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Abstract

We study a novel multi-strain SIR epidemic model with selective immunity by vaccination. A

newer strain is made to emerge in the population when a preexisting strain has reached

equilbrium. We assume that this newer strain does not exhibit cross-immunity with the origi-

nal strain, hence those who are vaccinated and recovered from the original strain become

susceptible to the newer strain. Recent events involving the COVID-19 virus shows that it is

possible for a viral strain to emerge from a population at a time when the influenza virus, a

well-known virus with a vaccine readily available, is active in a population. We solved for

four different equilibrium points and investigated the conditions for existence and local stabil-

ity. The reproduction number was also determined for the epidemiological model and found

to be consistent with the local stability condition for the disease-free equilibrium.

Introduction

In recent times, the anti-vaccination movement has been gaining traction in different parts

of the world. Individuals who do not advocate vaccination commonly cite reasons of fear of

adverse side effects, perceived low efficacy of vaccines, and perceived low susceptibility to dis-

eases amongst others [1–3]. The drop in numbers in vaccination has led to outbreaks of dis-

eases such as mumps [4–6] that could have been prevented by vaccination. Another example

would be measles, which was declared eliminated in the United States back in 2000, has had

outbreaks reported in the country since 2008 [7]. According to the Centers for Disease Control

and Prevention (CDC), the reemergence is due to the presence of unvaccinated individuals

and their interaction with other people who got the disease from other countries such as Israel,

Philippines, and Micronesia [7–9]. According to the CDC, 880 individual cases of measles

have been confirmed in 24 states as of May 2019, the highest since 1994. As of May 2019, there

are 10 active measles outbreaks in ten jurisdictions in the US.

Another way for a disease to reemerge is through change in its antigenic properties, which

is the case for the influenza virus. The influenza virus can mutate in two ways: through anti-

genic shift or antigenic drift [10–12]. Antigenic drift is defined as the result of frequent muta-

tions of the virus, which happens every 2-8 years. On the other hand, the antigenic shift occurs

around three times every one hundred years and only happens with influenza A viruses [12].

Although more unlikely to happen than the antigenic drift, the antigenic shift involves genetic
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reassortment which can make it feasible to create a more virulent strain than the original strain

[12–14].

Infectious diseases such as the influenza virus can be modeled in a variety of ways. One can

use phenomenological methods on available empirical data [15–17], Bayesian inference using

Monte Carlo methods to estimate parameters through simulation based on the stochastic

model [18–20], or agent-based network dynamics to model the spread of the disease through

interactions between individuals [21–23]. This paper focuses on modeling an epidemic using

compartmental systems, which involves separating the population to multiple components

and describing infection and recovery as transitions between the set components. The simplest

compartmental model to describe a viral infection is called the standard Susceptible-Infected-

Removed (SIR) model, the dynamics of which has been studied in different references [24–

28]. The SIR model separates the population into three compartments: the susceptible (S),

infected (I), and removed (R) compartments. The susceptible compartment is comprised of

individuals that are healthy but can contract the disease. The infected compartment is com-

prised of individuals who have already contracted the disease. Lastly, the removed compart-

ment is comprised of individuals who have recovered from the disease. Individuals who have

recovered from a certain strain of a viral infection are likely to be immune to infection of the

same strain [29, 30], which is why the SIR model is used to model viral infections. SIR models

can provide insight on the dynamics of the system and has been used to model different influ-

enza virus strains such as the swine and avian flu focusing on the spatio-temporal evolution

and equilibrium dynamics of the system for both disease free and endemic equilibrium cases

[31–36].

One important parameter resulting from the SIR models is the reproduction number. The

reproduction number of an infectious disease is defined as the expected number of secondary

infections caused by a single infected individual for the whole duration that they are infectious

[37, 38]. The reproduction number R0 describes how infectious a disease can be, and can also

be used as a threshold parameter to determine whether a disease would survive in a healthy

population. A value of R0 greater than one indicates the epidemic persists in the population

[38]. The reproduction number of a virus is related to how fast the infection spreads in the

population due to the contact between susceptible and infected individuals, which is described

by the transmission rate coefficient β, and how fast the infected recover or are removed from

the population, described by the removal rate coefficient γ. Measures to contain the disease,

such as social distancing and isolation, quarantine, and closing of establishments to prevent

interaction between individuals can be factored into β and γ [39]. Further details on the calcu-

lation of the reproduction will be discussed later in a separate section.

The SIR model is preferred by some infectious disease modelers because of the low number

of parameters that need to be estimated for the full model to be defined. However, this advan-

tage comes from oversimplifying the model through relatively unrealistic assumptions such as

the population being closed and homogeneous and having only three compartments [39, 40].

Even with these limitations, the SIR model can still provide basic estimates on whether the dis-

ease is expected to persist in the population or the proportion of the population expected to be

infected by the disease, which would be helpful in development of public policy about medical

response to the epidemic [39]. Its inherent simplicity also makes it easier for modelers to mod-

ify the models through addition of new compartments and stochasticity in the system to reflect

aspects of epidemics such as immunity, incubation, and variation in individual movements

[41]. Modifications of the SIR model have been used to describe mutations and changes in an

infectious virus such as influenza. Yaari et al. [42] used a discrete time stochastic susceptible-

infected-removed-susceptible (SIRS) model to describe influenza-like illnesses in Israel

accounting for weather and antigenic drift by adding terms that account for weather signals
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and loss of immunity. Finkenstadt et al. [43] created a predictive stochastic SIRS model for

weekly flu incidence accounting for antigenic drift. Roche et al. [44] used an agent-based

approach based on the SIR compartment model to model the spread of a multi-strain epi-

demic, while Shi et al. [45] used the same approach and empirical data from Georgia, USA to

model an influenza pandemic that incorporates viral mutation and seasonality. However,

these approaches have been stochastic in nature, which does not provide information regard-

ing the stability and existence of equilibrium points in an infected population. The aforemen-

tioned articles also do not take vaccination and the presence of other strains into account in

their models. Consequently, one can model the presence of a mutated virus spreading into a

population using a multi-strain model, which was used in the following studies for avian flu

[32, 33]. These models study the birds and the humans as one population in an SI-SIR model.

