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Tame filling functions are quasi-isometry invariants that are refinements of the di-

ameter function of a group. Although tame filling functions were defined in part

to provide a proper refinement of the diameter function, we show that every finite

presentation of a group has an intrinsic tame filling function that is equivalent to its

intrinsic diameter function. We then introduce some alternative filling functions—

based on concepts similar to those used to define intrinsic tame filling functions—that

are potential proper refinements of the intrinsic diameter function.
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Chapter 1

Introduction

1.1 Background and Motivation

Given a finite presentation for a group and a word w in the generators equal to the

identity, a van Kampen diagram for w is a planar 2-complex that demonstrates how

the relators of the presentation can reduce w to the empty word. As such, van Kampen

diagrams serve as one connection between combinatorial and geometric group theory;

geometric properties of van Kampen diagrams of a presentation can have implications

for combinatorial properties of the presentation, and vice-versa. See Section 2 of this

chapter for the formal definition.

One way to study properties of groups via their van Kampen diagrams is through

filling functions. These are functions that measure the growth of a given property

of van Kampen diagrams with respect to the length of the word that the diagram

represents. More formally, suppose M is a function from van Kampen diagrams to

N, called a diagram measurement. Then we can define a filling function M : N → N

in the following way. For each word w =G 1, let ∆w be a van Kampen diagram for

w such that M(∆w) is minimal over all van Kampen diagrams for w. Then for all

n ∈ N, define M(n) to be the maximum M(∆w) over all words w =G 1 with length

at most n. Intuitively, M measures how quickly van Kampen diagrams grow with
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respect to the measurement M .

The definition of a filling function implicitly depends on the presentation of the

group, since different presentations yield different sets of words and van Kampen

diagrams. However, under an appropriate equivalence relation that distinguishes

between functions that grow qualitatively differently (see Definition 1.2.2), the equiv-

alence class of a filling function may be a group invariant and tell us something

about the group as a whole. Many well-studied filling functions are also invariant

over groups that have “similar geometry”, formalized in the notion of quasi-isometric

groups. These invariants often tell us something about the complexity of the word

problem for the group. For an introduction to filling functions, see [3, Chapter II] by

Riley.

One well-studied filling function is the intrinsic diameter (or isodiametric) func-

tion, which measures the diameter of van Kampen diagrams. The intrinsic diameter

function is one of several filling functions that is recursive if and only if the word

problem of the group is solvable (see [16, Th. 2.1]). As a result, there are groups

whose intrinsic diameter functions grow faster than any recursive function. It is also

known that the collection of intrinsic diameter functions includes a variety of different

kinds of growth. For example, [26, Cor. 1.4] shows that this collection includes a wide

variety of power functions.

The intrinsic diameter function is intrinsic in the sense that the diameter is mea-

sured using the path metric on the 1-skeleton of the van Kampen diagram itself.

Replacing this metric with the path metric of the Cayley graph gives an extrinsic

diameter function, which is bounded above by the intrinsic diameter function. Ex-

trinsic diameter functions were introduced by Bridson and Riley in [5], where they

also showed that there can exist arbitrarily large polynomial gaps between intrinsic

and extrinsic diameter functions: for any α > 0, there is a finite presentation with
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intrinsic diameter function bounded below by a polynomial p and extrinsic diameter

function bounded above by a polynomial q, with deg(p)− deg(q) = α.

However, many groups are known to have at most linear intrinsic—and therefore

also at most linear extrinsic—diameter functions, meaning that the equivalence class

of the diameter functions cannot distinguish between these groups. Among them are

all combable groups and almost convex groups [16, Prop. 3.4, Cor. 4.3], and therefore

all automatic groups [14, Lemma 2.3.2]. These classes include word hyperbolic groups

[14, Th. 3.4.5], groups acting geometrically on CAT(0) cube complexes [24], and

Euclidean groups [14, Cor. 4.1.6], [9, Th. 2.5]; Coxeter groups [7, 11]; Artin groups of

finite type [10] and sufficiently large type [18]; and mapping class groups of surfaces

of finite type [23], among others. The fundamental groups of all closed 3-manifolds

and 3-manifolds with toroidal boundary also have at most linear diameter functions

[16, Th. 3.5]. The class of groups with at most linear diameter functions is also closed

under graph products [20].

In part because such a large class of groups have linear diameter functions, Brit-

tenham and Hermiller defined new quasi-isometry invariants in [8] called intrinsic and

extrinsic tame filling functions. The following is an informal description of tame filling

functions; see Section 2 for formal definitions. Tame filling functions are defined us-

ing a filling of a presentation—a choice of a van Kampen diagram for each word over

the generators that is equal to the identity in the group—and a 1-combing for each

of these van Kampen diagrams, which amounts to a choice of continuously-varying

paths from the basepoint of a van Kampen diagram to its boundary. Given a point

on one of these paths a distance n from the basepoint of the diagram, a tame filling

function f mandates that no prior point on the path can be a distance more than f(n)

from the basepoint; a 1-combing satisfying this property is called f -tame. Informally,

a van Kampen diagram can be considered a terrain where elevation is represented
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by distance from the basepoint. A group with a slow-growing tame filling function is

intended to have van Kampen diagrams that are relatively smooth inclines, extending

steadily outward from the basepoint to the boundary. A group with a fast-growing

tame filling function, on the other hand, may require van Kampen diagrams with tall

mountains and deep valleys.

Brittenham and Hermiller showed that any intrinsic or extrinsic tame filling func-

tion for a presentation grows at least as fast as the respective diameter function,

leaving open the question of whether or not tame filling functions ever grow strictly

faster than their respective diameter functions, especially in the case of groups with

linear diameter functions. In fact, it was not even known if every group admits a

finite-valued intrinsic or extrinsic tame filling function, whereas every group admits

a finite-valued intrinsic and extrinsic diameter function by definition. The main pur-

pose of this dissertation is to prove the following theorem in Chapter 2, and thereby

resolve these questions for intrinsic tame filling functions:

Theorem 2.4.4. Given a finite presentation P = ⟨A|R⟩ such that for all a ∈ A, a

is not equal to the identity, there is an intrinsic tame filling function for P that is

equivalent to the intrinsic diameter function of P.

As a result, all groups admit a finite-valued intrinsic tame filling function. This

was proven concurrently by Nu’Man and Riley; they showed that, given a finite

presentation, if D : N → N is the corresponding Dehn function, then f(n) = D(en) is

an intrinsic tame filling function for the presentation [25]. However, since the Dehn

function of a presentation grows at least as fast as, and often strictly faster than,

the intrinsic diameter function (up to the equivalence relation defined in Section 2),

Theorem 2.4.4 provides a tighter bound on the growth of minimal intrinsic tame filling

functions.
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Beyond that, Theorem 2.4.4 strengthens the notion of intrinsic diameter. If f is

the intrinsic diameter function of a presentation, then by definition, for any word w

of length n, there exists a van Kampen diagram for w with intrinsic diameter at most

f(n). However, Theorem 2.4.4 implies the existence of an alternative van Kampen

diagram for w that is g-tame, for some function g equivalent to f . This provides an

additional option with more structure than the diameter restriction, and that may

prove more useful for some purposes.

Theorem 2.4.4 also shows that intrinsic tame filling functions do not distinguish

between groups with equivalent intrinsic diameter functions, as they were defined, in

part, to do. This motivates us to define several new filling functions in Chapters 3

and 4 that may fulfill the desired purpose.

In Chapter 3, we focus on the metaphor of van Kampen diagrams as terrains with

elevation represented by distance from the basepoint, and attempt to define filling

functions that are more sensitive to the “hilliness” of the terrain than intrinsic tame

filling functions are. We define a notion of “contour lines” on a van Kampen dia-

gram, viewing the diagram as a kind of topographic map, and use them to define the

aggregate variation of a van Kampen diagram—a diagram measurement that takes

into account both the height and number of hills in the diagram. We name the cor-

responding filling functions aggregate variation functions. We then use the solvable

Baumslag-Solitar groups as examples to test out intrinsic aggregate variation func-

tions and consider whether or not they are equivalent to intrinsic diameter functions.

Motivated in part by these examples, we are able to prove the following theorem.

Theorem 3.2.3. If G is a group with finite presentation P, then there is a presen-

tation P ′ that is P with finitely many relators added such that the intrinsic diameter

function of P is an intrinsic aggregate variation function for P ′.
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However, we note that the proof of Theorem 3.2.3 requires us to use unreduced

van Kampen diagrams (diagrams with adjacent 2-cells that are mirror images of each

other, and that can therefore be removed to simplify the diagram), as well as use

relators that may not be cyclically reduced. When we consider the standard, reduced

van Kampen diagrams for the standard presentations of the solvable Baumslag-Solitar

groups, we are able to prove Proposition 3.3.1: that these standard diagrams have

intrinsic aggregate variation that grows faster than the intrinsic diameter function of

the group. This suggests that we may be on the right track towards finding a proper

refinement of intrinsic diameter functions if we require reduced diagrams and relators.

In Chapter 4, we define another filling function, called a subdiagram diameter

function, which can be viewed as a variation on tame filling functions that breaks the

proof of Theorem 2.4.4. If f is a subdiagram diameter function for a presentation,

then each word representing the identity has a van Kampen diagram such that every

subdiagram has diameter bounded by f . By definition, this filling function is bounded

below by the corresponding diameter function, and we also show in Proposition 4.2.1

that it is a quasi-isometry invariant. We leave it to future work to determine whether

or not subdiagram diameter functions can distinguish between groups with the same

corresponding diameter functions.

The questions resolved for intrinsic tame filling functions in this dissertation are

still open in the case of extrinsic tame filling functions; it is quite possible that

there exists a group whose extrinsic tame filling functions all grow strictly faster

than its extrinsic diameter function. This possibility is supported by a conjecture

of Tschantz—that there exists a finitely presented group that is not tame combable

[8, p. 3]. Brittenham and Hermiller showed that such a group would not even

admit a finite-valued extrinsic tame filling function, and therefore it would not have

an extrinsic tame filling function that is equivalent to its extrinsic diameter function.
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An argument similar to the one used to prove Theorem 2.4.4 would not be sufficient to

answer these questions. See the remark at the end of Chapter 2 for a brief explanation.

1.2 Preliminary Definitions and Notation

Most of the definitions from this section are taken from [3, Chapter II] and [8].

Throughout this dissertation, let P = ⟨A|R⟩ be a finite presentation of a group G,

with no generator in A representing the identity of G. Given a word w ∈ (A∪A−1)∗,

let ℓ(w) denote the length of w. Given v ∈ (A∪A−1)∗, we will write w =G v if w and

v represent the same element of G, and similarly for g ∈ G we will write w =G g if

w represents g in G. Given an edge path γ in a 2-complex, let |γ| denote the length

of γ, that is, the number of edges in γ. Given g1, g2 ∈ G, let dG(g1, g2) be the length

of the shortest edge path in the Cayley graph of P between the 0-cells corresponding

to g1 and g2; equivalently, dG(g1, g2) is the length of the shortest word in (A ∪A−1)∗

representing g2g
−1
1 . Given a path γ : [0, 1] → X into any space X, let γ denote the

path traveled in the opposite direction, i.e. γ(t) = γ(t− 1) for all t ∈ [0, 1].

Definition 1.2.1. Let G and H be groups. A function ϕ : G→ H is a quasi-isometry

if there exists a constant k > 0 such that

� for all g1, g2 ∈ G, 1
k
dG(g1, g2)− k ≤ dH(ϕ(g1), ϕ(g2)) ≤ kdG(g1, g2) + k, and

� for all h ∈ H there exists g3 ∈ G such that dH(h, ϕ(g3)) ≤ k.

Note that, if there is an quasi-isometry from G to H, then there is also a quasi-

isometry fromH toG given by h 7→ g3, where g3 is any element ofG with dH(h, ϕ(g3)) ≤

k, as guaranteed to exist by the definition above. So G and H are called quasi-

isometric if a quasi-isometry between them exists. A group invariant is a quasi-

isometry invariant if it has the same value for any two groups that are quasi-isometric.
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Definition 1.2.2. Let S, T ⊆ N[1
4
] and let f : S → [0,∞) and g : T → [0,∞) be

functions. Write f ⪯ g if there exist constants A,B,C,D,E ≥ 0 such that for all

s ∈ S, f(s) ≤ Ag(Bt+ C) +Dt+ E, where t = max([0, s] ∩ T ). If f ⪯ g and g ⪯ f ,

write f ≃ g and say that f and g are equivalent. If P is a property of functions and

g has P , say that f is at most P if f ⪯ g. For example, f is at most linear if f ⪯ g

and g is linear.

Note that this notion of equivalence can distinguish between, for example, linear,

quadratic, polynomial, and exponential growth, among others. Using this equivalence

relation, the equivalence class of many well-studied filling functions is a quasi-isometry

invariant (up to adding some additional relators to the presentation in some cases);

see [3, Chapter II] for details. Although all the filling functions listed in [3, Chapter

II] have a domain of N, the above definition includes functions with domains in N[1
4
]

specifically in order to compare diameter functions with tame filling functions, defined

below.

The following definition of van Kampen diagram is taken from [6].

Given CW-complexes C1 and C2, a continuous map f : C1 → C2 is combinatorial

if its restriction to each open cell of C1 is a homeomorphism onto an open cell of C2.

A combinatorial complex is a CW-complex C with the following restriction on

its attaching maps. For each n-complex σ of C, there is an (n − 1)-dimensional

combinatorial complex Sσ, a homeomorphism h : ∂Dn → Sσ, and a combinatorial

map f : Sσ → C(n−1) such that ψσ = f ◦ h is σ’s attaching map.

A singular disk diagram D is a compact, contractible, combinatorial 2-complex

embedded in R2. Each 1-cell has associated to it two directed edges. A boundary

circuit of D is a directed edge circuit γ starting and ending at any 0-cell ∗ on the

boundary of D, constructed by traveling around the boundary counterclockwise until
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every directed edge associated to a 1-cell in the boundary has been used. Note that

γ may not be unique, since if ∗ is a cut vertex there will be multiple directed edges

that will serve to begin the circuit.

Given a word w ∈ (A ∪ A−1)∗, a van Kampen diagram ∆ for w with respect

to the presentation ⟨A|R⟩ is a singular disk diagram that has a specified basepoint

∗ ∈ ∆(0) ∩ ∂∆, and that has every directed edge labeled by an element of A∪A−1 in

the following way. For each 1-cell of ∆, one associated directed edge is labeled by an

element a ∈ A and the other is labeled by a−1, such that a boundary circuit of each

2-cell is labeled by an element of R or R−1, and such that a boundary circuit of ∆

starting at ∗ is labeled by w. We will also require that, for each 2-cell σ of ∆, the

combinatorial map f : Sσ → ∆(n−1) from the definition of combinatorial complex is

a homeomorphism, implying that σ’s attaching map is a homeomorphism.

LetX be the Cayley 2-complex of the presentation P . Then for every van Kampen

diagram ∆ with respect to P there is a combinatorial map π∆ : ∆ → X with π∆(∗) =

1G that preserves the directions and labels of these edges.

Given a van Kampen diagram ∆, define the coarse distance function d∆ : ∆(0) ×

∆ → N[1
4
] in the following way. Let v ∈ ∆(0) and x ∈ ∆. If x ∈ ∆(0), let d∆(v, x) be

the length of the shortest edge path between v and x. If x ∈ ∆(1) \∆(0), then let p

and q be the endpoints of the edge on which x lies and let

d∆(v, x) = min(d∆(v, p), d∆(v, q)) +
1

2
.

If x ∈ ∆\∆(1), then let e1, . . . , en be the 1-cells on the boundary of the 2-cell in which

x lies and for each i ∈ [n] choose some yi ∈ ei. Then let

d∆(v, x) = max{d∆(v, yi)|i ∈ [n]} − 1

4
.
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If C is a 2-complex and x, y ∈ C(0), then define a C-geodesic from x to y to be an

edge path from x to y in C(1) of length dC(x, y). If the complex being referred to is

clear, we will just call such a path a geodesic. If T is a tree in C, and ∗ ∈ C(0) ∩ T ,

we will say that T is a tree of C-geodesics out of ∗ if, for every x ∈ T (0), the unique

simple edge path from ∗ to x in T is a C-geodesic. If D ⊆ C, we will write E(D) for

the set of 1-cells of C contained in D.

Given a van Kampen diagram ∆ with basepoint ∗, the intrinsic diameter of ∆ is

IDiam(∆) = max{d∆(∗, x)|x ∈ ∆(0)},

and the extrinsic diameter of ∆ is

EDiam(∆) = max{dX(1G, π∆(x))|x ∈ ∆(0)}.

Given w ∈ (A ∪ A−1)∗ with w =G 1, the intrinsic diameter of w is

IDiam(w) = min{IDiam(∆)|∆ is a van Kampen diagram for w with basepoint ∗},

and the extrinsic diameter of w is

EDiam(w) = min{EDiam(∆)|∆ is a van Kampen diagram for w with basepoint ∗}.

Definition 1.2.3. The intrinsic diameter function of ⟨A|R⟩ is the function IDiam :

N → N given by

IDiam(n) = max{IDiam(w)|w ∈ (A ∪ A−1)∗ with ℓ(w) ≤ n and w =G 1},
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and the extrinsic diameter function of ⟨A|R⟩ is the function EDiam : N → N given

by

EDiam(n) = max{EDiam(w)|w ∈ (A ∪ A−1)∗ with ℓ(w) ≤ n and w =G 1}.

Note that in [3, Chapter II], these diameter functions are defined using distance

between arbitrary vertices, rather than fixing one of them as the basepoint, and the

function defined above is referred to as the based intrinsic diameter. However, these

two definitions give equivalent functions, and the above definition is more convenient

for the purposes of this work.

The following definitions of 1-combing and f -tame were introduced by Mihalik

and Tschantz in [21]:

Given a 2-complex C with basepoint ∗ and a subcomplex D ⊆ C(1) containing ∗,

a 1-combing of the pair (C,D) based at ∗ is a continuous function Ψ : D × I → C

such that

� for all t ∈ I, Ψ(∗, t) = ∗,

� for all x ∈ D, Ψ(x, 0) = ∗ and Ψ(x, 1) = x, and

� for all p ∈ D(0) and all t ∈ I, Ψ(p, t) ∈ C(1).

Let f : N[1
4
] → N[1

4
] be a function. A 1-combing Ψ of the pair (C,D) is f -tame if

for all n ∈ N[1
4
] and for all x ∈ D and s, t ∈ [0, 1] such that s ≤ t, if dC(∗,Ψ(x, t)) ≤ n,

then dC(∗,Ψ(x, s)) ≤ f(n).

Finally, the definition of intrinsic tame filling function was introduced by Britten-

ham and Hermiller in [8]:

Definition 1.2.4. Let f : N[1
4
] → N[1

4
] be non-decreasing. Then f is an intrinsic

tame filling function for ⟨A|R⟩ if, for all w ∈ (A ∪ A−1)∗ with w =G 1, there is a
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van Kampen diagram ∆w for w with basepoint ∗ and a 1-combing Ψw of (∆w, ∂∆w)

based at ∗ such that Ψw is f -tame. Similarly, f is an extrinsic tame filling function

for ⟨A|R⟩ if, for all w ∈ (A∪A−1)∗ with w =G 1, there is a van Kampen diagram ∆w

for w with basepoint ∗ and a 1-combing Ψw of (X, π∆(∂∆w)) based at 1G such that

the image of Ψw is contained in the image of π∆ and Ψw is f -tame.
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Chapter 2

Intrinsic Tame Filling Functions are Equivalent to Intrinsic

Diameter Functions

The purpose of this chapter is to prove Theorem 2.4.4. To do so, we will first build

up a number of definitions and properties related to 1-combings and certain nice

subcomplexes of van Kampen diagrams. We will then bring them all together in the

last section to prove the theorem.

2.1 Icicles

Let ∆ be a van Kampen diagram and T a spanning tree of ∆. Given a 1-cell e ∈

E(∆ \ T ) with a corresponding directed edge −→e directed from a vertex x to a vertex

y, let γx and γy be the unique simple paths in T from ∗ to x and y, respectively. Let

α be the longest initial segment on which γx and γy agree, and define βx and βy by

γx = α ·βx and γy = α ·βy. Then η = βx ·−→e ·βy is a simple circuit. Since ∆ is planar,

by the Jordan Curve Theorem, we know that η splits the plane into two components,

the inside and outside of η. See Figure 2.1.

Definition 2.1.1. Given the above notation, the T -icicle at e is the union of α, η,

and the inside of η. It will just be called the icicle at e and be denoted Ie if the tree
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Figure 2.1: The T -icicle at e. Edges in the tree T are thickened. The body of the
icicle is shaded and α is the tail.

being used is clear. Define the tail of the icicle to be α and the body of the icicle to

be the union of η and the inside of η.

Definition 2.1.2. Let θT (e) be the 2-cell in the body of Ie with e ⊂ ∂θT (e). Then

θT is a function from E(∆ \ T ) to the 2-cells of ∆, which we will call the icicle flow

function for T .

Icicles are the building blocks we will use to construct van Kampen diagrams with

tame 1-combings, and are also the basis for constructing said 1-combings. Icicles are

particularly useful tools for these purposes in part because of the way they intersect

each other: for every pair of icicles, either one is entirely contained in the other or

they do not intersect, except possibly at their boundary.

Lemma 2.1.3. Let ∆ be a van Kampen diagram and T a spanning tree of ∆. Let

e, e′ ∈ E(∆\T ). If e′ ⊆ Ie, then Ie′ ⊆ Ie. If e
′ ̸⊆ Ie and e ̸⊆ Ie′, then int(Ie)∩int(Ie′) =

∅.



15

Proof. Let e have endpoints x and y and e′ have endpoints x′ and y′. Let γx, γy,

γx′ , and γy′ be the unique simple paths in T from ∗ to x, y, x′, and y′, respectively.

Suppose e′ ⊆ Ie. We will first show that γx′ and γy′ are contained in Ie. Suppose

by way of contradiction that there is a point p ∈ γx′ \ Ie. Since x′ ∈ Ie, there is

also some vertex q ∈ γx′ ∩ ∂Ie ∩ ∆(0) such that p is between ∗ and q in γx′ . Since

∂Ie ∩ ∆(0) ⊂ γx ∪ γy, without loss of generality, let q ∈ γx. Then the unique simple

path in T from ∗ to q must be contained in γx. But since p is between ∗ and q in

γx′ , this path must also contain p. This contradicts the fact that p ̸∈ Ie. So γx′ ⊂ Ie.

By the same argument, γy′ ⊂ Ie. So ∂Ie′ = γx′ ∪ γy′ ∪ e′ ⊂ Ie. Since Ie is simply

connected, this implies that Ie′ ⊆ Ie.

Now suppose e′ ̸⊆ Ie and e ̸⊆ Ie′ . Let Be and Be′ be the bodies of Ie and Ie′ ,

respectively. Note that int(Ie) = int(Be) and int(Ie′) = int(Be′). I will first show that

γx′ does not intersect int(Be). For suppose there were some p ∈ γx′ ∩ int(Be). Now

since e′ ̸⊆ Ie, e
′ ∩ int(Be) = ∅. In particular, x′ ̸∈ int(Be). So there is some vertex

q ∈ ∂Be ∩ ∆(0) such that p is between ∗ and q in γx′ . Since ∂Be ∩ ∆(0) ⊂ γx ∪ γy,

without loss of generality let q ∈ γx. Then the unique simple path in T from ∗ to q

must be contained in γx. But since p is between ∗ and q in γx′ , this path must also

contain p. This contradicts the fact that p ∈ int(Be), since int(Be) does not intersect

γx. So γx′ ∩ int(Be) = ∅. By the same argument, γy′ ∩ int(Be) = γx ∩ int(Be′) =

γy ∩ int(Be′) = ∅. Then since ∂Be ⊆ e ∪ γx ∪ γy, we have that ∂Be ∩ int(Be′) = ∅. In

the same way, ∂Be′ ∩ int(Be) = ∅.

Now consider C = int(Be) ∩ int(Be′), and suppose by way of contradiction that

C ̸= ∅. Note that in this case, C̄ = Be ∩ Be′ and that ∂C ⊆ ∂Be ∪ ∂Be′ . Suppose

there is some z ∈ ∂C \ ∂Be. Then z ∈ ∂Be′ and since z ∈ C̄ \ ∂Be, we must have

that z ∈ int(Be). This contradicts that ∂Be′ ∩ int(Be) = ∅, so it must be that case

that ∂C \ ∂Be = ∅. By the same argument, ∂C \ ∂Be′ = ∅. Therefore, ∂C = ∅. This



16

implies that C̄ = int(C), which makes C = ∅.

2.2 1-combings Respecting a Spanning Tree

In this section, we will construct a special type of 1-combing that will end up being

particularly tame. This is because the combing paths will respect a spanning tree,

growing outwards from the basepoint of the diagram along the icicles of the tree and

never crossing a branch of the tree. If the spanning tree chosen is a tree of geodesics

out of the basepoint, then such a 1-combing has combing paths that are in some way

close to being geodesics themselves, resulting in a 1-combing that is about as tame

as possible.

Given a 2-complex C, a subcomplex D ⊆ C(1), a point x ∈ C, and a 1-combing

Ψ of the pair (C,D), define

P (Ψ, x) = {y ∈ C|there is p ∈ D and 0 ≤ s ≤ t ≤ 1 with Ψ(p, t) = x and Ψ(p, s) = y},

the set of points prior to x in Ψ. This is the set of points y such that there is some

combing path containing x where y appears on that path before x.

Definition 2.2.1. Given a van Kampen diagram ∆ with basepoint ∗ and a spanning

tree T of ∆, a 1-combing respecting T is a 1-combing Ψ of the pair (∆, ∂∆) based at

∗ satisfying two properties:

1. For all e ∈ E(∂∆ \ T ),
⋃

x∈e P (Ψ, x) = Ie.

2. For p ∈ ∂∆ and t ∈ [0, 1], if Ψ(p, t) ∈ T , then Ψ(p, [0, t]) is the unique simple

path in T from ∗ to Ψ(p, t).
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The main purpose of this section is to show that such 1-combings exist:

Proposition 2.2.2. Let ∆ be a van Kampen diagram and let T be a spanning tree

of ∆. Then there exists a 1-combing ΨT that respects T .

Proof. We will first demonstrate how to construct such a 1-combing, and then prove

that it is a 1-combing that respects the given tree. Figure 2.2 shows an example of

what the combing paths of our constructed 1-combings could look like.

Figure 2.2: Representation of ΨT

We will define our combing paths in segments, one for each 2-cell, starting from

the boundary of the diagram and working inwards towards the basepoint, following

the icicles. At each step, we identify a 1-cell e ∈ E(∆ \ T ) that is on the boundary

of the subcomplex on which combing paths have not yet been defined, as well as its

associated 2-cell σ = θT (e), the one that is inside the icicle at e with e ⊆ ∂σ. Then we

determine the segments of the combing paths that intersect int(σ) with a homotopyH

from e to ∂σ \ int(e). Note that the combing paths will run in the opposite direction
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to the paths H(x, ·) for each x ∈ e. Once all the segments have been defined, we

stitch them together into a continuous 1-combing ΨT .

Let ∆ be a van Kampen diagram and T a spanning tree of ∆. Let ∆0 = ∆, and

define ψ0 : ∂∆× [0, 1] → ∆ by ψ0(x, t) = x. Now suppose we have defined a function

ψi : ∂∆× [0, 1] → ∆ and a subcomplex ∆i of ∆ with the following four properties:

� T ⊆ ∆i.

� R2 \∆i is connected.

� ψi is continuous.

� For all x ∈ ∂∆, ψi(x, 0) ∈ ∆
(1)
i .

Note that these properties all hold for i = 0. Now if all 1-cells of ∂∆i are in

T , the process ends. Otherwise, we will define ψi+1 and ∆i+1 such that these same

properties hold, as in Figure 2.3. Let ei+1 be a 1-cell of ∂∆i that is not in T , and let

Ii+1 be the T -icicle at ei+1. Let σi+1 = θT (ei+1), the 2-cell in Ii+1 whose boundary

contains ei+1. Note that ∂Ii+1 ⊆ ∆i, so since R2 \∆i is connected, we must have that

Ii+1 ⊆ ∆i. Therefore, σi+1 ⊆ ∆i. Let ∆i+1 = ∆i \ (int(σi+1) ∪ int(ei+1)). Since ∆i+1

is a subcomplex of ∆i and we have not removed any vertices or any 1-cells in T from

∆i, ∆i+1 also contains T . Additionally, since ei+1 is on the boundary of ∆i,

R2 \∆i+1 = (R2 \∆i) ∪ int(σi+1) ∪ int(ei+1)

is connected.

We will define a continuousHi+1 : ei+1×[0, 1] → σi+1 with the following properties:

i) For all x ∈ ei+1, Hi+1(x, 0) = x and Hi+1(x, 1) ∈ ∂σi+1 \ int(ei+1).

ii) If x is an endpoint of ei+1, then Hi+1(x, t) = x for all t ∈ [0, 1].
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iii) For all x ∈ int(ei+1) and all t ∈ (0, 1), Hi+1(x, t) ∈ int(σi+1).

Since σi+1 is a 2-cell, we know that it is homeomorphic to the unit disk

D2 = {(a, b) ∈ R2|a2 + b2 ≤ 1}.

Define

S1
+ = {(a, b) ∈ R2|a2+b2 = 1 and b ≥ 0} and S1

− = {(a, b) ∈ R2|a2+b2 = 1 and b ≤ 0}.

Then let ϕσi+1
: σi+1 → D2 be a homeomorphism such that ϕσi+1

(ei+1) = S1
+. Note

that this implies that ϕσi+1
(∂σi+1 \ int(ei+1)) = S1

−. Then define h : S1
+ × [0, 1] → D2

by

h((a, b), t) = (a, (1− 2t)b).

Note that h is a straight-line homotopy rel boundary from S1
+ to S1

−. Finally, let

Hi+1 = ϕ−1
σi+1

◦ h ◦ (ϕσi+1
|ei+1

× id[0,1]).

This definition gives the desired properties, for:

i) Let x ∈ ei+1. Then

Hi+1(x, 0) = ϕ−1
σi+1

(h(ϕσi+1
(x), 0)) = ϕ−1

σi+1
(ϕσi+1

(x)) = x.

Also, since ϕσi+1
(x) ∈ S1

+, this implies that h(ϕσi+1
(x), 1) ∈ S1

−, so

Hi+1(x, 1) = ϕ−1
σi+1

(h(ϕσi+1
(x), 1)) ∈ ϕ−1

σi+1
(S1

−) = ∂σi+1 \ int(ei+1).
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ii) Let x be an endpoint of ei+1 and let t ∈ [0, 1]. Then ϕσi+1
(x) ∈ {(1, 0), (−1, 0)}.

Since the vertical component of ϕσi+1
(x) is 0, h(ϕσi+1

(x), t) = ϕσi+1
(x). Thus,

Hi+1(x, t) = ϕ−1
σi+1

(h(ϕσi+1
(x), t)) = ϕ−1

σi+1
(ϕσi+1

(x)) = x.

iii) Let x ∈ int(ei+1) and t ∈ (0, 1). Let ϕσi+1
(x) = (a, b). Since x ∈ int(ei+1), we

know that b > 0. Since t ∈ (0, 1), this implies that |(1− 2t)b| < |b|. Therefore,

a2 + ((1− 2t)b)2 < 1, which means that h(ϕσi+1
(x), t) ∈ int(D2). Hence,

Hi+1(x, t) = ϕ−1
σi+1

(h(ϕσi+1
(x), t)) ∈ int(σi+1).

Now define ψi+1 : ∂∆× [0, 1] → ∆ by

ψi+1(x, t) =


Hi+1(ψi(x, 0), 1− t), ψi(x, 0) ∈ ei+1

ψi(x, 0), ψi(x, 0) ∈ ∆(1) \ int(ei+1).

Note that the two pieces of ψi+1 agree on their intersection because Hi+1 fixes the

endpoints of ei+1, so ψi+1 is well-defined and, by the pasting lemma, continuous.

Finally, let x ∈ ∂∆. We know that ψi(x, 0) ∈ ∆
(1)
i , so if ψi(x, 0) ̸∈ ei+1, then

ψi+1(x, 0) = ψi(x, 0) ∈ ∆
(1)
i+1. But if ψi(x, 0) ∈ ei+1, then

ψi+1(x, 0) = Hi+1 (ψi(x, 0), 1) ∈ ∂σi+1 \ int(ei+1) ⊆ ∆
(1)
i+1.

In either case, ψi+1(x, 0) ∈ ∆
(1)
i+1. So ∆i+1 and ψi+1 satisfy the desired properties.

