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Analysis of Energy Efficiency in
Fading Channels under QoS Constraints

Mustafa Cenk Gursoy, Deli Qiao, and Senem Velipasalar

Abstract—Energy efficiency in fading channels in the presence
of Quality of Service (QoS) constraints is studied. Effective
capacity, which provides the maximum arrival rate that a wireless
channel can sustain while satisfying statistical QoS constraints, is
considered. Spectral efficiency–bit energy tradeoff is analyzed in
the low-power and wideband regimes by employing the effective
capacity formulation, rather than the Shannon capacity. Through
this analysis, energy requirements under QoS constraints are
identified. The analysis is conducted under two assumptions:
perfect channel side information (CSI) available only at the
receiver and perfect CSI available at both the receiver and
transmitter. In particular, it is shown in the low-power regime
that the minimum bit energy required under QoS constraints is
the same as that attained when there are no such limitations.
However, this performance is achieved as the transmitted power
vanishes. Through the wideband slope analysis, the increased
energy requirements at low but nonzero power levels in the
presence of QoS constraints are determined. A similar analysis is
also conducted in the wideband regime. The minimum bit energy
and wideband slope expressions are obtained. In this regime, the
required bit energy levels are found to be strictly greater than
those achieved when Shannon capacity is considered. Overall,
a characterization of the energy-bandwidth-delay tradeoff is
provided.

Index Terms—Fading channels, energy efficiency, spectral effi-
ciency, minimum bit energy, wideband slope, statistical quality of
service (QoS) constraints, effective capacity, energy-bandwidth-
delay tradeoff.

I. INTRODUCTION

NEXT generation wireless systems will be designed to pro-
vide high-data-rate communications anytime, anywhere

in a reliable and robust fashion while making efficient use
of resources. This wireless vision will enable mobile multi-
media communications. Indeed, one of the features of fourth
generation (4G) wireless systems is the ability to support
multimedia services at low transmission costs [33, Chap. 23,
available online]. However, before this vision is realized, many
technical challenges have to be addressed. In most wireless
systems, spectral efficiency and energy efficiency are impor-
tant considerations. Especially in mobile applications, energy
resources are scarce and have to be conserved. Additionally,
supporting quality of service (QoS) guarantees is one of
the key requirements in the development of next generation
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wireless communication networks. For instance, in real-time
services like multimedia video conference and live broadcast
of sporting events, the key QoS metric is delay. In such cases,
information has to be communicated with minimal delay.
Satisfying the QoS requirements is especially challenging
in wireless systems because channel conditions and hence,
for instance, the data rates at which reliable communication
can be established, vary randomly over time due to mobility
and changing environment. Under such volatile conditions,
providing deterministic QoS guarantees either is not possible
or, when it is possible, requires the system to operate overly
pessimistically and achieve low performance underutilizing
the resources. Hence, supporting statistical QoS guarantees is
better suited to wireless systems. In summary, the central issue
in wireless systems is to provide the best performance levels
while satisfying the statistical QoS constraints and making
efficient use of resources.

Information theory provides the ultimate performance limits
and identifies the most efficient use of resources. Due to this
fact, wireless fading channels have been extensively studied
from an information-theoretic point of view, considering dif-
ferent assumptions on the availability of the channel side
information (CSI) at the receiver and transmitter (see [1]
and references therein). As also noted above, efficient use
of limited energy resources is of paramount importance in
most wireless systems. From an information-theoretic per-
spective, the energy required to reliably send one bit is a
metric that can be adopted to measure the energy efficiency.
Generally, energy-per-bit requirement is minimized, and hence
the energy efficiency is maximized, if the system operates in
the low-power or wideband regime. Recently, Verdú in [2]
has determined the minimum bit energy required for reliable
communications over a general class of channels, and studied
the spectral efficiency–bit energy tradeoff in the wideband
regime. This work has provided a quantitative analysis of the
energy-bandwidth tradeoff.

While providing powerful results, information-theoretic
studies generally do not address delay and QoS constraints
[3]. For instance, results on the channel capacity give insights
on the performance levels achieved when the blocklength
of codes becomes large [30]. The impact upon the queue
length and queueing delay of transmission using codes with
large blocklength can be significant. Situation is even fur-
ther exacerbated in wireless channels in which the ergodic
capacity has an operational meaning only if the codewords
are long enough to span all fading states. Now, we also have
dependence on fading, and in slow fading environments, large
delays can be experienced in order to achieve the ergodic
capacity. Due to these considerations, performance metrics

1536-1276/09$25.00 c© 2009 IEEE
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such as capacity versus outage [4] and delay limited capacity
[5] have been considered in the literature for slow fading
scenarios. For a given outage probability constraint, outage
capacity gives the maximum transmission rate that satisfies
the outage constraint. Delay-limited capacity is defined as
the outage capacity associated with zero outage probability,
and is a performance level that can be attained regardless of
the values of the fading states. Hence, delay limited capacity
can be seen as a deterministic service guarantee. However,
delay limited capacity can be low or even zero, for instance
in Rayleigh fading channels even if both the receiver and
transmitter have perfect channel side information.

More recently, delay constraints are more explicitly consid-
ered and their impact on communication over fading channels
is analyzed in [7] and [8]. In these studies, the tradeoff
between the average transmission power and average delay
is identified. In [7], this tradeoff is analyzed by considering
an optimization problem in which the weighted combination
of the average power and average delay is minimized over
transmission policies that determine the transmission rate by
taking into account the arrival state, buffer occupancy, and the
channel state jointly together.

In this paper, we follow a different approach. We consider
statistical QoS constraints and study the energy efficiency
under such limitations. For this analysis, we employ the notion
of effective capacity [13], which can be seen as the maximum
throughput that can be achieved by the given energy levels
while providing statistical QoS guarantees. Effective capacity
formulation uses the large deviations theory and incorporates
the statistical QoS constraints by capturing the rate of decay
of the buffer occupancy probability for large queue lengths. In
this paper, to measure the energy efficiency, we consider the
bit energy which is defined as the average energy normalized
by the effective capacity. We investigate the attainable bit
energy levels in the low-power and wideband regimes. For
constant source arrival rates, our analysis provides a tradeoff
characterization between the energy and delay.

