1, h2)

− ρ

(1− ρ2)2
(h− µ)′

 σ−2
1 −ρσ−1

1 σ−1
2

−ρσ−1
1 σ−1

2 σ−2
2

 (h− µ)

+

1

1− ρ2
(h1 − µ1)(h2 − µ2)σ−1

1 σ−1
2 f(h1, h2),
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where vector Ii contains all 0s except i-th elements, which is 1. Using these calculations,

∂CS
∂µi

=

∫
R2

C(h1, h2)f(h1, h2)
(
IiΣ
−1(µ− h)

)
dh

= IiΣ
−1µ

∫
R2

C(h1, h2)f(h1, h2)dh− IiΣ−1
∫
R2

C(h1, h2)f(h1, h2)hdh

= IiΣ
−1µCS − IiΣ−1

∫
R2

C(h1, h2)f(h1, h2)hdh.

Note that,

Σ−1 =
1

(1− ρ2)σ2
1σ

2
2

 σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1



=
1

1− ρ2

 σ−2
1 −ρσ−1

1 σ−1
2

−ρσ−1
1 σ−1

2 σ−2
2


and

I1Σ−1 =
1

1− ρ2

(
σ−2

1 , −ρσ−1
1 σ−1

2

)
,

I2Σ−1 =
1

1− ρ2

(
−ρσ−1

1 σ−1
2 , σ−2

2

)
.

Assuming the parameters σ1, σ2, ρ are fixed. In this case,

∂CS
∂ρ

= 0.

There exists a function g(σ1, σ2, ρ) for which

I1Σ−1
∫
R2

C(h1, h2)f(h1, h2)hdh+

g(σ1, σ2, ρ)I2Σ−1
∫
R2

C(h1, h2)f(h1, h2)hdh = 0. (3.7)

Consider calculation of the value of function g(σ1, σ2, ρ) by Eqn (3.7). Using this equation
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and definitions of Ii, the next equality is obtained

I1Σ−1
∫
R2

C(h1, h2)f(h1, h2)hdh =

1

1− ρ2

(
σ−2

1 , −ρσ−1
1 σ−1

2

)
(H1, H2)′ =

1

1− ρ2

(
σ−2

1 H1 − ρσ−1
1 σ−1

2 H2

)
,

where

Hi =

∫
R2

C(h1, h2)f(h1, h2)hidh.

Similar results are obtained for the second term from Eqn. (3.7):

I2Σ−1
∫
R2

C(h1, h2)f(h1, h2)hdh =

1

1− ρ2

(
−ρσ−1

1 σ−1
2 , σ−2

2

)
(H1, H2)′ =

1

1− ρ2

(
−ρσ−1

1 σ−1
2 H1 + σ−2

2 H2

)
.

Substituting these values in Eqn.(3.7),

g(σ1, σ2, ρ) =
σ−2

1 H1 − ρσ−1
1 σ−1

2 H2

ρσ−1
1 σ−1

2 H1 − σ−2
2 H2

=

rH1 − ρH2

ρH1 − r−1H2
, (3.8)

where r = σ2σ
−1
1 . Now, using this equation and Eqn. (3.6), it is easy to find PDE for CS

for different values of the averages (µ1, µ2).

∂CS
∂µ1

+ g(σ1, σ2, ρ)
∂CS
∂µ2

= IiΣ
−1µCS + g(σ1, σ2, ρ)IiΣ

−1µCS =

CS
1− ρ2

[
µ1

(
σ−2

1 − gρσ
−1
1 σ−1

2

)]
+ µ2(gσ−2

2 − ρσ
−1
1 σ−1

2 ).
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Using the above relation, main PDE for CS can be defined in the next form

∂CS
∂µ1

+ g
∂CS
∂µ2

= (u1µ1 + u2µ2)CS , (3.9)

where  u1 = σ−2
1 − gρσ

−1
1 σ−1

2 ,

u2 = gσ−2
2 − ρσ

−1
1 σ−1

2 .
(3.10)

Now, consider the bound conditions for CS . For this case, using the relation

∫
R2

C(h1, h2)fµ,Σ(h1, h2)dh =

∫
R2

C(h1 + µ1, h2 + µ2)f0,Σ(h1, h2)dh

Therefore, with µi →∞ needed boundary values, the limit conditions can be calculated as

lim
µ1→∞

CS = lim
µ1→∞

∫
R2

C(h1 + µ1, h2 + µ2)f0,Σ(h1, h2)dh

= lim
µ1→∞

∫
R2

log(1 +R(h1 + µ1))f0,Σ(h1, h2)dh =∞;

lim
µ2→∞

CS = lim
µ2→∞

∫
R2

C(h1 + µ1, h2 + µ2)f0,Σ(h1, h2)dh

= lim
µ2→∞

∫
R2

0f0,Σ(h1, h2)dh = 0.

