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Functional random forest with 
applications in dose-response 
predictions
Raziur Rahman1, saugato Rahman Dhruba1, souparno Ghosh2 & Ranadip pal1

Drug sensitivity prediction for individual tumors is a significant challenge in personalized medicine. 
Current modeling approaches consider prediction of a single metric of the drug response curve such as 
AUC or IC50. However, the single summary metric of a dose-response curve fails to provide the entire 
drug sensitivity profile which can be used to design the optimal dose for a patient. In this article, we 
assess the problem of predicting the complete dose-response curve based on genetic characterizations. 
We propose an enhancement to the popular ensemble-based Random Forests approach that can 
directly predict the entire functional profile of a dose-response curve rather than a single summary 
metric. We design functional regression trees with node costs modified based on dose/response region 
dependence methodologies and response distribution based approaches. Our results relative to large 
pharmacological databases such as CCLe and GDsC show a higher accuracy in predicting dose-response 
curves of the proposed functional framework in contrast to univariate or multivariate Random Forest 
predicting sensitivities at different dose levels. Furthermore, we also considered the problem of 
predicting functional responses from functional predictors i.e., estimating the dose-response curves 
with a model built on dose-dependent expression data. The superior performance of Functional 
Random Forest using functional data as compared to existing approaches have been shown using the 
HMS-LINCS dataset. In summary, Functional Random Forest presents an enhanced predictive modeling 
framework to predict the entire functional response profile considering both static and functional 
predictors instead of predicting the summary metrics of the response curves.

Precision medicine plays an important role in the push towards advancing cancer therapy. A significant step in 
the process involves mapping genetic characterizations to the applied drug sensitivity response. A multitude of 
approaches have been proposed to address the issue of predictive modeling of drug sensitivity but the results still 
indicate a significant scope for improvement1–4. Crowd-sourced initiatives such as NCI-DREAM conducted Drug 
Sensitivity Prediction Challenge2 enabled the performance evaluation of multiple algorithms on the same dataset 
while being restricted to smaller number of samples. Recently, a number of pharmacological databases1,5,6 have 
been made public to assist researchers in validating their predictive algorithms using larger biological datasets.

Drug sensitivity information in the form of responses for different doses represented as a curve is becoming 
more prevalent for cancerous cell lines with the advent of advanced data collection techniques. Such datasets 
are often referred as functional data7. Typical approaches for sensitivity prediction predict a summary metric 
of the entire drug response curve such as Area Under the Curve (AUC) or IC50. The problem of predicting a 
summary metric of the drug response curve has been tackled using a diverse set of regression approaches such 
as linear regression with regularization, nonlinear regression, kernel based techniques and ensemble based 
approaches2,8–10. Additionally, drug sensitivity prediction modeling has also been proposed based on features 
extracted using Principal Component Analysis (PCA)11.

A primary concern in using a certain drug sensitivity response summary metric is that they fail to describe the 
entire dose-response effect i.e., they represent just a particular scenario such as the drug concentration to achieve 
50% cell viability (IC50) or the inflection point of the dose-response fitted curve (EC50) or the maximal activity 
reached in the curve (Amax)1 or the area under the fitted curve (AUC). Meanwhile, various functional regression 
models have been proposed in other research areas to predict the entire response curve12. Yu et al.13 have pre-
sented each response curve as a linear combination of known basis functions and grown regression trees using 
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the coefficients of this expansion, while Nerini et al.14 have proposed functional PCA in the classification method 
for easy representation of regression trees. The knowledge of the entire drug response curve can answer clinically 
relevant questions such as what will be the sensitivity at the highest non-toxic dose concentration (toxicity can 
be estimated using experimentations on normal cells or computational modeling) or the sensitivity at the drug 
concentration available at the targeted organ (pharmacokinetics estimated using micro-dosing) for that specific 
patient? Furthermore, a summary metric such as AUC for two different dose response curves might be same even 
when they might offer different information such as very high sensitivity for high doses for drug A as compared 
to relatively moderate sensitivity over all drug doses for drug B. Note that drug A at high doses might be better in 
killing most cancer cells as compared to drug B which will not be apparent through AUC prediction.

Thus, there is a need for entire dose response curve prediction which is not handled directly by existing regres-
sion models. In one of our previous works15, we have used each dose-response point to build individual regression 
models for prediction purposes. However, the individual models lack incorporation of the continuous nature of 
the dose-response curve. In this paper, we are proposing the incorporation of dose-response points or distribu-
tions in the generation of regression tree node cost and leaf nodes to improve the accuracy of Random Forest 
(RF) model for sensitivity prediction. At each regression tree node, region-wise response points or distributions 
(Gaussian) are considered to calculate the node cost. The leaf nodes store the functional data used to predict 
the entire dose-response profile for test samples, while the model input consists of genomic characterization in 
regular form or continuous curve form. We present methodologies that can consider both regular and functional 
inputs. For analysis purposes, each response curve has been approximated by a linear combination of B-spline 
functions13 and thus, the framework can also be applied in scenarios different from drug sensitivity prediction. 
We validate our proposed Functional Random Forest (FRF) approach using data from the well-known pharma-
cological databases of Cancer Cell Line Encyclopedia (CCLE)1 and Genomics of Drug Sensitivity for Cancer 
(GDSC)5.

The article is organized as follows: The Materials and Methods section compiles the basic steps involved in 
designing FRF models while discussing the impact of storing functional data in forest leaf nodes and highlighting 
the region-wise node cost procedures. The Results section provides the performance evaluation of FRF model 
for both synthetic experiments and actual pharmacological data. Furthermore, it also presents the biological 
importance of genes selected by FRF. Finally, the Discussion section points out the advantages of using FRF to 
predict the dose-response curves in the larger context of drug sensitivity prediction and provides possible future 
research directions.

Materials and Methods
The idea of Functional Random Forest is based on regular regression tree based Random Forest. Thus, we will 
first describe the design procedure for regular regression trees and subsequently present the construction of func-
tional regression tree based FRF approach. Before delving into the details of tree construction, we describe the 
datasets used for this study which will help us establish a number of theoretical assumptions in the methodology.

Datasets and Preprocessing. For our experiments, we have considered two most comprehensive publicly 
available cancer pharmacogenomics databases: Cancer Cell Line Encyclopedia (CCLE)1 and Genomics of Drug 
Sensitivity for Cancer (GDSC)5. CCLE database was generated by Broad Institute and Novartis Institutes for 
Biomedical Research. This database includes genetic and pharmacological characterization of 947 human cancer 
cell lines, together with pharmacological profiling of 24 small molecules (anticancer compounds) across ~500 of 
these cell lines that encompasses 36 tumor types1. The response of a cell line to a specific drug is reported for 7 to 
8 dose points ranging from 0.0025 μM to 8 μM. Additionally, four different drug sensitivity measures EC50, IC50, 
Amax and AUC are listed. Note that these measures are features of a dose-response curve fitted from the observed 
dose-response points. GDSC database was created as part of the Cancer Genome Project5 and contains gene 
expression data for 789 cell lines and drug responses for 714 cell lines. Each cell line has 22,277 probe sets for gene 
expression yielding a high dimensional feature space. Similar to CCLE, each cell line’s response to the drugs are 
reported for 7 to 9 dose points where minimum dose ranges from 3 × 10−5 μM to 15.625 μM and maximum dose 
ranges from 0.008 μM to 4000 μM. For our experiment, we utilize GDSC v5 that lists two drug sensitivity meas-
ures IC50 and AUC along with 105 different IC values for different levels of cell viability from 0.1% to 100% in each 
cell line for each drug. Note that these IC values are extracted from the complete dose-response curves fitted from 
the observed dose-response points and extrapolated to 100% cell viability as the curves do not reach 100% at max-
imum dose for most cell line–drug pairs. Both CCLE and GDSC provide observed dose-response points or fitted 
curve points which could be utilized as our functional response data. However, the genomic characterization data 
are available in the stationary format as the expressions are measured before any drug application. Therefore, to 
demonstrate the functional input and output scenario for our FRF model, we have used data from the Harvard 
Medical School Library of Integrated Network-Based Cellular Signatures (HMS-LINCS) database, which to our 
knowledge, is the only publicly available source offering functional responses as well as predictors. HMS-LINCS 
offers genomic characterization data in the form of Reverse Phase Protein Array (RPPA) expression data for 21 
proteins where Phosphorylation state and protein levels were measured in 10 BRAFV600E/D melanoma cell lines at 
7 different doses and 5 different time points16. The cellular response data consists of viability and apoptosis meas-
ured in the same cell lines using Fluorescence imaging apoptosis assay for the same 7 doses but 3 different time 
points16. The database contains data for 9 BRAFV600E and 1 BRAFV600D melanoma cell lines that were exposed to 4 
RAF inhibitors and 1 MEK inhibitor at 7 different doses ranging from 3.2 nM to 3.2 μM. Protein expression data is 
available for 5 different time points: 1, 5, 10, 24 and 48 hours post drug application and apoptosis data is available 
for 24, 48 and 72 hours post drug application. For compound sensitivity assessment, two different measures are 
available: relative viability and mean apoptosis fraction, computed using the number of apoptotic cells and the 
total number of cells normalized with the DMSO control16,17.
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Figure 1 illustrates the pictorial representations of genomic and functional characterizations data, where the 
left half shows the static and functional format of genomic characterizations and the right half demonstrates the 
dose-response curves for various cell line–drug pairs and different summary metrics extracted from such a curve.

Random Forest Regression. Random Forest consists of a set of T un-pruned ensemble of regression trees18 
that are generated based on bootstrap sampling from the original training data. The bootstrap resampling of the 
data for training each tree increases the diversity between the trees. Each tree is composed of root node, branch 
nodes and leaf nodes. For each node of a tree, the optimal node splitting feature is selected from a set of m features 
that are again randomly selected from a feature space of size M. If m M , the selection of the node splitting 
feature from a random set of features decreases the correlation between different trees and thus, the average 
response of multiple regression trees is expected to have lower variance than the individual regression trees. 
However, there exists a trade-off as a larger m can improve the predictive capability of individual trees but also can 
increase the correlation between trees and void any gains from averaging multiple predictions.

Process of splitting a node. Let xtr(i, j) and y(i) denote the training input feature j and output response, respec-
tively, for sample i where i n j M1, 2, , , 1, 2, ,= … = … . At any node ηP, we aim to select a feature js from a 
random set of m (<M) features and a threshold z to partition the node into two child nodes ηL (left node with 
samples satisfying x i j z( , )tr P sη∈ ≤ ) and ηR (right node with samples satisfying x i j z( , )tr P sη∈ > ). We consider 
the node cost as sum of square deviances (SSD), i.e.

D y i( ) ( ( ) ( ))
(1)

P
i

P
2

P

∑η μ η= −
η∈

where μ η η= ∈ ⋅ y i( ) [ ( )], [ ]P P  denotes the Expected value. Thus, the reduction in cost (i.e., reward function) 
for partition γ at node ηP is given in Eq. (2), where the goal is to select the partition γ* ∈ ηP that maximizes the 
reward or, minimizes the cost.

⁎
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Figure 1. Pictorial representation of the commonly used genomic and functional characterizations.
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Note that for a continuous feature with n samples, a total of n partitions needs to be checked i.e., the com-
putational complexity of each node split is O(mn). During tree generation, a node with n ≤ nsize samples is not 
partitioned any further where nsize is a pre-specified sample size threshold.

Several other approaches have been proposed for tree construction such as applying Principal Component 
Analysis (PCA)19 in the response matrix13. The principal components (PC) not only serve the purpose of dimen-
sionality reduction but is also expected to increase the robustness of the trees. Here, the node cost used to build 
the trees is given by

∑η ζ ζ ζ ζ= − −
η∈

D i r i r( ) ( ( ) ( )) ( ( ) ( ))
(3)

P
i

T

P

where ζ(i) denotes a PC based response vector and r( )ζ  is the mean vector of PCs14. Yu et al.13 have also consid-
ered the use of basis functions to represent the response variables with the node cost written as

D i ic c( ) ( ( ) ( )) ( ( ) ( ))
(4)

P
i

c P
T

c P
P

∑η μ η μ η= − Φ −
η∈

where c(i) denotes the vector of basis coefficients,  ic( ) [ ( )]c Pμ η =  and Φ denotes the matrix of basis vector inner 
products14.