The rest of the paper is organized as follows. Section II
briefly discusses the system model. Section III reviews the
concept of effective capacity with statistical QoS guarantees,
and the spectral efficiency-bit energy tradeoff. In Section IV,
energy efficiency in the low-power regime is analyzed. Section
V investigates the energy efficiency in the wideband regime.
Finally, Section VI concludes the paper.

II. SYSTEM MODEL

We consider a point-to-point communication system in
which there is one source and one destination. The general
system model is depicted in Fig.1, and is similar to the one
studied in [17]. In this model, it is assumed that the source
generates data sequences which are divided into frames of
duration T . These data frames are initially stored in the buffer
before they are transmitted over the wireless channel. The
discrete-time channel input-output relation in the ith symbol
duration is given by

y[i] = h[i]x[i] + n[i] i = 1, 2, . . . . (1)

where x[i] and y[i] denote the complex-valued channel input
and output, respectively. We assume that the bandwidth avail-
able in the system is B and the channel input is subject to the

Fig. 1. The system model.

following average energy constraint: E{|x[i]|2} ≤ P̄ /B for
all i. Since the bandwidth is B, symbol rate is assumed to be
B complex symbols per second, indicating that the average
power of the system is constrained by P̄ . Above, n[i] is a
zero-mean, circularly symmetric, complex Gaussian random
variable with variance E{|n[i]|2} = N0. The additive Gaussian
noise samples {n[i]} are assumed to form an independent and
identically distributed (i.i.d.) sequence. Finally, h[i] denotes
the channel fading coefficient, and {h[i]} is a stationary and
ergodic discrete-time process. We assume that perfect channel
state information (CSI) is available at the receiver while the
transmitter has either no or perfect CSI. The availability of CSI
at the transmitter is facilitated through CSI feedback from the
receiver. Note that if the transmitter knows the channel fading
coefficients, it employs power and rate adaptation. Otherwise,
the signals are sent with constant power.

Note that in the above system model, the average trans-
mitted signal-to-noise ratio is SNR = P̄ /(N0B). We denote
the magnitude-square of the fading coefficient by z[i] =
|h[i]|2, and its distribution function by pz(z). When there
is only receiver CSI, instantaneous transmitted power is
P [i] = P̄ and instantaneous received SNR is expressed as
γ[i] = P̄ z[i]/(N0B). Moreover, the maximum instantaneous
service rate R[i] is

R[i] = B log2

(
1 + SNRz[i]

)
bits/s. (2)

We note that although the transmitter does not know z[i],
recently developed rateless codes such as LT [26] and Raptor
[27] codes enable the transmitter to adapt its rate to the
channel realization and achieve R[i] without requiring CSI at
the transmitter side [28], [29]. For systems that do not employ
such codes, service rates are smaller than that in (2), and the
results in this paper serve as upper bounds on the performance.

When also the transmitter has CSI, the instantaneous service
rate is

R[i] = B log2

(
1 + μopt(θ, z[i])z[i]

)
bits/s (3)

where μopt(θ, z) is the power-adaptation policy that maximizes
the effective capacity, which will be discussed in Section III-A.
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This optimal power policy is determined in [17]:

μopt(θ, z) =

{
1

α
1

β+1 z
β

β+1
− 1

z z ≥ α

0 z < α
(4)

where θ is the QoS exponent defined in the following section
in (6), β = θTB

loge 2 is the normalized QoS exponent and α
is the channel threshold chosen to satisfy the average power
constraint:

SNR = E{μopt(θ, z)} = E

{[
1

α
1

β+1 z
β

β+1

− 1
z

]
τ(α)

}
(5)

where τ(α) = 1{z ≥ α} =
{

1 if z ≥ α
0 if z < α

is the indicator

function. Note that μopt(θ, z) depends on the average power
constraint only through the threshold α. Moreover, power allo-
cation strategy μopt(θ, z), while varying with the instantaneous
values of the fading coefficients, depends on the queueing
constraints statistically only through the QoS exponent θ, and
hence is not a function of the instantaneous queue lengths.

We finally note that since the maximum service rates
are equal to the instantaneous channel capacity values, we
assume through information-theoretic arguments that when
the transmitter transmits at the rate R[i] given in (2) and
(3), information is reliably received at the receiver and no
retransmissions are required.

III. PRELIMINARIES

In this section, we briefly explain the notion of effective
capacity and also describe the spectral efficiency-bit energy
tradeoff. We refer the reader to [13] and [14] for more detailed
exposition of the effective capacity.

A. Effective Capacity

Satisfying quality of service (QoS) requirements is cru-
cial for the successful deployment and operation of most
communication networks. Hence, in the networking literature,
how to handle and satisfy QoS constraints has been one of
the key considerations for many years. In addressing this
issue, the theory of effective bandwidth of a time-varying
source has been developed to identify the minimum amount of
transmission rate that is needed to satisfy the statistical QoS
requirements (see e.g., [9], [10], [11], and [31]).

In wireless communications, the instantaneous channel ca-
pacity varies randomly depending on the channel conditions.
Hence, in addition to the source, the transmission rates
for reliable communication are also time-varying. The time-
varying channel capacity can be incorporated into the theory of
effective bandwidth by regarding the channel service process
as a time-varying source with negative rate and using the
source multiplexing rule ([31, Example 9.2.2]). Using a similar
approach, Wu and Negi in [13] defined the effective capacity
as a dual concept to effective bandwidth. The effective capac-
ity provides the maximum constant arrival rate1 that a given
time-varying service process can support while satisfying a
QoS requirement specified by θ. If we define Q as the

1Additionally, if the arrival rates are time-varying, effective capacity
specifies the effective bandwidth of an arrival process that can be supported
by the channel.

stationary queue length, then θ is the decay rate of the tail
distribution of the queue length:

lim
q→∞

log P (Q ≥ q)
q

= −θ. (6)

Therefore, for large qmax, we have the following approxima-
tion for the buffer violation probability: P (Q ≥ qmax) ≈
e−θqmax . Hence, while larger θ corresponds to more strict
QoS constraints, smaller θ implies looser QoS guarantees.
Moreover, if D denotes the steady-state delay experienced in
the buffer, then it is shown in [23] that P{D ≥ dmax} ≤
c
√

P{Q ≥ qmax} for constant arrival rates. This result pro-
vides a link between the buffer and delay violation probabil-
ities. In the above formulation, c is some positive constant,
qmax = admax, and a is the source arrival rate. The analysis
and application of effect capacity in various settings has
attracted much interest recently (see e.g., [14]–[23]).

