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Previous research has used unmanned aerial vehicle (UAV) technology for 

calculating CWSI (Crop Water Stress Index) values in the context of irrigation 

scheduling. Typically, these estimations were taken at one time of day, usually near or 

shortly after solar noon. A significant limitation with these CWSI values is that the UAV 

thermal imagery captured at this point in time can be affected by various factors like 

atmospheric air temperature, sun radiation, wind speed, relative humidity, and other 

micrometeorological disturbances in the air. In order to address these temporal effects, 

high-frequency UAV flights were conducted over different daylight hours to analyze and 

compare the CWSI values to create a better understanding of the crop dynamics to 

irrigation events. In addition, another stress index which requires fewer input data, the 

Degrees Above Non-Stressed (DANS), were also compared to CWSI values. This 

research was carried out at three different field research sites in Nebraska: Two at the 

Eastern Nebraska Research and Extension Center (ENREC), Mead, NE and one at the 

Irmak Research Laboratory (IRK) in South Central Agricultural Laboratory (SCAL), 

Clay Center, NE. All fields were growing soybean with various levels of irrigation and 

rainfed treatments. A DJI M600 UAV was used with MicaSense RedEdge multispectral 



 
 

 
 

camera and a FLIR Duo Pro R thermal camera to capture imagery, flying at an altitude of 

400 m above ground level. In addition, local meteorological data and ground-based IRT 

(Infrared Thermometer) data were collected. In order to calculate CWSI and DANS, a 

thermal calibrated linear regression model developed by NU-AIRE Lab, UNL, NE, was 

also used to improve the accuracy of the thermal imagery data. NDVI and NDRE values 

were also computed to find any correlation between affecting CWSI values. Both thermal 

and multispectral imagery is used to analyze the spatiotemporal dynamics of the crop. 
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CHAPTER 1. INTRODUCTION 

1.1 Irrigation in Nebraska 

Irrigation plays a crucial role in improving agricultural productivity in today's 

world. According to Payero (Irmak, 2006), irrigated agriculture in Nebraska generates 

approximately $5 billion in income every year, with corn and soybeans being the most 

important cultivated crops. Primary irrigation for these crops is being provided by 

pumping groundwater from the High Plain Aquifer, which is a water storage basin 

beneath ten neighboring states. The most common source of irrigation water was 

groundwater and precipitation. Over time, it has been revealed that these water sources 

are depleting, resulting in widespread water shortages. As a consequence, farmers have 

been pushed to evaluate and adopt efficient irrigation systems, with the many 

agronomists and researchers focusing on irrigation efficiency. 

The history of changes and applications of irrigation methods transformed 

radically in Nebraska. In the early 1940s, surface irrigation was carried out by furrows, 

borders, or flooding from ditches, also known as gravity irrigation. Later, after World 

War II, with the introduction of pressurized and moving irrigation systems, Frank Zyback 

from Colorado, in 1948, invented a center-pivot sprinkler irrigation system to reduce 

human resources needs and solve problems with seepage and deep percolation losses of 

the gravity-flow irrigation systems. With this invention and based on studies conducted 

by the University of Nebraska Remote Sensing Center (UNL, 1977), the installation of 

pivots had rapidly increased from 2700 units in 1972 to 12,000 units in 1976. In just a 

few years, that number increased by 6% to 78% (USDA-NASS, 2008), and by 2018, 91% 
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(USDA-NASS, 2019a) of the irrigated acres in Nebraska were irrigated exclusively using 

center pivot technology (Evett et al., 2020). 

With the increasing demand for Center Pivot Irrigation (CPI) systems and an urge 

to improve its efficiency and performance, terms like Precision Irrigation (PI) 

Technologies and Variable Rate Irrigation (VRI) technologies came into existence. Using 

these new technologies, irrigation management practices can be improved spatially, and 

over-irrigation can be reduced. Several researchers have been working on these 

technologies to improve crop and soybean production (Neale et al., 2012; Evans et al., 

2013; Stone et al., 2015; O’Shaughnessy et al., 2016, 2019; Sui and Yan, 2017; Woldt et 

al., 2018; Barker et al., 2018, 2019; Bhatti et al., 2018; Maguire, 2018; 2021; Singh et al., 

2021). 

1.2 Effects of Climate Change on Irrigation Scheduling 

In the previous discussion, rapid changes in irrigation methods have been 

discussed. In the coming decades, climate change is expected to have significant impacts 

on agricultural production. In order to effectively manage water resources, watershed 

managers and agricultural producers need to understand the impacts of climate change on 

irrigation demand for crop production in their region. From the recent studies, Tebaldi et 

al., (2006), stated that these climate changes would vary by latitude, particularly in the 

U.S. central Great Plains, causing air temperatures to be increased and precipitation 

levels to be decreased. The duration of heatwaves can also be expected to increase by 5-

10 days during the growing season (Evatt et al., 2020). 
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In general, irrigation scheduling is majorly determined based on meteorological 

parameters. In order to achieve maximum productivity, crops require favorable climate 

conditions. These effects can be explained in terms of crop water stress, that is, loss of 

moisture due to transpiration. Due to this moisture loss and insufficient cooling 

mechanism, canopy temperature increases. In calm and humid conditions, all plants 

transpire slowly, and the canopy temperature is close to the air temperature no matter 

how severe the water stress; similarly, sweat evaporates slowly and does not contribute 

significantly to cooling under these conditions. During windy and dry conditions, non-

stressed plants transpire rapidly and are cooler than the air temperature, whereas stressed 

crops transpire slowly and are warmer than the air temperature. Concerning the duration 

of the day and weather conditions, canopy temperature may rise or be reduced (Lo et al., 

2018).  

On the other hand, variability in precipitation could also accelerate water stress 

conditions and the frequency of extreme events, resulting in negative consequences for 

crop yields (Porter and Semenov, 2005; Nandan et al., 2021). Many farmers and 

agronomists predict precipitation based on historical weather data classifying it into a dry 

or wet year. However, due to the impacts of climate change, this information is 

unpredictable.  

Considering these issues, many researchers regularly monitor evapotranspiration 

and water stress in crops to optimize irrigation management and maximize water 

efficiency to mitgate the negative impacts of climate change. 
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1.3 Evapotranspiration for Irrigation Management 

General definition of evapotranspiration (ET) can be defined as the loss of water 

from the soil to the atmosphere by both, evaporation of water and transpiration from 

plants. To understand the complex process of water loss in crops and to assess 

agricultural water requirement, estimation of evapotranspiration is becoming essential for 

optimal irrigation planning. In understanding ET, comprehensive knowledge on land 

surface fluxes, particularly their latent and sensible components, will also be essential.  

There are several methods traditionally used to measure evapotranspiration (ET) at the 

field scale (Bowen ratio, eddy correlation system, soil water balance), but these methods 

are not effective in estimating fluxes on large spatial scales (Courault et al., 2005).  

For operational purposes, water managers and irrigation engineers require 

accurate estimates of surface fluxes, specifically ET. Many countries use the FAO 56 

method today. The method involves estimating crop evapotranspiration (ETc) with a 

reference evapotranspiration (ETr) and a crop coefficient (Kc), where ETr is retrieved 

using the Penman–Monteith method  (Allen et al., 1998, FAO 56 method).  

Nevertheless, surface resistance to vapor transport can vary depending on the time 

of the day, weather conditions, especially available radiation and vapor pressure deficit 

(Ortega et al., 2004). Moreover, the determination of crop coefficients is also in dispute 

since many factors are involved (Neale et al., 2005). In non-standard conditions, the ET 

crop surfaces are either adjusted by a water stress coefficient or by modifying the Kc 

coefficient. According to weather conditions, crop factors, management and 

environmental conditions, actual evapotranspiration (ETa) corresponds to the actual water 
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consumption. However, several other characteristics of the crop and the surface have to 

be considered: crop type, variety and stage of development, ground cover, and root 

system development (Courault et al., 2005) 

By applying remote sensing data with an increasing spatial and temporal 

resolution, such information can be provided on a variety of timescales and spatial scales. 

Numerous methods have been developed for estimating surface fluxes using this 

information. Classifying these methods is always challenging since their complexity 

depends on the balance between empirical and physical components. 

1.4 Remote Sensing based estimation of Evapotranspiration 

Various researchers have proposed methods to estimate evapotranspiration based 

on remote sensing. Field-based ET methods are commonly categorized into weather-

based methods, surface energy balance methods (SEBM), and soil moisture 

measurements (Allenet al., 1998; Allen, 2000; Zhao-Lianget al., 2009). The estimation of 

ET using remote sensing (RS) has been used with various sensors. The image data from 

satellites has been a major input for ET estimation for the past 17 years (Xia et al., 2016). 

For estimates of ET at regional scales, the RS approach is known as one of the most 

reliable and efficient methods (Kustas and Anderson, 2009) (Park et al., 2018).  

In general, four types of RS methods for estimating ET have been proposed: 1) 

empirical direct method; 2) residual method; 3) inference method, in which a potential (or 

reference) ET is calculated from ground measurements and RS data are used to estimate 

crop coefficients; and 4) deterministic method based on the Soil-Vegetation-Atmospheric 

Transfer (SVAT) model (Courault et al., 2005; Calcagno et al., 2007; Nouri et al., 2015, 
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Park et al 2018). The most common menthod that relies on estimating ET is the 

difference between surface and air temperature (Jackson et al., 1977; Seguin and Itier, 

1983, Park et al., 2018), equation:  

𝐸𝑇daily = 𝑅𝑛,daily + 𝐴 − 𝐵(𝑇s,midday − 𝑇a,midday )                                    (1) 

where A and B are coiefficients, 𝐸𝑇𝑑𝑎𝑖𝑙𝑦 is the daily ET; 𝑅𝑛,𝑑𝑎𝑖𝑙𝑦 is the daily net 

radiation; 𝑇𝑠,𝑚𝑖𝑑𝑑𝑎𝑦 is the surface temperature measured at midday, and 𝑇𝑎,𝑚𝑖𝑑𝑑𝑎𝑦 is the air 

temperature measured at midday. 

The residual method, which makes use of the surface energy balance model 

(SEBM), has been widely used to estimate ET, with ET being obtained as a residual 

(latent heat flux, LE, or ET) in SEBM and the other energy balance components (net 

radiation, sensible heat flux, and soil heat flux) being estimated using a combination of 

empirical and physical relationships (Su, 2002; Kalma et al., 2008): 

𝜆𝐸𝑇 = 𝑅𝑛 − 𝐻 − 𝐺                                                                                            (2) 

where 𝜆𝐸𝑇 is the latent heat flux (W/m2 ), 𝑅𝑛 is the net radiation at the surface 

(W/m2 ), 𝐻 is the sensible heat flux to the air (W/m2 ) and; 𝐺 is the soil heat flux (W/m2) 

According to the researchers Chávez and Neale et al. (2008), the instantaneous 

latent heat flux is a tool that can be used to determine and estimate the rate of 

evapotranspiration of crops (ETd) daily. The input for the latent heat flux can be retrieved 

from RS imagery, which is multispectral and digitally airborne. In the quantitative 

research study, the researchers conducted the study and collected data from a 12 km by 

22 km area field for corn and soybean crops located in Ames, Iowa. The researchers 

applied six methods to estimate the errors, with the observations being that the range of 
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the errors varied from -5.7 ± 4.8% (MBE ± RMSE) to 26.0 ± 15.8%. Based on this 

research, the values extrapolated ETd in reference with the evaporative fraction (EF) give 

better results when compared with ET values of eddy covariance. With an average 

estimation error of about-0.3mm per day, the ETd variance in prediction provides an 

average of about 5.7 ± 4.8% in comparison to the values from the eddy covariance energy 

balance systems. Other methods used in this research study are the solar radiation-based 

ETa extrapolation method and the alfalfa reference method based on ET extrapolation. 

Both perform relatively well for both crops investigated in the research case experiment. 

Therefore, the research emphasizes that the daily heat flux should be included in the ETd 

especially when the EF method is used. Hence, researchers validated the use of the 

methodology of the RS-based ET, which uses airborne multispectral concepts. 

Bhatti et al., (2018) narrowed his focus on the Variable Rate Irrigation (VRI), 

where the studies address that the characteristics of the plants have a spatial variance with 

the field characteristics. In the management of agricultural fields, applying the depth of 

irrigation uniformly in the area helps reduce water losses, as supported by VRI. Hence, 

the research aims to use the spatial evapotranspiration (ET) model to quantify the VRI 

potential and how it impacts the crop-water response compared to the other models such 

as infrared and uniform treatments. The research makes use of four main treatments, 

namely; 1) infrared treatment, 2) Landsat imagery using VRI, 3) uniform treatment, and 

4) use of VRI unnamed aerial imagery system (UAS).   

