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The promise of higher grain yields as a result of the development and production of 

hybrid wheat (Triticum aestivum L.) has not been fully realized primarily due to the high 

cost of seed production.  Anther extrusion is a key trait that improves pollen availability, 

and thus, is expected to enhance hybrid wheat seed production yields.  Hard winter wheat 

germplasm adapted to the US Great Plains was visually assessed for anther extrusion in 

the field and greenhouse environments.  Significant genotypic differences were detected 

and high broad-sense heritability was calculated (ranging from 0.62 to 0.85) for anther 

extrusion in the field.  Over 50% of the genotypes were visually assessed as 5 or higher 

(1 lowest to 9 highest extrusion) in both 2014 and 2015.  Visual ratings made in the 

greenhouse were not highly correlated (r=0.40*) with those made in the field, indicating 

that selection for anther extrusion should be conducted in the field.  A chemical 

hybridizing agent, CROSOIR 100®, was used to induce male sterility and produce hybrid 

seed to determine the significance of anther extrusion on hybrid seed production.  Hybrid 

seed yield as determined by weight was weakly correlated in 2015 (r=0.60*) but not 

significantly correlated in 2016 with anther extrusion, indicating that anther extrusion 

likely improves hybrid seed set.  However, hybrid seed set results must also be 

interpreted while considering the phytotoxic effects of the CHA, and its possible impact 

based on genotype.
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Introduction: 
 Wheat (Triticum aestivum L.) ranks third in global production behind maize (Zea 

mays L.) and rice (Orya sativa L.) for food crops (FAOSTAT, 2017).  It is important to 

improve wheat yields to meet the increasing demand associated with a rising global 

population which is estimated to reach 9 billion by the year 2050 and increased affluence 

(FAOSTAT, 2017).  According to the Consultative Group on International Agricultural 

Research (CGIAR, 2016), food production will need to increase by at least 50 percent 

(1.4% per year) between 2010 and 2050.  This increase may be especially difficult to 

achieve when considering the negative impact of climate change.  To meet this demand, 

improved genetics coupled with the best agronomic practices must be developed.  

Improvements in genetics (exploiting heterosis in non-hybrid crops) will be critical for 

future grain yield improvements, but current plant breeding methodology has not 

provided the annual increases needed to meet projected future demand (CGIAR, 2016; 

Flavell, 2016).  A study done to estimate grain yield increases from 1984 to 2008 for 

Great Plains wheats found that the increase in genetic gain was only about 1% per year 

(Graybosch and Peterson, 2010).  Because the authors focused on genotypes adapted to 

the US Great Plains, results of this study demonstrates that a different breeding approach 

is needed to reach the goal of 1.4% per year in as suggested by CGIAR (2016).   

Hybrid wheat presents a new option to increase genetic gain over traditional 

cultivars, in that hybrid wheat should result in higher grain yields, improved resistance to 

pests and pathogens, and grain yield stability, particularly in marginal production 

environments (Boeven et al., 2016a; Cisar and Cooper, 2002).  Longin et al. (2012) 

estimated heterosis in wheat ranged from 3.5% to 15%, while Zhao et al. (2015) reported 
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a hybrid which yielded 1 Mg ha-1 more than a released cultivar ‘Tobak’ which is 

approximately 9% better.  For hybrid wheat to be a commercial success, it must be 

economically feasible to produce enough hybrid seed at a price farmers are willing to pay 

based on increased yield or value over inbred cultivars.  According to Longin et al. 

(2012), hybrid breeding and production of automatous cereal crops has not achieved the 

levels of maize because of the high seeding rates required, low heterosis, and a lack of 

economically viable hybrid seed production techniques in wheat.  Although these 

problems have limited the success of hybrid wheat, both public and private sector 

initiatives have been started in recent years to improve hybrid performance and reduce 

production costs.   

To improve the economic viability of hybrid wheat seed production, there must be 

a clear understanding of what morphological traits will help optimize seed set (or seed 

production) on the female parent while minimizing the need for large numbers of male 

parent plants (pollinators).  The female parent should be male sterile, accomplished with 

a chemical hybridizing agent (CHA) or cytoplasmic male sterility (CMS), with the 

glumes open (gaping) that expose the receptive stigma to the pollen shed from the male 

parent for a long time period (Langer et al., 2014).  De Vries (1971) estimated that 

stigmas stay receptive between 2 and 6 days optimally but reported receptivity up to 13 

days so extending the pollination window would increase the diversity of crosses that can 

be made due to differences in parental genotype anthesis date.  The ideal male parent is a 

taller, exhibits differential flowering between tillers and has large anthers that exhibit 

excellent extrusion from the floret (measure of anthers outside the floret).  It would also 

produce abundant pollen that stays viable for longer than half an hour (D’Souza, 1970; 
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Whitford et al., 2013).  It is estimated that a wheat plant produces about 2.5% the total 

pollen that a maize tassel produces so increasing the amount of pollen and its availability 

(anther extrusion) is an important goal (De Vries, 1971).    Male characteristics 

(specifically anther extrusion) have been the focus of recent research and have been 

reported as the limiting factor for hybrid wheat seed production (Boeven et al., 2016b). 