Let {R[i], i = 1, 2, . . .} denote the discrete-time stationary
and ergodic stochastic service process and S[t] �

∑t
i=1 R[i]

be the time-accumulated process. Assume that the Gärtner-
Ellis limit of S[t], expressed as [10]

ΛC(θ) = lim
t→∞

1
t

loge E{eθS[t]} (7)

exists. Then, the effective capacity is given by [13]
CE(SNR, θ) = −ΛC(−θ)

θ = − limt→∞ 1
θt loge E{e−θS[t]}. If

the fading process {h[i]} is constant during the frame duration
T and changes independently from frame to frame, then the
effective capacity simplifies to

CE(SNR, θ) = − 1
θT

loge E{e−θTR[i]} bits/s. (8)

This block-fading assumption is an approximation for practical
wireless channels, and the independence assumption can be
justified if, for instance, transmitted frames are interleaved
before transmission, or time-division multiple access is em-
ployed and frame duration is proportional to the coherence
time of the channel.

It can be easily shown that effective capacity specializes to
the Shannon capacity and delay-limited capacity in the asymp-
totic regimes. As θ approaches 0, constraints on queue length
and queueing delay relax, and effective capacity converges
to the Shannon ergodic capacity: (Eq. 9) where expectations
are with respect to z. Note that in (9), μopt(0, z) is the water-
filling power adaptation policy, which maximizes the Shannon
capacity. On the other hand, as θ → ∞, QoS constraints be-
come more and more strict and effective capacity approaches
the delay-limited capacity which as described before can be
seen as a deterministic service guarantee: (Eq. 10) where
σ = SNR

E{1/z} and zmin is the minimum value of the random
variable z, i.e., z ≥ zmin ≥ 0 with probability 1. Note that in
Rayleigh fading, σ = 0 and zmin = 0, and hence the delay-
limited capacities are zero in both cases and no deterministic
guarantees can be provided.

B. Spectral Efficiency vs. Bit Energy

In [2], Verdú has extensively studied the spectral efficiency–
bit energy tradeoff in the wideband regime. In this work, the
minimum bit energy required for reliable communication over
a general class of multiple-input multiple-output channels is
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lim
θ→0

CE(SNR, θ) =
{

E{B log2(1 + SNRz)} CSI at the RX
E {B log2 (1 + μopt(0, z)z)} CSI at the RX and TX

(9)

lim
θ→∞

CE(SNR, θ) =
{

B log2(1 + SNRzmin) CSI at the RX
B log2 (1 + σ) CSI at the RX and TX

(10)

identified. In general, if the capacity is a concave function of
SNR, then the minimum bit energy is achieved as SNR → 0.
Additionally, Verdú has defined the wideband slope, which
is the slope of the spectral efficiency curve at zero spectral
efficiency. While the minimum bit energy is a performance
measure as SNR → 0, wideband slope has emerged as a tool
that enables us to analyze the energy efficiency at low but
nonzero power levels and at large but finite bandwidths. In
[2], the tradeoff between spectral efficiency and energy effi-
ciency is analyzed considering the Shannon capacity. In this
paper, we perform a similar analysis employing the effective
capacity. Here, we denote the effective capacity normalized
by bandwidth or equivalently the spectral efficiency in bits
per second per Hertz by

CE(SNR, θ) =
CE(SNR, θ)

B
= − 1

θTB
loge E{e−θTR[i]}.

(11)

Hence, we characterize the spectral efficiency–bit energy
tradeoff under QoS constraints. Note that effective capacity
provides a characterization of the arrival process. However,
since the average arrival rate is equal to the average departure
rate when the queue is in steady-state [12], effective capacity
can also be seen as a measure of the average rate of transmis-
sion. We first have the following preliminary result.

Lemma 1: The normalized effective capacity, CE(SNR),
given in (11) is a concave function of SNR.

Proof : It can be easily seen that e−θTR[i], where R[i] =
B log2(1 + SNRz[i]), is a log-convex function of SNR because
−R[i] is a convex function of SNR. Since log-convexity is
preserved under sums, g(x) =

∫
f(x, y)dy is log-convex in

x if f(x, y) is log-convex in x for each y [32]. From this
fact, we immediately conclude that E{e−θTR[i]} is also a log-
convex function of SNR. Hence, loge E{e−θTR[i]} is convex
and − loge E{e−θTR[i]} is concave in SNR.

When also the transmitter has CSI, we have R[i] =
B log2(1 + μopt(θ, z[i])z[i]). In this case, the concavity of CE

in SNR can be easily proven using the facts that E{e−θTR[i]}
is a non-decreasing, concave function of the threshold value
α, and α is a non-increasing function of SNR. �

Then, it can be easily seen that Eb

N0 min
under QoS constraints

can be obtained from [2]

Eb

N0 min
= lim

SNR→0

SNR

CE(SNR)
=

1
ĊE(0)

. (12)

At Eb

N0 min
, the slope S0 of the spectral efficiency versus Eb/N0

(in dB) curve is defined as [2]

S0 = lim
Eb
N0

↓ Eb
N0 min

CE( Eb

N0
)

10 log10
Eb

N0
− 10 log10

Eb

N0 min

10 log10 2. (13)

Considering the expression for normalized effective capacity,
the wideband slope can be found from2

S0 = −2(ĊE(0))2

C̈E(0)
loge 2 (14)

where ĊE(0) and C̈E(0) are the first and second derivatives,
respectively, of the function CE(SNR) in bits/s/Hz at zero
SNR [2]. Eb

N0 min
and S0 provide a linear approximation of the

spectral efficiency curve at low spectral efficiencies, i.e.,

CE

(
Eb

N0

)
=

S0

10 log10 2

(
Eb

N0

∣∣∣∣
dB

− Eb

N0 min

∣∣∣∣
dB

)
+ ε (15)

where Eb

N0

∣∣∣
dB

= 10 log10
Eb

N0
and ε = o

(
Eb

N0
− Eb

N0 min

)
.

