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 The quickly increasing, widespread use of wind generation around the world 

reduces carbon emissions, decreases the effects of global warming, and lowers 

dependence on fossil fuels. However, the growing penetration of wind power requires 

more effort to maintain power systems stability. 

 This dissertation focuses on developing a novel algorithm which dynamically 

optimizes the proportional-integral (PI) controllers of a doubly fed induction generator 

(DFIG) driven by a wind turbine to increase the transient performance based on small 

signal stability analysis. 

 Firstly, the impact of wind generation is introduced. The stability of power 

systems with wind generation is described, including the different wind generator 

technologies, and the challenges in high wind penetration conditions.  

 Secondly, the small signal stability analysis model of wind turbines with DFIG is 

developed, including detailed rotor/grid side converter models, and the interface with the 

power grid.  

 Thirdly, Particle swarm optimization (PSO) is selected to off-line calculate the 

optimal parameters of DFIG PI gains to maximize the damping ratios of system 
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eigenvalues in different wind speeds. Based on the historical data, the artificial neural 

networks (ANNs) are designed, trained, and have the ability to quickly forecast the 

optimal parameters. The ANN controllers are designed to dynamically adjust PI gains 

online. 

 Finally, system studies have been provided for a single machine connected to an 

infinite bus system (SMIB), a single machine connected to a weak grid (SMWG), and a 

multi machine system (MMS), respectively. A detailed analysis for MMS with different 

wind penetration levels has been shown according to grid code. Moreover, voltage 

stability improvement and grid loss reduction in IEEE 34-bus distribution system, 

including WT-DFIG under unbalanced heavy loading conditions, are investigated.  

 The simulation results show the algorithm can greatly reduce low frequency 

oscillations and improve transient performance of DFIGs system. It realizes off-line 

optimization of MMS, online forecasts the optimal PI gains, and adaptively adjusts PI 

gains. The results also provide some useful conclusions and explorations for wind 

generation design, operations, and connection to the power grid. 
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CHAPTER 1  
INTRODUCTION 

1.1 Wind Energy Development 

 Wind energy is a clean, renewable, green, indigenous energy resource. Human 

beings have been harnessing wind energy for thousands of years, e.g., windmills and 

sailboats. In the early stages, the mechanical energy of wind has been directly used for 

pumping water, grinding grain, or moving a boat.  

 The oil crises of the 1970s led to development and demonstration work on 

renewable energy sources, especially wind energy. Today, the windmill's modern 

evolution, the wind turbine with a generator, can use wind energy to generate electricity. 

Wind turbines (WTs) are mounted on a tower (30~100 meters above ground) to capture 

the mechanical energy of wind with their propeller-like blades. Usually, two or three 

blades are mounted on a shaft to form a rotor. A generator is attached to the rotor to 

convert the mechanical power into electrical power. A basic WT with a generator model 

is shown in Figure 1.1. Wind power plants (WPPs) can be used as stand-alone 

applications, connected to a power grid, or even combined with an energy storage system 

(ESS), such as flywheels, batteries, or pumped hydro storage, etc. Usually, a large 

number of WTs are built close together to form a wind farm connected to the electric 

power transmission system, or the grid. 

 With the quick development of WPPs over the last 30 years, their capacity has 

increased significantly, from 10KW to 5 MW; and the total capacity of one wind farm, 

including hundreds of WTs, amounts to 100~1000MW. It is one of the fastest growing 

forms of electricity generation in the world. Worldwide, wind power capacity has 
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increased about 20% annually over the last ten years because it is a relatively low MWh 

cost renewable energy [1]. According to 2018 U.S. Wind Industry Market Reports [2], 

U.S. wind power capacity increased 8% in 2018, to 96,433 MW of cumulative installed 

wind capacity, more than double the capacity the U.S. had in 2010. Wind energy now 

reliably delivers more than 20% of the electricity produced Kansas, Iowa, Oklahoma, 

North Dakota, South Dakota and Maine. In 2018, wind turbines generated 6.5% of all the 

electricity delivered to U.S. consumers. The U.S. Department of Energy (DOE) and the 

wind industry evaluate possible costs, benefits, challenges and hope to meet the goal of 

supplying 20% of the nation’s electricity using wind power. The penetration of wind 

power may increase significantly from 2% in 2012 to 20% in 2030 [3]. 

 

Figure 1.1.  Wind turbine with generator model. 
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1.2 Benefits of Wind Energy 

 Generally, the benefits of Wind-generated electricity (WGE) fall into three 

distinct areas: environmental, economic/social, and technical (power systems). The 

biggest benefit is that it reduces the combustion of fossil fuels and the consequent 

emissions. There are no emissions of carbon dioxide (CO2), sulfur dioxide (SO2), or 

nitrous oxides (NOx) with WGE production. WGE is a clean, secure, renewable power-

generating technology.  

 The introduction of WGE can also produce significant economic/social benefits. 

Some of these benefits are national, such as reducing the risk of dependence on imported 

fuels and the creation of jobs in the manufacturing sector. Others are local, such as 

providing jobs to maintain and operate a wind farm and reducing the electric bills of 

homeowners, farmers, and ranchers in windy areas. WGE has become more economical 

to produce in the past ten years, dropping from as much as 30 cents per KWh to 4 to 6 

cents, making it more competitive with other energy sources [4]. With tax credits and 

technology developments, WGE can become a major player in the future energy market.  

 Distributed WGE is usually comprised of a variety of small, modular power-

generating technologies that can be combined to improve the operation of the distribution 

system. Some of the often-quoted benefits include [5-11]:  

• Emergency backup during sustained utility outages.  

• Voltage support and improved power quality, in some cases.  

• Loss reduction. 

• Improved utility system reliability (if proper supporting equipment is 

in place). 
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• Transmission and distribution capacity release.  

• Potential deferral of expanding utility capacity. 

1.3 Power Systems Challenges 

 The quickly increasing, widespread use of WGE is decreasing carbon emissions, 

reducing the effects of global warming, and decreasing dependence on fossil fuels. 

However, wind energy is an intermittent, non-dispatched power generation resource; and 

it is known to exhibit high variability in space and time due to the influence of other 

climatic factors. In addition, the probability distribution of fluctuations is very difficult to 

predict due to various uncertainties. Moreover, a number of wind resources in the U.S. 

are in the Midwest while load centers are mostly on the East and West coasts. It is also a 

tremendous challenge as to how to deliver so much electric power safely and 

economically from the Midwest to the East/West coasts via a transmission system. 

 Similar to large conventional synchronous power plants (coal, oil, and nuclear), 

WGE needs to provide adequate power to ensure the stability and reliability of power 

systems and to satisfy customers connected to the same grid. When WGE began to 

develop 30 years ago, their capacities and penetration were very small. Thus, the impact 

on the grid was very small; and any disturbances within or created by the plants were 

considered to be in the acceptable noise level. In the past 30 years, however, the size of 

WT has significantly increased; and the total capacity of wind farms can achieve the GW 

level. Moreover, the penetration of wind power has significantly increased, especially in 

some European countries. This rapid increase in penetration has triggered many 

challenges in the electric power industry [12-17]:  
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• Power systems stability and reliability:  The intermittent, non-

dispatched, energy-limited characteristics of wind power plants (WPPs) 

continue to have a big impact on system stability. How to balance the 

sudden reduction of WPPs while keeping power system stability and 

reliability in check is the most difficult issue for system operators. 

• Transmission system planning and operation: WPPs are often located 

in remote areas with an undersized transmission grid. How to deliver 

the power to customers is also a big challenge for transmission system 

planning and operation. 

• Reactive power compensation:  WPPs usually cannot produce enough 

reactive power, as do conventional synchronous generators; and they 

need more reactive power compensation.  

• Voltage regulation and frequency control:  The intermittency of WPPs 

may disturb the connection point voltage, and power systems have 

additional requirements for maintaining frequency control. 

• Protection:  Distributed WPPs can change the initial power flow, and 

the fault current of the distribution feeder cannot accurately attain the 

initial “pick-up” value when a fault occurs. 

• Power quality/harmonics:  WPPs intermittency and “cut-in and cut-out” 

operation create various power quality/harmonics problems.  

• Dynamic power flow:  WPPs intermittency and non-dispatched 

characteristics require increased power flow tracking and dynamic 

scheduling.  
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• Power markets and economic dispatch: How to optimally dispatch 

power systems to maximize the utilization of WPPs, while maintaining 

system security and reliability following specific market mechanisms, 

is a challenging problem for system operators. 

• Costs:  Additional operating reserve and ancillary service costs 

increase. 

 In general, most of these challenges relate to the variability, intermittency, and 

non-dispatched characteristics of WPPs. Moreover, power system stability and reliability 

are the most important issues. 

1.4 Significance of This Research 

 Usually, power systems contain thousands of dynamic elements with different 

response times and many static elements. The whole dynamic system must be kept 

balanced throughout. The ability of power systems to return to the initial steady state or 

to go to a new acceptable steady state after small or large disturbances is defined as 

power system stability. As the penetration of WPPs continues to increase, they will play a 

more important role in power systems stability; and the improvement of their transient 

performance is becoming more significant. Essentially, the conflict between WPPs 

variability, intermittency, and non-dispatched characteristics, and load variability creates 

the main problem:  the stability of power systems with WPPs. 

 There are several important factors which influence stability, including different 

wind turbine generator technologies, wind power forecasting, energy storage systems, 

reactive power compensation, and various system operating conditions. These will be 

discussed briefly in Chapter 2.  
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 This dissertation focuses mainly on the stability of wind turbines with doubly fed 

induction generators (DFIGs) because of their superior characteristics, wide applications, 

and rapid development.  

      In the past 15 years, many researchers have attempted to improve the stability and the 

transient performance of DFIGs by developing different algorithms. These important 

algorithms in [18-34] mainly include crowbar switching, series dynamic braking resistor 

(SDBR), novel converter designs, application of flexible AC transmission systems 

(FACTS) devices, adding power system stabilizers (PSS), evaluating wind farm transient 

stability using a probabilistic approach, adding energy storage systems, developing novel 

converter control strategies, and optimizing Proportional-Integral (PI) gain parameters for 

advanced control. 

• Crowbar switching:  In [18], the authors used a crowbar to short circuit 

the rotor-side converter to protect the DFIG from overcurrent during a 

severe grid fault. It is one of the simplest, low-cost techniques to 

improve DFIG transient performance. 

• Series dynamic braking resistor: The authors in [19] used SDBR to 

dissipate active power and boost generator voltage of fixed-speed wind 

turbine generators. They also showed that a small resistance, inserted 

for less than one second, can displace a substantial capacity of 

dynamic reactive power compensation. Yet, a lot of thermal loading on 

the resistor in a short time will create a very high requirement for the 

actual product; and it is not easy to satisfy that requirement in 

manufacturing. With the quick developments of power electronics, the 
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algorithms of crowbar protection and series dynamic braking resistor 

are now outdated. 

• Novel converter control strategies and converter designs:  By using an 

uninterrupted operation scheme and the fast control of the DFIG 

converters in [20], DFIGs can successfully ride through grid faults and 

have no problem with angular stability associated with the 

conventional synchronous generators and can do so without crowbar 

switching. The new techniques are developed based on the open-loop 

and close-loop dynamic response of the DFIG in [21]. In [22], the 

frequency variation of a DFIG based wind farm terminal bus was used 

to modulate the torque reference and the output power of the DFIG in 

the post-disturbance condition. This in turn modifies the electrical 

power of the nearby alternators and causes improvement of 

stability. In [23], a 9-MW DFIG based wind farm integrated with one 

superconducting fault current limiter (SFCL)-based passive voltage 

compensator and one transient voltage control (TVC)-based active 

voltage compensator are investigated to achieve a higher stator voltage 

level and higher output reactive power for efficient grid connection. 

An energy capacitor system with a fuzzy-logic-controlled reference 

signal adjuster under the control of a DC-DC Buck-Boost converter to 

smooth the fluctuation of variable speed wind generation output was 

presented in [24]. The fuzzy-logic-controlled adjuster can reduce the 
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cost of an energy capacitor system and enhance the control ability of 

the overall system.  

• Energy storage systems:  There are many papers published which 

discuss the applications for battery, flywheel, air pump, water pump, 

and hydrogen energy storage systems to balance wind power output 

[25]. Reference [26] focused on the application of a large capacity 

superconducting magnetic energy storage (SMES) unit to significantly 

improve wind farm transient performance by controlling the charging 

and discharging of the SMES. Rapidly battery energy storage systems 

(BESS) evolving innovations, increasing interest by utilities and 

consumers, coupled with more competition in this space are key 

drivers that are making storage more and more attractive to utilities 

and related companies. On the positive side, prices are projected to 

continue a downward trend and storage is now being seriously looked 

at for several different applications on the grid. The downside is that 

costs are still fairly high and, without regulatory requirements or 

subsidies, BESS’s still may not be cost-effective in many regions. 

Most ESSs are very expensive; or they have some special geographical 

limits.  

• PI gain parameter optimization and advanced control: The algorithms 

improve the transient performance of wind generators through PI gain 

parameter optimization of converters [27, 28, 29, and 30]. 
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• Flexible AC transmission systems devices: In [31], the static reactive 

compensator (STATCOM) based on a voltage source converter (VSC) 

pulsed width modulation (PWM) technique is used to improve 

transient and dynamic stability of WPPs. However, FACTS is very 

expensive. 

• Probabilistic approach to evaluating wind farm transient stability: In 

[32], the authors presented a probabilistic approach to evaluating wind 

farm transient stability; and the resulting indices provide the ability to 

quantitatively assess the likelihood of system instability due to the 

occurrence of transmission line faults. This was useful to system 

planners involved in assessing the need to reinforce critical 

transmission lines in order to improve the transient stability of the 

overall system. However, this algorithm requires the support of a large 

amount of historical data about wind farm faults; and this is not 

practical now. 

• Power system stabilizer: The authors in [33] proved that adding a 

power system stabilizer (PSS) by a DFIG-based wind farm for reduced 

order 16-machine 5-area dynamic equivalent model of the New 

England-New York power system with replacement of one existing 

synchronous generator could significantly influence network damping 

and achieve good voltage control capacity. However, how to add PSS 

to hundreds of wind turbine generators is a big problem. In practical 

situations, hundreds of wind turbine generators cannot be integrated 
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into one large wind turbine generator. This paper [34] presented a 

novel center of inertia (COT) approach to understand how integrated 

DFIGs affect the transient dynamics of a power system.  

 This dissertation cannot detail all of the applications listed above and focus on the 

PI parameter optimization algorithm. Others have developed a particle swarm 

optimization (PSO) algorithm to design the optimal PI controllers for rotor-side 

converters to improve transient performance [27]. The authors in [28] developed PSO to 

design the optimal PI controllers for the rotor-side and grid-side converters of a DFIG for 

a particular wind speed. More recently, the authors in [29] presented the Bacteria 

Foraging technique to separately optimize the parameters of a DFIG and the damping 

controller to increase the damping of low frequency angular oscillations of a DFIG in 

three different wind speeds. An application of an adaptive PI-fuzzy controller is applied 

in the back-to-back converter of variable speed permanent magnet wind generators to 

enhance transient stability in various operating conditions [30]. 

 However, all of the approaches described so far only optimize the controller 

parameters at one special operating point (fix-optimal model); and the parameters are 

constant. The controllers do not have the ability to dynamically adjust PI gain values 

according to wind speed changes. These approaches are based on a single machine 

connected to the infinite bus system (SMIB), and the impacts of transmission lines and 

multi-machine systems are simply neglected.  

 The proposed artificial neural network (ANN) based adaptive PI control DFIG 

model is designed to improve DFIG transient performance and stability. PSO is used to 

optimize PI parameters of DFIG rotor-side and grid-side converters at different operating 
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points (different wind speeds) in order to maximize the damping ratios of the system 

eigenvalues in small signal stability analysis. Based on the calculated optimal values and 

the given wind speed data set, a two-layer, feed-forward ANN is designed and trained.  

The calculations for optimization and training are relatively slow and are done off line. 

After that, the ANN has the ability to quickly forecast the optimal values at each wind 

speed. The calculations for prediction are relatively fast and are done on line. A sensor 

captures the wind speed, which is the ANN’s input, and the ANN forecasts the optimal 

values and outputs them into the smart PI controllers. The controllers dynamically change 

values according to the different wind speeds to increase the DFIG transient performance 

in a global operating range. 

 The contributions of this dissertation are as follows: 

• Adaptive controllers:  In the new algorithm, the ANN controllers 

smartly adjust the PI parameters to the optimal state and improve the 

transient performance of the DFIG in a wide range of wind speeds. 

• Off-line optimization and online forecast:  The ANN is trained by off-

line optimized data and then used online to forecast the optimal values 

of the PI controllers’ parameters. It is almost equal to real-time 

optimization for DFIGs at the different operating points. 

• Fast and accurate prediction:   ANN controllers can predict the optimal 

values quickly and accurately because a suitable, efficient structure is 

selected in the novel algorithm. 
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• Improved performance and stability:  The transient performance and 

stability of the ANN optimal DFIG model is significantly improved, 

especially during wind speed step change.  

• Greatly reduced low frequency oscillations.  

• Increased voltage stability. 

• Enhancements to the safety of the gearbox, rotor winding, and 

converter. 

• Reduced variability of DFIG output. 

 According to the simulation results of SMIB, SMWG, and MMS test system, the 

ANN optimal DFIG model holds an obvious advantage when wind speeds change rapidly 

and often. This is particularly important since this disturbance may occur hundreds of 

times in one day; therefore, improving the transient performance and stability subject to 

speed changes is crucial. This is the most important contribution of the dissertation. 

Afterward, the algorithm is applied to SMWG and MMS to optimize the controllers of 

multi-DFIGs simultaneously. The results also indicate the deep mutual interaction 

between the DFIG, the weak grid, the synchronous generator (SG), the grid code low 

voltage ride through requirements and the different penetrations. The optimal DFIG can 

partially weaken the negative influence of the weak grid; but the weak grid obviously has 

a stronger impact on this system. With the penetration increase from 30% to 60%, the 

stability and DFIG transient performance may be slightly degraded, but not obviously. If 

the penetration continuously increases to 90%, the system has a better performance in the 

wind speed change disturbance than low/medium penetration systems, but it bears some 

worse low frequency oscillations in the fault disturbance. 
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 The effects of a DFIG on voltage stability and grid loss in distribution systems 

under unbalanced load conditions have been investigated based on the simulation results 

of a DFIG in the IEEE 34-bus distribution test system. A new index (system unbalanced 

voltage variance), which is more reasonable and more accurate than using system average 

voltage, is proposed to evaluate system unbalanced voltage. A new multi-objective 

optimization function is provided to calculate the optimal location while simultaneously 

considering the voltage profile and grid loss. A comparison between a single large DFIG 

system and a multiple machine small DFIG system may find that the latter could provide 

higher system voltage advancement and almost the same grid loss reduction as the former. 

Moreover, the latter has a less dynamic impact and needs less time to return to its initial 

state. Therefore, the multiple machine small DFIG system has better stability. 

1.5 Overview of Dissertation 

 The organization of this dissertation is as follows: 

• Chapter 2:  Includes an introduction to the stability of power systems 

with wind turbine generators as well as a discussion on power systems 

stability (small signal stability, transient stability, rotor angle stability, 

frequency stability, voltage stability) and system stability indicators. 

Various factors which influence stability, including different wind 

turbine generator technologies, wind power forecast, energy storage 

systems, reactive power compensation, and some of the system 

operations for addressing the challenges inherent to high penetration 

conditions are described. The interconnection requirements and grid 

code of wind generation are also briefly discussed. Afterward, a small 
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signal stability analysis model and a reduction of the damping ratio are 

introduced. 

• Chapter 3:  Provides a complete description of a wind turbine with a 

DFIG, including models for a wind turbine, induction generator, rotor-

side converter, grid-side converter, and interface to a power grid. The 

impact of crowbar activation on wind generation is also briefly 

discussed. 

• Chapter 4: Covers the optimization of wind turbine generators, 

including the optimization of wind turbine generators and the objective 

function (maximize the damping ratios of system eigenvalues). The 

advantages and disadvantage of different mathematical optimization 

techniques are analyzed. The basic PSO algorithm is introduced and 

PSO is improved based on small signal stability analysis.  

• Chapter 5:  Provides approaches for predicting the optimal parameters 

of PI gains according to historical data via the PSO. Predictions are 

defined, and an ANN algorithm is introduced. Then, the ANN 

construct based on a single machine connected to an infinite bus 

system is provided. An ANN adaptive controller is introduced.  

• Chapter 6:  Provides a flowchart of the optimal ANN DFIG model 

design and system studies for SMIB, SMWG, and MMS connected to 

the grid, respectively. Moreover, the issues of voltage stability 

improvement and grid loss reduction of distribution systems (IEEE 34-

bus test system), including DFIG under unbalanced heavy loading 
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conditions, are investigated and some transient responses of 

disturbances are carried out in a single large DFIG system and a 

multiple small DFIGs system.  

• Chapter 7:  Conclusions and future research are provided. 
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CHAPTER 2  
STABILITY OF POWER SYSTEMS 

WITH WIND TURBINE GENERATORS 
 

 Modern power systems usually contain tens of thousands of dynamic/static 

components and other control equipment in Figure 2.1, such as generators, loads, 

transmission lines, breakers, flexible AC transmission systems devices, unified power 

flow controllers (UPFC), energy storage systems, etc.  

 

Figure 2.1.  Typical structures of electric power systems in [35]. 

In fact, modern power systems are large-scale, nonlinear, dynamic systems that must 

balance electricity supply and demand and grid loss at any time, while taking 

disturbances into consideration. The dynamics of modern power systems can be 

characterized by extensive system interconnections and increasing dependence on control 

equipment and proper system planning and secure operations. 
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2.1 Classification of Power Systems Stability    

 There is a wide variety of disturbances in power systems at any time, even under 

normal operating conditions. The disturbances usually include sudden changes in 

load/generator active and reactive power output, changes in topology of the grid, 

malfunctioning or failing equipment, control/storage elements in switching operations, 

etc. The ability of a power system to remain in a state of operating equilibrium under 

normal operating conditions and to regain an acceptable state of equilibrium after being 

subjected to disturbances is defined as power systems stability [35-36].  

 In power systems, tens of thousands of dynamic/static components, control 

equipment, and the topology of the grid can be represented by a set of differential and 

algebraic equations, such as: 





x = f(x,y)
0 = g(x,y)


     (2.1) 

Where x, y are the vectors of state and algebraic variables, respectively. Power system 

stability is essential to solving Equation (2.1) under a set of restraints. If all physical 

quantities which describe the operating condition, such as the magnitude/phase angle of 

each bus voltage, are constant at any time, the system is in steady state. Depending on 

the origin of disturbances and their magnitude, disturbances can be divided into two 

categories:  small disturbances or large disturbances [37]. After a small disturbance, the 

system can go back to a steady state operating condition, which is identical to, or close to, 

the pre-disturbance operating condition. It is called steady state stable or small signal 

stable. The small disturbances are usually small variations in load and generation. The 
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small signal stability can be analyzed by using linearized system equations (2.1) (small 

signal analysis). This will be discussed in detail later in this chapter. 

 If the disturbance is large, the system will go to a newly acceptable steady state 

operating condition which is different from the initial steady state operating condition. It 

is called transiently stable. Generally, disturbances, such as transmission system faults, 

significant load changes, substantial loss of generation, and line switching, are examples 

of large disturbances. In these cases, small signal analysis is obviously no longer valid to 

solve the system dynamics.  