Hence, the main task for finding CS can be rewritten in the form of PDE:



∂CS
∂µ1

+ g ∂CS
∂µ2

= (u1µ1 + u2µ2)CS ;

lim
µ1→∞

CS =∞;

lim
µ2→∞

CS = 0.

(3.11)

Note that the boundary conditions defined for the PDE in Eqn.(3.11) cannot be used,
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because there multiple functions satisfying the Eqn.(3.11). For constricting the estimation

of the solution, defined by Eqn. (3.11), the next form will be used:


∂CS
∂µ1

+ g ∂CS
∂µ2

= (u1µ1 + u2µ2)CS ;

CS |µ1=0 = b2(µ2);

CS |µ2=0 = b1(µ1).

(3.12)

Now, consider an algorithm for the secrecy capacity CS estimation for correlated channel

gains gM , gE , the distribution of which is defined by Eqn. (3.4).

Algorithm 3.1

Step 1. Define grid of the points ηi,j = (µ1,i, µ2,j) where

µ1,i = µ1,0 + step1 ∗ i;

µ2,j = µ2,0 + step2 ∗ j.

Step 2. Calculate the values of Hi:

Hi =

∫
R2

C(h1, h2)f(h1, h2)hidh

for the bounds of the grid.

Step 3. Calculate value of the function g, defined in Eqn. (3.8).

Step 4. Define bound conditions for secrecy capacity CS in the bounds of the grid –

these are points CS,i,0 and CS,0,j , where

CS,i,j = CS(ηij).

Step 5. Calculate the functions u1 and u2, defined in the Eqn. (3.10).

Step 6. Calculate estimation of the secrecy capacity by first equation in Eqn. (3.11).

Using the estimation of derivative by finite difference in the points ηij , the next estimation
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is found:

CS,i,j =
step2CS,(i−1),j + step1v2,i,jCS,i,j−1

step2 + v2,i,jstep1 − step1step2v0,i,j
,

where  v0 = g;

v2 = u1µ1 + u2µ2.

3.3.2 MIMO Systems

In previous subsection, SISO systems was considered. In this section, the case of MIMO

system will be considered. For simplicity, consider the case of a system with

n = k = m = 2.

In this case matrix Σ have dimension 8× 8 and is next form

Σ =

 ΣM ΣM,E

Σ
′
M,E ΣE

 ,
where matrices ΣM ,ΣM,E ,ΣE are next:

ΣM =



σ2
M,1 0 0 0

0 σ2
M,2 0 0

0 0 σ2
M,3 0

0 0 0 σ2
M,4


,ΣE =



σ2
E,1 0 0 0

0 σ2
E,2 0 0

0 0 σ2
E,3 0

0 0 0 σ2
E,4



ΣM,E =



ρ1σM,1σE,1 ρ2σM,1σE,2 ρ3σM,1σE,3 ρ4σM,1σE,4

ρ5σM,2σE,1 ρ6σM,2σE,2 ρ7σM,2σE,3 ρ8σM,2σE,4

ρ9σM,3σE,1 ρ10σM,3σE,2 ρ11σM,3σE,3 ρ12σM,3σE,4

ρ13σM,4σE,1 ρ14σM,4σE,2 ρ15σM,4σE,3 ρ16σM,4σE,4


Assume that the channel gains for any channel (except gM and gE) are uncorrelated, so
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matrices ΣM and ΣE are diagonal matrices. Vector of average values for the channel gains

gM and gE is (µ1, ..., µ8), where µi is defined from next relation

E(gM ) =

 µ1 µ2

µ3 µ4

 , E(gE) =

 µ5 µ6

µ7 µ8

 .
Hence, number of parameters in this MIMO system is

N = 8 + 8 + 16 = 24.