However, the two infected compartments in this model do not cross since they are separated

by species. Casagrandi et al. [34] introduced a non-linear deterministic SIRC epidemic model

to represent the antigenic drift for the influenza A virus. The SIRC model is a modified SIR

model with an additional compartment, C, for individuals that receive partial immunity from

being infected by one of the present strains. Although able to account for cross-immunity

between strains, the model does not include the effect of vaccination into the system. Papers

which have considered vaccination only consider one strain propagating within the population

[46–49]. There has been very few studies that investigate the effect of vaccination in the pres-

ence of multiple strains like Wilson et al. did for Hepatitis B [50], which did not investigate the

equilibrium model in detail.

In the case of the influenza virus, it is possible to have multiple strains exist in a population,

but only have vaccine for a certain strain that will not be effective for others. The fact that

viruses undergo changes regularly indicates that people who have recovered from the virus, as

well as individuals who have been vaccinated for a specific strain of the virus, can be suscepti-

ble again to a newly-emerged strain. It is important to determine the conditions in which a

newly emerged strain and a common strain that has a means of immunity will coexist in a pop-

ulation provided that the two strains have a common subset for their susceptible pools. From a

modeling standpoint, a highly infectious emergent strain can infect the susceptible population

before the original strain which can impede the spread of the original strain or the two strains

can coexist in an endemic equilibrium.

An apt example for emerging disease that fits this description is the emergence of the

COVID-19 virus in 2019 [51, 52]. As of August 31, 2020, there have been approximately 25

million confirmed cases of COVID-19 worldwide that has led to approximately 844,000 deaths

since it was declared as an outbreak in January 2020 according to the WHO situation report

[53]. At the time that this paper is being written, there are papers that have modeled the

dynamics of the virus using different modifications of the SIR model. Zhou et. al. [54] included

compartments corresponding to suspected cases, which consists of the individuals that show

similar symptoms but are not confirmed cases, and indirectly infected individuals. Pan et. al.

[55] used a modified SEIR model which included asymptomatic and treatment compartments

for occurrences in Wuhan, China, the city where the outbreak started, and outside of Wuhan.

Maier and Brockmann [56] included a separate compartment for quarantined individuals in

the SIR model to account for the containment measures applied by the public for the virus.

They then estimated the reproduction number of COVID-19 in different locations in China.

He, Peng, and Sun [57] used the particle swarm optimization to approximate the parameters

of the SEIR model with additional compartments for quarantined and hospitalized individuals.

Similar models that are specific for each country/region have been formulated since the pan-

demic has spread worldwide [58–62]. It is notable that this virus emerged during the flu season

[63] and had managed to infect a large number of individuals around the world in such a short
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time even when the threat of the influenza virus still exists. The CDC has recommended get-

ting the flu vaccine for the incoming flu season to reduce the risk of getting the flu even if the

vaccine will be ineffective against COVID-19 [64]. Although both these viruses have been

modeled individually, there has been little to no work done in modeling the dynamics of

COVID-19 and the influenza virus coexisting within a population where vaccination for the

influenza virus is an option.

This paper introduces a model that approaches the lack of cross-immunity across different

viral strains by introducing new compartments to the SIR with vaccination model. This paper

will give researchers insight about the conditions in which one strain can dominate another or

if two different strains can coexist in a population, given that one of these strains has a vaccine

available. This enables us to introduce acquired immunity through vaccination and cross-

immunity between strains in a simple compartmental model and investigate the existence and

stability of the resulting equilibrium points.

We aim to model the equilibrium dynamics of an epidemic at the population level where a

new emergent strain of an existing virus affects a closed population. The existing virus will be

modeled using a modified SIR model with vaccination, however we assume that the vaccine

does not provide immunity to the newer strain. The equilibrium points were determined for

the system based on the transition equations and local stability was investigated for each point.

Once the stability conditions have been established, the epidemic model was simulated using

R [65] to investigate the steady-state behavior of the surveillance data for each compartment of

the population. The values for the transmission and removal coefficients were dictated by the

existence and stability conditions for each equilibrium point during the simulation. The repro-

duction number for the epidemic was also determined for this modified SIR epidemic model

and compared to existing SIR models.

Modeling the emergence of the new strain

This section describes how the emergence of the new strain of the virus will be incorporated

into the model. This emergence can either be due to mutation, antigenic drift/shift, or an

introduction of a different strain from an external source. Let us assume that initially, there is

only one strain of the virus that exists in the population. Immunity can be achieved either by

recovering from the infection or getting vaccinated. After equilibrium has been established

with the original strain, the new strain is introduced to the population. In addition to the indi-

viduals in the susceptible compartment, the new strain can affect individuals previously

infected by the original strain and those who are vaccinated against the original strain; the only

way to be immune to the mutated strain is to recover from the infection of the new strain. This

model focuses on how the disease persists in the population in the long run without additional

intervention aside from the preexisting vaccination for the original strain. The analysis will be

focused on the macroscopic behavior of each compartment, which means that the population

will not be studied at the individual level.

The next two subsections will explain the dynamics before and after the emergence of the

mutated strain.

Before emergence

The system begins as a population exposed to the original strain of the virus. The spread of the

virus is described by a modified SIR model that accounts for vaccination [46]. The vaccinated

members of the population can be treated as members of an additional compartment that do

not interact with the infected individuals. This means that the modified SIR model will have

four compartments instead of three, which are given by:
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• Susceptible S: Individuals in this compartment are healthy, but are susceptible to be infected

by the disease since they are not vaccinated.

• Vaccinated V: Individuals that were given a vaccine, making them immune to the disease.

This also includes individuals with natural immunity to the disease.

• Infected I1: Individuals that are infected by the disease

• Removed R: Individuals that were infected but are now immune to the disease upon recov-

ery. Because of their immunity, the members of this compartment do not interact with the

remaining compartments.

Let S, V, I1, and R be the respective number of individuals in the susceptible, vaccinated,

infected, and removed compartments. The transition between the compartments is summa-

rized by the compartmental diagram shown in Fig 1. A list of variables that explains each

parameter used in describing the transitions between compartment can be found in S1 Table.