Forest Prediction. Using the randomized feature selection process, we fit the tree based on bootstrap samples 
Y Y YX X X{( , ), ( , ), , ( , )}n n1 1 2 2 …  from training data. Let us consider the prediction based on a test sample x for the 

tree Θ. Assume that γ Θx( , )


 be the partition containing x, the tree response takes the following form18,20,21 with 
corresponding weights wi(x, Θ)
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Let the T trees of RF be denoted by , , , T1 2Θ Θ … Θ  and wi(x) to be the average weights over the forest. Then, 
the average RF prediction for the test sample x is given by weighted average of predictions of all T trees using the 
weight vector in (7).
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Multivariate Random Forest. Multivariate Random Forest (MRF)10 is the extension of the regular RF for 
joint prediction of multivalued output responses that can be useful in different response scenarios. The primary 
difference between MRF and the regular RF is in the tree generation step where the node cost is different from 
D( )Pη  in Eq. (1). In a multivariate output scenario, the difference between a sample point response and the multi-
variate mean distribution is desirable and can be achieved by using the SSD of the Mahalanobis distance 
measure.



∑η μ η μ η= − Σ −

=
η∈

−D i i
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MRF P
i

P
T
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1

P

where Σ is the covariance matrix, m denotes the number of response points, and  iy( ) [ ( )]P Pμ η η= ∈ . The 
inverse covariance matrix Σ−1 is a precision matrix that provides a measure of conditional dependence between 
multiple random variables. For our analysis, we consider MRF modeling on 8 dose-response points similar to our 
earlier published study15.

Functional Random Forest. Regular classification and regression trees (CART) work on non-functional 
variables e.g., discrete gene expression values and summary metrics shown in Fig. 1. In this section, we consider 
incorporating functional responses (e.g., dose-response curves shown in right half of Fig. 1) for building func-
tional random forest (FRF). For this purpose, we have introduced two novel alterations in the regression trees– 
first, in node cost calculation and second, in regression of the leaf node samples.

Node cost calculation. For the construction of regular regression tree based models, partitioning and accuracy 
measure for each node ηP is achieved using the deviance criterion in Eq. (1). However, this criterion only considers 
a single parameter (μ) of the drug sensitivity response while neglecting the shapes of the dose-response curves 
at each node. To incorporate the shape information of a dose-response curve into the deviance calculation, we 
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propose to discretize the entire curve into multiple regions to calculate the node cost in each region separately and 
then sum the individual deviances to get the total deviance at each node, i.e.

D D r( ) ( )
(10)

FRF P
j

q

r j
1

∑η =
=

ˆ ˆ

where D̂ r( )r j  is the deviance calculated from the jth region rj, and q is the total number of regions. For the discreti-
zation scheme, we choose to discretize the coordinate values as appropriate for the observed data (e.g., we use the 
8 given dose points to divide the dose-response curves into 8 regions in CCLE as compared to GDSC where we 
utilize the ~100 IC response values for discretization). Furthermore, we propose two distinct algorithms for node 
cost calculation where (i) either the observed dose-response points are used directly or, (ii) the underlying distri-
bution is extracted from these points and various divergence criteria are applied.

Node cost calculation using dose-response points. For this approach, we use the observed dose-response data 
directly and assume the complete curve to be made up of multiple regions each belonging to an observed dose 
point or response point. Then, the total deviance at each node ηP is measured by calculating the SSD per region14 
as a measure of D̂ r( )r j  and subsequently using (10).

ˆ
 ∑= −

η∈
D r y i y( ) ( )

(11)
r j

i
j j

2

P

where yj(i) denotes the response in region rj at dose dj for sample i, and y y i[ ( )]j j Pη= ∈ . The criterion described 
in Eq. (11) considers the region-wise differences rather than the difference in an overall feature of the curve.

Node cost calculation using dose-response distributions. In the previous approach, each region consists of 
n iP i P

= ∑ η∈  response points (i.e., the number of cell lines examined for the applied drug) at a specific dose dj and 
these discrete responses are used to compute the node deviance in (10). However, if a study performs multiple 
experiments at a certain dose for each individual cell line (i.e., technical replicates), we can potentially generate a 
distribution from all the replicates at that specific dose. Therefore, instead of considering a single response value 
yj(i) for cell line i at dose dj, we can alternatively calculate the node cost by approximating the response by a prob-
ability distribution, fj. The modified splitting criterion for this scenario is given by

ˆ ˆD r C( ) ( , )
(12)

r j
i

f i
P

∑= Φ Φ
η∈

C fwhere ( , )
(13)f i j

iˆ ˆ
ˆ∑Φ Φ = Φ




Φ

Φ





Ω

Here, ⋅ ⋅C ( , )f  is called the f-divergence of the probability distribution, Ω is the distribution range, and Φ̂ is the 
mean distribution at node ηP derived using mixture distribution9. There are various ways to calculate the 
f-divergence depending on the divergence measure fj(u) in Eq. (13). For instance, the Kullback-Leibler (KL) diver-
gence22 is obtained with f u u u( ) ln( )j =

∑Φ Φ = Φ



Φ

Φ





Ω
K ( , ) ln

(14)f i i
iˆ

ˆ

And, the Hellinger Distance23 is generated using f u u( ) ( 1)j
2= −

ˆ ˆ∑Φ Φ = Φ − Φ
Ω

( )H ( , )
(15)f i i

2

Functional regression using dose-response curves. Regular regression tree response for a new sample is based on 
averaging the responses in the leaf node reached by the new sample. Since the responses considered in a regular 
regression tree are individual points, a simple averaging of the values suffices. For our FRF scenario, each leaf 
node consists of a set of functional responses and therefore, we need to modify the final prediction as described 
below.

Given that we have dose-response points, we can potentially fit a spline curve through these points to repre-
sent the dose-response as a continuous curve. In recent pharmacological studies, the curve fitting normally con-
sists of sigmoidal, linear or constant functions1. In our algorithm, we have considered the generalized B-spline 
fitting for the dose-response curves. To perform Functional Random Forest (FRF) prediction using the 
spline-fitted curves, we store the curve points for each sample in the leaf nodes instead of a specific feature (i.e., 
IC50 or AUC). In the prediction step, for a test sample x, we consider the training response set η= ∈y iy ( )j j P  at 
each dose dj separately from the stored dose-response curves in node ηP and fit a Gaussian distribution Nj. The 
mode of this distribution (i.e., peak) indicates the highest response probability for x at dj and we pick the corre-
sponding response value ŷj as our final prediction.
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The process is then repeated for all dose levels to generate the functional prediction, ŷ x( ). Figure 2 illustrates a 
representative case where the different response probability distributions are displayed for multiple dose levels. 
Here, the asterisks (*) on the 3D surface denote the distribution modes at different doses that are used to perform 
the functional prediction. Subsequently, we can use this predicted curve to estimate the conventional drug sensi-
tivity measures such as AUC, IC50 and EC50.

Function-to-function regression with FRF. Drug sensitivity predictive algorithms normally train regres-
sion models on genomic characterizations represented by stationary values such as pre-treatment gene expression 
(Fig. 1). However, if gene (or protein) expression can be measured post drug application at different doses and/
or various time points, the input variables can be modeled as curves representing the dose-expression functions 
at the corresponding dose points. An example of such functional data is shown in lower left half of Fig. 1 where 
the functional input-output data is obtained from the HMS-LINCS16,17 database. In this section, we consider a 
scenario where the HMS-LINCS protein expressions following drug administration is available along with the 
resulting dose-responses in terms of cell viability.

Here, we consider a couple of ways to convert the functional data into functional features which are eventu-
ally used as model inputs. Similar to the drug sensitivity summary metrics generated from the dose-response 
curves, we can use the genomic characterization curve to extract features such as AUC and IC50. For calculating 
AUC, a reference line (similar to the zero viability line for drug sensitivity) is required and we utilize the avail-
able DMSO-treated control RPPA data16 for this purpose. Figure S1 displays a representative dose-expression 
curve post drug application with the DMSO-treated control line where the shaded area in between is the desired 
AUC. For this representative protein (p-S6), the expression values are decreasing with increases in dose levels 
which is the most common scenario. However, for a few cases, the protein expressions either remain almost 
similar or go up as dose increases. For such proteins, we only consider the expression values below our reference 
DMSO-treated control line (Fig. 3). Along with AUC, we also calculate different IC values i.e., IC25, IC50 and IC75 
to be considered as predictor features. To arrive at the IC values, we perform 3rd degree polynomial fitting on the 
observed protein expression data at different doses and record the different IC values using the corresponding 
percentile points between the lowest and highest expression values (e.g., IC25 is the dose where the 25th percentile 
point is located). Figure 3 illustrates three representative protein expression fitted curves with corresponding IC25, 
IC50 and IC75 points demonstrating the different behaviors described above i.e., expression values are either (a) 
mostly decreasing, (b) almost unchanged, or (c) mostly increasing with dose.

Another way of extracting the functional curve features is to rank the curves according to their slopes (i.e., 
rate of change). Furthermore, a curve can be ranked by its position compared to the other curves i.e., if a curve 
contains >50% dose points with higher protein expression values compared to another curve, the former will get 
a higher rank than the later and the process will go on until all curves are ranked.

Accession codes. Source code for Functional Random Forest is available at: https://github.com/razrahman/
Functional-Random-forest.

Results
In this section, we apply Functional Random Forest modeling on both synthetic and experimental datasets for 
performance evaluation and comparison analysis with both univariate and Multivariate Random Forest models.

Figure 2. Drug sensitivity probability distributions at a node for Functional Random Forest prediction where 
the asterisks (*) indicate modes of distributions at 8 dose points ranging from 0.0025 μM to 8 μM.

https://doi.org/10.1038/s41598-018-38231-w
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Application of FRF on synthetic data. We first evaluate the performance of FRF using a synthetic exper-
iment. The design matrix has been generated by extracting 10 different features from five different clusters. Each 
cluster is derived from a Gaussian distribution and the range of the distribution for each cluster has limited over-
lap with others. Furthermore, we add 10 additional noise features to increase the correlation between samples 
from different clusters. Subsequently, we have a design matrix of size 75 × 20 (15 samples each from 5 clusters and 
20 covariates with 10 relevant & 10 spurious features). For the output, we create a target matrix of size 75 × 101 
where 101 is the number of different synthetic dose levels. The response values are sampled from the 4-parameter 
sigmoidal model1 in Eq. (17) and shown in Fig. 4 for both noiseless and noisy cases, i.e.

= +
−

+
θ( )

y d A A A( )
1 (17)

IC
d

0
max 0

50

where A0, Amax & θ are fixed but IC50 differs slightly for each curve in a certain cluster while d is the applied dose 
level. We also look into the effect of additive noise in targets as shown in Fig. 4 where (a) displays the target curves 
without noise, and (b) displays the targets with 5% additive noise. Table 1 shows the performance of FRF as com-
pared to regular RF for different numbers of trees, folds and noise levels (%). From Table 1, we observe that FRF 
displays an overall superior performance to RF in all cases, especially improving the model performance by as 
much as 25% as the noise level increases. A potential reason for this performance boost is the ability of FRF to 
incorporate the shape of the response curves, as shown in Fig. 5(a) where FRF is able to follow a noisy synthetic 
data curve which RF fails to predict, especially for higher doses.

Application of FRF on biological data. For performance evaluation of Functional Random Forest using 
actual biological data, we have used three different sources– CCLE, GDSC and HMS-LINCS. The sections below 
provide the results and corresponding discussion for all three databases.

Application on CCLE dataset. CCLE provides cell line sensitivity data with 7 to 8 dose-response points. For our 
analysis, we consider the cell lines with 8 points only and thus, we have 8 different regions for node cost calcula-
tion in Eq. 10. Tables 2 and 3 display the predictive performance of FRF for both node cost calculation algorithms 
i.e., using observed dose-response points and underlying distributions. For node cost calculation using distribu-
tions, we provide results for both KL divergence and Hellinger distance measures in Eqs (14 and 15). Additionally, 
we compare the results from the FRF models with standard RF methodology. Tables 2 and 3 provide overall 
performance comparisons for three different models: (a) regular Random Forest (RF), (b) Functional Random 
Forest with conventional averaging at the Leaf node (FRFL), and (c) Functional Random Forest with averaging of 
the dose-response curves at the leaf node (FRF). Note that FRF considers the functional curves for both node cost 
evaluation and response prediction at the leaf nodes, whereas FRFL considers the functional curves for node cost 

Figure 3. Illustration of obtaining different IC values using observed protein expression points and the 
corresponding 3rd degree polynomial fitted curve overlaid after AZ-628 administration in cell line C32 for (a) 
protein p-S6 with a decreasing trend, (b) protein p-mTOR with minor changes, and (c) protein cPARP with an 
increasing trend.
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Figure 4. Synthetic dose-response curve examples– (a) without noise, (b) 5% additive noise.