Using previous forms of µ, Σ and ρ, we can calculate partial derivatives of secrecy capacity

CS by all parameters:

∂CS
∂µi

=
∂

∂µi

∫
R8

CS(h)fµ,Σ(h)dh

 =

−1

2

∫
R8

CS(h)fµ,Σ(h)
∂

∂µi

(
(h− µ)′Σ−1(h− µ)

)
dh =

∫
R8

CS(h)fµ,Σ(h)
(
IiΣ
−1(h− µ)

)
dh,

where Ii is vector which contain only 0s except ith position with value 1. Using definition of

Ii, next relation is true:

IiΣ
−1(h− µ) = IiΣ

−1H − CS ∗ (IiΣ
−1µ),

where vector H defined as in previous subsection:

Hi =

∫
R8

CS(h)f(h)hidh, i = 1, ..., 8.

Now consider the construction of PDE as in previous subsection. First define functions
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gi, which depend from parameters σk, k = 1, ..., 8 and ρj , j = 1, ..., 16 for which

G′Σ−1H = 0, (3.13)

where vector G = (g1, ...., g8). Eqn.(3.13) has more than 1 solution for MIMO system, hence

we can use any of them. For example, consider next solution of Eqn. (3.13) in the form

G = (g1, g2, 0, ..., 0). Using this form of vector G, we get system of two linear equations with

two unknown variables g1 and g2.

After defining vector G, it is easy to construct a system of PDE in the next form

8∑
i=1

Gi
∂CS
∂µi

= GΣ−1H − CS ∗ (GΣ−1µ) =

−CS ∗ (GΣ−1µ)

Using this equation, define estimation of the secrecy capacity CS in the point ui1,...,i8 in the

space µ ∈ R8:

CS,k1,....,k8 ∗ (GΣ−1µ) ≈ −
8∑
i=1

Gi
∆iCS,k1,....,k8

∆i
.

Using forward approximation of ∆iCS,k1,....,k8
1, we get

CS,k1,....,k8 ∗ (GΣ−1µ) ≈ −
8∑
i=1

Gi
∆iCS,k1,....,k8

∆i
=

−
8∑
i=1

Gi
CS,k1,....,k8 − δiCS,k1,....,k8

∆i
.

Solving this equation by CS,k1,....,k8 :

CS,k1,....,k8 ∗
(
GΣ−1µ+

8∑
i=1

Gi∆
−1
i

)
=

8∑
i=1

Gi
δiCS,k1,....,k8

∆i
. (3.14)

1

∆1CS,k1,....,k8 = CS,k1−1,k2,...,i8 − CS,k1,k2,...,k8 ,

∆2CS,k1,....,k8 = CS,k1,k2−1,...,k8 − CS,k1,k2,...,k8 , ...
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Algorithm 3.2

Step 1. Define grid of the points ηi,j = (µ1,k1 , µ2,k2 , ..., µ8,k8) , where

µj,kj = µj,0 + stepj ∗ kj ;

Step 2. Calculate the values of Hi:

Hi =

∫
R8

C(h)f(h)hidh, i = 1, ..., 8.

for the bounds of the grid in the space R8.

Step 3. Calculate value the elements of vector G from Eqn. (3.13).

Step 4. Define bound conditions for secrecy capacity CS in the bounds of the grid –

these are points CS,k1,...,k8 , where min(k1, ..., k8) = 0.

Step 5. Calculate estimation of the secrecy capacity in the point (µ1,k1 , ..., µ8,k8), using

the estimation of derivative by finite difference – Eqn. (3.14):

CS,k1,....,k8 =

(
GΣ−1µ+

8∑
i=1

Gi∆
−1
i

)−1 8∑
i=1

Gi
δiCS,k1,....,k8

∆i
.

by solving system of the linear equations with unknown values CS,k1,....,k8 .
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Chapter 4

Theoretical & Numerical Results

4.1 Expected Secrecy Capacity with Correlation of Channel Gains using

Monte-Carlo Method

Consider one result for SISO system with correlated channel gains. Assume that the two

channel gains gM and gE satisfy next relation

gE = ρgM +
√

1− ρ2Unc,

where ρ is correlation coefficient, Unc is some function (matrix valued function), which

does not depend on gM . Therefore, two critical cases (ρ = ±1) must give secrecy capacity

0. These theoretical conclusions are also confirmed by calculations made on basis of the

Monte-Carlo method (Fig. 4.1). From Fig. 4.1, it is obvious that the maximal secrecy

capacity is obtained for large values of SNR and small values of ρ.