Identifying ideal male parents has been a challenge since interest in hybrid wheat 

started in the 1960’s.  Researchers looked to change wheat floral characteristics to make 

it more compatible for cross-pollination.  Research done by De Vries (1973), D’Souza 

(1970), Lucken (1986), and others focused on improving anther extrusion, anther length, 

and amount of pollen dispersed to produce hybrid wheat seed.  Breeding for floral traits 

in wheat that foster outcrossing is difficult because the traits are difficult to characterize 

by phenotyping and the characterization is labor-intensive.  Consequently, breeding for 

floral traits often requires additional labor costs (Langer et al., 2014).  A common trait 

which garnered the most interest is anther extrusion because exposing anthers outside the 

floret should increase the amount of pollen available to the female parent.  Anther 

extrusion is thought to be ideal for initial selection of male parents as many genotypes 

can be visually rated relatively quickly in the field (Langer et al., 2014).  Research from 

Europe suggests that anther extrusion is a quantitative trait under the control of genes 

with small effects but seems to be highly heritable with reported heritability ranging from 

0.71 to 0.91 (Boeven et al., 2016b; Langer et al., 2014; Muqaddasi et al., 2016; Skinnes et 

al., 2010).  With such high heritability, anther extrusion might be a candidate for 

selection in the greenhouse but with the genotype by environmental interactions reported 

this may not be possible (Boeven et al., 2016b; Langer et al., 2014). Although anther 
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extrusion is believed to be an important floral trait known to impact the success of 

outcrossing, there are few recently published results that characterize its impact on 

producing hybrid wheat seed using North American germplasm  

The goals of this research were to: 1. utilize a diverse, adapted germplasm pool to 

identify variation for anther extrusion on the basis of a visual assessment 2. determine if 

anther extrusion in a greenhouse environment was predictive of anther extrusion under 

field conditions, and 3. assess the importance of anther extrusion to hybrid seed 

production.  

Materials and Methods 

Visual Assessment of Anther Extrusion 

 Visual assessment for anther extrusion was conducted on a total of 288 hard 

winter wheat genotypes (Table 1/Appendix Table 1).  Both released and experimental 

genotypes were rated from breeding programs across the US Great Plains region with the 

majority of genotypes coming from the University of Nebraska Lincoln.  Ratings were 

taken on the Triplicate (TRP), Nebraska Interstate Nursery (NIN), Irrigated/Dry (IRDR) 

yield trial, and Regional Performance Nursery (RPN, a nursery made by combining the 

Southern and Northern Regional Performance Nurseries and adding enough additional 

experimental genotypes to create a 90 entry trial) during 2014 and 2015 at two locations, 

Lincoln and Mead, Nebraska, USA (Table 2/ Appendix Table 2).  These locations were 

chosen because of the relative ease of accessing them to repeatedly assess entries for 

anther extrusion.  The trials were designed as alpha lattices with 3 to 4 replications per 

location depending on the trial and were created via Agrobase Gen II® Software 

(Agronomix, Inc. Winnipeg, Canada).  Genotypes were planted in 3.0 m long four row 
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plots with 30 cm between rows in 2014 and in 3.0 m long five row plots with 22.8 cm 

between rows in 2015 at a seeding rate of 66 kg ha-1.  Twenty-nine entries from the 

NIN14 were also grown in the greenhouse and planted in 10 cm square pots.  Greenhouse 

grown plants were planted in early November, vernalized in place between 6°C to 20°C 

with no supplemental light until January where the day length was gradually lengthened 

with artificial light to 16 h light, 8 h dark by the end of February and thereafter.  These 

greenhouse grown genotypes were assessed for anther extrusion in March.   

 Anther Extrusion is a trait which can be assessed by visually rating to what extent 

anthers are presented outside of the glumes of the florets. Genotypes were visually rated 

for anther extrusion using a scale from one to nine with one indicating that little or only 

the tip of the anther is visible and nine indicating high number of anther fully presented 

outside of the floret (Figure 1).  Visual assessment was chosen over more intensive 

metrics to maximize the number of genotypes which could be assessed in the limited time 

available.  Anther extrusion was taken when 50 percent of the spikes had anthers showing 

and were shedding pollen, which is anthesis date.  This protocol was done to standardize 

the timing of the assessment to decrease bias in the field.  Factors which affected the 

genotypes’ assessment included distribution of anthers along the wheat spike, the number 

of anthers seen per spikelet (maximum of nine is normally possible based on the 

assumption the primary, secondary, and tertiary florets have similar anthesis dates), and 

the variability of anthers extruded between flowering spikes within each plot (Figure 1).   