#Trees #Folds

Noiseless 5% Noise 10% Noise 20% Noise

RF FRF RF FRF RF FRF RF FRF

50
5 0.037 0.029 0.039 0.034 0.045 0.034 0.063 0.051

10 0.036 0.028 0.034 0.028 0.043 0.035 0.060 0.049

100
5 0.039 0.030 0.039 0.034 0.044 0.036 0.063 0.049

10 0.036 0.029 0.035 0.030 0.042 0.035 0.059 0.047

150
5 0.041 0.034 0.036 0.030 0.047 0.037 0.060 0.049

10 0.031 0.027 0.034 0.029 0.042 0.034 0.060 0.047

Improvement 24% 17% 25% 25%

Table 1. Normalized Mean Absolute Errors (NMAE) for prediction of synthetic data dose-responses with 
varying noise levels using RF and FRF. The different numbers of folds are used in training & test data separation. 
Bold values indicate the best performances.

Figure 5. Performance comparison for Functional Random Forest and Random Forest for both synthetic data 
and CCLE data. (a) For noisy synthetic data, FRF can follow the actual response variations even though it was 
modeled using noisy data while RF fails to follow the trend in higher dose levels, (b) For fitted dose-response 
curve in CCLE Liver cell line SNU449 post Erlotinib administration, FRF prediction again outperforms RF 
prediction.
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evaluation only and generates the prediction using the conventional means of averaging of a specific summary 
metric (e.g., IC50 or AUC) stored at the leaf node. All the results are reported for 5 fold cross-validation with 150 
trees in each model along with 10 features for node splitting (m = 10) and minimum leaf size of 10. We note that 
both functional approaches (i.e., FRFL and FRF) perform better than the regular RF model for all the presented 
scenarios. We also compare the results with a different set of parameters which also support the previous con-
clusion that both FRFL and FRF perform better than the RF. Figure 5(b) shows a representative example of both 
FRF and RF prediction. Note that we are demonstrating a case where the responses are changing gradually for 
different doses. Although the performances of both FRF and RF were not stellar in general, the FRF prediction 
still outperforms RF prediction, especially for higher doses.

Note that Table 3 considers the dose-responses as probability distributions generated based on the mean and 
standard deviation (SD) of the responses provided by CCLE. We have fitted a Gaussian distribution using the 
provided mean and SD of responses for each dose point. The mean distribution at a node is calculated using a 
mixture of Gaussian distribution assumption. Note that the results in both Tables 2 and 3 provide measures for 
only 5 representative drugs. Table S1 provides the results for all 24 CCLE drugs.

Both Tables 2 and 3 show the performance measures for 5 fold cross-validation. To demonstrate the robust-
ness of our FRF model compared to RF, we also perform our analysis using bootstrap samples of CCLE data. 
Considering the total number of samples available for each drug, we extract 50 bootstrap sets of samples to 
build individual FRF and RF models for each set and then perform sensitivity prediction using the built mod-
els. Figure 6 illustrates the distributions of differences between MAE values for FRF and RF model predictions 
against the number of bootstrap samples for four representative drugs (Fig. S2 provides these distributions for 
all 24 CCLE drugs). For majority of the sets, MAE of FRF is lower than that of RF yielding negative values in 
x-coordinate. These distributions clearly demonstrate the superior predictive performance and robustness of 
FRF as compared to a standard RF. Additionally, Table 4 compares the performance of FRF with that of an MRF 
model, which also demonstrates the overall superior performance of FRF over MRF for the 8 dose points.

Application on GDSC dataset. To demonstrate the versatility of FRF model performance as compared to a tradi-
tional RF model, we performed the predictive analysis using another publicly available larger database GDSC. 
Instead of dose-response points, GDSC v5 provides 105 different IC points for dose-response values, extracted 
from response curves fitted with sigmoidal functions5 and extrapolated to reach 100% cellular viability. This 
extrapolation causes the dose values for IC90 or IC100 to be very high and therefore, we consider only the IC values 

Drug

Correlation MAE

RF FRFL FRF RF FRFL FRF

Model parameters: #Tree = 150, m = 10, minimum leaf size = 10

Erlotinib 0.4408 0.4498 0.4641 0.0546 0.0541 0.0464

Nilotinib 0.3886 0.4318 0.4564 0.0465 0.0464 0.0376

PD-0325901 0.4716 0.5057 0.5658 0.1353 0.1335 0.1377

PLX-4720 0.2957 0.3137 0.4365 0.0494 0.0487 0.0396

TAE-684 0.2757 0.3385 0.3743 0.0728 0.0717 0.0684

Model parameters: #Tree = 500, m = 50, minimum leaf size = 5

Erlotinib 0.4381 0.4420 0.4701 0.0563 0.0557 0.0474

Nilotinib 0.4216 0.4393 0.4288 0.0470 0.0471 0.0391

PD-0325901 0.5928 0.5929 0.6381 0.1287 0.1282 0.1322

PLX-4720 0.3738 0.4195 0.5352 0.0492 0.0480 0.0393

TAE-684 0.3645 0.3888 0.4211 0.0711 0.0708 0.0679

Table 2. Comparison of predictive performance for AUC from three different approaches: RF, FRFL and FRF 
with two different model constructions using CCLE data. For FRFL and FRF, node cost is calculated using 8 
dose regions. Bold values indicate the best performances.

Drug

Correlation MAE

KL divergence
Hellinger 
Distance KL divergence

Hellinger 
Distance

RF FRFL FRF FRFL FRF RF FRFL FRF FRFL FRF

Erlotinib 0.4408 0.4473 0.4620 0.4265 0.4643 0.0546 0.0544 0.0466 0.0552 0.0472

Nilotinib 0.3886 0.4263 0.4601 0.4475 0.5009 0.0465 0.0459 0.0375 0.0457 0.0373

PD-0325901 0.4716 0.5149 0.5775 0.4920 0.5633 0.1353 0.1330 0.1370 0.1352 0.1386

PLX-4720 0.2957 0.3168 0.4308 0.3314 0.4491 0.0494 0.0489 0.0398 0.0492 0.0397

TAE-684 0.2757 0.3245 0.3689 0.2860 0.3337 0.0728 0.0723 0.0688 0.0730 0.0697

Table 3. Comparison of predictive performance for AUC from three different approaches: RF, FRFL and FRF 
using CCLE data. For FRFL and FRF, node cost is calculated using f-divergences (KL divergence or Hellinger 
distance) of the response distributions at 8 different doses. Bold values indicate the best performances.
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indicating ≤80% viability in our models. We design a single FRF model to predict the complete dose-response 
curve from IC1 to IC80 and thereafter, the AUC. However, RF is unable to replicate this procedure and therefore, 
we design 8 separate models to predict 8 different IC values in an interval of 10 (i.e., IC IC IC, , ,10 20 80… ) and one 
additional model to predict the AUC. Table 5 provides the MAE values measured at the 8/IC points and AUC for 
both FRF and RF for 5 representative drugs (Table S2 provides the performance comparison for all 140 GDSC 
(v5) drugs). For all 5 drugs, FRF displays a superior performance in predicting different IC and AUC values as 
compared to RF. These results demonstrate the higher efficacy of FRF in the larger context of drug sensitivity 
prediction for various dose or response points.

Figure 6. Distributions of MAE differences between FRF and RF predictions for the 50 bootstrap sets using 
CCLE data.

Drug Model

Correlation

Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 Dose 7 Dose 8 Mean

Erlotinib
MRF 0.0293 0.2014 0.1877 0.2901 0.3915 0.4813 0.4942 0.4071 0.3103

FRF 0.0662 0.1781 0.2138 0.3256 0.4378 0.4955 0.5094 0.4100 0.3296

Nilotinib
MRF −0.0725 0.1966 0.1550 0.2860 0.3734 0.4255 0.3888 0.1830 0.2420

FRF −0.0776 0.1360 0.2186 0.3306 0.4182 0.4546 0.4310 0.2502 0.2702

PD-0325901
MRF 0.1402 0.3722 0.4842 0.5395 0.5776 0.5871 0.5668 0.5181 0.4732

FRF 0.2013 0.4397 0.5239 0.5798 0.6067 0.6078 0.5952 0.5426 0.5121

PLX-4720
MRF −0.0522 −0.0137 0.0885 0.1818 0.3986 0.4682 0.5018 0.3732 0.2433

FRF −0.0045 0.1297 0.1259 0.2434 0.4028 0.4779 0.4973 0.3772 0.2812

TAE-684
MRF 0.1068 0.1485 0.0045 0.1509 0.3236 0.3448 0.2914 0.2874 0.2072

FRF 0.0978 0.1615 0.0541 0.2358 0.3654 0.3867 0.3736 0.3008 0.2470

Table 4. Comparison of predictive performances of FRF and MRF for 8 different dose points using CCLE data. 
All the models are built using 150 trees, m = 10 node splitting features and minimum leaf size of 10.

Drug Model

MAE

AUC IC10 IC20 IC30 IC40 IC50 IC60 IC70 IC80 Mean

Erlotinib
RF 0.0596 2.0831 1.7472 1.5039 1.3291 1.1948 1.0692 1.0133 1.0304 1.3714

FRF 0.0486 1.9813 1.6597 1.4382 1.2694 1.1357 1.0361 0.9867 1.0095 1.3146

Rapamycin
RF 0.0640 4.3771 3.4771 2.9370 2.5294 2.2000 2.0355 2.0207 2.5359 2.7641

FRF 0.0636 4.3905 3.4525 2.8895 2.4642 2.1379 1.9446 2.0046 2.4707 2.7193

Sunitinib
RF 0.0963 1.5494 1.5297 1.5542 1.6105 1.6518 1.7013 1.7750 1.8728 1.6556

FRF 0.0902 1.5306 1.5119 1.5378 1.5750 1.6276 1.6812 1.7428 1.8372 1.6305

PHA-665752
RF 0.0370 1.4403 1.2665 1.1492 1.0658 1.0002 0.9555 0.9539 0.9485 1.0975

FRF 0.0259 1.3522 1.2051 1.0999 1.0149 0.9546 0.9054 0.8954 0.9097 1.0422

MG-132
RF 0.1246 1.6207 1.6688 1.7445 1.7830 1.8549 1.9289 2.0313 2.1509 1.8479

FRF 0.1070 1.6062 1.6479 1.6968 1.7541 1.8117 1.8794 1.9619 2.0857 1.8055

Table 5. Comparison of predictive performance on GDSC dataset for multiple drug sensitivity measures (AUC 
and 8 IC values) using both RF and FRF. For FRF, node cost is calculated using 8 different IC regions. Bold 
values indicate the best performance.
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Figure 7 illustrates the difference between MAE values of FRF and RF predictions for Mean IC and AUC values 
for 70 drugs from GDSC. For mean IC, FRF shows superior performance in 68 out of 70 applied drugs, while FRF 
outperforms RF in 58 out of 70 applied drugs for AUC prediction. These results support the conclusion achieved 
from CCLE data analysis that FRF provides higher predictive accuracy than a regular RF. Figure S3 provides the 
performance comparison of the rest of the 140 GDSC (v5) drugs.