 Small signal stability is a function of the operating condition of the system, 

whereas transient stability is a function of both the operating condition and the 

disturbances, including different disturbance clearing time and location. Therefore, the 

analysis of transient stability is considerably complex. System linearization cannot be 

directly used, and repeated analysis is required for different disturbances at different 

locations with different clearing times. There are mainly two methods for analyzing 

power system transient stability. The first is the time domain numerical integration 

method (the step-by-step time domain solution). The second is the Lyapunov function 

method (constructing Lyapunov functions to directly prove the stability of the dynamic 

system) [38]. The latter is not commonly used because it is very difficult to construct an 

appropriate Lyapunov function. The time domain numerical integration method is 

commonly used. Therefore, the solution for power system transient stability requires 

solving equations (2.1) which describe the system under different disturbances and some 

restrictions to determine if the criterion is satisfied. This criterion requires that the 

difference between any two synchronous machines’ rotor angle is smaller than 180 

http://en.wikipedia.org/wiki/Dynamical_system
http://en.wikipedia.org/wiki/Dynamical_system
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degrees as long as power systems can rely on synchronous machines for the generation of 

electrical power [35]. There are several methods for solving the equations (2.1):  Euler, 

Advanced Euler, Runge-Kutta, and Buteher [39], etc. The fourth-order Runge-Kutta 

method is widely used in the industry mainly because of its higher accuracy and 

relatively less computation time [39]. 

 Small signal stability of the dynamic system is necessary at all times. However, 

the system can operate even if it is transiently unstable under these operating conditions 

[37]. In general, stability closely depends on the system loading conditions, and an 

increase in loading can bring about instability. In fact, although small signal stability and 

transient stability are not directly related, transient stability can be enhanced 

correspondingly when small signal stability is improved. This dissertation focuses mainly 

on transient performance improvement of DFIG-based power systems achieved by 

increasing small signal stability of DFIG. 

 The parameters which are most affected by disturbances include rotor angle, 

voltage, and frequency. These parameters influence three types of instability mechanisms 

classified as:  rotor angle stability, voltage stability, and frequency stability. Furthermore, 

power systems stability can be further distinguished based on the typical range of 

response times, i.e., short term (seconds) or long term (minutes). The various types of 

power systems stability are identified in the diagram in Figure 2.2 [35].  



21 

 

Figure 2.2.  Classification of power systems stability. 

 Rotor angle stability is the ability of interconnected synchronous machines in 

power systems to remain in synchronism under normal operating conditions and after 

disturbances. Rotor angle instability may result in an increase in angular swings of some 

generators and a loss of synchronism [35]. The loss of synchronism may make the system 

split into islands or cause the removal of some generators for a period of time. This may 

lead to more serious damage, and many customers could lose electricity. The traditional 

small signal stability analysis and transient stability analysis are mainly based on rotor 

angle stability and are well developed. Although the rotor angle stability of a wind 

turbine generator system (WTGS) does not use strict angle synchronous stability, because 

most WTGS decouple with other synchronous machines via power electronic converters, 

it could be analyzed by the similar small signal stability method.  

 Voltage stability is classified as the ability of a power system to maintain all 

system bus voltages at an acceptable level under both normal operating conditions and 
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following disturbances. The nominal voltage level is usually 0.9~1.05pu. Voltage 

instability may occur in the form of a progressive or uncontrollable voltage drop [34]. 

This has become an increasingly important issue in modern power systems since 1990, as 

it can affect large areas and cause serious damage and possible injury. In general, voltage 

stability has a close relationship with reactive power. In most cases, reactive power 

compensation can solve the problem of voltage instability. However, reactive power 

compensation does not work in the cases of large load fluctuations or large transmission 

line loss [40]. Voltage stability is quite complex, and it is not the focus of this dissertation.  

Voltage stability of a DFIG in a distribution system is discussed in Chapter 6, Section 6.5. 

 Frequency stability is the ability of power systems to keep the frequency within 

an acceptable range following a system disturbance resulting in a significant unbalance 

between generation and load [35]. The nominal frequency range is usually 59.5~60.5 Hz 

in the U.S. From tens of cycles to several seconds, frequency control is normally 

provided by fast autonomous control of individual turbine generators (e.g., governor 

control). Over a slightly longer time frame, centralized automatic generation control 

(AGC) directs selected generators (hydro and steam plants) to adjust their output in order 

to satisfy both frequency and power flow objectives. In a still longer time frame, load 

following, unit dispatch, and switching off of some loads occurs to satisfy these 

requirements. Frequency instability may result when some generators/loads/transmission 

lines are switched off, some transmission lines are overloaded, and the whole system is 

split into subsystems. It is important to note that frequency stability cannot be classified 

as small signal stability and transient stability because it can affect any disturbance. 

Therefore, frequency stability is determined by the overall response of the whole system 
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(or each island if the system is split into islands) not only the relative generators or 

disturbances [35], [41]. Analyzing frequency stability is not within the scope of this 

dissertation. 

2.2 System Stability Indicators 

 Assessing power systems stability performance is accomplished using several 

indicators. Based on the application of the swing equation and equal area criterion in 

simple power systems [35], critical clearing angle (CCA) and critical clearing time (CCT) 

indicate the borderline of a power system being subjected to a disturbance or a fault to 

regain steady state. The system can go to steady state as long as the synchronous machine 

rotor angle displacement of the rotor from the synchronously rotating reference axis is 

less than CCA or the fault clearing time is shorter than CCT [35]. Otherwise, the rotor 

angle of generators will increase without limits; and the system will lose synchronism 

when both CCA and CCT are surpassed. Therefore, CCA and CCT are often used as 

power system stability indicators. When a fault occurs in power systems, the difference 

between CCA and the actual clearing angle, or between CCT and the actual clearing time, 

is defined as the “stability margin” of the system (if there is a positive margin). However, 

when simulations or analysis are done in large power systems, CCA and CCT cannot be 

easily determined without considerable time-domain numerical integration calculation or 

time domain simulation runs [42]. In this case, additional practical indicators are used, 

namely, maximal rotor speed deviation and oscillation duration [43]. 

 The maximum rotor speed deviation is classified as the maximum centralized 

synchronous generator rotor speed value attained during the transient phenomenon [43]. 

This indicator suggests that by increasing the rotor speed deviation from the rated value 
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after a disturbance, the system becomes increasingly unstable. The oscillation duration is 

defined as the time interval between the start of the disturbance and the instant after 

which the rotor speed stays within a bandwidth of 0.0001pu during a time interval longer 

than 2.5s [43]. 

 This indicator implies that the longer the rotor speed oscillates from the rated 

value after a disturbance, the more unstable the system becomes. In other words, the 

smaller deviation of the rotor speed oscillates from the rated value after a disturbance, the 

more stable the system is. In the absence of damping, the rotor speed continuously 

oscillates and cannot reach convergence. It indicates that the system is unstable, and the 

generators lose synchronism.  

 Therefore, it is more efficient in terms of computation time to use these indicators 

rather than CCT/CCA. The indicators of maximum rotor speed deviation and the 

oscillation duration [43] are shown in Figure 2.3, and Equations (2.2) and (2.3) are used 

to quantify the indicators: 

,max ,

,
maximum rotor speed deviation= r r nom

r nom

ω ω
ω

−
                                   (2.2) 

where ,max ,r r nomandω ω  are the maximum and the rated rotor speed of a generator, 

respectively. 

                                      oscillation duration= osc ft t−                                            (2.3) 

where ft  is the time when the fault happens, and osct is defined in Equation (2.4): 

            { 4 2.5= min : ( ) ( ) 10 ; 1, ,osc r rt t t n t t n
t

ω ω − + ⋅∆ − ≤ = ∆ 
L                   (2.4) 

where ( )r tω the rotor is speed at time t and t∆ is the simulation step. 
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Figure 2.3.  Transient stability indicators: maximum rotor speed deviation and oscillation duration. 
 

2.3 Key Factors Influencing Wind Power Plant Systems Stability 

 Pollution free, virtually limitless and relatively low cost make WPP a viable 

option in the power generation mix. However, the variability and intermittency of WPP 

can create a tremendous challenge to power systems stability. With the rapidly increasing 

penetration of WPPs into the grid, it is vital to analyze wind power plant system stability. 

When considering the impact of WPPs on power system stability, it is necessary to be 

acquainted with system properties, location of wind resources, generator technologies, 

ESS, reactive power compensation, wind power forecast, etc. An important principle is 

that the problem has to be analyzed individually case by case. Several key factors will be 

discussed as follows. 
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2.3.1 Wind Turbine Generator Technologies 
 There are mainly three wind turbine generator technologies that have been 

installed to date:  

• Type a.  Fixed speed induction generator (FSIG).  

• Type b.  Doubly fed induction generator (DFIG). 

• Type c.  Direct drive synchronous generator (DRSG). 

 

 

Figure 2.4.  Three wind turbine generator models connected to the grid. 

 The diagram in Figure 2.4 shows all three kinds of wind turbine generator 

technologies. FSIG is simple and inexpensive; however, it has several disadvantages, as 

reported in [44]:  

1. Lack of control of both active and reactive power output is possible. 

2. Large fluctuations in output power. 

3. Easy gearbox breakdown due to large fluctuations in output power. 

 With the recent developments in power electronics, DFIGs have become very 

popular, and the worldwide market share of DFIGs has reached more than 30% [45]. The 

rotor windings of DFIGs are connected to the grid through four-quadrant ac-dc-ac 

converters based on insulated gate bipolar transistors (IGBTs). Above synchronous speed, 

the converters operate as generators of active power delivering power to the grid parallel 
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to the stator windings of DFIGs. Below synchronous speed, they deliver active power 

from the grid into the rotor circuit. The converters, composed of two Pulse width 

modulation converters (PWM), are connected back to back by a DC link. The rotor-side 

converter (RSC) injects an AC voltage at slip frequency to the rotor circuit. The grid-side 

converter (GSC) works as a controlled voltage source by generating AC voltage at power 

frequency and keeping the DC link voltage constant. The main advantages of DFIGs are 

that they can operate in a wider wind speed range and produce or consume reactive 

power through controlling the grid-side converter. DFIGs also offer other advantages [45]: 

1. Reduced converter cost, and converter rating is typically 30% of total 

power. 

2. Easy power factor control and reactive power compensation at lower 

cost. 

3. Reduced inverter filters cost. 

4. Improved WT efficiency. 

 The large rotor inertia of a DFIG can smooth the variation of wind speed; and, as 

a result, it has fewer fluctuations in output power. The most important advantage is that a 

DFIG has uninterruptable operation and can successfully ride through grid faults with the 

selection of good converter control or other advanced control applications. Immediate 

disconnection of wind farms from power systems at the time of a fault, particularly with 

the high penetration condition, may create a significant problem in transient stability. 

Uninterruptable operation can be achieved by properly arranging the operation and quick 

control of converters to maximize power system transient stability [20].  
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 A comparison between an FSIG and a conventional synchronous generator 

connected to an infinite bus is depicted in [46], and an FSIG has a strong characteristic 

against power system oscillation. The authors in [47] studied the different impacts of 

constant and variable speed wind turbines on New England power systems and point out 

that an improvement in transient behavior can be observed when an FSIG is replaced by a 

DFIG. 

 Direct-drive synchronous generators usually are one of two types: a synchronous 

generator with electrical excitation or a synchronous generator with permanent magnet 

excitation. The former appears to be the heaviest and most expensive when compared to 

other types, while Enercon (a wind turbine manufacturer) claims that it can improve 

reliability, including immunity to problems from voltage disturbances due to grid faults, 

as a result of the use of a fully rated converter [48]. However, the latter seems much more 

attractive because permanent magnet excitation eliminates the excitation losses with the 

highest energy yield [49-52].  

 In principle, a direct-drive permanent magnet synchronous generator (PMSG) 

could be the best solution in the future because it doesn’t need brushes and a gear box; 

and it has the advantages of a fully rated converter, if cost is not a major factor. However, 

compared to an FSIG and a DFIG, the PMSG is more expensive and has greater volume 

because of its greater and more expensive permanent magnet excitation. Yet, further 

improvements of PMSG may be expected because the cost of the permanent magnets and 

the power electronics is decreasing; and further optimization and integration methods are 

possible [51-52]. 
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 Stability analysis of FSIGs and DFIGs has been discussed in many research 

projects while stability analysis of PMSG has not been thoroughly analyzed. The papers 

[53-54] present a detailed study of the transient stability of PMSG with a proposed 

control system considering various different types of symmetrical and nonsymmetrical 

faults. Simulation results show that the transient stability can be enhanced when a single 

line-to-ground fault occurs close to a PMSG, and the terminal voltage can return back to 

its prefault level. In [55-56], the two-mass drive train model is applied to evaluate the 

dynamic performance of the PMSG while the simulation results indicate that the output 

power of the PMSG is oscillating; and the system is prone to instability if no external 

damping is provided. In [57], the torque compensation strategy contains a feed-forward 

compensator in the torque control loop, which is formulated based on the DC current 

injected into the DC link capacitor of the converters. With such compensation, the 

oscillatory mode is effectively suppressed; and the stability of the PMSG is improved. 

 Unfortunately, there is a gap in the research when comparing the different impacts 

of stability of a DFIG and a PMSG. In [58], the authors use a power system analysis 

software package (PSASP) user-defined model to compare the operational difference 

between a DFIG and a PMSG. The results show that voltage fluctuation curves and 

system frequency response curves between two wind generators are almost the same 

when wind speed changes; however, the voltage stability and frequency stability of a 

DFIG is better than PSMG when considering faulted power systems. However, the 

conclusion is not solid and reliable. 

 Generally, the following conclusions can be drawn from all of those studies: 
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1. FSIGs, DFIGs, and PMSGs are, respectively, the old popular, now 

popular, and future popular wind turbine generator technologies. 

2. An FSIG can improve power system transient stability; but in 

comparison with a DFIG, it is poor. A DFIG has a good ability to ride 

through faults. It can work as a power reactive compensator during 

faults. Therefore, a majority of wind farms are equipped with DFIGs. 

3. Comparison of the different impacts on the stability of DFIGs and 

PMSGs is not sufficient, and there is no generally accepted conclusion 

to date. 

4. Power system transient stability is noticeably degraded at high 

penetration levels due to the high reactive power demand of wind 

generators under some disturbances. Therefore, high penetration wind 

levels not only stop improving power system stability in comparison to 

low penetration levels, but can also decrease power systems stability in 

comparison to the case without WPPs under some disturbances. 

Therefore, calculating the penetration limit and margin is significantly 

important to system planning and operations. 

2.3.2 Energy Storage System  
 An energy storage system (ESS) can store electrical energy during times of low 

demand at low energy cost and the stored energy can be released back to power systems 

during times of high demand at high energy cost or when there is a shortage in the 

generated capacity to meet demand. There are many energy storage technologies that 

have been used in power systems, each with its own different characteristics. In fact, ESS 
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can greatly balance the variability and intermittency of WPPs; so it is very useful in 

enhancing power systems stability, especially considering some disturbances [59-61]. 

 In [59], the authors describe a power system stabilizer by utilizing the fast control 

of charging and discharging an ESS to improve the stability of an electric power system.  

This paper [60] presents a novel analytical method for studying the capability of an ESS 

installed in a power system to sufficiently damp the power system oscillations. It clearly 

and simply explains why and how an ESS can effectively suppress power system 

oscillations. In [61], it is shown that an ESS controlled via a robust control technique is 

an effective way of improving the low voltage ride-through (LVRT) capability and 

transient stability of fixed-speed wind turbines. The authors in [62] show the use of ESS 

(such as pumped-hydro storage (PHS) and compressed air energy storage (CAES)) to 

increase wind farm transient stability. Experiments with a 60-MW wind farm (FSIG or 

DFIG), show that ESS performance is better than that of a static var compensator (SVC); 

and ESS is more effective for FSIG than for DFIG. It increases the critical clearing time 

considerably and shortens the post-fault voltage recovery duration of a wind farm.  

 The important factors of an ESS for power systems are the construction cost, 

running cost, the round trip efficiency (RTE), storage capacity, discharge cycles, and 

lifetime. Based on these characteristics, each of these technologies is suitable for certain 

applications. The advantages and disadvantages of these technologies are as follows: 

1. Battery Storage:  There are several types of battery storage (lead acid, 

nickel cadmium, sodium sulphur, and lithium ion) in the industry and 

sizes range from 100W to several MW with round trip efficiency 

(60~80%). The main advantages include a very quick response time 
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(about 20 milliseconds) and less construction time [63]. However, the 

disadvantages include expensive the cost, periodic maintenance, and a 

limited life cycle. 

2. Flywheel Storage:  Flywheel storage uses the kinetic charge and 

discharge capability of a spinning wheel, and the round trip efficiency 

is about 80~85% [64]. The main advantages are less maintenance, long 

life cycle, quick recharge capability, and higher power density. On the 

other hand, the main disadvantages are small storage size and large 

stand-by losses. 

3. Compressed Air Energy Storage (CAES):  CAES uses the off-peak 

power to store energy by compressing air into a reservoir. The stored 

air is released, heated via combustion with a small amount of any type 

of fuel, and passed through turbines to generate electricity at peak. The 

round trip efficiency is around 73~79% [65]. The main advantages are 

high storage capacity, large size, quick start-up time, and easy 

geological requirements. However, the main disadvantages are the 

need for high energy input during the power production process and 

possible emission of greenhouse gas.  

4. Pumped Hydro Storage (PHS):  PHS can use or produce electricity 

through adjusting water between the base level reservoir and higher 

level reservoir, and the round trip efficiency is about 70~80% [65]. 

The main advantages are huge energy, large power capacity (up to 

2000 MW), and the ability to store energy for a very long time (up to 
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six months). However, the main disadvantages are very high 

construction cost ($1,000/kW) and limited location with specific 

geographic, geologic, and environmental topography. 

5. Hydrogen Storage (HS): HS consists basically of an electrolyzed unit 

that generates hydrogen (H2) using off-peak power. Hydrogen is 

compressed and stored in a storage system. Upon demand, the stored 

chemical energy in hydrogen is converted to electricity using a fuel 

cell. The round trip efficiency is around 60~85% [65]. The main 

advantages are zero CO2 emissions, cheaper storage for a longer time, 

higher energy density, and easier implementation in different size 

ranges from KW to several MW. However, the main disadvantages are 

the high flammability of hydrogen, high construction costs, and low 

efficiency. 

6. Super-Capacitor Storage (SCS): SCS is also known as an 

electrochemical capacitor or electrical double-layer capacitor, and it is 

about 1,000 times smaller than traditional capacitors. SCS stores 

electrical energy in the electrical double layer at an 

electrode/electrolyte interface. The main advantages are high power 

density, long life cycle, quick recharge capability, easy installation, 

and higher efficiency [66]. Yet, the main disadvantages are very 

expensive cost (about five times of the same size of lead-acid 

batteries), low energy density, and power electronics requirement. 
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7. Superconducting Magnetic Energy Storage:  SMES stores energy in a 

magnetic field by circulating a DC current through a superconducting 

coil which is cooled to -269 ºC and makes the resistance disappear. 

The main advantages are very high efficiency (around 98%) [66], very 

quick energy transfer (within 17 milliseconds), and unlimited charge 

and discharge cycles. On the other hand, the main disadvantages are 

high cost, low energy density, refrigeration losses, and AC-DC-AC 

losses.  

 Generally, it has been proven, in theories and experiments, that ESS can 

considerably improve the transient stability of WPPs. Considering storage capacity, 

response time, life time, and costs, the engineers can select suitable ESS to assist wind 

farms. 

2.3.3 Reactive Power Compensation 
 The increasing effect of WPPs will influence the dynamic behavior of power 

systems by interacting with conventional generation and loads. Due to the inherent 

characteristics of wind turbines, no uniform power production causes variations in system 

voltage and frequency. Moreover, WPPs usually cannot produce enough reactive power, 

like the conventional synchronous generators. In this case, wind farms with FSIG connect 

to the medium voltage distribution systems directly, which represents a large percentage 

of the wind energy conversion systems around the world.   

 This is known as wind farm to weak grid connection, and its main problems are 

poor voltage regulation at the point of common coupling (PCC) and poor voltage stability. 

 Therefore, wind farms usually need high reactive power compensation to improve 

the voltage stability and transient performance during integration into the grid and the 



35 

operation of wind turbine groups. Generally, flexible AC transmission systems (FACTS) 

devices, such as static var compensator (SVC), static reactive compensator (STATCOM), 

dynamic voltage restorer (DVR), dynamic reactive compensation, etc., installed with 

wind farms can inject reactive power into the system, which helps in maintaining a better 

voltage stability.  

 The work in [67] describes how CCT of wind farms was increased based on 

reactive power compensation techniques. This paper [68] presents the design of a linear 

and a nonlinear coordinating controller between an SVC and the wind farm inverter at the 

point of interconnection. Results show that the voltage stability of the entire power 

system during small and large disturbances is improved. The simulation [69] results show 

that the stability margin of an FSIG can be significantly greater when there is extra 

reactive power compensation available from a DFIG in the vicinity. This paper [70] 

examines the use of STATCOM as a dynamic reactive power compensator at PCC to 

maintain stable voltage by protecting a DFIG-based wind farm interconnected to a weak 

distribution system during and after the disturbances. The results show that STATCOM 

mitigates the effects of transient disturbances, three-phase short circuit fault, step load 

change, voltage swelling and sagging in the system, and, hence, improves the stability 

and performance of the wind farm. 

 Therefore, reactive power compensation with wind farms has proven to be an 

effective, easy method to improve voltage stability, power quality, and operational 

characteristics of wind farms. Yet, the optimal location and reactive power compensation 

strategy may need more attention and will need to be considered on a case-by-case basis. 
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2.3.4 Wind Power Forecasting 
 The variability, intermittency, and non-displaced characteristics of WPPs can 

cause a stability problem. Power systems, in particular, need more operating reserve and 

more time to prepare for solving the intermittency of WPPs. Therefore, the electric 

industry depends on the wind power forecast to be exact. A more accurate forecast model 

of wind farms not only facilitates the integration of wind power with the grid but also 

forewarns the power system operators by providing weather alerts, thus improving 

system stability. It also aids in power system operations planning and economic dispatch: 

• Prepare for upcoming high ramp rates of WPP by dispatching the 

generation and transmission systems to ensure supply reliability. 

• Provide prediction information to plan for an ancillary services market 

in support of the intermittent wind power. 

• Reduce operating reserve. 

• Enable dispatching of quick-start generators in advance. 

• Enable maximum WPP output by optimal operation scheduling. 

 Developing forecasting models is an overwhelming task due to the random and 

stochastic nature of wind. Generally, wind power forecasting includes several concepts 

[71]: 

1. Definition:  An average power t k tP+  is the expected power of a wind 

farm at time instant t for a look-ahead time t+k. The time step k 

represents the time resolution of the forecasts. The length of the time 

step depends on the length of the time horizon. 
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2. Forecast Objectives:  They are defined by their applications. Power 

plant scheduling, power balancing, determination of wind speed and 

power, grid operation, and congestion management can be the 

applications. 

3. Forecast Horizons: Depending on the time horizon, wind power 

forecasting can be categorized into three types:  very short term, short 

term, and long term.  

4. Forecast Data: The data required for wind power prediction are 

collected from wind farms via the Supervisory Control and Data 

Acquisition (SCADA) systems installed at each wind turbine, and data 

for weather forecasting can be obtained from National Weather 

Service Forecast Models. 

5. Forecast Accuracy:  The quality of wind power forecasting is 

determined by its accuracy. Mean absolute error (MAE), standard 

deviation of absolute error (STD), mean square error (MSE), root 

mean square error (RMSE), etc., are used to evaluate the prediction 

accuracy.  