IV. ENERGY EFFICIENCY IN THE LOW-POWER REGIME

As discussed in the previous section, the minimum bit
energy is achieved as SNR = P̄

N0B → 0, and hence energy
efficiency improves if one operates in the low-power regime
in which P̄ is small, or the high-bandwidth regime in which
B is large. From the Shannon capacity perspective, similar
performances are achieved in these two regimes, which there-
fore can be seen as equivalent. However, as we shall see in
this paper, considering the effective capacity leads to different
results at low power and high bandwidth levels especially
in the absence of rich multipath fading. In this section, we
consider the low-power regime for fixed bandwidth, B, and
study the spectral efficiency vs. bit energy tradeoff by finding
the minimum bit energy and the wideband slope. We would
like to remark that the results in this section will also apply
in the wideband regime if there is rich multipath fading.
The wideband channel can be broken into non-interacting
subchannels, each experiencing flat fading, and due to rich
multipath fading, the number of subchannels increases linearly
with increasing bandwidth. This in turn causes the power
allocated to each subchannel to diminish, and each subchannel
operates in the low-power regime.

A. CSI at the Receiver Only

We initially consider the case in which only the receiver
knows the channel conditions. Substituting (2) into (11), we
obtain the spectral efficiency given θ as a function of SNR:

CE(SNR) = − 1
θTB

loge E{e−θTB log2(1+SNRz)} (16)

= − 1
θTB

loge E{(1 + SNRz)−β} (17)

2We note that the expressions in (12) and (14) differ from those in [2]
by a constant factor due to the fact that we assume that the units of CE is
bits/s/Hz rather than nats/s/Hz.
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where again β = θTB
loge 2 . Note that since the analysis is

performed for fixed θ throughout the paper, we henceforth
express the effective capacity only as a function of SNR to
simplify the expressions. The following result provides the
minimum bit energy and the wideband slope.

Theorem 1: When only the receiver has perfect CSI, the
minimum bit energy and wideband slope are

Eb

N0 min
=

loge 2
E{z} and S0 =

2

(β + 1) E{z2}(
E{z}

)2 − β
. (18)

Proof : The first and second derivative of CE(SNR) with respect
to SNR are given by

ĊE(SNR) =
1

loge 2
E{(1 + SNRz)−(β+1)z}

E{(1 + SNRz)−β} and, (19)

C̈E(SNR) =
β

loge 2

(
E{(1 + SNRz)−(β+1)z}

E{(1 + SNRz)−β}
)2

− β + 1
loge 2

E{(1 + SNRz)−(β+2)z2}
E{(1 + SNRz)−β} , (20)

respectively, which result in the following expressions when
SNR = 0:

ĊE(0) =
E{z}
loge 2

and

C̈E(0) = − 1
loge 2

(
(β + 1)E{z2} − β

(
E{z})2

)
.

(21)

Substituting the expressions in (21) into (12) and (14) provides
the desired result. �

From the above result, we immediately see that Eb

N0 min
does not depend on θ and the minimum received bit energy
is Er

b

N0 min
= Eb

N0 min
E{z} = loge 2 = −1.59 dB. Note that

if the Shannon capacity is used in the analysis, i.e., if
θ = 0 and hence β = 0, Er

b

N0 min
= −1.59 dB and S0 =

2/(E{z2}/E
2{z}). Therefore, we conclude from Theorem

1 that as the average power P̄ decreases, energy efficiency
approaches the performance achieved by a system that does
not have QoS limitations. However, we note that wideband
slope is smaller if θ > 0. Hence, the presence of QoS
constraints decreases the spectral efficiency or equivalently
increases the energy requirements for fixed spectral efficiency
values at low but nonzero SNR levels.

Fig. 2 plots the spectral efficiency as a function of the
bit energy for different values of θ in the Rayleigh fading
channel with E{|h|2} = E{z} = 1. Note that the curve
for θ = 0 corresponds to the Shannon capacity. Throughout
the paper, we set the frame duration to T = 2ms in the
numerical results. For the fixed bandwidth case, we have
assumed B = 105 Hz. In Fig. 2, we observe that all
curves approach Eb

N0 min
= −1.59 dB as predicted. On the

other hand, we note that the wideband slope decreases as θ
increases. Therefore, at low but nonzero spectral efficiencies,
more energy is required as the QoS constraints become more
stringent. Considering the linear approximation in (15), we
can easily show for fixed spectral efficiency C

(
Eb

N0

)
for which

the linear approximation is accurate that the increase in the bit
energy in dB, when the QoS exponent increases from θ1 to θ2,
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Fig. 2. Spectral efficiency vs. Eb/N0 in the Rayleigh fading channel with
fixed B; CSI known at the receiver only.

is Eb

N0

∣∣∣∣
dB,θ2

− Eb

N0

∣∣∣∣
dB,θ1

=
(

1
S0,θ2

− 1
S0,θ1

)
C

(
Eb

N0

)
10 log10 2.

B. CSI at both the Transmitter and Receiver

We now consider the case in which both the transmitter and
receiver have perfect CSI. Substituting (3) into (11), we have

CE(SNR) = − 1
θTB

loge E

{
e−θTB log2

(
1+μopt(θ,z)z

)}
(22)

= − 1
θTB

loge

(
F (α) + E

{( z

α

)− β
β+1

τ(α)
})
(23)

where F (α) = E{1{z < α}}. We note that the normalized
effective capacity expression in (23) is obtained assuming that
the optimal power-adaptation policy μopt(θ, z) given in (4) is
employed in the system. Maximizing the effective capacity,
this optimal power allocation policy minimizes the bit energy
requirements. For this case, following an approach similar to
that in [24], we obtain the following result.