Now, since there are only finitely many 1-cells of ∆ outside T , this construction

must end with some ∆n such that ∂∆n ⊆ T . I claim that, in fact, ∆n = T . We know

that T ⊆ ∆n. Suppose by way of contradiction that there exists x ∈ ∆n \ T . Then
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Figure 2.3: Defining ∆i+1 and ψi+1. The entire diagram is ∆. ∆i+1 is the shaded
region along with T , and ∆i = ∆i+1 ∪ σi+1.

in particular x ∈ int(∆n), which means that R2 \ ∂∆n is disconnected, and therefore

R2 \ T is disconnected. This is a contradiction, since a finite, planar tree cannot

disconnect the plane, so ∆n = T .

Now let Hn+1 : T × [0, 1] → T be the homotopy from T to ∗ such that, for each

x ∈ T , Hn+1(x, ·) is the constant speed parametrization of the unique simple path

from x to ∗ in T . Note that for all x ∈ ∂∆, ψn(x, 0) ∈ ∆n = T , so we can define

ψn+1 : ∂∆× [0, 1] → ∆ by ψn+1(x, t) = Hn+1(ψn(x, 0), 1− t).

Finally, define ΨT : ∂∆× [0, 1] → ∆ by ΨT (x, t) = ψi(x, (n+ 1)t+ i− n− 1) for

t ∈
[
1− i

n+1
, 1− i−1

n+1

]
. Note that when t = 1− i

n+1
, we have (n+ 1)t+ i− n− 1 = 0

and when t = 1 − i−1
n+1

, we have (n + 1)t + i − n − 1 = 1. So to show that ΨT is

well-defined, we must show that for all i ∈ [n] and x ∈ ∂∆, ψi+1(x, 1) = ψi(x, 0).

This follows immediately from the definitions of ψi+1 and the fact that Hi+1(y, 0) = y

for all y ∈ ei+1. Since each ψi is continuous, ΨT is continuous by the pasting lemma.

We will now establish that ΨT is a 1-combing that respects T . It will be convenient
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to first establish the second property, that for all p ∈ ∂∆ and t ∈ [0, 1], if Ψ(p, t) ∈ T ,

then Ψ(p, [0, t]) is the unique simple path in T from ∗ to Ψ(p, t).

Let p ∈ ∂∆ and t ∈ [0, 1], and suppose that x = Ψ(p, t) ∈ T . There is some i ∈ [n+

1] such that t ∈
[
1− i

n+1
, 1− i−1

n+1

]
, so x = ψi(p, s) where s = (n+1)(t−1)+ i. If t ≤

1
n+1

, we may choose i = n+1 so that x = ψn+1(p, s). Then Ψ(p, [0, t]) = ψn+1(p, [0, s]),

which is by definition the unique simple path in T from ∗ to x. Otherwise, we may

choose i ≤ n such that t ̸= 1 − i
n+1

, and therefore s ̸= 0. In that case, if s = 1,

then x = ψi−1(p, 0) from the definition of ψi. If 0 < s < 1, we cannot have that

x = Hi(ψi−1(x, 0), 1 − s), since x ∈ T ⊆ ∆(1) and we know that Hi(ψi−1(x, 0), 1 −

s) ̸∈ ∆(1) because 1 − s ∈ (0, 1). So from the definition of ψi we must have that

x = ψi−1(p, 0) ∈ T . Therefore, ψi−1(p, 0) ̸∈ int(ei), so ψi(p, r) = ψi−1(p, 0) = x for all

r ∈ [0, 1]. Now for all j ∈ [n] with j > i, suppose by induction that ψj−1(p, 0) = x.

Then by the same logic, ψj−1(p, 0) ̸∈ int(ej), so ψj(p, r) = x for all r ∈ [0, 1]. As

a result, ΨT

(
p,
[

1
n+1

, t
])

= {x}. So ΨT (p, [0, t]) = ΨT

(
p,
[
0, 1

n+1

])
, and we already

know from the case with t ≤ 1
n+1

that ΨT

(
p,
[
0, 1

n+1

])
is the unique simple path from

∗ to x. This establishes the desired property.

Now we will show that ΨT is in fact a 1-combing. We already know that ΨT is

continuous. For any p ∈ ∂∆, ΨT (p, 0) = ψn+1(p, 0) = ∗ and ΨT (p, 1) = ψ1(p, 1) =

ψ0(p, 0) = p. Also, p ∈ T , so Ψ(p, 1) ∈ T . Then by the second property of a 1-

combing respecting T , we know that Ψ(p, [0, 1]) ⊆ T ⊆ ∆(1). In particular, if p = ∗,

the unique simple path from ∗ to ∗ in T is the constant path, so Ψ(∗, [0, 1]) = {∗}.

Hence, ΨT is a 1-combing.

Finally, we will show that ΨT satisfies the first property of a 1-combing respecting

T , that for all e ∈ E(∂∆ \ T ),
⋃

x∈e P (Ψ, x) = Ie.

First we will show that Ie ⊇
⋃

x∈e P (ΨT , x). Let p ∈ ∂∆ and t ∈ [0, 1] such

that ΨT (p, t) ∈ e. Suppose by way of contradiction that there is some s ≤ t so that
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ΨT (p, s) ̸∈ Ie. Then there is some smallest s′ ∈ [s, t] such that ΨT (p, s
′) ∈ Ie. Note

that this implies that ΨT (p, s
′) is on the boundary of the icicle. There are two possible

cases for where ΨT (p, s
′) lands, as shown in Figure 2.4.

(a) Case 1 (b) Case 2

Figure 2.4: If a prior point of e in ΨT were outside the icicle at e

Case 1: ΨT (p, s
′) ∈ T . By the definition of Ie, ΨT (p, s

′) is on the simple path in T

from ∗ to some endpoint v of e. Therefore, the simple path in T from ∗ to ΨT (p, s
′)

is in the icicle at e. So ΨT (p, [0, s
′]) ⊆ Ie. So ΨT (p, s) ∈ Ie, which is a contradiction.

Case 2: ΨT (p, s
′) ̸∈ T . Since ΨT (p, s

′) is on the boundary of the icicle at e, this

implies that ΨT (p, s
′) ∈ int(e). Let ϵ = 1

2(n+1)
and let e = ei from the construction

of ΨT . Then since ΨT (p, s
′) ∈ ∆(1), we must have that ΨT (p, s

′) = ψj(p, 0) for some

j. In fact, j < i, since we know that ψj(p, 0) ∈ ∆j but int(ei) ̸∈ ∆k for k ≥ i. Since

for all k with j ≤ k < i, if ψk(p, 0) ∈ ei ̸= ek then ψk+1(p, 0) = ψk(p, 0), we know

that ψi(p, 1) = ψi−1(p, 0) = ψj(p, 0) = ΨT (p, s
′). Then ΨT (p, s

′ − ϵ) = ψi(p,
1
2
) ∈ σi

by the definition of Hi. Now since s′ was the smallest element of [s, t] in the icicle

at ei, either s ≤ s′ − ϵ < s′, in which case ΨT (p, s
′ − ϵ) is not in the icicle at ei,

or s′ − ϵ < s < s′, in which case ΨT (p, s) = ψi(p, r) for some r ∈ (1
2
, 1), and thus

ΨT (p, s) ∈ σi. Either case implies that σi is not in the icicle at ei, which contradicts

the definition of σi. This final contradiction completes case 2, implying that no such

s exists.
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Figure 2.5: ΨT mapping the boundary of e×[0, 1] to the boundary of Ie when e ⊆ ∂∆.

Now we will show the opposite containment. Let y ∈ Ie.

Case 1: e ⊆ ∂∆. See Figure 2.5. Let u and v be the endpoints of e. Now

ΨT |e×[0,1] is a continuous function from the ball e× [0, 1] into ∆ where ΨT (e×{0}) =

∗, ΨT ({u} × [0, 1]) is the simple path from ∗ to u in T , ΨT (e × {1}) = e, and

ΨT ({v}× [0, 1]) is the simple path from ∗ to v in T . So the image of the path around

the boundary of e×[0, 1] is the path around the boundary of the icicle at e. Therefore,

since ΨT |e×[0,1] is continuous, every point in the icicle at e is in ΨT (e× [0, 1]). Hence,

there is some x ∈ e and s ∈ [0, 1] such that y = ΨT (x, s). Of course, x = ΨT (x, 1), so

y ∈ P (ΨT , x).

Case 2: e ̸⊆ ∂∆. First, note that

∆ =
⋃

f∈E(∂∆\T )

If ,

so for each x ∈ ∆, there exists a 1-cell f ⊆ ∂∆ with x ∈ If . Then as a result of

Case 1, there must be some p ∈ ∂∆ and s ∈ [0, 1] such that y = ΨT (p, s). Since

y ∈ Ie, there is some t ≥ s such that ΨT (p, t) ∈ ∂Ie. If ΨT (p, t) ∈ e, this shows that

y ∈ P (ΨT , x), where x = ΨT (p, t) ∈ e. Otherwise, we must have that ΨT (p, t) ∈ T .

As a result, ΨT (p, [0, t]) ⊆ T , and in particular y ∈ T . Since y ∈ Ie, y must be on

the unique simple path in T from ∗ to an endpoint of e; call this endpoint x. By

the same reasoning as for y, there must be some p′ ∈ ∂∆ and t′ ∈ [0, 1] such that
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x = ΨT (p
′, t′). Then since x ∈ T and y is on the simple path from ∗ to x in T , there

must be some s′ < t′ such that y = ΨT (p
′, s′). Hence, y ∈ P (ΨT , x).

Note that, in the construction of ΨT , although it was convenient to deal with the

1-cells of ∆ \ T in a somewhat arbitrary order to construct a continuous ΨT , fewer

choices are required to determine the images of individual combing paths. Since for

each i ∈ [n], σi ∈ ∆i−1 \∆i, we have that the σi’s are all distinct; in other words, the

icicle flow function θT is injective. Since ∆n = T and does not contain any 2-cells,

we have that θT is a bijection between the 1-cells of ∆ \ T and the 2-cells of ∆. This

bijection, along with a choice of homeomorphism ϕσ : σ → D2 for each 2-cell σ,

determines the images of the combing paths of ΨT .

Figure 2.6: The decomposition of ΨT (x, ·) given by Lemma 2.2.3.

In particular, the following lemma will be useful when dealing with individual

combing paths. It decomposes a combing path into an initial segment in the tree T

and subsequent segments in each 2-cell that it crosses, as shown in Figure 2.6.

Lemma 2.2.3. Let ∆ be a van Kampen diagram, T a spanning tree for ∆, and ΨT

a 1-combing constructed as in the proof of Proposition 2.2.2. Given x ∈ ∂∆, there

exists a sequence 1 ≥ t1 > · · · > tm+1 > tm+2 = 0 with the following properties. Let
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xj = ΨT (x, tj) for all j ∈ [m+2]. Then for each j ∈ [m] there is a 1-cell ej ∈ E(∆\T )

with xj ∈ int(ej). Furthermore, ΨT (x, [0, tm+1]) is the simple path from ∗ to xm+1 in

T , ΨT (x, [t1, 1]) = {x}, and for all j ∈ [m], tj = min{t ∈ [0, 1]|ΨT (x, t) = xj}, and

ΨT (x, [tj+1, tj]) = ϕ−1
σj
(h(ϕσj

(xj), [0, 1])), where σj := θT (ej).

Proof. Let x ∈ ∂∆. For each i ∈ {0, 1, . . . , n + 1}, let si = 1 − i
n+1

and let

yi = ΨT (x, si). Also, for i ∈ {0, 1, . . . , n − 1}, either yi ∈ int(ei+1), in which case

ΨT (x, [si+1, si]) = Hi+1(yi, [0, 1]), or yi ̸∈ int(ei+1), in which case ΨT (x, [si+1, si]) =

{yi} = {yi+1}. Let i1 < i2 < · · · < im be the collection of indices such that

yij ∈ int
(
eij+1

)
, and let im+1 = n. Then for all j ∈ [m + 1], let tj = sij and

xj = yij Then we know that ΨT (x, [0, tm+1]) =: γx, the unique simple path from ∗ to

xm+1 in T . Then for all i ∈ {0, . . . , i1 − 1}, since ΨT (x, [si+1, si]) = {yi} = {yi+1},

we have that x = yi = x1. Hence, ΨT (x, [t1, 1]) = {x}. Similarly, for all j ∈ [m] and

i ∈ {ij + 1, . . . , ij+1 − 1}, yij+1 = yi = xj+1, so ΨT (x, [tj+1, sij+1]) = {xj+1}. Now for

j ∈ [m],

Hij+1(xj, 1) = ΨT (x, sij+1) = yij+1 = xj+1,

and therefore

ΨT (x, [tj+1, tj]) = ΨT (x, [tj+1, sij+1]) ∪ΨT (x, [sij+1, tj])

= {xj+1} ∪Hij+1(xj, [0, 1])

= Hij+1(xj, [0, 1])

= ϕ−1
σij+1

(h(ϕσij+1
(xj), [0, 1])).

Note that by definition σij+1 = θT (eij+1), and eij+1 is the 1-cell containing xj, so

this matches the statement of the lemma.
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We have only left to show that tj = min{t ∈ [0, 1]|ΨT (x, t) = xj}. Note that the

above implies that

ΨT (x, [0, 1]) = γx ∪
⋃

j∈[m]

Hij+1(xj, [0, 1]).

Note also that for each j, k ∈ [m] with k > j, xj ̸= xk, since xj ∈ int
(
eij+1

)
and

int
(
eij+1

)
is not in ∆ij+1, whereas xk ∈ int(eik+1), and eik+1 ⊆ ∆ik ⊆ ∆ij+1 since

ik ≥ ij + 1. Furthermore, for all j, k ∈ [m], xj ̸∈ ΨT (x, (sik+1, tk)) = Hik+1(xk, (0, 1)),

since Hik+1(xk, (0, 1)) ∩ ∆(1) = ∅. Also, for all j ∈ [m], xj ̸∈ γx, since γx ⊆ T but

xj ∈ int
(
eij+1

)
, and eij+1 ∈ E(∆ \ T ). This shows that xj ̸∈ ΨT (x, [0, tj)). In other

words, tj = min{t ∈ [0, 1]|ΨT (x, t) = xj}.

2.3 Constructing Simply, Geodesically Bounded Van Kam-

pen Diagrams of Small Diameter

Our main strategy for proving Theorem 2.4.4 will be to take a van Kampen diagram

with a geodesic spanning tree and start replacing the bodies of icicles whose diameter

is too large with diagrams that have smaller intrinsic diameter. This will cause

1-combings respecting the tree to become more and more tame. In order for this

replacement to happen while preserving the necessary structure, the diagrams with

which we replace the bodies of icicles must have two important properties.

Definition 2.3.1. A van Kampen diagram is simply bounded if it is bounded by a

simple circuit.

Note that the bodies of icicles are always simply bounded by definition, so the

replacement diagrams must also be simply bounded in order for them to be bodies of

icicles in the same tree.
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Definition 2.3.2. Let ∆ be a van Kampen diagram with basepoint ∗. Then we say

that ∆ is geodesically bounded if d∆(∗, x) = d∂∆(∗, x) for all x ∈ ∆(0) ∩ ∂∆.

Note that if we consider the body of an icicle of a tree of geodesics to be a van

Kampen diagram with basepoint at the intersection of the tail and body of the icicle,

it is geodesically bounded. The replacement diagrams must share this property in

order to preserve distances in the resulting diagram.

The purpose of this section is to show that, given a van Kampen diagram that

could be the body of an icicle—in other words, a diagram that is simply bounded—

there is always another van Kampen diagram for the same word that is both simply

bounded and geodesically bounded and has relatively small intrinsic diameter. In

order to say what “relatively small” means, we need a few more definitions.

Recall that P = ⟨A|R⟩ is a finite presentation. Given w ∈ (A ∪ A−1)∗, let SBw

be the set of all simply bounded van Kampen diagrams for w. Define the simply

bounded diameter of w by

IDiamsb(w) = inf{IDiam(D)|D ∈ SBw}

and choose Dw to be a van Kampen diagram for w that attains this infimum if such

a diagram exists. Note that the infimum is attained if and only if SBw ̸= ∅. Let

MP = max({0} ∪ {IDiamsb(w)|w ∈ (A ∪ A−1)∗ such that ℓ(w) ≤ 4 and SBw ̸= ∅}).

Proposition 2.3.3. Let P = ⟨A|R⟩ be a finite presentation for a group G such that

no generator is equal to the identity. Let w ∈ (A ∪ A−1)∗ with w =G 1. Suppose that

there exists a simply bounded van Kampen diagram for w. Then there exists a simply
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and geodesically bounded van Kampen diagram ∆ for w such that

IDiam(∆) ≤ max

(
IDiam(ℓ(w)),

⌊
ℓ(w)

2

⌋
+MP

)
.

Proof. Case 1: Suppose that ℓ(w) ≤ 2. Since there exists a simply bounded van

Kampen diagram for w, SBw ̸= ∅. So let ∆ = Dw. Then IDiam(∆) ≤ MP ≤

max(IDiam(ℓ(w)),
⌊
ℓ(w)
2

⌋
+MP). Also, if there exists a vertex x ̸= ∗ on the boundary,

then d∆(∗, x) = 1 = d∂∆(∗, x), so ∆ is geodesically bounded. Thus, ∆ satisfies the

desired conditions.

Figure 2.7: Showing SBvv−1 ̸= ∅ in Case 2

Case 2: Suppose that ℓ(w) > 2. We will first show that for any subword v of w

with ℓ(v) = 2, SBvv−1 ̸= ∅. We will therefore be free to use the diagrams Dvv−1 in

order to construct ∆ from the statement of the proposition. Construct a diagram ∆v

by taking a simply bounded van Kampen diagram for w and moving the basepoint

so that ∆v is a van Kampen diagram for vu, for some nonempty word u. Then since

vu labels a simple circuit, u labels a simple path on the boundary. Therefore, taking

two copies of ∆v and gluing them along their respective paths labeled by u results

in a van Kampen diagram for vv−1, shown in Figure 2.7. Note that the boundary of

this van Kampen diagram is a simple circuit since u is nonempty. Therefore, SBvv−1

contains this diagram.

Let ∆0 be a van Kampen diagram for w of minimum intrinsic diameter. Let
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∗ = p0, p1, . . . , pn = ∗ be the sequence of vertices traversed in order by the path

labeled by w along the boundary of ∆0. Let I0 = {i1, . . . , im} ⊆ [n− 1] be the set of

indices such that the vertices they index appeared earlier on the boundary; that is,

I0 = {i ∈ [n− 1]|there exists k < i such that pi = pk}.

The vertices at these indices are cut vertices of ∆0, and therefore obstructions to mak-

ing it simply bounded. If I0 = ∅, then ∆0 is simply bounded and m = 0. Otherwise,

we will construct a sequence of van Kampen diagrams for w ∆0,∆1, . . . ,∆m such

that ∆m is simply bounded and IDiam(∆m) ≤ max
(
IDiam(ℓ(w)),

⌊
ℓ(w)
2

⌋
+MP

)
.

Our strategy will be to add a bit of “padding” to the diagram at a cut vertex at each

step, reducing the number of indices corresponding to a cut vertex by 1.

(a) Defining ∆j for 0 ≤ j < m (b) Defining ∆i+1 for m ≤ i < l

Figure 2.8: Defining ∆1, . . .∆l in Case 2 of Proposition 2.3.3

For j ∈ [m], assume by induction that we have constructed a van Kampen diagram

∆j−1 for w such that ∗ = p0, p1, . . . , pn = ∗ is the sequence of vertices traversed in

order by the path labeled by w along the boundary of ∆j−1, that p0, p1, . . . , pij−1 are

all distinct, and that IDiam(∆j−1) ≤ max
(
IDiam(ℓ(w)),

⌊
ℓ(w)
2

⌋
+MP

)
. Let

Ij−1 = {i ∈ [n− 1]|there exists k < i such that pi = pk}
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and assume by induction that Ij−1 = {ij, . . . , im}. Then construct ∆j from ∆j−1 in

the following way. Let γj be the path along the boundary of ∆j−1 from pij−1 to pij+1

and let vj be the subword of w that labels γj. Note that ℓ(vj) = 2, so we have shown

above that SBvjv
−1
j

̸= ∅ and therefore Dvjv
−1
j

is defined. Let ηj be a path in Dvjv
−1
j

along the boundary starting at the basepoint labeled by vj. Since Dvjv
−1
j

is simply

bounded, ηj is a simple path, and I claim that γj is as well. Since no generator is

equal to the identity, we know that pij−1 ̸= pij ̸= pij+1, so we only need to show

that pij−1 ̸= pij+1. Since ij ∈ Ij−1, there is some k < ij such that pk = pij . Using

Lemma 2.3.4, proven below, this implies that pij−1 ̸= pij+1, making γj a simple path.

Now construct ∆j from ∆j−1 and Dvjv
−1
j

by gluing ηj along γj, as in Figure 2.8A,

and let qj : ∆j−1 ⊔ Dvjv
−1
j

→ ∆j be the corresponding quotient map. Because γj

and ηj are both simple paths along the boundaries of their respective diagrams, ∆j is

planar and simply connected. Let p′k = qj(pk) for k ̸= ij, and let p′ij be the vertex on

the boundary of qj(Dvjv
−1
j
) that is not in qj(ηj). Then the path along the boundary

of ∆j from p′ij−1 to p′ij+1 through p′ij is the image under qj of a path of length 2

along the boundary of Dvjv
−1
j

starting at the basepoint, and is therefore labeled by

vj. So ∆j is a van Kampen diagram for w, and ∗ = p′0, p
′
1, . . . , p

′
n = ∗ is the sequence

of vertices traversed in order by the path labeled by w along the boundary of ∆j.

Additionally, p′ij ̸= p′k for all k < ij, so p
′
0, p

′
1, . . . , p

′
ij
are all distinct. Furthermore,

since d∆j−1
(∗, pij−1) ≤

⌊
ℓ(w)
2

⌋
and qj identifies the basepoint of Dvjv

−1
j

with pij−1, we

know that for any y ∈ qj(Dvjv
−1
j
)(0),

d∆j
(∗, y) ≤ d∆j−1

(∗, pij−1) + IDiam(Dvjv
−1
j
) ≤

⌊
ℓ(w)

2

⌋
+MP .

Hence,
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IDiam(∆j) ≤ max

(
IDiam(∆j−1),

⌊
ℓ(w)

2

⌋
+MP

)
≤ max

(
IDiam(ℓ(w)),

⌊
ℓ(w)

2

⌋
+MP

)
.

Let

Ij = {i ∈ [n− 1]|there exists k < i such that p′i = p′k}.

Since qj|∆j−1
is a bijection, for 0 ≤ k < i < n with i, k ̸= ij, we have that p′i = p′k if

and only if pi = pk. Also, p′ij is only the image under qj of the one boundary vertex

of Dvjv
−1
j

that is not on ηj, and not the image of any pi. Therefore, p′ij ̸= p′i for any

i ̸= ij. As a result, Ij = Ij−1 \ {ij} = {ij+1, . . . , im}. This completes the induction.

So ∆m is a van Kampen diagram for w, and Im = ∅. Since ℓ(w) > 2, this implies

that the boundary of ∆m is a simple circuit. Furthermore,

IDiam(∆m) ≤ max

(
IDiam(ℓ(w)),

⌊
ℓ(w)

2

⌋
+MP

)
.

However, ∆m may not be geodesically bounded; we may need to continue with a sim-

ilar process in order to acquire a geodesically bounded diagram with these properties.

Given any van Kampen diagram ∆, define the cumulative boundary diameter of

∆ to be

bdiam(∆) :=
∑

x∈∆(0)∩∂∆

d∆(∗, x).

Note that the cumulative boundary diameter is bounded above with respect to the

length of the boundary circuit of ∆. If ∆ is a van Kampen diagram for a word w,

then for each x ∈ ∆(0) ∩ ∂∆ we have d∆(∗, x) ≤ d∂∆(∗, x) ≤ 1
2
ℓ(w), and therefore

bdiam(∆) ≤ 1
2
ℓ(w)2.



33

We will construct a sequence of van Kampen diagrams ∆m,∆m+1, . . . ,∆l for w

such that if m ≤ i ≤ l then IDiam(∆i) ≤ max
(
IDiam(ℓ(w)),

⌊
ℓ(w)
2

⌋
+MP

)
, ∆i is

simply bounded, and, for i > m, bdiam(∆i) > bdiam(∆i−1). The fact that the cu-

mulative boundary diameter keeps increasing implies that at some point, each point

on the boundary of the diagram will reach its maximum possible distance from the

basepoint in a van Kampen diagram for w, resulting in a geodesically bounded di-

agram. Assuming that these properties hold for i ≥ m, we will construct ∆i+1 as

follows. Let

Xi = {x ∈ ∆
(0)
i ∩ ∂∆i|d∆i

(∗, x) < d∂∆i
(∗, x)},

the set of vertices x along the boundary of ∆i such that there is no ∆i-geodesic from

∗ to x in ∂∆i. If Xi = ∅, then ∆i is geodesically bounded, so we will let l := i and the

construction of the sequence ends. Otherwise, let mi = min({d∆i
(∗, x)|x ∈ Xi}) and

let xi ∈ Xi be a vertex that attains this minimum. Let ∗ = p0, p1, . . . , pn−1, pn = ∗

be the sequence of vertices traversed in order by the path labeled by w along the

boundary of ∆i, and let k ∈ [n] such that pk = xi. Note that by the definition of Xi,

∗ ̸∈ Xi, so 0 < k < n. Let γi be the path along the boundary from pk−1 to xi to pk+1,

and let vi be the subword of w of length 2 that labels γi. Let ηi be a path in Dviv
−1
i

along the boundary starting at the basepoint labeled by vi. Note that γi and ηi are

both simple paths, since they are paths of length 2 along the boundaries of simply

bounded diagrams of a word w with ℓ(w) > 2.

Construct ∆i+1 from ∆i and Dviv
−1
i

by gluing ηi along γi, as in Figure 2.8B, and

let qi : ∆i⊔Dviv
−1
i

→ ∆i+1 be the corresponding quotient map. Because γi and ηi are

both simple paths along the boundaries of their respective diagrams, ∆i+1 is planar

and simply connected. Let p′j = qi(pj) for j = 0, . . . , n and let x′i be the vertex on the

boundary of qi(Dviv
−1
i
) that is not in qi(ηi). Note that, by the exact same reasoning
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as in the construction of ∆1 through ∆m, ∆i+1 is a van Kampen diagram for w, ∆i+1

is simply bounded, and IDiam(∆i+1) ≤ max
(
IDiam(ℓ(w)),

⌊
ℓ(w)
2

⌋
+MP

)
.

We have only to show that bdiam(∆i+1) > bdiam(∆i). First, I claim that for any

y ∈ ∆
(0)
i , we have that d∆i+1

(∗, qi(y)) = d∆i
(∗, y); gluing Dviv

−1
i

to ∆i has not changed

the distance from ∗ to the image of y. It is sufficient to show that d∆i+1
(∗, qi(y)) =

d∆i
(∗, y) for y ∈ {xi, pk−1, pk+1}. Now since d∆i

(∗, xi) = mi, d∆i
(∗, pk−1) ∈ {mi −

1,mi,mi + 1}. Suppose that d∆i
(∗, pk−1) = mi − 1. Then by the definition of mi,

d∆i
(∗, pk−1) = d∂∆i

(∗, pk−1). So there is a ∆i-geodesic along the boundary of ∆i

from ∗ to pk−1. Since xi is adjacent to pk−1 via a 1-cell on the boundary of ∆i and

d∆i
(∗, pk−1) + 1 = d∆i

(∗, xi), this geodesic extends to a geodesic from ∗ to xi along

the boundary of ∆i. This contradicts the fact that xi ∈ Xi. Thus, d∆i
(∗, pk−1) ∈

{mi,mi + 1}. The same argument shows that d∆i
(∗, pk+1) ∈ {mi,mi + 1}. So the

distances from ∗ to xi, pk−1, and pk+1 in ∆i all differ from each other by at most

1. Now let y ∈ {xi, pk−1, pk+1} and let γ be a ∆i+1-geodesic from ∗ to qi(y). Let

z ∈ {xi, pk−1, pk+1} such that qi(z) is the first point at which γ enters qi(Dviv
−1
i
).

If z = y, γ is contained in qi(∆i), so d∆i+1
(∗, qi(y)) = d∆i

(∗, y). Otherwise, z ̸=

y. Then since γ is a ∆i+1-geodesic which, up until qi(z), is contained in qi(∆i),

d∆i+1
(∗, qi(z)) = d∆i

(∗, z) ≥ mi. Since distance increases along geodesics, this implies

that d∆i+1
(∗, qi(y)) ≥ mi + 1 ≥ d∆i

(∗, y). So d∆i+1
(∗, qi(y)) = d∆i

(∗, y).

Since ∂∆i+1 \qi(∂∆i) = {x′i} and qi(∂∆i)\∂∆i+1 = {qi(xi)}, and d∆i+1
(∗, qi(y)) =

d∆i
(∗, y) for all y ∈ ∂∆i, we have that

bdiam(∆i+1)− bdiam(∆i) = d∆i+1
(∗, x′i)− d∆i

(∗, xi).

Now any path from ∗ to x′i in ∆i+1 passes through one of qi(xi), qi(pk−1), or qi(pk+1).

Hence, d∆i+1
(∗, x′i) > mi = d∆i

(∗, xi). Thus, bdiam(∆i+1) − bdiam(∆i) > 0. Also,
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since ∆i is a van Kampen diagram for w for all i, we showed above that bdiam(∆i) ≤
1
2
ℓ(w)2.

Since bdiam(∆i) is increasing and bounded above, the construction of this se-

quence must end with some ∆l. Then Xl = ∅, which implies that, for all x ∈

∆
(0)
l ∩ ∂∆l, d∆l

(∗, x) = d∂∆l
(∗, x). So ∆l is geodesically bounded.

We used the following technical lemma to show that γj was a simple path when

constructing ∆j+1 for j + 1 ∈ [m]. We will now tie up this loose end.

Lemma 2.3.4. Let ∆ be a van Kampen diagram for a word w in a finite presentation

in which no generator is equal to the identity. Let p1, p2, . . . , pn = p1 be the sequence of

vertices traversed in order by the path labeled by w along the boundary of ∆. Suppose

there exist i, j ∈ [n] with i < j such that pi = pj and pk ̸= pl whenever i ≤ k < l < j.

Then pj−1 ̸= pj+1.

Proof. Note first the following general facts about the boundary circuit of a van

Kampen diagram. Recall that each 1-cell in a van Kampen diagram is associated to

two directed edges, one going each direction. The boundary of each 2-cell is a circuit

which can be directed either clockwise or counterclockwise. It is possible to choose a

directed boundary circuit for each 2-cell (going either clockwise or counterclockwise)

such that each directed edge in the diagram appears exactly once in either the directed

boundary circuit of one of the 2-cells or the boundary circuit for the diagram, but

not both; see, for example, [19, p. 236]. So each directed edge corresponding to

a 1-cell on the boundary of a van Kampen diagram appears at most once in the

boundary circuit of the diagram. If both directed edges appear in the boundary

circuit, the corresponding 1-cell must be incident to the complement of the diagram

on both sides, since otherwise one of the directed edges would appear in the directed
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boundary circuit of a 2-cell. If only one of the two directed edges appears in the

boundary circuit, then the other appears in the directed boundary circuit of a 2-cell,

so the corresponding 1-cell is incident to a 2-cell of the diagram on one side and

incident to the complement of the diagram on the other.

If e is a directed edge, let ē denote the other edge corresponding to the same 1-cell,

going in the opposite direction.

Let i, j ∈ [n] with i < j such that pi = pj and pk ̸= pl whenever i ≤ k < l < j.

Suppose by way of contradiction that pj−1 = pj+1. Let e be the directed edge in the

boundary circuit from pj−1 to pj, and let f be the directed edge in the boundary circuit

from pj to pj+1. Let γ = ef , the directed path in the boundary circuit from pj−1 to

pj+1. Since no generator is equal to the identity, we know that pj ̸= pj−1 = pj+1. So

either γ is a simple circuit or e = f̄ . Let η be the directed path in the boundary

circuit from the ith vertex pi to the jth vertex pj. Note that e is the last edge of η

and η is a circuit that does not repeat any vertices, by the assumption that pk ̸= pl

whenever i ≤ k < l < j. Therefore, either η is a simple circuit or η = ēe.