 Building an accurate wind power forecasting model is a challenging task because 

of the need to cater to the high dimensional and random nature of wind. Wind power 

forecasting techniques are classified into three main groups: Physical Approach, 

Statistical Approach, and Learning Approach. 

1. Physical Approach: It is comprised of several different physical 

processes, which translate the numerical weather prediction (NWP) 
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wind speed forecast at a certain grid point to a power forecast for a 

WT farm site at WT hub height. The mathematical description of the 

physical processes relevant to the translation is contained in each sub-

module, including wind conditions at the site and the hub height of the 

turbines, wind turbine power curve, etc. [72].  

2. Statistical Approach:  The relation between historical measurements, 

meteorological predictions, and power output is realized through 

statistical models whose parameters are estimated from the historical 

data. After that, the statistical models can be used to obtain the power 

output in the time series without taking into account any physical 

phenomena [73]. 

3. Learning Approach:  Artificial intelligence (AI) techniques (neural 

networks, fuzzy logic, etc.) are developed to learn the relationship 

between input data (NWP model predictions) and output data (power 

output). Subsequently, it uses algorithms that implicitly describe 

highly complex, nonlinear relationships between these data, unlike 

explicit statistical analysis used in the statistical approach [74]. 

 However, it is difficult to compare the different techniques based on the available 

results because of the existing application differences (flat, complex terrain, altitude, land, 

offshore, etc.). The ultimate goal is to enhance the prediction accuracy and to develop 

models that can be the basis for predictive control. Generally, wind power forecasting 

plays an important role in enhancing the stability, efficiency, and reliability of modern 

power systems; and its importance is gradually increasing. 
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2.3.5 System Operations in High Wind Penetration Conditions 
 The high penetration of WPPs will profoundly affect the electric power industry 

and place greater demands on system operations. A number of studies [12-17] have been 

performed over the past decade to analyze the operational impacts that can occur at high 

penetration of WPPs. Some steps (most are system operations) can be taken to improve 

the ability to integrate the increasing amounts of wind capacity into power systems and 

the system stability. These include the following:  

1. Improve WPP Models:  Good models are a prerequisite to 

identifying and solving problems. 

2. Improve WPP Operating Characteristics:  For example, the ability of 

low voltage ride-through or the ability to provide an inertial response 

in a stability-constrained system can be critical to the reliable 

operation of power systems. 

3. Upgrade and Expand Transmission Systems:  Additional new 

transmissions will be required to tap these remote wind resources 

and bring them to market.  

4. Make Better Use of Physically Available Transmission Capacity (in 

contrast with contractually):  Hourly analysis of line loadings often 

shows that a line is heavily loaded for a very limited number of 

hours in the year. Development of a flexible-firm transmission 

product, which makes the unused capacity available for other 

transactions when the line is lightly loaded, could be accomplished 

with minor modifications to current practices. Improved 
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requirements of tracking power flow and dispatch method are greatly 

needed to use transmission system more effectively. 

5. Incorporate Wind and WPP Output Forecasting into Utility Control 

Room Operations:  This will also be the key to the future success of 

wind energy and can offer several advantages to system operators. 

The operating impact with the largest cost is determined to be in the 

unit-commitment time frame. Day-ahead WPP output forecasting 

offers significant opportunity to reduce the cost and risk associated 

with the uncertainty in the day-ahead time frame.  

6. Improve the Capacity for Balancing the System:  As additional wind 

capacity is added, greater regulation, load following, and quick-start 

capability will be required from the remaining generators. Operating 

reserve often needs to be increased correspondingly. The optimal 

generation mix will vary with the amount of wind in the system.  

7. Evaluate Wind Integration Operating Impacts and Security Margin, 

Especially Stability, Reliability, and Frequency Control:  The 

magnitude and frequency of occurrence of changes in the net load on 

the system in the time frames of interest (e.g., seconds, minutes, 

hours), before and after the addition of WPP, must be well 

understood to determine the additional requirements on the balance 

of the generation mix.  

8. Better Use Flexible Resources:  The most effective use of flexible 

resources including ESS, dispatchable hydropower and pumped 
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storage plants, reactive power compensation, FACTS, etc., should be 

considered. 

9. Improve in Protection:  Improved setting of the initial “pick-up” 

values for breakers makes them work in a more orderly fashion when 

a fault or power flow changes occur because of intermittency in wind 

power generation. 

10. Islanded Operation in Distribution Systems. 

11. Adopt Power Market Rules and Tariff Provisions More Appropriate 

for Weather-Driven Resources:  Imbalance penalties that may 

discourage the behavior of fossil generators cannot be used to affect 

the behavior of a wind-driven resource. Weather-driven resources 

should pay the costs they incur, rather than be penalized for behavior 

they cannot control.  

12. Consolidate Balancing Areas into Larger Entities or Access a Larger 

Resource Base Through the Use of Dynamic Scheduling or Some 

Form of ACE Sharing:  These results [12] are corroborated by the 

New York State wind integration study which determined that the 

combined operation of the 11 zones in the New York State power 

system reduces hourly load variability by 5% and 5-minute load 

variability by 55%. Hourly wind variability is reduced by 33%, and 

5-minute wind variability is reduced by 53% with state-wide 

operations. Hourly system variability is further reduced by 10%, and 
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5-minute system variability is reduced by 15% when wind and load 

are considered together.  

13. Learn How to Best Operate a System with a High Penetration of 

Wind Energy:  Some evidence proves that system operators will 

become more familiar with wind after working with it. For example, 

The Western Farmers Electric Cooperative recently conducted an 

analysis with the National Renewable Energy Laboratory on the 

operational impact of wind on its system. Initially, the system 

operators could not maintain the CPS-1 frequency standard at its pre-

wind level. With experience, they became familiar with the wind 

system and brought CPS-1 into its pre-wind range [13]. 

 This list is not exhaustive, and the items on the list are not mutually exclusive. 

Some combination of these items may significantly increase the ability of the grid to 

absorb increasing quantities of wind generation and system stability.  

2.4 Interconnection Requirements and Grid Code 

 Wind plants are in a unique position for interconnection to the transmission grid 

system. As wind plants have grown to sizes that rival some conventional generation 

systems, the impact of these large plants on the electric grid has become an increasingly 

important issue. IEEE 1547 of 2003 and UL-1741 standards for interconnection and 

testing only apply to plants with an aggregate capacity of 10 MVA or less [86]. Small 

wind farms and small groups of turbines may fall into this category; but as wind farms 

have continually increased above this rate, new standards and regulations should be 
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developed. The Federal Energy Regulatory Commission issued Order 661 in 2005 to 

standardize interconnection of large wind energy systems.  

1. IEEE 1547 Standards  

The standards developed by IEEE 1547 and further developed in UL-

1741 focus on standardizing the interconnection of distributed 

resources (DR) of all types with electric power systems (EPS). IEEE 

1547 is divided into four subsections that define the criteria and 

requirements for interconnection. Section 1547.1 contains the 

standardized testing required to verify that the equipment relevant to 

the interconnection is meeting the regulations put forth in the main 

section. Section 1547.2 is the technical background required to 

understand the concepts of 1547; it contains standard technical 

descriptions, schematics, guidance, and examples. Section 1547.3 

develops standard monitoring procedures and identifies how important 

interconnection information will be exchanged. Lastly, Section 1547.4 

develops standards for islanding conditions. UL-1741 is the expansion 

of IEEE 1547 and includes all DR connections and safety standards for 

interconnection equipment. Important standards developed that are 

relevant to small wind systems [87] include:  

A. Voltage regulation must not occur at the point of common coupling 

(PCC).  

B. Synchronization at the PCC may not cause more than ±5% voltage 

fluctuation on the EPS and must meet flicker requirements. 
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C. The EPS bus protectors must be energized to 50% before the DR 

can be connected. Inversely, the DR must not energize the EPS 

when it is de-energized.  

D. Adding the DR cannot cause the network equipment to exceed 

loading and fault interrupting capacity.  

E. Any aggregate DR connected to the grid that exceeds 250 KVA 

must be monitored.  

F. Accessible breakers must be in place between DR and EPS.  

G. Interconnection equipment must be able to withstand a voltage 

increase of 22% of rated values.  

These are just a few important examples of the specific standards and 

requirements that are established by IEEE 1547. 

2. FERC-661 Standards  

The reason that FERC-661 was established was because the large wind 

farms are becoming important in transmission systems, and the same 

standards used for conventional generation plants do not work and 

result in unnecessary costs for wind systems. FERC-661 covers 

facilities that exceed 20 MW of production [88]. The ruling prevents 

unnecessary requirements from being applied to wind generators. It 

also assumes that all wind plants are nonsynchronous which is not true. 

The rulings of FERC often try to coincide with international standards, 

such as the International Electronic technical Commission ruling TC88, 

since many countries are ahead of the U.S. in the development of 
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standards. Many groups were involved in the ruling including the 

American Wind Energy Association (AWEA), North America Electric 

Reliability Council (NERC), and many transmission providers, 

manufacturers, and other research groups. The main areas discussed 

are low voltage ride-through (LVRT) capability, power factor design 

criteria, supervisory control and data acquisition (SCADA) capability, 

wind plant interconnection modeling, and self-study of interconnection.  

3. Low Voltage Ride-Through Capability  

The commission rule is that the LVRT standard has to meet the 

requirements shown in Figure 2.5, but only if the System Impact Study 

(SIS) provided by the transmission provider requires them to be met. 

Also, the point of interconnection is adopted as the standard 

measurement of the voltage. The study uses a three-phase fault 

because it is the most severe. High voltage ride-through was rejected 

[88]. The wind generation plant must have low voltage-through 

capability down to 15% of the rated line voltage for 0.625 seconds; 

and it must be able to operate continuously at 90% of the rated line 

voltage, measured at the high voltage side of the wind plant substation 

transformers. 
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Figure 2.5.  Proposed low voltage ride-through standards in [88]. 

4. Power Factor Design Criteria (Reactive Power)  

The Commission rules that the power factor must be within 0.95 

lagging or leading at PCC. However, it is only required if the SIS 

shows that it is necessary. The Commission requires that the 

transmission provider shows it has reactive power capability for the 

wind plant interconnection customer. 

5. SCADA Capability  

The Commission has adopted a requirement for the wind plant 

interconnection customer to have SCADA capability, and the 

necessary information is to be worked out with the transmission 

provider. It rejects the assertion that the transmission provider has full 

authority and that they cannot control the wind plant via SCADA.  

6. Wind Plant Modeling  
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The Commission recommends that developers, manufacturers, 

transmission providers, and other interested groups work to improve 

and validate wind turbine models but has determined that the 

commission is not the appropriate avenue to make decisions on 

models.  

6.   Self-Study of Interconnection Feasibility  

The Commission ruled that wind plant interconnection customers 

may satisfy the Interconnection Request using a single aggregate 

generator to represent the entire wind plant system because it is 

impossible for the wind plant to model individual turbines as they 

are too dynamic by themselves. Therefore, they can enter the queue 

with a satisfactory single generator model report and receive the base 

case data. Within six months, the WP interconnected customer must 

complete a detailed data specification so that the SIS can be 

completed. 

 In general, the Commission provides a set of guidelines but often leaves the actual 

requirements to be decided on a case-by-case basis between the transmission provider 

and the WP interconnection customer. FERC-661 is a flexible ruling that gives a lot of 

power to the parties that are involved, but it holds that the interconnection customer can 

appeal a decision by the transmission provider to the Commission. The Commission 

states that the ruling is to help facilitate wind power systems and preserve them from 

being unduly discriminated against. It also emphasizes work in the technical community 

to develop common regulations and standards that will lead to growth of wind energy and 



48 

bring down manufacturing and operating costs while ensuring the stability and reliability 

of all systems involved.  

2.5 Small Signal Stability Analysis Model 

 The stability of power systems is a very complex issue because the nonlinear 

high-order differential equations which describe the dynamic components are very 

difficult to solve.  When the disturbance is relatively small and power systems return to 

the initial steady state, the stability is defined as small signal stability. Therefore, the 

nonlinear high-order differential equations can be degraded to the ordinary first-order 

differential equations in small signal stability analysis to reduce the difficulties involved 

in solving them [35-37].  

 Power systems can be represented by a set of differential and algebraic equations 

(2.1). Here, x and y are the vectors of state and algebraic variables, respectively. 

Linearization of Equation (2.1) at an initial operating point 0 0( )x ,y , which is obtained 

by the load flow calculations at this initial operating point, is given as [35]: 
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n = the column number of the matrix; m= the row number of the matrix; 
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Eliminating the algebraic variables and using the ordinary first-order differential 

equations: 
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A A - BD C



          (2.7) 

sysA  is the state matrix of the system, and the eigenvalues (λ1, λ2, ~ λn) of the state matrix 

can be obtained by solving the state equation (2.8). 

                                          det( ) 0λ− =sysA I                                                           (2.8) 

                                , / 2 , 1, , .i i i i ij f i nλ σ ω ω π= ± = ∈                                   (2.9) 

λi  is the ith eigenvalue of the system and only if all eigenvalues are on the left-half plane 

of four quadrants (σi < 0), the system is stable in a small signal sense. If one of the 

eigenvalues isn’t on the left-half plane (σi ≥ 0), the system is unstable in a small signal 

sense. Small signal stability analysis is the method that analyzes the stability margin of 

the dynamic system via calculating the eigenvalues of the state matrix. The farther the 

eigenvalues are on the left-half plane, the more stable the system. 

 The damping ratio is a measure of how rapidly the oscillations in the system 

decay following a disturbance. Here, the damping ratio of the ith eigenvalue is defined in 

Equation (2.10): 

                                 2 2
i ξ = / ( + ) , 0 0i i i i iif andσ σ ω σ ω< ≠                           (2.10) 
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 If the damping ratio is very small, the system oscillates for a long time to reach to 

the initial steady state; and the small signal stability is not acceptable. If the damping 

ratio is large enough, the system quickly goes to the initial steady state because the 

oscillation is well damped and the small signal stability is improved. Therefore, an 

optimization problem can be formulated to maximize the objective function:   

           { }i F= Max min(ξ ) , 0, 0 1, , ,i iif and i nσ ω< ≠ ∈                            (2.11) 

 This will assure that the minimum damped eigenvalue is still heavily damped in 

the system’s small signal stability analysis so that the oscillation quickly disappears. In a 

wind power integration system, some low-frequency oscillations are more cause for 

concern. Therefore, the optimization could also be adjusted to increase the damping ratio 

of the special low-frequency eigenvalues. In this dissertation, a particle swarm 

optimization (PSO) method is selected to optimize the low-frequency oscillation of 

DFIGs in Chapter 4. 
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CHAPTER 3  
WIND TURBINES WITH DOUBLY FED INDUCTION 

GENERATORS 
 

 The difference among wind generator technologies (FSIG, DFIG, and PMSG) is 

based mostly on the electrical generation part (generator, power converter, and control 

algorithm) whereas the mechanisms to control the prime mover are generally similar. 

These mechanisms usually use mechanical brakes and blade pitch control to avoid 

runaway conditions and to keep the mechanical stresses on the mechanical components 

within the design tolerance for operating conditions. The pitch angle control is usually 

used in a high-wind-speed region to keep the aerodynamic power within limits so that the 

output power and rotor speed can be kept within their boundary limits. The advantages, 

disadvantages, and the impacts of the three wind generator technologies were discussed 

in Chapter 2.3.1. Chapter 3, however, will focus on wind turbines with DFIGs. Modern 

wind turbines with DFIGs usually include four subsystems:  wind turbine, induction 

generator, converter system, and grid connection, as shown in Figure 3.1. This chapter 

will discuss the detailed mathematical models for each subsystem.  
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Figure 3.1.  Wind turbine DFIG system in [26]. 
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3.1 Wind Turbine Model 

 Aerodynamic power control of a wind turbine is based on the aerodynamic 

properties of the wind turbine rotor blade. There are two forces that act on the rotor disc:  

1) edge force that builds up shaft torque (orthogonal to the free wind direction) and 

2) thrust that imposes unwanted load on the turbine (parallel to the free wind direction). 

Methods for improving the aerodynamic properties of wind turbines are not the subject of 

this dissertation. In general, the mechanical power delivered to the shaft is a complex 

function of wind speed, blade pitch angle, and shaft speed [75].  

                                      
30.5 ( , )m r w pP A v Cr λ β=                                                 (3.1) 

where , , , , ,r w pA v Cr λ β  are the air density, the area swept by the turbine blades, the 

wind speed, the tip-speed-ratio, the blade pitch angle, and the power coefficient, 

respectively. The power coefficient is a function of both tip-speed-ratio and the blade 

pitch angle and is given as ( , )pC λ β  curves which are provided by the wind turbine 

manufacturers. The tip-speed-ratio is defined in  

                                                      /t wR vλ w=                                                            (3.2) 

where R is the blade length in m, and tω  is the wind turbine rotor rotational speed in 

rad/s. In this dissertation, the mathematical representation of the ( , )pC λ β  curves used 

for the 3.6 MW wind turbine are obtained by curve fitting, given in [76]: 

4 4

0 0
( , ) i j

p ij
i j

C aλ β β λ
= =

=∑∑                                                   (3.3) 

where the coefficients ija  are given in [76]. At one certain wind speed, there is a unique 

wind turbine rotor rotational speed to achieve the maximum power coefficient ( maxpC ) 
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to absorb the maximum mechanical power from the wind. If the wind speed is below the 

rated wind speed, the wind turbine operates in the variable speed mode; and the rotor 

rotational speed is adjusted by DFIG active power control so that pC  tracks at the 

maxpC  point. In this operating mode, the pitch control does not function; and the pitch 

angle is usually fixed to zero. However, if the wind speed increases above the rated value, 

the pitch control works to increase the blade pitch angle in order to reduce the mechanical 

power absorbed from the wind for protecting the wind turbine system. In this dissertation, 

it is assumed that the wind turbine does not function in the high wind speed condition 

such that neglecting the pitch angle change and setting the power coefficient to the 

maximum value according to the unique wind speed are reasonable. 

 The shaft system of the wind turbine can usually be represented either by a two-

mass system [75-77] or by a single lumped-mass system [78-81]. In the two-mass model, 

two separate masses are used to represent the low-speed rotational turbine and the high-

speed rotational generator; and the connecting resilient shaft is modeled as a spring and 

damper, shown in Figure 3.2. The electromechanical dynamic equations [76] are then 

given by 

2 ( )t t m tg t r tgH p T D Tω ω ω= − − −                                                 (3.3) 

2 ( )g r tg tg t r eH p T D Tω ω ω= + − −                                                 (3.4) 

( )tg tg t rpT K ω ω= −                                                                     (3.5) 

where /p d dt= ; , , , , , , , ,m e tg t r t g tg tgT T T H H D Kω ω are the mechanical torque, the electrical 

torque, the internal torque, the turbine rotor speed, generator rotor speed, the inertia 

constants of the turbine and the generator, the damping coefficient of the shaft between 
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two masses, and the shaft stiffness, respectively. In Figure 3.2, Nt/Ng is the gear ratio of 

the gearbox. 

 

Figure 3.2.  Wind turbine-DFIG shaft system represented by a two-mass model in [26]. 

 In the single lumped-mass model [78], the shaft system is simply modeled as a 

single lumped mass with the lumped inertia constant mH , calculated by 

m t gH H H= +                                                                              (3.6) 

The electromechanical dynamic equation is then given by 

2 m m m m m eH p T D Tω ω= − −                                                           (3.7) 

where mω is the rotational speed of the lumped-mass system and m t rω ω ω= = , mD is the 

damping of the lumped system. The author [82] theoretically proves that there should be 

no low-frequency oscillations via the single lumped-mass model of a wind turbine. 

However, low-frequency oscillations of WTG were actually observed in many reports. 

Therefore, the single lumped-mass model might be insufficient to represent the dynamic 

behavior of a WTG system; therefore, it may not be a good choice for performing a 

stability analysis of a WTG. In this dissertation, a two-mass system model of a WTG was 

selected for investigation. 
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3.2  Induction Generator Model 

 The induction generator in this dissertation is a single-cage wound rotor induction 

machine. In terms of the instantaneous variables shown in Figure 3.1, the stator and rotor 

equations can be written as follows, in matrix form: 

sabc s sabc sabcv r i pλ= +                                                              (3.8) 

rabc r rabc rabcv r i pλ= +                                                              (3.9) 

Applying synchronously rotating reference frame transformation [83] to Equations (3.8) 

and (3.9), the voltage and the flux linkage equations become: 

ds s ds s qs dsv r i pω λ λ= − +                                                    (3.10) 

qs s qs s ds qsv r i pω λ λ= + +                                                    (3.11) 

( )dr r dr s r qr drv r i pω ω λ λ= − − +                                         (3.12) 

( )qr r qr s r dr qrv r i pω ω λ λ= + − +                                         (3.13) 

ds s ds m drL i L iλ = +                                                              (3.14) 

qs s qs m qrL i L iλ = +                                                               (3.15) 

dr m ds r drL i L iλ = +                                                               (3.16) 

qr m qs r qrL i L iλ = +                                                               (3.17) 

where , , , , , , , , , , , , , , ,ds qs dr qr ds qs dr qr ds qs dr qr s r s rv v v v i i i i r rλ λ λ λ ω ω are the d/q axis stator voltages, the 

d/q axis rotor voltages, the d/q axis stator currents, the d/q axis rotor currents, the d/q axis 

stator flux linkages, the d/q axis rotor flux linkages, the synchronous reference speed, the 

generator rotor speed, the stator resistors, and the rotor resistor, respectively. Also, 

, ,; , ,s ls m r lr m ls lr mL L L L L L L L L= + = + are the stator leakage inductance, the rotor 
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leakage inductance, and the mutual inductance, respectively. The stator transient voltage 

equations in [84] become: 

ds s qr m re L Lω λ′ = −                                                          (3.18) 

qs s dr m re L Lω λ′ =                                                            (3.19) 

where ' ',ds qse e  are the d and q axis stator transient voltages, respectively. Substituting (3.18) 

and (3.19) into (3.16) and (3.17), they can be gotten: 

qs m ds
dr

m s r

e L ii
L Lω
′

= −
                                                      

(3.20)
 

m qsds
qr

m s r

L iei
L Lω

′−
= −

                                                      
(3.21) 

In order for the rotor mmf to be in synchronism with the stator mmf, the frequency of the 

rotor current, rfω  must satisfy the slip frequency constraint: rf s r ssω ω ω ω= − = . The flux 

linkage variables are now eliminated by substituting (3.18), (3.19), (3.20), and (3.21) into 

(3.12) and (3.13), as: 

2

2
r ds m m

ds s qs r s qs s qr
r r r

r e L Lpe s e r i v
L L L

ω ω ω
′

′ ′= − − −
                  

(3.22)
 

   

2

2
r qs m m

qs s ds r s ds s dr
r r r

r e L Lpe s e r i v
L L L

ω ω ω
′

′ ′= − − + +
             

(3.23)
 

Substituting (3.14), (3.15), (3.20), and (3.21) into (3.10) and (3.11), results in: 

( )
2

2
2 2

2

/r qsm s r
ds ds s ds r s ds s

r r s

m
r s ds s dr m r s s qs m s qr

r

r eL L L pi v r i e
L L

Lr i v L L L i L i
L

ω ω ω
ω

ω ω ω ω

′− ′= − + − − −

+ + − −





              

(3.24)
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( )
2

2

2

/m s r r ds
qs qs s qs r s qs s

r r s

m
r qs qr m r s s ds m s dr

r

L L L r epi v r i e
L L

Lr i v L L L i L i
L

ω ω ω
ω

ω ω

′− ′= − + + − −

+ + + +





              

(3.25) 

Equations (3.22), (3.23), (3.24), and (3.25) will be used later in small signal stability 

analysis. Also, the per-unit electromagnetic torque equation is given by: 

( )e ds qs qs ds qr dr dr qr m qs dr ds qrT i i i i L i i i iλ λ λ λ= − = − = −                        (3.26) 

Neglecting the power losses associated with the stator and rotor resistances, the active 

and reactive stator powers are given by: 

3 ( )
2s ds ds qs qsP v i v i= +                                                         (3.27) 

3 ( )
2s qs ds ds qsQ v i v i= −                                                         (3.28) 

The active and reactive rotor powers are given by: 

3 ( )
2r dr dr qr qrP v i v i= +                                                        (3.29) 

3 ( )
2r qr dr dr qrQ v i v i= −                                                        (3.30)                                                                                          

3.3 Rotor-Side Converter and Grid-Side Converter Model 

 The rotor windings of a DFIG are connected to the grid through four-quadrant 

AC-DC-AC converters based on insulated gate bipolar transistors (IGBTs). Above 

synchronous speed, the converters operate as a generator of active power delivering 

power to the grid parallel to the stator windings of a DFIG. Below synchronous speed, 

they absorb active power from the grid into the rotor circuit. The converters compose of 

two Pulse width modulation converters (PWM) connected back-to-back by a DC link. 
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The rotor side converter (RSC) injects an AC voltage at slip frequency to the rotor circuit. 