1.5 Monitoring Crop Water Stress for Irrigation Management 

In order to schedule irrigation effectively, crop water stress status must be 
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monitored. Timely detection of water stress in agricultural fields is difficult since 

symptoms typically appear visually when crops are already highly water-stressed. To 

ensure that crops remain productive on a sustainable basis, the monitoring of water stress 

in crops as early as possible is critical. Previous studies established a variety of indicators 

for predicting agricultural water stress based upon measurements of the energy balance 

between soil, plants, and the atmosphere. A decrease in transpiration rate causes a rise in 

leaf temperature when plants are experiencing a water shortage. As a result, their stomata 

close partly. In response to this phenomena, Idso et al. (1981) and Jackson et al. (1981) 

developed an empirical and therotical crop water stress index (CWSI). The empirical 

method relies on the relationship between canopy-to-air temperature difference and vapor 

pressure deficit (VPD). Whereas, the theoretical method applies surface energy balance 

equation to account for variations in climate, and calculates the distance between the 

upper and lower boundaries of canopy-to-air temperature difference (Han et al., 2018). 

The equation of CWSI (Idso et al., 1981) can represented as: 

 𝐶𝑊𝑆𝐼 =
(𝑇𝑐−𝑇𝑎)−(𝑇lower −𝑇𝑎)

(𝑇upper −𝑇𝑎)−(𝑇lower −𝑇𝑎)
        (3) 

where, 𝑇𝑙𝑜𝑤𝑒𝑟 is represenetd as the lower baseline temperature of a non-water-

stressed canopy; and 𝑇𝑢𝑝𝑝𝑒𝑟 is represenetd as the upper baseline temperature of a water 

stressed canopy 

Jackson et al. (1981), in his same paper, also proposed CWSI based on 

evapotranspiration, in which leaf transpiration cools the canopy surface in non-water 

stressed plants. That is, through periods of water stress, leaf transpiration drops and the 
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canopy temperature rises in water-stressed plants due to a lack of water in the root zone. 

Therefore, CWSI can also be calculated as a ratio between actual evapotranspiration 

(ETa) and potential evapotranspiration (ETp) of plant, equation (2):  

  𝐶𝑊𝑆𝐼 = 1 −
𝐸𝑇𝑎

ETp
          (4) 

 Later, Jones et al., (1992), reformulated the calculation CWSI based on using wet 

and reference temperatures in the field,. The approach has signifacntly reduced the use of 

various measuremts of meterological data (required for upper and lower basline 

calculations). The equation is as follows: 

  𝐶𝑊𝑆𝐼 =
𝑇𝑐−𝑇𝑤𝑒𝑡

𝑇𝑑𝑟𝑦−𝑇𝑤𝑒𝑡
        (5) 

 where, 𝑇c represents canopy temperature; Twet represents to the reference 

temperature at full transpirating leaf; and Tdry represents to the referenc temperature of non-

transpiring leaf. 

  CWSI relies on manual or continuous point measurements to measure canopy 

temperature (Tc) of the desired crop. Many researcher continue to use, multiple infrared 

thermometers (IRTs) in the field for monitoring the crop stress (Irmak et al., 2000; Payero 

and Irmak, 2006; Peters and Evett, 2008; O ’ Shaughnessy et al., 2017, 2012; Taghvaeian et 

al., 2012; Candogan et al., 2013; DeJonge et al., 2015; Singh et al., 2021; Maguire et al., 

2021).  

 In recent years, various remote sensing (RS) platforms have become widely 

accessible, enabling several studies to be conducted using unmanned aerial vehicles (UAVs) 

equipped with sensors as a major input, aiming to replace ground-based measurements, and 
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to make them applicable to larger or field production scale (Woldt et al., 2018). For 

agricultural studies, a range of customizable sensors is also available for all types of UAS 

platforms. For measuring specific spectral information, high resolution digital cameras, 

multispectral cameras, and hyperspectral imaging systems, and thermal cameras are being 

used (Shafian and Shi et al., 2018). Hence, with the advancements of UAV technology and 

thermal sensor, several studies have been conducted on crop water stress for extracting Tc. 

This appreaoch have also led to further simplify the calculation of CWSI by reducing or 

eliminating the use of ground-based measurements or IRTs, to make it applicable at field 

scale.   

 Recently, a statistical approach of calculating CWSI, was used, based on histogram 

analysis of canopy temperature (Meron et al., 2010 & Rud et al., 2014) that included in the 

delineation of canopy pixels and calculating Twet from the lowest 5% of temperature 

histogram and Tdry to be equal to the air temperature (Tair) + 5 ◦C (Irmak, 2002). Park et al., 

(2017) redeveloped the above statistical CWSI approach that can be adaptable to variability 

over the whole field by stating, that having a single set of Twet and Tdry values will result in 

inaccurate estimations of CWSI. He considered employing thersholding of Twet and Tdry for 

each sub-regions by extracting from the critical values of 99% confidence intervals of canopy 

temperature distribution. This new approach, does not require any meteorological data and 

reference surfaces, thereby reducing the complexity of estimating the CWSI spatially.  

1.6 Remote Sensing based estimation of Crop Water Stress 

Methods based on canopy temperature have been recognized as a sensitive technique 

for detecting plant water stress (Cohen et al., 2005). Water stress has an influence on the 

stomatal conductance (SC) and transpiration of leaves, resulting in a rise in canopy 
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temperature. Rather of directly measuring stomatal conductance using leaf gas exchange 

methods, infrared thermometry (IRT) approaches for detecting stomatal closure and 

estimating conductance have been developed (Jones, 1999; Jones et al., 2002; Leinonen 

et al., 2006; Fuentes et al., 2012). Direct measurements may be cumbersome when a 

significant volume of leaves is required for sample (Jones, 1999). The IRT notion is 

based on the fact that leaf temperature tends to rise as stomata close, since this reduces 

transpiration and hence the cooling impact of leaves. Jones (1999) presented an index (Ig) 

that has a direct linear connection with stomatal conductance based on this approach.  

The Photochemical Reflectance Index (PRI) has been used to anticipate agricultural 

water stress by providing an index of changes in photosynthetic pigments in leaves. PRI 

had a strong connection with plant-based indicators of water stress (leaf water potential 

and stomatal conductance) in a case study conducted in a citrus orchard (Zarco-Tejada et 

al., 2012). Berni et al. (2009b) proposed an improved PRI, dubbed the Normalised 

Photochemical Reflectance Index (PRInorm), which utilizes a new PRI normalized by the 

Renormalized Difference Vegetation Index (RDVI) and a red edge index. PRInorm 

demonstrated a stronger association with a plant-based water stress indicator because to 

its sensitivity in detecting changes in the xanthophyll pigment and decreased leaf area 

induced by water stress (Gago et al., 2015). 

Other vegetation indicators have been investigated for their potential to identify plant 

water stress. In comparison to the NDVI, the Optimized Soil Adjusted Vegetation Index 

(OSAVI) and the Transformed Chlorophyll Absorption in Reflectance Index (TCARI) 

are canopy structural indices that have shown superior performance by limiting the 
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influence of soil reflectance (Haboudane et al., 2002; Zarco-Tejada et al., 2012). 

Haboudane et al. (2002) proposed a ratio (TCARI/OSAVI) specifically for the purpose of 

properly forecasting chlorophyll concentration. Additionally, it has been shown that the 

ratio is sensitive to changes in the canopy structure cover caused by plant water stress 

(Zarco-Tejada et al., 2012; Gago et al., 2015). 

Using just TIR imaging, a histogram-based technique has been developed to 

differentiate the canopy temperature from the soil temperature (Meron et al., 2003; 

Meron et al., 2010a). The approach makes use of the TIR image's pixel histogram and a 

constant threshold (e.g., the coldest 33% of the histogram) to extract canopy-related 

temperatures from the histogram. The threshold indicates the histogram's border for 

vegetation and soil distribution, and its value is established using statistical and empirical 

approaches. The research demonstrated that the process of CWSI calculation might be 

expedited and simplified by obviating the necessity for VIS image processing. 

Park et al., 2021 in his research, used unmanned aerial vehicle (UAV) to form the 

basis of the study. The method monitors the status of the crop water on a real-time basis. 

This facilitates timely and efficient irrigation scheduling by enabling an accurate strategy 

for decision-making. The approach used in this research is based on an analysis of the 

UAV input collected for water stress and presented against other physiological 

parameters of the crops. Based on the finding of the quantitative and qualitative analysis 

of the data, the researchers concluded that efficacy and consistency of water values were 

higher when the data was collected during the period between mid-morning and 

midafternoon.  
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CHAPTER 2. HIGH-FREQUENCY UNMANNED AIRCRAFT FLIGHTS FOR 

CROP CANOPY IMAGING DURING DIURNAL MOISTURE STRESS 

Abstract 

Previous research has used unmanned aerial vehicle (UAV) technology for calculating 

CWSI (Crop Water Stress Index) values in the context of irrigation timing. Typically, 

these estimations were taken at one time of day, usually near or shortly after solar noon. 

A significant limitation with these CWSI values is that the UAV thermal imagery 

captured at this point in time can be affected by various factors like atmospheric air 

temperature, sun radiation, wind speed, relative humidity, and other micrometeorological 

disturbances in the air. In order to address these temporal effects, high-frequency UAV 

flights were conducted over different daylight hours to analyze and compare the CWSI 

values to create a better understanding of the crop dynamics to irrigation events. In 

addition, another stress index which requires fewer input data, the Degrees Above Non-

Stressed (DANS), were also compared to CWSI values. This research was carried out at 

three different field research sites in Nebraska: Two at the Eastern Nebraska Research 

and Extension Center (ENREC), Mead, NE and one at the Irmak Research Laboratory 

(IRK) in South Central Agricultural Laboratory (SCAL), Clay Center, NE. All fields 

were growing soybean with various levels of irrigation and rainfed treatments. A DJI 

M600 UAV was used with MicaSense RedEdge multispectral camera and a FLIR Duo 

Pro R thermal camera to capture imagery, flying at an altitude of 400 m above ground 

level. In addition, local meteorological data and ground-based IRT (Infrared 

Thermometer) data were collected. In order to calculate CWSI and DANS, a thermal 
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calibrated linear regression model developed by NU-AIRE Lab, UNL, NE, was also used 

to improve the accuracy of the thermal imagery data. Both thermal and multispectral 

imagery was been used to analyze the spatiotemporal dynamics of the crop. According to 

this study, the range of spatial variability of canopy temperature (as measured by the 

interquartile range) showed a diurnal pattern and was higher when the canopy had water 

stress (rainfed treatment). A key aspect of this research is the development of a new 

threshold prediction model based on the CWSI histogram distribution, that revealed 

threshold values of soybean crop of approximately 0.49, 0.51, and 0.49, respectively for 

the three research sites. Moreover, CWSI sensitivity analysis with respect to important 

meteorological factors like air temperature (0.71, 0.81, and 0.98), relative humidity (0.86, 

0.97, and 0.98), solar radiation (0.11, 0.16, and 0.011), and wind speed (0.25, 0.32 and 

0.96) is also shown in this research using statistical CWSI approach, were little or no 

research was conducted before.   

2.1 Introduction  

The use of unmanned aerial vehicle (UAV) systems in irrigation management has 

increased rapidly due to its low cost, mobility, and accuracy in estimating crop water 

needs. With the ability to mount different sensors on these UAV systems, it is easy to 

capture high-resolution spatial and temporal data to help farmers make timely decisions 

for irrigation applications. When combined with both ground and remote sensing-based 

techniques, the amount of water required for the field is greatly reduced, while improving 

the crop water efficiency. For proper irrigation management, knowing crop waters stress 

and evapotranspiration rate is essential.  
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Water stress from crop canopy temperature was originally measured using 

handheld thermography cameras (Tanner et al., 1963 & Gates et al., 1964). Later, Idso et 

al., (1981), proposed the first indicator of crop stress, by deriving an empirical method, 

called crop water stress index (CWSI), using a relationship between leaf-to-air 

temperature difference and vapor pressure deficit. In the same year, Jackson et al. (1981), 

developed a theoretical method of calculating the CWSI accounting the divergence 

between the upper and lower boundaries of canopy-to-air temperature difference using 

the crop canopy energy balance theory, involving the requirement of more meteorological 

data to account for variation in climate. Both empirical and theoretical methods have 

been used by different research for irrigation scheduling in past years (Nielsen, 1990; 

Yazar et al., 1999; Emekli et al., 2007; O’Shaughnessy et al., 2010; Colaizzi et al., 2012).  