 Statistical analyses was completed using the ASREML 3.0 R package (Gilmour et 

al., 2009).  Variance components were calculated using the restricted maximum 
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likelihood (REML) method, with all terms treated as random effects except replicates at 

single locations (three levels of measurement) and the location term (two levels of 

measurement) for multiple location analyses were treated as fixed effects.  Significance 

testing was done with 95% confidence intervals for variance components using the nadiv 

R package (variance components were significant if the interval did not contain zero).  

Genotypes were treated as a random effect because no selection had been carried out for 

anther extrusion in any of the trials so it was reasonable to assume there was a 

representative sample of genotypes.  Best linear unbiased predictions (BLUPs) along with 

mean adjusted BLUPs were calculated for genotypes at both single locations and across 

locations when possible.  Broad sense heritability (H2) was calculated for single locations 

and multi-location trials (Figure 2/Appendix Figure 2).  Correlations between greenhouse 

assessments and mean adjusted BLUPs (combined analysis) from the NIN14 were 

calculated using SAS software 9.3 Proc Corr, copyright © 2002-2010 by SAS Institute 

Inc., Cary, NE, USA. 

Hybrid Seed Production 

 In 2015 and 2016, to determine the relative impact of anther extrusion on hybrid 

seed production, a complete diallel crossing scheme which included 25 parental 

genotypes from the University of Nebraska and Texas A&M University wheat breeding 

programs was planted (Table 3).  Genotypes with anther extrusion ratings of 5 or higher 

in previous breeding trials were included in the diallel scheme.  To produce the necessary 

hybrid seed, 25 crossing blocks were created.  Each crossing block was surrounded by a 

single male planted in a solid four row strip with 30 cm between rows at a seeding rate of 

47 kg ha-1 with 26 females planted in paired plots (13 x 2) 3.0 m long four row plots with 
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30 cm between rows at a seeding rate of 66 kg ha-1 (Figure 3).  Male parents were planted 

at a reduced seeding rate (25 g per plot) to encourage tillering which could potentially 

extend flowering.  An extra genotype (NE10478-1) was added as a female parent to even 

out the number of female plots as there was space for 26 female plots in each crossing 

block.  All 25 crossing blocks were originally planted at Lincoln, but a storm destroyed 

five of blocks just after planting.  Those blocks were replanted at Mead due to lack of 

space at Lincoln. 

 In 2016, the seed production trial was repeated with 18 of the crossing blocks 

planted in Mead, NE and seven planted in Texas (only the 18 crossing blocks at Mead 

will be discussed for the 2016 analysis).  As with the trial in 2015, each crossing block 

had one solid male strip surrounding 26 female plots.  Plots and strips were planted with 

five rows with 22.8cm between rows instead of four rows with 30 cm between rows using 

the same seeding rates from 2015.  Decreasing row width in the female plots was thought 

help increase tiller synchrony (reduce late tillering) for CHA optimization. 

 Male sterility was induced by the use of the CHA CROSOIR 100® (common 

name sintofen, 1-(4-chlorophenyl)-1,4-dihydro-5-(2-methoxyethoxy)-4-oxo-3-

cinnolinecarboxylic acid, Saaten-Union Recherche, St. Denis, France).  The timing and 

rate of application were as described on the product label.  Two to three wax paper spike 

bags per plot were placed over single spikes to prevent cross pollination as a way to 

confirm male sterility and the efficacy of the CHA.   Male parents were visually assessed 

for anther extrusion and anthesis date.  Plants treated with CHA were confirmed as male 

sterile, and visually assessed for any phytotoxic effects of the CHA.  The date at which 
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75% of the spikes in a plot had florets completely opened and receptive to pollen 

(personal communication A. Easterly) was also recorded.    

 An anther stigma interval (ASI) was determined for hybrid combinations, which 

was defined as the difference between the date of female gaping and the anthesis date of 

the male.  The ASI was used to determine the optimal anthesis date for parental 

combinations and also to assess how anther extrusion affects pollination over time. 