The objective of the RSC is to govern both the stator-side active and reactive powers 

independently. The grid side converter (GSC) works as a controlled voltage source by 

generating an AC voltage at power frequency and keeps the DC link voltage constant. 

The reactive power control by the RSC and GSC is necessary to keep the voltage within 

the desired range when the DFIG feeds into a weak power system with insufficient local 

reactive compensation. The main advantages of a DFIG are that it can operate in a wider 

wind speed range and produce or consume reactive power by controlling the grid-side 

converter.   

 The overall vector control scheme of the RSC and GSC circuit was investigated in 

[82] and is shown in Figure 3.3. In the RSC, in order to achieve independent control of 

the stator active power Ps (by means of speed control) and reactive power Qs (by means 

of rotor current regulation), the instantaneous three-phase rotor currents irabc are sampled 

and transformed to d-q components idr and iqr in the stator-flux oriented reference frame. 

Subsequently, Qs and Ps (thus the generator rotor speed ωr) can be represented as 

functions of the individual current components. Therefore, the reference values of idr and 

iqr can be determined directly from the Qs and ωr commands. The actual d-q current 

signals of the rotor (idr and iqr) are then compared with their reference signals to generate 

the error signals, which are passed through two PI controllers to form the voltage signals 

of the rotor (vdr1 and vqr1). The two voltage signals (vdr1 and vqr1) are compensated by the 

corresponding cross-coupling terms to form the d-q voltage signals (vdr and vqr). They are 

then used by the PWM module to generate the IGBT gate control signals to drive the 

IGBT converter. 
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Figure 3.3.  Overall vector control scheme of the RSC and GSC of a DFIG in [26], 

 In the GSC, in order to achieve independent control of the DC-link voltage and 

the GSC reactive power (Vdc and Qg), they are compared with their reference values to 

form the error signals, which are passed through the PI controllers to generate the 

reference signals for the d-axis and q-axis current components of the GSC. The 

instantaneous AC-side, three-phase current of the GSC is sampled and transformed into 

d-axis and q-axis current components idg and iqg by applying the synchronously rotating 

reference frame transformation. The actual signals (idg and iqg) are then compared with 



60 

the corresponding reference signals to form the error signals, which are passed through 

two PI controllers to form the voltage signals of the GSC (vdg1 and vqg1). They are 

compensated by the corresponding cross-coupling terms to form the d-q voltage signals 

(vdg and vqg).  They are then used by the PWM module to generate the IGBT gate control 

signals to drive the IGBT converter. The RSC and GSC control block diagram, based on 

Figure 3.3 and [82], is shown in Figure 3.4; and the equations follow: 

+ +
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+
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+
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Figure 3.4.  The RSC and GSC control block diagram. 

 

1 rref rpx ω ω= −                                                                      (3.31) 

  1 1 1( )qrref p rref r ii k k xω ω= − +                                               (3.32) 

2 1 1 1( )qrref qr p rref r i qrpx i i k k x iω ω= − = − + −                    (3.33) 

1 2 2 1 2 1 1 2 2 2

2

( )

( ) / ( ) ( ) /
qr qr q p p rref r p i p qr i

s r dr s r m s r qs s qs m s

v v v k k k k x k i k x

s L i L L L L L s v r i L L

ω ω

ω

= + = − + − +

− + −





     (3.34) 
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3 sref spx Q Q= −                                                                      (3.35)   

 3 3 3( )drref p sref s ii k Q Q k x= − +                                               (3.36) 

   4 3 3 3( )drref dr p sref s i drpx i i k Q Q k x i= − = − + −                   (3.37) 

1 2 4 3 4 3 3 4

2
4 4

( )

( ) / ( )
dr dr dr p p sref s p i p dr

i s r qr s r m s r

v v v k k Q Q k k x k i

k x s L i L L L L Lω

= + = − + −

+ − −





            (3.38) 

5 dcref dcpx v v= −                                                                    (3.39) 

5 5 5( )dgref p dcref dc ii k v v k x= − +                                            (3.40)    

6 5 5 5( )dgref dg p dcref dc i dgpx i i k v v k x i= − = − + −                 (3.41) 

1 6 5 6 5 5

6 6 6

( )dg dg ds s g qg p p dcref dc p i

p dg i ds s g qg

v v v L i k k v v k k x

k i k x v L i

ω

ω

= + − = − +

− + + −





       (3.42) 

7 gref gpx Q Q= −                                                                 (3.43) 

 7 7 7( )qgref p gref g ii k Q Q k x= − +                                             (3.44) 

8 7 7 7( )qgref qg p gref g i qgpx i i k Q Q k x i= − = − + −               (3.45) 

1 8 7 8 7 7

8 8 8

( )qg qg s g dg p p gref g p i

p qg i s g dg

v v L i k k Q Q k k x

k i k x L i

ω

ω

= + = − +

− + +





    (3.46) 

 The RSC and GSC are connected by a large capacitor (C) to decouple. The 

parameter rrefω is the reference for the generator rotor speed which is determined by 

WT power speed characteristics for maximum power extraction [26]. Parameters 

, ,sref gref dcrefQ Q andv are the reference set points of stator and GSC reactive power 

and the capacitor voltage; and they are set to 0, 0, and 4KV, respectively. Parameters 

, , ( 1, ,8),pi ii ik k x i =  ,, , , ,dg qg dg dg gv v i i L s  are the proportional gains/integrating 
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gains of PI controllers, the state variables, the d/q axis voltage/current/inductance of the 

GSC winding, and the slip, respectively. By neglecting losses and harmonics, the power 

balance equation (between real power of the RSC and real power of the GSC) is given by: 

r g dc dc dcref dcP P Cv Pv Cv Pv− = ≈                                       (3.47) 

3.4 Interfacing with Power Grid 

 Considering the single machine connected to the infinite bus (SMIB) system as an 

example, shown in Figure 3.1, the voltage equation can be obtained: 

0 ( )s grid TL s gV V jx I Iθ∠ − ∠ = − −                                         (3.48) 

where 0gridV ∠ is the voltage of the infinite bus; sV θ∠ is the terminal voltage of the 

DFIG stator winding; TLx is the combined reactance of the transformer and transmission 

line, which is given by TL T Lx x x= + , and ,s gI I are the currents of the DFIG stator 

winding and the GSC. Neglecting losses and applying the d/q frame transformation to the 

point at which the DFIG connects with the grid and the GSC connects with the stator 

winding, the voltage equations are given by: 

0cos
0sin

ds dgTLds
grid

qs TL qs dg

i ixv
V

v x i i
q
q

+−     
= −     − +       

                       (3.49) 

0
0

tgdg dgds

tgqs qg qg

xv iv
xv v i

−      
= +      
        

                                        (3.50) 

where tgx is the combined reactance of the transformer and the GSC winding between 

the GSC and the stator winding, and more details can be found in [27]. By linearizing 

Equations (3.49) and (3.50):  
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0
0

ds dgTLds

qs TL qs dg

i ixv
v x i i

∆ + ∆∆    
= −    ∆ − ∆ + ∆     

                                      (3.51) 

0
0

tgdg dgds

tgqs qg qg

xv iv
xv v i

−∆ ∆∆      
= +      ∆ ∆ ∆        

                               (3.52) 

3.5 Small Signal Stability Analysis with WT-DFIG 

 In Chapter 2, it was shown that a power system can be represented by a set of 

differential and algebraic equations (2.1): 





x = f(x,y)
0 = g(x,y)


 

In the SMIB-DFIG system, the 16 differential equations include (3.3), (3.4), (3.5), (3.22), 

(3.23), (3.24), (3.25), (3.31), (3.33), (3.35), (3.37), (3.39), (3.41), (3.43), (3.45) and (3.47); 

and the ten algebraic equations include (3.20), (3.21), (3.34), (3.38), (3.42), (3.46), (3.51) 

and (3.52). Linearizing, and substituting the algebraic equations into the differential 

equations, it can get the state equation (2.7): sysΔx = A Δx  

The column vector of 16 state variables is: 

x= 1 2 3 4 5 6 7 8[ , , , , , , , , , , , , , , , ]ds qs ds qs dc t r tge e i i x x x x x x x x v Tω ω′ ′ . 

The column vector of ten other variables is: 

y=[ , , , , , , , , , ]ds qs dr qr dg qg dr qr dg qgv v v v v v i i i i . 

Variables , , , , , ,r g s g rref sref dcrefP P Q Q Q and vω are dependent variables and are easily 

replaced by the state and other variables and the initial values/set points. In per unit, the 

mechanical torque mT  and the electrical torque eT  are easily replaced by: 

/ ( )m m t e m qs dr ds qrT P and T L i i i iω= = −                                    (3.52) 
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 The damping ratios of the eigenvalues of the state equation can be solved by the 

approach shown in Chapter 2. Therefore, the optimization problem can be formulated to 

maximize the objective function:   

           { }i F= Max min(ξ ) , 0, 0 1, , ,i iif and i nσ ω< ≠ ∈                            (2.11) 

There are 16 control variables in Figure 3.4: Kii and Kpi of DFIG PI controller parameters, 

i=1,...,8 because there are eight PI gains in one DFIG model. 

Constraints: Kii and Kpi are in the range [Kiimin, Kiimax] and [Kpimin, Kpimax], respectively. 

Through optimization calculation of one special operating point, it hopes to find the 

optimal values of Kii and Kpi to make the damping ratios to be large enough so that the 

small signal stability and the transient performance of a DFIG system will be improved. 

In wind power integration systems, low-frequency oscillations are of more cause for 

concern. Therefore, the optimization could also be adjusted to increase the damping ratio 

of the special low-frequency eigenvalues. This will ensure that the low frequency 

oscillations (frequency in 0.5~1.5Hz) are well damped. In this dissertation, particle 

swarm optimization (PSO) will be the optimization method used to optimize the low-

frequency oscillation of a DFIG system; and it will be introduced in Chapter 4. 

3.6 Impact of Crow-bar Activation 

 In a DFIG system, in order to produce electrical power at constant voltage and 

frequency for the utility grid over a wide operating range from sub-synchronous to super-

synchronous speed, the power flow between the rotor circuit and the grid must be 

controlled, both in magnitude and in direction. When the stator voltage suddenly drops to 

a low value during a fault, high rotor currents can be induced correspondingly. Such 

over-current transients may occur when fluxes are forced to change suddenly. Even 
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though these currents only exist for a quite short period of time, they may damage or 

even destroy the RSC. In order to prevent the over-current transients, a crow-bar 

protection is activated; and the rotor winding is short-circuited through one small 

resistance. Under this condition, the machine no longer operates as a DFIG but works as 

a conventional induction machine which has no control over real power and reactive 

power. This is one of the simplest and the lowest cost techniques to improve DFIG 

transient performance, and it was analyzed in [18-20] and [89-91]. 

 During the transients of the crow-bar activation [18], a DFIG may operate 

anywhere from absorbing active power (motor) to supplying active power (generator), 

depending on the pre-disturbance speed of the rotor. Moreover, absorption of reactive 

power depends on the deviation from the synchronous speed. The simulation results in 

[18] show that the turbine is operating in steady state at sub-synchronous speed; then 

during the transients, the DFIG behaves as a decelerated induction motor and consumes a 

significant amount of P and Q. If the turbine is operating in steady state at super-

synchronous speed, the DFIG can still produce P and consumes Q during the transients. 

The effects of crow-bar impedance and the RSC restarting are explained below: 

• Effect of Crow-bar Impedance:  If the crow-bar impedance is very small or 

near zero, the rotor current will show a large oscillatory response during the 

transients of the crow-bar activation; and even if the RSC tries to resume its 

control many times, system voltage will oscillate to collapse. However, when 

a small impedance (such as 2Rr) is inserted, oscillations are sufficiently 

damped and the machine remains stable. It behaves like an over-speeding 

induction machine and consumes a large amount of Q when the crow-bar 
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protection is active.  Further increase in crow-bar impedance (such as 200Rr) 

would make rotor currents that are too low, which will lead to unnecessary 

electrical torque reduction and over-speeding of the turbine during the 

disturbance. In [18], the crow-bar impedance (from 10Rr to 100Rr) was found 

to result in a satisfactory performance. 

• Effect of the RSC Restarting:  During the transients of the crow-bar activation, the 

machine loses control of real and reactive power; and it may absorb a large 

amount of Ps and Qs. This does not have a good effect on grid safety, and the 

RSC should be restarted as soon as the rotor currents decrease to a safe value to 

prevent instability. However, restarting the RSC very soon, especially during the 

voltage sag, may cause the converter to trip again at the fault clearance due to 

significant voltage (hence flux) change, leading to high induced currents. 

Therefore, even though a fast restart of the RSC may result in increased power 

quality, serious analysis should be required in order to provide reliable operation. 

In [18], it is observed that the machine can result in a satisfactory performance if 

the RSC restarts after the fault clears 200ms later. 

 With the quick development of DRs, grid code requires higher requirements of 

the capability of LVRT. Therefore, many experts try to find new control algorithms or 

power electronic circuit designs to improve WPP’s LVRT capability, not through the 

crow-bar activation. The work mainly focuses on optimizing control parameters, new 

control algorithms for converters, advanced DC-link designs, adding ESS, adding PSS to 

WPP, etc. These are not the key points of this dissertation, so no more details will be 

discussed. 
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CHAPTER 4  
OPTIMIZATION OF WIND TURBINES 

WITH DOUBLY FED INDUCTION GENERATORS 
 

 Generally, mathematical optimization usually includes finding the best available 

values (maximum or minimum) of a given objective function for a defined domain with 

regard to a set of constraints, which is widely applied in every walk of life in modern 

society, especially in power systems. How to operate power systems to achieve high 

performance in a more stable, reliable, secure, efficient, and more economical manner 

under various constraints is referred to as power system optimization. It is mainly divided 

into optimal power flow (economic dispatch/resource schedule), optimal reactive power 

compensation, optimal generation planning/capacity/location, optimal distribution, 

optimal power systems stabilizer design, optimal electrical equipment design, etc. 

Essentially, power system optimization is still a mathematical optimization problem; 

however, the solution sometimes isn’t a strict mathematical solution because it has many 

practical constraints and requires an accurate, robust, and relatively short computational 

time. 

4.1 Introduction to Optimization of a Wind Turbine Generator  

 Generally, optimization of a wind turbine generator is included in optimal 

electrical equipment design; and it usually focuses on real power output, reactive power 

output, the transient performance/system stability, equipment safety, and fault ride-

through capability. Optimal real power output usually pays more attention to wind 

turbine blade pitch angle control, generator rotor speed control (according to wind turbine 

power speed characteristics for maximum power extraction), gearbox ratio, and converter 

http://en.wikipedia.org/wiki/Domain_of_a_function
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control. Equipment safety can be enhanced by reducing the over-current/over-voltage in 

converters or generator rotor winding and the mechanical torque fluctuation in the 

gearbox. The reactive power output/transient performance/system stability/fault ride-

through capability can be addressed through advancement of converters/circuits controls 

in order to realize the specific goals. This dissertation will focus on improving the 

transient performance/system stability via adaptive optimal PI gains control of DFIG 

converters based on small signal stability analysis. The process will be divided into two 

steps. The first step is optimization of PI gains values of DFIG converters, and it will be 

illustrated in this chapter. The second step is adaptive optimization control according to 

different operating points, and it will be explained in Chapter 5. 

 In Chapters 2 and 3, the optimization problem can be formulated to maximize the 

objective function:   

           { }i F= Max min(ξ ) , 0, 0 1, ,i iif and i nσ ω< ≠ ∈                             (2.11) 

( )i i ξ , ξ is the eigenvalue of system state equation ,  2.7 .i i ands ω= + sysΔx = A Δx

Control variables Kii and Kpi are DFIG PI gain controller parameters, i=1,...,8 (16 control 

variables). Equation 2.11 makes sure that the minimum damped eigenvalue is heavily 

damped in system small signal stability analysis.  Constraints of Kii and Kpi are in the 

range [Kiimin, Kiimax] and [Kpimin, Kpimax], respectively. 

 This is a typical multi-variable optimization problem, and there are no fast and 

easy solutions because of the large number of control variables. 

4.2 Classification of Mathematical Optimization Techniques 

 Generally, there are two different types of techniques for solving optimization 

problems.  
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1. Gradient techniques:  they can move toward convergence through iterative 

calculations according to one specific direction, such as gradient direction. 

The typical techniques [92] include Newton's method, Quasi-Newton methods, 

Gradient descent method, Reduced gradient method, etc. The main 

disadvantage of this type of techniques is that the computational time may be 

excessively high because it usually needs the second order derivatives when it 

attempts to determine the specific direction [93-94].  

2. Search techniques: they also attempt to search and determine the convergence 

point in a search space, even though the specific direction to the convergence 

point is unknown [95]. This type of technique has a lower computational time 

due to lack of a second order derivatives calculation when compared to the 

gradient techniques.  

More importantly, the gradient techniques have worse performance when the generating 

units practically have non-convex input-output characteristics due to prohibited operating 

zones, valve-point loadings, inequality constraints, non-continuous operating 

characteristics of some electrical equipment, and the huge dimensionality. The main 

classification of mathematical optimization techniques is shown in Figure 4.1. 

http://en.wikipedia.org/wiki/Iterative_methods
http://en.wikipedia.org/wiki/Iterative_methods
http://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
http://en.wikipedia.org/wiki/Quasi-Newton_method
http://en.wikipedia.org/wiki/Gradient_descent
http://en.wikipedia.org/wiki/Frank%E2%80%93Wolfe_algorithm
http://en.wikipedia.org/wiki/Search_space
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Figure 4.1.  Classification of mathematical optimization techniques. 

 The search techniques can be categorized into direct search (DS) and random 

search (RS). In the past 30 years, random search (RS) has been greatly developed to solve 

these problems. It is a family of numerical optimization method that does not require a 

gradient so it can be used on functions that are non-continuous or non-differentiable, as 

opposed to the DS method. RS is attributed to Rastrigin [96] who made an early 

presentation on RS along with basic mathematical analysis. RS works well with 

iteratively moving to better positions in the search space which are sampled from a 

hypersphere surrounding the current position. RS mainly includes tabu search (TS), 

genetic algorithm (GA), evolutionary programming (EP), evolutionary strategies (ES), 

particle swarm optimization (PSO), ant colony search (ACS), hybrid search methods, etc. 

GA, EP, ES, PSO, and ACS are all sub-fields of evolutionary computing. The first three 

methods belong to evolutionary algorithms, and the latter two methods belong to swarm 

intelligence. 
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 Tabu search, created by Fred W. Glover in 1986 [97] and formalized in 1989 [98-

99], is a local search method used for mathematical optimization. It uses a local or 

neighborhood search procedure to iteratively move from one potential solution to an 

improved solution in the neighborhood of the initial solution, until some stopping 

criterion has been satisfied. The disadvantages of TS are that it is easy to become stuck in 

poor-scoring areas or areas where many solutions are equal because of its local search 

procedures and the selection of the initial solution. The authors in [100] combined PSO 

and TS have created a novel hybrid TS-PSO algorithm which conducts both a global and 

a local search in each iterations, so that the probability of finding the optimal solution 

significantly increases. 

 Genetic algorithm became popular through the work of John Holland in the early 

1970s, particularly through his book, Adaptation in Natural and Artificial Systems (1975) 

[101]. The algorithm consists of search and optimization procedures that are based on the 

principle of natural genetics and natural selection. In GA [102], a population of strings 

(the genotype of the genome), which encode candidate solutions (called individuals) to an 

optimization problem, evolved toward better solutions. Traditionally, solutions are 

represented in binary form as strings of 0s and 1s, but other encodings are also possible. 

The evolution usually starts from a population of randomly generated individuals and 

happens in generations. In each generation, the fitness of every individual in the 

population is evaluated and multiple individuals are stochastically selected from the 

current population (based on their fitness) and then modified (recombined and possibly 

randomly mutated) to form a new population. The new population is then used in the next 

iteration of the algorithm. Commonly, the algorithm terminates when either a maximum 
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number of generations has been produced or a satisfactory fitness level has been reached 

for the population. Real-coded GA is mainly applied to solve real parameter optimization 

problems, and it is easier when compared to the binary-coded GA [103]. If the population 

size requirement is large for large strings, the computational complexity of the algorithm 

greatly increases [104]. 

 Evolution strategies were created in the early 1960s, further developed in the 

1970s, with later contributions by Ingo Rechenberg and Hans-Paul Schwefel and his co-

workers [105]. ES uses natural problem-dependent representations, primarily mutation 

and selection, as search operators and is designed particularly to solve problems in the 

real-value domain. It uses self-adaptation to adjust control parameters of the search. De-

randomization of self-adaptation has led to the contemporary Covariance Matrix 

Adaptation Evolution Strategy. As with evolutionary algorithms [106], the operators are 

applied in a loop. An iteration of the loop is called a generation. The sequence of 

generations is continued until a termination criterion is met. As far as real-valued search 

spaces are concerned, a mutation is normally performed by adding a normally distributed 

random value to each vector component. The step size or mutation strength is often 

governed by self-adaptation. Individual step sizes for each coordinate or correlations 

between coordinates are either governed by self-adaptation or by covariance matrix 

adaptation [107]. 

 Evolutionary programming is a mutation-based evolutionary algorithm applied to 

discrete search spaces. David Fogel extended the initial work of his father, Larry Fogel, 

for real-parameter optimization problems [108]. Real-parameter EP is actually similar in 

principle to ES. Normally distributed mutations are performed in both algorithms. Both 
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algorithms encode mutation strength or variance of the normal distribution for each 

decision variable. A self-adapting rule is used to update the mutation strengths. EP begins 

its search with a set of solutions initialized randomly in a given bounded space. 

Thereafter, EP is allowed to search anywhere in real space, similar to the real-parameter 

GAs. Each solution is evaluated to calculate its objective function value. EP [109] can be 

summarized into two major steps:  1) mutate the solutions in the current population and 2) 

select the next generation from the mutated and the current solutions. These two steps can 

be regarded as a population-based version of the classical generate-and-test method, 

where mutation is used to generate new solutions (offspring), and selection is used to test 

which of the newly generated solutions should survive to the next generation. One 

disadvantage of EP in solving some of the multimodal optimization problems is its slow 

convergence to a good, near optimum solution [110]. The generate-and-test formulation 

of EP indicates that mutation is a key search operator which generates new solutions from 

the current ones. The new EP with Cauchy mutation significantly outperforms the 

classical EP (CEP), and the new EP is denoted as “fast EP” (FEP) [111]. 