Recently, above two approaches are widely being used with the help of infrared 

thermometers (IRTs), being setup on a single plant or nearly whole field to monitor the 

crop water stress continuously (Singh et al., 2021; O’Shaughnessy et al., 2017, 2012; 

Candogan et al., 2013; DeJonge et al., 2015; Irmak et al., 2000; Payero and Irmak, 2006; 

Peters and Evett, 2008; Taghvaeian et al., 2012). However, even with the use of IRTs in 

the field, the CWSI estimations can easily be disturbed by meteorological factors and 

variability over the whole field.  

With the advancement of various remote sensing platforms and use of UAVs, 

several studies on crop water stress have been conducted to further simplify the 

calculation of CWSI by reducing or eliminating the use of ground-based measurements or 

IRTs, to make it applicable at field scale (Park et al., 2019; Leinonen and Jones, 2004; 
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Alchanatis et al., 2010; Fuentes et al., 2012; Berni et al., 2009b; Zarco-Tejada et al., 

2012; Bellvert et al., 2014). Thus, a statistical approach of calculating CWSI, was used, 

based on histogram analysis of canopy temperature (Meron et al., 2010 & Rud et al., 

2014) that included in the delineation of canopy pixels and calculating Twet from the 

lowest 5% of temperature histogram and Tdry to be equal to the air temperature (Tair) + 5 

◦C (Irmak, 2002), and found similar correlations between the introduced statistical CWSI 

approach and traditional CWSI approach. Recently, Park et al., (2017) redeveloped the 

above statistical CWSI approach that can be adaptable to variability over the whole field 

by stating, that having a single set of Twet and Tdry values will result in inaccurate 

estimations of CWSI. He considered employing thersholding of Twet and Tdry for each 

sub-regions by extracting from the critical values of 99% confidence intervals of canopy 

temperature distribution. This new approach, does not require any meteorological data 

and reference surfaces, thereby reducing the complexity of estimating the CWSI 

spatially. A similar research on cotton was also published emphasizing the effectiveness 

of this canopy temperature histogram approach in comparison to traditional approach by 

Bian et al., (2019). 

Recently, another common water stress index is being used effectively that 

requires less inputs. It is the degree above non-stressed canopy (DANS) index. DANS is 

defined as the difference between the canopy temperature Tc and non-stressed canopy 

temperature TNS. Several authors have found high correlations between these two indices, 

CWSI and DANS, being much simpler in water stress estimation (Taghvaeian et al., 

2014;  DeJonge et al., 2015). Therefore, UAV remote sensing technologies have become 
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a widely available tool for precision agriculture management and crop water stress 

identification. 

Due to the accuracy of the midday system in assessing CWSI, additional research 

is required to determine the optimal time of day for this estimation (Santesteban et al., 

2017). Past researchers have some made efforts to study the CWSI diurnal variations 

including data collected in the morning (Zhang et al., 2019; Martnez et al., 2017, & 

Santesteban et al., 2017). However, for these investigations, the TIR image processing 

failed due to surface temperatures' poor contrast, or the TIR image processing issues. 

Therefore, the objective of this study is to evaluate the diurnal response of plants 

from early morning till evening, by using UAV equipped thermal and multispectral 

cameras to observe the dynamic difference in crop water stress requirements using 

statistical CWSI approach. Specific objectives of the study include –  

• Using high-frequency UAS thermal data (canopy temperature, CWSI, and 

DANS) to identify and characterize the temporal nature of the spatial canopy 

stress patterns for soybean during the moisture stress period in Eastern 

Nebraska. 

• Predicting the threshold value of CWSI and characterizing the range of water 

stress level indication as low, moderate and high based on CWSI histogram 

distribution method, over different daylight hours. 

• Perform CWSI Sensitivity analysis using statistical based CWSI approach 

between common meteorological effects such as air temperature, relative 

humidity, solar radiation and wind speed. 
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2.2 Material and Methods 

2.2.1 Research Sites Description 

This research was conducted over three different field sites with soybean as the 

main crop. Two of the research fields, ENREC1 and ENREC2, are located at the Eastern 

Nebraska Research and Extension Center (ENREC) near Mead, Nebraska (Figure 2.1, 

2.2) and are being administered for the ongoing Variable Rate Irrigation (VRI) projects 

involving various treatments using a center pivot irrigation system. The latitude and 

longitude of the center pivot ENREC1 and ENREC2 are 41° 9'53.32"N, 96°25'49.24"W 

and 41°10'20.81"N, 96°28'41.67"W respectively. The third site, SCAL, is also equipped 

with center pivot, latitude 40°34'49.88"N and longitude 98° 7'53.79"W, having a uniform 

irrigation treatment in 2020, and it is located at Irmak Research Laboratory (IRL), South 

Central Agricultural Laboratory (SCAL), Clay Center, Nebraska (Figure 2.3). The field 

sizes of ENREC1, ENREC2, and SCAL were approximately 22.25ha, 17.8ha, and 

16.18ac respectively (ESRI ArcMap- Google Earth Hybrid basemap, assessed on October 

21, 2020).  

2.2.2 Experimental Design 

2.2.2.1 ENREC1 

 The ENREC1 field consisted of total 69 experimental plots involving six different 

irrigation treatments and one rainfed treatment (Figure 2.1) for soybean in the 2020 

growing season. The design of these study was a generalized randomized complete block 

design (RCBD) and treatments were randomly assigned to each plots. The specific 

treatments were – Common (C) – 11 plots, Rainfed (R) – 12 plots, Uniform (U) – 11 
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plots , SETMI using satellite (SAT) – 12 plots, SETMI using unmanned aircraft systems 

(UAS) – 12 plots, and private company treatment (L) – 11 plots. The Common (C) 

treatment was meant to represent common or conventional practice, with irrigation 

scheduling based on input from a professional crop consultant together with the farm 

manager (Maguire., 2021). The Spatial Evapotranspiration Modeling Interface (SETMI) 

was used for the SAT and UAS treatments (Maguire., 2021), which implemented variable 

rate irrigation prescriptions. The uniform (U) treatment applied uniform rate irrigation 

based on stationary sensors (Singh et al., 2021). For Rainfed treatment plots, no irrigation 

was applied for this study. Bhatti et al. (2020) and Barker et al. (2018) provide more 

information about these treatments in detail.  

2.2.2.2 ENREC2 

 ENREC2 field site consisted of total 48 experimental plots with four different 

irrigation treatments (Figure 2.2) for soybean in the 2020 growing season (Bhatti et al., 

2021). The complex experimental design block consisted of 8 rings assigned radially 

from inside to outside, consisted of each treatment repeated twice randomly. The field 

was divided into six sectors, resulting in 6 plots in each ring. The four irrigation 

treatments include percentage of irrigation applied with description as – 0% or Rainfed – 

12 plots, 50% or Deficit – 12 plots, 100% or Full – 12 plots, and 150% or Over – 12 

plots. Here, Rainfed plots had no irrigation applied for this study.  

2.2.2.3 SCAL 

 SCAL field is a part of Irmak Research Laboratory, SCAL, Clay Center, NE. It 

consisted of a uniform irrigation treatment throughout the whole soybean field for 2020 
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growing season (Figure 2.3). Irmak and Mutiibwa. (2009) report long-term maximum and 

minimum air temperatures of 25°C and 5°C, respectively. The research field consisted of 

three soil types: (i) Cretan silt loam, 0–1% slope [soil 1 (S1)], (ii) Hastings silty clay 

loam, 3–7% slope [soil 2 (S2)] and (iii) Hastings silt loam, 1–3% slope [soil 3 (S3)] (Fig. 

1) (Sharma & Irmak, (2021)).  

 

Figure 2. 1 (Top Left): Study Site ENREC1 (55ac) of 2020 growing season with Soybean. The 

experiment design has six different treatments. Located at Eastern Nebraska Research and 

Extension Center (ENREC) near Mead, NE. Background basemap: World Imagery from ESRI 

ArcMap.  

Figure 2. 2 (Top Right): Study site ENREC2 (44ac) of 2020 growing season with Soybean. The 

experiment design has four different treatments. Both sites are located at Eastern Nebraska 

Research and Extension Center (ENREC) near Mead, NE. Background basemap: World Imagery 

from ESRI ArcMap.  

Figure 2. 3: Study SCAL (40ac) from Irmak Research Laboratory (IRL) located at South Central 

Agricultural Laboratory (SCAL), Clay Center, NE. Crop: Soybean. Uniform irrigation treatment 

of 2020 growing season. Background basemap: World Imagery from ESRI ArcMap. 
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2.2.2 Data Acquisition 

  The data collected in this study includes using a UAS (a six-rotor DJI Matrice 

600, manufactured by DJI, Inc., USA), a Thermal Infrared (TIR) sensor (FLIR Duo Pro 

R, FLIR System, Inc., USA), and a multispectral sensor (MicaSense RedEdge, 

MicaSense, Inc., USA) (Figure 2.4). The characteristics of the DJI M600 includes 

maximum payload of 15.1kg, withstanding of maximum wind speed of 8 m/s, and an 

average flight time of 17 minutes. The Uncooled VOx Microbolometer TIR sensor has a 

spatial resolution of 640 x 512 pixels, a spectral range of 7.5 to 13.5 μm, a focal length of 

13 mm, a thermal sensitivity of 50 mk, an image angle of  25° (H) × 20° (V), and with a 

GSD of 15.5 cm/ pixel at 120 m AGL (Table 2.1). The MicaSense Rededge multispectral 

sensor consisted of five bands with spectral ranges at 475, 560, 668, 840 and 717 nm, at a 

spatial resolution of 1280 x 960 pixels, a fixed 5.5 mm lens, a horizontal viewing angle of 

47.2°, and having Ground Sample Distance (GSD) of 8.2 cm/pixel at 120 m AGL (Table 

2.2). Original MicaSense calibrated reflectance panel was used before and after each 

flights for accurate data collection (Figure 2.4). These multispectral and thermal images 

was collected using the UgCS Flight Mission Planning software (UgCS, USA) with a 

90% front overlap and a 60% side overlap at an altitude of 400 ft (120 m AGL). After the 

data collection, all the images were processed using Pix4Dmapper (Pix4D, USA) to 

generate ortho-mosiacs and corrections for image vignetting and bidirectional reflectance 

effects (Maguire et al., 2018).  

This research involved 50 flight missions (17-ENREC1, 20-ECNREC2, 13-

SCAL) in total, over the three different fields, in the 2020 growing season at full canopy 
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(August, 2020 till September, 2020) for analysis. During the processing of these data sets, 

several issues had been identified while image stitching process (Appendix). Detail 

description of these errors, and failure to use several images in the analysis  has been 

described in Chapter 3. Nevertheless, from the total 50 flights, the success rate of 

obtaining good thermal and multispectral dataset was 86% and 48%, respectively.  

For the current research, the study had selected 11 successful datasets for 

identifying the diurnal moisture stress within each field. Local meteorological data for the 

fields ENREC1 and ENREC2 are obtained from High Plains Regional Climate Center’s 

Agricultural Weather Data Network’s (AWDN) Mead Agronomy Farm weather station. 

For SCAL, High Plains Regional Climatic Center- Automated Weather Data Network 

(HPRCC-AWDN) was obtained. Specific dates and time of the UAV flight campaign 

along with specific meteorological data like air temperature, relative humidity, and wind 

speed at the time of flights are shown in Table 2.3. 

 

      

Figure 2. 4. DJI Matrice 600 attached MicaSense Rededge 

multispectral and FLIR Duo Pro R thermal sensors (Left) and 

MicaSense calibration redlectance planel (Right). 



32 
 

 

 
 

 

 

 

 

 

 

 

Table 2. 2. MicaSense RedEdge multispectral camera specifications. 

Band Name Center Wavelength (nm) Bandwidth FWHM (nm) 

Blue 475 20 

Green 560 20 

Red 668 10 

Near IR 840 40 

Red Edge 717 10 

Ground Sampling Distance 8.2 cm/pixel at 120 m AGL 

Lens Focal Length (mm) 5.5 

Lens Field of View (degrees HFOV) 47.2 

Image Resolution (pixels) 1280 x 960 

 

 

Table 2. 3. UAV Flight Campaign with time specific meteorological data 

Plot Date Time  Temp °C RH % Wind Speed (m/s) 

ENREC #2092 08/26/2020 11:30 AM 31.18 44.25 5.12 

  02:30 PM 33.84 34.55 5.16 
  04:30 PM 33.84 30.17 5.03 

  07:00 PM 28.59 51.54 1.8 

 

Table 2. 1. FLIR Duo Pro R Thermal camera specifications. 