Suppose first that e = f̄ . In this case, both e and ē appear in γ, and therefore

both appear in the boundary circuit, so e is incident to R2 \∆ on both sides. If η is a

simple circuit and e appears in η, e is incident to the interior of η. This would imply

that the interior of η, a simple circuit in ∆, contains a point in R2 \∆, contradicting

the fact that ∆ is simply-connected. If η = ēe, then ē would appear twice in the

boundary circuit: once on η and once on γ. This is a contradiction, so e ̸= f̄ .

So suppose instead that γ is a simple circuit. In this case, e and f are both

incident to a 2-cell on one side, and thus neither ē nor f̄ appear in the boundary

circuit. Therefore, η ̸= ēe. If instead η is a simple circuit, we are in the case shown in

Figure 2.9. Then int(f) must either be in the interior or exterior of η; f cannot be a

part of η, since it appears only once in the boundary circuit in γ, and we know that
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Figure 2.9: One possible drawing of ∆ in the case where γ and η are both simple
circuits. The arrows indicate the direction of the boundary circuit as well as the
orientations of e and f .

f̄ does not appear on the boundary circuit. f cannot be in the interior of η, since

it is incident to the complement of ∆, so int(f) is in the exterior of η. In this case,

either η \ e is in the interior of γ or neither contains the other. Now each edge of η

is incident to the complement of ∆, so η \ e cannot be in the interior of γ; then its

interior would contain a point in the complement of ∆. So the interiors of γ and η do

not intersect. But since e is on both γ and η, it is incident to the interiors of both.

Since these interiors do not intersect, e must be incident to the interior of γ on one

side and the interior of η on the other. This contradicts the fact that e is incident to

the complement of ∆. This final contradiction implies that pj−1 ̸= pj+1.

2.4 Main Theorem

In this section, we will finish the proof of Theorem 2.4.4. In order to simplify the

proof, we will first define a variant of intrinsic tame filling functions that only relies

on distance to the 1-skeleton of a van Kampen diagram and prove that such functions

are equivalent to tame filling functions. This will allow us to ignore distance to 2-cells
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in the remainder of the proof.

Definition 2.4.1. Let f : N[1
4
] → N[1

4
] be a function, C a 2-complex with basepoint ∗

andD a subcomplex of C(1). A 1-combing Ψ of the pair (C,D) is graph f -tame if for all

n ∈ N[1
4
] and for all x ∈ D and s, t ∈ [0, 1] such that s ≤ t and Ψ(x, s),Ψ(x, t) ∈ C(1),

if dC(∗,Ψ(x, t)) ≤ n, then dC(∗,Ψ(x, s)) ≤ f(n).

Definition 2.4.2. Let f : N[1
4
] → N[1

4
] be non-decreasing. f is an intrinsic graph

tame filling function for ⟨A|R⟩ if, for all w ∈ (A ∪ A−1)∗ with w =G 1, there is a

van Kampen diagram ∆w for w with basepoint ∗ and a 1-combing Ψw of (∆w, ∂∆w)

based at ∗ such that Ψw is graph f -tame.

Lemma 2.4.3. Every intrinsic graph tame filling function for ⟨A|R⟩ is equivalent to

an intrinsic tame filling function for ⟨A|R⟩. Conversely, every intrinsic tame filling

function is itself an intrinsic graph tame filling function.

Proof. We will first show that all intrinsic tame filling functions are intrinsic graph

tame filling functions. Let h be an intrinsic tame filling function and let w ∈ (A∪A−1)∗

with w =G 1. Let ∆w be a van Kampen diagram for w and Ψw an h-tame 1-combing

of ∆w. Since Ψw is h-tame, we have that for all n ∈ N[1
4
], p ∈ ∂∆w, and s, t ∈ [0, 1]

such that s ≤ t, if d∆w(∗,Ψw(p, t)) ≤ n, then d∆w(∗,Ψw(p, s)) ≤ h(n). Since this is

true for all such p, s, and t, it is also true whenever Ψ(p, s),Ψ(p, t) ∈ ∆
(1)
w . Therefore,

Ψw is graph h-tame. So h is also an intrinsic graph tame filling function.

For the other direction, let f be an intrinsic graph tame filling function. Let

ρ = max{ℓ(r)|r ∈ R}. Define g : N[1
4
] → N[1

4
] by g(n) = f

(
n+ 3

4

)
+ ρ

2
− 1

4
. Note

that g is equivalent to f . We will show that g is an intrinsic tame filling function for

⟨A|R⟩.

Let w ∈ (A ∪ A−1)∗ with w =G 1. Let ∆w be a van Kampen diagram for w and

Ψw a graph f -tame 1-combing of ∆w. Let n ∈ N[1
4
], p ∈ ∂∆w, and s, t ∈ [0, 1] such
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that s ≤ t and d∆w(∗,Ψw(p, t)) ≤ n. We will show that Ψw is g-tame by showing that

d∆w(∗,Ψw(p, s)) ≤ g(n). See Figure 2.10.

Figure 2.10: Showing Ψw is g-tame.

Choose t′ ∈ [0, 1] such that t′ ≥ t in the following way. If Ψw(p, t) ∈ ∆
(1)
w , let t′ = t.

Otherwise, let τ be the 2-cell with Ψw(p, t) in its interior. Since p ∈ ∆
(1)
w , and Ψw(p, ·)

is continuous, there is some t′ > t such that Ψw(p, t
′) ∈ ∂τ . Then by the definition of

the coarse distance function, d∆w(∗,Ψw(p, t
′)) ≤ d∆w(∗,Ψw(p, t)) +

3
4
≤ n+ 3

4
.

Now choose s′ ∈ [0, 1] such that s′ ≤ s in the following way. If Ψw(p, s) ∈ ∆
(1)
w ,

let s′ = s. Otherwise, let σ be the 2-cell with Ψw(p, s) in its interior. Since ∗ ∈ ∆
(1)
w ,

and Ψw(p, ·) is continuous, there is some s′ < s such that Ψw(p, s
′) ∈ ∂σ. Now there

are at most ρ 1-cells and ρ vertices in ∂σ. Suppose q is a point in ∂σ with maximum

coarse distance from ∗. Then d∆w(∗, q) ≥ d∆w(∗,Ψw(p, s)) +
1
4
. Now, there is a path

in ∂σ from q to Ψw(p, s
′) that passes through at most ρ 1-cells not containing q and

ρ vertices not equal to q. At each step from a vertex to the interior of a 1-cell or the

interior of a 1-cell to a vertex, the coarse distance changes by 1
2
. Since there are at
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most ρ such steps from q to Ψw(p, s
′),

d∆w(∗,Ψw(p, s
′)) ≥ d∆w(∗, q)−

ρ

2
≥ d∆w(∗,Ψw(p, s)) +

1

4
− ρ

2
.

But since Ψw is graph f -tame, s′ ≤ t′, and d∆w(∗,Ψw(p, t
′)) ≤ n + 3

4
, we know that

d∆w(∗,Ψw(p, s
′)) ≤ f

(
n+ 3

4

)
. This and the above inequality imply that

d∆w(∗,Ψw(p, s)) ≤ f

(
n+

3

4

)
+
ρ

2
− 1

4
= g(n).

So Ψw is g-tame for all such w. Therefore, g is an intrinsic tame filling function

for ⟨A|R⟩.

Theorem 2.4.4. Given a finite presentation P = ⟨A|R⟩ such that for all a ∈ A, a

is not equal to the identity, there is an intrinsic tame filling function for P that is

equivalent to the intrinsic diameter function of P.

Proof. Define f : N[1
4
] → N[1

4
] by

f(n) = IDiam(⌈2n+ 1⌉) + n+MP + 1.

Note that f is strictly increasing, since IDiam is an increasing function. Note also

that f is equivalent to IDiam. We will show that f is an intrinsic graph tame filling

function, and then apply Lemma 2.4.3.

Let w =G 1 and let ∆0 be any van Kampen diagram for w. Let T0 be a tree of

∆0-geodesics out of ∗ and let ΨT0 be a 1-combing of (∆0, ∂∆0) based at ∗ respecting

T0. We will construct a sequence (∆0, T0,ΨT0), (∆1, T1,ΨT1), . . . , (∆n, Tn,ΨTn) where
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each ∆i is a van Kampen diagram for w, each Ti is a spanning tree of ∆i-geodesics

out of ∗, and each ΨTi
is a 1-combing of (∆i, ∂∆i) respecting Ti, and then show that

ΨTn is graph f -tame.

Given that we have constructed ∆i, Ti, and ΨTi
, if ΨTi

is graph f -tame, then n = i

and we are done. Otherwise, construct ∆i+1, Ti+1, and ΨTi+1
as follows. We will start

with the construction of ∆i+1 by finding 1-cells in ∆i whose Ti-icicles contain points

too far away from ∗ for ΨTi
to be f -tame. We will then replace the bodies of these

icicles in ∆i with diagrams that have smaller diameter using Proposition 2.3.3; the

resulting diagram will be ∆i+1.

Recall the definition of the points prior to x in a 1-combing Ψ of the pair (C,D):

P (Ψ, x) = {y ∈ C|there is p ∈ D and 0 ≤ s ≤ t ≤ 1 with Ψ(p, t) = x and Ψ(p, s) = y}.

For x ∈ ∆
(1)
i , let

Mi(x) = max{d∆i
(∗, y)|y ∈ ∆

(1)
i ∩ P (ΨTi

, x)},

the largest distance from ∗ that occurs in the 1-skeleton prior to x in ΨTi
. Note that,

since ΨTi
is not graph f -tame, there exists x ∈ ∆

(1)
i such that Mi(x) > f(d∆i

(∗, x)).

Then let

Ni = max{d∆i
(∗, x)|x ∈ ∆

(1)
i and Mi(x) > f(d∆i

(∗, x))}.

Note that this maximum exists, since ∆i is a finite complex, and therefore distances

in the complex are bounded. Also note that if x ∈ Ti and ΨTi
(p, t) = x, since ΨTi

respects Ti, we have that for all s ≤ t, ΨTi
(p, s) is on the simple path in Ti from ∗ to

x. Since this path is a ∆i-geodesic, every point prior to x is at least as close to ∗ as

x, so Mi(x) = d∆i
(∗, x) < f(d∆i

(∗, x)). Hence, if d∆i
(∗, x) = Ni and Mi(x) > f(Ni),
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then x ̸∈ Ti.

Therefore, let

Ei = {e ∈ E(∆i \ Ti)|d∆i
(∗, e) = Ni and there exists x ∈ e such that Mi(x) > f(Ni)} .

Define a partial order ≤i on Ei by e ≤i e
′ if and only if e is contained in the Ti-icicle at

e′ (and therefore the Ti-icicle at e is contained in the Ti-icicle at e′ by Lemma 2.1.3).

Let Fi ⊆ Ei be the set of maximal elements of Ei with respect to ≤i. Let Fi =

{e1, . . . , emi
}. It is the bodies of the Ti-icicles at these 1-cells that we will replace to

construct ∆i+1.

For each j = 1, . . . ,mi, let Ij be the Ti-icicle at ej and let Dj be the body of Ij.

Let αj be the tail of Ij, and let ∗j be the vertex at which the tail and body of Ij

meet. Let xj and yj be the endpoints of ej and let e⃗j be the directed edge from xj

to yj corresponding to ej. Let βxj
and βyj be the unique simple paths in T from ∗j

to xj and yj, respectively. Let γj = βxj
· e⃗j · βyj . Note that γj is a simple circuit that

bounds Dj. Let wj be the word labeling γj. Then we may consider Dj to be a van

Kampen diagram for wj with basepoint ∗j.

Since we know that Dj is simply bounded, let D′
j be a simply and geodesically

bounded van Kampen diagram for wj such that

IDiam(D′
j) ≤ max

(
IDiam(ℓ(wj)),

⌊
ℓ(wj)

2

⌋
+MP

)
,

as is guaranteed to exist by Proposition 2.3.3.

Let

∆̂i = ∆i \
⋃

j∈[mi]

int(Dj).

Note that since each e ∈ Fi is maximal in ≤i, for distinct 1-cells e, e′ ∈ Fi, the
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Figure 2.11: Constructing ∆i+1 and Ti+1

interiors of the Ti-icicles at e and e′ do not intersect by Lemma 2.1.3. So if k ̸= j,

Dk ∩ int(Dj) = ∅ in ∆i. Therefore, for each j ∈ [mi], ∂Dj ⊆ ∆̂i.

Construct ∆i+1 from ∆̂i by gluing the basepoint of D′
j to ∗j and then gluing the

boundary of D′
j to γj, gluing vertices to vertices and 1-cells to 1-cells with the same

labels, for each j ∈ [mi], as depicted in Figure 2.11. Let

qi : ∆̂i ⊔
⊔

j∈[mi]

D′
j → ∆i+1

be the corresponding quotient map. Note that, since each Dj and D′
j are simply

bounded, qi does not identify 1-cells or vertices that were distinct in ∆i, or in any

D′
j. As a result, ∆i+1 is planar and simply connected. Since we have only replaced a

subset of the interior of ∆i, ∆i+1 is still a van Kampen diagram for w.

We now move on to the construction of Ti+1. Let T̂i = Ti ∩ ∆̂i. Ti+1 will be an

extension of qi(T̂i). I claim that T̂i is a spanning tree of ∆̂i. Note that since Ti is a
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tree and T̂i ⊆ Ti, there are no simple circuits in T̂i. Also, since Ti is a spanning tree

of ∆i, T̂i contains every vertex in ∆̂i. So we only need to show that T̂i is connected.

It suffices to show that, for every p ∈ ∆̂i

(0)
, there is a path from ∗ to p in T̂i. Let η be

the unique simple path from ∗ to p in Ti. Suppose that for some j ∈ [mi], η intersects

Dj. Then let q be the last vertex of η that is in Dj. Since p ̸∈ int(Dj), we know that

q ∈ ∂Dj. Without loss of generality, assume that q lies on the simple path from ∗ to

xj in Ti. Therefore, the segment of η from ∗ to q is contained in the path from ∗ to

xj in Ti, which does not intersect int(Dj). Since q is the last vertex of η in Dj, this

implies that η does not intersect int(Dj). Therefore, η ⊆ T̂i.

Figure 2.12: Constructing a ∆i+1-geodesic η to stay inside ∆̂i longer than γ.

I also claim that qi(T̂i) is a tree of ∆i+1-geodesics out of ∗. Since T̂i is a tree

of ∆̂i-geodesics out of ∗, it is sufficient to show that for every x ∈ ∆̂i

(0)
, we have

that d∆̂i
(∗, x) ≤ d∆i+1

(∗, qi(x)). Suppose by way of contradiction that there is some

x ∈ ∆̂i

(0)
such that no ∆i+1-geodesic from ∗ to qi(x) is contained in qi(∆̂i). Since

∗ ∈ qi(∆̂i), each ∆i+1-geodesic from ∗ to qi(x) has some initial segment contained

in qi(∆̂i). Let γ be a ∆i+1-geodesic from ∗ to qi(x) having the longest such initial

segment. Let α be this initial segment of γ, and let p be its endpoint. Let q be the
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next vertex in qi(∆̂i) on γ after p, let β be the segment of γ from p to q, and let ω be

the final segment of γ from q to qi(x). Note that by assumption p ̸= q, so |β| ≥ 1 and

all but the endpoints of β are not contained in qi(∆̂i). Hence, β ⊆ qi(D
′
j) for some

j ∈ [m] and p, q ∈ qi(∂D
′
j). Let δ be the simple path from ∗ to qi(∗j) in qi(T̂i) and

let ϵ be the simple path from qi(∗j) to p in qi(T̂i). Finally, since D′
j is geodesically

bounded, there is a qi(D
′
j)-geodesic ζ from qi(∗j) to q in qi(∂D

′
j). See Figure 2.12.

Now let η = δ · ζ · ω. Note that |α| = |δ · ϵ|, since δ · ϵ is the simple path from ∗ to p

in qi(T̂i), and therefore a qi(∆̂i)-geodesic from ∗ to p. Also, |ϵ · β| ≥ |ζ|, since ϵ · β is

a path from ∗j to q in qi(D
′
j). Therefore,

|γ| = |α · β · ω| = |δ · ϵ · β · ω| ≥ |δ · ζ · ω| = |η|.

Hence, η is also a ∆i+1-geodesic from ∗ to x. Now, the initial segment of η contained

in qi(∆̂i) contains δ · ζ, a ∆i+1-geodesic from ∗ to q. Since α ·β is also a ∆i+1-geodesic

from ∗ to q and |β| ≥ 1, we have that δ · ζ is strictly longer than α. So η’s initial

segment inside qi(∆̂i) is longer than that of γ. This contradicts the way that γ was

chosen. Therefore, for all x ∈ ∆̂i

(0)
, there is a ∆i+1-geodesic from ∗ to qi(x) contained

in qi(∆̂i). So d∆̂i
(∗, x) ≤ d∆i+1

(∗, qi(x)) as desired.

Finally, let Ti+1 be an extension of qi(T̂i) to a geodesic spanning tree of ∆i+1.

Now we will choose ΨTi+1
to be a particular 1-combing of (∆i+1, ∂∆i+1) based at ∗

respecting Ti+1, as guaranteed to exist by Proposition 2.2.2. I claim that we may

construct ΨTi+1
such that, for all x ∈ ∂∆i and t ∈ [0, 1] with ΨTi+1

(qi(x), [t, 1]) ⊂

qi(∆̂i), there exists t
′ ∈ [0, 1] such that ΨTi+1

(qi(x), [t, 1]) = qi(ΨTi
(x, [t′, 1])). In other

words, the images of the combing paths of qi ◦ ΨTi
and ΨTi+1

agree on end portions

that stay in qi(∆̂i). This will be useful for showing that ΨTi+1
retains the progress

that ΨTi
has made towards achieving f -tameness.
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To choose ΨTi+1
in this way, recall that the images of individual combing paths of

the 1-combings constructed in Section 2.2 are determined by the bijection θT between

1-cells outside of the spanning tree T and 2-cells, as well as a choice of homeomorphism

from each 2-cell σ to D2 that maps the edge θ−1
T (σ) to S1

+. Since we chose Ti+1 to

agree with qi(Ti) on ∆̂i, for any 1-cell e ∈ E(∆̂i \ Ti), we have that qi(e) ̸∈ Ti+1 and

qi(∂Ie) = ∂Iqi(e). Therefore, for any 2-cell σ ⊆ ∆̂i, if σ ⊆ Ie, then qi(σ) ⊆ Iqi(e).

Hence,

qi ◦ θTi
|E(∆̂i\Ti)\Fi

= θTi+1
◦ qi|E(∆̂i\Ti)\Fi

.

As a result, for each 2-cell σ ⊆ ∆̂i, if ϕσ : σ → D2 is the homeomorphism chosen for σ

in the construction of ΨTi
, we may choose ϕqi(σ) = ϕσ◦(qi|σ)−1 as the homeomorphism

from qi(σ) to D2 in the construction of ΨTi+1
. Figure 2.13 represents this choice of

ϕqi(σ) pictorially. Having chosen these homeomorphisms, the images of the combing

paths of ΨTi+1
on qi(∆̂i) are determined, and we are free to make any other choices

necessary to finish the construction of ΨTi+1
as in Section 2.2.

Figure 2.13: Choosing ϕqi(σ) for a 2-cell σ in ∆̂i. The lighter curves depict some
combing paths of ΨTi

and their images. As a result of this choice, the combing paths
of ΨTi+1

on qi(σ) will agree with those of qi ◦ΨTi
.

Having chosen ΨTi+1
, let x ∈ ∂∆i and t ∈ [0, 1] with ΨTi+1

(qi(x), [t, 1]) ⊂ qi(∆̂i).
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We need to show that there exists t′ ∈ [0, 1] such that ΨTi+1
(qi(x), [t, 1]) = qi(ΨTi

(x, [t′, 1])).

By Lemma 2.2.3, we know there exists a sequence 1 ≥ t1 > · · · > tm+1 > tm+2 =

0 and a sequence of 1-cells e1, e2, . . . , em in ∆i+1 \ Ti+1 such that, if we let xj =

ΨTi+1
(qi(x), tj) and σj = θTi+1

(ej), we have that

� ΨTi+1
(qi(x), [0, tm+1]) is the simple path from ∗ to xm in Ti+1,

� ΨTi+1
(qi(x), [t1, 1]) = {qi(x)}, and

� for all j ∈ [m],

– xj ∈ int(ej),

– tj = min{s ∈ [0, 1]|ΨTi+1
(qi(x), s) = xj}, and

– ΨTi+1
(qi(x), [tj+1, tj]) = ϕ−1

σj
(h(ϕσj

(xj), [0, 1])).

Similarly, there is a sequence 1 ≥ t′1 > · · · > t′l+1 > t′l+2 = 0 and a sequence of

1-cells e′1, e
′
2, . . . , e

′
l in ∆i \ Ti such that, if we let x′j = ΨTi

(x, t′j) and σ
′
j = θTi

(e′j), we

have that

� ΨTi
(x, [0, t′m+1]) is the simple path from ∗ to x′m in Ti,

� ΨTi
(x, [t′1, 1]) = {x}, and

� for all j ∈ [l],

– x′j ∈ int
(
e′j
)
,

– t′j = min{s ∈ [0, 1]|ΨTi
(x, s) = x′j}, and

– ΨTi
(x, [t′j+1, t

′
j]) = ϕ−1

σ′
j
(h(ϕσ′

j
(x′j), [0, 1])).
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Figure 2.14: The situation at step j of the induction, demonstrating that
ΨTi+1

(qi(x), [tj, 1]) = qi(ΨTi
(x, [t′j, 1])).

If t1 ≤ t ≤ 1, then we may simply let t′ = 1. Then

ΨTi+1
(qi(x), [t, 1]) = {qi(x)} = qi(ΨTi

(x, [t′, 1])).

Otherwise, there is some k ∈ [m+1] such that tk+1 ≤ t < tk. For j ∈ [k], suppose by

induction that ΨTi+1
(qi(x), [tj−1, 1]) = qi(ΨTi

(x, [t′j−1, 1])) and that xj−1 = qi(x
′
j−1).

This setup is shown in Figure 2.14. Then ej−1 = qi(e
′
j−1). Since θTi+1

(ej−1) =

σj−1 and tj−1 is the smallest time with ΨTi+1
(qi(x), tj−1) = xj−1, we must have that

int(σj−1) ∩ ΨTi+1
(qi(x), [tj, tj−1]) ̸= ∅. We know that ΨTi+1

(qi(x), [tj, tj−1]) ⊆ qi(∆̂i),

so we must have σj−1 ⊆ qi(∆̂i). Hence,

σj−1 = θTi+1
(ej−1) = θTi+1

(qi(e
′
j−1)) = qi(θTi

(e′j−1)) = qi(σ
′
j−1).

Then since we chose ϕσj−1
= ϕσ′

j−1
◦ (qi|σ′

j−1
)−1 in the construction of ΨTi+1

,
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ΨTi+1
(qi(x), [tj, tj−1]) = ϕ−1

σj−1
(h(ϕσj−1

(xj−1), [0, 1]))

= qi(ϕ
−1
σ′
j−1

(h(ϕσ′
j−1

(x′j−1), [0, 1])))

= qi(ΨTi
(x, [t′j, t

′
j−1])).

Combining this result with the induction hypothesis gives that

ΨTi+1
(qi(x), [tj, 1]) = qi(ΨTi

(x, [t′j, 1])).

Also,

xj = ΨTi+1
(qi(x), tj) = ϕ−1

σj−1
(h(ϕσj−1

(xj−1), 1))

= qi(ϕ
−1
σ′
j−1

(h(ϕσ′
j−1

(x′j−1), 1)))

= qi(ΨTi
(x, t′j)) = qi(x

′
j).

This completes the induction, establishing that ΨTi+1
(qi(x), [tk, 1]) = qi(ΨTi

(x, [t′k, 1]))

and that xk = qi(x
′
k).

Suppose k ≤ m. Since xk = qi(x
′
k), we again know that ek = qi(e

′
k). Now since

tk = min{s ∈ [0, 1]|ΨTi+1
(qi(x), s) = xk} and t < tk, we know that ΨTi+1

(qi(x), t) ̸= xk.

Hence, ΨTi+1
(qi(x), [t, tk]) contains a point in int(σk). Just as above, this implies that

σk = qi(σ
′
k) and therefore ϕσk

= ϕσ′
k
◦ (qi|σ′

k
)−1. Hence,
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ΨTi+1
(qi(x), [t, tk]) = ϕ−1

σk
(h(ϕσk

(xk−1), [0, s])), for some s ∈ (0, 1],

= qi(ϕ
−1
σ′
k
(h(ϕσ′

k
(x′k−1), [0, s])))

= qi(ΨTi
(x, [t′, t′k])),

where t′ ∈ [t′k+1, t
′
k) such that ϕσ′

k
(ΨTi

(x, t′)) = h(ϕσ′
k
(x′k−1), s) = ϕσk

(ΨTi+1
(qi(x), t)).

If instead k = m + 1, then ΨTi+1
(qi(x), [0, tk]) is the unique simple path from

xm+2 = ∗ to xm+1 in Ti+1, and y := ΨTi+1
(qi(x), t) is a point along that path. Since

xm+1 ∈ qi(∆̂i) and we chose Ti+1 ⊆ qi(T̂i), we have that ΨTi+1
(qi(x), [0, tk]) ⊆ qi(∆̂i).

Let y′ = (qi|∆̂i
)−1(y). Again since Ti+1 ⊆ qi(T̂i), we have that y′ is on the unique

simple path from ∗ to x′m+1, so y′ ∈ ΨTi
(x, [0, t′k]). So let t′ ∈ [0, t′k] such that

ΨTi
(x, t′) = y′. Then ΨTi+1

(qi(x), [t, tk]) = qi(ΨTi+1
(x, [t′, t′k])).

So in either case, there is some t′ ∈ [t′k+1, t
′
k] such that

ΨTi+1
(qi(x), [t, tk]) = qi(ΨTi+1

(x, [t′, t′k])).

Therefore,

ΨTi+1
(qi(x), [t, 1]) = ΨTi+1

(qi(x), [t, tk]) ∪ΨTi+1
(qi(x), [tk, 1])

= qi(ΨTi
(x, [t′, t′k])) ∪ qi(ΨTi

(x, [t′k, 1]))

= qi(ΨTi
(x, [t′, 1])).

So ΨTi+1
has the desired property.

Our aim will now be to show that, if ΨTi+1
is not graph f -tame, then Ni+1 < Ni.
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Recall that Ni is the greatest distance from the basepoint of any x ∈ ∆
(1)
i such that x

demonstrates that ΨTi
is not f -tame, i.e., such that there is a point y prior to x in ΨTi

with d∆i
(∗, y) > f(d∆i

(∗, x)). If the sequence N is strictly decreasing, then at some

point there will be no such x, and we will be left with a graph f -tame 1-combing.

Recall that each ej is a 1-cell in ∆i such that points in the interior of ej are a

distance Ni away from ∗ and there is a point prior to ej—and therefore, in the icicle

at ej—of distance greater than f(Ni) away from ∗. I claim that these obstructions

to f -tameness have been removed in ∆i+1: that for each j ∈ [mi], every y ∈ ∆
(1)
i+1 in

the Ti+1-icicle at qi(ej) has d∆i+1
(∗, y) ≤ f(Ni).

For j ∈ [mi], we know that

IDiam(D′
j) ≤ max

(
IDiam(ℓ(wj)),

⌊
ℓ(wj)

2

⌋
+MP

)
.

Now recall that αj is the tail of the icicle at ej and that γj = βxj
· e⃗j · βyj bounds

the body of that icicle. Also recall that Ni ∈ N
[
1
2

]
. Since d∆i+1

(∗, qi(ej)) = Ni and

qi(αj ·βxj
) and qi(αj ·βyj) are ∆i+1-geodesics, |αj ·γj ·αj| = |αj ·βxj

·e⃗j ·βyj ·αj| ≤ 2Ni+1.

So ℓ(wj) = |γj| ≤ 2Ni + 1− 2|αj|. Therefore,

max

(
IDiam(ℓ(wj)),

⌊
ℓ(wj)

2

⌋
+MP

)
≤ IDiam(ℓ(wj)) +

⌊
ℓ(wj)

2

⌋
+MP

≤ IDiam(2Ni + 1− 2|αj|) +
⌊
2Ni + 1− 2|αj|

2

⌋
+MP

≤ IDiam(2Ni + 1) +Ni +
1

2
− |αj|+MP .

Now let y′ be a vertex in the Ti+1-icicle at qi(ej) in ∆i+1. If y
′ is on the simple path

from ∗ to qi(∗j) in Ti+1, then d∆i+1
(∗, y′) ≤ Ni. Otherwise, since qi(∗j) is on the
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simple path from ∗ to y′ in Ti+1,

d∆i+1
(∗, y′) = d∆i+1

(∗, qi(∗j)) + d∆i+1
(qi(∗j), y′)

≤ |αj|+ IDiam(D′
j)

≤ |αj|+ IDiam(2Ni + 1) +Ni +
1

2
− |αj|+MP

= IDiam(2Ni + 1) +Ni +
1

2
+MP = f(Ni)−

1

2
.

Every point on a 1-cell in the icicle has coarse distance differing by 1
2
from some vertex

in the icicle, so for all y ∈ ∆
(1)
i+1 in the Ti+1-icicle at qi(ej),

d∆i+1
(∗, y) ≤ max

(
Ni +

1

2
, f(Ni)

)
= f(Ni) (2.4.1)

Now if ΨTi+1
is not graph f -tame, then there exists some x ∈ ∆

(1)
i+1 such that

Mi+1(x) > f(d∆i+1
(∗, x)). Then let p ∈ ∂∆i+1 and s, t ∈ [0, 1] such that s < t,

ΨTi+1
(p, t) = x, y := ΨTi+1

(p, s) ∈ ∆
(1)
i+1, and d∆i+1

(∗, y) = Mi+1(x). I claim that

d∆i+1
(∗, x) < Ni, which will be sufficient to show that Ni+1 < Ni. We will prove this

by considering two cases.

Case 1: y is in the Ti+1-icicle at qi(ej) for some j ∈ [mi]. Then by inequality 2.4.1,

d∆i+1
(∗, y) ≤ f(Ni). Since we chose x and y such that f(d∆i+1

(∗, x)) < Mi+1(x) =

d∆i+1
(∗, y), this shows that f(d∆i+1

(∗, x)) < f(Ni). Since f is a strictly increasing

function, this implies that d∆i+1
(∗, x) < Ni.

Case 2: y is not in a Ti+1-icicle at qi(ej) for any j ∈ [mi]. Then since ΨTi+1
respects

Ti+1, we know that for all r ∈ [s, 1], ΨTi+1
(p, r) is also not in the Ti+1-icicle at qi(ej) for

any j ∈ [mi]. So ΨTi+1
(p, [s, 1]) ⊆ qi(∆̂i). Based on the way that we chose ΨTi+1

such

that its combing paths agree with those of qi ◦ΨTi
on qi(∆̂i), we know that there exist

p′ ∈ ∂∆i and s′ ∈ [0, 1] such that qi(ΨTi
(p′, [s′, 1])) = ΨTi+1

(p, [s, 1]). In particular,
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qi(p
′) = p, qi(ΨTi

(p′, s′)) = y, and there exists t′ ∈ [s′, 1] such that qi(ΨTi
(p′, t′)) = x.

For ease of notation, let y′ = ΨTi
(p′, s′) and let x′ = ΨTi

(p′, t′). Now we know that

d∆i
(∗, x′) = d∆i+1

(∗, x) and d∆i
(∗, y′) = d∆i+1

(∗, y). Since y′ ∈ P (ΨTi
, x′), we have

that

Mi(x
′) ≥ d∆i

(∗, y′) = d∆i+1
(∗, y) =Mi+1(x) > f(d∆i+1

(∗, x)) = f(d∆i
(∗, x′)).

This implies that d∆i
(∗, x′) ≤ Ni, by the definition of Ni. But if d∆i

(∗, x′) = Ni,

then x′ would be on some 1-cell in Ei, and therefore in the Ti-icicle at ej for some

j ∈ [mi]. Since Ti+1 ∩ qi(∆̂i) = qi(T̂i), this would imply that x is in the Ti+1-icicle

at qi(ej), which is a contradiction. Therefore, d∆i+1
(∗, x) = d∆i

(∗, x′) < Ni. This

concludes case 2 and proves that d∆i+1
(∗, x) < Ni.