Function-to-function regression using HMS-LINCS. As described earlier, the HMS-LINCS database provides 
functional data for input proteomic expressions (for 21 proteins) and output cellular viability16,17 post application 
of 5 different drugs at 7 different doses in 10 melanoma cell lines at multiple time points. For our analysis, we only 
use the 48-hour data since it contains complete records for both input and output. Thus, we have 50 samples in 
total with 143 predictors (i.e., 21 × 7 − 4 = 143, since we exclude 4 proteins due to missing values). The detailed 
description of the data extraction framework is provided in section Function-to-function regression with FRF 
with a pictorial representation in Fig. 8. For our function-to-function regression using FRF, we either consider the 
143 predictors directly as input features, or extract the 3rd degree polynomial-fitted dose-expression curve features 
to use as predictors. As the curve features, we estimate 3 different IC points at IC25, IC50 and IC75 and the overall 
AUC, as shown in Figs 3 & S1 for all 21 proteins. Table 6 displays the function-to-function regression results for 3 
different input scenarios using FRF. We compare these performances with the performances of dose-wise stand-
ard RF models using the 143 expression values as input features for the 50 samples. From Table 6, we observe that 
FRF provides superior performance as compared to RF for all 3 scenarios while the usage of curve IC features 
provides the highest reduction (~20%) in prediction error. These results clearly demonstrate the potential of FRF 
in enhancing the predictive modeling performance via utilizing the functional input curve features.

Figure 7. Difference between MAEs of FRF and RF for (i) Mean IC values, and (ii) AUC values for 70 drugs 
from GDSC.

Figure 8. Data extraction procedure for Functional Regression Tree model. From each of the 21 observed 
protein expression curves, we calculate the AUC, IC25, IC50 and IC75 values resulting in a complete feature matrix 
of 21 × 4. For response modeling, the entire cellular viability curve post drug application is used directly.
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Biological validation of the models. A potential model validation approach is to consider the variable 
importance measure (VIM) of the genes. We expect that a better model will have higher feature scores for the 
significant genes, and thus, in turn will result in a higher biological relevance. Typically in RF based models, VIM 
(or feature score) is calculated from either the frequency of feature selection, out of bag errors, or permutation 
measures24,25. In this section, we use the frequency based approach to calculate the VIM score from the number of 
times a gene is considered and the number of times it actually gets selected in splitting the nodes.

= =
j

j
m

m
VIM #times gene is selected

#times gene is considered (18)
j

j

j

selected

picked

For our FRF models, we have selected the parameters values as #Trees = 500, m = 50, minimum leaf size = 5 
for a 5 fold cross-validation of CCLE data. Based on these values, all 18,405 CCLE genes gets picked around 600 
to 900 times, giving each a fair chance to contribute to the model. The top features of the models (i.e., genes with 
higher VIM scores) are then biologically validated in terms of protein-protein interaction (PPI) network enrich-
ment analysis.

There are a number of Bioinformatics resources (e.g., STRING26, GeneMANIA, DAVID etc.) available for eval-
uation of the number of observed PPIs in a set of selected genes. These interactions have been determined using 
prior knowledge and information from various interaction sources such as literature text-mining, experiment 
results, genomic/proteomic databases, gene co-expressions, gene neighborhood, gene fusion and co-occurrences. 
For CCLE, we have used Affymetrix HG-U133A mapping to convert the top features into corresponding genes. 
These genes are then provided as the inputs in the STRING database (http://string-db.org/) to extract the known 
PPI network. Table 7 shows the PPI analysis results for entire genome with a minimum interaction score of 0.15 
for the 5 previously considered drugs for both FRF and equivalent RF models. We observe a higher level of con-
nectivity enrichment for the top 200 FRF features as compared to the top 200 RF features in terms of PPI enrich-
ment p-value and the ratio of observed to expected number of edges27, resulting from possibly the functional 
collaborations between the products of the FRF genes.

Discussion
In this article, we have presented an enhancement to Random Forest modeling that can incorporate both sta-
tionary and functional inputs to predict functional output. The ability to predict the complete functional 
dose-response profile can be instrumental in various scenarios. For instance, there can be multiple dose-response 
curves with similar values of the extracted features (i.e., AUC or IC50) but they can significantly differ in cyto-
toxicity or cell viability rate at higher doses. Figure 9 shows an example of this phenomenon where two different 
dose-response curves for two distinct cell lines in CCLE after AZD-6244 administration have almost the same 
AUC values (AUC1 = 0.0945, AUC2 = 0.095) but different rates of cell viability change at doses ≥0.25 μM. Figure 9 
also demonstrates that FRF is capable of capturing the different response curve behaviors for the two cell lines.

Model Input Feature Description #Features #Models MAE

RF Protein Expression 143 7 0.2656

FRF

Protein Expression 143 1 0.2602

AUC, IC25, IC50 & IC75 of dose-expression 
curve 84 1 0.2255

IC25, IC50 & IC75 of dose-expression curve 63 1 0.2154

Table 6. Comparison of predictive performance of RF and FRF with functional data input from HMS-LINCS 
where AUC, IC25, IC50 & IC75 values of proteomic dose-expression curves are used as input features. Bold value 
indicates the best performance.

Drug Model #Nodes #Edges
Expected 
#edges

Ratio of observed to 
expected #edges

PPI enrichment 
p-value

Erlotinib
RF 107 132 127 1.04 0.356

FRF 105 170 142 1.20 0.013

Nilotinib
RF 102 185 162 1.14 0.044

FRF 101 173 144 1.20 0.010

PD-0325901
RF 107 191 187 1.02 0.407

FRF 113 153 139 1.10 0.134

PLX-4720
RF 106 159 147 1.08 0.164

FRF 111 217 187 1.16 0.018

TAE-684
RF 103 159 141 1.13 0.078

FRF 106 180 151 1.19 0.011

Table 7. Protein-protein interaction enrichment analysis for top 200 genes picked from RF and FRF using the 
whole genome statistical background with a minimum interaction score of 0.15.
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Through the application on both synthetic and actual biological data, we have established the superior perfor-
mance of FRF in predicting dose-response curve summary metrics such as AUC and IC50 as compared to naïve 
Random Forest model trained on these metrics as output. Furthermore, FRF predicts the entire dose-response 
profile incorporating the continuous nature of the curve that separate RF models for individual doses fails to cap-
ture. We have illustrated this behavior for GDSC dataset by modeling 8 IC points using 8 different RFs to generate 
the dose-response profile which has an inferior performance compared to the continuous curve prediction from 
FRF (Table 5). Moreover, a major advantage of predicting a complete curve is the visualization of the changes in 
response across different doses. Figure 10 shows two representative cases of Curve(1) and Curve(2) that has same 
IC50 values and similar AUC values but their dose-response profiles are significantly different. For instance, a 
small dose increase above IC50 will produce significantly higher sensitivity for Curve(1) whereas Curve(2) will have 
minimal change for dose increases above the IC50 value. This behavior will not be captured if we only predict the 
AUC or IC50 summary metric as both the curves have similar IC50 and AUC values. This example illustrates the 
need for complete dose-response profile prediction in the larger context of drug sensitivity prediction.

There are a number of adjustable parameters available in any regression tree based model (i.e., minimum 
leaf size, maximum features used for split, and number of trees in the forest) that we can change to get optimal 
performance, as illustrated in Table 2. Note that increasing the model complexity has similar impact on both RF 
and FRF models with FRF retaining its superior performance over RF but with a higher computational demand. 
However, we also observed several drugs in CCLE (e.g., 17-AAG, AZD-6244, Paclitaxel, PD-0325901) for which 
the prediction errors (MAE) for both FRF and RF are quite high. For these drugs, the dose-response points at dif-
ferent doses for the available cell lines are stretched out and the resulting fitted curves or summary metrics show 
significant variations which cannot be captured by any Random Forest based model since it employs an smooth-
ing strategy (averaging) in the leaf nodes to provide estimates around the mean prediction. We are currently 

Figure 9. Illustration of different dose-response curves for two cell lines in CCLE post AZD-6244 application 
with similar AUC values but different responses at higher doses. The complete dose-response profile prediction 
using Functional Random Forest is able to capture the difference in response behaviors for majority of the doses.

Figure 10. Two different dose-response curves with the same IC50 and AUC values.
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looking at different types of regression modeling to solve this issue of bias in prediction. We also hope to further 
extend this work via the incorporation of joint prediction of multiple correlated dose-response profiles while 
preserving the output dependency structure.

References
 1. Barretina, J. et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).
 2. Costello, J. C. et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nature biotechnology 32, 

1202–1212 (2014).
 3. Wan, Q. & Pal, R. An ensemble based top performing approach for nci-dream drug sensitivity prediction challenge. PloS one 9, 

e101183 (2014).
 4. Pal, R. Predictive Modeling of Drug Sensitivity (Academic Press, 2016).
 5. Yang, W. et al. Genomics of drug sensitivity in cancer (gdsc): a resource for therapeutic biomarker discovery in cancer cells. Nucleic 

acids research 41, D955–D961 (2013).
 6. Seashore-Ludlow, B. et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer discovery 5, 1210–1223 

(2015).
 7. Sirski, M. On the statistical analysis of functional data arising from designed experiments. Ph.D. thesis, University of Manitoba 

(Canada) (2012).
 8. Riddick, G. et al. Predicting in vitro drug sensitivity using random forests. Bioinformatics 27, 220–224 (2011).
 9. Rahman, R., Haider, S., Ghosh, S. & Pal, R. Design of probabilistic random forests with applications to anticancer drug sensitivity 

prediction. Cancer informatics 14, 57 (2015).
 10. Rahman, R., Otridge, J. & Pal, R. Integratedmrf: random forest-based framework for integrating prediction from different data 

types. Bioinformatics (Oxford, England) (2017).
 11. Dhruba, S. R., Rahmanl, R., Matlockl, K., Ghosh, S. & Pal, R. Dimensionality reduction based transfer learning applied to 

pharmacogenomics databases. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 
(EMBC), 1246–1249 (IEEE, 2018).

 12. Ramsay, J. O. Functional data analysis (Wiley Online Library, 2006).
 13. Yu, Y. & Lambert, D. Fitting trees to functional data, with an application to time-of-day patterns. Journal of Computational and 

graphical Statistics 8, 749–762 (1999).
 14. Nerini, D. & Ghattas, B. Classifying densities using functional regression trees: Applications in oceanology. Computational Statistics 

& Data Analysis 51, 4984–4993 (2007).
 15. Rahman, R. & Pal, R. Analyzing drug sensitivity prediction based on dose response curve characteristics. In Biomedical and Health 

Informatics (BHI), 2016 IEEE-EMBS International Conference on, 140–143 (IEEE, 2016).
 16. Fallahi-Sichani, M. et al. Systematic analysis of brafv600e melanomas reveals a role for jnk/c-jun pathway in adaptive resistance to 

drug-induced apoptosis. Molecular Systems Biology 11, 797 (2015).
 17. Matlock, K., Dhruba, S. R., Nazir, M. & Pal, R. An investigation of proteomic data for application in precision medicine. In 

Biomedical & Health Informatics (BHI), 2018 IEEE EMBS International Conference on, 377–380 (IEEE, 2018).
 18. Breiman, L. Random forests. Machine learning 45, 5–32 (2001).
 19. Wold, S., Esbensen, K. & Geladi, P. Principal component analysis. Chemometrics and intelligent laboratory systems 2, 37–52 (1987).
 20. Meinshausen, N. Quantile regression forests. Journal of Machine Learning Research 7, 983–999 (2006).
 21. Biau, G. Analysis of a random forests model. Journal of Machine Learning Research 13, 1063–1095 (2012).
 22. Kullback, S. & Leibler, R. A. On information and sufficiency. The annals of mathematical statistics 22, 79–86 (1951).
 23. Hellinger, E. Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen. Journal für die reine und 

angewandte Mathematik 136, 210–271 (1909).
 24. Archer, K. J. & Kimes, R. V. Empirical characterization of random forest variable importance measures. Computational Statistics & 

Data Analysis 52, 2249–2260 (2008).
 25. Haider, S., Rahman, R., Ghosh, S. & Pal, R. A copula based approach for design of multivariate random forests for drug sensitivity 

prediction. PloS one 10, e0144490 (2015).
 26. Szklarczyk, D. et al. String v10: protein–protein interaction networks, integrated over the tree of life. Nucleic acids research 43, 

D447–D452 (2014).
 27. Taguchi, Y. Principal components analysis based unsupervised feature extraction applied to gene expression analysis of blood from 

dengue haemorrhagic fever patients. Scientific reports 7, 44016 (2017).

Acknowledgements
This work has been supported by NIH grant R01GM122084-01.