Spectral Band 7.5-13.5 µm 

Thermal Frame Rate 30 Hz 

Thermal Imager Uncooled VOx Microbolometer 

Focal Length 13 mm 

Field of View 45° x 37° 

Thermal Sensitivity <50 mK 

Thermal Sensor Resolution 640 x 512 

Ground Sampling Distance 3.2 cm/pixel at 120 m AGL 

Measurement Accuracy 

+/- 5 °C or 5% of readings in the -

25°C to +135°C range 

+/- 20 °C or 20% of readings in 

the -40°C to +550°C range 
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ENREC #2436 08/26/2020 10:30 AM 29.01 52.61 3.83 

  01:30 PM 33.51 36.12 5.13 

  03:45 PM 33.83 34.01 5.09 

  06:00 PM 31.73 38.05 3.09 

SCAL CP-1 08/28/2020 11:00 AM 27.66 73.75 2.89 

  01:30 PM 28.9 67.94 3.04 

  04:00 PM 31.05 58.85 3.37 

 

2.2.3 TIR Image Correction and Calibration 

 Multispectral reflectance and thermal infrared cameras are two common sensors 

used in agricultural remote sensing. In order to maintain measurement accuracy, thermal 

camera sensors are often cooled to a specific temperature. Typically, uncooled 

microbolometer thermal cameras are used in most research since they are compact and 

light. As a downside to an uncooled sensor, it's less accurate and sensitive in thermal 

measurements, as microbolometers can cause changing temperatures in the camera body 

and sensor. To account for this temperature inaccuracy, thermal image corrections are 

applied (Maguire., 2021).  

Maguire., 2021, in his study, used two levels of corrections on thermal imagery, 

one for emissivity and other for atmospheric interference. Generally, for vegetation and 

crop canopy, existing literature has provided an emissivity value of 0.98 and for soils it is 

0.96 (Chen, 2015). For TIR correction of emissivity, two critical factors are considered, 

that are the surface temperature being measured and degree of correction with respect to 

the variance between the set camera emissivity and actual surface emissivity. The TIR 

images are needed to be corrected by relying on the actual surface emissivity as 

compared to the surface being imaged (crop canopy).  

A review of literature related to the computation of emissivity has provided 
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several methods from a multi-spectral reflectance imagery perspective, by Brunsell and 

Gillies in Maguire (2021).  The method involves into the consideration of the percentage 

canopy cover derived from NDVI to compute its weighted emissivity value for vegetation 

and soil. The percentage of cover using NDVI was computed as illustrated in equation 

2.1 below 

𝑓𝑐 = ((𝑁𝐷𝑉𝐼 −  𝑁𝐷𝑉𝐼𝑚𝑖𝑛)/ (𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛))2    (2.1) 

where 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥  represent the 𝑁𝐷𝑉𝐼 values of bare soil and full 

crop canopy cover, while 𝑁𝐷𝑉𝐼 represented as the computed surface NDVI.  

Following the recommendations provided by Li et al. in Maguire (2021), the 

𝑁𝐷𝑉𝐼𝑚𝑖𝑛 and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥  values for bare soil and crop canopy cover were adopted as 0.1 

and 0.89 respectively. The actual emissivity was then computed using equation 2.2 

below:  

𝐸𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 (𝜀)  =  𝑓𝑐 ∗ 0.98 + (1 − 𝑓𝑐) ∗ 0.96     (2.2) 

where 𝑓𝑐 represents a percent of crop cover. 

Secondly, In order to achieve atmospheric interference correction to TIR thermal 

images, additional measures were considered by the study. With respect to the prevailing 

atmospheric conditions, the thermal signals were enhanced to improve the sensitivity and 

accuracy of the cameras. The atmospheric values were computed with the assistance of 

the online atmospheric profile calculator as provided by Barsi et al. in Maguire (2021) 

that took into consideration of space and time of particular imagery collected. These 

values were weighed, summed and used to compute the atmospheric interference 

affecting TIR thermal image over the spectral responses of the thermal camera with an 
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IRT corrected measurements using Planck’s equation.  

A review of literature has provided three different methods of computing 

correction in atmospheric interference by taking into consideration the variation in the set 

targets and the actual surface emissivity (Maguire, 2021). These methods include i) linear 

model, as illustrated in equation 2.3 below, ii) the second order polynomial, and iii) 

artificial neural network. Although these models have adopted the same parameters such 

as UAS non-corrected surface temperature measurements (UAS), modeled surface 

emissivity (), and atmospheric pressure (P), air temperature (Tair), and relative humidity 

(RH) measured at the time of UAS flights, this study narrows down to using a linear 

model.  

IRTatm = 𝛽0 + 𝛽1UAS + 𝛽2Tair + 𝛽3RH + 𝛽4P + 𝛽5𝜀   (2.3) 

 where 𝛽0,𝛽1,𝛽2,𝛽3,𝛽4, and 𝛽5 are the coeifficents of linear model, IRTatm is the IRT 

atmposphere corrcetd surface temperature, UAS is the non-corrected or raw surface 

temperature from TIR Imagery, Tair is the air temperature, RH is relative humidity, P is 

the atmospheric pressure and 𝜀 is the modeled surface emisiivity calculated using the 

above equation (2.2). 
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Figure 2. 5 Workflow of linear thermal calibration. (Left) Python script- includes training data of 

UAS temperature, corrected IRT temperature, and meteorological data. (Middle) Correlation plot 

between UAS and IRT temperature. (Right) Linear thermal calibration model equation and 

ArcGIS Model Builder inputs. 

 

The whole linear regression analysis is done using a Python script on Jupiter 

Notebook platform by training model dataset. As a result the correlation plot between 

UAS Temperature (°C) and IRT Temperature (°C) resulted a positive correlation with 

determinent coiefficent (r2) of  0.99, RSME of 0.254, MAE of 0.177 and MBE of 0.17. 

The model coefficient outputs where β0= -97.98465653, β1=1.006454, β2=-0.00477, 

β3=-0.014479, β4=0.103063, β5= -6.124223e*32. After analyzing high correlation 

between UAS temperature and IRT temperature predicted by the training model, an 

assumption was made that the thermal imagery had less disturbance in the canopy 

temperature range with the flights made at 120 m AGL. Despite having high  

correlations, all the Thermal raw imagery were processed using thermal calibrated linear 

model using ArcGIS Model Builder (ESRI, ArcGIS, USA). 
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2.2.4 CWSI, DANS and Spectral Indices 

2.2.4.1 CWSI Calculation 

           The CWSI (Crop Water Stress Index) temperature-based Index was developed by 

(Idso et al., 1981).  

𝐶𝑊𝑆𝐼 =
𝑇𝑐−𝑇wet 

𝑇dry −𝑇wet 
         (2.4) 

Where Tc is the canopy temperature after removal of soil pixel on the thermal 

calibrated images, Twet is the temperature of a fully transpiring leaf or lower reference, 

and Tdry is the temperature of a non-transpiring leaf, also considered as upper reference. 

2.2.4.2 DANS Calculation  

 Recently several authors published and used a new index, DANS (Degrees Above 

Non Stressed) that require fewer inputs (DeJonge, 2015). It is defined as the difference 

between canopy temperature and the non-stressed crop. In our case, the non-stressed crop 

in the TIR refers to the temperature of a fully transpiring leaf Twet. 

𝐷𝐴𝑁𝑆 = 𝑇𝑐 − 𝑇NS          (2.5) 

Where Tc is the canopy temperature after removal of soil pixel on the thermal 

calibrated images and TNS is the temperature of the non-stressed crop or fully transpiring 

leaf.  

2.2.4.3 Twet and Tdry Extraction from TIR Imagery  

As discussed in the introduction, many studies used different methods to calculate 

Twet  and Tdry values (Table 2.4). In this study, the CWSI and DANS index is being 

calculated using the statistical method developed by Park in his research paper (Park, 

2017), for the extraction of Twet and Tdry values using a TIR imagery. This approach 
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greatly reduces the complexity involved in the calculation of CWSI. In particular, there 

would be no use of any meteorological data or reference surfaces, and the values can be 

estimated purely based on the collected thermal imagery. The general tools required for 

the extraction of Twet and Tdry values from the soybean canopy involves: 

1. MATLAB for Canny Edge Detection. 

2. Python environment and various python libraries.  

3. Excel for storing Twet and Tdry values. 

Table 2. 4. Methods to calculate Twet and Tdry values 

Value Method Reference 

Twet 

Non Water Stress Baseline (NWSB) – Linear 

Regress Function between difference in 

canopy and air temperature, and vapor 

pressure deficit (VPD). 

(Jackson et al., 1981) 

Wet Artificial Reference Surface (WARS) 

acting as fully transpiring crop. 
(Meron et al., 2013) 

Canopy histogram method (lowest 5%) 
(Rud et al., 2014;  

Poblete-Echeverría et al., 2016) 

Tdry 

Dry reference lead coated with petroleum 

jelly. 
(Jones, 1999) 

(Tair) + 5 ◦C 

(Irmak et al., 2000; 

Cohen et al., 2005; 

Rud et al., 2014;  

López-López et al., 2011) 

Histogram analysis of canopy temperature Rud et al. (2014) 

 

In detail, a temperature histogram was generated from a TIR image using a 

Python script that created a bimodal density distributions of temperature values, 

representing canopy and soil pixels. The Twet and Tdry calculation requires pure canopy 

pixels, and it is necessary to exclude soil and mixed canopy-soil pixels from UAV 

thermal imagery. This was done using a Canny edge detection in Matlab R2021a 

(Mathworks Inc., Matick, MA, USA). The Canny edge detection uses the brightness 
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discontinuation principle to identify different objects in an image; different objects have 

varying brightness reflection properties (Crusiol et al., 2020). Next, the new image loaded 

into the python and fit with a Gaussian Mixture Model (GMM) to objectively cluster 

canopy and soil mixed pixels. Later, the Twet can be taken as the mean value of the lowest 

0.5% of the temperature distribution histogram assuming as a fully transpiring leaf, and 

the Tdry can be taken as the mean value of the highest 0.5% of the temperature 

distribution histogram assuming as a non-transpiring leaf. Thus, the two-sided critical 

values at the 1% and 99% confidence interval (CI) of canopy temperature histograms 

were considered for each TIR imagery for the extraction of multiple Twet and Tdry values.  

 

 

Figure 2. 6. Workflow of Twet and Tdry values extraction from a thermal calibrated image for 

furthur calculations of CWSI and DANS index. Steps include: Creation of bimodal histogram 

(canopy and soil pixels) of temperatures from the study site thermal image. Applying Canny edge 

detection menthos to eliminate soil and mixed canopy soil pixels. Re-creation of temperature 

histogram. Extracting Twet and Tdry values from two sided critical values of 99% CI of 

temperature histogram.  
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2.2.4.4 NDVI Calculation 

 Normalized Difference Vegetation Index (NDVI) is defined as the difference 

between near-infrared and red bands to the ratio of near-infrared plus red, taken from 

multispectral sensor. The near-infrared band is used for reflecting vegetation effectively, 

whereas red band absorbs vegetation. Combination of both these bands is used to 

quantify vegetation within the imagery. 

𝑁𝐷𝑉𝐼 =
NIR−Red

𝑁𝐼𝑅+Red
       (2.6) 

where NIR is near-infrared light and Red is visible red light. It values ranges 

between -1 and +1. However, it can be different for different land cover type. Usually 

NDVI is calculated at the early in crop season. It shows the variation in chlorophyl and 

plant density. Over time in later crop growth stages, these values gets saturated and are 

less useful.  

2.2.4.5 NDRE Calculation 

Normalized difference Red Edge (NRDE) is defined as the difference between 

near-infrared and red edge bands to the ratio of near-infrared plus red edge bands, taken 

from multispectral sensor. Similar to NDVI, both near-infrared and red edge bands are 

used to indicate vegetation effectively. 

𝑁𝐷𝑅𝐸 =
NIR−RE

𝑁𝐼𝑅+RE
         (2.7) 

Where NIR is near-infrared light and RE is the red-edge light. It values also 

ranges between -1 to +1. However, NDRE gives a better indicator of vegetation cover 

during the mid to late crop growth stages. Red edge band is more translucent than the red 

bands to absorb canopy when its dense and better for biomass estimation.  
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2.3 Results 

2.3.1 CWSI, DANS and VI Maps 

 This section presents CWSI, DANS and VI maps (Figure 2.6 to 2.8) developed 

from the TIR and multispectral imagery using equations 2.4 to 2.7. A summary of 

statistical data that was extracted from TIR imagery using Python script (Table 2.5) is 

shown below. With a 99% confidence interval, Twet and Tdry thresholds are calculated 

from the GMM model output on canopy temperature histogram. The different mean and 

SD values in the table indicate that the distribution of canopy temperatures can vary 

between different times of a day even under different irrigation treatments. Based on the 

results obtained, it is noted that ENREC2 achieved the highest mean temp as compared to 

SCAL and ENREC1.  