Theorem 2: When both the transmitter and receiver have
perfect CSI, the minimum bit energy with optimal power
control and rate adaptation becomes

Eb

N0 min
=

loge 2
zmax

(24)

where zmax is the essential supremum of the random variable
z, i.e., z ≤ zmax with probability 1.
Proof : We assume that zmax is the maximum value that the
random variable z can take, i.e., P (z ≤ zmax) = 1. From (5),
we can see that as SNR vanishes, α increases to zmax, because
otherwise while SNR approaches zero, the right most side of
(5) does not. Then, we can suppose for small enough SNR that
α = zmax − η where η → 0 as SNR → 0. Replacing α by
zmax − η in (5) and (23), we get (25) through (30)(see above)
where pz is the distribution of channel gain z. (27) is obtained
by expressing the expectations in (26) as integrals. (28) follows
by using the L’Hospital’s Rule and applying Leibniz Integral
Rule. The first term in (29) is obtained after straightforward
algebraic simplifications and the result follows immediately.
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Eb

N0 min
= lim

SNR→0

SNR

C(SNR)
(25)

= lim
η→0

E

{[
1

(zmax−η)
1

β+1 z
β

β+1
− 1

z

]
τ(zmax − η)

}

− 1
θTB loge

(
F (zmax − η) + E

{(
z

zmax−η

)− β
β+1 τ(zmax − η)

}) (26)

= lim
η→0

∫ zmax

zmax−η

(
1

(zmax−η)
1

β+1 z
β

β+1
− 1

z

)
pz(z)dz

− 1
θTB loge

( ∫ zmax−η

0 pz(z)dz+
∫ zmax

zmax−η

(
z

zmax−η

)− β
β+1 pz(z)dz

) (27)

= lim
η→0

1
β+1 (zmax − η)−

β+2
β+1

∫ zmax

zmax−η
pz(z)

z
β

β+1
dz

− 1
β loge 2

− β
β+1 (zmax−η)

− 1
β+1

∫ zmax
zmax−η

pz(z)

z

β
β+1

dz

∫
zmax−η
0 pz(z)dz+

∫
zmax
zmax−η

(
z

zmax−η

)− β
β+1 pz(z)dz

(28)

= lim
η→0

( ∫ zmax−η

0 pz(z)dz+
∫ zmax

zmax−η

(
z

zmax−η

)− β
β+1 pz(z)dz

)
loge 2

zmax − η
(29)

=
loge 2
zmax

(30)

Above, we have implicitly assumed that zmax is finite. For
fading distributions with unbounded support, zmax = ∞. In
this case, the result can be shown by replacing in (26)–(29)
zmax by ∞, and zmax − η by the threshold α, and letting
α → ∞ in the limit. After these steps, the final expression,
which is akin to that in (29), becomes limα→∞

loge 2
α = 0,

proving that (24) also holds for the case in which zmax = ∞.
�

Note that for distributions with unbounded support, we have
zmax = ∞ and hence Eb

N0 min
= 0 = −∞ dB. In this case, it

is easy to see that the wideband slope is S0 = 0.
Example 1: Specifically, for the Rayleigh fading channel,

as in [25], it can be shown that
limSNR→0

CE(SNR)

SNR loge( 1
SNR ) loge 2

= 1. Then, spectral efficiency

can be written as CE(SNR) ≈ SNR loge(
1

SNR ) loge 2, so
Eb

N0 min
= limSNR→0

SNR
CE(SNR) = limSNR→0

1
loge( 1

SNR ) loge 2
=

0 which also verifies the above result.
Remark: We note that as in the case in which there

is CSI at the receiver, the minimum bit energy achieved
under QoS constraints is the same as that achieved by the
Shannon capacity [24]. Hence, the energy efficiency again
approaches the performance of an unconstrained system as
power diminishes. Searching for an intuitive explanation of
this observation, we note that arrival rates that can be sup-
ported vanishes with decreasing power levels. As a result, the
impact of buffer occupancy constraints on the performance
lessens. Note that in contrast, increasing the bandwidth while
keeping the power fixed increases the instantaneous service
rate R[i] for a given fading realization, which in turn increases
the effective capacity and hence the arrival rates supported
by the system. Therefore, limitations on the buffer occupancy
will have significant impact upon the energy efficiency in
the wideband regime especially in the presence of sparse
multipath fading with limited degrees of freedom, as will be
discussed in Section V.
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Fig. 3. Spectral efficiency vs. Eb/N0 in the Rayleigh fading channel with
fixed B; CSI known at the transmitter and receiver.

Fig. 3 plots the spectral efficiency vs. bit energy for different
values of θ in the Rayleigh fading channel with E{z} = 1. In
all cases, we observe that the bit energy goes to −∞ as the
spectral efficiency decreases. We also note that at small but
nonzero spectral efficiencies, the required energy is higher as
θ increases.

V. ENERGY EFFICIENCY IN THE WIDEBAND REGIME

In this section, we study the performance at high band-
widths while the average power P̄ is kept fixed. We investigate
the impact of θ on Eb

N0 min
and the wideband slope S0 in this

wideband regime. Note that as the bandwidth increases, the
average signal-to-noise ratio SNR = P̄ /(N0B) and the spectral
efficiency decreases. Note further that the analysis also applies
if the wideband channel is broken into subchannels, each with
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bandwidth that is equal to the coherence bandwidth, and the
coherence bandwidth grows with increasing bandwidth due to
multipath sparsity while the number of subchannels remains
bounded. If both the coherence bandwidth and the number of
subchannels grow without bound with increasing bandwidth,
then the minimum bit energy and wideband slope values can
be obtained from the results of Section IV by letting B and
hence β = θTB

loge 2 go to infinity when θ > 0.

A. CSI at the Receiver Only

We define ζ = 1
B and express the spectral efficiency (17)

as a function of ζ:

CE(ζ) = − ζ

θT
loge E{e− θT

ζ log2(1+ P̄ ζ
N0

z)}. (31)

The bit energy is again defined as Eb

N0
= SNR

CE(SNR) =
P̄ζ
N0

CE(ζ) =
P̄

N0
CE(ζ)/ζ . It can be readily verified that CE(ζ)/ζ monotonically
increases as ζ → 0 (or equivalently as B → ∞) (see Appendix
A). Therefore

Eb

N0 min
= lim

ζ→0

P̄ ζ/N0

CE(ζ)
=

P̄ /N0

ĊE(0)
(32)

where ĊE(0) is the first derivative of the spectral efficiency
with respect to ζ at ζ = 0. The wideband slope S0 can be
obtained from the formula (14) by using the first and second
derivatives of the spectral efficiency CE(ζ) with respect to ζ.

Theorem 3: When only the receiver has CSI, the minimum
bit energy and wideband slope, respectively, in the wideband
regime are given by

Eb

N0 min
= −

θT P̄
N0

loge E{e− θT P̄
N0 loge 2 z}

, and (33)

S0 = 2
(N0 loge 2

θT P̄

)2 E{e− θT P̄
N0 loge 2 z}

(
loge E{e− θT P̄

N0 loge 2 z}
)2

E{e− θT P̄
N0 loge 2 z

z2}
.