Author Contributions
R.R., S.G. and R.P. conceived of and designed the experiments. R.R. and S.R.D. performed the experiments. R.R. 
and R.P. analyzed the data. R.R., S.R.D. and R.P. wrote the paper. All authors have read and approved the final 
manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-38231-w.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-018-38231-w
https://doi.org/10.1038/s41598-018-38231-w
http://creativecommons.org/licenses/by/4.0/


Supplementary: Functional Random Forest with

applications in dose response predictions
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Figure S1: Post Drug and DMSO-treated Protein Expression for Drug AZ-628 for Cell Line C32 for
p-S6 protein



Table S1: Correlation coefficient and Mean Absolute Error (MAE) between actual and predicted
drug sensitivities (AUC) for 3 methods; RF, FRFL and FRF with three different model construc-
tions. In FRFL and FRF, node cost is calculated using 8 dose regions. Here, results of all 24 drugs
of CCLE database are shown.

Drug Name FRF node cost criteria
Correlation Coefficient Mean Absolute Error
RF FRFL FRF RF FRFL FRF

17-AAG
Points from 8 dose regions

0.3181
0.338 0.4213

0.1009
0.1002 0.1108

Distributions from 8 dose
regions (KL divergence)

0.234 0.3317 0.1022 0.1146

Distributions from 8 dose
regions (Hellinger Distance)

0.2962 0.3424 0.1018 0.1144

AZD-0530
Points from 8 dose regions

0.3095
0.3459 0.3041

0.0684
0.0676 0.0618

Distributions from 8 dose
regions (KL divergence)

0.3127 0.2997 0.0689 0.0622

Distributions from 8 dose
regions (Hellinger Distance)

0.3023 0.2926 0.0692 0.0622

AZD-6244
Points from 8 dose regions

0.4866
0.5242 0.5716

0.1009
0.0994 0.0994

Distributions from 8 dose
regions (KL divergence)

0.4809 0.5296 0.1015 0.1014

Distributions from 8 dose
regions (Hellinger Distance)

0.4889 0.522 0.1015 0.1016

Lapatinib
Points from 8 dose regions

0.4552
0.4688 0.5052

0.0579
0.0573 0.048

Distributions from 8 dose
regions (KL divergence)

0.4524 0.5056 0.0578 0.0481

Distributions from 8 dose
regions (Hellinger Distance)

0.4633 0.5285 0.0578 0.0474

Nutlin-3
Points from 8 dose regions

0.0542
0.124 0.0648

0.0356
0.0354 0.0302

Distributions from 8 dose
regions (KL divergence)

0.0993 0.0519 0.0353 0.0302

Distributions from 8 dose
regions (Hellinger Distance)

0.0796 0.0238 0.0354 0.0304

Paclitaxel
Points from 8 dose regions

0.3934
0.3905 0.4251

0.1215
0.1216 0.1241

Distributions from 8 dose
regions (KL divergence)

0.3773 0.4022 0.1207 0.1236

Distributions from 8 dose
regions (Hellinger Distance)

0.3932 0.4266 0.1209 0.1238

PD-0332991
Points from 8 dose regions

0.4115
0.4394 0.4180

0.0512
0.0503 0.0459

Distributions from 8 dose
regions (KL divergence)

0.4226 0.3968 0.0506 0.0463

Distributions from 8 dose
regions (Hellinger Distance)

0.4445 0.4127 0.0503 0.0463

PF2341066
/Crizotinib

Points from 8 dose regions
0.2931

0.3266 0.3095
0.0459

0.0452 0.0372
Distributions from 8 dose
regions (KL divergence)

0.2742 0.2434 0.0462 0.0378

Distributions from 8 dose
regions (Hellinger Distance)

0.2281 0.1755 0.0464 0.0384

PHA-665752
Points from 8 dose regions

0.1695
0.1902 0.1588

0.0469
0.0464 0.0375

Distributions from 8 dose
regions (KL divergence)

0.2031 0.1898 0.0457 0.0375

Distributions from 8 dose
regions (Hellinger Distance)

0.198 0.1592 0.0457 0.0378

Sorafenib
Points from 8 dose regions

0.3755
0.3824 0.3668

0.0384
0.0383 0.0321

Distributions from 8 dose
regions (KL divergence)

0.3390 0.3023 0.0391 0.0328

Distributions from 8 dose
regions (Hellinger Distance)

0.3392 0.3143 0.0392 0.0327

AEW541
Points from 8 dose regions

0.2757
0.2619 0.3073

0.0545
0.0548 0.0487

Distributions from 8 dose
regions (KL divergence)

0.2331 0.2758 0.0554 0.0493
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Table S1: Correlation coefficient and Mean Absolute Error (MAE) between actual and predicted
drug sensitivities (AUC) for 3 methods; RF, FRFL and FRF with three different model construc-
tions. In FRFL and FRF, node cost is calculated using 8 dose regions. Here, results of all 24 drugs
of CCLE database are shown.

Drug Name FRF node cost criteria
Correlation Coefficient Mean Absolute Error
RF FRFL FRF RF FRFL FRF

Distributions from 8 dose
regions (Hellinger Distance)

0.2409 0.2875 0.0553 0.0491

Irinotecan
Points from 8 dose regions

0.519
0.5234 0.5344

0.0881
0.0875 0.1021

Distributions from 8 dose
regions (KL divergence)

0.528 0.5321 0.0872 0.1021

Distributions from 8 dose
regions (Hellinger Distance)

0.5285 0.5332 0.0883 0.1029

L-685458
Points from 8 dose regions

0.3611
0.3754 0.4000

0.0416
0.0412 0.0295

Distributions from 8 dose
regions (KL divergence)

0.3571 0.3810 0.0416 0.0302

Distributions from 8 dose
regions (Hellinger Distance)

0.3553 0.3758 0.0417 0.0301

LBW242
Points from 8 dose regions

0.1140
0.1217 0.1377

0.0563
0.0556 0.0517

Distributions from 8 dose
regions (KL divergence)

0.0662 0.1032 0.0558 0.0526

Distributions from 8 dose
regions (Hellinger Distance)

0.0661 0.1198 0.0562 0.0528

Panobinostat
Points from 8 dose regions

0.5239
0.5335 0.5584

0.0640
0.0641 0.0724

Distributions from 8 dose
regions (KL divergence)

0.5101 0.5374 0.0651 0.0739

Distributions from 8 dose
regions (Hellinger Distance)

0.5388 0.5611 0.0643 0.0731

RAF265
Points from 8 dose regions

0.3739
0.3992 0.4149

0.0687
0.0684 0.0716

Distributions from 8 dose
regions (KL divergence)

0.3557 0.3735 0.0690 0.0724

Distributions from 8 dose
regions (Hellinger Distance)

0.3005 0.3123 0.0704 0.0738

TKI258
Points from 8 dose regions

0.3799
0.3986 0.3831

0.0512
0.0506 0.0447

Distributions from 8 dose
regions (KL divergence)

0.3408 0.3041 0.0521 0.0461

Distributions from 8 dose
regions (Hellinger Distance)

0.3377 0.3261 0.0523 0.0457

Topotecan
Points from 8 dose regions

0.5122
0.5006 0.5297

0.1055
0.1061 0.1161

Distributions from 8 dose
regions (KL divergence)

0.5138 0.5342 0.1053 0.1158

Distributions from 8 dose
regions (Hellinger Distance)

0.4983 0.5255 0.1069 0.1176

ZD-6474
Points from 8 dose regions

0.2428
0.2696 0.2735

0.0641
0.0634 0.0581

Distributions from 8 dose
regions (KL divergence)

0.2602 0.2842 0.0634 0.0582

Distributions from 8 dose
regions (Hellinger Distance)

0.185 0.2107 0.0643 0.059

Table S2: Mean Absolute Error (MAE) between actual and predicted drug sensitivities (AUC and
different IC’s) for 2 methods; RF and FRF. In FRF, node cost is calculated using 8 IC regions.
Here, results of all 140 drugs of GDSC database v5 are shown.

Drug
Name

Model AUC IC10 IC20 IC30 IC40 IC50 IC60 IC70 IC80 Average

Erlotinib
RF 0.0596 2.0831 1.7472 1.5039 1.3291 1.1948 1.0692 1.0133 1.0304 1.3714
FRF 0.0486 1.9813 1.6597 1.4382 1.2694 1.1357 1.0361 0.9867 1.0095 1.3146

Rapamycin
RF 0.064 4.3771 3.4771 2.937 2.5294 2.2 2.0355 2.0207 2.5359 2.7641
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Table S2: Mean Absolute Error (MAE) between actual and predicted drug sensitivities (AUC and
different IC’s) for 2 methods; RF and FRF. In FRF, node cost is calculated using 8 IC regions.
Here, results of all 140 drugs of GDSC database v5 are shown.

Drug
Name

Model AUC IC10 IC20 IC30 IC40 IC50 IC60 IC70 IC80 Average

FRF 0.0636 4.3905 3.4525 2.8895 2.4642 2.1379 1.9446 2.0046 2.4707 2.7193

Sunitinib
RF 0.0963 1.5494 1.5297 1.5542 1.6105 1.6518 1.7013 1.775 1.8728 1.6556
FRF 0.0902 1.5306 1.5119 1.5378 1.575 1.6276 1.6812 1.7428 1.8372 1.6305

PHA-665752
RF 0.037 1.4403 1.2665 1.1492 1.0658 1.0002 0.9555 0.9539 0.9485 1.0975
FRF 0.0259 1.3522 1.2051 1.0999 1.0149 0.9546 0.9054 0.8954 0.9097 1.0422

MG-132
RF 0.1246 1.6207 1.6688 1.7445 1.783 1.8549 1.9289 2.0313 2.1509 1.8479
FRF 0.107 1.6062 1.6479 1.6968 1.7541 1.8117 1.8794 1.9619 2.0857 1.8055

Paclitaxel
RF 0.1427 1.8698 1.8716 1.8982 1.947 1.9976 2.0908 2.1783 2.3253 2.0223
FRF 0.1435 1.7694 1.763 1.8013 1.8616 1.9243 2.0036 2.1211 2.2762 1.9401

Cyclopamine
RF 0.0315 1.3288 1.2346 1.188 1.1736 1.155 1.1749 1.2055 1.2627 1.2154
FRF 0.0274 1.34 1.2443 1.1874 1.1624 1.1541 1.1556 1.1646 1.2096 1.2022

AZ628
RF 0.133 2.5134 2.1669 1.9748 1.8824 1.823 1.8044 1.8521 1.9362 1.9942
FRF 0.1203 2.446 2.1155 1.9411 1.8337 1.7714 1.7544 1.7966 1.8978 1.9446

Sorafenib
RF 0.0766 1.5314 1.4777 1.4452 1.4407 1.4627 1.4575 1.4845 1.532 1.4789
FRF 0.0662 1.5193 1.4681 1.4438 1.4394 1.4388 1.4417 1.4622 1.5037 1.4646

VX-680
RF 0.128 2.5637 2.3388 2.2608 2.1607 2.1121 2.0611 2.0323 2.0098 2.1924
FRF 0.12 2.526 2.3258 2.2177 2.1569 2.0957 2.0445 2.0051 1.9705 2.1678

Imatinib
RF 0.0383 1.2762 1.1374 1.07 0.9765 0.9454 0.9043 0.872 0.8502 1.004
FRF 0.0258 1.1553 1.0502 0.9733 0.9056 0.8562 0.8255 0.8 0.7784 0.9181

NVP-TAE684
RF 0.1156 1.7224 1.6634 1.6829 1.7587 1.8194 1.8944 2.0052 2.1901 1.8421
FRF 0.111 1.7162 1.656 1.673 1.7253 1.795 1.8872 2.0037 2.1722 1.8286

PF-02341066
RF 0.0475 1.2559 1.1949 1.1595 1.1705 1.1532 1.1884 1.1808 1.1968 1.1875
FRF 0.0364 1.2281 1.1682 1.1354 1.1268 1.1234 1.125 1.1286 1.1339 1.1462

AZD-0530
RF 0.0661 1.7654 1.6408 1.5783 1.5453 1.5295 1.5384 1.5438 1.5804 1.5902
FRF 0.0543 1.7413 1.6184 1.5425 1.494 1.4786 1.4608 1.4598 1.4899 1.5357