Table 2. 5. Summary Statistics for canopy temperature (°C) extracted  

from TIR Imagery 

Plot Date / Time Mean SD 
99% CI 

Twet Tdry 

ENREC1 8/26/2020 11:30 26.69 1.51 22.8 30.58 

ENREC1 8/26/2020 14:30 29.95 1.79 25.33 34.56 

ENREC1 8/26/2020 16:30 28.7 1.5 24.83 32.57 

ENREC1 8/26/2020 19:00 24.44 1.28 21.13 27.75 

ENREC2 8/26/2020 10:30 26.55 2.27 20.69 32.41 

ENREC2 8/26/2020 13:30 32.4 2.63 25.61 37.56 

ENREC2 8/26/2020 15:45 32.52 2.37 26.4 38.64 

ENREC2 8/26/2020 18:00 28.43 1.9 23.52 33.34 

SCAL 8/28/2020 11:00 24.36 0.61 22.78 25.95 

SCAL 8/28/2020 13:30 29.92 1.28 26.61 33.22 

SCAL 8/28/2020 16:00 28.42 1.04 25.72 31.12 

 

 The below water stress and VI maps show that there are noticeable differences 

among the experimental plots of ENREC1, ENAREC2 and SCAL field sites. These maps 
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indicate that there are strong indications of observing diurnal water stress conditions. The 

following high-resolution maps is only a sample representation of flights taken on August 

26, 2020 for ENREC1 and ENREC2 and on August 28, 2020 for SCAL. Remaining maps 

on different times of UAV Campaign are show in Appendix section.  

 According to the four different flights at ENREC1 and ENREC2 on 26th August, 

and three different flights at SCAL taken on 28th August of 2020 growing season, the 

stress patterns in different treatments had significant differences at different times. On the 

whole plot, the intensity or variation in color range changes from less stress to high stress 

during the morning till late afternoon, and to a less stress patterns later in the evening for 

CWSI and DANS maps. In terms of pixel resolution, each pixel had a size roughly 

equivalent to a thermal image of 15 x 15 cm. Since NDVI and NDRE are less sensitive to 

the temporal flights and indicate the plant health status only one set of flights has been 

shown from figures 2.7-2.9. 
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Figure 2. 7 (Top-Left) CWSI maps developed using statistical approach shows CWSI ranges 

from -0.008 to 1.09. (Top-Right) DANS map ranging from 0 to 8.51. (Bottom-Left) NDVI 

ranges from 0.24 to 0.95. (Bottom-Right) NDRE ranges from 0.13 to 0.80. Study site: 

ENREC1, Mead, NE. Maps developed using ESRI ArcMap for 26th August, 2020 at 2:30 

PM. 
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Figure 2. 8 (Top-Left) CWSI maps developed using statistical approach shows CWSI 

ranges from -0.108 to 1.048. (Top-Right) DANS map ranging from 0 to 9.23. (Bottom-

Left) NDVI ranges from 0.12 to 0.94. (Bottom-Right) NDRE ranges from 0.09 to 0.76. 

Study site: ENREC2, Mead, NE. Maps developed using ESRI ArcMap for 26 th August, 

2020 at 1:30 PM. 
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Figure 2. 9 (Top-Left) CWSI maps developed using statistical approach shows CWSI 

ranges from -0.01to 1.13. (Top-Right) DANS map ranging from 0 to 7.44. (Bottom-Left) 

NDVI ranges from 0.24 to 0.95. (Bottom-Right) NDRE ranges from 0.21 to 0.79. Study 

site: SCAL, Clay Center, NE. Maps developed using ESRI ArcMap for 28th August, 2020 

at 1:30 PM. 
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2.3.2 Diurnal Temperature differences 

 The diurnal temperature differences for the selected three different field 

sites (ENREC1, ENREC2, and SCAL) are shows below from figure 2.10 to 2.12. Delta T 

(∆T) represents the difference between crop canopy temperature (Tc) and the air 

temperature (Ta), to determine the level of water stress in plants. The value of (Tc) is 

calculated as the averaged canopy temperature value taken from each different treatment 

for each flight time, and (Ta) are the air temperature values taken from nearby AWDN 

weather station during each flight time.  

 

 
Figure 2. 10 Difference between Canopy and air temperature (∆T) for 

study site ENREC1, over a day. Treatments involved are Common, 

Rainfed, Private Company, SETMI using Satellite, SETMI using UAS, 

and Uniform treatments. The trends show an increase in (∆T) from 

morning till afternoon and drops significantly afternoon till evening. 
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Figure 2. 11 Difference between Canopy and air temperature (∆𝑇) for study 

site ENREC2, over a day. Treatments involved are Rainfed, Deficit, Full and 

Over Irrigation treatments. The trends show an increase in (∆𝑇) from 

morning till afternoon and drops significantly afternoon till evening. 

 
Figure 2. 12 Difference between Canopy and air temperature (∆𝑇) for 

study site SCAL, over a day. Uniform irrigation treatment applied. The 

trends show an increase in (∆𝑇) from morning till afternoon and drops 

significantly afternoon till evening. 
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The results for the study on ENREC1 (Figure 2.10), represents (∆T) taken at four 

times in a day on August 26th 2020. The line plot shows crop stress response and 

recovery from morning till late afternoon for six different treatment plots within the field. 

The rainfed (R) and satellite (SAT) treatment plots in the field clearly stands out 

indicating higher water stress as compared to other treatments. The UAS plots in the field 

is assumed to have the least water stress and having sufficient water in the plots, as per 

the results obtained. However, all treatments plots followed a similar pattern, i.e., having 

a warmer canopy temperature in the morning (11 AM) and cooler temperatures during 

the evening (7 PM). The time period between morning and afternoon (2 PM) showed a 

constant increase in the canopy temperature due to increase in its surrounding air 

temperature and maintained the stress until slowly dropping at later afternoon (4 PM) as 

air temperature drops significantly.  

Similar to the study done of ENREC1, the ENREC2 plots (Figure 2.11) which are 

located within one mile radius to ENREC1, is observed to have similar trends in water 

stress patterns from morning till evening, but the range of (∆T) is much higher in this 

field. The Rainfed (R) treatment plots in ENREC2 indicate higher water stress, i.e., 

greater that 0°C in (∆T) during afternoon time period, indicating that the canopy 

temperature was much higher than that of air temperature. The Over (150%) irrigation 

plots is expected to have the least water stress as compared to Full (100%) and deficit 

(50%) plots at ENREC2. 
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The SCAL (Figure 2.12) field plot consists of only uniform irrigation treatment. 

The (∆T) trends in this field site displayed similar patterns in increasing water stress from 

morning (11AM) till afternoon (2 PM), but there is a significant drop during late 

afternoon hours (4 PM) when compared with other two field sites at same time. The air 

temperature at this location was cooling faster, resulting in the canopy losing its warmth 

rapidly. 

In addition to (∆𝑇) trends, this study also extracted a descriptive statistic for each 

flight using a Python code. It includes mean, standard deviation, first and third quartile, 

and the interquartile range (IOR) for ∆𝑇 after removing the soil and canopy pixels. 

Tables 2.6 and 2.7 presents a comparison between rainfed treatment and uniform/ full 

treatment obtained from ENREC1 and ENREC2.  

 

Table 2. 6 Summary Statistics Extracted from ∆T for ENREC1 for rainfed and uniform 

treatments after removing soil and mixed soil-canopy pixels 

Treatment 
Date/ 

Time 

ΔT (°C) 

min 

ΔT (°C) 

max 
Mean Std Q1 Q3 IQR 

Rainfed 

8/26 11:00 -5.90 0.26 -3.721 1.08 -4.66 -2.792 1.86 

8/26 14:00 -6.12 1.53 -2.622 1.38 -3.495 -1.528 1.96 

8/26 16:00 -7.36 -1.24 -4.191 1.02 -5.234 -3.414 1.82 

8/26 19:00 -8.58 -4.67 -6.428 0.86 -7.125 -5.691 1.43 

Uniform / 

Full 

8/26 11:00 -7.72 -2.90 -5.729 0.85 -6.344 -5.09 1.25 

8/26 14:00 -5.25 0.06 -2.694 0.92 -3.378 -1.943 1.43 

8/26 16:00 -6.98 -2.12 -4.141 0.75 -4.661 -3.62 1.04 

8/26 19:00 -8.85 -6.06 -7.46 0.4 -7.745 -7.211 0.53 
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Table 2. 7 Summary Statistics extracted from ∆T for ENREC2 for rainfed and 

uniform treatments after removing soil and mixed soil-canopy pixels 

Treatment 
Date/ 

Time 

ΔT (°C) 

min 

ΔT (°C) 

max 
Mean Std Q1 Q3 IQR 

Rainfed 

8/26 10:30 -6.45 3.88 -1.66 1.78 -0.811 1.192 2.01 

8/26 13:30 -5.61 4.49 0.28 2.06 -3.727 -1.234 2.49 

8/26 15:45 -5.79 5.23 0.13 1.64 -2.947 -0.612 2.33 

8/26 18:00 -7.11 2.12 -2.31 1.62 -0.881 0.924 1.81 

Uniform / 

Full 

8/26 10:30 -6.74 3.88 -3.61 1.56 -1.362 -3.152 1.79 

8/26 13:30 -6.45 5.23 -2.23 1.77 -2.551 -4.561 2.01 

8/26 15:45 -6.99 4.49 -2.48 1.69 -1.698 -3.158 1.46 

8/26 18:00 -7.11 2.12 -3.91 1.54 -1.745 -3.125 1.38 

 

 

The results revealed that rainfed treatment in both cases provided a higher IQR as 

compared to the uniform/ full treatment. The information on IQR for different times can 

also be used as a predictive threshold to quantify the water stress and irrigation 

application. From Table 2.6 and Table 2.7, it can be predicted that the threshold values of 

approximately 1.4 and 2, from uniform irrigation treatment can be utilized as the 

threshold value to trigger irrigation event based on ∆𝑇. 

2.3.3 Correlation between CWSI and DANS 

Similar to CWSI, soybean DANS maps for each flight were created as an 

indication of water stress. In general, when DANS values were correlated to CWSI for 

each flight, the correlation showed a near-perfect linear relationship, which may be 

expected since both DANS and CWSI were calculated as linear functions of Tc for each 

pixel. Therefore, the scatterplot was created between CWSI and DANS for all the flight 
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times at SCAL, ENREC1 and ENREC2 to test to see whether there was a significant 

correlation between the two stress indices throughout a day (Figure 2.13).  

 

 
Figure 2. 13(a) Top-Left: Correlation value of 0.38 between CWSI and DANS for SCAL. (b) 

Top-Right: Correlation value of 0.84 between CWSI and DANS for ENREC1. (c) Bottom: 

Correlation value of 0.93 between CWSI and DANS for ENREC2. 
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The result after plotting all the measurements for each flight time together, 

showed each individual linear relationship with a positive linear correlation between the 

two values. As we see from the graphs that the determinant coefficients (R2) for SCAL, 

ENREC1, and ENREC2 are 0.38, 0.84, and 0.93, respectively. The difference in (R2) is 

due to the variation between the parameters (Twet and Tdry) of the functions being 

changed for each flight time. However, these scatterplots shows a strong relationship 

between these two variables, and DANS values can be estimated based on the equation 

with CWSI values. 

2.3.4 CWSI Histogram Distribution-based Threshold Prediction Model 

 The objective of this research is to investigate if a different threshold CWSI is 

quantified during different times on a day in comparison to the hypothetical threshold 

CWSI usually quantified at or around solar noon. To trigger an irrigation event, 

estimating the threshold value and identifying crops with various stress levels is essential. 

Based on the statistical approach developed by Park et al., (2018), important evidence has 

been extracted out, from the generated CWSI maps.  

 A histogram distribution of CWSI values for each flight have been shown in 

Figures 2.14, 2.15, and 2.16 for ENREC1, ENREC2, and SCAL sites, respectively. Table 

2.9 presents the summary statistics of mean, median and quartiles to calculate the 

threshold value for this study. The mean values from each flight have been computed and 

averaged. The mean CWSI values for each of the sites were 0.49, 0.51, and 0.49, 

respectively. Singh, et al. (2021), reported threshold CWSI value (0.5) for ENREC1. In 

addition, the water stress levels over a site have also been characterized in Table 2.8, 
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which is extracted as 25 and 75 quartiles are 0.3 and 0.6, respectively. Similar CWSI 

levels are also reported in Singh, et al (2021) and DeJonge et al., (2015). As indicators of 

whether the crop is experiencing stress. 