As we see, the presence of correlation between channel gains can greatly vary the secrecy

capacity. In Fig. 4.1, the secrecy capacity decreases if correlation coefficient between channel

gains goes from ρ = 0 to ρ = ±1. In addition, the secrecy capacity is symmetric with respect

to the line ρ = 0. This property of secrecy capacity is a simple corollary for the SISO systems

for values averaging over zero. In addition, it will be shown that secrecy capacity depends

on the parameters of the system – (ρ, µ,Σ) in the next section.
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Figure 4.1: Contour plot of Secrecy Capacity as function of correlation ρ and SNR

Note that all the contour plots and graphs in this chapter are plotted using the color

scale as dark blue to light yellow for ascending values of the Secrecy Capacity. Each plot

has its own color bar and the limits for Secrecy Capacity are defined on this color bar.
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4.2 Comparison of Expected Secrecy Capacity using Monte-Carlo method

& PDE for Correlated Channel Gains

Consider the calculation result of the secrecy capacity CS for SISO systems with the next

parameters:

σ1 = 1;σ2 = 2;

ρ ∈ {−1,−0.2, 0, 0.1, 0.8, 1};

P = 1; step1 = step2 = 0.2;

µ1, µ2 ∈ [0, 10]; Iterations = 103.

From the Fig. 4.2 and Fig. 4.3, the difference between the approximations received of

secrecy capacity for two solutions is not more than 10−3. These results indicates the high

accuracy of the proposed model (Eqn. (3.12)).

Also consider speed of the proposed algorithms for different number of iterations in the

Monte-Carlo method. For this consider the times needed for calculating estimation of CS by

two methods for different number of iterations. From resulting Tab. 4.1, execution time

Number of iteration Execution time MC (sec.) Execution time PDE (sec.)

102 51 3

103 344 14

104 3225 147

Table 4.1: Execution time for MC and PDE algorithms

of the Monte-Carlo algorithm is much slower than the corresponding execution time for

the algorithm using PDE. Therefore, there is no doubt that the described algorithm can

be applied to higher dimensions (n > 1, m > 1, k > 1) with an increase in the efficiency

than the classical Monte-Carlo algorithm. Also, we can calculate execution time for the

Monte-Carlo method for number of iterations equal 105 – this time is approximately 13123

sec (about 3.5 hours). Difference operators have been applied only for the function fµ,Σ.
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Figure 4.2: Contour plot of the secrecy capacity CS as function of the parameters (µ1, µ2)
calculated by MC method

It is also possible for the function C(h1, h2) with the help of the next integration by

substitution:

CS =

∫
R2

C(h1, h2)f(h1, h2)dh =
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Figure 4.3: Contour plot of the secrecy capacity CS as function of the parameters (µ1, µ2)
calculated by PDE from Eqn. (3.12)

∫
R2

C(ϕ(u))f(ϕ(u))det(D(ϕ(u)))du,
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where the substitution h = ϕ(u) and Jacobian of the substitution D(ϕ(u)) are defined as

 h = ϕ(u) = µ+ Σ
1
2u

D(ϕ(u)) = Σ
1
2

,

where Σ
1
2 defines a square root from positive-defined matrix. Using this substitution, the

next equality is true:

f(ϕ(u)) = f0,I(u)

This means that the term f(ϕ(u)) does not depend on system parameters par = (ρ, µ1, µ2, σ1, σ2).

Hence,

∂CS
∂pari

=

∫
R2

f(ϕ(u))
∂

∂pari
(C(ϕ(u))det(D(ϕ(u)))) du

This trick helps to simplify the calculations, because

∂

∂pari
(C(ϕ(u))) det(D(ϕ(u)))

is a rational function.

Now consider the result for estimation of the value of secrecy capacity CS as function

from σ1, σ2 and ρ, where other parameters (µ1, µ2) = (0, 0). Results of calculations we can

see in the Fig. 4.4. As we can see from this figure, values of the secrecy capacity is almost

same for values of correlation ρ near ±1. This result respond for the same theoretical result

about values of the secrecy capacity CS . The other interesting result is that secrecy capacity

increased for value µ = 0 when ρ→ 1 and decreased when ρ→ ±1.