However gape dates were difficult to record in 2015 because weather limited the number 

of days that data could be taken.  May 2015 (when the gape dates needed to be taken) had 

rainfall in excess of 27 cm compared to the normal average around 10 cm (UNL School 

of Natural Resources, 2015).  Early observations indicated that the difference between 

gape date and anthesis date was about two days due to the activity of the CHA and lack 

of self-pollination.  Using this average, estimated gape dates were calculated for females, 

which were determined to have suspicious gape date data (caused by our not being able 

to measure gaping daily) by using the anthesis date of the male counterpart and adding 

two days to that value.  The cutoff for successful cross-pollination was set at an ASI of 

seven days because it was assumed that later tillers would shed pollen no longer than 

seven days in Nebraska. De Vries (1971) reported depending on weather conditions, 

wheat spikes flowered over a period of four to five days.  In Germany, with a longer 

grain filling period and generally lower temperatures during flowering, Langer et al. 

(2014) reported minimum flowering duration of 8 d and mean of 12 d. Hence, it was 

reasonable to assume pollination was possible seven days after anthesis date.  The 2016 

hybrid production trial did not have the weather issues experienced in 2015.  Gape dates 
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from 2016 were determined to be accurate and the delay between gape date and anthesis 

date was determined to be between two and four days. 

Female plots in the crossing blocks at Lincoln and Mead were harvested with a 

Wintersteiger USA Classic (Salt Lake City, Utah) plot combine to determine grain 

weight.  The mean female grain weights (only weights from crosses which had 

compatible ASI) from each crossing block were correlated using SAS Software 9.3 Proc 

Corr to anther extrusion ratings from the corresponding male parents to determine if there 

was a relationship between anther extrusion and hybrid seed production at both locations 

separately and combined in 2015. The data from 2016 was correlated using only data 

from the Mead, NE location.  Cross-pollination success rates were determined by 

comparing the average grain weight of the male parent plots and the grain weight of the 

hybrid counterpart, for example the average weight of the ‘Freeman’ male plots 

compared to the weight of Freeman x Freeman hybrid plot.  Finally, reduced seed 

production capacity due to phytotoxicity was assessed by examining differences for ASI 

between 2015 and 2016 along with cross-pollination success rates from 2016.  

Results and Discussion 

Visual Assessment of Anther Extrusion 

 Evaluation for anther extrusion began in 2014 on the University of Nebraska’s 

elite yield trials at Lincoln and Mead, NE.  The distribution of visual ratings for anther 

extrusion was checked for normality due to visual anther extrusion assessments being 

categorical and found to be approximately normal (Appendices) hence ANOVA could be 

used for analyses.  In total, 288 genotypes were assessed between eight trials over two 

years with the trials having similar distributions (Figure 4).  Significant differences for 
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anther extrusion were observed among genotypes but the genotype by location interaction 

was not significant as the 95 percent confidence interval contained the null hypothesis of 

zero (Table 4).  In 2015, the Regional Performance Nursery was assessed along with elite 

yield trials at Lincoln and Mead, NE.  Again all trials had significant differences between 

genotypes but the genotype by location interaction was not significant based on the 

confidence intervals (Table 4).  The lack of genotype by location interaction for anther 

extrusion is understandable given that anther extrusion is a highly heritable trait (Langer 

et. al., 2014) and Peterson (1992) found that Lincoln and Mead cluster together 

agronomically, hence are relatively similar testing locations.   

High variability for anther extrusion was found among genotypes from the 

Nebraska breeding program and breeding programs across the Great Plains with over 

75% of the trials having a mean rating of five or higher and genotype ratings ranging 

from one to nine (Figure 4).  Greater than 50% of the genotypes scored above five for 

anther extrusion, which indicated that Nebraska and Great Plains germplasm have many 

candidates for male parental genotypes.  Along with the large numbers of good 

genotypes, broad sense heritability for anther extrusion ranged from 0.62 to 0.85 (Table 

4).  High heritability values are consistent with previous findings from Boeven et al. 

(2016b), Langer et al. (2014), Muqaddasi et al. (2016), and Skinnes et al. (2010) in 

Europe and indicated that breeding for better anther extrusion should be possible and that 

individual genotype performance should be repeatable for anther extrusion.  

Genotype performance was determined using predicted values from mean 

adjusted BLUPs (Table 2).  Some genotypes were consistently high performers for anther 
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extrusion across years and locations.  For example, in 2014 and 2015, Nebraska release 

Freeman was among the top five genotypes and had mean adjusted BLUPs ranging from 

6.3 to 7.1 in the TRP14L, TRP15L, TRP15M, NIN14M, and NIN15M (Table 1, Table 2).  