For this model, let μ be the natural birth rate of the population, and consequently the natu-

ral death rate of the population to keep the population size constant. It is assumed that the

individuals are vaccinated at birth with a vaccination rate p. β is the standard incidence trans-

mission coefficient, which assumes that the infection occurs based on how many susceptible

Fig 1. Compartment diagram with transitions for the SIR with vaccination model. The arrows show the transitions

between the compartments, as well as the exits due to natural death. The transition rates are shown next to the arrows.

https://doi.org/10.1371/journal.pone.0243408.g001
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individuals interact with the infected [66]. For standard incidence, the rate at which infected

and susceptible individuals interact (also known as contact rate) is constant over all infected

individuals regardless of the population size [67]. The removal rate coefficient for the infected

individuals is denoted by γ. β and γ serve the same purpose as a rate constant in chemical

kinetics.

The dynamics of the system is described by ordinary differential equations that describe the

rate of change in individuals belonging to a specific compartment. For any number of individ-

uals in a general compartment C the rate of change of membership in the compartment can be

expressed by the following equation:

dC
dt
¼ ðrate of inputÞ � ðrate of outputÞ; ð1Þ

where the rates are denoted in the compartment diagram shown in Fig 1. For the susceptible

compartment S the rate of increase comes from the birth of new members of the population

who are not vaccinated, which is given by (1 − p)μN. Meanwhile, susceptible individuals can

either get infected at a rate of
bSI1

N
or die due to natural causes at a rate μS. In equation form,

this translates to

dS
dt
¼ ð1 � pÞmN �

bSI1

N
� mS ð2Þ

For the infected compartment I1, the number of infected individuals increase when suscep-

tible individuals get infected at a rate
bSI1

N
. The infected individuals can either die at a rate of

μI1 or get removed and not interact with the system again at a rate γI1 when they recover.

Translating this to an ordinary differential equation yields

dI
dt
¼
bSI1

N
� gI1 � mI1 ð3Þ

Unlike the members of the susceptible compartment, the individuals in the vaccinated com-

partment will not get infected by the virus. This implies that the changes in the number of vac-

cinated individuals can only be due to the rate of vaccination in the population and death due

to natural causes. Using a similar approach, the rate equation for the vaccinated compartment

V is given by

dV
dt
¼ pmN � mV ð4Þ

Since the population is closed, the number of individuals in the removed compartment can

be expressed as R = N − S − I1 − V. This implies that solving Eqs 2–4 is enough to describe the

system completely at any time t. Without loss of generality, Eqs 2–4 can be normalized with

respect to the total population, N, so that the equations would be invariant to population
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scaling. This yields the following equations,

ds
dt
¼ ð1 � pÞm � bsi1 � ms ð5Þ

di1
dt
¼ bsi1 � ðgþ mÞi1 ð6Þ

dv
dt
¼ ðpÞm � mv ð7Þ

where (s, i1, v) = (S/N, I1/N, V/N) and r = R/N = N(1 − s − i1 − v) are functions of time t. Note

that plausible solutions only exist when s(t), i(t), v(t), r(t)� 0.

To achieve equilibrium, there should not be any changes in the proportion for each com-

partment, which implies that Eqs 5–7 should be zero. If Eq 6 is zero, then two conditions

emerge: i1 = 0 or i1 6¼ 0. The first case corresponds to the disease-free equilibrium (DFE) point

(s(t), i1(t), v(t)) = (1 − p, 0, p). The latter case corresponds to the endemic equilibrium point

ðs�; i�
1
; v�Þ. If i1 6¼ 0, then the following condition should be satisfied,

bs� � ðgþ mÞ ¼ 0 ð8Þ

Solving for s�, we get

s� ¼
ðgþ mÞ

b
ð9Þ

We can use this result to solve for i�
1

in Eq 6. The resulting endemic equilibrium point

ðs�; i�
1
; v�Þ is given by,

ðs�; i�
1
; v�Þ ¼ ð

gþ m

b
;
m½bð1 � pÞ � g � m�

bðgþ mÞ
; pÞ ð10Þ

According to Chauhan et. al [46], the reproduction number of the disease for the vaccinated

SIR model is given by Rv = R0(1 − p) = β(1 − p)/(γ + μ). This means that the endemic equilib-

rium point will be asymptotically stable if Rv> 1, while the DFE will be asymptotically stable if

Rv< 1. The reproduction number will be discussed in the Section ‘‘Reproduction Number’’.

Emergence of new strain

Suppose that at time T when equilibrium has been achieved in the SIR with vaccination model,

a new strain of the disease is introduced to the population. This new strain will have a different

transmission coefficient β0 and removal rate coefficient γ0. This results to the existence of

another compartment I2 for those who are infected with the new strain, which we will refer to

as Disease 2.

The existence of the newer strain will be constrained by the following assumptions:

• Since the vaccine is assumed to only work on the original strain, the vaccinated and the pre-

viously removed individuals are susceptible to the newer strain.

• Once infected by the newer strain, the individual cannot be infected by the original strain.

The individuals infected by the newer strain will be removed from the population or die. For

the case of COVID-19, we can interpret this removal from the population as isolation from

the compartments susceptible to the second infection.
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• Individuals infected by the original disease have to be removed first before being susceptible

to the newer strain; meaning that there is no chance of super-infection (I1! I2) [37].

Although there are cases of co-infection, these are rare cases and are usually diagnosed after

they were initially removed from the population [68].

This means that the number of compartments that need to be monitored will increase from

four to six, with the addition or modification of the following compartments:

• R1: Individuals who have recovered from the original strain but are now susceptible to the

newer strain.

• I2: Individuals who are infected by the newer strain.

• R2: Individuals who were previously infected by the newer strain but have now been

removed due to recovery or treatment.

The members of the vaccinated compartment, which was initially an isolated compartment,

can now be infected by the new strain. The same can be said for the individuals who have

recovered from the original strain. For mathematical simplicity, the infection coefficients for

the new strain are assumed to be the same for the susceptible, vaccinated, and initially recov-

ered compartments.

These assumptions and the increase in number of compartments also introduces the possi-

bility of new transitions between compartments as shown in Fig 2. A list of variables that

explains each parameter used in describing the transitions between compartment can be

found in S1 Table.