(34)

Proof : The first and second derivatives of CE(ζ) are given
by

ĊE(ζ) = − 1
θT

loge E{e− θT
ζ log2(1+

P̄ ζz
N0

)}

−
E

{
e−

θT
ζ log2(1+

P̄ζz
N0

)
[

log2(1+
P̄ζz
N0

)

ζ −
P̄z

N0 loge 2

1+ P̄ζz
N0

]}

E{e− θT
ζ log2(1+ P̄ ζz

N0
)}

,

(35)

and (36) on the next page. First, we define the function f(ζ) =
log2(1+

P̄ ζz
N0

)

ζ2 −
P̄ z

N0ζ loge 2

1+ P̄ ζz
N0

. Then, we can show (37) (see next

page) which yields

lim
ζ→0

f(ζ) =
1

2 loge 2

(
P̄ z

N0

)2

. (38)

Using (38), we can easily find from (35) that

lim
ζ→0

ĊE(ζ) = − 1
θT

loge E

{
e−

θT P̄
N0 loge 2 z

}
(39)
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Fig. 4. Spectral efficiency vs. Eb/N0 in the Rayleigh fading channel with
fixed P̄ ; CSI known at the receiver only.

from which (33) follows immediately. Moreover, from (36),
we can derive

lim
ζ→0

C̈E(ζ) = − 1
loge 2

( P̄

N0

)2 E{e− θT P̄
N0 loge 2 zz2}

E{e− θT P̄
N0 loge 2 z}

. (40)

Evaluating (14) with (39) and (40) provides (34). �
It is interesting to note that unlike the low-power regime

results, we now have

Eb

N0 min
=

− θTP̄
N0

loge E{e− θT P̄
N0 loge 2 z}

≥
− θTP̄

N0

E{loge e
− θT P̄

N0 loge 2 z}
=

loge 2

E{z}

where Jensen’s inequality is used. Therefore, we will be
operating above −1.59 dB unless there are no QoS constraints
and hence θ = 0. For the Rayleigh channel, we can specialize
(33) and (34) to obtain (41).

It can be easily seen that in the Rayleigh channel, the
minimum bit energy monotonically increases with increas-
ing θ. Fig. 4 plots the spectral efficiency curves as a
function of bit energy in the Rayleigh channel. In all the
curves, we set P̄ /N0 = 104. We immediately observe
that more stringent QoS constraints and hence higher val-
ues of θ lead to higher minimum bit energy values and
also higher energy requirements at other nonzero spectral
efficiencies. The wideband slope values are found to be
equal to S0 = {1.0288, 1.2817, 3.3401, 12.3484} for θ =
{0.001, 0.01, 0.1, 1}, respectively. Note that the wideband
slope increases with increasing θ, indicating that the increment
in the bit energy required to increase the spectral efficiency
by a fixed amount in the wideband regime is smaller when θ
is larger. We also note that despite this observation, since the
minimum bit energy is also higher for larger θ, the absolute
bit energy requirements at a given spectral efficiency are
higher when θ is increased. For instance, in Fig. 4, when
θ = 0.001, increasing the spectral efficiency from 0.05 to
0.15 bits/s/Hz requires the bit energy level to increase by
0.3 dB from Eb

N0
= −1.389 dB to −1.089 dB. On the other

hand, when θ = 1, the same increase in the spectral efficiency
necessitates a much smaller bit energy increase of 0.046 dB
from Eb

N0
= 7.712 dB to 7.758 dB. However, note at the same
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C̈E(ζ) =
θT

ζ

⎛
⎜⎜⎝

E

{
e−

θT
ζ log2(1+ P̄ζz

N0
)
[

log2(1+ P̄ζz
N0

)

ζ −
P̄z

N0 loge 2

1+ P̄ζz
N0

]}

E{e− θT
ζ log2(1+

P̄ ζz
N0

)}

⎞
⎟⎟⎠

2

−
E

{
e−

θT
ζ log2(1+ P̄ζz

N0
)

[
θT
ζ

(
log2(1+

P̄ ζz
N0

)

ζ −
P̄ z

N0 loge 2

1+ P̄ ζz
N0

)2

+ loge 2
( P̄ z

N0 loge 2

1+ P̄ ζz
N0

)2
]}

E{e− θT
ζ log2(1+ P̄ζz

N0
)}

. (36)

lim
ζ→0

f(ζ) = lim
ζ→0

log2(1+
P̄ ζz
N0

)

ζ −
P̄ z

N0 loge 2

1+ P̄ ζz
N0

ζ

= lim
ζ→0

(
− log2(1 + P̄ ζz

N0
)

ζ2
+

P̄ z
N0 loge 2

1 + P̄ ζz
N0

+
( P̄ z

N0 loge 2

1 + P̄ ζz
N0

)2

loge 2
)

= − lim
ζ→0

f(ζ) +
1

loge 2

(
P̄ z

N0

)2

(37)

Eb

N0 min
=

θT P̄
N0

loge(1 + θT P̄
N0 loge 2 )

and

S0 =
(

N0 loge 2
θT P̄

loge(1 +
θT P̄

N0 loge 2
) + loge(1 +

θT P̄

N0 loge 2
)
)2

.

(41)
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time that the absolute bit energy levels are much higher for
the case of θ = 1.

We finally note that Eb

N0 min
and S0 now depend on θ and

P̄
N0

. Fig. 5 plots Eb

N0 min
as a function of these two parameters.

Probing into the inherent relationships among these parameters
can give us some interesting results, which are helpful in
designing wireless networks. For instance, for some P̄ /N0

required to achieve some specific transmission rate, we can
find the most stringent QoS guarantee possible while attaining
a certain efficiency in the usage of energy, or if a QoS

requirement θ is specified, we can find the minimum power
P̄ to achieve a specific bit energy.

B. CSI at both the Transmitter and Receiver

To analyze Eb

N0 min
in this case, we initially obtain the

following result and identify the limiting value of the threshold
α as the bandwidth increases to infinity.