 Ant colony search was initially proposed by Marco Dorigo in 1992 in his Ph.D. 

thesis [112], and the goal of the first algorithm was to search for an optimal path in a 

graph based on the behavior of ants seeking a path between their colony and a source of 

food. The original idea has since diversified to solve a wider class of numerical problems; 

and as a result, several problems have emerged, drawing on various aspects of the 

behavior of ants. ACS is not commonly applied in optimization problems of power 

systems; therefore, it is not investigated in detail. GA, EP, ES, and PSO are commonly 
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used to solve optimization problems of power systems, especially in economic dispatch, 

optimal power systems stabilizer design, optimal electrical equipment design, etc.  

4.3 Introduction of Particle Swarm Optimization 

 Particle swarm optimization (PSO) is an evolutionary computing technique 

introduced by Kennedy, Eberhart, and Shi in 1995 [113]. The searching starts from a 

group of initial positions (particles or solutions) in the space in order to increase the 

possibility of finding the optimal solution. It usually includes four steps: initialization, 

evaluation, stopping criterion, and updating velocities and positions. Compared with 

other evolutionary algorithms, such as GA, TS, and EP, PSO possesses many attractive 

properties, such as memory and constructive cooperation, so it has more of a chance at 

finding a better solution and discovering a reasonable quality solution much faster [114-

116]. Moreover, PSO is difficult to degrade when the parameters being optimized are 

highly correlated, as reported in [26]. Therefore, in this dissertation, PSO will be used to 

solve the optimization problem in Equation 2.11. The searching procedure for PSO is as 

follows: 

Step 1:  Initialization 

 If there are P variable parameters (Kii, Kpi) of DFIG PI gain values to be 

considered to optimize (the upper and lower bounds, Xmax and Xmin, respectively), should 

be initially specified. In the searching space, L particles{ Xi(0), i=1, 2, …, L} can be 

generated randomly where Xi(0)={ Xi,j(0), j=1, 2, …, P} is the initial group of particles. 

The velocity for the position updating should also be initialized, and the bound of the 

velocity is: 

http://en.wikipedia.org/wiki/Evolutionary_Computation
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j,max j,min
j,max j,min j,max

x - x
v = , v = -v , j = 1,2,..., P.

N                                      (4.1) 

The upper and lower bounds of member j particles are Xj,max and Xj,min. The maximum 

and minimum velocities of member j particles are vj,max and vj,min. The interval of the 

dimension (normally between 10 and 20) is N. Then the initial velocities, v(0)={vi,j(0), 

i=1,2, …,L,  j=1, 2, …, P}, are generated randomly between [vj,min, vj,max]. 

Step 2:  Evaluation 

 Evaluate the fitness value (F) in Equation 2.11 to make sure that the minimum 

damped eigenvalue is heavily damped in system small signal stability analysis. 

 
*
i, j i, j( (x ) (x (t +1)) ), then :If F F<  

 
*
i, j i, j  ' x   : x (t +1)Update the particle s best known position = ;  

** *
j i, j( (x ) (x ) ),If F F then<  

 
** *
j i, j  '    x: xUpdate the swarm s best known position = . 

The best position which particle i has achieved so far, is *
,i jx which is called pbest; and  

**
jx is the best position obtained by any particle among the group. It is the potential 

solution to the problem and is called gbest. 

Step 3:  Stopping criterion 

 If the stopping criterion is met, then stop, otherwise continue to Step 4. Here, the 

stopping criteria may be the maximum number of iterations (50) or the fitness value 

larger than a specified positive value (0.4). 

Step 4:  Updating velocities and positions 
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 The velocity updating is given as: 

* **
i, j i, j 1 1 i, j i, j 2 2 j i, jv (t +1) = wv (t) + c r (x - x (t)) + c r (x - x (t))

                 (4.2) 

i, j j,max i, j j,maxif v (t +1) > v , v (t +1) = v  

i, j j,min i, j j,minif v (t +1) < v , v (t +1) = v                        

The position updating is given as:   

i, j i, j i, jx (t +1) = x (t) + v (t +1)                                              (4.3) 

i, j j,max i, j j,maxif x (t +1) > x , x (t +1) = x  

i, j j,min i, j j,minif x (t +1) < x , x (t +1) = x                        

where i=1,…,L (the number of particles in each group, we set L = 50), j=1,…,P (the 

Interval of the dimension, we set P=25); w is the weighting factor of velocity (normally 

between 0.5 and 1.5, we set w=0.9); c1 and c2 are the accelerating constants (normally 

between 1 and 3, we set c1=c2=2); and r1 and r2 are random numbers between 0 and 1. 

Go to Step 2. 
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CHAPTER 5  
OPTIMAL VALUES PREDICTION AND 

ARTIFICIAL NEURAL NETWORKS  
 

 In Chapter 4, a particle swarm optimization algorithm was discussed to solve for 

the optimal values of a DFIG’s PI gains. However, this approach requires significant 

computational time; and it couldn’t be directly used in on-line control. Second, these 

optimal parameter values only match one special operating point; and at another wind 

speed operating point, the initial optimal parameter values may be not optimal values in 

the new operating point. Therefore, a possible solution is to forecast these optimal values 

quickly based on historical data. So, the optimal values were calculated according to 

different wind speed operating points (from 8m/s to 14m/s); and a data set where one 

group of optimal values (PI gains of a DFIG) match one special wind speed value was 

obtained. Using this data set as historical data, an artificial neural network (ANN) can be 

constructed and trained. After that, this ANN can obtain the capacity to quickly predict 

the optimal values according to one wind speed. This dissertation realizes real-time 

optimization of a DFIG via training an ANN to forecast the optimal values and transfer 

much of the calculation off line.  

5.1 Introduction to Prediction 

Generally, a prediction or forecast is a statement about the way things will happen 

in the future, often, but not always, based on experience or knowledge. Although 

guaranteed information about the future is, in many cases, impossible, a prediction is 

necessary to allow plans to be made about possible development. This is widely used in 

many fields, including personal behavior, social events, business strategic planning, game 

http://en.wikipedia.org/wiki/Future
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theory, finance, fiction, statistics, science, etc. Even in power systems, load 

forecast/generation prediction plays a very important role.  

 In science, a prediction is a rigorous and quantitative statement about what will 

happen under specific conditions. For example, if an apple falls from a tree, it will be 

attracted towards the center of the earth by gravity with a specified and constant 

acceleration; and it cannot go toward the sky. The scientific method is built on testing 

statements that are logical consequences of scientific theories. This is done through 

repeatable experiments or observational studies.  

 In statistics, a prediction is a part of statistical inference. One particular approach 

to such inference is known as predictive inference, but the prediction can be undertaken 

within any of the several approaches to statistical inference. In many applications, if 

models can be expressed as transfer functions or in terms of state-space parameters, the 

smoothed, filtered, and predicted data estimates can be calculated [117]. 

 In this dissertation, the optimal values prediction is a problem of numerical 

prediction. Generally, the numerical prediction can be solved through regression analysis 

/regression equation/multiple regression, exponential smoothing, iterative reweighted 

least squares, adaptive load forecasting, stochastic time series models, fuzzy logic, neural 

networks, or knowledge-based expert systems. Various methods have their advantages, 

disadvantages, and limitations; but these details will not be discussed here because of 

space limitations. Using neural networks to make optimal values predictions will be 

discussed in later sections. 

http://en.wikipedia.org/wiki/Gravity
http://en.wikipedia.org/wiki/Acceleration
http://en.wikipedia.org/wiki/Scientific_method
http://en.wikipedia.org/wiki/Logical_consequence
http://en.wikipedia.org/wiki/Experiments
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Statistical_inference
http://en.wikipedia.org/wiki/Predictive_inference
http://en.wikipedia.org/wiki/Multiple_regression
http://en.wikipedia.org/wiki/Exponential_smoothing
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Neural_network
http://en.wikipedia.org/wiki/Neural_network
http://en.wikipedia.org/wiki/Knowledge-based_systems
http://en.wikipedia.org/wiki/Neural_network


79 

5.2 Introduction to Artificial Neural Networks 

 Artificial neural networks (ANN) or simulated neural networks (SNNs) are 

composed of interconnecting artificial neurons (programming constructs to model how 

the human brain performs a particular task). An ANN may either be used to gain an 

understanding of biological neural networks or to solve artificial intelligence problems 

without necessarily creating a model of a real biological system [118-120]. It was first 

proposed by Warren McCulloch, Walter Pitts in 1940 [121] and was greatly enhanced by 

Bernard Widrow, Ted Hoff, Teuvo Kohonen, David Rumelhart, etc., between the 1950s 

and 1990s. Recently, it has been widely used in space, electronics, insurance, 

transportation technologies, etc.  

 An ANN is an interconnected group of artificial neurons that use a mathematical 

or computational model for information processing based on a connective approach to 

computation. In most cases, an ANN is an adaptive system that changes its structure 

based on external or internal information that flows through the network. In more 

practical terms, an ANN is essentially a mathematical model of a nonlinear statistical data 

modeling tool or decision making tool. It is a powerful and simple algorithm to 

approximate nonlinear functions or to solve problems where the input-output relationship 

is neither well defined nor easily computable. After selection of a suitable model, comes 

training and learning the algorithm (historical data needed) and evaluation. The ANN 

provides the ability to quickly forecast the desired output when inputs are known. The 

normal procedure using an ANN is shown as [120]: 
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Step 1:  Model selection 

 Selection of an appropriate model usually depends on the data representation and 

the application. Overly complex models tend to lead to problems with learning. In feed-

forward networks, an ANN is often arranged as an input layer, one or more hidden layers, 

and an output layer, see Figure 5.1. 

Input layer Output layer

Hidden layer

 

Figure 5.1.  The construction of an ANN. 

Step 2:  Training and learning algorithm  

 According to the historical data, including inputs and desired outputs, the learning 

process adjusts the ANN constructs, the weights, and the biases by comparing the errors 

between the ANN-produced outputs and the desired outputs in each iteration until the 

stopping criteria are met. Here, the stopping criteria may be the maximum number of 

iterations (50) or when the errors are smaller than a specified positive value (0.001). 

Step 3:  Evaluation  

 An ANN is evaluated by using historical data.  If the model and learning 

algorithm are selected appropriately, the resulting ANN can be extremely robust; and it 

can accurately predict the output value in a wider input range. If the error between the 

ANN prediction and the historical data is significant, the ANN model needs be adjusted 

appropriately. 
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5.3 Construction of an ANN Based on DFIG Optimal PI Gain Values Prediction 

 Artificial neural network techniques are also widely used in wind power/wind 

speed forecasting and some control algorithms in power systems. Recently, they have 

also been used in the control of wind turbine generator systems. The authors in [122] 

present a fuzzy logic technique to compensate the PI controller signals of a variable speed 

wind generation system to feed a utility grid maintaining unity power factor at all 

conditions and supply to an autonomous load. The fuzzy logic could help optimize the 

efficiency and enhance the performance. An ANN is also used to design an interface 

neurons-controller for the coordinated reactive power control between a large wind farm 

(DFIG) and a static synchronous compensator in [123]. It effectively enhances the fault 

ride-through capability of the wind farm.  

 In this dissertation, the input data set (wind speed vw) and the output data set 

(optimal PI gain values Kii and Kpi) are from the calculation results of PSO based on 

small signal stability analysis in some operating points. PSO couldn’t be applied at every 

operating point, so it was necessary to pay attention to the ANN prediction. After 

sufficient data training and a learning process, an ANN could forecast the optimal PI gain 

parameters (Kii and Kpi) at any wind speed rather quickly, so that the real-time 

optimization will be realized. The ANN construction should be suitable and efficient so 

that it can predict the optimal values fast and accurately. A two-layer feed-forward ANN 

model in which the first layer has one input (wind speed vw) and ten tansig neurons, and 

the second layer has one purelin neuron (tansig and purelin are transfer functions of ANN) 

was commonly used in [124]. One ANN construction is designed to forecast only one 
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optimal parameter. The mathematical function of the ANN is given by Equation 5.1, and 

the construction is shown in Figure 5.2. 
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Figure 5.2.  The construction of ANN for DFIG optimal PI gain forecast. 

After sufficient historical data training, these constant parameters (IWi, Bli, LWi, and BL 

[125]) of the ANN can be easily obtained. After the construction has been identified, the 

ANN can quickly forecast the optimal PI parameter at any wind speed. 

5.4 Design of an ANN Controller 

 In control engineering, the PI (proportional-integral) controller is a basic feedback 

controller which drives the plant with a weighted sum of the error (the difference between 

the output (PV) and desired set point (SP)) and the integral of that value. The diagram of 

a PI controller is provided in Figure 5.3. The integral term in a PI controller makes the 
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steady-state error to be zero for a ramp input. However, the disadvantage is that it causes 

a phase lag such that the phase margin (a measure of stability) decreases. Therefore, the 

gain parameters (Ki and Kp) must be carefully selected and designed. 

 
Figure 5.3.  Diagram of PI controller block. 

 

 In a traditional PI controller of converters, Ki and Kp are constant. In this 

dissertation, an ANN controller was designed to dynamically adjust the gain value 

according to the wind speed so that PI gain parameters can always be optimum based on 

small signal stability analysis under various wind speed conditions. This requires 

additional time to train the ANN which can be done off line. After the construction has 

been accomplished, this ANN can very quickly forecast the optimal value; and it can be 

used in the real-time optimization online. There are a total of 16 parameters (Ki and Kp) 

in the DFIG converter resulting in 16 ANN controllers to be designed. The diagram of an 

ANN controller is shown in Figure 5.4. Equation 5.1 and the parameters (IWi, Bli, LWi, 

and BL) were used to build the ANN controller in an RSC PI control circuit in PSCAD™, 

as shown in Fig. 5.5. The ANN optimal DFIG model maintained optimal transient 

performance in all wind speed ranges via ANN controllers by dynamically adjusting PI 

gain parameters. In the simulation, the adjustment of ANN controllers did not reduce the 

robustness of the system. 
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Figure 5.4.  Diagram of an ANN controller block. 

 

Figure. 5.5.  The ANN controller for Kp1 and Ki1 in PSCAD. 

5.5 Summary 

 This chapter firstly introduces the basic concept-prediction which is widely 

applied in many fields, including power systems (load forecast/generation prediction). 

Next, attentions are focused on numerical prediction in statistics and science, and the 

standard methods used in numerical prediction (regression analysis /regression 

equation/multiple regression, exponential smoothing, iterative reweighted least-squares, 

adaptive load forecasting, stochastic time series models, fuzzy logic, neural networks and 

knowledge based expert systems) are mentioned. Subsequently, the introduction of 

artificial neural network is provided. After three basic steps (model selection, training and 

learning algorithm, and evaluation), an ANN can quickly and accurately solve the 
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problem of numerical prediction. Then, a two-layer feed-forward ANN construction is 

designed and trained to predict the DFIG’s optimal PI gain values. Finally, the traditional 

PI controller is introduced and an ANN controller is designed to dynamically adjust the 

PI gain value so that the PI gain parameters can always be optimum based on small signal 

stability analysis under various wind speed conditions. Therefore, the ANN controller in 

essence realizes the real-time optimization online because the large amount of 

computational time is handled in PSO optimization and ANN training which is done 

offline. 
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CHAPTER 6  
FLOWCHART AND SYSTEM STUDY 

 

 In Chapter 6, the flowchart of the ANN optimal DFIG model design procedure 

used in this dissertation will be discussed. Then, some system studies will be provided, 

such as the single machine (DFIG) connected to the infinite bus system and the multi-

machine system. After that, a voltage analysis of the DFIG in a distribution system will 

be discussed. 

6.1 Flowchart of the ANN Optimal DFIG Model Design 

 There are five main steps for the ANN optimal DFIG model design procedure in 

Figure 6.1.  

Select models and parameters

Start

End

Initialize DFIG PI controller parameters

Small signal stability analysis

PSO optimization 

ANN training and controller design

Step 1

Step 2

Step 3

Step 4

Step 5

 

Figure 6.1.  The five steps of the ANN optimal DFIG model design procedure. 

 

1. Select models and parameters:  Choose the appropriate test system, including 

the DFIG, and set the appropriate parameters for PSO taking into 
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consideration the accuracy required and the computation budget. Beginning 

with the most simple configuration, the single machine (DFIG) connected to 

the infinite bus system was selected. 

2. Initialize DFIG PI controller parameters:  Specify the DFIG’s PI gain 

parameters and select an appropriate operating point. In optimization theory, 

selecting the appropriate initial point will save a lot of time in locating the 

optimal point.  

3. Analyze small signal stability: The small signal stability analysis has been 

done for this test system with DFIGs and the objective function (Equation 

2.11) has been gotten.  

4. Optimize the PSO:  Use the PSO to search for the optimal PI gain parameters 

based on the objective function at different operating point to get the historical 

data.  

5. Train the ANN and design the controllers:  Train the ANN using the historical 

data and design the ANN controllers to adaptive control the PI gain.  The 

ANN optimal DFIG model will equivalently have real-time optimization 

capability, and it can always be in an optimal state based on small signal 

stability analysis whenever the wind speed changes. A detailed flowchart is 

provided in Figure 6.2.  
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Select DFIG system models and specify PSO parameters

Start

End

Specify variable parameters of DFIG PI controllers 
and initialize in the steady state in a special wind speed

Linearize in the steady state 
calculate eigenvalues and the objective function: F 

PSO search  optimal variable parameters 

    Increase the wind speed and save data set

If stopping criterion is met N

Y

If stopping criterion is met 

ANN training
Y

N

ANN controller design

 

Figure 6.2.  The flowchart for an ANN optimal DFIG model design procedure. 

6.2 System Study for the Single Machine (DFIG) Connected to the Infinite Bus 

System 

 In Figure 3.1, the single machine (DFIG) connected to the infinite bus system 

(SMIB) is shown. The parameters of the test system follow [82] and are shown in Table 

6.1, including power grid, wind turbine and DFIG. The PI gain parameters of the initial 

DFIG model are shown in Table 6.2. The lower bounds of PI gain parameters are shown 

in Table 6.3. The upper bounds of PI gain parameters are shown in Table 6.4. The main 

parameters of PSO algorithm are shown in Table 6.5. 
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Table 6.1.  The parameters of SMIB test system. 

Power Grid:  
            Voltage Level 34.5 kV 
            Frequency 60 Hz 
            Combined reactance of the transformer and transmission line xTL = 0.05 p.u. 
Wind Turbine:  
            Rated capacity 3.6 MW 
            Number of blades 3 
            Rotor diameter 104 m 
            Swept area 8495 2m  
            Inertia constant of the turbine Ht  = 4.29 s 
            Inertia constant of the generator Hg = 0.9s 
            Damping coefficient of the shaft between two masses Dtg = 1.5 
            Shaft stiffness Ktg = 296.7 
DFIG:  
            Rated capacity 3.6 MW 
            Rated stator voltage 4.16 kV 
            Stator resistor rs = 0.0079 p.u. 
            Rotor resistor rr = 0.025 p.u. 

Stator leakage inductance Lls = 0.07937 p.u. 
Rotor leakage inductance Llr = 0.40 p.u. 
mutual inductance Lm = 4.4 p.u. 
Combined reactance of the transformer and the GSC winding 
between the GSC and the stator winding 

xtg = 0.05 p.u. 

Capacitor C = 0.02 F 
Transformer:  
            Rated capacity 5.0 MW 
            Winding 1 voltage 4.16 kV 
            Winding 2 voltage 34.5 kV 
            Positive sequence leakage reactance 0.01 p.u. 

 

Table 6.2.  The PI gain parameters of the initial DFIG model. 

kp1 kp2 kp3 kp4 kp5 kp6 kp7 kp8 
0.2 0.7 1.0 2.0 0.5 1.5 0.05 1.5 
ki1 ki2 ki3 ki4 ki5 ki6 ki7 ki8 

1.00 0.333 10.00 25.00 1.00 161.29 20.0 161.29 
 

Table 6.3.  LB: the lower bounds of PI gain parameters. 

kp1 kp2 kp3 kp4 kp5 kp6 kp7 kp8 
0.02 0.1 0.1 0.0 0.1 0.1 0.002 0.1 
ki1 ki2 ki3 ki4 ki5 ki6 ki7 ki8 

0.005 0.1 5 5 0.2     50 5 50 
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Table 6.4.  UB: the upper bounds of PI gain parameters. 

kp1 kp2 kp3 kp4 kp5 kp6 kp7 kp8 
1 5 5 5     3 5 0.5 5 

ki1 ki2 ki3 ki4 ki5 ki6 ki7 ki8 
1 50 150    150 5 300 100 310 

 

Table 6.5.  The parameters of PSO algorithm. 

Number of particles L = 50 
Interval of the dimension P = 25 

Weighting factor of velocity w = 0.9 
Accelerating constants c1 = c2 = 2 

 

6.2.1 Eigenvalue Analysis and ANN Design of the SMIB System 
 Using the data of the SMIB system and the initial DFIG model, the small signal 

stability analysis is completed when the wind speed is 11m/s. The eigenvalues of the state 

matrix in Table 6.6 can be obtained. 

Table 6.6.  The eigenvalues of the initial DFIG model    Table 6.7.  The eigenvalues of the fix-optimal 

     of SMIB.                                                                           DFIG model of SMIB. 

 σ+jω ξ f   σ+jω ξ f 

λ1,2 -0.301±j0.49 0.52 0.078  λ1,2 -0.43±j0.503 0.65 0.080 

λ3,4 -0.196±j3.83 0.051 0.61  λ3,4 -0.74±j3.96 0.18 0.63 

λ5,6 -0.21±j6.91 0.030 1.10  λ5,6 -1.47±j6.85 0.21 1.09 

λ7,8 -12.07±j89.91 0.133 14.30  λ7,8 -31.47±j93.18 0.32 14.83 

λ9,10 -60.47±j393.2 0.152 62.58  λ9,10 -99.76±j396.4 0.24 63.08 

λ11 -8320 1 0  λ11 -9865 1 0 

λ12 -243.37 1 0  λ12 -162.78 1 0 

λ13 -65.22 1 0  λ13 -84.43 1 0 

λ14 -31.94 1 0  λ14 -57.59 1 0 

λ15 -15.85 1 0  λ15 -4.37 1 0 

λ16 -1.62 1 0  λ16 -0.38 1 0 
 

Then, the PSO can be used to obtain the optimal parameters of the DFIG PI gains at the 

fixed wind speed (11m/s). Therefore, the parameters in Table 6.8 can be used to set the PI 
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gains of the DFIG and obtain the fix-optimal DFIG model (the DFIG is only optimized at 

the fixed wind speed 11m/s) which will be used in the simulation. 

Table 6.8.  The PI gain parameters of the fix-optimal DFIG model of SMIB. 

kp1 kp2 kp3 kp4 kp5 kp6 kp7 kp8 
0.08 5.04 4.11 5.23 3.46 4.92 0.23 4.52 
ki1 ki2 ki3 ki4 ki5 ki6 ki7 ki8 

0.13 2.12 149.25 50.31 4.88 222.22 98.04 303.03 
 

After that, the eigenvalues of the fix-optimal DFIG model in Table 6.7 can be determined. 