As in Chauhan et. al’s [46] work, the standard incidence was used to model infection of the

susceptible individuals for the newer strain. Based on Eq 1 and the compartment diagram in

Fig 2, the dynamics of the system can be expressed in terms of the following ordinary differen-

tial equations:

ds
dt
¼ ð1 � pÞm � bsi1 � b

0si2 � ms ð11Þ

di1
dt
¼ bsi1 � ðgþ mÞi1 ð12Þ

dv
dt
¼ ðpÞm � b0vi2 � mv ð13Þ

dr1

dt
¼ gi1 � b

0ri2 � mr ð14Þ

di2
dt
¼ b

0
ðsþ vþ rÞi2 � ðg

0 þ mÞi2 ð15Þ

and r2 = 1 − s − i1 − v − r1 − i2. Similar to the simple SIR with vaccination scenario, the solution

for the variables should follow the constraint s(t), i1(t), v(t), i2(t), r1(t), r2(t)� 0 for any time t.
To solve for the equilibrium points of the system, Eqs 11–15 should be equal to zero. Wol-

fram Mathematica [69] was used to obtain solutions for the system of equations, which are the

following:

1. DFE: (s, i1, v, r1, i2) = (1 − p, 0, p, 0, 0)
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2. Original strain equilibrium:

ðs; i1; v; r1; i2Þ ¼
gþ m

b
;
m½bð1 � pÞ � g � m�

bðgþ mÞ
; p;

g½bð1 � pÞ � g � m�
bðgþ mÞ

; 0

� �

3. New strain equilibrium:

ðs; i1; v; r1; i2Þ ¼
ð1 � pÞðg0 þ mÞ

b
0 ; 0;

pðmþ g0Þ
b
0 ; 0;

m½b
0
� ðg0 þ mÞ�

b
0
ðg0 þ mÞ

� �

4. Endemic equilibrium: (s, i1, v, r1, i2) = (s�, i1�, v�, r1
�, i2�)

The second equilibrium point corresponds to the scenario where only the original strain is

present. Applying the constraint for the plausible solution, the original strain equilibrium

exists if

bð1 � pÞ � g � m > 0! Rv > 1 ð16Þ

where Rv = R0(1 − p) = β(1 − p)/(γ + μ) is the reproduction number of the original strain for

the SIR model with vaccination [46].

Fig 2. Compartment diagram for the emerging disease model. The transitions between compartments, together

with the corresponding rates, are described by the arrows directed in and out of each compartment.

https://doi.org/10.1371/journal.pone.0243408.g002
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The third equilibrium corresponds to the scenario where only the new strain survives. For

this equilibrium point to exist, the following condition should be satisfied:

b
0
� g0 � m > 0! R0

0
> 1 ð17Þ

where R0
0
¼ b

0
=ðg0 þ mÞ is the corresponding reproduction number of the newer strain if mod-

eled using a standard SIR model.

Equilibrium point 4 is the endemic equilibrium where

s� ¼
gþ m

b
ð18Þ

i1
� ¼

m½bð1 � pÞðg0 þ mÞ � b0ðgþ mÞ�
ðgþ mÞ½bðg0 þ mÞ � mb

0
�

ð19Þ

v� ¼
pðgþ mÞ½bðg0 þ mÞ � mb0�

bb
0
ðgþ pmÞ

ð20Þ

r� ¼
g½bð1 � pÞðg0 þ mÞ � b0ðgþ mÞ�

bb
0
ðgþ pmÞ

ð21Þ

i2
� ¼

m½ðgþ mÞðmb
0
� bðg0 þ mÞÞ þ bb

0
ðgþ pmÞ�

ðgþ mÞb
0
½bðg0 þ mÞ � mb

0
�

ð22Þ

For the endemic equilibrium to exist, the following condition should be satisfied:

R0ð1 � pÞ > R0
0 ð23Þ

The next section will discuss the local stability of the four equilibrium points.

Stability analysis and simulations

After solving for the equilibrium points, we need to determine the conditions in which these

points are stable. These conditions dictate which equilibrium will describe the steady state

behavior of the system. The local stability of the equilibrium points will be determined based

on the eigenvalues of its Jacobian evaluated at a specific equilibrium point [25]. Let C0 = (C1,

C2, . . .)T be the vector of the population number of each compartment. For a general compart-

ment Ci, the components of the Jacobian, Jij can be obtained using the following equation:

ðJijÞjC¼C0
¼

@

@Ci

dCj

dt

� ��
�
�
�
C¼C0

ð24Þ
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For our system, the Jacobian of the system can be obtained by applying Eq 24 to Eqs 11–15.

For any equilibrium point, ð�s;�i1; �v;�r;�i2Þ yields

J ¼

� b�i1 � b
0�i2 � m � b�s 0 0 � b

0
�s

b�i1 b�s � ðgþ mÞ 0 0 0

0 0 � b
0�i1 � m 0 � b

0
�v

0 g 0 � b�i2 � m � b
0
�r

b
0�i2 0 b

0�i2 b
0�i2 b

0
ð�s þ �v þ �rÞ � ðg0 þ mÞ

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

Local stability is attained when the eigenvalues of the Jacobian, λ, are negative or have nega-

tive real parts. In other words, the solutions for λ such that det ðJ � 1lÞ ¼ 0 should be nega-

tive or have negative real parts if the solution is complex [70].

The system is simulated to reach equilibrium. As described in the previous sections, the sys-

tem starts as a one-strain SIR model with vaccination as discussed in the section “Modeling

the emergence of the new strain” with the following values for the parameters: μ = 0.5 (birth/

death rate) and p = 0.5 (vaccination rate). The values for μ and p were based on the simulations

performed by Chauhan et. al. [46] for their stability analysis of the SIR with vaccination model.

The vaccination rate of 0.5 is a close estimate to the overall vaccination coverage for the influ-

enza virus in the United States during the 2018-2019 influenza season [71]. For this simulation,

the time is discretized in units of the average time between compartment interactions, i.e. the

average time it takes for individuals to transition from one compartment to another. At time

t = 0, we allow 1% of the population to be infected by the original strain and the system is

made to evolve in time using the values of infection coefficients β and removal rate γ that satis-

fies the respective requirements for the reproduction number for each equilibrium point to

exist. The new (mutated) strain was made to emerge at time t = 100, when we expect the sys-

tem to be in equilibrium. The new strain is introduced to the population by infecting 1% of the

susceptible population with the newer strain. The evolution will then be dictated by the modi-

fied multi-strain SIR model developed in section “Modeling the emergence of the new strain”

using values for β0 and γ0 that satisfy the conditions for R0
0

for each equilibrium point to exist.