Theorem 4: In wideband regime, the threshold α in the
optimal power adaptation scheme (4) satisfies

lim
ζ→0

α(ζ) = α∗ (42)

where α∗ is the solution to

E

{[
loge

( z

α∗
) 1

z

]
τ(α∗)

}
=

θT P̄

N0 loge 2
. (43)

Moreover, for θ > 0, α∗ < ∞.
Proof : Recall from (5) that the optimal power adaptation rule
should satisfy the average power constraint:

SNR =
P̄ ζ

N0
= E

{( 1

α
1

β+1 z
β

β+1

− 1
z

)
τ(α)

}
(44)

= E

{[(( z

α

) 1
β+1 − 1

)
1
z

]
τ(α)

}
(45)

where β = θTB
loge 2 = θT

ζ loge 2 . For the case in which θ = 0, if
we let ζ → 0, we obtain from (45) that

0 = E

{[( z

α∗ − 1
) 1

z

]
τ(α∗)

}
(46)

where α∗ = limζ→0 α(ζ). Using the fact that loge x ≤ x − 1
for x ≥ 1, we have loge

(
z

α∗
) ≤ z

α∗ − 1 for z ≥ α∗ which
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0 ≤ E

{[
loge

( z

α∗
) 1

z

]
τ(α∗)

}
(47)

≤ E

{[( z

α∗ − 1
) 1

z

]
τ(α∗)

}
= 0 =⇒ E

{[
loge

( z

α∗
) 1

z

]
τ(α∗)

}
= 0

implies (47) (see next page) proving (43) for the case of θ = 0.
In the following, we assume θ > 0. We first define g(ζ) =(

z
α

) 1
β+1 =

(
z
α

) ζ loge 2
ζ loge 2+θT and take the logarithm of both sides

to obtain

loge g(ζ) =
ζ loge 2

ζ loge 2 + θT
loge

z

α
. (48)

Differentiation over both sides leads to

ġ(ζ)
g(ζ)

=
θT loge 2

(ζ loge 2 + θT )2
loge

z

α
− ζ loge 2

ζ loge 2 + θT

α̇

α
(49)

where ġ and α̇ denote the first derivatives g and α, respectively,
with respect to ζ. Noting that g(0) = 1, we can see from (49)
that as ζ → 0, we have

ġ(0) =
loge 2
θT

loge

z

α∗ (50)

where α∗ = limζ→0 α(ζ). For small values of ζ, the function
g admits the following Taylor series:

g(ζ) =
( z

α

) 1
β+1

= g(0) + ġ(0)ζ + o(ζ) = 1 + ġ(0)ζ + o(ζ).
(51)

Therefore, we have( z

α

) 1
β+1 − 1 =

loge 2
θT

loge

( z

α∗
)

ζ + o(ζ). (52)

Then, from (45), we can write

SNR = E

{[(
loge 2
θT

loge

( z

α

)
ζ + o(ζ)

)
1
z

]
τ(α)

}
. (53)

If we divide both sides of (53) by SNR = P̄ ζ
N0

and let ζ → 0,
we obtain

lim
ζ→0

SNR

SNR
= lim

ζ→0

SNR
P̄ ζ
N0

= 1 =
N0 loge 2

θT P̄
E

{[
loge

( z

α∗

) 1

z

]
τ (α∗)

}
(54)

from which we conclude that E
{[

loge

(
z

α∗
)

1
z

]
τ(α∗)

}
=

θT P̄
N0 loge 2 , proving (43) for θ > 0.

Using the fact that loge

(
z
α

)
< z

α for z ≥ 0, we can write

0 ≤ E

{[
loge

( z

α

) 1
z

]
τ(α)

}
≤ E

{
1
α

τ(α)
}

≤ 1
α

. (55)

Assume now that limζ→0 α(ζ) = α∗ = ∞. Then, the
rightmost side of (55) becomes zero in the limit as ζ → 0
which implies that E

{[
loge

(
z

α∗
)

1
z

]
τ(α∗)

}
= 0. From (43),

this is clearly not possible for θ > 0. Hence, we have proved
that α∗ < ∞ when θ > 0. �

Remark: As noted before, wideband and low-power regimes
are equivalent when θ = 0. Hence, as in the proof of Theorem
2, we can easily see in the wideband regime that the threshold
α approaches the maximum fading value zmax as ζ → 0
when θ = 0. Hence, for fading distributions with unbounded
support, α → ∞ with vanishing ζ. The threshold being very
large means that the transmitter waits sufficiently long until
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Fig. 6. Threshold of channel gain α vs. ζ in the Rayleigh fading channel;
CSI known at the transmitter and receiver.

the fading assumes very large values and becomes favorable.
That is how arbitrarily small bit energy values can be attained.
However, in the presence of QoS constraints, arbitrarily long
waiting times will not be permitted. As a result, α approaches
a finite value (i.e., α∗ < ∞) as ζ → 0 when θ > 0. Moreover,
from (43), we can immediately note that as θ increases, α∗ has
to decrease. This fact can also be observed in Fig. 6 in which α
vs. ζ is plotted in the Rayleigh fading channel. Consequently,
arbitrarily small bit energy values will no longer be possible
when θ > 0 as will be shown in Theorem 5.

The spectral efficiency with optimal power adaptation is
now given by

CE(ζ) = − ζ

θT
loge

(
F (α) + E

{( z

α

)− θT
θT+ζ loge 2

τ(α)
})
(56)

where again F (α) = E{1{z < α}} and τ(α) = 1{τ ≥ α}.
Theorem 5: When both the receiver and transmitter have

CSI, the minimum bit energy and wideband slope in the
wideband regime are given by

Eb

N0 min

= −
θT P̄
N0

loge ξ
and S0 =

ξ(loge ξ)2 loge 2

θT ( P̄α∗
N0

+ α̇(0)E{ 1
z τ(α∗)})

(57)

where ξ = F (α∗) + E{α∗
z τ(α∗)}, and α̇(0) is the derivative

of α with respect to ζ, evaluated at ζ = 0.