Since Ni+1 is the maximum of d∆i+1
(∗, x) for all such x, this implies that Ni+1 <

Ni. But for all i such that Ni is defined, Ni > 0. Therefore, this sequence (∆i, Ti,ΨTi
)

must end. Based on the way the sequence was constructed, this implies that for some

n ∈ N, ΨTn is graph f -tame. Since w was an arbitrary word with w =G 1 and there

exists a van Kampen diagram ∆n for w with a graph f -tame 1-combing, f is an

intrinsic graph tame filling function for ⟨A|R⟩. Then by Lemma 2.4.3, f is equivalent

to an intrinsic tame filling function for P . Since this equivalence of functions is

transitive, there is an intrinsic tame filling function for P that is equivalent to IDiam.

Remark. Unfortunately, a similar proof strategy for the extrinsic version of this the-

orem would fall apart. It is necessary to choose the spanning trees Ti to be trees of

∆i-geodesics out of ∗. The fact that the paths used are ∆i-geodesics is crucial to

attain inequality 2.4.1. Reformulating this inequality for the extrinsic case would

require paths that are geodesics in the Cayley graph, since extrinsic diameter is mea-
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sured using distance in the Cayley graph. Since it is known that the intrinsic diameter

functions of some groups grow strictly faster then their extrinsic diameter functions,

it is not possible in general to find van Kampen diagrams with spanning trees of Cay-

ley graph geodesics. In fact, in the extrinsic case, it is not even clear if it is possible

in general to find a filling with an f -tame path to each vertex of each diagram, no

matter how fast the function f grows; in the intrinsic case, optimally tame paths to

each vertex are simply handed to us in the form of geodesics in the diagram.
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Chapter 3

Aggregate Variation Functions

Given that intrinsic tame filling functions do not provide a proper refinement of the

invariant given by intrinsic diameter functions, we are left with the question of whether

or not there is any way to refine this invariant by measuring something along the same

lines as intrinsic tame filling functions. This statement is intentionally vague, given

that an intuitive sense of “what intrinsic tame filling functions measure” is rather

subjective. In this chapter, we focus on the notion of a van Kampen diagram as

a terrain with elevation represented by distance from the basepoint. We will view

intrinsic tame filling functions as measuring the “hilliness” of the terrain, and consider

ways of getting more detailed information about the geography of the terrain to see

if we can distinguish between more groups.

3.1 Motivation and Definitions

Although a 1-combing of a van Kampen diagram does have a combing path that

travels up and down every hill in the diagram, tame filling functions only tell us how

“bad” individual hills can be. One way to try to get more information about the

hilliness of a van Kampen diagram is to consider all the hills together and sum the

change in elevation that would be required to travel up all of them. We will call this
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sum the aggregate variation of a van Kampen diagram (once it has been formally

defined).

In order to formalize this notion into an actual definition, we need some way of

identifying hills within a van Kampen diagram. To do so, we will first define a way to

draw “contour lines” on a van Kampen diagram to turn it into a topographic map.

Since these “contour lines” can split into multiple branches, we will refer to them as

contour graphs.

Let ∆ be a van Kampen diagram and let h : ∆(0) → Z be a function such that, if

x, y ∈ ∆(0) are adjacent, then |h(x)− h(y)| ≤ 1. (For example: given a basepoint ∗,

we could define h(x) to be the length of the shortest edge path from ∗ to x.) We will

call such a function h a height function on ∆. Extend h to a function h̃ : ∆(1) → Z[1
2
]

in the following way. For x ∈ ∆(1) \∆(0), let u and v be the endpoints of the 1-cell

containing x. Then define h̃(x) = min(h(u), h(v)) + 1
2
.

For each 2-cell σ of ∆, let ϕσ : D2 → ∆ be the characteristic map of σ—the map

that restricts to the attaching map of σ on ∂D2. From the definition of van Kampen

diagram, we are assuming that ϕσ is a homeomorphism. Given x, y ∈ ϕ−1
σ (∂σ(0)) with

h̃(ϕσ(x)) = h̃(ϕσ(y)) =: n, we will say that x and y are contour partners if there is a

path γ from x to y in ∂D2 such that for all z ̸= x, y on γ, we have h̃(ϕσ(z)) < n. If

x and y are contour partners, then let s be the line segment in D2 connecting x and

y. Then we will call s a contour segment between x and y, and we will call ϕσ(s) a

contour path between ϕσ(x) and ϕσ(y) in σ. Note that x and y are not necessarily

distinct, and as a result every 0-cell of ∆ that is contained in some 2-cell is itself a

contour path. In fact, we will consider every 0-cell to be a contour path, even if it is

not contained in any 2-cell.

Intuitively, two vertices of a 2-cell will be connected by a contour path if they

share the same height and one side of the 2-cell is “downhill” from both of them. For
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example, Figures 3.1a and 3.1b both show vertices p and q of a 2-cell that have the

same height of 10. In Figure 3.1a, every vertex between p and q on the left side of the

2-cell is below their shared height. We interpret this to mean that this left side of the

2-cell is downhill from some path connecting p and q. The contour path connecting

p and q represents the path along this hill that runs perpendicular to the hill’s slope

and stays at a constant height of 10. In Figure 3.1b, however, neither side of the

2-cell stays below a height of 10; p and q are cut off from each other on each side by a

vertex of height 12. We interpret this to mean that there is a ridge of height 12 that

runs through the 2-cell, separating p and q. Therefore, we would not expect p and q

to be connected by a contour line that goes through this 2-cell, so we do not draw a

contour path between them.

(a) p and q have the same height and are
connected by a contour path.

(b) p and q have the same height but are
separated by a ridge.

Figure 3.1: Contour path interpretations.

Let P be the union of all the contour paths in ∆. Each path component of P is

called a contour graph of the pair (∆, h). Let ∆̂ = ∆\P . Each path component of ∆̂

is called a contour component of the pair (∆, h). Note that since each 0-cell of ∆ is

itself a contour path, every 0-cell is part of some contour graph, even if that contour

graph is composed only of that one 0-cell.

Finally, extend h̃ to a function ĥ : ∆ → N[1
2
] in the following way. Let z′ ∈ int(σ)

for some 2-cell σ. Since ϕσ is a homeomorphism onto σ, let z = ϕ−1
σ (z′). If z is
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on a contour segment connecting contour partners x and y, define ĥ(z′) = h(ϕσ(x)).

Otherwise, let Sσ be the union of all contour segments between contour partners in

ϕ−1
σ (σ), let D̂2

σ = D2 \ Sσ, and let Cz be the path component of D̂2
σ containing z. If

there is some x ∈ Cz ∩ ∂D2, then define ĥ(z′) = h̃(ϕσ(x)). Otherwise, ∂Cz is made

up entirely of contour segments. So let x and y be any pair of contour partners such

that the contour segment joining them is in ∂Cz, and define ĥ(z′) = h(ϕσ(x)) +
1
2
.

Proposition 3.1.1. ĥ is well-defined.

Proof. We will first show that contour segments can only intersect each other at their

endpoints. Suppose by way of contradiction that two contour segments of σ, s1 and

s2, do cross somewhere between their endpoints. Then let x1, y1, x2, y2 ∈ ∂D2 with

x1 and y1 the endpoints of s1 and x2 and y2 the endpoints of s2. The fact that s1 and

s2 cross implies that x1 and y1 are on opposite sides of s2 and that x2 and y2 are on

opposite sides of s1.

Now for i ∈ {1, 2}, since si is a contour segment, we must have that h(ϕσ(xi)) =

h(ϕσ(yi)) =: ni, and there must exist a path γi in ∂D2 from xi to yi such that, for

all z ̸= xi, yi on γi, we have h̃(ϕσ(z)) < ni. Suppose without loss of generality that

n1 ≤ n2. Now since x1 and y1 are on opposite sides of s2, we must have that one

of x2 and y2 is on γ1. Since h(ϕσ(x2)) = h(ϕσ(y2)) = n2 ≥ n1, this contradicts the

property of γ1 stated above. So contour segments only meet at their endpoints.

This shows that ĥ is well-defined on contour graphs, since no z ∈ int(D2) can be

on two different contour segments of σ.

This also implies that ĥ(z′) is well-defined in the case where there is no path in

D̂2
σ from z to ∂D2. For if ∂Cz is a union of contour segments, and contour segments

only meet at their endpoints, then ∂Cz is a polygon such that each vertex maps to a

0-cell of σ. Since contour segments only connect endpoints with the same height in
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σ, every vertex of ∂Cz maps to a 0-cell with the same height.

Figure 3.2: An example of the contradiction if h̃(ϕσ(x)) ̸= h̃(ϕσ(y)). The path

component Cz of D̂2
σ is shaded.

Finally, suppose z ∈ D̂2
σ and the path component Cz of D̂2

σ containing z intersects

∂D2. See Figure 3.2 for an example diagram of this case. Suppose by way of contra-

diction that there exist x, y ∈ Cz ∩ ∂D2 with h̃(ϕσ(x)) ̸= h̃(ϕσ(y)). Assume without

loss of generality that h̃(ϕσ(x)) < h̃(ϕσ(y)). Note that ϕσ(x), ϕσ(y) ∈ ∆(1) ∩ ϕσ(D̂2
σ),

and ϕσ(D̂2
σ) does not contain any 0-cells because every 0-cell is contained in a contour

path. So ϕσ(x) and ϕσ(y) are each contained in the interior of a 1-cell. Therefore,

there is some n ∈ N with h̃(ϕσ(x)) < n < h̃(ϕσ(y)). Let x′1 and x′2 be the endpoints

of the 1-cell containing ϕσ(x) such that h(x′1) ≤ h(x′2) and let y′1 and y′2 be the end-

points of the 1-cell containing ϕσ(y) such that h(y′1) ≤ h(y′2). Note that this implies

that h(x′1) = h̃(ϕσ(x)) − 1
2
< n, and that h(y′1) = h̃(ϕσ(y)) − 1

2
≥ n. Since ϕσ is a

homeomorphism, let x1 = ϕ−1
σ (x′1), x2 = ϕ−1

σ (x′2), y1 = ϕ−1
σ (y′1), and y2 = ϕ−1

σ (y′2).

Let α1 be the path in ∂D2 from x1 to y1 not containing x2 and let α2 be the path in
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∂D2 from x1 to y1 containing x2. Let z1 be the first point on α1 with h(ϕσ(z1)) = n

and let z2 be the first point on α2 with h(ϕσ(z2)) = n; these points must exist be-

cause the value of h can only differ by at most 1 between adjacent 0-cells and because

h(x′1) < n ≤ h(y′1). Let β1 be the initial segment of α1 from x1 to z1 and let β2 be

the initial segment of α2 from x1 to z2. Then γ = β1 · β2 is a path in ∂D2 from z1

to z2 such that for all z3 ̸= z1, z2 on γ, we have h̃(ϕσ(z3)) < n. Therefore, z1 and

z2 are contour partners and there is a contour segment s that connects them. Now

note that y cannot be on β1 or β2 because n ≤ h(y′1), h(y
′
2), and x must be on β2

because h(x′1) < n. So if s is the line segment connecting z1 and z2, then x and y are

on opposite sides of s. This contradicts the fact that x and y are in the same path

component of D̂2
σ. Therefore, for all x, y ∈ Cz ∩ ∂D2, we have h̃(ϕσ(x)) = h̃(ϕσ(y)).

Remark 3.1.2. Note that the fact that the contour segments of a given 2-cell only

meet at their endpoints implies that contour paths can only meet at their endpoints.

Therefore, every point in a given contour graph has the same height. Similarly,

contour components are made up of subsets of 2-cells that can only meet each other

at the interior of 1-cells, implying that every point in a given contour component has

the same height.

It is convenient at this point to prove the following lemma, which will be useful

later on. It confirms that contour graphs work similarly to the way we expect contour

lines on a topographic map to behave, in that they always separate points of different

elevations.

Lemma 3.1.3. Let ∆ be a van Kampen diagram. If x, y ∈ ∆ and n ∈ N0 with

ĥ(x) ≤ n ≤ ĥ(y), then every path from x to y contains a point of height n.
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Proof. Let x, y ∈ ∆ and n ∈ Z with ĥ(x) ≤ n ≤ ĥ(y). Let γ : [0, 1] → ∆ be a path

from x to y. Note that every contour path of ∆ is either a single point (which is closed

in ∆), or a continous image in ∆ of a line segement from D2. Since line segments in

D2 are closed and bounded, and therefore compact, so are the continuous images of a

line segment. In particular, every contour path is closed in ∆, and since van Kampen

diagrams have finitely many 0-cells, they have finitely many contour paths. So every

contour graph is closed in ∆, as is P , since each of these is a finite union of closed

sets.

Let A = {t ∈ [0, 1]|γ(t) ∈ P ∪∆(1) and ĥ(γ(t)) ≤ n}. Note that A is a compact

subset of [0, 1], since every contour graph has constant, integer height and is closed

in ∆, as is ∆(1). So let a = max({0} ∪ A). Similarly, B = {t ∈ [a, 1]|γ(t) ∈

P ∪ ∆(1) and ĥ(γ(t)) ≥ n} is compact in [0, 1], so let b = min({1} ∪ B). Note that

a ≤ b, and that a = b if and only if ĥ(γ(a)) = n.

Suppose by way of contradiction that a < b. Then ĥ(γ(a)) < n < ĥ(γ(b)), and

by the definitions of a and b we have γ((a, b)) ∩ (P ∪ ∆(1)) = ∅. So there is some

path component D of ∆ \ (P ∪∆(1)) such that γ((a, b)) ⊆ D and γ(a) and γ(b) are

in ∂D. Note that for some 2-cell σ and some contour component C, we have that

D ⊆ int(σ) ∩ C.

Since contour paths only intersect each other and 1-cells at 0-cells, we can view D

as a face of a plane graph whose vertices are 0-cells of ∆ and whose edges are 1-cells

and contour paths of ∆. As such, ∂D is path connected. Now consider ∂D \C. This

removes the interior of every 1-cell in ∂D, leaving only contour paths. So each path

component of ∂D\C is a subset of a contour graph, and therefore has constant height

by Remark 3.1.2. Since ∂D is path connected and there are no 0-cells in C (since

all 0-cells of ∆ are in some contour graph), if ∂D \C has multiple path components,

then each one is connected to another by some 1-cell whose interior is contained in
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C.

Now we know that every point in C has the same height by Remark 3.1.2, and in

particular this implies that the interior of every 1-cell in C has a height of m+ 1
2
for

some m ∈ Z. So if the interior of some 1-cell is in C, then the 0-cells at its endpoints

have heights in {m,m+1}. We’ve shown above that every path component of ∂D\C

contains such a 0-cell, implying that every path component of ∂D \ C has height in

{m,m + 1}. Therefore, ĥ(∂D) ⊆ {m,m + 1
2
,m + 1}. Since γ(a), γ(b) ∈ ∂D, this

implies that ĥ(γ(b))− ĥ(γ(a)) ≤ 1. Given that ĥ(γ(a)) < n < ĥ(γ(b)), we must have

ĥ(γ(a)) = n− 1
2
and ĥ(γ(b)) = n+ 1

2
. But this is not possible since m and n are both

integers.

This is a contradiction, implying that a = b, and therefore that ĥ(γ(a)) = n. So

γ contains a point of height n.

Now that we can draw a topographic map on a van Kampen diagram, we are

ready to return to our initial motivation. We wanted to add together the change in

height that would be required to travel up each hill in the diagram. If we cut the

diagram along a contour graph, we will view each path component (aside from the

component containing the basepoint) as a hill. A tall hill, then, has many hills nested

within it. To define the aggregate variation, we will simply count the total number

of hills.

This definition will mostly match our initial motivation. For a path to reach the

highest point of a hill, it must cross into a number of nested hills at least equal to the

difference in elevation between the base of the hill and the highest point. Therefore,

the height of each hill will be accounted for in the aggregate variation.

We will also need to account for one more detail in the definition of aggregate
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variation. It is possible to produce many short hills in a van Kampen diagram, de-

pending on what relators are used in the presentation. If we leave things as described

above, these short hills will all be counted by the aggregate variation. These would

amount to noise that can drown out how truly flat or hilly the van Kampen diagrams

of a group are, and prevent the desired filling function from being a group invariant.

Therefore, we will add to the definition a notion of sensitivity that will allow us to

ignore sufficiently short hills.

Here, then, is the final definition:

Definition 3.1.4. Let ∆ be a van Kampen diagram with a basepoint ∗, and let h be a

height function on ∆. Given n ∈ Z, let Pn be the union of the contour graphs of (∆, h)

that have height n. Given s ∈ N[1
2
] and n ∈ Z, let Cs

n be the set of path components

of ∆ \ Pn that do not contain ∗ and do contain a point x with |ĥ(x)− n| ≥ s. Then

define the aggregate variation of (∆, h) with sensitivity s by

AVs(∆, h) =
∑
n∈Z

|Cs
n|.

Note that this sum is always finite, since ∆ is finite.

We will now consider the specific case where the height function is given by dis-

tance to the basepoint. Although our motivation has so far been based on intrinsic

distance (that is, distance measured within the van Kampen diagram), extrinsic dis-

tance (which is measured in the Cayley complex) also produces a height function, so

we can define intrinsic and extrinsic versions of the new filling function.

Recall that P = ⟨A|R⟩ is a finite presentation of a group G and X is the Cayley

2-complex of P . Let ε be the identity vertex of X.

Let ∆ be a van Kampen diagram with respect to P with basepoint ∗. Let π∆ :
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∆ → X be the unique cellular map that preserves the directions and labels of the

directed edges of ∆ and sends ∗ to ϵ.

Define intrinsic and extrinsic distance functions I, E : ∆(0) → N by I(x) = d∆(∗, x)

and E(x) = dX(ε, π∆(x)) (See Section 1.2 for the definition of this notation). Note

that I and E are both height functions on ∆.

For s ∈ N[1
2
], let IAVs(∆) = AVs(∆, I), and let EAVs(∆) = AVs(∆, E). These are

diagram measurements, so we may define filling functions from them in the following

way.

Let w ∈ (A ∪ A−1)∗ with w =G 1. For s ∈ N[1
2
], define

IAVs(w) = min{IAVs(∆)|∆ is a van Kampen diagram for w}

and define

EAVs(w) = min{EAVs(∆)|∆ is a van Kampen diagram for w}.

For s ∈ N[1
2
] and n ∈ N, define

IAVs(n) = max{IAVs(w)|w ∈ (A ∪ A−1)∗ with ℓ(w) ≤ n and w =G 1},

and define

EAVs(n) = max{EAVs(w)|w ∈ (A ∪ A−1)∗ with ℓ(w) ≤ n and w =G 1}.

Definition 3.1.5. A non-decreasing function f : N → N is an intrinsic aggregate

variation function (IAV function) for P if there is some sensitivity s ∈ N[1
2
] such that

f(n) ≥ IAVs(n) for all n ∈ N. Similarly, a non-decreasing function f : N → N is an
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extrinsic aggregate variation function (EAV function) for P if there is some sensitivity

s ∈ N[1
2
] such that f(n) ≥ EAVs(n) for all n ∈ N.

As an example to illustrate what IAV functions measure, consider the group

BS(1, 2) with standard presentation ⟨a, t|tat−1 = a2⟩. A van Kampen diagram D5

for the word w5 = at5at−5a−1t5a−1t−5 with respect to this presentation is shown in

Figure 3.3, with contour paths with respect to the height function I drawn in color.

We will compute IAV1(D5). Each component that contributes to IAV1(D5) is indi-

cated with a number labeling the contour graph that separates the corresponding

component from the basepoint ∗. There are also four components shaded in gray

that would otherwise contribute to the aggregate variation, but are excluded by the

sensitivity condition with a sensitivity of 1: all points in each of these components

have height within one unit of the height of the contour graph that separates the

given component from the basepoint. Since there are 11 components that contribute

to IAV1(D5), we have that IAV1(D5) = 11.

3.2 Comparisons to other filling functions

Having defined IAV and EAV functions, we will now consider how they compare to

the Dehn function and diameter functions.

Given a van Kampen diagram ∆, let Area(∆) be the number of 2-cells of ∆. Given

a finite presentation P = ⟨A|R⟩ and a word w ∈ (A ∪ A−1)∗ with w =G 1, define

AreaP(w) = min{Area(∆)|∆ is a van Kampen diagram for w}.

Then the Dehn function (also known as the area function) of P is the function AreaP :
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Figure 3.3: A van Kampen diagram D5 for the word w5 = t5at−5at5a−1t−5a−1. The
0-cells and 1-cells are drawn in black, with contour paths drawn thicker in blue and
red. The edges labeled by an a are drawn horizontally directed to the right, and
the edges labeled by a t are drawn vertically, directed upwards in the top half of the
diagram and downwards in the bottom half.

N → N given by

AreaP(n) = max{Area(w)|w ∈ (A ∪ A−1)∗ with ℓ(w) ≤ n and w =G 1}

.

Proposition 3.2.1. Given a finite presentation P = ⟨A|R⟩, there exists an IAV

function f and an EAV function g for P such that f, g ⪯ AreaP .

Proof. We will show that IAV1 ⪯ AreaP . The proof that EAV1 ⪯ AreaP is identical.

Let ρ = max{ℓ(r)|r ∈ R}. Let ∆ be a van Kampen diagram for a word w with

basepoint ∗. Each 1-cell of ∆ appears on the boundary of a 2-cell or on the boundary
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of the diagram (or both), so there are at most ρArea(∆) + ℓ(w) 1-cells in ∆. Each

contour component of (∆, I) either contains an open 1-cell or is entirely contained in

the interior of a single 2-cell. Since each 1-cell is in a single contour component, the

number of contour components that contain a 1-cell is at most ρArea(∆) + ℓ(w).

Recall from Definition 3.1.4 that, for each n ∈ N, Pn is the union of the contour

graphs of (∆, I) of height n, and C1
n is the set of components of ∆ \ Pn that do not

contain ∗ and do contain a point x with |Î(x)− n| ≥ 1. Then

IAV1(∆) =

IDiam(∆)∑
n=0

|C1
n|.

Now for each n ∈ {0, 1, . . . , IDiam(∆)}, each component C ∈ C1
n contains at least one

contour component D such that ∂D intersects a contour graph of height n. If D were

contained in the interior of a 2-cell, then we would have C = D and every x ∈ C would

have Î(x) = n+ 1
2
. But this contradicts the definition of C1

n, so we must have that D

contains an open 1-cell. Therefore, |C1
n| ≤ |Dn|, where Dn is the set of pairs (D,n)

where D is a contour component of (∆, I) such that ∂D intersects a contour graph

in Pn and D contains an open 1-cell. Let D = ∪IDiam(∆)
n=0 Dn. Then from the previous

inequality, we have that IAV1(∆) ≤ |D|. Now since each contour component of (∆, I)

is adjacent to contour graphs of at most two different heights, each contour component

containing an open 1-cell contributes at most two elements to D. Therefore, |D| ≤

2(ρArea(∆)+ ℓ(w)), which implies that IAV1(∆) ≤ 2ρArea(∆)+ 2ℓ(w). Minimizing

over all van Kampen diagrams of w gives that IAV1(w) ≤ 2ρArea(w) + 2ℓ(w). Then

given n ∈ N, maximizing over all w ∈ (A ∪ A−1)∗ with w =G 1 and ℓ(w) ≤ n gives

that IAV1(n) ≤ 2ρArea(n) + 2n. Hence, IAV1 ⪯ Area.

Proposition 3.2.2. Given a finite presentation P, let f be an IAV function for P
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and let g be an EAV function for P. Then IDiamP ⪯ f and EDiamP ⪯ g.

Proof. We will show that IDiamP ⪯ f . The proof that EDiamP ⪯ g is identical.

Let s ≥ 0 such that f ≥ IAVs. Let ∆ be a van Kampen diagram with basepoint

∗. For each n ∈ N, let Pn be the union of the contour graphs of (∆, I) of height

n. Let x ∈ ∆(0) with I(x) = IDiam(∆). Now I(∗) = 0, so ∆ \ P0 has a component

C0 containing x and not ∗. Furthermore, for n ∈ {1, . . . , I(x) − 1}, we have I(∗) <

n < I(x), so by Lemma 3.1.3, the component Cn of ∆ \ Pn containing x does not

contain ∗. Also, for n ∈ {0, . . . , I(x) − ⌈s⌉}, we have that Cn contains the point x

with |I(x) − n| ≥ s, so Cn counts towards the sum in the definition of AVs(∆, I).

Therefore, IAVs(∆) ≥ IDiam(∆)−⌈s⌉. As a result, f(n) ≥ IAVs(n) ≥ IDiam(n)−⌈s⌉,

so f ⪯ IDiam.

The following theorem demonstrates that IAV functions are equivalent to intrinsic

diameter functions, and therefore fail to be a proper refinement.

Theorem 3.2.3. If G is a group with finite presentation P, then there is a presen-

tation P ′ that is P with finitely many relators added such that IDiamP is an IAV

function for P ′.

The following definition and proposition will be useful for proving Theorem 3.2.3.

Definition 3.2.4. Let ∆ be a van Kampen diagram with height function h. For

n ∈ N[1
2
], define Γ≥n(∆) to be the following graph. Let σ be a closed cell of ∆ that is

not contained in any higher-dimensional cell. Then σ is a vertex of Γ≥n(∆) if there

is some x ∈ σ with ĥ(x) ≥ n. Two vertices σ and τ are adjacent if and only if there

is some x ∈ σ ∩ τ with ĥ(x) ≥ n.
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Proposition 3.2.5. If ∆ is a van Kampen diagram, then for every n ∈ N[1
2
], there

is a bijection between the components of Γ≥n(∆) and the path components of ∆≥n =

{x ∈ ∆|ĥ(x) ≥ n}.

Proof. We will first show that for every n ∈ N[1
2
] and every vertex σ of Γ≥n(∆), the

set σ≥n = {x ∈ σ|ĥ(x) ≥ n} is path connected.

So let n ∈ N[1
2
] and let σ be a vertex of Γ≥n(∆).

If σ is a 0-cell, then σ≥n = σ, which is path connected. Suppose σ is a 1-cell. Let

y and z be the 0-cells in σ. Then because ĥ is constant on int(σ), we have that σ≥n

is the union of some nonempty subset of {int(σ), {y}, {z}}. Every such union other

than {y, z} is path connected. However, if ĥ(y), ĥ(z) ≥ n, then ĥ(int(σ)) ≥ n, so we

cannot have σ≥n = {y, z}. Therefore, σ≥n is path connected.

Finally, suppose σ is a 2-cell. Let ϕσ : D2 → ∆ be σ’s characteristic map—the

homeomorphism that restricts to σ’s attaching map on ∂D2. Let D2
≥n = ϕ−1

σ (σ≥n).

Note first that, by the definition of ĥ, every x ∈ D2 has a path γ from x to ∂D2

such that ĥ(ϕσ(γ)) = {ĥ(ϕσ(x))}, with one exception: if x is not in a contour segment

and the path component C of D̂2
σ containing x does not intersect ∂D2. In this case, C

is the interior of a polygon bounded by contour segments of height ĥ(ϕσ(x))− 1
2
. So

in this case there is a path γ from x to ∂D2 with ĥ(ϕσ(γ)) = {ĥ(ϕσ(x))− 1
2
, ĥ(ϕσ(x))}.

If such an x exists and ĥ(ϕσ(x)) = n, then ∂D2 ∩D2
≥n = ∅, and therefore C = D2

≥n,

making σ≥n = ϕσ(C) path connected. Otherwise, for every other x ∈ D2
≥n, we have

that ĥ(ϕσ(x)) ≥ n, meaning that every element of ĥ(γ) has height greater than or

equal to n. Therefore, for each x ∈ D2
≥n, there is a path γ from x to ∂D2 ∩ D2

≥n

contained in D2
≥n. So we need only show that ∂D2∩D2

≥n is contained in a single path

component of D2
≥n.

LetX = {x0 = xm, x1, . . . , xm−1} = {x ∈ ∂D2|ĥ(ϕσ(x)) = ⌊n⌋}, indexed such that
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the xi’s appear in order counter-clockwise around ∂D2. Note that because ⌊n⌋ ∈ N,

we have that ϕσ(X) is a subset of the 0-cells of σ. Note that if X = ∅, then σ≥n = σ,

since we must have that all 0-cells of σ have height at least ⌊n⌋+ 1 > n. As a 2-cell,

σ is path connected. Otherwise, for i ∈ [m], let αi be the simple path (or loop, if

m = 1) in ∂D2 from xi−1 to xi not containing any other elements of X. Let I< be

the set of indices i ∈ [m] such that max(ĥ(ϕσ(αi \ {xi−1, xi}))) < ⌊n⌋, and let I>

be the set of indices i ∈ [m] such that min(ĥ(ϕσ(αi \ {xi−1, xi}))) > ⌊n⌋. Note that

I< ∪ I> = [m]. See Figure 3.4 for an example of what the xi’s and αi’s can look like

in D2.

Figure 3.4: An example of what D2
≥n can look like. The line segments shown are the

contour segments of height n. Note that in this case, I< = {1, 2, 4} and I> = {i0 =
i2 = 3, i1 = 5}.

Case 1: n ∈ N, so that ⌊n⌋ = n. Let i ∈ [m]. If i ∈ I<, then αi demonstrates that

xi−1 and xi are contour partners, and the line segment si between them is a contour

segment. So si ⊆ D2
≥n, putting xi−1 and xi in the same path component of D2

≥n.
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If instead i ∈ I>, then αi ⊆ D2
≥n, putting every point of αi (including xi−1 and xi)

in the same path component of D2
≥n. Then every element of X is in a single path

component of D2
≥n, and since ∂D2 ∩D2

≥n =
⋃

i∈I> αi, this implies that ∂D2 ∩D2
≥n is

contained in a single path component of D2
≥n, as desired.

Case 2: n ̸∈ N, so that ⌊n⌋ = n − 1
2
. Let I> = {i0 = ik, i1, . . . , ik−1}, where

ij−1 < ij for j ∈ [k − 1]. Let j ∈ [k]. We want to show that αij−1
and αij are

contained in the same path component of D2
≥n. Let yj ∈ αij−1

be a point such that

ϕσ(yj) is in the interior of a 1-cell containing ϕσ(xij−1
). Since ĥ(ϕσ(xij−1

)) = ⌊n⌋, this

implies that ĥ(ϕσ(yj)) = n. Similarly choose zj ∈ αij to be a point such that ϕσ(zj)

is in the interior of a 1-cell containing ϕσ(xij−1−1), and note that ĥ(ϕσ(zj)) = n for

the same reason as for yj. Now consider the line segment sj connecting yj and zj,

directed from yj to zj. Note that every point p on the right side of sj such that ϕσ(p)

is a 0-cell is in some αi where ij−1 < i < ij. This implies that i ∈ I<, meaning that

ĥ(ϕσ(p)) ≤ ⌊n⌋ < n.

Now suppose by way of contradiction that there is some point q ∈ sj such that q

is on a contour segment s. This contour segment must have one endpoint p on the

right side of sj. Then ĥ(ϕσ(p)) < n, so s is a contour segment with height less than

n. This implies that one of the two components of ∂D2 \ s contains only points of

height less than n. But because s and sj intersect in int(D2), we must have that yj

and zj are on opposite sides of s. Therefore, one component of ∂D2 \ s contains yj,

and the other contains zj. Since ĥ(ϕσ(yj)) = ĥ(ϕσ(yj)) = n, this is a contradiction.

Therefore, sj ⊂ D̂2
σ (definition on p. 58), putting every point of sj in the same

path component of D̂2
σ. By the definition of ĥ, this implies that ĥ(ϕσ(sj)) = {n}.

Hence, αij−1
and αij (minus their endpoints) are in the same path component of D̂2

σ.

So every αij \ {xij−1, xij} for j ∈ [k] is contained in a single path component of D̂2
σ.
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Since

∂D2 ∩D2
≥n =

⋃
i∈I>

αi \ {xi−1, xi},

this implies that ∂D2 ∩ D2
≥n is contained in a single path component of D2

≥n, as

desired.

So we’ve shown that for every n ∈ N[1
2
] and every vertex σ of Γ≥n(∆), we have

that σ≥n is path connected.

Now let C∆ be the set of path components of ∆≥n and CΓ the set of path com-

ponents of Γ≥n(∆). Define a function f : C∆ → CΓ in the following way. Given a

C ∈ C∆, let x ∈ C. Then there is some vertex σ of Γ≥n(∆) containing x. So let f(C)

be the component of Γ≥n(∆) containing σ. We have that f is onto because every

component of Γ≥n(∆) contains a vertex of Γ≥n(∆), which contains a point in ∆≥n.

The fact that f is well-defined and 1-1 is equivalent to the following claim.

Let σ and τ be vertices of Γ≥n(∆), and let x ∈ σ and y ∈ τ with ĥ(x), ĥ(y) ≥ n.

I claim that there is a path from σ to τ in Γ≥n(∆) if and only if there is a path from

x to y in ∆≥n.