Disease free equilibrium (DFE)

The Jacobian for the DFE can be obtained by substituting the respective values to ð�s;�i1; �v;�r;�i2Þ
in the expression for the Jacobian. This yields:

J ¼

� m � bð1 � pÞ 0 0 � b
0
ð1 � pÞ

0 bð1 � pÞ � ðgþ mÞ 0 0 0

0 0 � m 0 � b
0p

0 g 0 � m 0

0 0 0 0 b
0
� ðg0 þ mÞ

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

ð25Þ

and the corresponding characteristic equation is (λ − μ)3(λ − β(1 − p) + γ + μ)(λ − β0 + γ0 + μ)

= 0. This means that the eigenvalues are λ = −μ, −μ, −μ, β(1 − p) − γ − μ, β0 − γ0 − μ. Recall that

for the DFE to be locally asymptotically stable, all eigenvalues should have negative real parts.

PLOS ONE Modified multi-strain SIR model for emerging viral strains

PLOS ONE | https://doi.org/10.1371/journal.pone.0243408 December 9, 2020 11 / 27

https://doi.org/10.1371/journal.pone.0243408


Hence, the following conditions should hold:

bð1 � pÞ
gþ m

¼ R0ð1 � pÞ < 1 ð26Þ

b
0

g0 þ m
¼ R0

0
< 1 ð27Þ

This is consistent with the local stability of the disease free equilibrium for the regular stan-

dard incidence SIR and the SIR with vaccination models [46]. The conditions stated in Eqs 26

and 27 give the threshold conditions of the transmission and removal coefficients for this

model, which is related to the basic reproduction number of the model to be discussed in

“Reproduction Number” section.

Eqs 26 and 27 also imply that if the system is in DFE before the emergence and the repro-

duction number of the emergent disease is less than that of the original disease, then the sys-

tem will remain in DFE in the long run. Fig 3 shows the simulation of the DFE using

Fig 3. Surveillance data of the compartments for the disease free equilibrium. The reproduction number of the

original strain is R0 = 0.8, while the reproduction number of the emergent strain is R0
0
¼ 0:57. The vaccination rate

used is 0.5.

https://doi.org/10.1371/journal.pone.0243408.g003
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parameters that satisfy Eqs 26 and 27. The original strain was simulated to have a reproductive

number of 0.80, while the new strain was simulated to have a reproductive number of 0.57.

Note that the plot legends will be the same for the succeeding surveillance plots for the other

equilibrium plots. The plot shows that the proportion of vaccinated individuals (v), denoted by

the solid blue line, and the proportion of susceptible individuals (s), denoted by the solid black

line, remained relatively constant at long times. Since the vaccination rate is set to be 0.7, we

expect more individuals to be vaccinated than susceptible. Due to the emergence of the new

strain at time point t = 100, there appears to be a slight dip in s but it quickly stabilized to the

disease free equilibrium.

Disease 1 equilibrium (original strain)

For this equilibrium scenario, i1 6¼ 0 and since Eq 12 is equal to zero then

bs1 � ðgþ mÞ ¼ 0 ð28Þ

where s1 is the equilibrium value corresponding to the susceptible compartment for the Dis-

ease 1 equilibrium. We can calculate the resulting Jacobian for Equilibrium Point 2 by substi-

tuting the corresponding values to the Jacobian equation given in Eq 24. The Jacobian is then

given by,

�
m½bð1 � pÞ
ðgþ mÞ

� ðgþ mÞ 0 0 �
b
0
ðgþ mÞ

b

m½bð1 � pÞ � g � m�
ðgþ mÞ

0 0 0 0

0 0 � m 0 � b
0p

0 g 0 � m
g½bð1 � pÞ � g � m�

ðgþ mÞ

0 0 0 0 b
0
ðs1 þ v1 þ r1Þ � g

0 � m

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

where s1, v1, r1 are the respective equilibrium values for the susceptible, vaccinated, and the ini-

tially recovered compartments for the Disease 1 equilibrium. The resulting eigenvalues are

ð� m; � m;b
0 m

b
þ
gþ mp
gþ m

� �

� ðg0 þ mÞ; l�Þ, where

l� ¼ �
1

2

� �
mbð1 � pÞ
gþ m

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mbð1 � pÞ
gþ m

� �2

� 4mðbð1 � pÞ � g � mÞ

s2

4

3

5 ð29Þ

The discriminant of λ± can dictate whether the eigenvalues will have a negative real part. If

the discriminant is negative or zero, then the eigenvalues will be negative. If the discriminant

is positive, recall that for the system to not go to the DFE, R0(1 − p)> 1. This means that

mbð1 � pÞ
gþ m

� �2

>
mbð1 � pÞ
gþ m

� �2

� 4mðbð1 � pÞ � g � mÞ ð30Þ

which ensures that λ± is negative when R0(1 − p)> 1. When R0(1 − p)< 1, λ± would have a

positive real part which makes the equilibrium point unstable. This suggests that this equilibrium

point will not be stable if the system was not already in endemic equilibrium with Disease 1.
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For the third eigenvalue to be negative,

R0
0
< R0

gþ m

mþ R0ðgþ pmÞ

� �

< R0ð1 � pÞ ð31Þ

When these conditions are satisfied, then the Disease 1 equilibrium point is locally asymp-

totically stable. These conditions also imply that this equilibrium point can only be achieved if

the system before the emergence is already in endemic equilibrium with Disease 1. Fig 4 shows

the simulation of the system using parameters that satisfy Eq 31. In this case, the emergent

strain has a reproduction number of 1.18 while the original strain has a reproduction number

of 3.33. Unlike the DFE case, the proportion of individuals infected by the original strain,

denoted by the red dashed line, along with the recovered individuals, denoted by the green

dashed line, increase up to their respective equilibrium values. This is accompanied by the

decrease in susceptible individuals in the population.