S-Trityl-L-cysteine
RF 0.0844 1.3216 1.3881 1.4569 1.5297 1.6323 1.7073 1.8311 1.9878 1.6069
FRF 0.0857 1.2496 1.2909 1.3527 1.4335 1.5304 1.6421 1.7723 1.9423 1.5267

Z-LLNle-CHO
RF 0.0821 1.1943 1.2622 1.3096 1.3575 1.419 1.506 1.5874 1.7042 1.4175
FRF 0.0776 1.2078 1.2557 1.3103 1.3656 1.4311 1.498 1.5824 1.7033 1.4193

Dasatinib
RF 0.1706 3.5646 3.0769 2.8374 2.7091 2.6161 2.5967 2.6919 2.8865 2.8724
FRF 0.1533 3.4158 2.8774 2.5761 2.4423 2.3922 2.4175 2.5577 2.8209 2.6875

GNF-2
RF 0.0288 1.1946 1.0841 1.0022 0.9293 0.8772 0.805 0.7644 0.726 0.9229
FRF 0.0194 1.1075 1.0125 0.9392 0.8756 0.815 0.7561 0.7052 0.6711 0.8603

CGP-60474
RF 0.1135 1.0519 1.1472 1.2349 1.3366 1.4259 1.5384 1.637 1.8148 1.3983
FRF 0.11 1.037 1.1013 1.176 1.2478 1.3304 1.4262 1.5422 1.6967 1.3197

CGP-082996
RF 0.0499 1.3682 1.2746 1.2494 1.2615 1.2897 1.3178 1.3822 1.4746 1.3273
FRF 0.0483 1.3642 1.2538 1.2258 1.2308 1.2492 1.2857 1.3428 1.4244 1.2971

A-770041
RF 0.1158 2.3238 2.0588 1.9727 1.9075 1.9085 1.9381 1.9732 2.0792 2.0202
FRF 0.1057 2.3063 2.0748 1.961 1.8997 1.8858 1.9116 1.9702 2.0925 2.0127

WH-4-023
RF 0.1482 3.4064 2.961 2.6643 2.5482 2.3909 2.325 2.2569 2.2913 2.6055
FRF 0.1328 3.2713 2.8204 2.5265 2.3121 2.2125 2.153 2.1514 2.2259 2.4591

WZ-1-84
RF 0.0514 1.4484 1.3295 1.2695 1.2642 1.264 1.2992 1.3357 1.3759 1.3233
FRF 0.0459 1.4604 1.3367 1.2716 1.2381 1.2306 1.2573 1.3035 1.3701 1.3085

BI-2536
RF 0.1117 1.4583 1.5436 1.5907 1.6808 1.7689 1.8626 1.9685 2.1153 1.7486
FRF 0.1116 1.3783 1.4435 1.5221 1.6042 1.6938 1.7954 1.9141 2.0728 1.678

BMS-536924
RF 0.1267 2.0026 1.8233 1.7752 1.8229 1.8784 1.9658 2.0645 2.2417 1.9468
FRF 0.1229 1.9668 1.805 1.7773 1.8113 1.8687 1.9507 2.0696 2.2405 1.9362

BMS-509744
RF 0.061 1.1916 1.1434 1.1819 1.2403 1.3262 1.4328 1.5584 1.7181 1.3491
FRF 0.0598 1.1735 1.1189 1.1543 1.2289 1.3097 1.4059 1.5275 1.6834 1.3253

CMK
RF 0.0542 1.2626 1.2502 1.2695 1.2988 1.3715 1.4291 1.5457 1.6627 1.3863
FRF 0.052 1.2608 1.2323 1.2579 1.2972 1.3541 1.4314 1.53 1.6566 1.3775

Pyrimethamine
RF 0.1023 1.8621 1.7736 1.7716 1.7731 1.8369 1.8816 1.9761 2.1094 1.8731
FRF 0.0977 1.8691 1.7703 1.7436 1.7442 1.7803 1.8403 1.927 2.0521 1.8409
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Table S2: Mean Absolute Error (MAE) between actual and predicted drug sensitivities (AUC and
different IC’s) for 2 methods; RF and FRF. In FRF, node cost is calculated using 8 IC regions.
Here, results of all 140 drugs of GDSC database v5 are shown.

Drug
Name

Model AUC IC10 IC20 IC30 IC40 IC50 IC60 IC70 IC80 Average

JW-7-52-1
RF 0.1656 1.7563 1.7574 1.8373 1.9039 2.0276 2.1625 2.331 2.6052 2.0476
FRF 0.1624 1.7331 1.6977 1.7539 1.828 1.9207 2.0476 2.2316 2.5101 1.9654

A-443654
RF 0.1041 1.1877 1.2548 1.3428 1.4252 1.525 1.6264 1.7499 1.9333 1.5056
FRF 0.1098 1.1481 1.2038 1.2673 1.3345 1.4148 1.5074 1.6219 1.7743 1.409

GW843682X
RF 0.1313 1.4825 1.5624 1.6745 1.8111 1.9213 2.0503 2.2123 2.4399 1.8943
FRF 0.1282 1.3539 1.4181 1.5279 1.6495 1.7819 1.9227 2.0874 2.305 1.7558

MS-275
RF 0.1071 1.4331 1.3756 1.4381 1.5353 1.6439 1.8035 1.9861 2.2498 1.6832
FRF 0.1101 1.4131 1.3375 1.3661 1.4284 1.5403 1.687 1.8716 2.1332 1.5971

Parthenolide
RF 0.0292 1.3288 1.3005 1.2851 1.2953 1.3239 1.3206 1.3652 1.4048 1.328
FRF 0.0252 1.3231 1.2926 1.2821 1.2779 1.2901 1.3136 1.346 1.389 1.3143

KIN001-135
RF 0.0109 0.9776 0.8199 0.7239 0.6385 0.5848 0.5464 0.5196 0.516 0.6658
FRF 0.0084 0.9109 0.7773 0.6848 0.6167 0.5716 0.5382 0.5178 0.5215 0.6424

TGX221
RF 0.0423 2.1298 1.7658 1.5722 1.409 1.2886 1.206 1.1504 1.1496 1.4589
FRF 0.0373 2.0421 1.7232 1.499 1.3511 1.2383 1.1534 1.1117 1.1188 1.4047

Bortezomib
RF 0.1612 1.1812 1.2946 1.4282 1.551 1.6545 1.7758 1.9099 2.0991 1.6118
FRF 0.1573 1.1741 1.2949 1.4047 1.5082 1.6134 1.7261 1.8537 2.0156 1.5738

XMD8-85
RF 0.061 1.2746 1.2539 1.2722 1.3208 1.3816 1.4359 1.5091 1.6198 1.3835
FRF 0.0612 1.2595 1.2201 1.2349 1.2819 1.3317 1.3892 1.4667 1.5738 1.3447

Roscovitine
RF 0.0323 1.2444 1.2559 1.2824 1.3096 1.3652 1.4049 1.4788 1.5651 1.3633
FRF 0.0359 1.2161 1.2168 1.2533 1.2978 1.3431 1.3985 1.4652 1.5597 1.3438

Salubrinal
RF 0.0412 1.1609 1.1683 1.2238 1.2452 1.3132 1.3688 1.4493 1.5688 1.3123
FRF 0.0453 1.1214 1.0955 1.141 1.1998 1.2623 1.3363 1.4309 1.5557 1.2679

Lapatinib
RF 0.035 1.6051 1.438 1.3449 1.2572 1.1899 1.1476 1.1089 1.098 1.2737
FRF 0.0286 1.5788 1.4157 1.3059 1.2172 1.143 1.089 1.0585 1.0568 1.2331

GSK269962A
RF 0.0607 2.4652 2.0184 1.8144 1.6904 1.65 1.6292 1.7006 1.8324 1.8501
FRF 0.0605 2.4226 1.9997 1.7799 1.6436 1.6047 1.6241 1.6956 1.8423 1.8266

Doxorubicin
RF 0.146 1.5127 1.464 1.431 1.4189 1.4387 1.4453 1.4883 1.5702 1.4712
FRF 0.1482 1.5085 1.4499 1.4216 1.4113 1.4209 1.4414 1.4862 1.5749 1.4643

Etoposide
RF 0.145 1.8283 1.7765 1.7773 1.7961 1.8403 1.8841 1.9478 2.0716 1.8653
FRF 0.1431 1.8283 1.7641 1.7639 1.782 1.8172 1.8627 1.9266 2.0524 1.8496

Gemcitabine
RF 0.1459 3.9367 3.4848 3.2466 3.0895 3.0124 2.9827 2.9557 3.0874 3.2245
FRF 0.2146 3.896 3.4867 3.2414 3.0957 3.0027 2.9604 2.9728 3.0809 3.2171

Mitomycin C
RF 0.1171 1.9372 1.7892 1.7216 1.6468 1.5763 1.5434 1.4947 1.4565 1.6457
FRF 0.166 1.9319 1.7791 1.6884 1.6264 1.5792 1.5401 1.5012 1.4665 1.6391

Vinorelbine
RF 0.1313 1.3498 1.3781 1.4062 1.4723 1.5399 1.6081 1.7286 1.8578 1.5426
FRF 0.1311 1.339 1.3442 1.3768 1.4235 1.4918 1.575 1.6774 1.8263 1.5067

NSC-87877
RF 0.0182 0.9975 0.9346 0.9005 0.8663 0.8418 0.8251 0.8191 0.8005 0.8732
FRF 0.0143 0.9655 0.8984 0.8544 0.8233 0.7978 0.7762 0.7607 0.7475 0.828

Bicalutamide
RF 0.0043 0.5256 0.4937 0.4716 0.448 0.4318 0.4067 0.3866 0.3649 0.4411
FRF 0.0034 0.5043 0.4732 0.4495 0.429 0.4099 0.3916 0.372 0.3497 0.4224

QS11
RF 0.0659 1.5704 1.5348 1.5367 1.5418 1.5611 1.5827 1.6017 1.6525 1.5727
FRF 0.0657 1.5393 1.5121 1.5097 1.5186 1.5372 1.562 1.5936 1.641 1.5517

Midostaurin
RF 0.059 1.3132 1.3397 1.3573 1.3883 1.4276 1.4713 1.5155 1.594 1.4259
FRF 0.0579 1.2857 1.3034 1.3379 1.3728 1.4107 1.4553 1.5075 1.5754 1.4061

CHIR-99021
RF 0.0275 1.3387 1.2564 1.1942 1.1607 1.1124 1.0686 1.0328 0.9916 1.1444
FRF 0.0214 1.2826 1.2084 1.1523 1.104 1.0614 1.0224 0.9842 0.9374 1.0941

AP-24534
RF 0.0598 1.8811 1.7809 1.7523 1.7353 1.734 1.7353 1.7346 1.7877 1.7677
FRF 0.0533 1.8183 1.7588 1.7281 1.7159 1.7161 1.7172 1.7198 1.7526 1.7409

AZD6482
RF 0.0638 1.9669 1.706 1.5726 1.4941 1.4239 1.3791 1.3598 1.3879 1.5363
FRF 0.062 1.9497 1.7093 1.5707 1.4812 1.419 1.3785 1.3618 1.3913 1.5327

JNK-9L
RF 0.1081 0.9043 0.8835 0.8868 0.9125 0.9576 1.0019 1.0787 1.1741 0.9749
FRF 0.1117 0.9105 0.8647 0.8666 0.8872 0.9211 0.965 1.0291 1.1202 0.9456

PF-562271
RF 0.0412 1.2589 1.209 1.1953 1.1869 1.2109 1.2469 1.2855 1.3578 1.2439
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Table S2: Mean Absolute Error (MAE) between actual and predicted drug sensitivities (AUC and
different IC’s) for 2 methods; RF and FRF. In FRF, node cost is calculated using 8 IC regions.
Here, results of all 140 drugs of GDSC database v5 are shown.