Conversely, there were genotypes which were consistently among the poorest performers 

for anther extrusion.  In 2014 and 2015, ‘Scout 66’ had mean adjusted BLUPs ranging 

from 3.6 to 4.7 in the NIN14L, NIN14M, and NIN15M.  ‘Camelot’, only used as a check 

in 2014, was the most consistent low performing genotype with mean adjusted BLUPs 

ranging from 2.1 to 2.5 in the TRP14L, NIN14L, and NIN14M.  Interestingly, other 

genotypes did not perform as consistently.  For example, NHH11569 was the top ranked 

genotype in the NIN at Lincoln in 2014 (7.1) but ranked 23rd at Mead (6.5).  NE13672 

and NE13629 were ranked 14th and 15th in the TRP14L (6.2 and 6.1) but ranked 42 and 

43 (4.7 and 4.6) in the NIN15L. The genotypes which did not perform as consistently 

indicated that environment has an effect on some genotypes, despite the locations and 

genotype x location being non-significant.  Evaluating genotypes in more diverse 

environments may cause the environment to have a significant effect on anther extrusion 

performance. 

Twenty nine entries of the NIN were assessed for anther extrusion in both the 

greenhouse and the field (NIN14 combined analysis).  A correlation of r=0.40* between 

greenhouse and field anther extrusion assessments suggests that it may be difficult to 

utilize greenhouse anther extrusion evaluations of genotypes to predict performance for 

anther extrusion in the field.  Upon examining individual genotype performance, a 

number of genotypes had large differences between the two assessments.  For example, 
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NHH11569 had a field mean adjusted BLUP of 7.0 and a greenhouse assessment of 2.0, 

and NE12488 had a mean adjusted BLUP of 5.6 but a 2.0 in the greenhouse.  

‘Goodstreak’ had a large difference between field (4.9) and greenhouse (7.0) indicating 

that the greenhouse did not have a consistent negative effect on anther extrusion.  

Freeman and Camelot had close similarity between field and greenhouse assessments.  

Freeman had a mean adjusted BLUP of 7.2 and a greenhouse assessment of 7.0.  Camelot 

had a mean adjusted BLUP of 2.5 and a greenhouse assessment of 1.0.  The relatively low 

correlation between field and greenhouse anther extrusion assessments suggests that 

breeders would not want to assess germplasm for anther extrusion in a greenhouse 

environment in the absence of also doing so in a field environment.  To make selections 

based only on greenhouse anther extrusion data risks overlooking germplasm with better 

than average anther extrusion in the field, and it is the field environment where the 

commercial production of hybrid seed is expected to take place. 

Anther Extrusion is a difficult trait to quantify.  Although, with the help of a 

standardized visual rating scale, anther extrusion can be assessed quickly given that there 

is a small window of opportunity in which to make visual assessments.  Also high wind 

and rain can dislodge anther from spikes before an adequate visual assessment can be 

made.  As Langer et al. (2014) and Boeven et al. (2016b) reported, visual ratings data for 

anther extrusion are best used for initial selection since counting anthers outside of the 

floret is more labor intensive, and doing so would significantly reduce throughput.  In the 

present study, anther extrusion assessments made in the field based on a standard visual 

scale were informative, and enabled excellent anther extruding genotypes to easily be 
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distinguished and separated from poor performing genotypes.  Additionally, there were 

genotypes that could be consistently assessed as high, or low anther extrusion performers 

across environments, suggesting breeding progress can be made when selecting for 

improved anther extrusion in the field.   As of yet, no major QTL or molecular markers 

have been identified as linked to anther extrusion, and in fact, reports are that anther 

extrusion is controlled by a large number of genes (Langer et al. 2014; Boeven et al. 

2016b).  This also emphasizes the importance of assessing and selecting for improved 

anther extrusion on a visual basis.   

Hybrid Seed Production 

Anther extrusion was examined in the hybrid production trials to determine the 

effect that it had on hybrid seed yields (cross pollination success).  Genotypes which 

scored five or above for anther extrusion in 2014 were selected to be used in the hybrid 

production trial with the expectation that the score would be sufficient to produce large 

quantities of hybrid seed.  To ensure the grain weights were an accurate measure of cross 

pollination, male sterility in the CHA treated plots was verified by bagging individual 

spikes to prevent cross pollination.  In 2015 and 2016, male sterility achieved with the 

CHA was 80% to 100% (personal communication A. Easterly).  The correlation between 

anther extrusion and female plot seed weight (r = 0.60*, p = 0.002, n = 25) for the 2015 

production trial at both Lincoln and Mead combined was significant.  Since there were 

two locations, separate correlations were done for the trial.  Both the Lincoln and Mead 

correlations were not significant (r = 0.40, p = 0.08, n = 20 and r = 0.79, p = 0.11, n = 5 

respectively).  The lack of significance at the individual locations (p not greatly higher 

than α = 0.05) may be due to smaller sample size.  The lack of significance may also be 
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explained by parental selection for generally good anther extrusion hence having good 

pollination capabilities (above a threshold for adequate pollination) and a lack of 

variability for anther extrusion (too small a range of anther extrusion).  Interestingly, the 

highest mean crossing block female seed weight (768 g) had the highest performing male 

anther extrusion parent (Freeman which was rated an 8.0).  In 2016, the correlation (r = 