At t = 100, the number of individuals infected by the newer strain, denoted by the pink

dashed line, was shown to have a small spike, but quickly went to zero while the number of

individuals infected by the original strain remained relatively unchanged. Note that the

Fig 4. Surveillance data of the compartments for Disease 1 equilibrium. The reproduction number of the original

strain is R0 = 3.33, while the reproduction number of the emergent strain is R0
0
¼ 1:18. The vaccination rate used is 0.5.

https://doi.org/10.1371/journal.pone.0243408.g004
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reproduction number of the emergent strain is 1.11, which is greater than one, which means

that the emergent strain will be able to survive on its own in this population. This implies that

the new strain is not strong enough to infect enough people to dominate over the original

strain.

Disease 2 equilibrium (newer strain)

For this equilibrium scenario, i2 6¼ 0 and thus for Eq 15 to be zero, we have to have

b
0
ð�s2 þ �v2 þ �r2Þ � ðg

0 þ mÞ ¼ 0 ð32Þ

where �s2, �v2, and �r2 are the respective equilibrium values of the susceptible, vaccinated, and ini-

tially recovered compartments corresponding to the Disease 2 equilibrium. The resulting Jaco-

bian, J, for the equilibrium where only the mutated disease exists is given by

�
mb
0

gþ m
�
bð1 � pÞðg0 þ mÞ

b
0 0 0 ð1 � pÞðg0 þ mÞ

0
bð1 � pÞðg0 þ mÞ

b
0 � ðgþ mÞ 0 0 0

0 0 �
mb
0

gþ m
0 � pðmþ g0Þ

0 g 0 �
mb
0

gþ m
0

m½b
0
� g0 � m�

g0 þ m
0

m½b
0
� g0 � m�

g0 þ m
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0
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0

0
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The corresponding characteristic equation is given by,

lþ
mb
0

gþ m

� �2

l �
bð1 � pÞðg0 þ mÞ

b
0 þ ðgþ mÞ

� �

� l
2
þ

mb
0

g0 þ m
þ mðb

0
� g0 � mÞ

� �

¼ 0

ð33Þ

The eigenvalues are �
mb
0

gþ m
; �

mb
0

gþ m
;
bð1 � pÞðg0 þ mÞ

b
0 � ðgþ mÞ;l�

� �

, where

2l� ¼ �
mb
0

g0 þ m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mb
0

g0 þ m

� �2

� 4mðb
0
� g0 � mÞ

s

ð34Þ

Similar to the λ± in the Disease 1 equilibrium, the real part will be negative if the discrimi-

nant is negative. For the equilibrium point to exist, R0
0
> 1, which means that when the dis-

criminant is positive, the following inequality holds:

mb
0

gþ m

� �2

>
mb
0

gþ m

� �2

� 4mðb
0
� g0 � mÞ ð35Þ

which means that both λ± will be negative as long as R0
0
> 1. As for the remaining eigenvalue,

it will be negative if

R0
0
> R0ð1 � pÞ ð36Þ

PLOS ONE Modified multi-strain SIR model for emerging viral strains

PLOS ONE | https://doi.org/10.1371/journal.pone.0243408 December 9, 2020 15 / 27

https://doi.org/10.1371/journal.pone.0243408


This indicates that the second disease will be locally stable if the mutated disease has a

higher reproduction number compared to the original disease. Once this happens the endemic

equilibrium can not be achieved. Note that there are no conditions for the value of R0(1 − p),

which means that this equilibrium point can occur whether the system was initially in DFE or

endemic equilibrium with the original strain. The emergence from a system in DFE is shown

in the simulation in Fig 5 where i1 is zero before the emergence of the strain, which happens

when R0
0
> 1 > R0ð1 � pÞ. For this simulation, the reproduction number of the original strain

is 0.8 while the emergent strain has a reproduction number of 3.33. The proportion of vacci-

nated and the susceptible individuals remained constant before the emergence. Upon the

emergence of the newer strain, the system behaves like a regular SIR model with a susceptible

compartment comprising of the S, V, and R compartments as shown in Fig 5. The proportion

of both susceptible and vaccinated individuals decreased drastically shortly after the emer-

gence at t = 100, while the proportion of individuals infected by the emergent strain (i2),

Fig 5. The reproduction number of the original strain is R0 = 0.8, while the reproduction number of the emergent

strain is R00 = 3:33. This scenario corresponds to the emergence of the new strain under DFE conditions. The

vaccination rate used is 0.5.

https://doi.org/10.1371/journal.pone.0243408.g005
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denoted by the pink dashed line, had an upward spike before settling into its equilibrium

value. The original strain showed no sign of reemergence after it has settled into DFE, which is

what is expected.

Another possible case is when the system is initially in endemic equilibrium but the origi-

nal strain dies because of the introduction of the new strain. Fig 6 shows that before time

t = 100 and i1 is nonzero, which occurs when R0
0
> R0ð1 � pÞ > 1. The reproduction number

of the original strain for this simulation is R0 = 3, while the reproduction number of the

emergent strain is R0
0
¼ 3:33. Upon emergence of the second strain however, the proportion

of the population infected by the original strain, i1, and the proportion of the individuals

who recovered from the original strain, r1, decrease and go to zero asymptotically. The

behavior of the second strain is similar to that in Fig 5. This implies that the new emergent

strain is much more infectious than the older strain and the new strain infects more suscepti-

ble individuals compared to the original strain. This causes the original strain to die down at

steady state.