Drug
Name

Model AUC IC10 IC20 IC30 IC40 IC50 IC60 IC70 IC80 Average

FRF 0.0424 1.2454 1.1901 1.1721 1.1719 1.1927 1.2285 1.2812 1.356 1.2297

DMOG
RF 0.1312 1.282 1.2228 1.2297 1.2427 1.2814 1.3371 1.4255 1.5572 1.3223
FRF 0.133 1.3027 1.2391 1.2319 1.2473 1.2736 1.323 1.4053 1.5426 1.3207

FTI-277
RF 0.017 0.9804 0.9174 0.8753 0.838 0.8089 0.7695 0.7407 0.721 0.8314
FRF 0.0145 0.9717 0.9137 0.8681 0.8288 0.7917 0.7599 0.7315 0.701 0.8208

OSU-03012
RF 0.1211 1.5365 1.5877 1.6314 1.6724 1.7218 1.774 1.8417 1.9437 1.7136
FRF 0.1179 1.4924 1.5354 1.5826 1.6361 1.6905 1.7535 1.8317 1.9336 1.682

Shikonin
RF 0.1557 1.2026 1.2308 1.2686 1.312 1.3616 1.3992 1.4636 1.5541 1.3491
FRF 0.1529 1.1958 1.2223 1.247 1.2749 1.3038 1.3369 1.3785 1.4357 1.2994

AKT inhibitor VIII
RF 0.0424 1.44 1.345 1.2913 1.2431 1.2194 1.1865 1.1679 1.1553 1.2561
FRF 0.0417 1.453 1.3522 1.2966 1.2561 1.2208 1.1905 1.1667 1.1553 1.2614

Embelin
RF 0.0798 0.8046 0.8379 0.8703 0.9357 0.9864 1.0594 1.1543 1.2867 0.9919
FRF 0.0834 0.7968 0.8114 0.8484 0.8979 0.9553 1.0227 1.1102 1.2364 0.9599

FH535
RF 0.0993 1.0428 0.951 0.9502 0.9915 1.0625 1.1634 1.3185 1.519 1.1249
FRF 0.1035 1.041 0.9551 0.9405 0.976 1.043 1.1383 1.2634 1.4528 1.1012

PAC-1
RF 0.0419 1.279 1.2928 1.3061 1.3224 1.3504 1.3731 1.4113 1.4787 1.3517
FRF 0.0374 1.2726 1.2758 1.2896 1.3037 1.3209 1.3453 1.3737 1.4199 1.3252

IPA-3
RF 0.0718 1.4249 1.493 1.5406 1.5882 1.633 1.6929 1.7499 1.8335 1.6195
FRF 0.062 1.4351 1.4978 1.5429 1.5839 1.6248 1.6678 1.7185 1.7867 1.6072

GSK-650394
RF 0.083 1.9389 1.8127 1.7379 1.6825 1.6365 1.6407 1.6421 1.6717 1.7204
FRF 0.0821 1.9194 1.7913 1.7168 1.6742 1.6502 1.643 1.652 1.6793 1.7158

BAY 61-3606
RF 0.0847 1.4156 1.3745 1.3676 1.3639 1.3851 1.4141 1.4754 1.5352 1.4164
FRF 0.084 1.3702 1.3379 1.3305 1.3458 1.3714 1.4056 1.4533 1.5239 1.3923

Thapsigargin
RF 0.1443 2.4606 2.2228 2.125 2.1017 2.1009 2.1735 2.3333 2.5558 2.2592
FRF 0.2006 2.4415 2.2248 2.1392 2.099 2.1106 2.167 2.2942 2.5073 2.2479

Obatoclax Mesylate
RF 0.1403 2.1192 1.8568 1.726 1.6432 1.6261 1.6296 1.6731 1.7857 1.7575
FRF 0.1898 2.0813 1.8454 1.7201 1.6484 1.6151 1.6267 1.6781 1.7878 1.7503

BMS-754807
RF 0.095 2.2446 1.9272 1.7603 1.6571 1.6255 1.6202 1.6669 1.7564 1.7823
FRF 0.0949 2.1717 1.9078 1.7596 1.6652 1.613 1.6063 1.6544 1.7682 1.7683

OSI-906
RF 0.0694 2.1853 1.9067 1.7479 1.6237 1.5188 1.4414 1.341 1.3061 1.6339
FRF 0.0644 2.166 1.9151 1.7471 1.6167 1.5058 1.4085 1.3314 1.2881 1.6223

Bexarotene
RF 0.0379 1.6856 1.4569 1.3395 1.2513 1.1976 1.2045 1.2582 1.3605 1.3443
FRF 0.0384 1.6478 1.4519 1.337 1.2485 1.2035 1.2111 1.2655 1.3683 1.3417

Bleomycin
RF 0.1465 2.8279 2.6156 2.485 2.4248 2.3984 2.4 2.4083 2.5034 2.5079
FRF 0.1869 2.7953 2.5831 2.4724 2.4019 2.371 2.3788 2.4123 2.5022 2.4896

LFM-A13
RF 0.0202 1.1245 0.9644 0.8699 0.804 0.758 0.7283 0.7126 0.7228 0.8356
FRF 0.0184 1.1058 0.9607 0.8679 0.8057 0.7607 0.7251 0.7052 0.7068 0.8298

AUY922
RF 0.1312 1.1848 1.2117 1.2561 1.2907 1.3405 1.3907 1.4608 1.5617 1.3371
FRF 0.1297 1.1737 1.1872 1.2198 1.2552 1.2975 1.3482 1.4148 1.5174 1.3017

Bryostatin 1
RF 0.0241 1.2331 1.1275 1.0628 0.9986 0.9394 0.888 0.8339 0.7944 0.9847
FRF 0.0204 1.215 1.1204 1.0495 0.9872 0.9293 0.873 0.8234 0.7719 0.9712

Pazopanib
RF 0.0561 1.5966 1.4852 1.4074 1.3737 1.3422 1.3316 1.3162 1.3093 1.3953
FRF 0.0534 1.5933 1.4671 1.4006 1.3512 1.3164 1.2917 1.2792 1.2772 1.3721

LAQ824
RF 0.1171 1.0134 0.9509 0.9358 0.9405 0.9547 0.984 1.0351 1.1238 0.9923
FRF 0.119 1.0096 0.9521 0.9311 0.9295 0.9428 0.9638 1.0025 1.0748 0.9758

Epothilone B
RF 0.1433 1.6792 1.636 1.6373 1.659 1.7077 1.737 1.812 1.9295 1.7247
FRF 0.1451 1.676 1.6324 1.6309 1.6429 1.6752 1.7219 1.7882 1.904 1.7089

GSK-1904529A
RF 0.014 0.9711 0.9024 0.855 0.8122 0.7676 0.7378 0.6971 0.6607 0.8005
FRF 0.0116 0.9495 0.8884 0.8393 0.7958 0.7546 0.7192 0.6828 0.6416 0.7839

Tipifarnib
RF 0.1036 2.2791 1.8959 1.7326 1.6667 1.657 1.7012 1.8276 2.0671 1.8534
FRF 0.1211 2.2918 1.9192 1.7418 1.6617 1.6534 1.698 1.8189 2.0461 1.8539

AS601245
RF 0.0666 1.3894 1.3622 1.383 1.3969 1.4299 1.4694 1.5341 1.6179 1.4478
FRF 0.0666 1.36 1.3358 1.3415 1.363 1.3979 1.4462 1.5136 1.6098 1.421
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Table S2: Mean Absolute Error (MAE) between actual and predicted drug sensitivities (AUC and
different IC’s) for 2 methods; RF and FRF. In FRF, node cost is calculated using 8 IC regions.
Here, results of all 140 drugs of GDSC database v5 are shown.

Drug
Name

Model AUC IC10 IC20 IC30 IC40 IC50 IC60 IC70 IC80 Average

AICAR
RF 0.0639 1.0269 1.0315 1.0612 1.0972 1.1428 1.1881 1.2393 1.3417 1.1411
FRF 0.0668 1.032 1.0296 1.0486 1.077 1.1155 1.1654 1.2304 1.3265 1.1281

Camptothecin
RF 0.1269 1.5973 1.5151 1.5145 1.5219 1.5673 1.6265 1.6957 1.8158 1.6067
FRF NaN 1.6203 1.5256 1.5084 1.5273 1.5692 1.6261 1.7031 1.8225 1.6128

Vinblastine
RF 0.1117 1.3215 1.2419 1.2199 1.2175 1.2354 1.2892 1.3667 1.4953 1.2984
FRF 0.12 1.3417 1.2558 1.2267 1.2257 1.2415 1.2834 1.3566 1.4724 1.3005

Cisplatin
RF 0.0592 1.1523 1.1402 1.1525 1.1805 1.2153 1.255 1.3148 1.3796 1.2238
FRF 0.0607 1.1455 1.1276 1.1393 1.1709 1.2068 1.2511 1.3039 1.3755 1.2151

Cytarabine
RF 0.0991 1.7843 1.6124 1.5181 1.4816 1.4744 1.5027 1.5626 1.6881 1.578
FRF 0.1005 1.7876 1.61 1.5156 1.4714 1.4611 1.4841 1.5435 1.6621 1.5669

Docetaxel
RF 0.0952 1.4072 1.333 1.295 1.2839 1.2871 1.3209 1.3588 1.4814 1.3459
FRF 0.0963 1.4254 1.3339 1.2861 1.2713 1.2738 1.3038 1.3626 1.4675 1.3406

Methotrexate
RF 0.0677 1.6933 1.6202 1.5865 1.5476 1.5207 1.4989 1.4832 1.4829 1.5542
FRF 0.0582 1.6171 1.5491 1.5046 1.4724 1.4463 1.4331 1.4225 1.418 1.4829

ATRA
RF 0.0403 2.1161 1.7504 1.5301 1.3344 1.1747 1.0602 1.0062 1.0221 1.3743
FRF 0.0372 1.9996 1.6972 1.49 1.3105 1.1537 1.0337 0.9826 1.0161 1.3354

Gefitinib
RF 0.0314 1.3019 1.1917 1.1168 1.0529 0.9942 0.9415 0.8987 0.8856 1.0479
FRF 0.0262 1.2569 1.1625 1.0939 1.0359 0.9824 0.9296 0.8841 0.8653 1.0263

ABT-263
RF 0.087 1.752 1.6846 1.6421 1.6277 1.6268 1.6465 1.6753 1.7377 1.6741
FRF 0.081 1.7347 1.6664 1.6356 1.6158 1.6015 1.6059 1.6261 1.6819 1.646

Vorinostat
RF 0.0868 0.7416 0.7226 0.7217 0.7418 0.7701 0.8043 0.8558 0.9407 0.7873
FRF 0.0938 0.7441 0.7183 0.7217 0.7374 0.7612 0.7935 0.8382 0.9116 0.7782

Nilotinib
RF 0.0272 1.2416 1.2039 1.176 1.1554 1.1211 1.0933 1.0651 1.0384 1.1369
FRF 0.0214 1.1982 1.1573 1.1257 1.0969 1.0686 1.0399 1.0093 0.9726 1.0835

RDEA119
RF 0.0915 2.0818 1.8439 1.7375 1.6584 1.6133 1.5826 1.5932 1.6336 1.718
FRF 0.0872 2.0382 1.8271 1.6984 1.6085 1.5616 1.5375 1.5337 1.5507 1.6694

CI-1040
RF 0.0801 1.7216 1.5116 1.3926 1.3309 1.2916 1.2795 1.3112 1.3987 1.4047
FRF 0.0791 1.6772 1.4861 1.3904 1.3296 1.2948 1.2845 1.313 1.3826 1.3948

Temsirolimus
RF 0.0605 3.107 2.4579 2.0394 1.7022 1.4974 1.4061 1.4458 1.6783 1.9168
FRF 0.1137 3.0387 2.3981 1.9973 1.7073 1.5012 1.4104 1.4452 1.6829 1.8976

AZD-2281
RF 0.028 1.1966 1.1539 1.1184 1.0839 1.07 1.0567 1.036 1.0143 1.0912
FRF 0.023 1.1603 1.1175 1.0858 1.0572 1.0343 1.0155 0.9952 0.9727 1.0548

ABT-888
RF 0.0144 0.9447 0.8848 0.8447 0.7993 0.7594 0.719 0.685 0.6296 0.7833
FRF 0.0114 0.8949 0.8407 0.7989 0.7613 0.7255 0.6888 0.6488 0.6016 0.7451

Bosutinib
RF 0.0608 1.588 1.5523 1.5198 1.506 1.4876 1.4802 1.4847 1.4832 1.5127
FRF 0.0567 1.5754 1.5287 1.5083 1.4951 1.4841 1.4743 1.4678 1.4686 1.5003