Comparing the values of λ1~λ10 indicates that all eigenvalues are on the left-half phase 

plane, and the systems are both stable in a small signal sense. There are mainly three 

oscillation modes in λ1~λ10; and λ11~λ16 belong to a non-oscillation mode, which can be 

ignored.  Low frequency oscillations of λ1~λ6 are near 0.05~1.1Hz, and they cause 

mechanical mode associated with turbine and shaft dynamics. λ7~λ8 cause electric-

mechanical mode associated with rotor electrical (q-flux) and mechanical (speed) 

dynamics near 14.5Hz. λ9~λ10 cause electrical mode associated with stator dynamics near 

62Hz. The damping ratios of λ1,2, 7,8,9,10 are not very small, and the damping ratios of 

λ3,4,5,6 are very poor (0.051, 0.030) in the initial DFIG model so that the system may have 

a severe problem of low frequency oscillation. The eigenvalue frequencies of the fix-

optimal DFIG model slightly change while the eigenvalue damping ratios greatly 

increase, especially in 0.6Hz and 1.1Hz. They almost increase 4~7 times so that the 

damping ratios are big enough, low frequency oscillation will almost disappear in the 

simulation. In Figure 6.3, only the curves of eigenvalues (λ1, λ3, λ5, λ7, λ9) in the upper 

phase plane have been plotted in the phase plane. The eigenvalues of the fix-optimal 

DFIG model are farther away in the left-half phase plane than the initial DFIG model. 
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Therefore, the fix-optimal DFIG model will have a better stability than the initial DFIG 

model in small signal stability analysis. 

 

Figure 6.3.  The curves of eigenvalues of the initial and fix-optimal DFIG model of SMIB in phase plane. 

 Next, PSO will be used to obtain all of the optimal parameters of DFIG PI gains 

in different wind speeds (from 8m/s to 14m/s); and parts of the data are shown in Table 

6.9 because of space limitations. Dividing the different wind speeds with smaller 

intervals and using PSO will result in more data. After more data training (The 

mathematical function of the ANN is given by Equation 5.1, and the construction is 

shown in Figure 5.2.), the ANN will be able to more accurately predict the optimal 

parameters. In this dissertation, 50 data sets will be produced and used (input/wind speed-

output/optimal values of kp, ki) to train the ANNs and develop the ANN construction and 

parameters. There are 16 ANNs in one DFIG model because one ANN can only predict 

one value of kp or ki.  
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Table 6.9.  The optimal parameters of DFIG PI gains of SMIB in different wind speeds. 
 

 vw=8.5 vw=9.0 vw=9.5 vw=10 vw=10.5 vw=11 vw=11.5 vw=12.0 vw=12.5 vw=13 vw=13.5 vw=14 

kp1 0.0742 0.0764 0.0775 0.0791 0.0821 0.0808 0.0812 0.08542 0.0818 0.0884 0.0891 0.0923 

kp2 4.5632 4.3841 4.8653 4.4671 4.8624 5.0125 4.9983 5.3246 5.4768 5.2102 5.0964 4.8959 

kp3 4.2984 3.9263 3.6079 4.2156 4.3458 4.0374 3.8995 3.7621 4.2537 4.3124 4.1578 3.9958 

kp4 3.7842 4.545 5.3127 5.0481 5.5841 4.9865 4.8230 5.1568 5.3999 5.4652 5.2413 5.0235 

kp5 2.1697 2.4521 1.8829 2.6398 3.1504 3.0423 2.9608 2.7841 3.5462 3.2976 2.6588 2.8982 

kp6 6.0229 5.5304 5.2999 4.7823 5.1444 4.9242 4.9995 3.9813 4.7067 4.2118 5.0879 4.7207 

kp7 0.2718 0.2148 0.3125 0.2921 0.2141 0.2032 0.2274 0.3384 0.2102 0.3520 0.2695 0.2462 

kp8 4.1149 4.6118 5.1034 5.9362 5.9981 4.5025 4.9946 4.7646 4.9588 4.2866 4.1465 4.8921 

ki1 0.0811 0.1236 0.0678 0.1705 0.2141 0.1313 0.1948 0.1741 0.0631 0.0813 0.0766 0.1593 

ki2 2.5006 2.1058 1.8463 2.3120 2.4289 2.0028 2.1227 1.9627 2.3462 2.0502 2.2276 2.4791 

ki3 120.74 143.21 136.95 127.61 143.08 149.25 148.65 141.99 131.46 140.38 147.26 145.85 

ki4 36.5715 27.2735 41.6522 38.5624 44.2536 49.97 40.3426 48.2014 42.3562 39.4568 42.3934 46.1052 

ki5 3.9407 4.2995 3.7628 4.9257 4.3865 4.8843 4.9576 4.5521 4.9879 4.2996 4.0523 4.7803 

ki6 275.35 234.31 250.52 268.19 250.156 222.22 243.83 287.46 238.84 273.07 220.18 240.67 

ki7 96.313 89.98 91.98 87.467 93.79 98.04 88.16 97.48 87.854 83.72 94.976 88.02 

ki8 254.32 269.89 268.83 281.28 278.54 300.03 255.46 279.51 287.06 266.61 298.27 288.56 

 

Only the construction and parameters of ANN for kp1 are reproduced here because of 

space limitations. Using MATLAB® Neural Network Toolbox™ and the data set of kp1 in 

Table 6.9, it is not difficult to obtain the parameters (IWi, Bli, LWi, and BL) of this ANN: 

[ ]
[ ]

IW= 13.77;  -14.40;  -13.70;  -13.91;  13.92;  13.96;  13.99;  -14.07;  -13.94;  13.29 ;

BI= 14.23;  10.28;  8.27;  4.889;  2.074;  1.816;  4.681;  7.648;  10.965;  -14.694 ;

LW= ; 0.3932;  0.1374;[ 0.1358  0.09057;  0.08

--- 

--

---  -

[ ]
974;  0.2121;  0.00611;  -0.1805;  0.04522;  0.5262] ;

0.67B 1L= 123

T

 

The forecast result of test data showed output = 0.97*Target+0.0024. The construction of 

the ANN and the main parameters are shown in Figure 6.4. Data has been divided 

randomly. The Levenberg-Marquardt algorithm, also known as the damped least-squares 
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method, has been used in the training; and MEX has been used for more memory 

efficiency. The best validation performance index, Mean squared error (MSE), was 

2.6669e-07 in Figure 6.5. After sufficient historical data training, the data error between 

the PSO calculation and the ANN prediction was less than 0.0015, as shown in Figure 6.6. 

Therefore, the ANN has the capability to accurately predict the optimal parameter in a 

wide range of wind speeds.  

 

Figure 6.4.  The important data of the ANN. 

 

Figure 6.5.  The MSE of the ANN. 
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Figure 6.6.  Data error between the PSO calculation and the ANN forecast. 

Equation 5.1 and the parameters (IWi, Bli, LWi, and BL) were used to build the ANN 

controller in an RSC PI control circuit in PSCAD™, as shown in Fig. 5.5. The ANN 

optimal DFIG model maintained optimal transient performance in all wind speed ranges 

via ANN controllers by dynamically adjusting PI gain parameters. In the simulation, the 

adjustment of ANN controllers did not reduce the robustness of the system. The 

simulation results of these three models will be compared next. 

6.2.2 Simulation Analysis of the SMIB System 
 The SMIB shown in Figure 3.1 is simulated via PSCAD software to prove the 

transient performance improvement by comparing three models: 1) the initial DFIG 

model, 2) the fix-optimal DFIG model (only optimizing PI parameters at wind 

speed=11m/s based on small signal stability analysis), and 3) the ANN optimal DFIG 

model. All of the data comes from Chapter 6.2.1. The main differences among the three 

models are the PI controller parameters. The disturbances are given as follows:  

1. At t=0 second, the wind speed is 11m/s and GSC/RSC controllers are not 

working at first. 
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2. At t=0.001 second, GSC and RSC start. The purpose of this simulation is to 

prove the cut-in impact of DFIG. 

3. At t=4 seconds, the three-phase short circuit happens in the transmission line 

near the infinite bus and clears at t=4.7 second. In this fault, the voltage of a 

DFIG connected to the grid decreases to 0.5 p.u. in order to investigate the 

low voltage ride-through capability of DFIG. 

4. At t=10 second, the wind speed has a step change from 11m/s to 13m/s to 

check the wind step change impact of DFIG. 

The results of the three models’ rotor speed, real power, mechanical torque, connection 

point voltage, DC-link capacitor voltage, and rotor q axis current, are shown in Figure 

6.7-6.12, respectively. Comparing the results between the ANN optimal model and the 

initial model, it can be verified that the advantages of the ANN optimal model are 

numerous during the disturbances of cut-in, short circuit fault, and wind speed step 

change, especially considering Tm, Po, Iqr, and vdc. The low frequency oscillations are 

greatly reduced. The indices, such as eigenvalues, damping ratios, peak values, dynamic 

impacts, and settling times, as well as stability of the ANN optimal model, are improved 

significantly compared to the initial model. The peak value reductions are very useful to 

reduce WT stochastic output and the impact to the grid. It will be useful to protect 

electrical windings for overvoltage and overcurrent. The oscillation of Tm is greatly 

damped to improve the safety of WT’s gearbox which is the most easily damaged 

equipment. The oscillations of Iqr and vdc are reduced significantly, thus contributing to 

better safety of the rotor winding and DC-link capacitor. The connection point voltage of 
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the ANN optimal model recovers to 0.995p.u. two seconds faster than the initial model, 

and it is imperative to grid voltage stability.  

 Comparing the results between the fix-optimal model and the ANN optimal 

model, they almost have the same transient performances for the cut-in and short circuit 

fault disturbances. However, for the wind speed step change disturbance, which is the 

most common disturbance, the peak/trough values of ωr, Po, Tm, and Iqr of two models are 

varied from 1.181 to 1.109p.u., from -3.2 to -2.10MW, from 0.57 to 0.25p.u., and from -

0.67 to -0.38p.u., respectively. This means that the ANN optimal model holds an obvious 

advantage when the wind speeds change frequently and rapidly. This is particularly 

important since this disturbance may occur thousands of times in one day; and, therefore, 

improving the transient performance subject to speed changes is crucial. This is the most 

important contribution of this dissertation. 

 Although the value of the vdc peak of the ANN optimal model is 4.80KV during 

the cut-in disturbance, this value is still in an appropriate range, especially comparing it 

to the trough of the initial model where vdc decreases to 2.75KV. The reason may be that 

the ANN controllers are highly sensitive. However, this is not a noticeable drawback of 

the ANN optimal model. 
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Figure 6.7.  Simulation results of rotor speed ωr. 

 

Figure 6.8.  Simulation results of real power Po. 
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Figure 6.9.  Simulation results of mechanical torque Tm. 

 

Figure 6.10.  Simulation results of connection point voltage vs. 
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Figure 6.11.  Simulation results of DC-link capacitor voltage vdc. 

 

Figure 6.12.  Simulation results of rotor q axis current Iqr. 
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6.3 System Study for the Single Machine (DFIG) Connected to the Weak Grid 

(SMWG) 

 Short circuit ratio (SCR) is the measure of the generator stability characteristics. It 

is the ratio of field current required to produce rated no load armature voltage at rated 

frequency to armature current at the same frequency with armature terminals short 

circuited [130]. If the impacts of flux saturation and resistors are ignored and values are 

per unit, SCR≈1/xd which is the Thevenin equivalent reactance of the system. Usually, 

the larger the value of SCR is, the more stable the system is. The simplified equivalent 

circuit of DFIG connected an infinite bus is shown in Figure 6.13. 

Grid

xTL

xm

xlsxlr RsRr/s

Ur/s

 

Figure 6.13. The equivalent circuit of DFIG connected an infinite bus. 

If the rotor resistor is ignored, the Thevenin equivalent reactance of the system: 

xd = xTL+ xls+ xlr||xm. 

xls, xlr and xm are constant parameters of DFIG so that the transmission line impedance 

(xTL) will mainly decide the value of short circuit ratio.  

In Figure 3.1 and Chapter 6.2, the single machine (DFIG) is connected the infinite bus 

system with a transmission line xTL=0.05p.u. and the SCR is about 2.01. This means that 

the DFIG is connected to a strong grid. In this section, a DFIG connected to a weak grid 

(SMWG) will be discussed later. SCR is about 1.26 when xTL =0.35p.u. and the initial 

http://en.wikipedia.org/wiki/Electric_current
http://en.wikipedia.org/wiki/Voltage
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Short_circuit
http://en.wikipedia.org/wiki/Short_circuit
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DFIG system will lose the stability. After PSO, the fix-optimal DFIG model can keep the 

stability. It proves the important significance of the algorithm in this dissertation. 

6.3.1 Eigenvalue Analysis and ANN Design of the SMWG System 
 Using the data of Chapter 6.2 with the only changed set of xTL=0.15p.u. and the 

SCR is about 1.67, the same steps are performed as in Chapter 6.2 for a small signal 

stability analysis when the wind speed is 11m/s.  The eigenvalues of the state matrix are 

in Tables 6.10 and 6.11. 

Table 6.10.  The eigenvalues of the initial DFIG           Table 6.11.  The eigenvalues of the fix-optimal 

       model in SMWG.                                                            DFIG model in SMWG. 

 σ+jω ξ f   σ+jω ξ f 

λ1,2 -0.193±j0.515 0.35 0.082  λ1,2 -0.26±j0.572 0.41 0.091 

λ3,4 -0.103±j4.90 0.021 0.78  λ3,4 -0.54±j4.84 0.11 0.77 

λ5,6 -0.209±j7.73 0.027 1.23  λ5,6 -1.14±j8.04 0.14 1.28 

λ7,8 -10.13±j101.54 0.10 16.16  λ7,8 -21.38±j99.52 0.21 15.84 

λ9,10 -33.79±j442.6 0.077 70.45  λ9,10 -66.42±j437.9 0.15 69.71 

λ11 -5478 1 0  λ11 -6823 1 0 

λ12 -143.71 1 0  λ12 -165.82 1 0 

λ13 -45.34 1 0  λ13 -38.21 1 0 

λ14 -14.47 1 0  λ14 -21.38 1 0 

λ15 -3.46 1 0  λ15 -1.79 1 0 

λ16 -0.92 1 0  λ16 -0.42 1 0 
 

Then, the PSO can be used to obtain the PI gain parameters of the fix-optimal DFIG 

model in SMWG in Table 6.12.: 

Table 6.12.  The PI gain parameters of the fix-optimal DFIG model in SMWG. 

kp1 kp2 kp3 kp4 kp5 kp6 kp7 kp8 
0.092 5.358 3.821 4.587 3.241 4.495 0.214 4.837 

ki1 ki2 ki3 ki4 ki5 ki6 ki7 ki8 
0.108 1.644 135.48 46.48 5.062 214.60 89.76 295.61 
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 Comparing the results of DFIG in SMIB, all eigenvalues are still on the left-half 

phase plane; but they move closer to the right-half phase plane than the eigenvalues in the 

SMIB (as can be clearly seen in Figure 6.14). This means that the weak grid reduces the 

stability of the DFIG system. The eigenvalue frequencies of λ1~λ8 in Table 6.10 show a 

slight increase, but the frequency of λ9~λ10 almost increases 13.6% from 62Hz to 70Hz. 

This shows that the weak grid has a bigger impact on the electrical mode associated with 

stator dynamics. The eigenvalue damping ratios of λ1~λ8 reduce a little, but the damping 

ratios of λ9~λ10 almost reduce 50% from 0.152 to 0.077. This also indicates that the weak 

grid greatly increases the oscillation of the electrical mode. Comparing the values in 

Tables 6.10 and 6.11, the optimal parameters change the frequencies slightly; but the 

increase to the damping ratios is larger, especially λ3~λ6 (5 times) and λ9~λ10 (2 times). 

This shows that the optimal parameters can partly weaken the influence of the weak grid, 

but the weak grid obviously has a stronger impact on this system than the optimal 

parameters. If the grid is too weak (such as xTL is too large), the system would lose the 

stability. It will be found in next simulation Chapter 6.3.2. At here, the fix-optimal DFIG 

model in SMWG will have better stability than the initial DFIG model in SMWG. Next, 

the PSO will be promoted to obtain all of the optimal parameters of the DFIG PI gains in 

different wind speeds (from 8m/s to 14m/s). Part of the data is shown in Table 6.13 due 

to space limitations. Then, using the ANN training functions to get the ANN’s 

construction and parameters, the ANN controllers can be designed in SMWG. The 

simulation results of these different models will be presented next. 
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Figure 6.14.  The curves of eigenvalues of the initial and fix-optimal DFIG in SMWG in phase plane. 
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Table 6.13.  The optimal parameters of DFIG PI gains of SMWG in different wind speeds. 

 vw=8.5 vw=9.0 vw=9.5 vw=10 vw=10.5 vw=11 vw=11.5 vw=12.0 vw=12.5 vw=13 vw=13.5 vw=14 

kp1 0.0814 0.0857 0.0831 0.0819 0.0884 0.0921 0.0946 0.1035 0.1104 0.1153 0.1087 0.1045 

kp2 4.8721 4.7964 4.9321 4.9677 5.1863 5.3576 5.2864 5.4625 5.4398 5.2156 5.3087 5.1923 

kp3 4.4235 4.2078 4.0573 3.9756 4.0285 3.8208 3.9554 3.8032 3.9501 4.1046 4.0821 4.0498 

kp4 3.9422 3.9912 4.2312 4.0481 4.3262 4.5874 4.6243 4.8163 4.8642 5.0152 5.1485 5.0966 

kp5 2.7745 2.8756 2.5432 2.6987 2.9005 3.2412 3.1023 2.9841 3.0671 3.2768 3.1047 3.1538 

kp6 5.8594 5.7164 5.4658 5.1028 4.8563 4.4947 4.3469 4.1886 4.3476 4.6453 4.8271 4.9534 

kp7 0.2645 0.2436 0.2714 0.2833 0.2405 0.2136 0.2297 0.2547 0.2368 0.2687 0.2802 0.2763 

kp8 4.0546 4.2473 4.5386 4.8846 5.0321 4.8374 4.9235 5.1203 4.9554 4.8764 4.8009 4.9245 

ki1 0.0921 0.1056 0.1146 0.1215 0.1187 0.1083 0.1241 0.1315 0.1216 0.1410 0.1521 0.1452 

ki2 2.3312 2.0486 1.9564 1.8775 1.7366 1.6442 1.5670 1.8671 2.0679 2.1141 2.3252 2.2431 

ki3 112.45 128.74 146.31 120.45 130.22 135.48 146.12 139.63 132.40 142.81 146.23 139.33 

ki4 38.7541 32.3510 30.8952 35.4612 40.5462 46.48 48.1277 43.5562 40.3113 37.4665 35.7839 42.3301 

ki5 4.1221 4.3565 4.8125 4.9961 5.0974 5.0622 5.1044 4.9533 4.7885 4.6754 4.5023 4.7355 

ki6 245.56 230.23 240.62 266.77 243.35 214.60 207.36 225.86 233.49 255.17 244.38 235.88 

ki7 95.34 90.45 86.44 80.52 85.63 89.76 90.46 94.65 91.16 87.11 81.35 85.76 

ki8 246.77 274.91 290.37 298.18 282.14 295.61 280.93 275.28 270.34 268.42 278.87 290.36 

 

6.3.2 Simulation Analysis of the SMWG System 
 The SMWG system is the same as in Figure 3.1, while xTL is increased to 

represent the weak grid. PSCAD is used as the simulation tool to prove the transient 

performance improvement by comparing four models: the initial DFIG model (DFIG A) 

in SMIB, the initial DFIG model in SMWG, the fix-optimal DFIG model (DFIG B) in 

SMWG, and the ANN optimal DFIG model (DFIG C) in SMWG. All of the other data 

and the disturbances are the same as in Chapter 6.2.  

 In the simulation with the initial DFIG model, the weaker the grid is, the more 

system stability is weakened. When xTL increases from 0.05p.u. to 0.12p.u., the transient 
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performance of the initial DFIG model in SMWG changes slowly; when xTL increases 

from 0.12p.u. to 0.3p.u., the transient performance begins to accelerate change; when xTL 

increases from 0.3p.u. to 0.35p.u., the losing stability has been caught in Figure 6.15. The 

real power largely fluctuates because of wind speed change, and it doesn’t converge to 

the initial steady state. However, in the simulation with the ANN optimal DFIG model, 

the stability could be kept. The real power bears some serious oscillations because of 

faults and wind speed change, but it finally goes back to the steady state. This proves that 

the stability of the ANN optimal DFIG model has been improved more than the initial 

DFIG model. It also proves the conclusion reached in Chapter 6.3.1, that the optimal 

parameters can partially weaken the influence of the weak grid; but the weak grid 

obviously has a stronger impact on this system than the optimal parameters. Naturally, 

the actual power grid cannot be so weak; and many technologies exist to solve the 

problem. Therefore, the weak grid (xTL= 0.15p.u.) is selected to do more simulation at 

here. 
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Figure 6.15.  Simulation results of real power of DFIG in SMWG with different xTL. 

The results of the four models’ rotor speed, real power, mechanical torque, connection 

point voltage, DC-link capacitor voltage, and rotor q axis current, are shown in Figure 

6.16-6.21, respectively. Comparing the results between the initial DFIG model in SMIB 

and the initial DFIG model in SMWG, the transient performances are very close, such as 

ωr, Tm, Po.  The peak values of Iqr, vdc, and vs in the initial DFIG model in SMWG are a 

little bigger than the initial DFIG model in SMIB because of the weak grid. Comparing 

the results of the latter three models, it is easy to reach the same conclusion as in Chapter 

6.2. The fix-optimal DFIG and ANN optimal DFIG models perform better during the 

disturbances of cut-in, short circuit fault, and wind speed step change, especially 

considering Tm, Po, Iqr, and vdc. The low frequency oscillations and the peak value are 

greatly reduced. They demonstrate almost the same transient performance for the cut-in 
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and short circuit fault disturbances. In the wind speed step change disturbance, the 

peak/trough values of ωr, Po, Tm, and Iqr of two models are varied from 1.122 to 1.112p.u., 

from -3.3 to -2.78 MW, from 0.55 to 0.41p.u., and from -0.85 to -0.62p.u., respectively. 

This provides the ANN optimal model with an obvious advantage when the wind speeds 

change frequently and rapidly. Although the effect of these improvements is not as good 

as the effect in Chapter 6.2, it proves that the weak grid obviously has a stronger impact 

on this system than the optimal parameters. 

 

Figure 6.16.  Simulation results of rotor speed ωr in SMWG. 
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Figure 6.17.  Simulation results of real power Po in SMWG. 

 

Figure 6.18.  Simulation results of mechanical torque Tm in SMWG. 
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Figure 6.19.  Simulation results of connection point voltage vs in SMWG. 

 

Figure 6.20.  Simulation results of DC-link capacitor voltage vdc in SMWG. 
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Figure 6.21.  Simulation results of rotor q axis current Iqr in SMWG. 

6.4. System Study for the Multi-machine DFIG and Synchronous Generator 

Connected to the Grid System (MMS) 

 In Chapter 6.3, it already found that the ANN optimal DFIG has a better transient 

performance in SMIB and SMWG systems. In this chapter, the MMS performance and 

the impacts between DFIG and SG will be discussed. 

 In Chapter 2.3.1, it was discussed that Power system transient stability is 

noticeably degraded at high penetration levels due to the high reactive power demand of 

wind generators under some disturbances. Therefore, high penetration wind levels not 

only stop improving power system stability in comparison to low penetration levels, but 

can also decrease power systems stability in comparison to the case without WPPs under 

some disturbances. Therefore, calculating the penetration limit and margin is significantly 

important to system planning and operations. In here, fives cases have been planned to 
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provide more discussions. The multi-machine DFIG system (MMS) is shown in Figure 

6.22, and it is similar to the IEEE 9-bus 3 generators system. Power grid data is shown in 

Table 6.14. SG data is in Appendix I. 