 

Table 2. 6 CWSI Water stress levels based on 25 and 75 quantile range 

CWSI Water Stress Level 

X < 0.3 Low Water Stress 

0.3 - 0.6 Moderate Water Stress 

X > 0.6 High Water Stress 

 

 

Table 2. 7 Summary statistics extracted from CWSI Histogram Distribution for each flight to 

predict CWSI Threshold value (mean) and characterize water stress levels (Q1 – 25 quantile) 

(Q3 – 75 quantile) 

Site Date and Time Min Max Mean Q1 Q3 

ENREC1 

8/26/2020 11:25 0.015 1.043 0.499 0.377 0.603 

8/26/2020 14:20 0.085 1.086 0.5 0.36 0.6 

8/26/2020 16:32 -0.008 1.09 0.5 0.363 0.61 

8/26/2020 18:54 0.005 1.043 0.5 0.371 0.609 

Predictive Threshold 0.499 0.36775 0.6055 

ENREC2 

8/26/2020 10:37 0.131 1.04 0.5 0.351 0.627 

8/26/2020 13:30 0.09 1.036 0.567 0.393 0.723 

8/26/2020 15:45 0.027 1.031 0.5 0.347 0.638 

8/26/2020 18:03 0.108 1.048 0.49 0.353 0.612 

Predictive Threshold 0.51 0.361 0.65 

SCAL 

8/28/2020 11:00 0.029 1.105 0.5 0.367 0.605 

8/28/2020 13:30 0.01 1.136 0.5 0.354 0.627 

8/28/2020 16:00 0.002 0.989 0.49 0.359 0.637 

Predictive Threshold 0.49 0.36 0.623 
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Figure 2. 14 CWSI histogram distribution created from CWSI maps of flights taken at 

11:30 AM, 02:00PM, 04:30 PM, and 07:00 PM for site, ENREC1. Dotted line in 

between represents predicted CWSI Threshold value of 0.47 for 26th August, 2020. 

 

 
Figure 2. 15 CWSI histogram distribution created from CWSI maps of flights taken at 
10:30 AM, 01:30PM, 03:45 PM, and 06:00 PM for site, ENREC2. Dotted line in 

between represents predicted CWSI Threshold value of 0.498 for 26th August, 2020. 
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Figure 2. 16 CWSI histogram distribution created from CWSI maps of flights taken at 11:0 

AM, 01:30PM, and 04:00 PM for site, SCAL. Dotted line in between represents predicted 

CWSI Threshold value of 0.488 for 28th August, 2020. 

 

2.3.4 CWSI Sensitivity Analysis 

The objective of CWSI calculation is to normalize the canopy temperatures is to 

reduce the influence of environment condition (e.g. air temperature, relative humidity, 

radiation), while maintaining sensitivity to plant water status. Previous researchers (Singh 

et al., 2021; O’Shaughnessy et al., 2017, 2012; DeJonge et al., 2015; Irmak et al., 2000;; 

Payero and Irmak, 2006; Peters and Evett, 2008; Taghvaeian et al., 2012) have studied 

and used empirical or theoretical approaches in determining CWSI sensitivity with 

respect to local environmental conditions. However, studies related to CWSI sensitivity 

with respect to the statistical approaches are minimal. This research is also intended to 

take into account on local meteorological factors and their influence on CWSI 

performance using the statistical approach. Four main important factor's (air temperature, 
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relative humidity, solar radiation and wind speed) that effecting CWSI values are 

examined below, for uniform irrigation treatment plots at the study research sites. 

2.3.4.1 CWSI vs Air Temperature (Tair) 

 A scatter plot between CWSI and Tair values, and line graph with respect to time, 

is shown in Figure 2.17(a-c), for ENREC1, ENREC2, and SSCAL field sites. Based on 

the scatter plot we observe that there is a strong positing correlation of 0.71, 0.81 and 

0.98, respectively, between CWSI and Tair values. Generally, the increase in air 

temperature cause rapid evapotranspiration in plants i.e., to lose water rapidly, resulting 

in stress and an increase in canopy temperature. Thus, the relationship between the two 

variables are directly proportional. The line graph shows the mean value of CWSI and 

values of air temperature, both with respect to time. At morning, CWSI values are low, 

due to less air temperature. Whereas, during afternoon, air temperatures are at its 

maximum increasing CWSI values. Later in the evening CWSI values drops wit respect 

to drop in air temperature.  

2.3.4.2 CWSI vs Relative Humidity (RH) 

 Figure 2.18 (a-c) shows the relationship of CWSI with respect to Relative. 

Humidity (RH). The scatter plot between these two variables shows a strong negative 

correlation of 0.86, 0.97, and 0.98, respectively. In general, the increase in surround air 

temperature causes the relative humidity to decrease and increase the vapor pressure 

deficit (VPD). Plants undergo the process of attaining equilibrium between the 

surrounding air moisture and canopy. When there is high VPD, it makes the plants harder 

to attain equilibrium conditions thereby increasing stress in plants. Thus, the relationship 
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between CWSI is inversely proportional to RH. The line graphs clearly indicate the 

effects of RH decreased in afternoon due to increase in Tair and likewise increase in RH 

during morning and evening times.  



58 
 

 

 
 

 

 
Figure 2. 17 (a) Top Left: Represents correlation between CWSI and Tair for ENREC1 (r2 = 

0.71). (b) Middle Left: Represents correlation between CWSI and Tair for ENREC2 (r2 = 

0.81). (c) Bottom Left: Represents correlation between CWSI and Tair for SCAL (r2 = 0.981). 

(d) Top Right: Represents correlation trend between CWSI and Tair for site: ENREC1 with 

respect to time of the day (e) Middle Right: Represents correlation trend between CWSI and 

Tair for site: ENREC2 with respect to time of the day. (f) Bottom Right: Represents correlation 

trend between CWSI and Tair for site: SCAL with respect to time of the day.  
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Figure 2. 18 (a) Top Left: Represents correlation between CWSI and Relative Humidity (RH) for 

ENREC1 (r2 = 0.86). (b) Middle Left: Represents correlation between CWSI and RH for 

ENREC2 (r2 = 0.97). (c) Bottom Left: Represents correlation between CWSI and RH for SCAL 

(r2 = 0.98). (d) Top Right: Represents correlation trend between CWSI and RH for site: ENREC1 
with respect to time of the day (e) Middle Right: Represents correlation trend between CWSI and 

RH for site: ENREC2 with respect to time of the day. (f) Bottom Right: Represents correlation 

trend between CWSI and RH for site: SCAL with respect to time of the day. 
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2.3.4.3 CWSI vs Solar radiation (SR) 

 Solar radiation (SR) has a significant effect on CWSI values (Fig 2.19 (a-c)). The 

angle of the sun with respect to the crop canopy greatly determines the amount of solar 

radiation received. But these values on CWSI are largely influenced by the factors like 

cloud cover, wind, waterpower, air pollution, etc. From the scatter plot, we observed that 

there was weak positive relationship between CWSI and SR of 0.11, 0.16, and 0.01 

respectively, indicating that the increase in SR values can increase the CWSI. But, as we 

see on the line graph, it clearly shows during later afternoon that in spite of having 

greater SR values, the CWSI value is decreased. This could be due other factors as 

mentioned above or plants having some cooling effect.  

2.3.4.4 CWSI vs Wind Speed (WS) 

The relationship between CWSI and windspeed (WS) is highly dependent on 

height of the instrument taken from nearby weather station. For the selected study sites, 

the nearby AWDN station has anemometers set up at 2 meters height. Since the chosen 

crop is soybean, the height usually less than the instrument height. During the windy 

conditions, the plants are subjected either hot air or cold air depending on surrounding 

temperature. Hot air increases the rate of transpiration from plants and can cause increase 

in stress rapidly. Thus, the relationship between the CWSI and WS for the selected study 

sites resulted in a weak positive correlation of 0.25, 0.32 and 0.96, respectively. The line 

graphs show a significant differences and is hard to explain the trends between these two 

variables.  
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Figure 2. 19 (a) Top Left: Represents correlation between CWSI and Solar Radiation (SR) for 

ENREC1 (r2 = 0.11). (b) Middle Left: Represents correlation between CWSI and SR for 

ENREC2 (r2 = 0.16). (c) Bottom Left: Represents correlation between CWSI and SR for SCAL 

(r2 = 0.011). (d) Top Right: Represents correlation trend between CWSI and SR for site: 

ENREC1 with respect to time of the day (e) Middle Right: Represents correlation trend between 

CWSI and SR for site: ENREC2 with respect to time of the day. (f) Bottom Right: Represents 

correlation trend between CWSI and SR for site: SCAL with respect to time of the day. 
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Figure 2. 20 (a) Top Left: Represents correlation between CWSI and Wind Speed (WS) for 

ENREC1 (r2 = 0.25). (b) Middle Left: Represents correlation between CWSI and WS for 

ENREC2 (r2 = 0.32). (c) Bottom Left: Represents correlation between CWSI and WS for SCAL 

(r2 = 0.096). (d) Top Right: Represents correlation trend between CWSI and WS for site: 

ENREC1 with respect to time of the day (e) Middle Right: Represents correlation trend between 

CWSI and WS for site: ENREC2 with respect to time of the day. (f) Bottom Right: Represents 

correlation trend between CWSI and WS for site: SCAL with respect to time of the day. 
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2.4 Discussion 

 The objective of this study was to observe discrepancies between CWSI values at 

different times of the day considering that they are hypothetically assumed to be taken at 

or near solar noon. To quantify this objective high-resolution thermal and multispectral 

images were captured using an unmanned aerial system (UAS) on three different research 

sites in Eastern Nebraska. The estimation of water stress indices for these high frequency 

flights are computed using the statistical approach developed by Park et al., 2018, for this 

research. The reason for considering statistical approach over empirical and theoretical 

approach is due to reduced requirements of parameters that are required in estimating the 

CWI and DANS values, and increasing the automation time of generating these water 

stress maps. The only requirements for this approach is the use of thermal imagery 

captured from UAS, and nearby local meteorological data, as an input for thermal 

calibration model (Maguire, 2021) and CWSI sensitivity analysis. The whole research 

was carried out based on an assumption that there is an extensive range of water stress 

levels during a moisture stress period over the field, involving various irrigation 

treatments.  

The first objective of this research is to identify and characterize the temporal 

nature of spatial canopy stress patters for the soybean crop. This was achieved through 

the creation of CWSI, DANS and VI maps, that visually depict the differences in canopy 

stress patterns for selected three different research sites in Eastern Nebraska. Moreover, 

statistical tables to determine the thresholds of Twet and Tdry values analyzed to 

distribution of canopy temperatures. The lower and upper threshold values, i.e. Twet and 
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Tdry was extracted by eliminating the soil and mixed canopy-soil pixels with each TIR 

imagery and a Gaussian mixture model (GMM) is fitted to the temperature distribution 

histogram for calculation of water stress indices. In addition to the development of water 

stress maps, difference between canopy and air temperature (∆𝑇) is also analyzed to 

understand the spatial variability and crop stress pattern. Based on the descriptive 

statistical table computing ∆𝑇, the interquartile range for rainfed and uniform treatments 

was extracted for ENREC1 and ENREC2 sites, that can also be used as a threshold value 

to apply irrigation. Finally, correlation plots between CWSI and DANS are also created 

to understand the relationship between the two variables as an indication of plant stress.  

Coming to the second objective, this research developed a new CWSI histogram-

based threshold prediction method and also characterized the water stress levels into low, 

moderate and high using quantiles extracted from histogram distribution. Descriptive 

statistics and figures displayed in the above results sections shows mean and quantile 

range values of CWSI taken for each flight. This average value of mean represents the 

threshold value of CWSI and the 25 and 75 quantile values represent the cut-off between 

low water stress and high water stress crops.  

The third objective of this research is to perform a sensitivity analysis between 

CWSI and common meteorological factors namely air temperature, relative humidity, 

wind speed and solar radiation using statistical CWSI approach. From the literature 

review, it was well known that the pervious researcher has always accounted for 

meteorological effects based on theoretical or empirical equations used. However, 

minimal or no study was conducted using statistical approach. In view of the parameters 
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of the crop canopy examined, the study discovered that air temperature, solar radiation, 

wind speed were positively correlated to CWSI level except relative humidity, being 

negatively correlated. Indeed, increased levels of air temperature, solar radiation, and 

wind speed caused the plants to experience more water stress levels. This was mostly 

experienced in the morning until afternoon hours when the rate of transpiration in plants 

was quite high. Later in evening, CWSI values dropped with respect to decrease in air 

temperature and solar radiation principally.  