0.32, p = 0.24, n =15) was not significant on the crossing blocks planted at Mead and the 

highest performing crossing block for mean female seed weight (555 g) had NE10683 as 

the male which had an anther extrusion score of 6.0 where Freeman (score 8.0) had a 

mean female seed weight of 473 g.  The results from 2015 were interpreted to mean that 

an anther extrusion score of five or higher probably exposed enough anthers that cross 

pollination was possible.  Evidence of phytotoxicity due to the CHA application was 

evident (data not shown), and this should be considered when interpreting the impact of 

anther extrusion on hybrid seed production.  For example, when there is more 

phytotoxicity, or damage to female plants, a higher level of anther extrusion might be 

required to produce the same amount of hybrid seed compared with when there is little 

damage to the female plants as a result of a CHA treatment. 

To assess the impact of the CHA on female seed set, a cross pollination success 

rate was calculated based on sib-crosses.  In 2016 for example, the weight of the Freeman 

x Freeman hybrid plot was divided by the average weight of selfed Freeman male plots in 

that crossing block. Male plot weights were not recorded in 2015.   The average cross 

pollination success rate among the 15 blocks that did not have male CHA damage (due to 

overspray) was 20% with a range from 12.5% to 40.0%.  It should also be noted that the 



15 
 

 

 
 

average seed weights for each crossing block only ranged from 291 g to 555 g compared 

to 2015 which ranged from 212 g to 768 g further indicating that cross pollination 

potential was reduced most likely due to phytotoxicity or environmental factors. These 

findings are consistent with Pickett (1993) who reported cross pollination success ranging 

6% to 20% in CHA treated experiments compared to approximately 50% in CMS trials.  

To get a better understanding of the effect that anther extrusion has on cross pollination it 

would be important to study anther extrusion and ASI with CMS females to compare to 

CHA treated females.  Cisar and Cooper (2002) reported that seed set of CHA females 

was less than that of CMS females due to phytotoxicity from the CHA.   

 The low correlation between anther extrusion and female seed weight in 2015 

indicated that potentially a high anther extrusion score (five to eight) was not enough to 

explain the differences for female seed weight.  To investigate this further, the average 

female weights were compared to the ASI taking into account anther extrusion score 

from both 2015 and 2016.  Since the gape dates were not accurate from 2015, only ASI 

comparisons (- 4 to 4 days) will be described for anther extrusion scores (4 to 7) as they 

were determined to be the most accurate (negative number indicating the female gaped 

earlier than male parent flowered).  In the eight day interval, the average seed weight 

increased as anther extrusion increased (AE 4 [256 g], AE 5 [422 g], AE 6 [447 g], and 

AE 7 [456 g]).  The difference between anther extrusion scores five and seven was only 

34 g indicating that a score of five and higher did not greatly increase seed weight.  In 

2016, similar results were found (Table 5), ASI (-2 to 7 days) for anther extrusion (5 and 

6) showed a 43 g difference for average seed weight (AE score 5 [442 g] and AE score 6 
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[485 g]).  In both years there was an expected trend of decreasing seed weight as ASI got 

larger.  Optimal ASI was determined to be between negative four and zero days.  These 

results are consistent with Cisar and Cooper (2002) who reported that females being a 

few days earlier than males was ideal for seed set.  Hybrid breeders of the past also 

reported only selecting males with anther extrusion of 6.0 or higher confirming that an 

anther extrusion score of six is required for seed production (personal communication G. 

Cisar). 

Concluding Remarks 

 Visually assessing for anther extrusion in field environments can be a successfully 

employed to identify high performing genotypes that originate from breeding programs 

within the US Great Plains.  Additionally, because the trait is highly heritable, progress 

can be made in selecting and breeding for genotypes with improved anther extrusion.  