• Case 1: G1 is the initial DFIG; G2, G3 are SGs; Penetration is about 30%. 

• Case 2: G1 is the ANN optimal DFIG; G2, G3 are SGs; Penetration is about 

30%. 

• Case 3: G1, G2 are the initial optimal DFIG; G3 is SG; Penetration is about 60% 

• Case 4: G1, G2 are the ANN optimal DFIG; G3 is SG; Penetration is about 

60%. 

• Case 5: G1, G2, G3 are all the ANN optimal DFIG; Penetration is about 90%. 

The disturbances are the same with Chapter 6.2.2 except for the fault disturbance. At t=4 

seconds, the three-phase short circuit happens in the PCC bus 1 and the short circuit 

resistance changes its value to make bus 1 voltage to satisfy grid code low voltage 

ride-through capability (LVRT) standard which is shown in Figure 2.5 Chapter 2.4. 

Table 6.14.  The parameters of MMS test system. 

Power Grid:  
Voltage level: Bus 1, 2, 3, 4, 5 34.5 kV 
Bus 6, 7, 8 4.16 kV 
Frequency 60 Hz 
Transmission line x12 = 0.05 p.u. 
 x14 = 0.05 p.u. 
 x25 = 0.05 p.u. 
 x34 = 0.05 p.u. 
 x35 = 0.05 p.u. 
Load: Load1, Load2 6MW+j0.6Mvar 
Wind Turbine, DFIG and transformer data are the same with Table 6.1.  
Synchronous generator(SG) data is in Appendix 1  
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Figure 6.22.  The multi-machine DFIG system (MMS). 
 

6.4.1 Eigenvalue Analysis of the MMS System 
 Using the same steps in Chapter 6.2, small signal stability analysis for MMS 

system has been conducted. With the limit of space, only the results of Case 3 and Case 4 

have been attached. The eigenvalues of the state matrix can be found in Tables 6.15 and 

6.16 (only conjugate complex roots of DFIGs are shown) when wind speed is 11m/s. 

 

 

 

 

 

 

 

 

 

http://dict.cnki.net/dict_result.aspx?searchword=%e5%85%b1%e8%bd%ad%e5%a4%8d%e6%a0%b9&tjType=sentence&style=&t=conjugate+complex+roots
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Table 6.15.  The eigenvalues of the initial DFIG         Table 6.16.  The eigenvalues of the ANN optimal  

model in MMS Case 3.                                                  DFIG model in MMS Case 4. 

 σ+jω ξ f   σ+jω ξ f 

λ1,2 -0.229±j0.42 0.479 0.067  λ1,2 -0.342±j0.45 0.61 0.071 

λ3,4 -0.101±j2.07 0.048 0.33  λ3,4 -0.81±j2.51 0.31 0.40 

λ5,6 -0.235±j6.81 0.034 1.08  λ5,6 -1.25±j6.62 0.19 1.05 

λ7,8 -13.50±j91.44 0.146 14.55  λ7,8 -28.43±j93.81 0.29 14.93 

λ9,10 -70.35±j387.2 0.178 61.62  λ9,10 -81.05±j384.8 0.21 61.24 

λ11,12 -0.219±j0.47 0.42 0.075  λ11,12 -0.276±j0.48 0.50 0.076 

λ13,14 -0.198±j4.19 0.047 0.67  λ13,14 -0.634±j4.46 0.14 0.71 

λ15,16 -0.29±j7.29 0.040 1.16  λ15,16 -1.30±j7.15 0.18 1.14 

λ17,18 -15.65±j93.36 0.165 14.86  λ17,18 -23.46±j95.26 0.24 15.15 

λ19,20 -57.32±j391.4 0.144 62.29  λ19,20 -86.49±j389.7 0.22 62.02 
 

 

Then, the PSO can be used to get the optimal parameters of the DFIG’s PI gain in Tables 

6.17 and 6.18: 

Table 6.17.  The PI gain parameters of the DFIG 1 in MMS Case 4. 

kp1 kp2 kp3 kp4 kp5 kp6 kp7 kp8 
0.082 5.18 3.95 5.19 3.11 4.78 0.20 4.71 

ki1 ki2 ki3 ki4 ki5 ki6 ki7 ki8 
0.114 1.87 140.52 48.15 5.05 228.67 91.72 296.26 

Table 6.18.  The PI gain parameters of the DFIG 2 in MMS Case 4. 

kp1 kp2 kp3 kp4 kp5 kp6 kp7 kp8 
0.095 5.45 3.70 4.75 3.31 4.64 0.22 4.65 

ki1 ki2 ki3 ki4 ki5 ki6 ki7 ki8 
0.127 1.74 145.16 47.35 5.52 221.75 94.48 292.51 

 

 Comparing the data in Tables 6.15 and 6.16, it can be seen that the eigenvalue 

frequencies had only a small fluctuation, but the eigenvalue damping ratios had an 

obvious increase in the fix-optimal DFIG model in MMS, especially λ3,4,5,6,13,14,15,16. They 

almost increased about 3~5 times. In Figure 6.23, it is clear that the eigenvalues of the 

ANN optimal DFIG model in MMS moved further to the left-half phase plane than the 
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initial DFIG model in MMS. This means that the former has a better stability. This will 

be proven in next simulation part. 

 With the same method in Chapter 6.2, the use of small signal stability analysis 

will be promoted to get all of the optimal parameters of DFIG 1 and DFIG 2 PI gains in 

different wind speeds (from 8m/s to 14m/s). The data is shown in Table 6.19 and 6.20. 

Using the same ANN training method as in Chapter 6.2, the parameters and construction 

values for the ANNs can be obtained. As they are similar to the values in Chapter 6.2, no 

detail is provided here because of space limitations. Next, the simulation results of Case 

1~5 will be compared. 

 

Figure 6.23.  The curves of eigenvalues of the initial and optimal DFIGs in MMS in the phase plane. 
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Table 6.19.  The optimal parameters of DFIG 1 PI gains in Case 4 for different wind speeds. 

 vw=8.5 vw=9.0 vw=9.5 vw=10 vw=10.5 vw=11 vw=11.5 vw=12.0 vw=12.5 vw=13 vw=13.5 vw=14 

kp1 0.0714 0.0762 0.0783 0.0815 0.0834 0.0821 0.0838 0.0859 0.0841 0.0879 0.0878 0.0913 

kp2 4.3567 4.6541 4.8764 4.9257 5.0663 5.1231 5.2123 5.3164 5.4782 5.3621 5.1688 5.3518 

kp3 4.0966 3.8675 3.5543 3.9016 4.0522 3.9663 3.8755 3.7041 4.1683 4.2251 4.1244 4.0964 

kp4 3.9686 4.6554 5.5313 5.1987 5.5177 5.1932 4.9433 5.1246 5.2776 5.3217 5.1946 5.1575 

kp5 2.2244 2.6131 2.4710 2.7812 3.0955 3.1641 3.2158 3.1646 3.4718 3.2637 3.0813 3.1776 

kp6 5.8161 5.5432 5.3882 4.8844 4.9756 4.7284 4.6737 4.5874 4.9133 4.6349 4.8471 4.8122 

kp7 0.2122 0.1967 0.2425 0.2474 0.2214 0.2177 0.2311 0.2457 0.2377 0.2465 0.2635 0.2462 

kp8 4.3775 4.8225 5.1241 5.3326 5.0518 4.8883 4.7463 4.7955 4.8537 4.6922 4.5633 4.7508 

ki1 0.0823 0.1033 0.0899 0.1158 0.1435 0.1272 0.1222 0.1451 0.1244 0.1335 0.1301 0.1452 

ki2 2.0860 2.1078 1.8242 1.6807 1.8943 1.8272 2.0743 1.9725 2.1261 2.3502 2.6671 2.5224 

ki3 126.37 135.86 143.42 147.75 139.81 140.96 144.25 136.35 131.65 144.23 146.66 144.56 

ki4 33.2456 31.4178 40.5221 44.4615 49.6675 47.4535 44.2612 42.1910 40.9874 42.9821 47.1661 45.4531 

ki5 4.2836 4.6186 4.8681 5.1267 5.3145 5.1757 5.0961 4.8932 4.7541 4.6836 4.6250 4.7468 

ki6 254.43 235.54 227.87 247.45 243.53 238.44 234.66 250.71 243.85 255.51 249.62 242.25 

ki7 92.723 84.437 86.120 85.663 89.645 93.237 90.532 95.944 89.343 85.611 89.854 88.264 

ki8 264.46 286.63 297.74 303.32 300.86 297.72 284.43 278.66 281.57 293.54 296.63 301.45 
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Table 6.20.  The optimal parameters of DFIG 2 PI gains in case 4 for different wind speeds. 

 vw=8.5 vw=9.0 vw=9.5 vw=10 vw=10.5 vw=11 vw=11.5 vw=12.0 vw=12.5 vw=13 vw=13.5 vw=14 

kp1 0.0724 0.0753 0.0795 0.0826 0.0866 0.0848 0.0833 0.0861 0.0843 0.0877 0.0881 0.0915 

kp2 4.6756 4.5524 4.8964 4.9577 5.1663 5.2213 5.2771 5.3564 5.5882 5.3221 5.1568 5.0518 

kp3 4.1566 3.8896 3.6543 3.7896 4.0322 3.9266 3.8055 3.7254 4.0883 4.2425 4.1344 4.0546 

kp4 3.9866 4.5554 5.3531 5.1887 5.5477 5.2532 4.9833 5.1046 5.2977 5.3717 5.1846 5.0775 

kp5 2.2544 2.6511 2.2910 2.8812 3.1055 3.1441 3.2058 3.0866 3.4478 3.2563 2.9813 3.0776 

kp6 5.7861 5.4454 5.1882 4.6844 4.9557 4.7984 4.6537 4.5474 4.8533 4.6034 4.8671 4.8081 

kp7 0.2152 0.1867 0.2525 0.2744 0.2314 0.2077 0.1931 0.2557 0.2277 0.2546 0.2663 0.2578 

kp8 4.3577 4.8925 5.1541 5.4326 5.0818 4.6883 4.7463 4.7955 4.8837 4.6422 4.5063 4.8008 

ki1 0.0881 0.1133 0.0802 0.1358 0.1635 0.1147 0.1322 0.1551 0.1044 0.1235 0.1366 0.1485 

ki2 2.1060 2.0178 1.8042 1.7207 1.9043 1.8472 2.0343 1.9272 2.2261 2.4502 2.6266 2.5112 

ki3 125.44 133.68 141.42 147.22 138.81 140.66 145.25 138.27 129.65 144.23 148.63 143.85 

ki4 34.3324 32.3541 43.5221 46.4415 49.1166 48.35 45.2612 42.4110 40.2474 43.6821 48.2661 45.2331 

ki5 4.2436 4.5386 4.9681 5.2767 5.0345 5.1557 5.0661 4.8532 4.7345 4.5636 4.6050 4.7235 

ki6 255.24 237.54 225.77 250.45 240.53 230.44 235.66 256.37 240.85 265.51 248.62 238.52 

ki7 91.472 85.453 82.612 85.663 88.865 92.37 90.232 95.442 90.543 84.611 89.554 88.524 

ki8 265.74 285.63 297.85 302.32 305.86 298.42 286.43 272.66 280.85 291.54 297.46 301.87 

 

6.4.2. Simulation Analysis of the MMS System 
 The MMS system is shown in Figure 6.22. PSCAD is used as the simulation tool 

to prove the transient performance improvement by comparing Case 1~5:  

       The simulation results of case 1~5 DFIG G1’s real power, mechanical torque, 

connection point voltage, DC-link capacitor voltage, and rotor q axis current, are shown 

in Figure 6.24-6.28, respectively. Comparing the results, the transient performances of 

the ANN optimal DFIG model are obviously much better than the initial DFIG model as 

it has already been proved in Chapter 6.2.2. When the fault happens at t=4 seconds 

according to grid code, the connection point voltage Vs even drops to 0.05pu. This causes 
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some serious low frequency oscillations and the DC-link capacitor voltage Vdc almost 

drops to 0 in case 1 and case 3. Case 2 and 4 obviously have the capability to greatly 

reduce these low frequency oscillations. Moreover, they have some better transient 

performances when the wind speed changes. Therefore, it will focus on the discussion of 

cases 2, 4, and 5 in this part. 

        Cases 2, 4 and 5 present low penetration system, medium penetration system, and 

high penetration system, separately. It briefly discussed the different impacts of power 

systems stability of FSIG, DFIG and PMSG in Chapter 2.3.1. With the simulation results, 

it could compare the different impacts of DFIG and SG at different penetration conditions. 

         In case 5, there are only DFIGs, not any SGs. It is easy to find that it has a better 

performance in the wind speed change disturbance than cases 2 and 4 because DFIG 

holds a better decoupled effects than SG, but it bears some worse low frequency 

oscillations in the fault disturbance. Part of reasons may be that case 5 doesn’t have any 

SGs so that DFIGs can’t generate enough reactive power.  

In the starting state, DFIG 1 of cases 2, 4, and 5 almost has the same performance, 

even though case 5 has a slight advantage in some peak/trough values.  

In the fault state, the values of Po, Tm, Vdc and Iqr in cases 2 and 4 successfully 

wipe out the low frequency oscillations and this is the most advantage, comparing with 

case 5. With the increase of penetration, Vdc trough value significantly drops from 

3.26Kv, 2.31Kv to 0.10Kv and Tm has a serious low frequency oscillation between 

0.15pu (peak) and -1.14pu (tough). It is very bad for gearbox’s safety. The main 

differences of case 2 and 4 are Vdc trough value (3.26Kv/2.31Kv) and Po trough value 



119 

(1.94MW/0.67MW). Case 2 may have a little better performance in fault state than case 4, 

much better than case 5. 

In the wind speed change state, case 5 obviously have a better performance than 

case 2 and 4. The peak/trough values of Po, Tm, and Iqr of case 5 and case 4 are 

4.24MW/1.37MW, -0.56p.u./-1.28p.u., 1.08p.u./0.37p.u., 4.69MW/-2.52MW, 0.39p.u./-

1.29p.u., 0.96p.u./-0.51p.u., respectively. Obviously, case 5 greatly reduces the gaps of 

peak/trough of Po, Tm, and Iqr so that it is very good for generators safety and system 

stability. Vs of case 5 recovers more quickly than case 4, even though it has a small 

oscillation. The only drawback of case 5 is that Vdc recovers from very low voltage so 

that it charges to a high voltage about 5.68Kv. Case 4 and case 5 have almost the same 

performance in this state. 

 

Figure 6.24.  Simulation results of real power Po in MMS. 
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Figure 6.25.  Simulation results of mechanical torque Tm in MMS. 

 

Figure 6.26.  Simulation results of connection point voltage vs in MMS. 
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Figure 6.27.  Simulation results of DC-link capacitor voltage vdc in MMS. 

 

Figure 6.28.  Simulation results of rotor q axis current Iqr in MMS. 
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6.5 System Study for DFIG in Distribution Systems 

      With the increase of wind power penetration in distribution systems, voltage 

fluctuation, flicker and harmonics in distribution systems become a hot topic. In general, 

reactive power compensations are very important to wind power in distribution systems. 

Lack of sufficient reactive power may result in voltages typically lower (0.05-0.1p.u.) 

than normal voltages in [9]. However, the worse disturbances in system operation occur 

during the cut-in and cut-off of wind power generators from the grid. In some 

autonomous power systems, the frequency and voltage level would decrease more than 

1Hz and more than 0.05-0.1pu [126], respectively. This dissertation will simply discuss 

the voltage analysis of a moderate size system, i.e., the IEEE 34-bus test system [127], 

which includes WT-DFIGs. Simulation studies are carried out in DIgSILENT software 

[128] to investigate effect of WT-DFIGs on the steady-state and transient behavior of the 

distribution systems. 

6.5.1 The Introduction of DFIG in IEEE 34-bus Distribution Test System 
      The IEEE 34-bus test system shown in Figure 6.29 is a typical radial-distribution 

system and the simulation system is constructed with DIgSILENT using detailed data in 

[127] and Appendix II.  
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Figure 6.29.  The IEEE 34-bus test system. 

The system has two auto-regulators which regulate the voltage in ±0.05p.u. range and one 

auto-transformer which controls the voltage in ±0.05p.u. range. They are set to 

automatic-tap adjustment for the basic case position because their initial tap position has 

a significant role on the system voltage regulation. The distributed loads are handled as 

split loads with half on each bus. In the test system, bus 800 is connected to the grid and 

buses 890 and 844 are the load centers. The voltage at bus 890 is usually low because the 

line between bus 888 and 890 is relatively long. Several shunt capacitors are added at 

buses 844 and 848 to totally compensate for reactive power 0.75MVar. The two 

regulators work together to control bus 852 voltage and it plays an essential role in 

system voltage control. In light loading conditions given by [127], the total unbalanced 

load is 1.769MW and 1.044MVar; the grid loss is 0.27MW; the voltages at buses 852 and 

890 are 0.965p.u. and 0.921p.u., respectively. Other bus voltages are in the range of 0.95-

1.05p.u. Bus 890 is apparently the weakest bus. 
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6.5.2 Basic case study for one single DFIG connected to the test system 
      The average bus voltage 𝑉𝑉�  is usually used to evaluate the system voltage profile [129].  

However, it does not reasonably reflect the system voltage unbalanced factor. A new 

index (system unbalanced voltage variance) is proposed to evaluate system voltage as 

follows:  

1 3

N
iA iB iC

i

V V VV
N=

+ +
=∑                                                      (6.1) 

2 2 2
2

1

( 1.05) ( 1.05) ( 1.05)
3

N
iA iB iC

i

V V Vs
N=

− + − + −
=∑                           (6.2) 

Where ViA, Vib, ViC are the 3-phase voltages at bus i; N is the system bus number; 𝑉𝑉�  is the 

system average voltage; 𝑠𝑠2 is the system unbalanced voltage variance (using 1.05 to 

replace 𝑉𝑉�  for a higher accuracy). 

      If a constant load (1.0MW, 0.1MVar) is added at the terminal bus 840 and reactive 

power compensation (0.30MVar) is added at bus 890, the regulator 2 and transformer 

reach the maximum tap position. Bus 852 voltage is 0.909p.u. and the grid loss is 

0.71MW. If the tap of the regulator 1 is manually increased, the three-phase voltage at 

bus 890 changes and becomes more unbalanced. Therefore, this unbalanced heavy 

loading condition is selected as the base case for the rest simulation studies. The single 

1.5MW DFIG (DIgSILENT provided) is connected at various bus locations to evaluate 

which location provides the most system-voltage improvement and the most reduction in 

grid loss. In order to easily analyze the difference between the average bus voltage and 

the system unbalanced voltage variance, an index (1.05-s) is selected. The result is shown 

in Figure 6.30-6.31. 
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Figure 6.30.  Average bus voltage and 1.05-s value when a 1.5MW DFIG placed at different locations. 

 

Figure 6.31.  Grid loss when a 1.5MW DFIG placed at different locations. 

      With the DFIG’s location closer to the load center (buses 840, 844, and 890), the 

voltage profile is improved more and the grid losses greatly reduced. The average bus 
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voltage and 1.05-s value basically have the same trend. However, the latter has a higher 

accuracy to evaluate the unbalanced system voltage improvement, especially where 

DFIG is connected at buses 840 and 888.  The average bus voltage index could not reflect 

the degree of voltage unbalance. At bus 840, 1.05-s value reaches the maximum value 

while at buses 834, 842, 844, 860, 836, 840, 862, and 838, the grid losses are in the same 

minimum level. Therefore, the optimal location is determined to be bus 840. 

      The transformer adjusts voltage range to increase from ±0.05p.u. to ±0.1p.u. when 

DFIG is connected at bus 890 because it is a low-voltage bus (4.16KV), otherwise more 

voltage (0.13p.u.) drops in the long low-voltage line between buses 890 and 888. If more 

power transfers through the low-voltage line to the grid, the grid loss increases to 

0.30MW. If the WT is large, it is better to install it at a high voltage transmission line and 

closer to the load center. However, if the load centers are far away from each other or the 

loads are more distributed, the optimal location should be carefully calculated by a 

formulating multi-objective optimization:  

( )min : (1 ) ,s s i s lossip k s p P i WT at different bus cases+ − ∈                               

(6.3) 
Where: 

si is the standard deviation corresponding to system unbalanced voltage variance defined 

in Equation 6.2. 

ks is a conversion factor in (MW/Volts) to adjust them on the same number class. 

Plossi is the grid power loss associated with the case si.  

Ps is the weight associated with the case si; 1-Ps is the weight of Plossi. 

Equation 6.3 is used to find the optimal location for installing WT, simultaneously 

considering the system unbalanced voltage variation and the grid power loss. 
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6.5.3 Comparison of Steady-state and Transient Impacts between a Single Large-
DFIG System and a Multiple Small-DFIG System 
      Two smaller DFIGs (0.75MW) are added at buses 832 and 836 to compare the 

steady-state impacts with a single large DFIG (1.5MW) at different buses in the system. 

The results are shown in Figure 6.32. 

 

Figure 6.32.  Comparison of grid loss and 1.05-s value between  
a single large-DFIG system and a multiple small-DFIG system. 

 
As shown, the multiple small-DFIG system could provide higher 1.05-s value and better 

system voltage improvement. Its grid loss is almost the same as the optimal grid loss of 

the single large-DFIG system. Moreover, the optimal locations of the multiple small-

DFIG system could be calculated and its grid loss would be less. Therefore, the multiple 

small-DFIG system is more suitable than the single large-DFIG system. 

      Short circuits, cutting load (including constant Z load and motors load), and DFIG cut-

off or cut-in are the major disturbances in distribution systems. The load-center voltage 
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waveforms are determined when subjected to these disturbances. However, the size of 

some dynamic models is adjusted to provide a stable convergence. 

      Case C1: the single DFIG (0.75MW) is placed at bus 856; reactive power 

compensation is adjusted to 0.60MVar at bus 890 and the load at bus 890 is adjusted to 

0.25 MW motor. These following disturbances occur in sequence:  

At t=0.18s, a 3-phase short circuit (using fault impedance Z=15+j40Ohm to control the 

voltage of bus 840 at 0.5p.u. in the fault) at bus 862; At t=0.28s, clear short circuit; At 

t=0.35s, cut the 1MW load (at bus 840); At t=0.45s, recover the load; At t=0.65s, cut the 

motor; At t=0.8s, cut-in the motor; At t=1s, cut-off DFIG; At t=1.18s, cut-in DFIG.  

The results are shown in Figure 6.33-6.34. 

 

Figure 6.33.  The voltages of buses 840 and 890 for case C1. 
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Figure 6.34.  The voltages of buses 844 and 900 (connected DFIG and bus 856) for case C1. 
 

From Figure 6.33-6.34 which are shown, the load-center voltage fluctuates about 0.1 p.u. 

because of the cut-off of the large load which affects almost all bus voltages. The 

dynamic impacts of cut-in DFIG and the motor are larger than cut-off and the motor has a 

significant role on the local bus voltage. Therefore, the low voltage bus 890 is the most 

fluctuant, and considered as a weak bus. 

      Case C2: Based on the condition of case C1, these following disturbances occur 

simultaneously: At t=0.18s, 3-phase short circuit at bus 862; At t=0.2s, cut the motor; At 

t=0.25s, cut-off DFIG; At t=0.38s, clear short circuit; At t=0.43s, cut-in DFIG; At t=0.5s, 

cut-in the motor; At t=1.4s, cut the large load; At t=1.6s, recover the load. The results are 

shown in Figure 6.35-6.36. 
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Figure 6.35.  The voltages of buses 840 and 890 for case C2. 
 