Fig 6. Surveillance data of the compartments for the new strain equilibrium where the system is originally in

endemic equilibrium with Disease 1. The reproduction number of the original strain is R0 = 3, while the reproduction

number of the emergent strain is R0
0
¼ 3:33. The vaccination rate used is 0.5.

https://doi.org/10.1371/journal.pone.0243408.g006
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Endemic equilibrium

For the endemic equilibrium case, both i1 and i2 are nonzero and thus both Eqs 28 and 32

hold. Since Eq 11 is zero,

bi�
1
þ b

0i�
2
� m ¼ � ð1 � pÞ=s� ð37Þ

The resulting Jacobian for the endemic equilibrium case is given by

J ¼

� ð1 � pÞm=s� � bs� 0 0 � b
0s�

bi�
1

0 0 0 0

0 0 � b
0i�

2
� m 0 � b

0v�

0 g 0 � bi�
2
� m � b
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0i2 0
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C
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ð38Þ

The characteristic equation is given by

ðlþ pm=v�Þðl4
þ a1l

3
þ a2l

2
þ a3lþ a4Þ ¼ 0 ð39Þ

where

a1 ¼
ps�mþ v�ð1 � pÞm

s�v�
ð40Þ

a2 ¼
i1
�s�v�bðgþ mÞ þ m2pð1 � pÞ þ i2

�s�v�b02ðs� þ r� þ v�Þ
s�v�

ð41Þ

a3 ¼
i�
1
ps�bmðgþ mÞ þ i2pðs�Þ

2
mb
02
þ ð1 � pÞi�

2
vb02mðr� þ v�Þ

s�v�
ð42Þ

a4 ¼
i�
2
i�
1
bb
02
½ðr�s�v� þ s�ðv�Þ2Þðgþ mÞ þ ðs�Þ2v�g�

s�v�
ð43Þ

Recall that for the endemic equilibrium to be locally stable, all eigenvalues should have a

negative real part. Eq 39 shows that one of the eigenvalues is λ = −pμ/v� which is negative. For

all the roots of the quartic term to have negative real parts, the Routh-Hurwitz criteria for sta-

bility should be applied [24, 25]. According to the Routh-Hurwitz criterion, a polynomial with

degree 4 will have roots (a1, a2, a3, a4) that all have negative real parts when:

a1; a3; a4 > 0

a1a2a3 > a2
3
þ a2

1
a4:

Since the values of the equilibrium points should be positive, then all coefficients (a1, a2, a3,

a4) are positive. Based on the stability of the first three equilibrium points and the existence cri-

terion, the endemic equilibrium point is expected to be stable when

R0

gþ m

mþ R0ðgþ pmÞ

� �

< R0
0
< R0ð1 � pÞ ð44Þ

It is safe to say that the endemic equilibrium for the two strains can only occur when the

system is initially in endemic equilibrium for the original strain, which can explain why the
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condition is more restrictive than the one for the equilibrium with Disease 2. This highly

restrictive criterion for endemic equilibrium might be challenge for simulating stochastic data

for strains that have a relatively low reproduction number and a high vaccination rate. A fluc-

tuating value for the incidence rate might lead to either one of the single-strain equilibria.

Fig 7 shows that both i1 and i2 are asymptotically nonzero after the emergence of the new

strain given that Eq 44 is satisfied. For this simulation, the reproduction number of the original

strain is R0 = 3.33 while the reproduction number of the emergent strain is R0
0
¼ 1:33.

As the endemic equilibrium between the two strains is reached, the proportion of the vacci-

nated individuals that are healthy decreased considerably compared to the proportion before

the emergence while unvaccinated individuals return to the same proportion after the system

has stabilized after the emergence of the new strain. This implies that the newer strain mostly

survives on infecting the vaccinated and the initially recovered individuals. The proportion of

individuals infected by the original strain is also observed to decrease upon reaching endemic

equilibrium after emergence, which implies that some of the susceptible population get

infected by the newer strain.

Fig 7. Surveillance data of the compartments for the endemic equilibrium. The reproduction number of the

original strain is R0 = 3.33, while the reproduction number of the emergent strain is R0
0
¼ 1:33. The vaccination rate

used is 0.5.

https://doi.org/10.1371/journal.pone.0243408.g007
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Reproduction number [37]

One of the important parameters to be calculated for an epidemic model is the reproduction

number, which quantifies how infectious a certain disease. Formally, the reproduction number

is defined as the expected number of secondary infections caused by a single infected individ-

ual for the whole duration that they are infectious. A value for the reproduction number that is

greater than one indicates that the epidemic persists in the population, while a value less than

one means that the disease will die out in the population [37, 38]. Since the values are depen-

dent on how fast the disease is transmitted and how fast infected individuals are removed from

the population, estimates for the reproductive number can vary for different countries and

locations within countries. The reproduction number of different influenza viruses were com-

piled by Biggerstaff et. al. [72], while other studies focus on the estimation of the reproduction

number for specific locations in Hong Kong [73] and Japan [74]. Park et. al. [75] provided a

range for the estimated reproduction number of COVID-19 from various published and pre-

print papers that used data from different locations around the world. To provide the reader

with relative values for the reproductive number, the 2009 A/H1N1 influenza virus is esti-

mated to have a reproduction number from 1.30- 1.70 [72], while the estimates for the repro-

duction number of COVID-19 for various locations ranged from 1.9-6.5 [75].

The reproduction numberR0 of this epidemic model was calculated using the approach

formulated by van den Diessche and Watmough [37]. This approach does not account for any

measures taken to control the epidemic, but will give us an idea of the conditions needed for

the disease to spread on its own.

Next generation matrix

To obtain the reproduction number for this model, we need to solve for the next generation

matrix. The next generation matrix describes the expected number of new infections that an

infected individual produces from each susceptible compartment. Eqs 11 to 15 can be written

in vector form as

dX
dt
¼ F � V ð45Þ

whereX ¼ ði1; i2; s; v; r1Þ
T
, Fi corresponds to the vector that describes the rate of new infec-

tions in compartment i, andVi is the vector that correspond to the transitions from compart-

ment i to the other non-infected compartments such as R1 and R2 [76]. Define F and V such

that for the disease free equilibrium X0,

ðFijÞ ¼
dFi

dXj
ðX0Þ

" #

ð46Þ

ðVijÞ ¼
dVi

dXj
ðX0Þ

" #

ð47Þ

where (i, j) corresponds to the index of the infected compartments. The resulting matrices F
and V are m ×m matrices, where m is the number of infected compartments. Fij describes the

rate at which the infected individuals at compartment j contribute to the infection of compart-

ment i, while Vij corresponds to the rate at which the infected individuals are removed from

the infected compartments. This means that FV−1 is related to the rate at which individuals are

infected by the disease within an average time span that an infected individual remains
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infected. For the system discussed in this paper, there are two infected compartments after the

emergence of the new strain: I1 and I2. Therefore, m = 2 and 1� i, j�m.