Suppose there is an edge path δ from σ to τ in Γ≥n(∆). Then construct a path β

in ∆≥n from x to y as follows. Let σ = σ1, . . . , σm = τ be the sequence of vertices in

order along δ. Then for i ∈ [m− 1], since σi and σi+1 are adjacent in Γ≥n(∆), there

is some xi ∈ σi ∩ σi+1 with ĥ(xi) ≥ n. Also let x0 = x and xm = y. Then for i ∈ [m],

we have xi−1, xi ∈ σi≥n. Since we’ve shown that σi≥n is path connected, there is a

path βi from xi−1 to xi in ∆≥n. Therefore, β = β0 · β1 · · · · · βm is a path from x to y

in ∆≥n.

Now suppose there is a path α : [0, 1] → ∆≥n from x to y. Then construct a path

in Γ≥n(∆) from σ to τ as follows. We will define a sequence σ = σ1, . . . , σm = τ of

vertices of Γ≥n(∆) and a sequence 0 = t0, . . . , tm ∈ [0, 1] such that for i ∈ [m],
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1. β(ti−1), β(ti) ∈ σi and

2. β((ti, 1]) ∩ σi = ∅.

Having defined ti−1 and σi−1, if σi−1 = τ , then i − 1 = m and we are finished.

Otherwise, define ti and σi as follows. Since β((ti−1, 1])∩σi = ∅, we have β(ti−1) ∈ ∂σ

and there exist other vertices of Γ≥n(∆) containing β(ti−1). Let Σi be the set of

vertices of Γ≥n(∆) other than σi−1 containing β(ti−1). Define

ti = max({t ∈ [ti−1, 1]|β(t) ∈ σ′ for some σ′ ∈ Σi})

and let σi ∈ Σi such that β(ti) ∈ σi. So by definition, β((ti, 1]) ∩ σi = ∅. Note that

β((ti−1, 1]) must contain some point in an element of Σi, implying that ti−1 < ti.

Therefore, for j ∈ [i − 1], since β((tj, 1]) ∩ σj = ∅ and tj < ti, we must have that

σi ̸= σj.

Because ∆ has finitely many 2-cells, this construction must end with a sequence

σ = σ1, . . . , σm = τ . Note that for i ∈ [m − 1], we have β(ti) ∈ σi ∩ σi+1 and

ĥ(β(ti)) ≥ n. Therefore, σi and σi+1 are adjacent in Γ≥n(∆). Therefore, this sequence

gives a path from σ to τ in Γ≥n(∆).

The following lemma about connected graphs will be useful for arguments about

Γ≥n. Given a graph Γ, let V (Γ) denote the vertex set of Γ and E(Γ) denote the edge

set of Γ.

Lemma 3.2.6. Let Γ and C be connected graphs. Let V ⊆ V (Γ), and let D be the

induced subgraph on the vertices in V (Γ) \ V . Let Γ′ be a graph with V (Γ′) = V (C)⊔

V (D), E(Γ′) ⊇ E(C) ⊔ E(D), and such that there exists an edge of Γ′ connecting a
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d ∈ V (D) to some c ∈ V (C) whenever there is an edge in Γ connecting d to some

v ∈ V . Then Γ′ is connected.

Proof. We will show that every vertex d ∈ V (D) of Γ′ is in the same component of Γ′

as C. Let d ∈ V (D). Let α be a shortest path in Γ from d to any vertex v ∈ V . Then

let d′ be the second-to-last vertex on α and let α′ be the initial segment of α from d

to d′. We must have that α′ ⊆ D, since otherwise there is a shorter path from d to

V . Then we know that there is a vertex c ∈ V (C) such that d′ and c are adjacent in

Γ′. So d, d′, and c are all in the same component of Γ′. Since C is connected, this

means that d is in the same component of Γ′ as C. Therefore, every vertex of Γ′ is in

the same component.

Our strategy for the proof of Theorem 3.2.3 will be, for an arbitrary word w =G 1,

to start with a van Kampen diagram ∆0 for w of minimal intrinsic diameter and make

adjustments to it until Γ≥n(∆0) is connected for all n ∈ N[1
2
] less than IDiam(∆0).

The resulting van Kampen diagram will have only one component that contributes to

IAV(∆0) for each n ∈ N less than IDiam(∆0). We will make these adjustments induc-

tively, by taking van Kampen diagrams that have connected Γ≥n− 1
2
and removing any

obstructions to Γ≥n also being connected. Below we define the relevant obstructions

to the connectedness of Γ≥n, which depend on whether n ∈ N or n ∈ N+ 1
2
.

The obstruction for n ∈ N: Given a van Kampen diagram ∆ and n ∈ N,

let En−1(∆) be the subset of 1-cells of ∆ defined as follows. Let e be a 1-cell in ∆

connecting two 0-cells of height n − 1. Then e ∈ En−1(∆) if and only if e is in the

boundary of two 2-cells, σ1 and σ2, and for k ∈ {1, 2}, we have that sup(Î(∂σk \ e)) >

n− 1.

Suppose ∆ is a van Kampen diagram and n ∈ N such that Γ≥n− 1
2
(∆) is connected

but Γ≥n(∆) is not. Figure 3.5 demonstrates the relevance of the 1-cells in En−1(∆) to
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the connectedness of Γ≥n(∆). Each such 1-cell potentially represents an edge between

σ1 and σ2 (viewed as vertices of Γ≥n− 1
2
(∆)) that does not exist in Γ≥n(∆n− 1

2
). To

construct a van Kampen diagram ∆′ from ∆ such that Γ≥n(∆
′) is connected, our

strategy will be to take ∆ and replace each 1-cell of En−1(∆) with an edge path

containing two 0-cells of height n, which will ensure that σ1 and σ2 are adjacent in

Γ≥n(∆
′).

Figure 3.5: An example of the changes to Γ≥n, where ∆ is a diagram with some 1-cell
e ∈ En−1(∆), and ∆′ is the diagram after e has been replaced with an edge path. We
highlight Γ≥n as a subgraph of Γ≥n− 1

2
by making it thicker and blue.

The obstruction for n ∈ N+ 1
2
: Given a van Kampen diagram ∆ and n ∈ N+ 1

2
,

let X⌊n⌋(∆) be the subset of 0-cells of ∆ defined as follows. A 0-cell x with I(x) = ⌊n⌋

is in X⌊n⌋(∆) if and only if there exist distinct vertices of Γ≥⌊n⌋(∆), σ and τ , both

containing x such that σ is a vertex of Γ≥⌊n⌋+ 1
2
(∆) and one of the following properties

is true:

(1) τ is not a vertex of Γ≥⌊n⌋+ 1
2
(∆) and there is a 0-cell y ∈ τ with I(y) = ⌊n⌋ and

y ̸= x, or

(2) σ and τ are in different components of Γ≥⌊n⌋+ 1
2
(∆).
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Suppose ∆ is a van Kampen diagram and n ∈ N + 1
2
such that Γ≥⌊n⌋(∆) is

connected but Γ≥n(∆) is not. Figure 3.6 demonstrates the relevance of the 0-cells

in X⌊n⌋(∆) to the connectedness of Γ≥n(∆). Our strategy for constructing a van

Kampen diagram ∆′ from ∆ such that Γ≥n(∆
′) is also connected will be, for each

x ∈ X⌊n⌋(∆), to replace 1-cells of height less than n that contain x with edge paths

containing a point of height at least n. This ensures that that every 2-cell containing

x is in the same component of Γ≥n(∆
′).

Figure 3.6: An example of the changes to Γ≥n, where ∆ is a diagram with some 0-cell
x ∈ X⌊n⌋(∆), and ∆′ is the diagram after some 1-cells around x have been replaced
with edge paths. In this case, y ∈ X⌊n⌋(∆) \X⌊n⌋(∆

′), but this only happens because
τ ∈ F⌊n⌋(∆)\F⌊n⌋(∆

′). We highlight Γ≥n as a subgraph of Γ≥⌊n⌋ by making it thicker
and blue.

Now, this replacement process can create additional elements of X⌊n⌋, as shown in

Figure 3.6. However, this can only happen finitely many times, once for each element

of a specific subset of the vertices of Γ≥⌊n⌋(∆), which we define below.

Given a van Kampen diagram ∆ and n ∈ N + 1
2
, define F⌊n⌋(∆) to be the set of

vertices τ of Γ≥⌊n⌋(∆) not in Γ≥n(∆) such that τ contains at least two 0-cells x1 and

x2 with I(x1), I(x2) = ⌊n⌋ and there are vertices υ1, υ2 ̸= τ of Γ≥⌊n⌋(∆) with x1 ∈ υ1

and x2 ∈ υ2.

The vertices in F⌊n⌋(∆) are, intuitively, vertices of Γ≥⌊n⌋(∆) that could be cut
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vertices. As such, they may separate different components of Γ≥n(∆) in Γ≥⌊n⌋(∆),

and may need to become part of Γ≥n(∆
′) in order to make it connected. Whenever

removing one element of X⌊n⌋ creates another, we have also added a vertex of F⌊n⌋ to

Γ≥n, thus still making progress towards a diagram with connected Γ≥n.

To formalize this progress, we will use the lexicographic order on N2: for (n1, n2), (m1,m2) ∈

N2, let (n1, n2) < (m1,m2) if and only if n1 < m1 or n1 = m1 and n2 < m2. Then

(|F⌊n⌋|, |X⌊n⌋|) will decrease in this order for each element of X⌊n⌋ that we remove.

We are now prepared to prove Theorem 3.2.3.

Proof of Theorem 3.2.3. Let G be a group with finite presentation P = ⟨A|R⟩. Let

ρ = max{ℓ(r) : r ∈ R}, and let ρ̄ = 2⌈ρ
2
⌉, the smallest even number greater than

or equal to ρ. Let R′ be the (finite) set of words r ∈ (A ∪ A−1)∗ of length at most

max(ρ, 4) such that r =G 1. Note that R ⊆ R′. Then P ′ = ⟨A|R′⟩ is a finite

presentation for G.

Let w ∈ (A∪A−1)∗ with w =G 1. Then there is a van Kampen diagram ∆0 for w

with respect to P such that IDiam(∆0) ≤ IDiamP(ℓ(w)).

Step A:We will construct a sequence of van Kampen diagrams ∆0,∆0.5,∆1, . . . ,∆IDiam(∆0)− 1
2

for w with respect to P ′ by induction such that for each n ∈ {0, 0.5, . . . , IDiam(∆0)− 1
2
},

∆n has the following properties:

(3) For all i ∈ {0, 0.5, . . . , n}, Γ≥i(∆n) is connected.

(4) IDiam(∆n) ≤ max(IDiam(∆0), n+ 1 +
⌊
1
4
max(ρ, 4)

⌋
).

After constructing these van Kampen diagrams, Step B of the proof will be to

show that AVs(∆IDiam(∆0)− 1
2
) ≤ IDiamP(w).



78

For the base case, note that {x ∈ ∆0|ĥ(x) ≥ 0} = ∆0 is path connected, so

Γ≥0(∆0) is connected by Proposition 3.2.5. Also, IDiam(∆0) ≤ IDiam(∆0), so ∆0

satisfies both properties.

Now let n ∈ {0.5, . . . , IDiam(∆0) − 1
2
} and suppose that ∆n− 1

2
is a van Kampen

diagram for w with the desired properties. Then we will construct a van Kampen

diagram ∆n for w from ∆n− 1
2
with the same properties and such that Γ≥n(∆n) is

connected. How to do so depends on whether n ∈ N or not.

Case 1: Suppose n ∈ N.

Notational Aside: Note that we use ∆(j) for the j-skeleton of a van Kampen

diagram ∆. Below we define some van Kampen diagrams ∆j

n− 1
2

for some natural

numbers j, and ∆j

n− 1
2

is not to be confused with the j-skeleton of ∆n− 1
2
.

Let ∆0
n− 1

2

= ∆n− 1
2
. We will construct a sequence of van Kampen diagrams

∆0
n− 1

2

, . . . ,∆m
n− 1

2

= ∆n for w with respect to P ′ by induction such that for each

j ∈ {0, . . . ,m}, ∆j

n− 1
2

has the following properties:

(5) For all i ∈ {0, 0.5, . . . , n− 1
2
}, Γ≥i(∆

j

n− 1
2

) is connected.

(6) IDiam(∆j

n− 1
2

) ≤ max(IDiam(∆0), n+ 1 +
⌊
1
4
max(ρ, 4)

⌋
).

(7) If j ≥ 1, then En−1(∆
j

n− 1
2

) ⊊ En−1(∆
j−1

n− 1
2

).

Note that ∆0
n− 1

2

already satisfies these properties by the inductive hypothesis of

the induction over n.

Case 1 Step 1: Construct ∆j

n− 1
2

from ∆j−1

n− 1
2

.

Let j ≥ 1 and suppose we have constructed ∆j−1

n− 1
2

with the above properties. If

En−1(∆
j−1

n− 1
2

) = ∅, then m = j − 1 and we are done. Otherwise, construct ∆j

n− 1
2

from

∆j−1

n− 1
2

in the following way. (See Figure 3.7 for an example.) Let e ∈ En−1(∆
j−1

n− 1
2

).

Then e is in the boundary of two 2-cells, σ1 and σ2. Let x and y be the endpoints
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of e, and let a ∈ A ∪ A−1 be the letter labeling the directed edge path −→e from x to

y along e. For k ∈ {1, 2}, let γk be the directed edge path such that −→e · γk is the

boundary circuit of σk.

Now replace e with a directed edge path −→e ′ from x to y labeled by the word

aa−1a. Let x′ be the 0-cell adjacent to y on −→e ′, and let y′ be the 0-cell adjacent to

x on −→e ′. For k ∈ {1, 2}, this replaces σk with a new 2-cell σ′
k with boundary circuit

−→e ′ · γk. Let wk ∈ (A∪A−1)∗ be the word that labels γk. Then the boundary of σ′
k is

labeled by aa−1awk =G awk =G 1, since awk labels the boundary circuit of σk.

Now if ℓ(aa−1awk) ≤ max(ρ, 4), then aa−1awk ∈ R′. Otherwise, |γk| > 1, so

there are vertices on the boundary of σk other than x and y. Then by the fact that

e ∈ En−1(∆
j−1

n− 1
2

), we know that sup(Î(∂σk \ e)) ≥ n − 1. So there is some 0-cell

zk ̸= x, y on γk with I(zk) ≥ n − 1. In fact, because height differs by at most 1

between adjacent 0-cells, we can choose zk such that I(zk) ∈ {n − 1, n}. Let αk

be the path from y to zk and βk the path from x to zk such that αk · βk = γk. If

|αk| ≤ |βk|, then let uk be the word labeling αk and let sk = y′. Otherwise, let uk be

the word labeling βk and let sk = x′. Then add a directed edge path α′
k through the

interior of σ′
k from sk to zk labeled by uk. This splits σ′

k into two 2-cells, one with

boundary circuit labeled by the word auku
−1
k a−1 and the other labeled by awk. Let

σx
k be the one containing x, and σy

k the one containing y.

We already know that awk ∈ R′ and auku
−1
k a−1 =G 1. Since ℓ(uk) = min(|αk|, |βk|),
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Figure 3.7: An example of the changes made to ∆j−1

n− 1
2

to produce ∆j

n− 1
2

we have that

ℓ(auku
−1
k a−1) = 2ℓ(uk) + 2

≤ |αk|+ |βk|+ 2

= ℓ(awk) + 1

≤ max(ρ, 4) + 1

Now, since ρ is even, max(ρ, 4) + 1 is odd. Note that ℓ(auku
−1
k a−1) is even, so we

can therefore strengthen the inequality to ℓ(auku
−1
k a−1) ≤ max(ρ, 4). Therefore,

auku
−1
k a−1 ∈ R′.

Having made these changes to ∆j−1

n− 1
2

, we will call the resulting diagram ∆j

n− 1
2

. We

have shown that the boundary circuit of each new 2-cell of ∆j

n− 1
2

is labeled by a word

in R′, so ∆j

n− 1
2

is a van Kampen diagram with respect to P ′. We have also not added
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or removed any 1-cells on the boundary, so ∆j

n− 1
2

is a van Kampen diagram for the

word w, the same as ∆j−1

n− 1
2

.

Case 1 Step 2: Show that ∆j

n− 1
2

satifies properties (6) and (7) from the induc-

tion on j: that IDiam(∆j

n− 1
2

) ≤ max(IDiam(∆0), n + 1 +
⌊
1
4
max(ρ, 4)

⌋
), and that

En−1(∆
j

n− 1
2

) ⊊ En−1(∆
j−1

n− 1
2

).

We will first show that every p ∈ ∆j−1

n− 1
2

(0)
has the same height in ∆j

n− 1
2

as in ∆j−1

n− 1
2

.

See Figure 3.8 for an example of the paths used in this argument. Let γ be a geodesic

edge path from the basepoint ∗ to p in ∆j

n− 1
2

(1)
. Suppose that γ is not contained in

∆j−1

n− 1
2

(1)
. Then γ must at some point enter, and at some point exit, ∆j

n− 1
2

(1) \∆j−1

n− 1
2

(1)

through one of the 0-cells x, y, z1, or z2, since these are the only 0-cells of ∆j−1

n− 1
2

on

1-cells not in ∆j−1

n− 1
2

. So let qF be the first point on γ in {x, y, z1, z2}, and let qL be

the last point on γ in {x, y, z1, z2}. Recall that these points have height either n− 1

or n in ∆j−1

n− 1
2

. Let α be the path from ∗ to qF, β the path from qF to qL, and ω the

path from qL to p, such that α · β · ω = γ. Note that, since γ contains a 1-cell not in

∆j−1

n− 1
2

(1)
, we must have that |β| ≥ 1. So |α · β| ≥ |α|+ 1. But |α| ≥ n− 1, since α is

a path from ∗ to qF in ∆j−1

n− 1
2

(1)
. So |α · β| ≥ n. Therefore, there is some path δ from

∗ to qL in ∆j−1

n− 1
2

(1)
with |δ| ≤ |α · β|. Then δ · ω is a path from ∗ to p in ∆j−1

n− 1
2

(1)
with

|δ · ω| ≤ |γ|. So the height of p has not decreased. Furthermore, the only 1-cell of

∆j−1

n− 1
2

(1)
not in ∆j

n− 1
2

(1)
is e, but since e connects two 0-cells of height n− 1, it cannot

be in any geodesic in ∆j−1

n− 1
2

(1)
. Therefore, every geodesic in ∆j−1

n− 1
2

(1)
is in ∆j

n− 1
2

(1)
,

meaning that the height of p has not increased, either.

In particular, we still have that I(x), I(y), I(z1), I(z2) ∈ {n − 1, n}. Now let

p ∈ ∆j

n− 1
2

(0) \∆j−1

n− 1
2

(0)
. Since every path from ∗ to p contains one of x, y, z1 and z2,

we have that I(p) ≥ n. If p is in −→e ′, then it is adjacent to one of x and y, so I(p) = n.

Otherwise, p is on an edge path of length at most 1
2
max(ρ, 4) connecting two 0-cells

of height at most n. Therefore, I(p) ≤ n+
⌊
1
4
max(ρ, 4)

⌋
.
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Figure 3.8: Showing that every 0-cell p of ∆j−1

n− 1
2

has the same height in ∆j

n− 1
2

.

Since we know that IDiam(∆j−1

n− 1
2

) ≤ max(IDiam(∆0), n+ 1+
⌊
1
4
max(ρ, 4)

⌋
), this

implies that IDiam(∆j

n− 1
2

) ≤ max(IDiam(∆0), n + 1 +
⌊
1
4
max(ρ, 4)

⌋
). Furthermore,

each 1-cell in ∆j

n− 1
2

(1) \∆j−1

n− 1
2

(1)
has at least one endpoint in ∆j

n− 1
2

(0) \∆j−1

n− 1
2

(0)
. Since

each such endpoint has height at least n, we have not added any 1-cells that connect

two 0-cells of height n − 1. However, we have removed e, a 1-cell in En−1(∆
j−1

n− 1
2

).

Therefore, En−1(∆
j

n− 1
2

) ⊊ En−1(∆
j−1

n− 1
2

), as desired.

Case 1 Step 3: Show that ∆j

n− 1
2

satisfies property (5) from the induction on j:

that for all i ∈ {0, 0.5, . . . , n− 1
2
}, Γ≥i(∆

j

n− 1
2

) is connected.

Let i ∈ {0, 0.5, . . . , n− 1
2
}. By the induction hypothesis, we know that Γ≥i(∆

j−1

n− 1
2

)

is connected. Let V = {σ1, σ2} and let D = Γ≥i(∆
j−1

n− 1
2

) \ V . Let C be the largest

subgraph of Γ≥i(∆
j

n− 1
2

) that does not contain any vertices of Γ≥i(∆
j−1

n− 1
2

). First note

that C is connected. The vertices of C are exactly the 2-cells of ∆j

n− 1
2

that are not in

∆j−1

n− 1
2

, since each of these 2-cells contains one of x′ and y′, and I(x′) = I(y′) = n > i.

If σ′
1 is a 2-cell of ∆j

n− 1
2

, then it has both x′ and y′ on its boundary, meaning that it is
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adjacent to either σ′
2 or both of σx

2 and σy
2 in Γ≥i(∆

j

n− 1
2

), putting these all in the same

component of C. Otherwise, σx
1 and σy

1 are both 2-cells of ∆j

n− 1
2

. Since they both have

s1 on their boundaries, they are adjacent to each other in Γ≥i(∆
j

n− 1
2

). Furthermore,

one of these has both x′ and y′ on its boundary. So by the same reasoning as above,

all of these vertices are in the same component of C.

Let d ∈ D be adjacent to σk in Γ≥i(∆
j

n− 1
2

) for some k ∈ {1, 2}. Then there is

some point q ∈ d ∩ σk with I(q) ≥ i. Note that q is not in int(e), since d ̸∈ V . Since

q ∈ ∂σk \ int(e), we have q ∈ ∂c for some vertex c in C. So d is adjacent to c in

Γ≥i(∆
j

n− 1
2

). Therefore, Proposition 3.2.6 implies that Γ≥i(∆
j

n− 1
2

) is connected.

This concludes the induction on j.

Case 1 Step 4: Define ∆n and show that ∆n satisfies properties (3) and (4) of

the induction on n.

Since En−1(∆
j

n− 1
2

) ⊊ En−1(∆
j−1

n− 1
2

) for all j ≥ 1, and ∆n− 1
2
has finitely many 1-

cells, the process from Case 1 Steps 1-3 must terminate in a van Kampen diagram

∆n for w with respect to P ′ with the following properties:

� For all i ∈ {0, 0.5, . . . , n − 1
2
}, Γ≥i(∆n) is connected (property (3) from the

induction on n, but excluding i = n).

� IDiam(∆n) ≤ max(IDiam(∆0), n + 1 +
⌊
1
4
max(ρ, 4)

⌋
) (property (4) from the

induction on n).

� En−1(∆n) = ∅.

So to finish this step, we need only show that Γ≥n(∆n) is connected. Note that

Γ≥n(∆n) is a subgraph of Γ≥n− 1
2
(∆n). Let σ and τ be vertices of Γ≥n(∆n). Then

since Γ≥n− 1
2
(∆n) is connected, there is a simple path α from σ to τ in Γ≥n− 1

2
(∆n).
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Suppose by way of contradiction that α is not contained in Γ≥n(∆n). Then let α′

be the longest initial segment of α contained in Γ≥n(∆n). Let σ
′ be the last vertex of

α′ and let τ ′ be the next vertex after σ′ along α. Then because σ′ and τ ′ are adjacent

in Γ≥n− 1
2
(∆n), there is some point x ∈ σ′ ∩ τ ′ with Î(x) ≥ n− 1

2
. But because either

τ ′ is not in Γ≥n(∆n) or it is but σ
′ and τ ′ are not adjacent in Γ≥n(∆n), we must have

that Î(x) < n. So Î(x) = n− 1
2
, meaning that x ∈ int(e) for some 1-cell e of ∆n with

e in ∂σ′ and ∂τ ′. Therefore, one endpoint of e has height n − 1, and the other has

height either n− 1 or n. Note also that this implies that σ′ and τ ′ are 2-cells.

Suppose by way of contradiction that both endpoints of e have height n − 1.

Since σ′ is a vertex of Γ≥n(∆n), we know it contains a point of height at least n. So

sup(Î(∂σ′ \ e)) > n− 1. If τ ′ = τ , then by the same reasoning, τ ′ contains a point of

height at least n, making sup(Î(∂τ ′ \ e)) > n− 1.

If τ ′ ̸= τ , then let υ be the next vertex after τ ′ along α. So there is some point

y ∈ ∂τ ′ ∩ ∂υ′ with Î(y) ≥ n − 1
2
. Suppose that y ∈ e. Then since both endpoints

of e have height n − 1, we must have that y ∈ int(e). This implies that e is in ∂υ.

But since e is also in ∂σ′ and ∂τ ′, and e can only be on the boundary of two distinct

2-cells of a planar 2-complex, we must have that two of σ′, τ ′, and υ are equal. This

contradicts the fact that α is a simple path, so we must have y ̸∈ e. Therefore,

sup(Î(∂τ ′ \ e)) > n− 1.

Since both endpoints of e have height n − 1, sup(Î(∂σ′ \ e)) > n − 1, and

sup(Î(∂τ ′ \ e ) ) > n − 1, we must have that e ∈ En−1(∆n). This contradicts

the fact that En−1(∆n) = ∅. Therefore, one endpoint of e has height n. Call this

endpoint z. Now z ∈ τ ′, which implies that τ ′ is a vertex of Γ≥n(∆n). Furthermore,

z ∈ σ′ ∩ τ ′, meaning that σ′ and τ ′ are adjacent in Γ≥n(∆n). This contradicts that α
′

is the longest initial segment of α contained in Γ≥n(∆n). Therefore, α is contained in

Γ≥n(∆n). This shows that Γ≥n(∆n) is connected, as desired, completing Case 1.
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Case 2: Suppose instead that n ∈ N0 +
1
2
.

We will construct a sequence of van Kampen diagrams ∆0
⌊n⌋, . . . ,∆

m
⌊n⌋ for w with

respect to P ′ by induction such that the following properties hold for j = 0, . . . , l:

(8) For all i ∈ {0, 0.5, . . . , ⌊n⌋}, Γ≥i(∆
j
⌊n⌋) is connected.

(9) IDiam(∆j
⌊n⌋) ≤ max(IDiam(∆0), ⌊n⌋+ 1 +

⌊
1
4
max(ρ, 4)

⌋
).

(10) For j ≥ 1, we have (|F⌊n⌋(∆
j
⌊n⌋)|, |X⌊n⌋(∆

j
⌊n⌋)|) < (|F⌊n⌋(∆

j−1
⌊n⌋ )|, |X⌊n⌋(∆

j−1
⌊n⌋ )|).

For the base case, note that we have already shown that ∆0
⌊n⌋ = ∆⌊n⌋ satisfies

these properties.

Case 2 Step 1: For j ≥ 1, we will construct ∆j
⌊n⌋ from ∆j−1

⌊n⌋ by induction.

Let x ∈ X⌊n⌋(∆
j−1
⌊n⌋ ). Let Nx be the number of 1-cells containing x. Let e1 be one

such 1-cell with other endpoint y1 such that I(y1) = ⌊n⌋ − 1; such a 1-cell must exist

because any geodesic from the basepoint to x has such a 1-cell as its last edge. Let

e1, . . . , eNx be the sequence of 1-cells containing x in counter-clockwise order around

x starting at e1. For k ∈ [Nx], let yk be the endpoint of ek that is not x, and let

ak ∈ A ∪ A−1 be the letter labeling the directed edge −→ek from x to yk along ek.

We will construct another sequence of van Kampen diagrams ∆j−1
⌊n⌋ = Λ0

x, . . . ,Λ
Nx
x =

∆j
⌊n⌋ for w with respect to P ′ by induction such that the following properties hold for

k ∈ [Nx]:

(11) For all i ∈ {0, 0.5, . . . , ⌊n⌋}, Γ≥i(Λ
k
x) is connected.

(12) IDiam(Λk
x) ≤ max(IDiam(∆0), ⌊n⌋+ 1 +

⌊
1
4
max(ρ, 4)

⌋
).

(13) For k > 0, we have F⌊n⌋(Λ
k
x) ⊆ F⌊n⌋(Λ

k−1
x ).

(14) For k > 0, if X⌊n⌋(Λ
k
x) ̸⊆ X⌊n⌋(Λ

k−1
x ), then F⌊n⌋(Λ

k
x) ⊊ F⌊n⌋(Λ

k−1
x ).



86

(15) For 0 < k < Nx, Λ
k
x has a 2-cell σR

k+1 adjacent to −−→ek+1 on its right side.

For the base case, note that we have already shown that Λ0
x = ∆j−1

⌊n⌋ satisfies these

properties.

Case 2 Step 1: Construct Λ1
x from Λ0

x such that it satisfies properties (11) - (15).

Case 2 Step 1(a): Construct Λ1
x from Λ0

x such that it satisfies property (15)

above, and show that it also satisfies property (12).

If −→e2 is adjacent to a 2-cell on its right, name this 2-cell σR
2 and let Λ1

x = Λ0
x.

Otherwise, −→e2 is adjacent to R2 \ Λ0
x on its right and −→e1 is adjacent to R2 \ Λ0

x on its

left. So let σR
2 be a 2-cell with boundary circuit labeled by a−1

2 a1a
−1
1 a2, and glue σR

2

to Λ0
x by gluing the initial path along its boundary circuit labeled by a−1

2 a1 along the

path −→e2 · −→e1 . Let Λ1
x be the resulting diagram. Let y1.5 be the 0-cell in σR

2 replacing

x on the boundary of the Λ1
x, and let α be the directed edge path from y1 to y1.5 to

y2 along the boundary of Λ1
x labeled by a−1

1 a2. See Figure 3.9.

Figure 3.9: Adding σR
2 to Λ0

x if e2 is not adjacent to a 2-cell on its right.

First note that we have replaced −→e1 · −→e2 , part of the boundary circuit of Λ0
x, with

α. Since these two paths are both labeled by a−1
1 a2, the boundary circuit of Λ1

x is

still w. Also, the boundary circuit of σR
2 is labeled by the word a−1

1 a2a
−1
2 a1, which is
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in R′ since it freely reduces to the identity and has length 4. So Λ1
x is a van Kampen

diagram for w with respect to P ′.

Also note that every 0-cell of Λ0
x still has the same height in Λ1

x. For suppose γ

is a geodesic in Λ1
x from the basepoint ∗ to any 0-cell p ∈ Λ0

x
(0)
. If γ is not already

contained in Λ0
x, then it must include y1.5. Since geodesics are simple paths, this

implies that either α or α is the only segment of γ outside of Λ0
x. So replacing α or α

with −→e1 · −→e2 or −→e2 · −→e1 , respectively, in γ results in a path of the same length from ∗

to p contained in Λ0
x. So the distance from ∗ to p has not decreased. Since Λ0

x ⊂ Λ1
x,

this distance cannot increase, either, so it remains the same.

Now since y1 and y2 each share a 1-cell with x and I(x) = ⌊n⌋, we have that

I(y1), I(y2) ∈ {⌊n⌋ − 1, ⌊n⌋, ⌊n⌋+ 1}. Since every path from ∗ to y1.5 contains either

y1 or y2, this implies that I(y1.5) ∈ {⌊n⌋, ⌊n⌋+ 1, ⌊n⌋+ 2}. So

IDiam(Λ1
x) ≤ max(IDiam(Λ0

x), ⌊n⌋+ 2)

≤ max(IDiam(∆0), ⌊n⌋+ 1 +

⌊
1

4
max(ρ, 4)

⌋
).

Case 2 Step 1(b): Show that Λ1
x satisfies property (11) from the induction on

k: that for all i ∈ {0, 0.5, . . . , ⌊n⌋}, we have that Γ≥i(Λ
1
x) is connected.

Let i ∈ {0, 0.5, . . . , ⌊n⌋}. We know by the inductive hypothesis that Γ≥i(Λ
0
x) is

connected.

Case 2(a): Suppose that neither e1 nor e2 is contained in any 2-cell of Λ0
x. Since

e1 and e2 both contain x and I(x) = ⌊n⌋, this implies that e1 and e2 are both vertices

of Γ≥i(Λ
0
x). Since they share x, they are also adjacent in Γ≥i(Λ

0
x). Now e1 and e2

are both contained in σR
2 , so they are not vertices of Γ≥i(Λ

1
x), but are replaced by

σR
2 , which contains x. However, since σR

2 contains e1 and e2, it is adjacent in Γ≥i(Λ
1
x)

to every vertex that is adjacent to either e1 or e2 in Γ≥i(Λ
0
x). So by Lemma 3.2.6,
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Γ≥i(Λ
1
x) is connected.