Proof : Substituting (56) into (32) leads to

Eb

N0 min

= lim
ζ→0

P̄ ζ/N0

− ζ
θT loge

(
F (α) + E

{(
z
α

)− θT
θT +ζ loge 2

τ(α)
})

(58)
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= − θT P̄

N0 loge

(
F (α∗) + E

{
α∗
z τ(α∗)

}) . (59)

After denoting ξ = F (α∗) + E{α∗
z τ(α∗)}, we obtain the

expression for minimum bit energy in (57).
Meanwhile, CE(ζ) has the following Taylor series expan-

sion up to second order:

CE(ζ) = ĊE(0)ζ +
1
2
C̈E(0)ζ2 + o(ζ2). (60)

Therefore, the second derivative of CE with respect to ζ at
ζ = 0 can be computed from

C̈E(0) = 2 lim
ζ→0

CE(ζ) − ĊE(0)ζ
ζ2

. (61)

From the derivation of (59) and (32), we know that

ĊE(0) = − 1
θT

loge

(
F (α∗) + E

{α∗

z
τ(α∗)

})
. (62)

Then, see (63) through (66) where α̇ is the derivative
of α with respect to ζ. Above, (65) is obtained by using
L’Hospital’s Rule. Evaluating (14) with (62) and (66), and
combining with the result in (43), we obtain the expression
for S0 in (57). �

It is interesting to note that the minimum bit energy is
strictly greater than zero for θ > 0. Hence, we see a
stark difference between the wideband regime and low-power
regime in which the minimum bit energy is zero for fading
distributions with unbounded support. Fig. 7 plots the spectral
efficiency curves in the Rayleigh fading channel and is in per-
fect agreement with the theoretical results. Obviously, the plots
are drastically different from those in the low-power regime
(Fig. 3) where all curves approach −∞ as the spectral effi-
ciency decreases. In Fig. 7, the minimum bit energy is finite for
the cases in which θ > 0. The wideband slope values are com-
puted to be equal to S0 = {0.3081, 1.0455, 2.5758, 4.1869}.
Fig. 8 plots the Eb

N0 min
as a function of θ and P̄ /N0. Generally

speaking, due to power and rate adaptation, Eb

N0 min
in this

case is smaller compared to that in the case in which only the
receiver has CSI. This can be observed in Fig. 9 where the
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minimum bit energies are compared. From Fig. 9, we note that
the presence of CSI at the transmitter is especially beneficial
for very small and also large values of θ. While the bit energy
in the CSIR case approaches −1.59 dB with vanishing θ, it
decreases to −∞ dB when also the transmitter knows the
channel. On the other hand, when θ ≈ 10−3, we interestingly
observe that there is not much to be gained in terms of the
minimum bit energy by having CSI at the transmitter. More
specifically, power adaptation in this case does not result
in significant improvements in the asymptotic value of the
(unnormalized) effective capacity CE achieved as B → ∞.
We note from (33) and (57) that the minimum bit energy
expressions have a common expression in the numerator while
the expressions in the denominator are proportional to the
asymptotic value of CE . When P̄ /N0 = 106, T = 2ms
and θ = 10−3, we can easily compute for the Rayleigh

channel that − loge E{e− θT P̄
N0 loge 2 z} = 1.357. In the case of

CSIT, we have α∗ = 0.0716 and − loge ξ = 1.507, verifying
our conclusion above. For θ > 10−3, we again start having
improvements with the presence of CSIT.
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C̈E(0) = 2 lim
ζ→0

− ζ
θT loge

(
F (α) + E

{(
z
α

)− θT
θT +ζ loge 2

τ(α)
})

ζ2

+
ζ

θT loge

(
F (α∗) + E

{
α∗
z τ(α∗)

})
ζ2

(63)

= − 2
θT

lim
ζ→0

loge

F (α)+E

{(
α
z

) θT
θT+ζ loge 2 τ(α)

}
F (α∗)+E

{
α∗
z τ(α∗)

}
ζ

(64)

= − 2
θT

lim
ζ→0

E

{
(α

z )
θT

θT+ζ loge 2

(
− θT loge 2

(θT+ζ loge 2)2 loge

(
α
z

)
+ θT α̇

(θT+ζ loge 2)α

)
τ(α)

}

F (α∗) + E

{
α∗
z τ(α∗)

} (65)

= −2 loge 2
(θT )2

E

{
α∗
z loge

(
z

α∗

)
τ(α∗)

}
+ θT α̇(0)

loge 2 E{ 1
z τ(α∗)}

F (α∗) + E

{
α∗
z τ(α∗)

} , (66)

ĊE(ζ) = − 1
ζ2 loge 2

E{e− θT
ζ loge 2(1+ P̄ ζ

N0
z)[ loge(1 + P̄ ζ

N0
z) −

P̄ ζ
N0

z

1+ P̄ ζ
N0

z

]}
E{e− θT

ζ log2(1+
P̄ζ
N0

z)}
. (68)
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Throughout the paper, numerical results are provided for the
Rayleigh fading channel. However, note that the theoretical re-
sults hold for general stationary and ergodic fading processes.
Hence, other fading distributions can easily be accommodated
as well. In Fig. 10, we plot the spectral efficiency vs. bit energy
curves for the Nakagami-m fading channel with m = 2.

VI. CONCLUSION

In this paper, we have analyzed the energy efficiency in
fading channels under QoS constraints by considering the
effective capacity as a measure of the maximum throughput
under certain statistical QoS constraints, and analyzing the bit
energy levels. Our analysis has provided a characterization of

the energy-bandwidth-delay tradeoff. In particular, we have
investigated the spectral efficiency vs. bit energy tradeoff in
the low-power and wideband regimes under QoS constraints.
We have elaborated the analysis under two scenarios: perfect
CSI available at the receiver and perfect CSI available at both
the receiver and transmitter. We have obtained expressions for
the minimum bit energy and wideband slope. Through this
analysis, we have quantified the increased energy requirements
in the presence of statistical QoS constraints. While the bit
energy levels in the low-power regime can approach those
that can be attained in the absence of QoS constraints, we
have shown that strictly higher bit energy values are needed
in the wideband regime especially in the presence of sparse
multipath fading with limited degrees of freedom. We have
provided numerical results by considering the Rayleigh and
Nakagami fading channels and verified the theoretical conclu-
sions.

APPENDIX A

Considering (31), we denote

CE(ζ) =
CE(ζ)

ζ
= − 1

θT
loge E{e− θT

ζ log2(1+
P̄ ζ
N0

z)}. (67)

The first derivative of CE(ζ) with respect to ζ is given by
(68).

We let ν = P̄ ζ
N0

z ≥ 0, and define y(ν) = loge(1+ν)− ν
1+ν ,

where y(0) = 0. It can be easily seen that ẏ = ν
(1+ν)2 ≥ 0,

so y(ν) ≥ 0 holds for all ν. Then, we immediately observe
that ĊE(ζ) < 0 for ζ > 0. Therefore, CE(ζ)

ζ monotonically
increases with decreasing ζ.
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