Lenalidomide
RF 0.016 1.0052 0.9387 0.8897 0.8407 0.8038 0.7576 0.7035 0.6485 0.8235
FRF 0.0129 0.9652 0.9017 0.8523 0.8085 0.7671 0.7248 0.6783 0.6235 0.7902

Axitinib
RF 0.0435 1.3575 1.3153 1.2879 1.2808 1.2663 1.2524 1.2651 1.2768 1.2878
FRF 0.0383 1.3407 1.3041 1.2828 1.2651 1.251 1.2418 1.2396 1.2482 1.2717

AZD7762
RF 0.1047 1.2514 1.1954 1.1751 1.1599 1.1632 1.1743 1.2039 1.2718 1.1994
FRF 0.1076 1.2601 1.2016 1.1752 1.1639 1.158 1.1645 1.1946 1.2555 1.1967

GW 441756
RF 0.0316 1.599 1.3779 1.2191 1.1016 0.9982 0.9177 0.8564 0.8428 1.1141
FRF 0.026 1.5017 1.3113 1.1758 1.067 0.9759 0.898 0.8428 0.8363 1.0761

CEP-701
RF 0.0924 1.6556 1.4444 1.342 1.2731 1.2387 1.2494 1.303 1.4221 1.366
FRF 0.1027 1.6428 1.4423 1.3325 1.2636 1.2273 1.2334 1.2889 1.412 1.3553

SB 216763
RF 0.0198 1.0793 1.0495 1.0317 0.9973 0.9823 0.9663 0.9409 0.9195 0.9958
FRF 0.0164 1.0359 1.0057 0.9814 0.9585 0.9361 0.9129 0.888 0.8593 0.9472

17-AAG
RF 0.1087 1.678 1.6017 1.5755 1.547 1.5519 1.5611 1.6035 1.671 1.5987
FRF 0.1058 1.662 1.5823 1.5418 1.5178 1.5106 1.5166 1.5492 1.6233 1.5629

VX-702
RF 0.0182 1.0286 0.94 0.8731 0.8194 0.7664 0.7161 0.6633 0.5946 0.8002
FRF 0.0144 0.9724 0.8959 0.8398 0.7904 0.7437 0.6956 0.6431 0.5797 0.7701

AMG-706
RF 0.0248 1.2973 1.1542 1.0645 0.9935 0.9026 0.8418 0.7904 0.7485 0.9741
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Table S2: Mean Absolute Error (MAE) between actual and predicted drug sensitivities (AUC and
different IC’s) for 2 methods; RF and FRF. In FRF, node cost is calculated using 8 IC regions.
Here, results of all 140 drugs of GDSC database v5 are shown.

Drug
Name

Model AUC IC10 IC20 IC30 IC40 IC50 IC60 IC70 IC80 Average

FRF 0.0196 1.2103 1.0937 1.0077 0.9318 0.862 0.8004 0.7474 0.7164 0.9212

KU-55933
RF 0.028 1.1351 1.1014 1.0778 1.0601 1.054 1.0355 1.0323 1.0445 1.0676
FRF 0.0256 1.1129 1.0832 1.0653 1.0508 1.0366 1.0265 1.0212 1.0236 1.0525

Elesclomol
RF 0.141 1.4571 1.4762 1.4966 1.5546 1.6021 1.657 1.7432 1.8698 1.6071
FRF 0.1409 1.4824 1.4842 1.5052 1.5333 1.5754 1.6297 1.7157 1.8372 1.5954

BIBW2992
RF 0.0455 1.68 1.4938 1.3805 1.2748 1.1871 1.0968 1.0267 0.9668 1.2633
FRF 0.0365 1.5605 1.3988 1.2878 1.1936 1.1062 1.0248 0.9605 0.9066 1.1798

GDC-0449
RF 0.0189 1.0277 1.005 0.9847 0.9597 0.9458 0.9244 0.8995 0.8784 0.9531
FRF 0.016 1.0153 0.9884 0.9657 0.9442 0.9233 0.9023 0.8801 0.8541 0.9342

PLX4720
RF 0.0483 1.5692 1.4689 1.4215 1.3678 1.3222 1.2913 1.2586 1.2538 1.3692
FRF 0.0414 1.5306 1.4469 1.3894 1.3402 1.2967 1.2556 1.2247 1.212 1.337

BX-795
RF 0.062 1.0441 1.0744 1.0978 1.1351 1.1623 1.2135 1.2705 1.3425 1.1675
FRF 0.0674 1.0347 1.0469 1.0758 1.1086 1.1525 1.2035 1.2639 1.3461 1.154

NU-7441
RF 0.0275 1.1714 1.1346 1.1131 1.0902 1.0786 1.0547 1.0453 1.0503 1.0923
FRF 0.0256 1.1641 1.1322 1.1102 1.0899 1.0707 1.0503 1.0344 1.0236 1.0844

SL 0101-1
RF 0.0179 1.1299 1.0358 0.9612 0.8958 0.8294 0.7733 0.7216 0.6886 0.8794
FRF 0.0149 1.0816 0.9956 0.9277 0.8677 0.8122 0.7566 0.7017 0.6723 0.8519

BIRB 0796
RF 0.0305 1.5691 1.3311 1.167 1.0297 0.9419 0.867 0.8257 0.8295 1.0701
FRF 0.025 1.4722 1.2753 1.132 1.0112 0.9085 0.8477 0.8105 0.8169 1.0343

JNK Inhibitor VIII
RF 0.0171 1.0403 0.9667 0.8984 0.8515 0.8095 0.7649 0.7258 0.704 0.8451
FRF 0.014 1.0046 0.9326 0.8766 0.8282 0.7845 0.741 0.6997 0.6739 0.8176

681640
RF 0.0401 1.3126 1.2982 1.2978 1.2961 1.3022 1.3173 1.3265 1.3501 1.3126
FRF 0.0372 1.3074 1.2959 1.2947 1.2963 1.3004 1.3045 1.3135 1.3416 1.3068

Nutlin-3a
RF 0.057 1.62 1.5644 1.5465 1.53 1.5188 1.5043 1.5174 1.5027 1.538
FRF 0.0482 1.5596 1.5159 1.4888 1.4653 1.4444 1.4282 1.4193 1.4194 1.4676

PD-173074
RF 0.0296 1.334 1.259 1.1887 1.14 1.0905 1.0454 1.0031 0.9451 1.1257
FRF 0.024 1.284 1.2063 1.1489 1.0974 1.0486 1.0029 0.961 0.9119 1.0826

ZM-447439
RF 0.0557 1.2916 1.2784 1.2863 1.2974 1.3067 1.3279 1.36 1.3987 1.3184
FRF 0.0583 1.2759 1.26 1.2642 1.2778 1.2975 1.324 1.3599 1.4089 1.3085

RO-3306
RF 0.0325 1.2577 1.2367 1.2154 1.1892 1.1659 1.1581 1.1488 1.1331 1.1881
FRF 0.0281 1.243 1.2111 1.1872 1.1656 1.1445 1.1255 1.1055 1.0845 1.1584

MK-2206
RF 0.0785 1.9689 1.7278 1.5932 1.4912 1.4365 1.4328 1.4115 1.4593 1.5652
FRF 0.0796 1.9406 1.7131 1.5751 1.4836 1.4325 1.4036 1.4055 1.4503 1.5505

PD-0332991
RF 0.0761 2.601 2.1638 1.8999 1.715 1.582 1.4882 1.4441 1.4905 1.7981
FRF 0.0794 2.5353 2.1459 1.894 1.6994 1.5679 1.4838 1.4526 1.4822 1.7826

NVP-BEZ235
RF 0.0832 1.1133 1.0286 1.0121 0.9897 0.9926 0.9951 1.0159 1.068 1.0269
FRF 0.0885 1.1155 1.0373 1.003 0.9856 0.9827 0.9888 1.0111 1.0685 1.0241

GDC0941
RF 0.0946 1.7499 1.6538 1.5902 1.5603 1.5251 1.509 1.5179 1.5467 1.5816
FRF 0.099 1.764 1.6516 1.5958 1.5593 1.5351 1.52 1.5238 1.5546 1.588

AZD8055
RF 0.0734 1.0321 0.949 0.9138 0.8951 0.8889 0.8979 0.9431 1.0052 0.9406
FRF 0.0791 1.0391 0.9537 0.9104 0.8902 0.8863 0.9012 0.9375 1.0096 0.941

PD-0325901
RF 0.0812 2.3433 2.0098 1.8288 1.7015 1.6145 1.5304 1.5044 1.5131 1.7557
FRF 0.0769 2.2177 1.9367 1.7638 1.6408 1.5438 1.4785 1.4531 1.4715 1.6882

SB590885
RF 0.0341 1.4614 1.359 1.3116 1.2473 1.1889 1.1352 1.1127 1.0636 1.235
FRF 0.0256 1.3478 1.2691 1.2125 1.1601 1.1085 1.0632 1.0268 0.9883 1.1471

AZD6244
RF 0.0661 2.1526 1.9101 1.7448 1.6136 1.5017 1.4053 1.3401 1.2745 1.6178
FRF 0.0601 2.1224 1.8862 1.7305 1.5989 1.4829 1.3849 1.3119 1.2494 1.5959

AZD6482
RF 0.0598 1.927 1.5917 1.4154 1.2863 1.208 1.167 1.1855 1.2647 1.3807
FRF 0.0608 1.9065 1.6129 1.4284 1.3027 1.2172 1.1689 1.1828 1.2614 1.3851

CCT007093
RF 0.0186 1.1204 0.9965 0.9101 0.8314 0.7611 0.7174 0.6766 0.6513 0.8331
FRF 0.0154 1.0653 0.9586 0.8785 0.8098 0.7475 0.6955 0.6514 0.6281 0.8043

EHT 1864
RF 0.0319 1.106 1.0437 1.013 0.9898 0.986 0.9899 0.9992 1.0379 1.0207
FRF 0.0361 1.0963 1.0257 0.9957 0.9764 0.9726 0.9781 0.9965 1.0298 1.0089
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Table S2: Mean Absolute Error (MAE) between actual and predicted drug sensitivities (AUC and
different IC’s) for 2 methods; RF and FRF. In FRF, node cost is calculated using 8 IC regions.
Here, results of all 140 drugs of GDSC database v5 are shown.

Drug
Name

Model AUC IC10 IC20 IC30 IC40 IC50 IC60 IC70 IC80 Average

BMS-708163
RF 0.0293 1.5469 1.3072 1.1329 0.9999 0.8894 0.8073 0.7513 0.7346 1.0212
FRF 0.026 1.4647 1.2511 1.1 0.9713 0.8609 0.7795 0.733 0.7283 0.9861

PF-4708671
RF 0.0292 1.1894 1.0955 1.0303 0.9893 0.9533 0.9387 0.9444 0.9531 1.0118
FRF 0.0324 1.1888 1.0877 1.0284 0.9863 0.9572 0.9354 0.9332 0.9525 1.0087

JNJ-26854165
RF 0.0497 0.9948 0.9099 0.8831 0.888 0.9249 0.9739 1.0338 1.1382 0.9683
FRF 0.0542 1.0047 0.9112 0.879 0.8797 0.9081 0.9501 1.0172 1.1193 0.9587

TW 37
RF 0.0997 1.1688 1.0726 1.0199 1.0149 0.9969 1.0216 1.0692 1.1546 1.0648
FRF 0.1119 1.1604 1.0587 1.0154 1.0005 1.0044 1.0245 1.0704 1.1612 1.0619

CCT018159
RF 0.0444 0.9253 0.9811 1.0433 1.0947 1.1444 1.198 1.269 1.3503 1.1258
FRF 0.0455 0.8995 0.9516 1.0032 1.0567 1.1122 1.1703 1.239 1.3314 1.0955

AG-014699
RF 0.032 1.2495 1.2112 1.1764 1.1557 1.1313 1.113 1.1076 1.0955 1.155
FRF 0.0295 1.2243 1.179 1.1516 1.1296 1.1092 1.094 1.0816 1.0694 1.1298
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Figure S2: Distributions of MAE differences between FRF and RF predictions for the 50 bootstrap
set show the robustness of FRF models. 10



Figure S3: Difference between MAE of FRF and MAE of RF for Average IC values for 70 drugs of
GDSC (rest 70 in main manuscript).
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