Case 2(b): Suppose that only one of e1 and e2 is contained in a 2-cell of Λ0
x.

Suppose without loss of generality that e1 is contained in a 2-cell of Λ0
x and e2 is

not. Then e2 is a vertex of Γ≥i(Λ
0
x). Since e2 is contained in σR

2 , e2 is not a vertex

of Γ≥i(Λ
1
x), but is replaced by σR

2 . Furthermore, since σR
2 contains e2, it is adjacent

in Γ≥i(Λ
1
x) to every vertex that is adjacent to e2 in Γ≥i(Λ

0
x). Therefore, Γ≥i(∆

j−1
⌊n⌋ ) is

isomorphic to a subgraph of Γ≥i(Λ
1
x), where the isomorphism is given by the identity

on every vertex other than e2, which gets mapped to σR
2 . This subgraph is connected,

and since it contains every vertex of Γ≥i(Λ
1
x), so is Γ≥i(Λ

1
x).

Case 2(c): Suppose that both e1 and e2 are contained in 2-cells of Λ0
x. Then

Γ≥i(Λ
0
x) is a subgraph of Γ≥i(Λ

1
x), and σ

R
2 is the only vertex of Γ≥i(Λ

1
x) not in Γ≥i(Λ

0
x).

Since σR
2 contains x, as does the 2-cell containing e1, σ

R
2 is adjacent to this 2-cell in

Γ≥i(Λ
1
x). Since Γ≥i(Λ

0
x) is connected, this implies that Γ≥i(Λ

1
x) is as well.

Case 2 Step 1(c): Show that X⌊n⌋(Λ
1
x) ⊆ X⌊n⌋(Λ

0
x), implying that Λ1

x satisfies

property (14) from the induction on k

Since the only change from Γ≥⌊n⌋(Λ
0
x) to Γ≥⌊n⌋(Λ

1
x) is the addition of the vertex

σR
2 and possible removal of vertices e1 and/or e2 (if either of them were not already

contained in a 2-cell), the only 0-cells that could be in X⌊n⌋(Λ
1
x)△X⌊n⌋(Λ

0
x) are those

contained in σR
2 , e1, and e2, that is, x, y1.5, y1, and y2.

Firstly, we know that x ∈ X⌊n⌋(Λ
0
x), so x ̸∈ X⌊n⌋(Λ

1
x) \ X⌊n⌋(Λ

0
x). Also, the

only vertex of Γ≥⌊n⌋(Λ
1
x) containing y1.5 is σR

2 , so y1.5 ̸∈ X⌊n⌋(Λ
1
x). Furthermore,

I(y1) = ⌊n⌋ − 1, so y1 ̸∈ X⌊n⌋(Λ
1
x). Finally, suppose by way of contradiction that

y2 ∈ X⌊n⌋(Λ
1
x)\X⌊n⌋(Λ

0
x). Then by the definition ofX⌊n⌋(Λ

1
x), we have that I(y2) = ⌊n⌋

and there exist distinct vertices of Γ≥⌊n⌋(Λ
1
x), σ and τ , both containing y2, such that

σ ∈ Γ≥n(Λ
1
x) and one of properties (1) or (2) from the definition of X⌊n⌋ is true:
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(1) τ is not a vertex of Γ≥n(Λ
1
x) and there is a 0-cell z ∈ τ with I(z) = ⌊n⌋ and

z ̸= y2, or

(2) σ and τ are in different components of Γ≥n(Λ
1
x).

But since y2 ̸∈ X⌊n⌋(Λ
0
x), σ and τ do not satisfy these properties in Λ0

x. There are two

cases for how this could happen.

Case 2(d): Suppose that one of σ or τ is not a vertex of Γ≥⌊n⌋(Λ
0
x). Since heights

have been preserved from Λ0
x to Λ1

x, the only way this can happen is if one of σ or τ

is not in Λ0
x, i.e., if one of them is σR

2 . Note that the other must be in Λ0, since σ and

τ are distinct. Since I(y2) = ⌊n⌋ and I(x) = ⌊n⌋, any point z ∈ int(e2) has Î(z) = n.

So since e2 ⊂ σR
2 , σ

R
2 is a vertex of Γ≥n(Λ

1
x). Therefore, either σ = σR

2 and property

(1) above holds, or τ = σR
2 and property (2) above holds. Let υ1 be the vertex of

Γ≥⌊n⌋(Λ
0
x) containing e1, and let υ2 be the vertex of Γ≥⌊n⌋(Λ

0
x) containing e2.

Subcase 2(d)(i): σ = σR
2 and property (1) above holds. Then υ2 and τ are both

vertices of Γ≥⌊n⌋(Λ
0
x) containing y2, and τ still satisfies property (1) in Λ0. This

implies that y2 ∈ X⌊n⌋(Λ
0
x), a contradiction.

Subcase 2(d)(ii): τ = σR
2 and property (2) above holds. Then σ is a vertex

of Γ≥n(Λ
0
x), and since e2 ⊂ υ2, so is υ2. We know that σ and σR

2 are in different

components of Γ≥n(Λ
1
x). But since y2 ̸∈ X⌊n⌋(Λ

0
x), we must have that σ and υ2 are in

the same component of Γ≥(Λ
0
x). So there is a simple path α from σ to υ2 in Γ≥n(Λ

0
x).

Let β be the longest initial segment of α contained in Γ≥n(Λ
1
x). If β = α, then υ2

is a vertex of Γ≥n(Λ
1
x), and since υ2 ∩ σR

2 ⊇ e2, υ2 and σR
2 are adjacent in Γ≥n(Λ

1
x),

putting them in the same component. But this implies that σ and σR
2 are in the

same component of Γ≥n(Λ
1
x), a contradiction. So we must have β ̸= α. Let χ be the

endpoint of β, so that χ and σ are in the same component of Γ≥n(Λ
1
x). Since every

pair of vertices of Γ≥n(Λ
0
x) that are also both vertices of Γ≥n(Λ

1
x) are either adjacent
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or not in both graphs, we must have that α contains a vertex of Γ≥n(Λ
0
x) that is not a

vertex of Γ≥n(Λ
1
x). We know that υ1 and υ2 are the only possible vertices of Γ≥n(Λ

0
x),

that may not be in Γ≥n(Λ
1
x), which can only happen if υ1 = e1 or υ2 = e2. So let

ε ∈ {1, 2} such that υε = eε and eε is the vertex on α that comes after χ. Then

because eε and χ are adjacent in Γ≥n(Λ
0
x) and eε ⊂ σR

2 , we must have that χ and σR
2

are adjacent in Γ≥n(Λ
1
x). Therefore, σR

2 , χ, and σ are all in the same component of

Γ≥n(Λ
1
x), which is a contradiction.

Case 2(e): Suppose that both σ and τ are vertices of Γ≥⌊n⌋(Λ
0
x). Then σ is also a

vertex of Γ≥n(Λ
0
x), since it is a vertex of Γ≥n(Λ

1
x). Now if τ satisfies property (1) above,

then it satisfies that property in Λ0
x as well. This would imply that y2 ∈ X⌊n⌋(Λ

0
x), a

contradiction. So we must have that σ and τ are in different components of Γ≥n(Λ
1
x).

But since y2 ̸∈ X⌊n⌋(Λ
0
x), σ and τ must be in the same component of Γ≥n(Λ

0
x). So let

α be a simple path from σ to τ in Γ≥n(Λ
0
x). We must have that α is not contained

in Γ≥n(Λ
1
x). Again let υ1 be the vertex of Γ≥⌊n⌋(Λ

0
x) containing e1, and let υ2 be the

vertex of Γ≥⌊n⌋(Λ
0
x) containing e2. By the same reasoning as in Case 2(d)(ii), the only

edges of α not contained in Γ≥n(Λ
1
x) are those with one endpoint either e1 or e2, and

where υ1 = e1 or υ2 = e2. But since every vertex of Γ≥n(Λ
0
x) that is adjacent to υ1

or υ2 is also adjacent to σR
2 in Γ≥n(Λ

0
x), we may replace every such edge with one

that has an endpoint of σR
2 , resulting in a path from σ to τ in Γ≥n(Λ

1
x). This is a

contradiction.

Our assumption has led to a contradiction in every case, so we must have that

y2 ̸∈ X⌊n⌋(Λ
1
x) \X⌊n⌋(Λ

0
x). Therefore, X⌊n⌋(Λ

1
x) ⊆ X⌊n⌋(Λ

0
x).

Case 2 Step 1(d): Show that Λ1
x satisfies property (13) of the induction on k:

that F⌊n⌋(Λ
1
x) ⊆ F⌊n⌋(Λ

0
x).

Let τ ∈ F⌊n⌋(Λ
1
x). Suppose by way of contradiction that τ = σR

2 . In this case, we

must have I(y1) = I(y2) = ⌊n⌋ − 1 so that e1 and e2 do not contain points of height
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greater than ⌊n⌋. Then I(y1.5) = ⌊n⌋. So σR
2 has exactly two 0-cells of height ⌊n⌋,

x and y1.5. But y1.5 is not on any vertex of Γ≥⌊n⌋(Λ
1
x), contradicting the fact that

τ ∈ F⌊n⌋(Λ
1
x). So τ ̸= σR

2 .

As a result, τ ∈ Γ≥⌊n⌋(Λ
0
x). Now let z1, z2 ∈ τ (0) and let υ1 and υ2 be vertices of

Γ≥⌊n⌋(Λ
1
x) such that I(z1), I(z2) = ⌊n⌋, z1 ∈ υ1, and z2 ∈ υ2. If υ1 and υ2 are both

vertices of Γ≥⌊n⌋(Λ
0
x), then τ ∈ F⌊n⌋(Λ

0
x). Otherwise, assume without loss of generality

that υ1 = σR
2 . Then z1 ∈ {x, y1, y2}. Since I(z1) = ⌊n⌋ and I(y1) = ⌊n⌋− 1, we know

that z1 ̸= y1. If z1 = x, then since x ∈ X⌊n⌋(Λ
0
x), there is some vertex υ′1 of Γ≥n(Λ

0
x)

containing x. If instead z1 = y2, then I(y2) = ⌊n⌋, so max(I(e2)) = ⌊n⌋. So let

υ′1 be the vertex of Γ≥n(Λ
0
x) containing e2. In both cases, υ′1 contains z1, and since

υ′1 ∈ Γ≥n(Λ
0
x), we have τ ̸= υ′1. If we also have υ2 = σR

2 , we can choose υ′2, a vertex

of Γ≥n(Λ
0
x), in the same way such that z2 ∈ υ′2 and υ′2 ̸= τ . Then υ′1 and υ2 or υ′2

demonstrate that τ ∈ F⌊n⌋(Λ
0
x). Therefore, F⌊n⌋(Λ

1
x) ⊆ F⌊n⌋(Λ

0
x).

Case 2 Step 2: For k ≥ 2, contruct Λk
x from Λk−1

x such that it satisfies properties

(11) - (15).

Case 2 Step 2(a): For k ≥ 2, construct Λk
x from Λk−1

x such that it satisfies

property (15) of the induction on k: that Λk
x has a 2-cell σR

k+1 adjacent to −−→ek+1 on its

right side.

Let k ≥ 2 and assume we have constructed Λk−1
x . We know that −→ek is adjacent to

a 2-cell σR
k on its right. If −→ek is adjacent to a 2-cell on its left, name this 2-cell σL

k .

Otherwise, −→ek is adjacent to R2 \Λk−1
x on its left and −−→ek+1 is adjacent to R2 \Λk−1

x on

its right. So let σL
k be a 2-cell with boundary circuit labeled by a−1

k+1aka
−1
k ak+1, and

glue σL
k to Λk−1

x by gluing the initial path along its boundary circuit labeled by a−1
k+1ak

along the path −−→ek+1 · −→ek . Let yk+ 1
2
be the 0-cell in σL

2 replacing x on the boundary of

the diagram, and let Λ̃k−1
x be the resulting diagram.

We may use essentially the same argument used above in the construction of Λ1
x
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to show that Λ̃k−1
x is a van Kampen diagram for w with respect to P ′ satisfying the

following properties:

� For all i ∈ {0, 0.5, . . . , ⌊n⌋}, Γ≥i(Λ̃k−1
x ) is connected.

� IDiam(Λ̃k−1
x ) ≤ max(IDiam(∆0), ⌊n⌋+ 1 +

⌊
1
4
max(ρ, 4)

⌋
).

� F⌊n⌋(Λ̃k−1
x ) ⊆ F⌊n⌋(Λ

k−1
x ) and X⌊n⌋(Λ̃k−1

x ) ⊆ X⌊n⌋(Λ
k−1
x ).

� σL
k is adjacent to −→ek on its left side and −−→ek+1 (or

−→e1 , if k = Nx) on its right side.

The only difference between these two arguments is that, for Λ1
x, we know that

I(y1) = ⌊n⌋ − 1. In Case 2 Step 1(c), when determining which 0-cells can be in

X⌊n⌋(Λ
1
x), this fact allows us to immediately conclude that y1 is not in X⌊n⌋(Λ

1
x) with-

out going through all the same work required to show that y2 is not in X⌊n⌋(Λ
1
x).

However, in the k ≥ 2 case, we do not know the height of either yk or yk+1, mean-

ing that we must use the same, longer argument for yk and yk+1 as we did for y2.

Otherwise, the arguments are identical.

Now construct Λk
x from Λ̃k−1

x in the following way. (See Figure 3.10 for an exam-

ple.) If I(yk) ≥ ⌊n⌋ or if x ̸∈ X⌊n⌋(Λ̃k−1
x ), then let σR

k+1 = σL
k and let Λk

x = Λ̃k−1
x .

Otherwise, I(yk) = ⌊n⌋−1 and x ∈ X⌊n⌋(Λ̃k−1
x ). For S ∈ {R,L}, let γS be the directed

edge path such that −→ek · γS is the boundary circuit of σS
k . Then replace −→ek with a

directed edge path −→ek ′ labeled by the word aka
−1
k ak. Let xk be the 0-cell adjacent to

yk on
−→ek ′, and let y′k be the 0-cell adjacent to x on −→ek ′. For S ∈ {R,L}, this replaces σS

k

with a new 2-cell σS
k
′
with boundary circuit −→ek ′ · γS. Let wS ∈ (A∪A−1)∗ be the word

that labels γS. Then the boundary of σS
k
′
is labeled by aka

−1
k akwS =G akwS =G 1,

since akwS labels the boundary circuit of σS
k .
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Now if ℓ(aka
−1
k akwS) ≤ max(ρ, 4), then aka

−1
k akwS ∈ R′. Otherwise, we have that

|γS| = ℓ(wS) ≥ 2, and we will split σS
k into two 2-cells whose boundary circuits are in

R′, as follows.

If there is some 0-cell other than x in γS with height at least ⌊n⌋, then because

height differs by at most 1 between adjacent 0-cells, we can choose a 0-cell zS ̸= x, yk

on γS such that I(zS) = ⌊n⌋. Otherwise, every 0-cell on γS other than x has height

less than or equal to ⌊n⌋ − 1. In particular, since I(x) = ⌊n⌋, we know that the the

next 0-cell along γS, which is adjacent to x, has height ⌊n⌋ − 1. Therefore, we can

choose a 0-cell zS ̸= x, yk on γS such that I(zS) = ⌊n⌋ − 1. Let αS be the path from

yk to zS and βS the path from x to zS such that αS · βS = γS. If |αS| ≤ |βS|, then let

uS be the word labeling αS and let sS = xk. Otherwise, let uS be the word labeling

βS and let sS = y′k. Then add a directed edge path δS through the interior of σS
k
′
from

sS to zS labeled by uS. This splits σS
k
′
into two 2-cells, one with boundary circuit

labeled by the word akuSu
−1
S a−1

k and the other labeled by akwS. Let σ
S
k(x) be the one

containing x, and σS
k(yk) the one containing yk.

Figure 3.10: An example of the changes made to Λ̃k−1
x to construct Λk

x.

We already know that akwS ∈ R′. Of course, akuSu
−1
S a−1 =G 1. Since ℓ(uS) =
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min(|αS|, |βS|), we have that

ℓ(akuSu
−1
S a−1

k ) = 2ℓ(uS) + 2

≤ |αS|+ |βS|+ 2

= ℓ(akwS) + 1

≤ max(ρ, 4) + 1

Now, since ρ is even, max(ρ, 4) + 1 is odd. Note that ℓ(akuSu
−1
S a−1

k ) is even, so we

can therefore strengthen the inequality to ℓ(akuSu
−1
S a−1

k ) ≤ max(ρ, 4). Therefore,

akuSu
−1
S a−1

k ∈ R′.

Having made these changes to Λ̃k−1
x , we will call the resulting diagram Λk

x. We

have shown that the boundary circuit of each new 2-cell of Λk
x is labeled by a word

in R′, so Λk
x is a van Kampen diagram with respect to P ′. We have also not added or

removed any 1-cells on the boundary, so Λk
x is a van Kampen diagram for the word

w, the same as Λ̃k−1
x .

If k < Nx, let σ
R
k+1 be the one of σL

k
′
and σL

k (x) that is a 2-cell of Λk
x. Then note

that −−→ek+1 is adjacent to σR
k+1 on its right.

Case 2 Step 2(b): Show that Λk
x satisfies property (12) from the induction on

k: that IDiam(Λk
x) ≤ max(IDiam(∆0), ⌊n⌋+ 1 +

⌊
1
4
max(ρ, 4)

⌋
).

We will first show that every p ∈ Λ̃k−1
x

(0)

has the same height in Λk
x as in Λ̃k−1

x . Let

γ be an edge path from the basepoint ∗ to p in Λk
x
(1)
. Suppose that γ is not contained

in Λ̃k−1
x

(1)

. Then γ must at some point enter, and at some point exit, Λk
x
(1) \ Λ̃k−1

x

(1)

through one of x, yk, zL, and zR, since these are the only 0-cells of Λ̃k−1
x on 1-cells

not in Λ̃k−1
x . So let qF be the first point on γ in {x, yk, zL, zR}, and let qL be the last

point on γ in {x, yk, zL, zR}. Recall that these points have height either ⌊n⌋ − 1 or

⌊n⌋ in Λ̃k−1
x . Let α be the path from ∗ to qF, β the path from qF to qL, and ω the
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path from qL to p, such that α · β · ω = γ. Note that, since γ contains a 1-cell not in

Λ̃k−1
x

(1)

, we must have that |β| ≥ 1. So |α · β| ≥ |α|+1. But |α| ≥ ⌊n⌋ − 1, since α is

a path from ∗ to qF in Λ̃k−1
x

(1)

. So |α · β| ≥ ⌊n⌋. Therefore, there is some path δ from

∗ to qL in Λ̃k−1
x

(1)

with |δ| ≤ |α · β|. Then δ · ω is a path from ∗ to p in Λ̃k−1
x

(1)

with

|δ · ω| ≤ |γ|. So the height of p has not decreased.

Now let γ be a geodesic from the basepoint ∗ to p in Λ̃k−1
x . Suppose that γ is not

contained in Λk
x. The only 1-cell of Λ̃k−1

x not in Λk
x is ek, so ek is the only edge of γ

not in Λk
x. In particular, since γ is a geodesic, −→ek appears in γ exactly once (since

this is the direction of increasing height). So there are paths α and β in Λk
x such that

γ = α · −→ek · β and |α| = I(yk) = ⌊n⌋ − 1. Now since I(y1) = ⌊n⌋ − 1 in Λ̃k−1
x , there

is a directed edge path δ from ∗ to y1 in Λ̃k−1
x with |δ| = ⌊n⌋ − 1. Note also that δ

cannot contain ek, since max(I(ek)) = ⌊n⌋ > ⌊n⌋− 1. So δ is also a path in Λk
x. Then

δ · −→e1 · β is a path from ∗ to p in Λk
x with the same length as γ. So the height of p in

Λk
x has not increased, either.

In particular, we still have that I(x), I(yk), I(zR), I(zL) ∈ {⌊n⌋− 1, ⌊n⌋}. Now let

p ∈ Λk
x
(0) \ Λ̃k−1

x

(0)

. Since every path from ∗ to p contains one of x, yk, zR and zL,

we have that I(p) ≥ ⌊n⌋. If p is in −→ek ′, then it is adjacent to one of x and yk, so

I(p) ∈ {⌊n⌋, ⌊n⌋+ 1}. Otherwise, p is on an edge path of length at most 1
2
max(ρ, 4)

connecting two 0-cells of height at most ⌊n⌋. Therefore, I(p) ≤ ⌊n⌋+1+
⌊
1
4
max(ρ, 4)

⌋
.

Since we know that IDiam(Λ̃k−1
x ) ≤ max(IDiam(∆0), ⌊n⌋ + 1 +

⌊
1
4
max(ρ, 4)

⌋
), this

implies that IDiam(Λk
x) ≤ max(IDiam(∆0), ⌊n⌋+ 1 +

⌊
1
4
max(ρ, 4)

⌋
).

Case 2 Step 2(c): Show that Λk
x satisfies property (11) from the induction on

k: that for all i ∈ {0, 0.5, . . . , ⌊n⌋}, Γ≥i(Λ
k
x) is connected.

Let i ∈ {0, 0.5, . . . , ⌊n⌋}. We know that Γ≥i(Λ̃k−1
x ) is connected.

Let C be the largest subgraph of Γ≥i(Λ
k
x) containing all the vertices of Γ≥i(Λ

k
x)

that are not in Γ≥i(Λ̃k−1
x ). So the vertices of C are all of the following 2-cells that
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have been defined and exist in Λk
x: σ

R
k
′
, σR

k (x), σ
R
k (yk), σ

L
k
′
, σL

k (x), and σ
L
k (yk). First

note that C is connected. If σR
k
′
is a 2-cell of Λk

x, then it has both xk and y′k on

its boundary. Since I(x), I(x′k) ≥ i, σR
k
′
is adjacent to either σL

k
′
or both of σL

k (x)

and σL
k (yk) in Γ≥i(Λ

k
x), making C connected. Otherwise, σR

k (x) and σ
R
k (yk) are both

2-cells of Λk
x. Since they both have sR on their boundaries, they are adjacent to each

other in Γ≥i(Λ
k
x). Furthermore, one of these has both xk and y′k on its boundary. So

by the same reasoning as above, C is connected.

Now let V = {σR
k , σ

L
k }, a subset of the vertices of Γ≥i(Λ̃k−1

x ), and let D =

Γ≥i(Λ̃k−1
x ) \ V . Note that D is also Γ≥i(Λ

k
x) \ C. Let d be a vertex of D adja-

cent to some v ∈ V in Γ≥i(Λ̃k−1
x ). Then there is some point q ∈ ∂d∩∂v with I(q) ≥ i.

Note that q ̸∈ int(e), since d ̸∈ v. Since q ∈ ∂v \ int(e), we have that q ∈ ∂c for some

c ∈ C. So d is adjacent to c in Γ≥i(Λ
k
x). Then by Lemma 3.2.6, there is a subgraph of

Γ≥i(Λ
k
x) that is connected and contains all the vertices in C and D, i.e., all vertices

of Γ≥i(Λ
k
x). Therefore, Γ≥i(Λ

k
x) is connected.

Case 2 Step 2(d): Show that Λk
x satisfies property (13) from the induction on

k: that F⌊n⌋(Λ
k
x) ⊆ F⌊n⌋(Λ

k−1
x ).

Since we have already shown that F⌊n⌋(Λ̃k−1
x ) ⊆ F⌊n⌋(Λ

k−1
x ), we need only show

that F⌊n⌋(Λ
k
x) ⊆ F⌊n⌋(Λ̃k−1

x ). Let τ ∈ F⌊n⌋(Λ
k
x). Suppose by way of contradiction that

τ ̸∈ Γ≥⌊n⌋(Λ̃k−1
x ). Then τ ∈ {σR

k
′
, σR

k (x), σ
R
k (yk), σ

L
k
′
, σL

k (x), σ
L
k (yk)}. For S ∈ {R,L},

we cannot have τ = σS
k
′
or τ = σS

k(x), since both contain y′k, which has height ⌊n⌋+1.

So for some S ∈ {R,L}, τ = σS
k(yk). We must also have that sS = xk, since otherwise

y′k ∈ σS
k(yk). Now I(xk) = ⌊n⌋, but there must be some other 0-cell z ∈ σS

k(yk) with

I(z) = ⌊n⌋. If z ̸∈ δS, then z ∈ σS
k \ {x}. Then by the way zS was defined, we must

have I(zS) = ⌊n⌋. So there is some 0-cell z′ on δS other than xk with I(z′) = ⌊n⌋.

Then every point between z′ and xk on δS has height at least n, which implies that

σS
k(yk) ∈ Γ≥n(Λ

k
x). This contradicts that σ

S
k(yk) ∈ F⌊n⌋(Λ

k
x).
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So τ ∈ Γ≥⌊n⌋(Λ̃k−1
x ). Now there are 0-cells z1, z2 ∈ τ with I(z1), I(z2) = ⌊n⌋

and there are vertices υ1, υ2 ̸= τ of Γ≥⌊n⌋(Λ
k
x) with z1 ∈ υ1 and z2 ∈ υ2. If

υ1, υ2 ∈ Γ≥⌊n⌋(Λ̃k−1
x ), then τ ∈ F⌊n⌋(Λ̃k−1

x ). Otherwise, we may assume without loss of

generality that υ1 ∈ {σS
k
′
, σS

k(x), σ
S
k(yk)} for some S ∈ {R,L}. Since τ ∈ Γ≥⌊n⌋(Λ̃k−1

x ),

this implies that ∂τ ∩ ∂υ1 ⊆ σS
k \ int(ek). Therefore, z2 ∈ σS

k . So let υ′1 = σS
k . If we

also have υ2 ̸∈ Γ≥⌊n⌋(Λ̃k−1
x ), we may similarly choose a vertex υ′2 of Γ≥⌊n⌋(Λ̃k−1

x ) with

z2 ∈ υ′2. Therefore, υ′1 and υ2 or υ′2 demonstrate that τ ∈ F⌊n⌋(Λ̃k−1
x ), implying that

F⌊n⌋(Λ
k
x) ⊆ F⌊n⌋(Λ̃k−1

x ).

Case 2 Step 2(e): Show that Λk
x satisfies property (14) from the induction on

k: that if X⌊n⌋(Λ
k
x) ̸⊆ X⌊n⌋(Λ

k−1
x ), then F⌊n⌋(Λ

k
x) ⊊ F⌊n⌋(Λ

k−1
x ).

We have already shown in Case 2 Step 2(a) that F⌊n⌋(Λ̃k−1
x ) ⊆ F⌊n⌋(Λ

k−1
x ) and

X⌊n⌋(Λ̃k−1
x ) ⊆ X⌊n⌋(Λ

k−1
x ). So it is sufficient to show that if X⌊n⌋(Λ

k
x) ̸⊆ X⌊n⌋(Λ̃k−1

x ),

then F⌊n⌋(Λ
k
x) ⊊ F⌊n⌋(Λ̃k−1

x ).

If X⌊n⌋(Λ
k
x) ̸⊆ X⌊n⌋(Λ̃k−1

x ), then there is some p ∈ X⌊n⌋(Λ
k
x)\X⌊n⌋(Λ̃k−1

x ). So by the

definition of X⌊n⌋, there are distinct vertices of Γ≥⌊n⌋(Λ
k
x), σ and τ , both containing p

such that σ is a vertex of Γ≥n(Λ
k
x) and one of properties (1) or (2) from the definition

of X⌊n⌋ is true:

(1) τ is not a vertex of Γ≥n(Λ
k
x) and there is a 0-cell q ∈ τ with I(q) = ⌊n⌋ and

q ̸= p, or

(2) σ and τ are in different components of Γ≥n(Λ
k
x).

Then there are several possibilities for how p could fail to be a member of X⌊n⌋(Λ̃k−1
x ).

Suppose by way of contradiction that neither σ nor τ are in Λ̃k−1
x . In the proof

that F⌊n⌋(Λ
k
x) ⊆ F⌊n⌋(Λ̃k−1

x ), we showed that any element of F⌊n⌋(Λ
k
x) is in Λ̃k−1

x , but

the same reasoning implies that τ cannot satisfy property (1) above. So we must have

that σ and τ are in different components of Γ≥n(Λ
k
x). However, I claim that this is
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impossible. Every 2-cell containing y′k is in the same component of Γ≥n(Λ
k
x), so the

only new 2-cells that might be in a different component are σS
k(yk) for S ∈ {R,L}.

But we have shown above that either σS
k(yk) does not contain a point of height at least

n, or it contains such a point on δS, making σS
k(yk) and σ

S
k(x) adjacent in Γ≥n(Λ

k
x).

So all the vertices of Γ≥n(Λ
k
x) that are not in Λ̃k−1

x are in the same component, a

contradiction.

Now suppose by way of contradiction that both σ and τ are in Λ̃k−1
x . Now if τ

satisfies property (1) above, then it would also satisfy property (1) in Λ̃k−1
x , implying

that p ∈ X⌊n⌋(Λ̃k−1
x ). So we must instead have that σ and τ are in different compo-

nents of Γ≥n(Λ
k
x), but the same component of Γ≥n(Λ̃k−1

x ). Let V = {σR
k , σ

R
k }, let D

be the largest subgraph containing all other vertices in the component of Γ≥n(Λ̃k−1
x )

containing σ and τ , and let C = Γ≥n(Λ
k
x) \ Γ≥n(Λ̃k−1

x ). We have shown above that C

is connected. For any vertices d ∈ D and v ∈ V with d and v adjacent in Γ≥n(Λ̃k−1
x ),

there is a point q ∈ ∂d∩∂v. Since d ̸∈ V , q ̸∈ int(ek). Therefore, there is some vertex

c ∈ C with q ∈ C, making d and c adjacent in Γ≥n(Λ
k
x). So by Lemma 3.2.6, we have

that σ and τ are in the same component of Γ≥n(Λ
k
x), a contradiction.

Therefore, we must have that exactly one of σ and τ is in Λ̃k−1
x . Since we know that

every vertex of Γ≥n(Λ
k
x) that is not in Λ̃k−1

x cannot be a vertex satisfying property (1)

above, and since property (2) is symmetric between σ and τ , we may assume without

loss of generality that τ is in Λ̃k−1
x and σ is not. Then since p ∈ σ ∩ τ , we must have

that p ∈ ∂σS
k for some S ∈ {R,L}. We will show that σS

k ∈ F⌊n⌋(Λ̃k−1
x ).

By the same argument as above, we cannot have that σ and τ are in different

components of Γ≥n(Λ
k
x), but σ

S
k and τ are in the same component of Γ≥n(Λ̃k−1

x ). We

also know that τ ∈ Γ≥⌊n⌋(Λ̃k−1
x ). So if σS

k ∈ Γ≥n(Λ̃k−1
x ), then σS

k and τ would satisfy

the properties needed to put p ∈ X⌊n⌋(Λ̃k−1
x ). So we must have that σS

k ̸∈ Γ≥n(Λ̃k−1
x ),

i.e., that max(I(σS
k)) = ⌊n⌋.
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Now one of σR
2 , σ

R
2
′
, or σR

2 (x) is a vertex of Γ≥⌊n⌋(Λ̃k−1
x ) containing x. If this

vertex contains a point of height at least n, name it υ1. Otherwise, we must have

that I(y2) = ⌊n⌋ − 1 and k = 2. Then the fact that x ∈ X⌊n⌋(Λ
0
x) implies that there

is some vertex υ′1 of Γ≥n(Λ
0
x) containing x, which must also be a vertex of Γ≥n(Λ

1
x).

If υ′1 is not a vertex of Γ≥n(Λ
1
x
′
), then it must be contained in a vertex υ1 of Γ≥n(Λ

1
x
′
).

Otherwise, let υ1 = υ′1. So υ1 is a vertex of Γ≥n(Λ̃k−1
x ) containing x. Since υ1 contains

a point of height at least n, υ1 ̸= σS
k .

Now we cannot have p = x, since x ∈ X⌊n⌋(Λ̃k−1
x ). So x and p are distinct 0-cells of

σS
k with I(x) = I(p) = ⌊n⌋ and there are vertices υ1, τ ̸= σS

k of Γ≥⌊n⌋(Λ̃k−1
x ) with x ∈ υ1

and p ∈ τ . Therefore, σS
k ∈ F⌊n⌋(Λ̃k−1

x ). Since we know that F⌊n⌋(Λ
k
x) ⊆ F⌊n⌋(Λ̃k−1

x ),

and σS
k is not in Λk

x, this implies that F⌊n⌋(Λ
k
x) ⊊ F⌊n⌋(Λ̃k−1

x ). This completes the

induction on k.