 

Figure 6.36.  The voltages of buses 844 and 900 for case C2. 
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From the results shown in Figure 6.35-6.36, the voltage of bus 890 connected to the 

motor is more affected and it takes more time (0.5s) to return to its initial state when 

these disturbances simultaneously occur. 

      Case C3: Based on the condition of case C1, two DFIGs (0.35MW) are added at 

buses 856 and 840 to replace the initial DFIG; the load at 840 is adjusted to 0.7MW; the 

disturbances separately occur and are the same as the disturbances in case C1. The results 

are shown in Figure 6.37-6.38. By comparing Figure 6.37-6.38 with Figure 6.33-6.34, the 

multiple small-DFIG system bores a less dynamic impact and it takes less time to return 

to its initial state. Furthermore, the system voltage maintains in the normal range from 

0.95p.u. to 1.05p.u. for longer period of time. 

 

Figure 6.37.  The voltages of buses 840 and 890 for case C3. 
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Figure 6.38.  The voltages of buses 844 and 900 for case C3. 

      Case C4: Based on the condition of case C2, two DFIG (0.35 MW) are added at buses 

856 and 840 to replace the initial DFIG and these disturbances simultaneously occur and 

are the same as the disturbances in case C2. The results are shown in Figure 6.39-6.40. 

 
Figure 6.39.  The voltages of buses 840 and 890 for case C4. 



133 

 

 
Figure 6.40.  The voltages of buses 844 and 900 for case C4. 

 
Considering the difference between Figure 6.39-6.40 with Figure 6.35-6.36, the multiple 

small-DFIG system has a better stability performance. The voltage fluctuation is in a 

smaller range and the boundary values are more suitable.  

6.5.4 Summary of DFIG in Distribution System 
      This dissertation has investigated the effects of WT-DFIGs on voltage stability and 

grid loss of distributions systems under unbalanced load conditions. A new index (system 

unbalanced voltage variance) has been proposed to evaluate system unbalanced voltage, 

which is more reasonable and more accurate than that normally using system average 

voltage. A new multi-objective optimization function has been provided to calculate the 

optimal location simultaneously considering the voltage profile and grid loss. Simulations 

studies have been carried out in DIgSILENT software to examine the impacts of WT-

DFIGs on the steady-state and dynamic behavior in the IEEE 34-bus test system under 
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unbalanced heavy loading conditions. The optimal location of the single large DFIG-WT 

in the test system has been determined. Through the comparison between the single large-

DFIG system and the multiple small-DFIG system, the latter could provide higher system 

voltage advancement and almost the same grid loss reduction as the former. In dynamic 

simulation, different disturbances, short circuits, cutting load (including constant Z load 

and motors), cut-off and cut-in DFIG, have been applied separately or simultaneously. 

The load-center voltages fluctuate about 0.1p.u. in this distribution system because of 

cutting the large load or cut-in DFIG and they affect almost all bus voltages. The 

dynamic impact of cut-in DFIG is apparently more significant than cut-off DFIG. The 

motor has a significant role on the local bus voltage and is very sensitive to disturbances. 

The soft-start motor and DFIG technology should be paid more attention in distribution 

systems. The multiple small-DFIG system bores a less dynamic impact and needs less 

time to return its initial state than the single large-DFIG system. Moreover, the former 

voltage fluctuation is in a smaller range and the boundary values are more suitable and 

the system voltage maintains in the normal range from 0.95p.u. to 1.05p.u. for longer 

time. Therefore, the multiple small-DFIG system has a better stability performance than 

the single large-DFIG system. 

6.6 Summary 

      This chapter firstly introduces the flowchart of the ANN optimal DFIG model design 

procedure. It mainly includes five steps: select the appropriate test system/DFIG model/ 

PSO parameters, specify the DFIG’s PI parameters, small signal stability analysis, PSO, 

ANN training and controllers design. Next, attentions are focused on eigenvalues analysis 

and simulations of the SMIB system for three types of DFIG model. The results show 
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that the ANN optimal DFIG model greatly reduces low frequency oscillations and 

peak/trough value of Tm, Po, Iqr, and vdc in the transient performances of disturbances so 

that it has a better stability. Subsequently, eigenvalues analysis and simulations are 

applied in the SMWG system for three types of DFIG model. The results prove the ANN 

optimal model holds an obvious advantage even though the effect of improvements is not 

as good as the effect in SMIB. The reason is that the optimal parameters can partly 

weaken the influence of the weak grid, but the weak grid obviously has a stronger impact 

to this system than the optimal parameters. If the grid is too weak, the system will lose 

the stability. After that, the MMS system for 5 cases including DFIG and SG has been 

analyzed to discuss the different impacts of DFIG and SG. With the penetration increase 

from 30% to 60%, the stability and DFIG transient performance may be slightly 

weakened, but not obvious. Therefore, the stability of low/medium penetration systems 

had to be carefully analyzed case by case. If the penetration continuously increases to 

90%, it is easy to find that the system has a better performance in the wind speed change 

disturbance than low/medium penetration systems, but it bears some worse low frequency 

oscillations in the fault disturbance. Finally, the issues of voltage stability improvement 

and grid-loss reduction of distribution systems (IEEE 34-bus test system) which include 

WT-DFIG under unbalanced heavy loading conditions is investigated. Simulation studies 

are carried out using DIgSILENT software to examine these issues during steady-state 

and transient operations of the system. The dynamic impact of cut-in DFIG is apparently 

more significant than cut-off DFIG in distribution systems. The multiple small-DFIG 

system bores a less dynamic impact and needs less time to return its initial state than the 
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single large-DFIG system. Therefore, the multiple small-DFIG system has a better 

stability performance. 
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CHAPTER 7  
CONCLUSIONS AND FUTURE RESEARCH 

 

7.1 Conclusions  

 In this dissertation, the approaches used for studying the impact of wind 

generation on grid stability and the optimizing of PI control of WTs with DFIGs via PSO 

were designed to improve DFIG system stability and transient performance in 

disturbances. A small signal stability analysis with a detailed WT-DFIG model is 

included, and an ANN controller has been designed, trained, and is able to directly 

forecast the optimal parameters according to different wind speeds, thus increasing DFIG 

transient performance. System studies for a single machine (DFIG) connected to the 

infinite bus system (SMIB), a single machine (DFIG) connected to a weak grid (SMWG), 

multi-machines (DFIG) connected to the grid system (MMS), and IEEE 34-bus 

distribution systems with DFIG have been completed. 

A summary of the contributions of this dissertation follows. 

1. Discussion of the key factors which influence the stability of power 

systems with wind generation 

The stability of power systems with wind generation is classified and the key 

factors which influence the stability are discussed, including the different wind turbine 

generator technologies, energy storage system (ESS), reactive power compensation, wind 

power forecasting, system operations for the challenge of high wind penetration condition. 

A. Fixed speed induction generators (FSIG), doubly fed induction 

generators (DFIG), and permanent magnet synchronous generators 
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(PMSG) are respectively the old-popular, now-popular, and future-

popular wind turbine generator technologies. FSIG can improve 

power systems transient stability; but it is poor in comparison with 

DFIG. DFIG has a good ability to ride through faults, and it can 

work as a power reactive compensator during faults. A comparison 

of the different impact on the stability of DFIG and PMSG is not 

sufficient. Power systems transient stability is noticeably degraded 

at high penetration levels due to the high reactive power demand of 

wind generators under some disturbances. Therefore, high levels of 

wind power penetration not only stop improving power systems 

stability as compared to low penetration levels, but it can decrease 

power systems stability in comparison with the case without wind 

generation under some disturbances.  

B. It has been proven via theories and experiments, that ESS can 

considerably improve the transient stability of a wind power plant 

system. 

C. Reactive power compensation with wind farms has gradually 

proven to be an effective, easy method to improve voltage stability, 

power quality, and operational characteristics of wind farms. Yet, 

the optimal location and reactive power compensation strategy 

must be considered on a case-by-case basis. 

D. Wind power forecasting plays an important role in enhancing the 

stability, efficiency, and reliability of modern power systems; and 
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its importance is gradually increasing. The ultimate goal is to 

enhance prediction accuracy and to develop models that can be 

used as the basis for predictive control.  

E. Some system operations can be used to improve the ability to 

integrate the increasing amounts of wind capacity into power 

systems while maintaining system stability. 

2. Small signal stability analysis with detailed WT-DFIG model 

The model for small signal stability analysis is provided in this dissertation and 

includes a wind turbine with a two-mass shaft system, induction generator, detailed rotor-

side/grid-side converter, and interface with the power grid. The optimization problem 

was formulated to maximize the objective function (the damping ratios of system 

eigenvalues in small signal stability analysis). The control variables are Ki and Kp of 

DFIG PI gains parameters. The interconnection requirements, grid code, and the impacts 

of crow-bar activation of wind generation are also briefly discussed, including the effects 

of the pre-disturbance speed of DFIG rotor, crow-bar impedance, and rotor-side converter 

restarting. 

3. Advanced particle swarm optimization based on small signal stability 

analysis with DFIG 

Advanced PSO is based on small signal stability analysis with a DFIG and is 

designed to calculate the optimal parameters of a DFIG because of PSO’s attractive 

properties (low memory requirement, easy constructive cooperation, better and fast 

convergence, and robustness). The optimization should take a long time (about two hours 

on a PC) to solve the optimization problem. Therefore, it had to be done off-line and 
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couldn’t be directly used in online control. Second, these optimal parameter values only 

match one special operating point. At another wind speed operating point, the initial 

optimal parameter values may be not optimal values. So, the optimal values had to be 

calculated according to different wind speed operating points (from 8m/s to 14m/s) and a 

data set obtained with one group of optimal values matching different wind speed values. 

4) Artificial neural network controller design 

One of the significant contributions of this dissertation is the development of an 

artificial neural network controller to dynamically adjust PI gain parameters of DFIG to 

improve system stability and transient performances in disturbances. Using the historical 

data via PSO, an artificial neural network can be constructed and trained. After that, this 

ANN can quickly predict the optimal values according to the wind speed. The forecast 

result of test data showed output ≅ 0.97*Target+0.0024. The best validation performance 

index, Mean squared error (MSE), was 2.6669e-07. This dissertation equivalently realizes 

real-time optimization via training ANN to forecast optimal values and transfer much of 

the calculations to be done off-line. 

5. System studies and simulation conclusions 

System studies for several test systems were conducted using the initial DFIG 

model, the fix-optimal DFIG model, and the ANN optimal DFIG model. The small signal 

stability analysis and simulation results follow: 

A. In the SMIB system, there are three main oscillation modes:  

1) Low frequency oscillations near 0.05~1.1Hz (mechanical mode 

associated with turbine and shaft dynamics); 
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2) Electric-mechanical mode associated with rotor electrical (q-

flux) and mechanical (speed) dynamics near 14.5Hz; 

 3) Electrical mode associated with stator dynamics near 62Hz. 

The eigenvalue frequencies of the fix-optimal DFIG model 

changed slightly while the eigenvalue damping ratios increased 

greatly, compared to the initial DFIG model. The eigenvalues of 

the former are farther away in the left-half phase plane. In 

simulation results, the ANN optimal DFIG model greatly reduced 

the low frequency oscillations and the peak/trough values of Tm, Po, 

Iqr, and vdc during the disturbances. The small signal stability 

analysis and simulation results get the same result: the ANN 

optimal DFIG model had better stability and transient performance. 

B. In the SMWG system, the eigenvalues move closer to the right-

half phase plane than SMIB. This means that the weak grid reduces 

the stability of the DFIG system. The eigenvalue frequencies have 

increased slightly, and the damping ratios have reduced some; but 

the weak grid has a bigger impact on the electrical mode associated 

with stator dynamics. If the grid is too weak (xTL=0.35p.u.), the 

initial DFIG model will lose stability while the fix-optimal DFIG 

model finally goes back to the steady-state even through it bears 

some serious oscillations. This also shows that the optimal 

parameters can partly weaken the influence of the weak grid, but 
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the weak grid obviously has a stronger impact on this system than 

the optimal parameters. 

C. In the MMS system, 5 cases including the initial DFIGs, the ANN 

optimal DFIGs, and SGs have been simulated and analyzed, 

considering the grid code low voltage ride through requirements 

and the different penetrations. With the penetration increase from 

30% to 60%, the stability and DFIG transient performance may be 

slightly degraded, but not obviously. Therefore, the impacts of 

low/medium penetration systems had to be carefully analyzed case 

by case. If the penetration continuously increases to 90%, the 

system has a better performance in the wind speed change 

disturbance than low/medium penetration systems, but it bears 

some worse low frequency oscillations in the fault disturbance. 

D. In the 34-bus distribution system, a new index (system unbalanced 

voltage variance) was proposed to evaluate the system voltage 

unbalanced factor. The optimal location of the DFIG was carefully 

calculated by a new multi-objective optimization formula, which 

simultaneously considers the system unbalanced voltage variation 

and the grid power loss. The comparison between the single large-

DFIG system and the multiple small-DFIG system found that the 

multiple small-DFIG system could provide higher system voltage 

advancement and almost the same grid loss reduction as the single 

large-DFIG system. In dynamic simulation, different disturbances, 
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short circuits, cutting load (including constant Z load and motors), 

cut-off and cut-in DFIG, have been applied separately or 

simultaneously. The load-center voltages fluctuate about 0.1p.u. in 

this distribution system because of cut-off the large load or cut-in 

DFIG and they affect almost all bus voltages. The dynamic impact 

of cut-in DFIG is apparently more significant than cut-off DFIG. 

The load of motor type has a significant role on the local bus 

voltage and is very sensitive to disturbances. The multiple small-

DFIG system bores a less dynamic impact and needs less time to 

return its initial state than the single large-DFIG system. Moreover, 

the former voltage fluctuation is in a smaller range and the 

boundary values are more suitable and the system voltage 

maintains in the normal range from 0.95p.u. to 1.05p.u. for longer 

time. Therefore, the multiple small-DFIG system has a better 

stability performance than the single large-DFIG system. 

7.2 Recommendations for Future Research  

1. Improve the algorithms of PSO and ANN 

PSO may need a long time to get the optimal parameters if the algorithms are 

applied in a multi-machine system so that the number of variables greatly 

increases. Therefore, it is very important to advance and accelerate the 

convergence of PSO. A more complex construction of an ANN can improve the 

accuracy of forecasting the optimal parameters so that it is also a key point to 

increase the performances of the algorithms. 
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2. Optimize considering reactive power of DFIG 

This dissertation neglected the capability of DFIG to adjust reactive power output. 

However, with the fast development of power electronics, DFIG can output more 

reactive power and bear a bigger impact of disturbances so that it will become a 

hot issue: how to improve the transient performances via optimal control of 

reactive power of DFIG, especially in low voltage ride-through capability and 

voltage stability in distribution system. 

3. Implement the application in industry 

Currently, the PI parameters are constant in an actual DFIG. This dissertation only 

realized the algorithms in a simulation PSCAD. How to realize it in an actual 

device is still a big challenge, and it will be more significant than the 

improvement of the algorithms. 

4. Application of wind generation control in EMS 

Currently, wind generation is not involved in the dispatch of power systems. 

However, with the fast increasing of wind generation penetration, wind generation 

should be dispatched to improve the performance of the power grid in the future 

so that a higher requirement for EMS will be proposed. The algorithms in this 

dissertation worked like a mini-EMS, collecting wind speed data in different 

locations, calculating the optimal parameters, and dynamically adjusting the 

parameters of DFIG. Next step, the application of wind generation control in EMS 

will become more important and popular. 

5. Integration optimization of gas turbine generators combined with intermittent 

sources (i.e., wind and solar generations) in system level 
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The intermittency of wind and solar power generation will not be perfectly 

predicted for a long time. Power systems operators secure different amounts and 

types of operating reserves to compensate for the intermittency in order to serve 

load reliably and maintain the system frequency. With the rapid exploitation of 

shale gas in the U.S., the penetration of gas turbine generation, wind generation, 

and solar generation will quickly increase. This also provides a good chance to 

compensate for the intermittent generations because of the fast adjustment 

capability of gas turbine generation. How to optimize the integration and 

compensation of gas turbine generation combined intermittent generations is 

becoming a big challenge. 
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Appendix I: 3.6MW Synchronous Generator Data in PSCAD 

3.6MW Synchronous Generator Data: 

No. of Q Axis Damper Winding 2 
D Axis Saturation Disabled 
Rated RMS Line to Neutral Voltage 0.48 kV 
Rated RMS Line Current 2.50 kA 
Base Angular Frequency 376.99 rad/s 
Inertia Constant 1.361 sec 
Neutral Series Resistance  10 p.u. 
Neutral Series Reactance 2 p.u. 
Iron Loss Resistance 30 p.u. 
Armature Resistance 0.013 p.u. 
Potier Reactance  0.13 p.u. 
D Axis Unsaturated Reactance  2.38 p.u. 
D Axis Unsaturated Transient Reactance 0.264 p.u. 
D Axis Unsaturated Transient Time 2.47 sec 
D Axis Unsaturated Sub-Transient Reactance 0.201 p.u. 
D Axis Unsaturated Sub-Transient Time 0.018 sec 
Q Axis Unsaturated Reactance  1.10 p.u. 
Q Axis Unsaturated Transient Reactance 0.35 p.u. 
Q Axis Unsaturated Transient Time 0.019 sec 
Q Axis Unsaturated Sub-Transient Reactance 0.214 p.u. 
Q Axis Unsaturated Sub-Transient Time 0.009 sec 
Air Gap Factor 1.0 
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Appendix II: IEEE 34-bus Test System Data and DFIG Data of 

Digsilent 

IEEE 34-bus Test System Data: 

 

 

Line Segment Data

Node A Node B Length(ft.) Config.
800 802 2580 300
802 806 1730 300
806 808 32230 300
808 810 5804 303
808 812 37500 300
812 814 29730 300
814 850 10 301
816 818 1710 302
816 824 10210 301
818 820 48150 302
820 822 13740 302
824 826 3030 303
824 828 840 301
828 830 20440 301
830 854 520 301
832 858 4900 301
832 888 0 XFM-1
834 860 2020 301
834 842 280 301
836 840 860 301
836 862 280 301
842 844 1350 301
844 846 3640 301
846 848 530 301
850 816 310 301
852 832 10 301
854 856 23330 303
854 852 36830 301
858 864 1620 303
858 834 5830 301
860 836 2680 301
862 838 4860 304
888 890 10560 300

Overhead Line Configurations (Config.)

Config. Phasing Phase Neutral Spacing ID
ACSR ACSR

300 B A C N  1/0  1/0 500
301 B A C N #2  6/1 #2  6/1 500
302 A N #4  6/1 #4  6/1 510
303 B N #4  6/1 #4  6/1 510
304 B N #2  6/1 #2  6/1 510

Transformer Data

kVA kV-high kV-low R - % X - %
Substation: 2500 69 - D 24.9 -Gr. W 1 8
XFM -1 500 24.9 - Gr.W 4.16 - Gr. W 1.9 4.08

Spot Loads

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-4
Model kW kVAr kW kVAr kW kVAr

860 Y-PQ 20 16 20 16 20 16
840 Y-I 9 7 9 7 9 7
844 Y-Z 135 105 135 105 135 105
848 D-PQ 20 16 20 16 20 16
890 D-I 150 75 150 75 150 75
830 D-Z 10 5 10 5 25 10

Total 344 224 344 224 359 229

Shunt Capacitors

Node Ph-A Ph-B Ph-C
kVAr kVAr kVAr

844 100 100 100
848 150 150 150

Total 250 250 250
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Configuration 300:  

--------- Z & B Matrices Before Changes --------- 

           Z (R +jX) in ohms per mile 

 1.3368  1.3343   0.2101  0.5779   0.2130  0.5015 

                  1.3238  1.3569   0.2066  0.4591 

                                   1.3294  1.3471 

          B in micro Siemens per mile 

            5.3350   -1.5313   -0.9943 

                      5.0979   -0.6212 

                                4.8880 

 

 

Distributed Loads

Node Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
A B Model kW kVAr kW kVAr kW kVAr

802 806 Y-PQ 0 0 30 15 25 14
808 810 Y-I 0 0 16 8 0 0
818 820 Y-Z 34 17 0 0 0 0
820 822 Y-PQ 135 70 0 0 0 0
816 824 D-I 0 0 5 2 0 0
824 826 Y-I 0 0 40 20 0 0
824 828 Y-PQ 0 0 0 0 4 2
828 830 Y-PQ 7 3 0 0 0 0
854 856 Y-PQ 0 0 4 2 0 0
832 858 D-Z 7 3 2 1 6 3
858 864 Y-PQ 2 1 0 0 0 0
858 834 D-PQ 4 2 15 8 13 7
834 860 D-Z 16 8 20 10 110 55
860 836 D-PQ 30 15 10 6 42 22
836 840 D-I 18 9 22 11 0 0
862 838 Y-PQ 0 0 28 14 0 0
842 844 Y-PQ 9 5 0 0 0 0
844 846 Y-PQ 0 0 25 12 20 11
846 848 Y-PQ 0 0 23 11 0 0

Total 262 133 240 120 220 114

Regulator Data

Regulator ID: 1
Line Segment: 814 - 850
Location: 814
Phases: A - B -C
Connection: 3-Ph,LG
Monitoring Phase: A-B-C
Bandwidth: 2.0 volts
PT Ratio: 120
Primary CT Rating: 100
Compensator Settings: Ph-A Ph-B Ph-C
R - Setting: 2.7 2.7 2.7
X - Setting: 1.6 1.6 1.6
Volltage Level: 122 122 122

Regulator ID: 2
Line Segment: 852 - 832
Location: 852
Phases: A - B -C
Connection: 3-Ph,LG
Monitoring Phase: A-B-C
Bandwidth: 2.0 volts
PT Ratio: 120
Primary CT Rating: 100
Compensator Settings: Ph-A Ph-B Ph-C
R - Setting: 2.5 2.5 2.5
X - Setting: 1.5 1.5 1.5
Volltage Level: 124 124 124
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Configuration 301: 

           Z (R +jX) in ohms per mile 

 1.9300  1.4115   0.2327  0.6442   0.2359  0.5691 

                  1.9157  1.4281   0.2288  0.5238 

                                   1.9219  1.4209 

          B in micro Siemens per mile 

            5.1207   -1.4364   -0.9402 

                      4.9055   -0.5951 

                                4.7154 

Configuration 302: 

           Z (R +jX) in ohms per mile 

 2.7995  1.4855   0.0000  0.0000   0.0000  0.0000 

                  0.0000  0.0000   0.0000  0.0000 

                                   0.0000  0.0000 

          B in micro Siemens per mile 

            4.2251    0.0000    0.0000 

                      0.0000    0.0000 

                                0.0000 

Configuration 303: 

           Z (R +jX) in ohms per mile 

 0.0000  0.0000   0.0000  0.0000   0.0000  0.0000 

                  2.7995  1.4855   0.0000  0.0000 

                                   0.0000  0.0000 

          B in micro Siemens per mile 

            0.0000    0.0000    0.0000 

                      4.2251    0.0000 

                                0.0000 
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Configuration 304:  

          Z (R +jX) in ohms per mile 

0.0000  0.0000   0.0000  0.0000   0.0000  0.0000 

                 1.9217  1.4212   0.0000  0.0000 

                                  0.0000  0.0000 

         B in micro Siemens per mile 

           0.0000    0.0000    0.0000 

                     4.3637    0.0000 

                               0.0000 

 

DFIG Data of Digsilent: 

Rated power 1.5MW, Reactive power 0.2Mvar, Slip 8%, Rated voltage 2KV. 
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