57

Figure 4.4: Contour plot of the secrecy capacity CS as function of the parameters (σ1, σ2) ∈
[0, 10]2 calculated by PDE

Now consider the different scenarios of line-of-sight propagation and how it affects the

values for secrecy capacity CS for 3 pairs of the parameters (µ1, µ2) with same values of the

(σ1, σ2) = (1, 1) with varying SNR to the receiver and constant SNR to the eavesdropper

shown by Fig. 4.5 and Fig. 4.6 below.



58

Figure 4.5: Contour plot of the secrecy capacity CS as function of the parameters (ρ, SNR) ∈
[−1, 1]× [0, 5] for different values of (µ1, µ2) and for constant SNR at the Eavesdropper

These are the scenarios for the calculation of CS when SNR to the legitimate receiver is

varying. As we can see from Fig. 4.5, and Fig. 4.6, values of the secrecy capacity CS have

interesting relation with level of SNR. These relations also depend on other parameters of

the system – µ1, µ2, σ1, σ2. From the three plots, the maximal values of secrecy capacity CS

for any given value of SNR for the legitimate receiver is near ρ = 0. This can also be seen in

the Fig. 4.1. Even when the noise energy is better at the eavesdropper, we get a maximum

Secrecy Capacity of around 0.32 when ρ→ 0 in Fig. 4.6 shown below.
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Figure 4.6: Contour plot of the secrecy capacity CS as function of the parameters (ρ, SNR) ∈
[−1, 1]× [0, 5] for the values (µ1 = 0, µ2 = 1) and for constant SNR at the Eavesdropper

Now, consider the below plot as an example, with both the receiver and the eavesdropper

having N-LOS propagation which is shown in Fig. 4.7. The SNR is varied from −5dB to

5dB. It is observed that the contour plot is symmetrical and the secrecy capacity increases

for when ρ→ 0 and goes to a maximum of around 0.6 and decreases symmetrically when

ρ→ ±1. Hence, all the three plots show that secure communication is possible when the

legitimate and eavesdropper channels have correlated gains when the SNR is varying at the

legitimate receiver and constant at the eavesdropper.
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Figure 4.7: Contour plot of Secrecy Capacity as function of correlation ρ and signal-to-noise
ratio SNR for N-LOS propagation with varying SNR at the receiver and constant SNR at
the eavesdropper
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Chapter 5

Conclusions

The Secrecy Capacity is determined for correlated channel gains for the main and eaves-

dropper channels in the Gaussian Wiretap channel. It was assumed that the system’s

secrecy capacity (Alice, Bob, Eve) is a continuously differential function from the system

parameters: ρi – the coefficients of correlations between elements of channel gains gM and

gE ; the elements of the vector µ and the matrix Σ, which represent average values and

covariance matrix of the channel gains (gM , gE), respectively. Under conditions of normal

distribution of parameters (gM , gE), a system in partial differential equations for the secrecy

capacity, which describes the changes of CS in space of the parameters (ρ, µ,Σ), is obtained.

The new algorithm has a higher speed than analog algorithms constructed on the classical

statistical Monte Carlo methods.

Important scenarios in which there is line-of-sight and non-line-of-sight propagation are

considered and numerically solved for the Secrecy Capacity for correlated channel gains. It

was identified that secure communication is possible with correlation of channel gains and

those scenarios were plotted.
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5.1 Future Work

In the future works, it is planned to improve the results by considering additional scenarios

using Rayleigh, Rician and exponential distributions. These scenarios form a much bigger

picture when Delay-Doppler is considered for secure communication and how correlation of

channel gains would help in achieving secure communication.

Additionally, it is planned to improve the results using other approximations of the

solution of the partial differential equations by different schemes. Also, in this work, the

explicit method was used for estimation of the solution of the partial differential equations.

As a result, stability of the method depends from steps stepi. To solve the stability problem

of the proposed approximation scheme, it would be better to apply implicit scheme1, since

the stability of the estimation will not depend on the values of the steps stepi.

The third direction for future research work is to consider the correlation between channel

gains gM and gE and random additive terms nM and nE . In general, it is planned to consider

the following dependence

nM ∼ N(0,ΣM ),ΣM = ΣM (gM ),

nE ∼ N(0,ΣE),ΣE = ΣE(gE)

Hence, the main task of the thesis is generalized by the assumption that magnitude of the

noises nM and nE in the channels X ⇒ Y and X ⇒ Z depend on the channel gains. The

main areas of future work will be to investigate the properties of the secrecy capacity in

more general cases and to develop algorithms for estimation of the CS for MIMO systems.

1Also known as Backward method
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