2.5 Limitations 

This research was conducted during full canopy growth stage which is crucial 

period for soybean crop. Due to various reasons addressed in Chapter 3, the research did 

not explore for water stress patters over different growth stages. In addition, the accuracy 

of canopy temperatures extracted from UAV thermal imagery can be affected by various 

parameters. However, with the help of comprehensive study conducted by Maguire, 2021 

for improving the accuracy of thermal images has potentially mitigated the effects of 

environmental factors like altitude, air temperature, relative humidity and atmospheric 

pressure subjected to the time of UAV flight. One more advantage of Magui, 2021 

method is that the thermal calibrated image using linear regression model has taken into 

account of using reference infrared thermometers (IRTs) stationed at ENREC1 to train 

the model for obtaining the temperature values close to IRT canopy temperature. Results 

of calibration model is show in above methods.  

It is also well noted that this research has some possible limitations of the implied 

statistical CWSI approach for developing water stress maps and identifying threshold 
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value based on histogram distribution, for all possible conditions in the field. Park et al., 

2018 has clearly mentioned in his study that the estimated Tdry from GMM distribution 

should be less that the that of Tair, else, it can indicate non-severe crop water stress. In 

contrast, if the canopy temperature distribution range is very narrow and close to the Tdry 

prediction by Tair, most crops are water-stressed. Nevertheless, it is necessary to 

continue future research experiments in order to evaluate this approach at any 

phonological crop growth stages. 

2.6 Conclusion 

Use of UAV technology equipped with various sensors has become common in 

present research studies to identify crop water stress needs spatially and effectively. 

Through the examination of standardized CWSI values through a statistical approach, it 

was revealed how CWSI was sensitive to environmental conditions. Factors like air 

temperature, solar radiation, wind speed were positively correlated to crop water stress 

index level except relative humidity. Moreover, it was revealed from the correlation plots 

and histogram distribution that the CWSI had a consistency for statistical CWSI approach 

in its range from late morning till late afternoon window, creating possibility for 

collection and estimating of CWSI at any time of the day, mainly at sunshine hours. 

However, more research is needed to ensure that all factors associated with estimation of 

crop stress are put into perspective. As a future work, further research on different crop 

fields and different crop phonological stages needs to be examined to make the present 

method applicable to general cases. 
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CHAPTER 3. CHALLENGES INVOLVED IN CONDUCTING HIGH-

FREQUENCY UAV FLIGHTS FOR ESTIMATION OF PLANT WATER STRESS 

In this chapter, we will discuss the key challenges encountered during the 

development of plant water stress maps for this research, starting from data collection to 

processing issues. This can also serve as a useful guide for improving further research 

methodologies using unmanned aerial systems (UAVs) for agricultural operations.  

3.1 Conducting High-Frequency UAV Flights 

3.1.1 Pre-flight Planning 

 In order to operate or conduct research involving unmanned aerial vehicles, 

researchers are required to obtain an FAA Part 107 remote pilot license following all 

rules and regulations outlined by the Federal Aviation Administration (FAA). For safety 

reasons, a researcher must ensure that the UAV being used is registered with the FAA 

and that a copy of the registration with the FAA number is always attached to the drone. 

An insurance policy is also necessary in the event of any accidental damage caused 

during research operations.  

For this research, an FAA registered DJI Matrice M600 was used, which was 

permitted to fly at the University of Nebraska-Lincoln's research locations. In advance of 

the flight operations, an in-depth investigation was conducted on the selected research 

sites (ENREC1, ENREC2 and SCAL) to identify potential obstacles, such as trees, power 

lines, birds, and insects, in order to minimize damage and enhance the likelihood of 

successful data collection.  
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The research was carried out using UgCS Drone Mission Planning and Flight 

Control (UgCS, USA) software for survey and planning the flight missions. The software 

allows users to create flight routes with customized flight speed, altitude, orientation, and 

side spacing, front and side overlap settings are all pre-programmed requiring less human 

interaction during actual flight. 

Drone safety and pre-flight checklist recommended by manufacturer has always 

been followed during this entire data collection period. A safety tool kit and extra parts 

were always carried on board to fix quick issues during long research flights. Drone 

inspection and maintenance was carried out each day before setting out to the field. 

3.1.2 Weather and Local Environmental Considerations 

 This research is highly dependent upon weather and environmental conditions 

since the UAV was used on multiple occasions during the day for high-frequency data 

collection. Prior to the flights, hourly weather data from National Weather Service 

Forecast Office (https://forecast.weather.gov/), and cloud movement monitoring from 

NOAA Geostationary satellite server (https://www.goes.noaa.gov/), was used for 

planning of flight missions.  

 Initially, the goal of the original research was to conduct six UAV flights 

approximately every day, starting from the day after an irrigation event until the day 

before another irrigation event, to monitor and study the crop stress pattern and recovery. 

However, it was not possible to achieve this objective because changing cloud cover and 

wind profiles made it impossible to capture data continuously within a day. The 

maximum number of flights could be obtained on a sunny clear day with low wind 
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profile was five. Please see the appendix section for a complete list of UAV flight 

campaigns conducted for this research. The total number of flights conducted were 47. 

 In order to keep the drone safe at all times in field, an enclosed university vehicle 

was utilized regardless of changing weather local environmental conditions. 

3.1.3 Batteries and Charging Issues 

 Predicting the number of battery sets required and charging issues are another 

major obstacle to successful data capture. With the DJI Matrice M600, the maximum 

flight time at full payload capacity is expected to be around 16 minutes. The total amount 

of batteries available was three sets. On average, each research field required 15-17 

minutes to fly, plus additional 3 minutes for warming up and connecting the drone to an 

iPad. Due to a shorter UAV flight time, two batteries were used per research field for one 

time data collection. In order to conduct multiple flights in a day, the batteries were 

charged periodically from the nearby center pivot control outlet at ENREC1 and 

ENREC2, and nearby farm shop at SCAL. An additional backup was provided by a car 

power battery charger. Approximately 90 to 110 minutes were needed to fully charge 

each set of batteries. 

 Another issue encountered in the field was that the batteries did not start charging 

until they cooled down to a certain temperature. Especially after each flight and due to 

open sunny and hot weather conditions the batteries over-heated, and this made it 

difficult to continue the data collection process.  

 In addition to drone battery charging difficulties, maintaining sufficient battery 

power on mobile, iPad, and laptop devices was also a challenge.  
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3.1.4 UAV Attachments and Internet Connectivity 

 The DJI Matrice M600 was attached with MicaSense RedEdge multispectral and 

FLIR Duo Pro R thermal cameras to acquire high resolution imagery in this research. 

These two sensors were mounted on a custom designed gimbal on the drone. Both these 

sensors have delicate wiring connected from the drone control board and external battery 

supply. Protecting these wires during inspection and out in the field is challenging. 

However, with the latest drones, this problem can be eliminated with the use on onboard 

skyport gimbal adapter which controls the sensors within the drone manufacturing 

system. 

 To achieve successful data collection, all drones, sensors, and flight mission 

planning software must be connected to the internet in order to communicate with each 

other. Some of the settings on each sensor are adjusted using a mobile app before and 

after each flight. To connect these devices, a Verizon Jetpack hotspot (MiFi 8800L) 

device was used, however, since the research sites were in remote locations, maintaining 

a stable internet connection was challenging. 

3.1.5 Post-flight and Safety 

 To ensure smooth flight operations, certain post-flight checklists and safety 

procedures are implemented following a successful landing of an aircraft. The procedure 

involves replacing of memory cards, cleaning of sensors, replacing batteries and 

recording flight logs.  

 Since this study involved high-frequency data collection process, several memory 

cards were used for storage of data captured from both sensors. After each flight, all the 
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data captured were copied to a laptop device and been fully formatted to have full storage 

capacity. This step was also crucial to verify that the data was being collected properly.  

 One common issue with conducting flights out in the field is ingress of small dust 

particles into the drones and sensors which can cause difficulties in data collections 

process. A high-pressure compressed can of air is used along with soft cloth and brush to 

clean the dust. During idle times, dust-sealed caps were used on sensors for safety. 

 After successful UAV mission, a flight log was used to record observations in the 

field at the time of flight. This included: start and end time of flight missions, date, 

location, temperature, relative humidity, wind speed, cloud cover and any remarks 

experienced during the flight.  

3.2 Challenges of Multispectral and Thermal Imaging 

3.2.1 Sensor Calibration 

3.2.1.1 Calibration of MicaSense RedEdge Multispectral Camera  

 MicaSense RedEdge Multispectral Cameras were calibrated using an approach 

developed by Maguire, 2018. The procedure involves capturing two images of 

MicaSense calibrated panel reflectance (PR), before and after each flight, taken at waist 

level (Figure 3.1). Apart from reflectance panel images captured, a MicaSense 

Downwelling Light Sensor (DLS) is also mounted on the top of the drone to measures the 

irradiance for each individual image during the flight, and is stored in the image 

metadata. Using theses images as input, the Pix4D Mapper (Pix4D) software was used to 

calibrate and stitch the ortho-mosaics.  
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There are a number of factors that must be considered when obtaining calibrated 

multispectral images. That includes effects of sun angle, cloud coverage and canopy 

shadows. The best time to capture multispectral images is during solar noon, when solar 

irradiance values have less difference and clouds are minimal or absent. Since, this 

research aims to obtain imagery during multiple times in day, data sets with high cloud 

cover and canopy shadow imagery at late evening have been omitted.  

 
Figure 3. 1 Capturing of MicaSense RedEdge Panel Reflectance (PR) using a stand 

at waist level. Images on the left in sequence are – MicaSense Downwelling Light 

Sensor (DLS), MicaSense RedEdge Multispectral Camera, FLIR Duo Pro R 640 

Thermal Camera and an image with PR reflectance values used in Pix4D 

multispectral calibration processing 
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3.2.1.2 Calibration of FLIR Duo Pro R Thermal Camera 

 The calibration of thermal images for FLIR Duo Pro R camera used in this 

research was developed by Maguire, (2021). The calibration process accounted for both 

atmospheric and radiometric corrections and remodified for this research at an altitude of 

400ft (120 m AGL). The linear thermal calibration model procedure and methodology 

have been explained in chapter 2.  

 The major requirement involved in using the Thermal Calibration Model is the 

use of Infrared Thermometer (IRT) information at the time of the flight from the selected 

research sites. Among the three research sites, only ENREC1 IRT data was fully usable at 

all flight times, data taken from Singh et al. (2021). ENREC2 IRT data was limited due to 

different research objectives carried out by Bhatti et al., (2021), and only a few flight 

times were used in the model. SCAL site did not have any IRTs at the location. As a 

result, the overall model used for training model coefficients was mostly or exclusively 

based on ENREC1 IRT information and in comparison with Maguire, (2021), model, in 

which he used only ENREC1 IRT information to calibrate this thermal imagery. 

 The IRTs used for ENREC1 were all tested and calibrated before the start of the 

2020 growing season with Singh et al. (2021) (Figure 3.2) for temperature accuracy and 

applied further to Planks equation to correct for emissivity using Maguire, (2021).  

Another issue with the FLIR Duo Pro Thermal camera used in this study is to 

manually trigger Flat Foot Correction (FFT), commonly referred to as shutter calibration, 

every ten seconds during the time of flight. This is necessary for thermal cameras to re-

calibrate the sensor array to account for changes in camera body temperature and pixel 
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drift (Maguire., 2021). On many occasions, the FCC was not triggered after exactly 10 

seconds, which resulted in some missing images once the data was moved to storage. 

 

Figure 3. 2 Left: Conducting water bath experiment using Apogee Infrared 

Thermometer (IRTs) along with Data logger for calibration of IRT temperature values. 

Right: Sensor node station showing the IRT mounted at a 45 degree angle in ENREC1 

during 2020 early growing season. 

 

 Finally, the thermal camera requires sensor warming up time, before it can be 

used for flight mission at the start of each day. Failure to follow any of the above steps 

will result in a poor thermal image dataset and inaccurate pixel temperature values. For 

maximum accuracy of the final imagery, all practices have been accounted for in this 

research. 