Conversely, visually assessing for anther extrusion in a greenhouse environment will not 

accurately estimate performance in the field, which is the environment where hybrid seed 

production must take place. Although several factors impact hybrid seed production, 

anther extrusion is perhaps the most impactful.  Hybrid seed production was likely 

influenced by the phytotoxic side-effects of a CHA application, results suggest that 

optimal production depends in part on utilizing a male with the best possible anther 

extrusion.  Consequently, any breeding program with the objective of feasibly and 

economically producing hybrid wheat seed should concentrate on selecting parents that 

are measurably better than most wheat genotypes for anther extrusion. 
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Figure 1 A. Genotype exhibiting excellent anther extrusion (rated 9) B. Genotype 

exhibiting poor anther extrusion (rated 1) 

 

 

   

Figure 2 A. Broad sense heritability equation for one location.  B. Broad sense 

heritability equation for multi locations (He et al., 2016; IRRI, 2006) 
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Figure 3 An example crossing block planting map, each crossing block is four plots 

wide with female plots planted side by side (pink area) and male strips surrounding 

(blue area).  Each crossing block had two plots of isolation lengthwise and four plots 

of isolation lengthwise and four plots of isolation widthwise of triticale. 
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Figure 4 Anther Extrusion distribution boxplots by trial with means in blue marked 

with an asterisk. Trial descriptions can be found in Table 1. 

 

 



 
 

 
 

2
2
 

 

Table 1 List of eight trials† with their descriptions that contained 288 winter wheat 

genotypes that were rated for anther extrusion in 2014 and 2015. 

Trial Name Trial Trial Description Generation Year Location 

Number of 

Replications per 

Location 

Incomplete 

Block Size 

Number of 

Incomplete 

Blocks per 

Replication 

Entries 

Triplicate†† TRP14L‡ Advanced Yield Trial F6 2014 

Lincoln, 

NE 3 5 12 60 

Triplicate TRP15LIM Advanced Yield Trial F6 2015 
Lincoln, 

NE 3 5 12 60 

Triplicate TRP15M Advanced Yield Trial F6 2015 Mead, NE 3 5 12 60 

Nebraska Interstate 

Nursery NIN14L Elite Yield Trial F7-8 2014 

Lincoln, 

NE 4 5 12 60 

Nebraska Interstate 

Nursery NIN14M Elite Yield Trial F7-8 2014 Mead, NE 3 5 12 60 

Nebraska Interstate 

Nursery NIN15L Elite Yield Trial F7-8 2015 Mead, NE 3 5 12 60 

Irrigated Dry IRDR15LIM 
Irrigated/Dry yield trial (dryland 

conditions) F6 2015 
Lincoln, 

NE 3 5 8 40 

Regional 

Performance 

Nursery RPN15L 

Combination of the Northern and 
Southern Regional Performance 

Nursery along with other 

experimental lines F8-10 2015 

Lincoln, 

NE 3 5 18 90 

† Entries did not remain the same from 2014 to 2015 in either the TRP or the NIN. 

†† All trials were alpha lattice designs. 

‡ The yield trial code in the trial column represents the abbreviation of the trial, the year, and location.   
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Table 2 List of genotypes used in the diallel mating design 

production trial in 2015 and 2016 

Name Pedigree Origin 

Freeman 
KS92-946-B-15-

1=(ABI86*3414/JAG//K92)/ALLIANCE UNL 

Goodstreak 

Len//Butte/ND526 (ND604)/6/(SD2971 

)Agent/3/ND441//Waldron/Bluebird/4/Butte/5/Len 
(SD3055)/7/KS88H164/8/(NE89646)COLT*2/PATRIZA