The result is a van Kampen diagram ΛNx
x for w with respect to P ′ with the

following properties:

� For all i ∈ {0, 0.5, . . . , ⌊n⌋}, Γ≥i(Λ
Nx
x ) is connected (property (8) from the in-

duction on j).

� IDiam(ΛNx
x ) ≤ max(IDiam(∆0), ⌊n⌋+1+

⌊
1
4
max(ρ, 4)

⌋
) (property (9) from the

induction on j).

� For all k ∈ {0, . . . , Nx − 1}, we have F⌊n⌋(Λ
Nx
x ) ⊆ F⌊n⌋(Λ

k
x) and if X⌊n⌋(Λ

Nx
x ) ̸⊆

X⌊n⌋(Λ
k
x), then F⌊n⌋(Λ

Nx
x ) ⊊ F⌊n⌋(Λ

k
x)

� Every 1-cell containing x has a 2-cell adjacent to it on both sides.

So let ∆j
⌊n⌋ = ΛNx

x .
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Case 2 Step 3: Show that ∆j
⌊n⌋ satisfies property (10) from the induction on j:

that

(|F⌊n⌋(Λ
Nx
x )|, |X⌊n⌋(Λ

Nx
x )|) < (|F⌊n⌋(Λ

0
x)|, |X⌊n⌋(Λ

0
x)|).

Case 2(f): Suppose that in ΛNx
x , every 1-cell e containing x other than e1 has

max(I(e)) ≥ n. Then every 2-cell σ containing x is a vertex of Γ≥n(Λ
Nx
x ). Since every

such 1-cell e has a 2-cell adjacent to it on both sides, all the 2-cells containing x are

in the same component of Γ≥n(Λ
Nx
x ). Therefore, x ̸∈ X⌊n⌋(Λ

Nx
x ).

Case 2(g): Suppose that there is some k ∈ [Nx] \ {1} such that ek is in ΛNx
x and

I(yk) = ⌊n⌋ − 1. So we must have that x ̸∈ X⌊n⌋(Λ
k
x). Then for each i > k, assume

by induction that x ̸∈ X⌊n⌋(Λ
i−1
x ). We have shown that X⌊n⌋(Λ

i−1
x

′
) ⊆ X⌊n⌋(Λ

i−1
x ),

so x ̸∈ X⌊n⌋(Λ
i−1
x

′
). But then we have X⌊n⌋(Λ

i
x) = X⌊n⌋(Λ

i−1
x

′
), so x ̸∈ X⌊n⌋(Λ

i
x).

Therefore, x ̸∈ X⌊n⌋(Λ
Nx
x ).

So in either case x ̸∈ X⌊n⌋(Λ
Nx
x ), but we know that x ∈ X⌊n⌋(Λ

0
x). Hence, either

X⌊n⌋(Λ
Nx
x ) ̸⊂ X⌊n⌋(Λ

0
x), or else X⌊n⌋(Λ

Nx
x ) ̸⊆ X⌊n⌋(Λ

0
x), which implies that F⌊n⌋(Λ

Nx
x ) ̸⊂

F⌊n⌋(Λ
0
x). So we have that either |X⌊n⌋(Λ

Nx
x )| < |X⌊n⌋(Λ

0
x)| or |F⌊n⌋(Λ

Nx
x )| < |F⌊n⌋(Λ

0
x)|.

Since we know that |F⌊n⌋(Λ
Nx
x )| ≤ |F⌊n⌋(Λ

0
x)|, this implies that

(|F⌊n⌋(Λ
Nx
x )|, |X⌊n⌋(Λ

Nx
x )|) < (|F⌊n⌋(Λ

0
x)|, |X⌊n⌋(Λ

0
x)|).

This completes the induction on j.

Case 2 Step 4: Define ∆n and show that it satisfies properties (3) and (4) of

the induction on n.

So we have a sequence ∆0
⌊n⌋,∆

1
⌊n⌋, . . . such that for j ≥ 1, we have

(|F⌊n⌋(∆
j
⌊n⌋)|, |X⌊n⌋(∆

j
⌊n⌋)|) < (|F⌊n⌋(∆

j−1
⌊n⌋ )|, |X⌊n⌋(∆

j−1
⌊n⌋ )|).
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Since the lexicographic order on N2 is a well-order, this sequence must end with a

van Kampen diagram ∆n := ∆m
⌊n⌋ satisfying the following properties:

� For all i ∈ {0, 0.5, . . . , ⌊n⌋}, Γ≥i(∆
m
⌊n⌋) is connected (property (3) from the

induction on n, but excluding i = n).

� IDiam(∆m
⌊n⌋) ≤ max(IDiam(∆0), ⌊n⌋+1+

⌊
1
4
max(ρ, 4)

⌋
) (property (4) from the

induction on n).

� X⌊n⌋(∆
m
⌊n⌋) = ∅.

So we need only show that Γ≥n(∆n) is connected. Suppose by way of contradiction

that σ and τ are vertices of Γ≥n(∆n) that are in different components. Let α be a

path in Γ≥⌊n⌋(∆n) from σ to τ containing the fewest edges not in Γ≥n(∆n). Let β

be the longest initial segment of α contained in Γ≥n(∆n), let σ
′ be the last vertex on

β, and let τ ′ be the vertex after σ′ on α. Then there is a point x ∈ ∂σ′ ∩ ∂τ ′ with

Î(x) ≥ ⌊n⌋ but I(x) < n. So x is a 0-cell with I(x) = ⌊n⌋.

If τ ′ ̸∈ Γ≥n(∆n), then τ ′ ̸= τ . So let υ be the vertex after τ ′ on α. If x ∈ υ,

we could replace the edges from σ′ to τ ′ and τ ′ to υ with a single edge from σ′ to

υ. This would reduce the number of edges not in Γ≥n(∆n), contradicting the way α

was chosen. So we must have x ̸∈ υ. Since τ ′ and υ are adjacent in Γ≥⌊n⌋(∆n), there

must be some y ̸= x with y ∈ ∂τ ′ ∩ ∂υ and I(y) ≥ ⌊n⌋. Since τ ′ ̸∈ Γ≥n(∆n), y must

be a 0-cell with I(y) = ⌊n⌋. So τ ′ and σ′ satisfy the properties required to make

x ∈ X⌊n⌋(∆n). This contradicts that X⌊n⌋(∆n) = ∅.

So we must have that τ ′ ∈ Γ≥n(∆n). If τ ′ and σ′ are in different components of

Γ≥n(∆n), then we would again have x ∈ X⌊n⌋(∆n). So there must be some path δ

from σ′ to τ ′ in Γ≥n(∆n). But then we can replace the edge on α from σ′ to τ ′ with

δ to acquire a path from σ to τ with fewer edges not in Γ≥n(∆n). This contradicts
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the way that α was chosen. Therefore, no such vertices σ and τ exist, implying that

Γ≥n(∆n) is connected as desired. We have now finished Case 2.

This concludes the induction on n.

Step B: Define a van Kampen diagram ∆w for the word w and show that there

is an s ∈ N[1
2
] such that AVs(∆w, I) ≤ IDiam(∆0).

With the induction in Step A, we have constructed a van Kampen diagram ∆w :=

∆IDiam(∆0)− 1
2
for w with respect to P ′ with the following properties:

� For all i ∈ {0, 0.5, . . . , IDiam(∆0) − 1
2
}, Γ≥i(∆w) is connected. By Proposi-

tion 3.2.5, this implies that the set (∆w)≥i = {x ∈ ∆w|Î(x) ≥ i} is path

connected.

� IDiam(∆w) ≤ IDiam(∆0) +
⌊
1
4
max(ρ, 4)

⌋
.

Now let s = 1 +
⌊
1
4
max(ρ, 4)

⌋
. Let n ∈ N0. Recall from the definition of AVs

that Pn is the union of the contour graphs of (∆w, I) that have height n and Cs
n is

the set of path components of ∆w \ Pn that do not contain ∗ and contain a point x

with |Î(x)− n| ≥ s. Define (∆w)<n := {x ∈ ∆w|Î(x) < n} and note that ∆w \ Pn =

(∆w)<n ∪ (∆w)≥n+ 1
2
(recall that the notation ∆≥k was defined in Proposition 3.2.5.

We will first show that (∆w)<n is path connected.

Let x ∈ ∆w with Î(x) < n. I claim that there is a path γ from x to the basepoint

∗ with max(Î(γ([0, 1]))) < n. By the definition of Î, if x is in the interior of a 2-cell

σ, there is a point y ∈ ∂σ with Î(y) ∈ {Î(x), Î(x)− 1
2
} and a path α from x to y with

Î(α) ⊆ {Î(x), Î(x)− 1
2
}. Then max(Î(α)) < n.

So we may reduce to the case where x ∈ ∆
(1)
w . If x is in the interior of a 1-cell

e, then Î(int(e)) = {Î(x)}, and there is some 0-cell y ∈ e with I(y) ≤ Î(x). So the

portion of e between x and y forms a path β from x to y with max(Î(β)) = Î(x) < n.
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Then we may reduce to the case where x ∈ ∆
(1)
w . Then any shortest edge path γ from

x to ∗ has max(Î(γ)) = Î(x) < n. Therefore, x is in the same path component of

(∆w)<n as ∗. Since x was arbitrary, this means that there is only one path component

of (∆w)<n.

Now suppose n < IDiam(∆0). Then we have shown—by Proposition 3.2.5 and

property (1) of Step A—that the only path component of ∆w \ Pn not containing ∗

is (∆w)≥n+ 1
2
. Therefore, |Cs

n| = 1 (where Cs
n is defined as in Definition 3.1.4).

Now suppose n ≥ IDiam(∆0). We know that (∆w)<n is the path component of

∆w\Pn containing ∗, so every other path component is a subset of (∆w)≥n+ 1
2
. Because

IDiam(∆w) ≤ IDiam(∆0)+s−1, for any x ∈ ∆w, we have Î(x) ≤ IDiam(∆0)+s− 1
2
.

So for any point x in a path component of ∆w \ Pn not containing ∗, we have n <

Î(x) ≤ IDiam(∆0) + s− 1
2
. Therefore, |Î(x)− n| < s. This implies that Cs

n = ∅.

Therefore, AVs(∆w, I) =
∑IDiam(∆0)−1

n=0 |Cs
n| = IDiam(∆0) ≤ IDiamP(w). Since w

was an arbitrary word representing the identity of G, this implies that for all n ∈ N ,

IAVs(n) ≤ IDiamP(n). So IDiamP is an IAV function for P ′.

Remark 3.2.7. It is noteworthy that, by making Γ≥i connected for every i less than

the intrinsic diameter of the diagram, this proof essentially constructs a van Kampen

diagram with only a single hill, which has height approximately equal to the intrinsic

diameter of the diagram. In some sense, this is the simplest possible terrain we could

ask for; knowing the intrinsic diameter of the diagram tells us almost everything

there is to know about the terrain. This gives us additional structure to work with

whenever we know the intrinsic diameter function of a presentation. This perspective

also makes it seem very unlikely that there is a proper refinement of intrinsic diameter

based on “hilliness”, since we can always find van Kampen diagrams with only one
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hill.

3.3 A Notable Example: The Solvable Baumslag-Solitar Groups

Note that Theorem 3.2.3 is possible to prove only due to the power of adding relators

to the presentation that are not cyclically reduced and using unreduced van Kampen

diagrams, i.e., van Kampen diagrams containing a pair of 2-cells that share part of

their boundaries and are mirror images of each other. If we instead restrict ourselves

to using relators that are cyclically reduced and reduced van Kampen diagrams,

it is plausible that we may obtain a proper refinement of IDiam. This conjecture

is motivated by considering some standard van Kampen diagrams of the standard

presentations for the solvable Baumslag-Solitar groups.

The Baumslag-Solitar group BS(m,n), where m,n ∈ Z \ {0}, is defined by the

presentation

⟨a, t|tamt−1 = an⟩.

In 1962, Baumslag and Solitar showed that this family of groups contains groups

that are non-Hopfian, disproving a conjecture that no such 1-relator groups existed

[2]. Since then, these groups have proven to have a number properties of interest to

combinatorial and geometric group theorists, often serving as interesting examples

and counterexamples. For example, these groups are all asynchrously automatic [1],

but not automatic when |m| ̸= |n|, since they do not have a quadratic (or even

polynomial) Dehn function [15]. The groups BS(1, n)—the solvable Baumslag-Solitar

groups—have rational growth like automatic groups, which Brazil proved in [4] using

a regular language of geodesic normal forms for a subset of the elements. However,

if n > 1, there is no regular language of geodesic normal forms for these groups [17].

These groups are also not almost convex [22], but BS(1, 2) is minimally almost convex
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[13].

Given the role Baumslag-Solitar groups have played as interesting examples and

counterexamples, it is natural to consider what their IAV functions look like. In this

section, I focus on the solvable Baumslag-Solitar groups—BS(1, n) for n ≥ 2.

These groups have a certain notable set of van Kampen diagrams, described as

follows. Given n ∈ N with n ≥ 2, let Pn be the standard presentation for BS(1, n),

i.e., Pn = ⟨a, t|tat−1 = an⟩. For m ∈ N, let wm = atmat−ma−1tma−1t−m. Then there

is a standard van Kampen diagram Dm for wm with respect to Pn defined inductively

as follows. Let D1 consist of two 2-cells, σT and σB, that are glued together as shown

in Figure 3.11. The basepoint ∗ of D1 is the initial 0-cell on the boundary circuit of

σT. Having defined Dm−1, let Dm consist of n copies of Dm−1 along with two 2-cells,

σT and σB, glued together as shown in Figure 3.11. The basepoint ∗ of Dm is the

basepoint of the leftmost copy of Dm−1.

(a) D1 (b) Inductive step

Figure 3.11: The inductive definition of Dm for m ∈ N.

In these van Kampen diagrams, the number of 2-cells in Dm is exponential in m,

while the length of wm is linear in m. However, IDiam(BS(1, n)) is linear, and indeed

the diameter ofDm is linear inm. This large difference between the area and diameter

of these diagrams is notable, since, intuitively, trying to ”squeeze” exponentially-
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increasing area into a ball in the Cayley complex with linearly-increasing radius might

result in mountainous terrain in a van Kampen diagrams. This intuition motivates

me to consider if there might be some refinement of IDiam that is not linear for

BS(1, n), and helps to motivate the definition of IAV functions.

In order to help study IAV functions of BS(1, n), I wrote a Python program to draw

Dm, find the height of each 0-cell, and draw contour graphs on top of the diagram. The

code can be found at https://github.com/andrew-quaisley/Contour-Drawing.

Looking closely at the contour graphs ofDm in BS(1, 2) form = 6, . . . , 10, patterns

emerged to suggest that for any given sensitivity s, IAVs(Dm) grows exponentially

with respect to m. For example, consider the contour graphs of D8, shown in Fig-

ure 3.12. A “mountain range” runs through the middle of these diagrams, with many

different peaks. Note that there is a repeating pattern to these peaks, with the same

shapes appearing again and again at regular intervals along the diagram from left to

right.

https://github.com/andrew-quaisley/Contour-Drawing
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These patterns led to a proof of the following proposition:

Proposition 3.3.1. For n ∈ N with n ≥ 2 and m ∈ N, let Dm be the van Kampen

diagram with respect to the standard presentation for BS(1, n) defined above. Then for

all s ∈ N[1
2
], IAVs(Dm) grows at least exponentially as a function of m. In particular,

for m ∈ N, IAVs(Dm) ≥ nm−(2s+8) − 2.

Before proving it, we will need a few more definitions, and some results about

distance in BS(1, n). First, note that for each i ∈ [m − 1], Dm contains nm−i copies

of Di glued end-to-end, starting at the basepoint. It will be useful to let Dj
i denote

the jth such copy of Di, counting out from the basepoint, as shown in Figure 3.13.

Figure 3.13: Dm, with D
1
i , . . . , D

nm−i

i labeled.

Also note that any element g ∈ BS(1, n) can be written uniquely in the form

g = t−uavtw, for some u, v, w ∈ Z where u,w ≥ 0 and n|v implies that uw = 0. We

will call vn−u the a-length of g and w − u the t-height of g.

In [27], Taback and Walker build on [12] and [13] to describe a set of geodesics of

the standard presentation of BS(1, n) based on the normal forms above. In fact, in

[12], Elder descibed an algorithm to find the same geodesics. However, [12] focuses
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on finding a fast algorithm, so the definitions and lemmas of [27] are simpler to use

for our purposes.

Taback and Walker first note that integer sequences x = (x0, x1, . . . , xkx) such

that Σ(x) :=
∑kx

j=0 xjn
j = v correspond to words for g in the following way. They

define Lv to be the set of integer sequences x with Σ(x) = v and xkx ̸= 0, and then

define a function ηu,v,w : Lv → {a±1, t±1}∗ as follows:

ηu,v,w(x) =


t−uax0tax1 . . . taxkx tw−kx if kx ≤ w or u ≤ w < kx

tkx−uaxkx t−1axkx−1t−1 . . . t−1ax0tw if w < kx ≤ u or w < u < kx

(3.3.1)

Then ηu,v,w(x) =BS(1,n) t
−uavtw.

We will be using a result from [13], rewritten in the notation above in [27, Lemma

3.9] as follows: given x ∈ Lv, the word ηu,v,w(x) is a geodesic for the element g if

ℓ(ηu,v,w(x)) ≤ ℓ(ηu,v,w(y)) for all y ∈ Lv. Note that (v) ∈ Lv, which means Lv ̸= ∅,

and therefore the lemma implies that g has a geodesic in ηu,v,w(Lv).

It will also be useful to note [27, Lemma 3.7]: given x ∈ Lv, the length of ηu,v,w(x)

is given by the formula

ℓ(ηu,v,w(x)) =


||x||1 + u+ w if kx ≤ max(u,w)

||x||1 + 2kx − |u− w| otherwise

, (3.3.2)

where ||x||1 =
∑kx

j=0 |xj|.

Note that the two cases give the same value when kx = max(u,w).

We are now ready to prove the proposition.

Proof of Proposition 3.3.1. Let m ∈ N and s ∈ N[1
2
]. If m ≤ 2s+8, then nm−(2s+8) −

2 < 0 ≤ IAVs(Dm). Otherwise, for i ∈ {2, 3, . . . , nm−(2s+8)}, let uTi = t2s+8ai and
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uBi = auTi . Note that both uTi and uBi label paths from ∗ to 0-cells pTi and pBi in Dm,

because m > 2s + 8, meaning that Dm contains nm−(2s+8) non-overlapping copies of

D2s+8 glued together, side-by-side. Note also that uBi =BS(1,n) a
in2s+8+1t2s+8.

Now let x ∈ Lin2s+8+1 such that for all y ∈ Lin2s+8+1, we have that ||x||1 + 2kx ≤

||y||1 +2ky and, if ||x||1 +2kx = ||y||1 +2ky, then kx ≥ ky. I claim that kx ≥ 2s+8.

Suppose by way of contradiction that kx < 2s+8. We know that Σ(x) = in2s+8+1 >

2nkx+1, so let l ∈ {0, . . . , kx} be the largest index with Σl :=
∑kx

j=l xjn
j ≥ 2nkx+1.

Then we have Σl+1 :=
∑kx

j=l+1 xjn
j < 2nkx+1. Since Σl > Σl+1, we must have that

xl > 0. Furthermore, since l ≤ kx, 2n
kx+1 and Σl+1 are both multiples of nl, and

therefore so is 2nkx+1−Σl+1. Now 2nkx+1−Σl+1 ≤ Σl−Σl+1 = xln
l. Therefore, there

is some x′l ∈ N with x′l < xl such that (xl − x′l)n
l + Σl+1 = 2nkx+1.

So let x′ = (x0, x1, . . . , xl−1, x
′
l, 0, . . . , 0, 2) (where kx′ = kx + 1). Then x′ ∈

Lin2s+8+1 and kx < kx′ . I claim that ||x′||1+2kx′ ≤ ||x||1+2kx. Note that 2kx′−2kx =

2, so we need only show that 2 ≤ ||x||1 − ||x′||1. Now,

2nkx+1 = (xl − x′l)n
l + Σl+1

≤ (xl − x′l)n
l +

kx∑
j=l+1

|xj|nj

≤ (xl − x′l)n
kx +

kx∑
j=l+1

|xj|nkx .
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Then dividing both sides of this inequality by nkx gives us

2n ≤ xl − x′l +
kx∑

j=l+1

|xj|

2n− 2 ≤ xl − x′l +
kx∑

j=l+1

|xj| − 2

= ||x||1 − ||x′||1.

Since n ≥ 2, we have 2 ≤ 2n − 2, and thus 2 ≤ ||x||1 − ||x′||1 as desired. This

proves that ||x′||1 + 2kx′ ≤ ||x||1 + 2kx, which contradicts the way that x was chosen

since kx′ > kx. Therefore, we must have that kx ≥ 2s+ 8.

I also claim that x0 = 1 and x1, . . . , x2s+7 = 0. First, note that since Σ(x) =

in2s+8 + 1 ≡ 1 mod n, we must have that x0 ≡ 1 mod n. So there is some c ∈ Z

with x0 = cn + 1. Let Σ< =
∑2s+7

j=0 xjn
j and Σ> =

∑kx
j=2s+8 xjn

j. Now Σ< + Σ> =

Σ(x) = in2s+8 + 1, Σ> is divisible by n2s+8, and in2s+8 + 1 is congruent to 1 mod

n2s+8. Therefore, we must have that Σ< = dn2s+8 + 1 for some d ∈ Z. Suppose by

way of contradiction that d ̸= 0. Let x′ = (1, 0, . . . , 0, x2s+8+ d, x2s+9, . . . , xkx). Then

x′ ∈ Lin2s+8+1. Note that kx = kx′ . Then

||x′||1 − ||x||1 = 1 + |x2s+8 + d| −
2s+8∑
j=0

|xj| ≤ 1 + |d| −
2s+7∑
j=0

|xj|.
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Now

dn2s+8 + 1 =
2s+7∑
j=0

xjn
j

dn2s+8 = cn+
2s+7∑
j=1

xjn
j

|d|n2s+8 ≤ |c|n+
2s+7∑
j=1

|xj|nj

≤ |c|n+
2s+7∑
j=1

|xj|n2s+7.

Then dividing both sides of the inequality by n2s+7 gives us

|d|n ≤ |c|n−(2s+6) +
2s+7∑
j=1

|xj|

|d|n+ |x0| − |c|n−(2s+6) ≤
2s+7∑
j=0

|xj|.

Since n ≥ 2, d ̸= 0, and x0 ̸= 0, this implies that

||x′||1 − ||x||1 ≤ 1 + |d| − |d|n− |x0|+ |c|n−(2s+6) < 1 + |d|(1− n)− |x0|+ 1 ≤ 0.

Therefore, ||x′||1 < ||x||1, which contradicts the way that x was chosen. Hence, we

must have d = 0, meaning that Σ< = 1 and that x′ matches x from the 2s + 8th

entry on. So if ||x||1 ≤ ||x′||1, we must have that
∑2s+7

j=0 |xj| ≤ 1. Given that |x0| ≥ 1

and Σ< = 1, we must have x0 = 1 and x1, . . . , x2s+7 = 0.

Let ui
T = tkxaxkx t−1axkx−1 . . . t−1ax2s+8 , and let ui

B = aui
T. Note that because

x0 = 1 and x1, . . . , x2s+7 = 0, we have that ui
B =BS(1,n) uBi , and, as a result,

ui
T =BS(1,n) u

T
i . Also note that ℓ(ui

B) = ||x||1 + 2kx − (2s + 8). I claim that
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ui
Tt−(2s+8) and ui

Bt−(2s+8) label geodesics in Dm. First I will show that η0,in2s+8+1,0(x)

is a geodesic in Cn, the Cayley 2-complex of Pn.

Let y ∈ Lin2s+8+1 such that η0,in2s+8+1,0(y) is a geodesic for ain
2s+8+1 in Cn. Since

ky ≥ 0, we have by [27, Lemma 3.7] that ℓ(η0,in2s+8+1,0(y)) = ||y||1+2ky. By the way

that x was chosen, we have that ||x||1 + 2kx ≤ ||y||1 + 2ky. Then since kx ≥ 0, again

by [27, Lemma 3.7] we have that ℓ(η0,in2s+8+1,0(x)) = ||x||1 +2kx ≤ ℓ(η0,in2s+8+1,0(y)).

Hence, η0,in2s+8+1,0(x) is a geodesic in Cn.

As we know, ℓ(η0,in2s+8+1,0(x)) = ||x||1+2kx = ℓ(ui
Bt−(2s+8)). So ui

Bt−(2s+8) is also

a geodesic in Cn. Since uiTt−(2s+8) is a subword of ui
Bt−(2s+8), it is also a geodesic in

Cn. Therefore, if both of these words label paths in Dm, then they are both geodesics

in Dm.

Recall that πDm : Dm → Cn is the unique cellular map preserving labels that takes

the basepoint of Dm to the identity in Cn. Then ui
Tt−(2s+8) labels a path in Dm if

the path γ that it labels in Cn is a subset of the image of πDm .

Suppose by way of contradiction that γ is not contained in the image of πDm . We

know that γ starts and ends in the image of πDm . Let α be the longest initial segment

of γ contained in the image of πDm , and let p be the endpoint of α. Let β be the

longest subpath of γ starting at p such that every point on β other than p and the

endpoint of β are outside of the image of πDm , and let q be the endpoint of β. We

will consider the possible positions of p and q.

Let M be the path in Dm starting at the basepoint and labeled by an
m+1. Then

Dm \M has two path components, DT
m and DB

m (the top and bottom halves of Dm),

where all the 0-cells in πDm(D
T
m) have a-length divisible by n and all the 0-cells in

πDm(D
B
m) have a-length congruent to 1 mod n. We will let DT

m = DT
m ∪ M and

DB
m = DB

m∪M . Note that every 0-cell on γ has an a-length that is divisible by n2s+8,

since x0, . . . , x2s+7 = 0. Therefore, p and q are not in πDm(D
B
m).
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Also note that γ has an initial segment labeled by t2s+8 and a final segment

labeled by t−(2s+8). These segments are both contained in the image of πDm because

they are also initial and final segments of the path labeled by t2s+8ait−(2s+8), which

is contained in the image of πDm because m > 2s + 8. Note that every 0-cell on γ

outside of these initial and final segments, including p and q, has a t-height of at least

2s + 8. So p, q ∈ πDm(D
T
m), and the first letter along β cannot be t−1, since every

0-cell in πDm(D
T
m) has a 1-cell of πDm(Dm) labeled by t−1 out of it.

Case 1: Suppose the first letter along β is a t. See Figure 3.14 for an example

of this case. Since the letter t only appears in ui
T in the prefix tkx , and the path

starting at the basepoint labeled by tm is contained in Dm, this implies that kx > m

and p =BS(1,n) t
m. Then since every 0-cell past p along the prefix tkx has t-height

greater than m, and is therefore not in the image of πDm , the last letter along β

cannot be t. If the last letter along β is t−1, then we must have that q ∈ {tm, tma},

since these are the only 0-cells in πDm(D
T
m) that do not have a 1-cell of πDm(Dm)

labeled by t−1 coming into them. If the last letter of β is a or a−1, then we must

have q ∈ {tj}mj=1 ∪ {anm
tj}mj=1, since these are the only 0-cells of πDm(D

T
m) that do

not have a 1-cell of πDm(Dm) labeled by a or a−1 coming into them. Finally, we also

cannot have that q ∈ {tj}mj=1, since γ is a geodesic and therefore cannot intersect

itself. Hence, there is some j ∈ [m] such that q =BS(1,n) a
nm
tj. Then atj−m labels a

path from p to q in πDm(Dm). Now any path from p to q, including β, must be labeled

by a word containing an a (since p and q do not have the same a-length). Since the

first letter along β is a t, β reaches a t-height of at least m + 1, and therefore must

contain at least m+ 1− j edges labeled by t−1 to get back down to j, the t-height of

q. Therefore, |β| ≥ m− j + 3 > m− j + 1 = ℓ(atj−m). This contradicts the fact that

γ is a geodesic.

Case 2: Suppose the first letter along β is a or a−1. See Figure 3.15 for an
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Figure 3.14: Showing γ is contained in πDm(D
T
m) if the first letter along β is a t.

example of this case. By the same reasoning as in Case 1 for q, this implies that

p ∈ {tj}kxj=1 ∪ {anm
tj}kxj=1. This also implies that kx ≤ m, and neither p nor q can

appear until the end of the initial segment of γ labeled by tkx . Therefore, the last

letter along β again cannot be t, and by the same reasoning as in Case 1, this implies

that q ∈ {anm
tj}kxj=1. So there is some jp ∈ [kx] such that p ∈ {tjp , anm

tjp} and some

jq ∈ [kx] such that q =BS(1,n) a
nm
tjq . Note that jp ≥ jq, since p and q both appear

after the initial segment of γ labeled by tkx , with p appearing before q.

Suppose the first letter along β is a. Then p =BS(1,n) a
nm
tjp . So tjq−jp labels a

path from p to q. Since p has t-height jp and q has t-height jq, any path from p to

q, including β, must contain jp − jq edges labeled by t−1. But we know that β also

contains an a, so |β| ≥ jp − jq + 1 > ℓ(tjq−jp). This contradicts the fact that γ is a

geodesic.

Suppose instead that the first letter along β is a−1. Then p =BS(1,n) t
jp . So

an
m−jp

tjq−jp labels a path from p to q. As above, β must contain jp− jq edges labeled

by t−1. Furthermore, since β comes after the initial segment of γ labeled by tkx , this

implies that every 0-cell on β has t-height at most jp. Also, since the a-length of p is 0

and the a-length of q is m, the a-length of the word labeling β must be m. Therefore,
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β must contain at least nm−jp edges labeled by an a. Given that the word labeling

β also contains an a−1, this implies that |β| ≥ jp − jq + nm−jp + 1 > ℓ(an
m−jp

tjq−jp).

This contradicts the fact that γ is a geodesic.

(a) The first letter along γ is an a (b) The first letter along γ is an a−1

Figure 3.15: Showing γ is contained in πDm(D
T
m) if the first letter along β is a or a−1.

Therefore, γ is contained in the image of πDm , and ui
Tt−(2s+8) labels a path in

Dm. Hence, we have that ui
Tt−(2s+8) labels a geodesic in Dm. Note that since this

path is contained in DT
m, and by the symmetry of Dm, we have that the path labeled

by ui
Bt−(2s+8) is contained in DB

m. So ui
Bt−(2s+8) also labels a geodesic in Dm. For

S ∈ {T,B}, let αS
i be the Dm-geodesic from ∗ to pSi labeled by ui

S, and let βS
i be the

Dm-geodesic starting at pSi labeled by t−(2s+8).

Let y = (1, 0, 1, 0, . . . , 1, 0, 1), where ky = 2s+6. Then η2s+8,Σ(y),0(y) = (t−2a)s+4.

Note that for all i ∈ {3, . . . , nm−(2s+8)}, this word labels a path γTi in Di
2s+8

T
from

pTi−1 to a 0-cell qi (since η2s+8,Σ(y),0(y) has t-height between 0 and −(2s + 8) and

a-length between 0 and 2s + 8). Also let γBi be the path starting at pBi−1 labeled by

(t−2a)s+3t−2. All of these paths are depicted in Figure 3.16.

Note that for j ∈ {0, . . . , ky}, we have |yj| ≤
⌊
n
2

⌋
, and that ky < max(2s + 8, 0).

Then if n is odd, by [27, Lemmas 3.10, 3.13], η2s+8,Σ(y),0(y) is a geodesic in Cn. If

instead n is even, then also note that there are no adjacent non-zero entries in y. Then
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Figure 3.16: Di
2s+8 in Dm.

by [27, Props 3.22, 3.29], η2s+8,Σ(y),0(y) is a geodesic in Cn in this case as well. Since

η2s+8,Σ(y),0(y) is a geodesic in Cn, γTi is a geodesic in Di
2s+8

T
. Now since (t−2a)s+3t−2

is a subword of η2s+8,Σ(y),0(y), it also labels a geodesic in Cn, and since γTi is contained

in Di
2s+8

T
, we have that γBi is contained in Di

2s+8
B
. Note that αB

i−1 · γBi is labeled by

the word

ui−1
B(t−2a)s+3t−2 =BS(1,n) aa

(i−1)n2s+8

aΣ(y)−1

=BS(1,n) a
(i−1)n2s+8

aΣ(y)

=BS(1,n) ui−1
T(t−2a)s+4,

which labels the path αT
i−1 · γTi , ending at qi. Therefore, γ

B
i also ends at qi.