The DFE was calculated to be given by (1 − p, 0, p, 0, 0). Based on the transition equations

(Eqs 11 to 15), F andV are given by

FT
¼ ðbsi1; bðsþ vþ r1Þi2; 0; 0; 0Þ ð48Þ

VT
¼ ððgþ mÞi1; ðgþ mÞi2; ðbi1 þ mÞs � ð1 � pÞmN; ðbi2 þ mÞv � pm; mr1 � gi1Þ ð49Þ

Note that m = 2, so the corresponding F and V matrices are then,

F ¼
bð1 � pÞ 0

0 b
0

 !

ð50Þ

V ¼
gþ m 0

0 g0 þ m

 !

ð51Þ

The reproduction number is obtained by taking the maximum eigenvalue of the next gener-

ation matrix FV−1. The next generation matrix is the product of the rate of infection (F) and

the average time that an individual remains infected (V−1). The next generation matrix is given

by,

FV � 1 ¼
bð1 � pÞ 0

0 b
0

 !
gþ m 0

0 g0 þ m

 !� 1

¼
R0ð1 � pÞ 0

0 R0
0

 !

ð52Þ

where F is the matrix that describes the infection rates for the two infections at the DFE and

V−1 describes the average time an infected individual stays infectious. It is easy to see that the

eigenvalues of the next generation matrix are R0(1 − p) and R0
0
. This means that the reproduc-

tion numberR0 for this system is given by the larger of the two. Formally,

R0 ¼ max ðR0ð1 � pÞ;R0
0
Þ ð53Þ

Note that the resulting threshold equation for the system isR0 < 1, which means that the

system will only approach the disease free equilibrium when Eq 53 is less than one. For an out-

break to occur, at least one of these two strains should be able to persist in the population on

its own, that is, to have an individual reproduction number greater than one. This is consistent

with Eqs 26 and 27 which give us the condition of the stability of the DFE.

Discussion and recommended next steps

We started by modeling the emergence of a new strain by adding and modifying compart-

ments to the existing SIR model with vaccination. The emergent strain was assumed to be

unaffected by the existing vaccine designed for the original strain in the population. After

establishing the possible transitions between compartments, the system was found to have four

equilibrium points: the disease free equilibrium, the existing strain equilibrium, the emergent

strain equilibrium, and the endemic equilibrium. Fig 8 shows the resulting equilibrium state of

the population for reproduction numbers within the estimated ranges for influenza and

COVID-19 [72, 75]. For illustrative purposes, the values used for the transmission rate coeffi-

cients (β = β0 = 2) were based on the value used in the simulations performed Chauhan et. al.

[46].
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Upon examining the conditions for existence and local stability, the disease-free equilib-

rium was determined to be locally stable when both Rv and R0
0

are less than one. This is consis-

tent with the reproduction number for this multi-strain model. The existing strain equilibrium

surprisingly does not impose that R0
0
< 1, which is the condition for the DFE of a normal SIR

model for a single-strain without immunity. This implies that if the original strain has a higher

reproduction number than the emergent strain, the emergent strain would still die out eventu-

ally even if it would persist in the population if it was on its own. On a similar note, the local

stability condition for the emergent equilibrium condition also does not impose that Rv< 1.

This means that the state of the system prior to the emergence of the new strain does not mat-

ter as long as the emergent strain is more contagious than the existing strain. This leaves a

highly restrictive condition for endemic equilibrium to exist: the emergent strain must be able

to survive by itself and the original strain must be contagious enough to infect enough people,

which is given by Eq 44. Eq 44 also implies that the two-strain endemic equilibrium will only

be locally asymptotically stable if the original strain is endemic to the population upon the

emergence of the newer strain. These restrictions for the stability of endemic equilibrium

would highly affect simulation studies about emergent strains especially when stochasticity is

added to the model. Knowing the stability conditions for a multi-strain SIR model without

cross-immunity will also be able to give us insights about when a newer strain emerges while

the original strain still exists. One of the advantages of this model is that there was no assump-

tion of any specific strain of influenza virus as an original strain, as long as the reproduction

number and the vaccination assumption is satisfied. This is common for the flu virus which

Fig 8. A map of the equilibrium states for different values of the reproduction numbers for the original and emergent strain. For this plot, the

transmission rate coefficients used were β = 2, β0 = 2 and vaccination rate p = 0.5.

https://doi.org/10.1371/journal.pone.0243408.g008
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changes every season and the vaccines lose their efficacy after a new mutated strain emerges.

This result might also be relevant when a highly contagious strain like the COVID-19 virus, a

viral strain that does not exhibit cross-immunity with the influenza virus, emerges in a popula-

tion. Our results show that COVID-19 will be able to co-exist with the flu in an endemic equi-

librium under certain circumstances, which might become a problem in terms of prioritizing

patients in health care centers especially since the two diseases show similar symptoms [77].

Our research also suggests that if the spread of the emergent virus like COVID-19 is not con-

tained, the virus could infect more people than the existing influenza virus, which highly influ-

ences the development of protocol in receiving patients with flu-like symptoms and allocating

resources in healthcare centers as we see in recent times.

In summary, the modified multi-strain SIR model of an emerging disease that affects both

susceptible and previously immune individuals was studied. The local stability of the equilib-

rium points as well as the reproduction number for the model was calculated. Based on the

results, it is found out that the original and the emergent strain can coexist in an endemic equi-

librium if the emergent strain has a lower reproduction number than the original strain and

that the system should already be in endemic equilibrium with the original disease before the

emergence. The requirement for the endemic equilibrium to exist is quite strict especially for

low values of R0 and high values of p, which presents a challenge in simulating surveillance

data with stochastic incidence rates.

This modified SIR model can be improved further by using time-dependent infection rates

to account for the environmental factors and the inherent characteristics of the virus. Com-

mon measures against COVID-19 could also be incorporated in the model by adding compart-

ments or modifying transition probabilities between the existing compartments. As an

example, self-quarantine and self-isolation can be analyzed as special transitions to the R2 com-

partment because infected individuals that take these precautions effectively reduce their con-

tact with the other members of the population. Exploring the effect of vaccination on other

epidemic models such as epidemics with animal vectors and epidemics with latency and

asymptomatic compartments can also be studied in the future.
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