NKA UNL 

LCH13NED

H-11-24 NE06469/Pronghorn UNL 

NE07531 
HBA142A/HBZ623A//ALE (HBK0630-4-

5)/3/(NE98574) CO850267/RAWHIDE/4/HALLAM UNL 

NE09517-1 W96x1080-21=(Jagger/Thunderbolt)/JAGALENE UNL 

NE10478-1 NI03418/Camelot UNL 

NE10589 OK98697/Jagalene//Camelot UNL 

NE10683  

NE01481=(OK83201/REDLAND//IKE)/Harry=(NE9061

4(=BRL/4/PKR*4/AGT//BEL.198/LCR/3/NWT/BRL)/N

E87612(=NWT//WRR*5/AGT/3/NE69441)) UNL 

Overland Millennium sib//(ND8974 ) Seward/Archer UNL 

Panhandle NE97426 (=BRIGANTINA.2*ARAPAHOE)/NE98574 UNL 

PSB13NEDH

-15-58W NW03681 / SD07W084 UNL 

Robidoux 

(NI04421) 
NE96644(=ODESSKAYA 

P./CODY)//PAVON/*3SCOUT66/3/Wahoo (sib) UNL 

Settler CL Wesley sib//Millenium sib/Above sib UNL 

TX09D1172 TAM303/TAM112 
Texas 
A&M 

TX10D2063 OK99610/TX00V1131//TX02D5868 

Texas 

A&M 

TX10D2230 NW01L2019/TX96D1073//TX01D3215 

Texas 

A&M 

TX10D2363 OK99610/TAM 109//TAM 304 
Texas 
A&M 

TX11D3008 TX03M1004/TX02V7930 

Texas 

A&M 

TX11D3026 TX01V5425/KS03HW155-2//TX03M1004 

Texas 

A&M 

TX11D3049 TX96D1073/KSS9011-1-45 IP76//KS00F5-14-7 
Texas 
A&M 

TX11D3112 TX98V9628/TX02U2508 

Texas 

A&M 

TX11D3129 WBLL 1*2/TUKURU//OK BULLET 

Texas 

A&M 

TX12M4004 KS980478-3-~5/FULLER 
Texas 
A&M 

TX12M4063 AP04TW9819/O3A-B3//KS980512-11-22 

Texas 

A&M 

TX12M4065 AP04TW1318/KS980512-11-9//KS06O3A~49 

Texas 

A&M 

Wesley KS831936-3//COLT/CODY UNL 
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Table 3  Restricted maximum likelihood variance component estimates, standard error (SE), and broad-sense 

heritability (H2) of genotypes rated for anther extrusion in 2014 and 2015.   

Trial GxL SE Loc SE Loc:Rep SE G SE Rep:Iblock SE Error SE H2 

NIN14L       0.96* 0.31 0.43 0.23 2.31 0.3 0.62 

NIN14M       1.28* 0.38 0.35 0.20 1.52 0.25 0.72 

NIN14 Combined 0.24 0.20 0.26 0.42 0.07 0.10 0.98* 0.29 0.12 0.10 2.27 0.21 0.69 

NIN15M       0.73* 0.19 0.17 0.09 0.74 0.11 0.75 

TRP14L       1.95* 0.54 0.09 0.21 2.40 0.37 0.71 

TR15LIM       1.46* 0.36 0.06 0.11 1.32 0.20 0.77 

TRP15M       1.10* 0.27 1.18e-8* 1.54e-8 1.02 1.33 0.76 

TRP15 Combined 0.14 0.10 1.23e-8 * 1.23e-8 0.05 0.05 1.17* 0.27 5.05e-2 4.50e-2 1.15 0.11 0.82 

IRDR15LIM       0.79* 0.24 0.18 0.12 0.72 0.13 0.77 

RPN15L           1.72* 0.31 0.05 0.07 0.92 0.11 0.85 

  * significant based on 95% confidence interval 
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Table 4 The effect of anther stigma interval (ASI) on hybrid grain weight (grams) 

seperated by anther extrusion (rated 1 to 9) in 2016 

  Anther Extrusion 

  4 5 6 7 8 Mean 

ASI 

(days) 
g 

-4   1101.0 (1) 936.0 (2)     991.0 

-3   1034.3 (3)     856 (2) 963.0 

-2   640.5 (2) 501.8 (4)   841 (1) 589.9 

-1   775.8 (13) 697.0 (5)   612.5 (2) 739.8 

0   575.3 (18) 610.6 (9)   418.2 (5) 560.7 

1 641.3 (3)† 427.5 (19) 439.0 (5)   402.4 (5) 445.4 

2 445.7 (3) 385.0 (29) 457.7 (6)     401.2 

3 414.5 (4) 429.7 (17) 351.2 (10)     402.4 

4 339.0 (2) 309.2 (10) 413.7 (11)   586 (2) 379.7 

5   297.5 (15) 472.7 (20)   415 (3) 399.0 

6   343.0 (21) 483.0 (11)   380.7 (3) 390.3 

7 334.3 (3) 235.4 (17) 428.5 (12) 527.2 (2) 285.3 (3) 325.8 

8 288.4 (5) 281.7 (10) 286.7 (13) 410.8 (12)  322.9 

9 248.3 (4) 335.9 (7) 267.0 (9) 517.5 (8)  353.1 

10 232.5 (2)   261.4 (11) 341.1 (4)   276.7 

† The number in parenthesis indicated the number of hybrids in that category. 
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Appendices 

Appendix A IRDR15LIM Mixed Model Residual Plot 

 

 

Appendix B NIN14L Mixed Model Residual Plots 
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Appendix C NIN14M Mixed Model Residual Plots 

 

Appendix D NIN14 Lincoln and Mead Mixed Model Residual Plots 
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Appendix E NIN15M Mixed Model Residual Plots 

 

Appendix F TRP14L Mixed Model Residual Plots 
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Appendix G TRP15LIM Mixed Model Residual Plots 

 

Appendix H TRP15M Mixed Model Residual Plots 
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Appendix I TRP15 Lincoln and Mead Residual Plots 

 

Appendix J RPN15L Mixed Model Residual Plots 
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