Now let i ∈ {3, . . . , nm−(2s+8)}, and let di = min(I(pTi−1), I(p
T
i )). I claim that
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I(qi) ≥ di + 3s+ 10. Let ζ be a geodesic from ∗ to qi. Note that βT
i−1, β

B
i−1, β

T
i , and

βB
i together contain all the 0-cells in the boundary of Di

2s+8. Since qi ∈ Di
2s+8, we

must have that ζ intersects βS
j at a 0-cell z for some j ∈ {i − 1, i} and S ∈ {T,B}.

So let δ be an initial segment of ζ ending at z and ϵ a final segment of ζ starting

at z with δ · ϵ = ζ. For some k ∈ {0, . . . , 2s + 8}, we have that z is the endpoint

of the path labeled by uj
St−k, so let β(k) be the path from pSj to z labeled by t−k.

Then αS
j · β(k) is a geodesic from ∗ to z, meaning that |αS

j · β(k)| = |δ|. We also

know that γSi is a geodesic from pSi−1 to qi. If j = i − 1 then let e be the constant

path at pSi−1. If instead j = i, then let e be the path from pSi−1 to pSj labeled by a.

So e · γSi is a path from pSj to qi, and e · β(k) · ϵ is a path from pSi−1 to qi. Then

|e · γSi | ≤ 1 + dDm(p
S
i−1, qi) ≤ 1 + |e · β(k) · ϵ| ≤ 2 + |β(k) · ϵ|. Also note that

|γSi | = ℓ((t−2a)s+3t−2) = 3(s+ 3) + 2 = 3s+ 11. Then we have that

I(qi) = |δ · ϵ|

≥ |αS
j · β(k) · ϵ|

≥ |αS
j |+ |e · γSi | − 2

≥ I(pSj ) + 1 + 3s+ 11− 2

≥ I(pTj ) + 3s+ 10

≥ di + 3s+ 10.

Now note that

max(I(∂Di
2s+8

(0)
)) = maxj∈{i−1,i},S∈{T,B}(I(p

S
j )) + 2s+ 8

= maxj∈{i−1,i}(I(p
T
j )) + 2s+ 9

≤ di + 2s+ 10
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Also note that this maximum can only be acheived at up to two 0-cells, the endpoints

of βB
i−1 and βB

i , which are not connected by a 1-cell. Therefore, max(Î(∂Di
2s+8)) ≤

di + 2s+ 10.

Therefore, by Lemma 3.1.3, any path from qi to ∂D
i
2s+8 contains a point of height

di+2s+10. So int
(
Di

2s+8

)
contains a path component Ci of Dm\Pdi+2s+10. Also note

that ∗ is not in Ci, and we have qi ∈ Ci with |Î(qi)− (di + 2s+ 10)| ≥ s. Therefore,

Ci ∈ Cs
di+2s+10 from the definition of IAVs(Dm). Since C3, C4, . . . , Cnm−(2s+8) are all

distinct, they each contribute 1 to IAVs(Dm). Hence, IAVs(Dm) ≥ nm−(2s+8) − 2.

This proposition suggests that we may be on the right track towards a proper

refinement of IDiam, if we only allow reduced diagrams and relators. We will refer

to this potential refinement as rIAV, even though I propose no formal definition and

it is unclear if rIAV functions would give a quasi-isometry invariant or even a group

invariant.

3.4 Further Questions

I think aggregate variation functions are fascinating, and I still have many unanswered

questions about them. I will close out this section with some questions and conjectures

about them:

� Can we define rIAV—a version of IAV using reduced diagrams and/or pre-

sentations with reduced relators—such that it is exponential for the standard

presentation of BS(1, n) but still a quasi-isometry and/or group invariant?

� Do EAV functions give a quasi-isometry invariant?
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� Is there a group whose rIAV or EAV function lands strictly between its corre-

sponding diameter and area functions, but is not equivalent to either?

� How are (r)IAV and EAV related?

� Do all combable and almost convex groups have linear rIAV and EAV functions,

as they have linear diameter functions?

� Do (r)IAV and EAV functions have interesting closure properties?

� Do (r)IAV and EAV functions have any connections to algorithms for the word

problem?

Conjecture 3.4.1. All finitely generated free and abelian groups have linear rIAV

and EAV functions.

Conjecture 3.4.2. All combable groups have linear EAV functions.
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Chapter 4

Subdiagram Diameter Functions

4.1 Motivation and Definitions

Another possible refinement of intrinsic diameter comes from a completely different

perspective on what intrinsic tame filling functions measure. The proof of Theo-

rem 2.4.4 essentially comes down to two facts:

1. For any geodesic spanning tree of a van Kampen diagram, there is a 1-combing

that is f -tame where f(n) = max{IDiam(Ie)|d∆(∗, e) ≤ n}. In a vague sense,

the 1-combing is as tame as the diameter of the icicles of the tree.

2. It is possible to replace the icicles with versions of themselves that have almost

minimal diameter.

From a certain perspective, these facts imply that the 1-combing portion of the def-

inition of intrinsic tame filling function is superfluous; there is a particular type of

1-combing that we can restrict ourselves to and acquire intrinsic tame filling functions

that grow as slowly as possible, and their tameness can be measured by the diameter

of the icicles of the tree without talking about 1-combings at all. In other words,

defining intrinsic tame filling functions based only on diameters of icicles would result

in exactly the same group invariant.
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From this perspective, the proof of (2) works because icicles of the same tree

intersect each other so nicely. For any two icicles, either one is inside the other or they

do not intersect (besides at their boundary). This makes it easier to find a good order

in which to replace icicles without having to worry about intersections messing up an

area that has already been fixed; just replace bigger icicles first. This way, there is no

possibility of ruining the nice diameter of a previously-replaced icicle by replacing the

next icicle; if any part of a previously-replaced icicle is later replaced again, the latter

replacement must be replacing some icicle entirely contained within the previously-

replaced icicle, and this can never increase the diameter of the previously-replaced

icicle.

This gives us another way to try to strengthen the notion of intrinsic tame filling

functions. We could define new types of filling functions based on the diameters of

a set of subcomplexes that need not intersect each other nicely, with the intention

of breaking the proof of (2). We define such a type of filling function below, simply

using the set of all subcomplexes that are themselves van Kampen diagrams.

Since subcomplexes do not come equipped with a basepoint, it will first be conve-

nient to define a type of diameter that does not take a basepoint into account. Given

a van Kampen diagram ∆, the unbased intrinsic diameter of ∆ is

IDiam(∆) = max{d∆(x, y)|x, y ∈ ∆(0)}.

Definition 4.1.1. A subdiagram of ∆ is a simply-connected subcomplex of ∆. Note

that any subdiagram D of a van Kampen diagram can itself be thought of as a van

Kampen diagram without a chosen basepoint. It will be useful to let |∂D| refer to

the length of a boundary circuit of D without specifying a basepoint.

Definition 4.1.2. Given a function f : N → N and a van Kampen diagram ∆, f is
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an intrinsic subdiagram diameter (ISD) function for ∆ if, for every subdiagram D of

∆, IDiam(D) ≤ f(|∂D|).

Definition 4.1.3. A non-decreasing function f : N → N is an intrinsic subdiagram

diameter (ISD) function for ⟨A|R⟩ if, for all w ∈ (A ∪ A−1)∗ with w =G 1, there is a

van Kampen diagram ∆w for w such that f is an ISD function for ∆w.

Note that any ISD function for a presentation is bounded below by the intrinsic

diameter function of the presentation, since every van Kampen diagram is a subdia-

gram of itself. So there is potential for ISD functions to give a proper refinement of

the intrinsic diameter function. Also note that, as with other distance-based filling

functions, we could also define an extrinsic version of subdiagram diameter functions,

measuring distance in the Cayley complex.

4.2 Quasi-isometry invariance

We will now confirm that ISD functions give a quasi-isometry invariant.

Proposition 4.2.1. Let G and H be quasi-isometric groups with finite presentations

P and Q. If f is an ISD function for P, then there is a presentation Q′′ for H with

an ISD function equivalent to f , where Q′′ is Q with finitely many relators added.

The proof follows a similar structure to the proof that IDiam is a quasi-isometry

invariant. We take an arbitrary word w from Q, use the quasi-isometry between G

and H to convert it into a word w′ in P that has a “nice” van Kampen diagram ∆w′ ,

and then use the quasi-isometry to convert ∆w′ into a van Kampen diagram ∆w′′ for

a word w′′ that is “close” to w in some way. We then glue a collar around ∆w′′ to

convert it into a van Kampen diagram ∆w for the original word w, and show that

∆w is also “nice” as a result of the “niceness” of ∆w′ . The main difference is that, in



124

the case of ISD functions, it takes considerably more work to show that ∆w is “nice”

compared to the corresponding proof for IDiam.

Proof. Let P = ⟨A|R⟩ and Q = ⟨B|S⟩, and let ρ = max{ℓ(r) : r ∈ R}. Let f be

an ISD function for P . Let w = b1 . . . bn ∈ (B ∪ B−1)∗ with w =H 1. We want to

show that there is a van Kampen diagram ∆w for w with respect to a presentation

Q′′ for H such that the diameter of every subdiagram of ∆w is bounded by a function

equivalent to f .

Step 1: Using the fact that G and H are quasi-isometric, “convert” w into a

word w′ ∈ (A ∪A−1)∗ and choose a van Kampen diagram ∆w′ for w′ with respect to

P that is guaranteed to exist by the fact that f is an ISD function for P .

SinceG andH are quasi-isometric, there exist functions ϕ : G→ H and θ : H → G

and a constant K > 0 such that for all g1, g2 ∈ G and h1, h2 ∈ H,

1. 1
K
dG(g1, g2)−K ≤ dH(ϕ(g1), ϕ(g2)) ≤ KdG(g1, g2) +K,

2. 1
K
dH(h1, h2)−K ≤ dG(θ(h1), θ(h2)) ≤ KdH(h1, h2) +K,

3. dG(g1, θ(ϕ(g1))) ≤ K, and

4. dH(h1, ϕ(θ(h1))) ≤ K.

Then define the functions ϕ̃ : G × (A ∪ A−1)∗ → (B ∪ B−1)∗ and θ̃ : H × (B ∪

B−1)∗ → (A ∪ A−1)∗ in the following way. For each a ∈ A and g ∈ G, there is

some v ∈ (B ∪ B−1)∗ with ϕ(g)v =H ϕ(ga) and ℓ(v) ≤ 2K, by property (1). So let

ϕ̃(g, a) = v and ϕ̃(ga, a−1) = v−1. Similarly, for each b ∈ B and h ∈ H, there is

some u ∈ (A ∪ A−1)∗ with θ(h)u =G θ(hb) and ℓ(u) ≤ 2K, by property (2). So let

θ̃(h, b) = u and θ̃(hb, b−1) = u−1.
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Now given u = a1 . . . am ∈ (A ∪ A−1)∗ and v = b1 . . . bn ∈ (B ∪ B−1)∗, for

i ∈ {0, . . . ,m} define ui = a1 . . . ai and for i ∈ {0, . . . , n} define vi = b1 . . . bi. Then

define

ϕ̃(g, u) = ϕ̃(gu0, a1) . . . ϕ̃(gui−1, ai) . . . ϕ̃(gum−1, am).

θ̃(h, v) = θ̃(hv0, b1) . . . θ̃(hvi−1, bi) . . . θ̃(hvn−1, bn).

Note that as a result of these definitions, ϕ(g)ϕ̃(g, u) =H ϕ(gu) and θ(h)θ̃(h, v) =G

θ(hv). In particular, if u =G 1 and v =H 1, then ϕ(g)ϕ̃(g, u) =H ϕ(g), making

ϕ̃(g, u) =H 1, and similarly θ̃(h, v) =G 1.

Let w′ = θ̃(1, w). By the above note, w′ =G 1. So there exists a van Kampen

diagram ∆w′ for w′ with respect to the presentation P such that, for every subdiagram

D of ∆w′ , we have that IDiam(D) ≤ f(|∂D|).

Step 2: “Convert” ∆w′ into a van Kampen diagram ∆w′′ for a word w′′ ∈ (B ∪

B−1)∗ with respect to a finite presentation for H.

Let w′′ = ϕ̃(1, w′). Construct a van Kampen diagram ∆w′′ for w′′ from ∆w′ in the

following way. First, for notation’s sake, replace each vertex x of ∆w′ with a vertex x′.

Then for each edge e in ∆w′ directed from a vertex x to a vertex y and labeled by a

letter a ∈ A, replace e with a directed edge path from x′ to y′ labeled by ϕ̃(π∆w′ (x), a).

These replacements result in the complex ∆w′′ . Since ∆w′ can be thought of as a

subset of R2, so can ∆w′′ , and let h : ∆w′ → ∆w′′ be the homeomorphism that

extends to the identity on R2. Note that h replaces the boundary circuit of ∆w′ ,

which is labeled by w′, with a circuit labeled by ϕ̃(1, w′) = w′′. It also replaces the

boundary circuit of each 2-cell, labeled by a relator r ∈ R, with a circuit labeled by

ϕ̃(g, r) for some g ∈ G. Since r =G 1, we have ϕ̃(g, r) =H 1. As a result, ∆w′′ is a van
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Kampen diagram for w′′ with respect to the presentation Q′ := ⟨B|S ∪ R′⟩, where

R′ = {ϕ̃(g, r) : g ∈ G, r ∈ R}. Note that R′ is finite, since ℓ(ϕ̃(g, r)) ≤ 2Kρ for all

g ∈ G and r ∈ R. Also note that Q′ is a presentation for H, since each element of R′

is equal to the identity in H.

Step 3: Construct a van Kampen diagram ∆w for the original word w from ∆w′′

by gluing a collar around ∆w′′ .

Recall that w = b1 . . . bn, and for i ∈ {0, . . . , n} we’ve defined wi = b1 . . . bi. For

i ∈ {0, . . . , n}, let x′i be the vertex on the boundary of ∆w′ such that w′
i = θ̃(1, wi)

labels the initial segment of the boundary circuit of ∆w′ starting at the basepoint

and ending at x′i (so x
′
0 = x′n is the basepoint of ∆w′). Then for i ∈ [n], we have that

x′i−1 is connected to x′i by a directed edge path on the boundary labelled by the word

b′i = θ̃(wi−1, bi). Note that ℓ(b
′
i) ≤ 2K. Since x′′i is the vertex in ∆w′′ corresponding to

x′i, we have that x′′i−1 is connected to x′′i by a directed edge path αi on the boundary

labelled by b′′i = ϕ̃(w′
i−1, b

′
i). Note that ℓ(b′′i ) ≤ 2Kℓ(b′i) ≤ 4K2.

Now by property (4) of the quasi-isometries ϕ and θ above, for each i ∈ {0, . . . , n}

we have that dH(wi, w
′′
i ) ≤ K. So let vi ∈ (B ∪ B−1)∗ be a word of length at most

K such that w′′
i vi =H wi, and attach to ∆w′′ a directed edge path βi labelled by vi

starting at x′′i . Call the endpoint of this path xi. In particular, since w0 =H 1 and

w′′
0 =H 1, we may let v0 = vn be the empty word so that x0 = x′′0. Then for each

i ∈ [n], we have that

w′′
i−1vi−1bi =H wi−1bi

=H wi

=H w′′
i vi



127

Since w′′
i =H w′′

i−1b
′′
i , this implies that vi−1bi =H b′′i vi. So vi−1bi(b

′′
i vi)

−1 =H 1

So for each i ∈ [n], glue a 2-cell σi with boundary circuit labeled by vi−1bi(b
′′
i vi)

−1

along the directed edge path on the boundary of the diagram from xi to xi+1 given

by αi−1 · βi · αi. Note that the length of the boundary circuit of each of these 2-cells

is at most 4K2 + 2K + 1. Call the resulting singular disk diagram ∆w.

Then the boundary circuit of ∆w is labelled by b1b2 . . . bn = w. Let T be the

(finite) set of words v ∈ (B∪B−1)∗ such that v =H 1 and ℓ(v) ≤ 4K2+2K+1. Then

the boundary circuit of each 2-cell added to ∆w′′ to make ∆w is contained in T , so ∆w

is a van Kampen diagram for w with respect to the presentation Q′′ := ⟨B|S∪R′∪T ⟩.

Again, Q′′ is a presentation forH because all the relators in T are equal to the identity

in H.

Step 4: Show that there is a function g equivalent to f (that does not depent on

w) such that any subdiagram D of ∆w has IDiam(D) ≤ g(|D|).

Let D be a subdiagram of ∆w. Let D′′ = D ∩∆w′′ . Note that D′′ may not be a

subdiagram of ∆w′′ , since D′′ may not be path connected.

Step 4(a): Show that every path component of D′′ is a subdiagram of ∆w′′ . In

other words, every path component of D′′ has trivial fundamental group.

Step 4(a)(i): Show that removing from D each 1-cell in D ∩ ∂∆w that is not on

the boundary of any 2-cell in D splits D into simply-connected components.

For i ∈ [n] let ei be the 1-cell connecting xi−1 and xi in the boundary of ∆w. Then,

let B = {ei1 , . . . , eim} be the set of 1-cells in ∂∆w ∩D that are not on the boundary

of any 2-cell in D, in no particular order. For j ∈ {0, . . . ,m}, let Bj =
⋃

k≤j int(eik).

We will show by induction that, for each j ∈ {0, . . . ,m}, each path component of

D \Bj has trivial fundamental group. So in particular this is true for j = m.

For the base case, we know that D \B0 = D is simply connected by the definition

of subdiagram, so its single path component has trivial fundamental group. Now let
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j ∈ [m] and suppose that each path component of D \ Bj−1 has trivial fundamental

group. Let Cj be the path component of D \ Bj−1 containing eij and choose any

yj ∈ int
(
eij

)
. I claim that Cj \ yj has two path components, one containing xij−1 and

one containing xij .

First note that for all j ∈ [m], D \ Bj is a subcomplex of D, since we are only

removing the interiors of 1-cells that are not in the boundary of any 2-cell. In particu-

lar, then, Cj is a subcomplex of D, as is Cj \ int
(
eij

)
. Suppose by way of contradiction

that xij−1 and xij are in the same path component of Cj \ yj. Note that Cj \ yj is

homotopy equivalent to Cj \ int
(
eij

)
, since the segments of eij on either side of yj can

deformation retract onto xij−1 and xij . So xij−1 and xij are in the same component

of Cj \ int
(
eij

)
. Since this path component of Cj \ int

(
eij

)
is a connected 2-complex,

its 1-skeleton is a connected graph. So there is a simple edge path γ from xij−1 to

xij in Cj \ int
(
eij

)
. Now let −→eij denote the directed edge path from xij to xij−1 in Cj

along ej. Then γ · −→eij is a simple edge circuit in Cj containing eij . By the Jordan

Curve Theorem, γ ·−→eij considered as a simple closed curve in R2 has an inside and an

outside.

Note that since Cj is simply connected, we must have that every point on the

inside of γ ·−→eij is in Cj. For suppose instead that there is some point p in the inside of

γ ·−→eij with p ̸∈ Cj. Then γ ·−→eij represents a (nontrivial) generator of π1(R2\p). So the

inclusion-induced map ĩ : π1(Cj) → π1(R2\p) sends the element of π1(Cj) represented

by γ · −→eij to a nontrivial element, and therefore γ · −→eij represents a nontrivial element

of π1(Cj). This contradicts the fact that Cj is simply connected.

Now since γ · −→eij is a simple edge circuit containing eij , the region on one side of

eij is in the inside of γ · −→eij , and the region on the other side of eij is in the outside of

γ · −→eij . In particular, since eij is on the boundary of ∆w, it is adjacent to R2 \∆w on

one side, which must be contained in the outside of γ · −→eij . So σij is adjacent to eij
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on the inside of γ · −→eij . However, we chose eij such that σij is not in D, and therefore

not in Cj. This contradicts the fact above that every point on the inside of γ · −→eij is

in Cj. Therefore, by this final contradiction, we must have that xij−1 and xij are in

different path components of Cj \ yj.

To show that these are the only path components of Cj \yj, let q be a 0-cell that is

not in the path component of Cj \yj that contains xij−1. Since Cj is a path connected

subcomplex, there is a simple directed edge path η from q to xij−1 in Cj. Since q and

xij−1 are in different path components of Cj \ yj, we must have that η contains yj,

and therefore that eij is a 1-cell on η. Since η is a simple path that ends at xij−1—one

of the 0-cells in eij—this implies that −→eij is the last directed edge of η. Therefore,

removing −→eij from η gives a path from q to xij . Since η does not repeat edges, this

path does not contain eij , and therefore does not contain yj, meaning that q and xij

are in the same path component of Cj \yj. Since every 0-cell of Cj \yj is either in the

path component of xij−1 or xij , these are the only two path components of Cj \ yj.

Let Xj be the path component of Cj \ yj containing xij−1 and let Yj be the

path component of Cj \ yj containing xij . Since Cj is a 2-complex, it is locally path

connected. This implies that every point in Cj \yj—an open subset of Cj—has a path

connected neighborhood contained in Cj \ yj. The fact that these neighborhoods are

path connected means that each one is contained entirely in either Xj or Yj, and

therefore Xj is the union of these neighborhoods that it contains, as is Yj. Hence,

Xj and Yj are open subsets of Cj \ yj. Furthermore, int
(
eij

)
is an open subset of Cj,

since eij is not on the boundary of any 2-cell in Cj.

So let X ′
j = Xj ∪ int

(
eij

)
and Y ′

j = Yj ∪ int
(
eij

)
. Then X ′

j and Y ′
j form an open

cover of Cj with X
′
j ∩ Y ′

j = int
(
eij

)
. Then by the Seifert-Van Kampen Theorem,

π1(Cj) = π1(X
′
j) ∗π1(int(eij))

π1(Y
′
j ).
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We know that π1(Cj) = 1 and π1
(
int

(
eij

))
= 1, so this implies that π1(X

′
j) ∗

π1(Y
′
j ) = 1. Therefore, both X ′

j and Y ′
j have trivial fundamental group. Since

X ′
j and Y ′

j deformation retract onto Xj \ int
(
eij

)
and Yj \ int

(
eij

)
, respectively, we

must have that Xj \ int
(
eij

)
and Yj \ int

(
eij

)
are the path components of Cj \ int

(
eij

)
,

and they each have trivial fundamental group.

Since every path component of D \ Bj−1 other than Cj is a path component of

D \ Bj, and all of them have trivial fundamental group by the inductive hypothesis,

this implies that every path component of D\Bj has trivial fundamental group. This

completes the induction, giving us that every path component of D \ Bm has trivial

fundamental group.

Step 4(a)(ii): Show that each path component of D \ Bm (i.e. each of the

remaining components after splitting D up in the previous step) either deformation

retracts into D ∩ ∆w′′ = D′′, or has no intersection with ∆w′′ , implying that every

path component of D′′ has trivial fundamental group.

First we will define a deformation retraction R : ∆w × I → ∆w onto ∆w′′ as

follows.

Let

S1
+ = {(a, b) ∈ R2|a2+b2 = 1 and b ≥ 0} and S1

− = {(a, b) ∈ R2|a2+b2 = 1 and b ≤ 0},

and define r1 : S
1
+ × I → D2 by

r1((a, b), t) = (a, (1− 2t)b).

Now given i ∈ [n], let ψi : σi → D2 be a homeomorphism such that ei is mapped

to S1
+. Then Ri

1 = ψ−1
i ◦ r1 ◦ (ψi × idI) : σi × I → σi is a deformation retraction of
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σi onto ∂σi \ int(ei). Now ∂σ \ ∆′′
w = ei ∪ int(αi−1) ∪ int(αi), so we now need only

retract the α′
is into ∆′′

w. For i ∈ [n], choose a homeomorphism Ai : αi → I with

Ai(x
′′
i ) = 0 and Ai(xi) = 1, and let r2 : I× I → I be given by φ(s, t) = s(1− t). Then

Ri
2 = A−1

i ◦ r2 ◦ (Ai × idI) : αi × I → αi is a deformation retraction of αi onto x
′′
i .

Now to define R, let t ∈ I and x ∈ ∆w. If x ∈ ∆w′′ , then let R(t, x) = x.

Otherwise, for any x ∈ ∆w \ ∆w′′ , we must have that x is in a 2-cell σi for some

i ∈ [n]. If t ≤ 1
2
, let R(x, t) = Ri

1(x, 2t). Now as noted above, Ri
1(x, 1) is either in

∆w′′ , αi−1, or αi. For t ≥ 1
2
, let

R(x, t) =


Ri

1(x, 1), if Ri
1(x, 1) ∈ ∆w′′

Ri−1
2 (Ri

1(x, 1), 2t− 1), if Ri
1(x, 1) ∈ αi−1

Ri
2(R

i
1(x, 1), 2t− 1), if Ri

1(x, 1) ∈ αi

Note that the definitions of R on the different pieces of its domain agree wherever

they intersect, making R well-defined and continuous.

Now let C be any path component of D \ Bm that intersects ∆w′′ and let x ∈

C \∆w′′ . If x is in a 2-cell σ contained in C, we know from the definition of R that

R(x, t) ∈ σ for all t ∈ I, so R(x, t) ∈ C. Otherwise, since x ̸∈ Bm, we have that x

is on αi for some i ∈ [n]. Since x is not in any 2-cell contained in C, both 2-cells

containing x, σi and σi+1, are not in D. Then ei and ei+1 are therefore both in B,

and thus not contained in C. Now since C intersects ∆w′′ , there must be a path in

C(1) from x to some point in ∆w′′ . By the construction of ∆w, this path must contain

Ai([0, tx]) where Ai(tx) = x. But by the definition of R, Ai([0, tx]) is exactly the image

of R(x, ·). So R(x, t) ∈ C for all t ∈ I. This implies that R|C×I is a deformation

retract from C to C ∩ ∆w′′ , making C ∩ ∆w′′ path connected, and therefore a path

component of D′′. Hence, every path component of D′′ has trivial fundamental group,
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and is a subdiagram of ∆w′′ .

Step 4(b): Show that each path component C of D′′ viewed as a subdiagram of

∆w′′ has diameter bounded by a function equivalent to f , by considering a subdiagram

that corresponds to C in ∆w′ .

Let C be a path component (and therefore a subdiagram) of D′′ and let x be a

0-cell of C. We know that C is a subdiagram of D′′. Recall that h : ∆w′ → ∆w′′ is a

homeomorphism, and that it maps 2-cells to 2-cells, 0-cells to 0-cells, and 1-cells to

edge paths. Let C ′ = h−1(C). Since h is a homeomorphism, C ′ is simply connected.

However, C ′ may not be a subcomplex of ∆w′ , because C may not contain every

1-cell of some edge path that replaced a 1-cell of ∆w′ . So suppose that e is a 1-cell

of ∆w′ such that ∅ ⊂ int(e) ∩ C ′ ⊂ int(e). Note that any 2-cells in ∆w′ containing

e must not be in C ′, since otherwise e ⊆ C ′. Then since h maps 2-cells to 2-cells,

this implies that no 2-cell of ∆w′′ containing a 1-cell in h(e) can be in C. Therefore,

h(e) ∩ C ⊆ ∂C. So if x ∈ h(e), for some such 1-cell e, then dC(x, ∂C) = 0.

Otherwise, let p and q be the endpoints of e. Since h−1(x) ̸∈ e but C ′ is path

connected, this implies that for every y ∈ e∩C ′ there is a path in e∩C ′ from y to one

of p or q. So e∩C ′ is composed of two paths (each of which may contain only a single

point), one of which has p as an endpoint, and one of which has q as an endpoint.

Since these paths may be deformation retracted down to p and q, respectively, we

have that C ′ \ int(e) is still simply connected. Removing the interior of each such

1-cell of C ′ leaves us with a simply connected subcomplex C̃ of ∆w′ , i.e., a subdiagram

of ∆w′ that still contains h−1(x).

Now recall that we chose ∆w′ such that IDiam(C̃) ≤ f(|∂C̃|). Therefore, dC̃(h−1(x), ∂C̃) ≤

f(|∂C̃|). Note that ∂C̃ ⊆ ∂C ′, C̃ ⊆ C ′, and |∂C̃| ≤ |∂C ′|, so this implies that

dC′(h−1(x), ∂C ′) ≤ f(|∂C ′|). Now since each edge in ∆w′ corresponds to an edge path

of length at most 2K in ∆w′′ , this implies that dC(x, ∂C) ≤ 2Kf(|∂C ′|) ≤ 2Kf(|∂C|).
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So for any x ∈ C, we have that dC(x, ∂C) ≤ 2Kf(|∂C|).

Step 4(c): Show that the previous step implies that the diameter of D is bounded

above by a function equivalent to f .

Let x be a 0-cell in D. If x ̸∈ D′′, then by the construction of ∆w, x is in αi for

some i ∈ [n]. So d∆w(x, xi) ≤ |αi| ≤ K. Since xi is on the boundary of ∆w, this

implies that dD(x, ∂D) ≤ K.

Otherwise, x ∈ D′′, and let C be the path component of D′′ containing x. Since

we know that dC(x, ∂C) ≤ 2Kf(|∂C|), let y ∈ ∂C with dC(x, y) ≤ 2Kf(|∂C|). If

y ∈ ∂D, then dD(x, ∂D) ≤ 2Kf(|∂C|). Otherwise, by the construction of ∆w, we

must have that y is on the boundary of a 2-cell in the collar. Since the boundary

circuits of these 2-cells are of length at most 4K2 + 2K + 1, there is an edge path

from y to ∂∆w of length at most 2K2 +K. So dD(y, ∂D) ≤ 2K2 +K. This implies

that

dD(x, ∂D) ≤ 2Kf(|∂C|) + 2K2 +K.

Now to compare |∂C| to |∂D|, note that a directed edge e in the boundary circuit

of C is not in the boundary circuit of D only if its reverse ē is part of the boundary

circuit of a 2-cell σ in D that is in the collar of ∆w. In this case, the one directed edge

in the boundary circuit of σ that is also in the boundary circuit of ∆w will appear in

the boundary circuit of ∂D instead. Each 2-cell in the collar of ∆w contains at most

4K2 1-cells from ∂C. So this implies that |∂C| ≤ 4K2|∂D|.

Putting everything together, we get that for all x ∈ D,

dD(x, ∂D) ≤ max(K, 2Kf(|∂C|) + 2K2 +K)

≤ 2Kf(4K2|∂D|) + 2K2 +K
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Now let x, y ∈ D. Then there are vertices x̄, ȳ ∈ ∂D such that both dD(x, x̄) and

dD(y, ȳ) are less than or equal to 2Kf(4K2|∂D|) + 2K2 +K. Since x̄, ȳ ∈ ∂D, there

is an edge path in |∂D| from x̄ to ȳ of length at most 1
2
|∂D|. Therefore,

dD(x, y) ≤ 4Kf(4K2|∂D|) + 4K2 + 2K +
1

2
|∂D|.

This implies that

IDiam(D) ≤ 4Kf(4K2|∂D|) + 4K2 + 2K +
1

2
|∂D|.

So define g : N → N by g(n) = 4Kf(4K2n) + 4K2 + 2K + ⌈1
2
n⌉. Note that g

is equivalent to f . Then for every subdiagram D of ∆w, we have that IDiam(D) ≤

g(|∂D|). So g is an ISD function for ∆w. Since we’ve shown that we can construct

such a van Kampen diagram for every word w =H 1 with respect to the presentation

Q′′, g is an ISD function for Q′′.

4.3 Further Questions

It is left for future work to determine if there is a group whose ISD functions all grow

faster than its intrinsic diameter. However, I suspect that the type of van Kampen

diagram constructed in the proof of Theorem 3.2.3—a van Kampen diagram that has

essentially only one hill the height of its diameter—could be used to prove that ISD

functions are equivalent to intrinsic diameter functions.

The way we have defined ISD functions suggests a way to define a subdiagram

version of any filling function defined from a diagram measurement, as follows. Given

a diagram measurement M , a function f : N → N is a subdiagram-M function for a
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van Kampen diagram ∆ if, for every subdiagram D of ∆, M(D) ≤ f(|∂D|). Then f

is a subdiagram-M function for a presentation ⟨A|R⟩ if, for all w ∈ (A ∪ A−1)∗ with

w =G 1, there is a van Kampen diagram ∆w for w such that f is a subdiagram-M

function for ∆w. In the same way as for ISD functions, any subdiagram function would

be bounded below by the original filling function, since every van Kampen diagram

is a subdiagram of itself. We leave it to future work to determine if other such

subdiagram filling functions give quasi-isometry invariants, and if they give proper

refinements of the original filling function used to define them.
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