3.2.2 Image Processing Issues 

 The very common issues that occur during image processing steps are – camera 

focus issues – Motion Blur, missing (EXIF) GPS information, missing images and 

overlap issues. 
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 Camera focus issues are caused when the sensor cannot focus or lock on the 

required target, and this causes some blurry effects at certain parts of the imagery. This 

happens when the drone is operated at higher speed than the the time required for the 

image to be captured. Sometimes motion blur can also be caused due to strong wind gusts 

in between the flight times. Figure 3.3 is an example of motion blur captured while 

conducting flights at ENREC1. 

      

Figure 3. 3 Left: Example image from a thermal camera with motion blur, taken from ENREC1. 

Right: Example image from thermal camera affected by wind, taken from ENREC1 

 

 The next possible processing error results from missing (EXIF) data which is 

needed for an image to be geo-located. During the course of high-frequency UAV 

operations, some of the images captured did not store metadata or information about the 

location of the image. When processed with Pix4D software, images without metadata 

cause an error to appear that forces the images to be discarded or manually uploaded. Due 

to the fact that this research used two sensors at the same time, some of the images were 

restored from sensor to restore the other. Still, some images were discarded when neither 

sensor returned any information. An example of this error is shown in image 3.4. 
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Figure 3. 4 Example error output from Pix4D Mapper indicating 

that more than 80% of the images are not geolocated. 

 

 As discussed above, missing of some images during flights can cause errors 

during image processing and considerable effects on final imagery. Possible reasons that 

cause missing images are – improper triggering of FFC, missing EXIF data, wireless or 

magnetic interference or system error due to overheating of sensors. These missing 

images can cause gaps in the processed ortho-mosaic images retrieving no spectral or 

reflectance information. Additionally, the front and side overlap percentage setting can 

also create missing images and poor stitching while processing the datasets. The 

resolution of sensor and flight altitude can also cause inaccuracies in the imagery. Below 

Figure 3.5 shows an example of missing imagery of thermal dataset at ENREC2.    
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Figure 3. 5 Left: Example image of missing thermal images before generating output in 

Pix4D Mapper. Base Image: Google Earth Hybrid, 2020. Right: Processed thermal image 

showing gaps with uneven distribution of temperature values if neighboring images. 

3.2.3 Data Storage 

 This research required enormous amounts of storage space during in-flight 

operations (SD Cards for both sensors) and post-flight operations (image processing 

outputs). Both raw and processed imagery are required to be stored in correct file 

destinations for easy access and re-processing options. More storage space is required 

when these processed imagery are being used for ArcGIS applications. All these imagery, 

along with flight logs, custom EXIF data, and other required meteorological data have 

been stored with multiple backup options, using portable hard drives and cloud storage 

for retrieving the data at all times.  

 Finally, this study was carried out with great care, taking into account of all of the 

factors that contribute to successful data collection and storage, with backups. 
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3.3 Water Stress Mapping 

 The overall objective of this research project is to develop water stress maps 

based on high-frequency UAV data captured from multispectral and thermal cameras to 

identify the temporal nature of crop stress pattern and recovery. The statistical based 

CWSI approach used in the research is quite new and only a few papers has been 

published using this approach (Park et al., 2017, 2018, 2021; Bian et al., 2019).  

 After an extensive data collection process, the steps and challenges involved in 

generating water stress maps include –  

• Careful examination of orthomosaic images and eliminating datasets 

containing missing and unsuitable imagery.  

• Downscaling and resampling of multispectral images to match thermal 

image resolution. 

• Study and use of python packages (GDAL, rasterio, numpy, matplotlib, 

pandas, scipy, etc.) to develop Twet and Tdry thresholds. 

• Knowledge of Data Management and Spatial Analyst Tools on ArcMap 

for creating NDVI, NDRE, (∆𝑇), CWSI and DANS maps, and also for 

extraction of multi values for development of correlation plots between 

two selected variables. 

• Troubleshooting on python and ArcGIS for potential problems and 

debugging. 

To sum up, the evaluation of results in this study has compelled in understanding 

some new knowledge on understanding of the temporal and spatial crop stress patterns.  



90 
 

 

 
 

3.4 Deviations in Research 

 The original objective of this research project involves deployment of unmanned 

aircraft six times in a day for monitoring of crop response to one irrigation event till next 

successive irrigation event. However, due to the following factors addressed in this 

chapter –  like weather, battery and charging time, internet connectivity, sensor issues, 

and post-image processing issues, tentative revisions were done to meet the original 

objectives as closely as possible. Another major factor that caused deviation in this 

research was the COVID-19 outbreak during 2020 growing season. The pandemic 

situation led to university lockdown and requirement to follow some protocols to 

continue the research. Thus, the data collection process at the start of growing season was 

delayed. 

3.5 Conclusion 

In conclusion, much effort has been put into this research and this chapter has 

addressed some of the challenges related to the data collection and post-processing 

stages. The issues mentioned in this chapter will help future researchers in improving 

their methods and show the extent and possibilities of using unmanned aerial vehicle 

(UAV) technology for high-frequency data collection.  

3.6 References 

Bhatti, S., D. M. Heeren, S. A. O’Shaughnessy, S. R. Evett, M. S. Maguire, S. P. 

Kashyap, and C. M. U. Neale. 2021. Comparison of stationary and mobile 

canopy sensing systems for irrigation management of maize and soybean in 

Nebraska. Applied Engineering in Agriculture (in review). 



91 
 

 

 
 

Bian, J., Zhang, Z., Chen, J., Chen, H., Cui, C., Li, X., ... & Fu, Q. (2019). Simplified 

evaluation of cotton water stress using high resolution unmanned aerial vehicle 

thermal imagery. Remote Sensing, 11(3), 267. 

Maguire, M. S. (2018). An evaluation of unmanned aerial system multispectral and 

thermal infrared data as information for agricultural crop and irrigation 

management (Doctoral dissertation, University of Nebraska-Lincoln). 

Maguire, M. S., Neale, C. M., & Woldt, W. E. (2021). Improving Accuracy of Unmanned 

Aerial System Thermal Infrared Remote Sensing for Use in Energy Balance 

Models in Agriculture Applications. Remote Sensing, 13(9), 1635. 

NOAA Office of Satellite and Product Operations, (1994): NOAA Geostationary 

Operational Environmental Satellite (GOES) I-M and N-P Series Imager Data. 

[indicate subset used]. NOAA National Centers for Environmental Information. 

doi:10.25921/Z9JQ-K976. [access date] (https://www.goes.noaa.gov/). 

Park, S. (2018). Estimating plant water stress and evapotranspiration using very-high-

resolution (VHR) UAV imagery (Doctoral dissertation). 

Park, S., Nolan, A., Ryu, D., Fuentes, S., Hernandez, E., Chung, H., & O’connell, M. 

(2015, November). Estimation of crop water stress in a nectarine orchard using 

high-resolution imagery from unmanned aerial vehicle (UAV). In Proceedings 

of the 21st International Congress on Modelling and Simulation, Gold Coast, 

Australia (Vol. 29). 

Park, S., Ryu, D., Fuentes, S., Chung, H., Hernández-Montes, E., & O’Connell, M. 

(2017). Adaptive estimation of crop water stress in nectarine and peach orchards 

https://www.goes.noaa.gov/


92 
 

 

 
 

using high-resolution imagery from an unmanned aerial vehicle (UAV). Remote 

Sensing, 9(8), 828. https://www.mdpi.com/215938  

Park, S., Ryu, D., Fuentes, S., Chung, H., Hernández-Montes, E., & O’Connell, M. 

(2017). Adaptive estimation of crop water stress in nectarine and peach orchards 

using high-resolution imagery from an unmanned aerial vehicle (UAV). Remote 

Sensing, 9(8), 828. 

Singh, J., Ge, Y., Heeren, D. M., Walter-Shea, E., Neale, C. M., Irmak, S., ... & Maguire, 

M. S. (2021). Inter-relationships between water depletion and temperature 

differential in row crop canopies in a sub-humid climate. Agricultural Water 

Management, 256, 107061. 

United States. National Weather Service. (1995). Welcome to the National Weather 

Service. Silver Spring, MD :The Service (https://forecast.weather.gov/) 

 

 

 

 

 

 

 

 

https://forecast.weather.gov/


 
 

 

Appendix 

Table: UAV Flight Log Database 

Year Date Time Location Temp RH Wind Altitude Thermal Imagery Multispectral Imagery 

2020 8/8/2020 0846AM ENREC2 24.14 88.68 3.71 120 m AGL X X 

2020 8/8/2020 0955AM ENREC1 24.96 85.88 4.38 120 m AGL - X 

2020 8/8/2020 1056AM ENREC2 26.14 81.65 4.72 120 m AGL X X 

2020 8/8/2020 1144AM ENREC1 27.22 78.1 4.58 120 m AGL X X 

2020 8/9/2020 0941AM ENREC2 26.04 72.38 3.06 120 m AGL X X 

2020 8/9/2020 1052AM ENREC1 27.73 64.02 4.39 120 m AGL X - 

2020 8/9/2020 0242PM ENREC2 30.1 66.57 4.12 120 m AGL X X 

2020 8/9/2020 0419PM ENREC1 31.08 63.62 3.39 120 m AGL X - 

2020 8/9/2020 0519PM ENREC2 31.19 65.5 2.86 120 m AGL X - 

2020 8/9/2020 0623PM ENREC1 30.64 69.65 2.75 120 m AGL X - 

2020 8/9/2020 0724PM ENREC2 29.45 76.28 1.69 120 m AGL X - 

2020 8/9/2020 0844PM ENREC1 27.32 82.67 1.46 120 m AGL - - 

2020 8/10/2020 0247PM ENREC1 27.75 49.82 2.02 120 m AGL X - 

2020 8/10/2020 0401PM ENREC2 27.99 52.78 2.35 120 m AGL X - 

2020 8/10/2020 0519PM ENREC1 27.77 54.22 2.61 120 m AGL X - 

2020 8/10/2020 0605PM ENREC2 27.04 56.21 2.92 120 m AGL X - 

2020 8/10/2020 0700PM ENREC1 24.92 64.95 2.96 120 m AGL X - 

2020 8/10/2020 0747PM ENREC2 22.23 76.33 1.38 120 m AGL X - 

2020 8/11/2020 0941AM ENREC2 22.05 69.46 3.31 120 m AGL X - 

2020 8/11/2020 1038AM ENREC1 24.38 67.97 3.39 120 m AGL X - 

2020 8/11/2020 1134AM ENREC2 26.25 66.43 3.18 120 m AGL X - 

2020 8/11/2020 1235PM ENREC1 27.62 64.81 2.82 120 m AGL X - 

2020 8/11/2020 0156PM ENREC2 28.7 64.03 2.8 120 m AGL X - 

2020 8/25/2020 1015AM ENREC2 28.19 57.94 3.17 120 m AGL X X 

2020 8/25/2020 1110PM ENREC1 30.06 51.42 3.87 120 m AGL X X 
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2020 8/26/2020 1037AM ENREC2 29 52.61 3.83 120 m AGL X X 

2020 8/26/2020 1125AM ENREC1 31.18 44.25 5.12 120 m AGL X X 

2020 8/26/2020 0130PM ENREC2 33.51 36.12 5.13 120 m AGL X X 

2020 8/26/2020 0220PM ENREC1 33.84 34.55 5.16 120 m AGL X X 

2020 8/26/2020 0345PM ENREC2 33.83 34.01 5.09 120 m AGL X - 

2020 8/26/2020 0432PM ENREC1 33.84 30.17 5.03 120 m AGL X X 

2020 8/26/2020 0604PM ENREC2 31.73 38.05 3.09 120 m AGL X X 

2020 8/26/2020 0654PM ENREC1 28.59 51.54 1.8 120 m AGL X X 

2020 8/28/2020 1057AM SCAL 25.65 82.03 2.71 120 m AGL X X 

2020 8/28/2020 0134PM SCAL 28.9 67.94 3.04 120 m AGL X - 

2020 8/28/2020 0410PM SCAL 31.05 58.85 3.37 120 m AGL X X 

2020 8/31/2020 1152AM SCAL 25.58 56.7 1.6 120 m AGL X X 

2020 8/31/2020 0138PM SCAL 28.02 46.37 1.93 120 m AGL X X 

2020 8/29/2020 1003AM ENREC1 20.67 80.71 3 120 m AGL X - 

2021 8/29/2020 1123AM ENREC2 19.33 84.75 2.34 120 m AGL X - 

2020 9/1/2020 0130PM SCAL 23.42 77.84 1.8 120 m AGL X X 

2020 9/1/2020 0337PM SCAL 26.58 61.91 2.41 120 m AGL X X 

2020 9/1/2020 0532PM SCAL 26.44 59.82 2.7 120 m AGL X X 

2020 9/3/2020 1246PM SCAL 27.71 52.59 3.96 120 m AGL - - 

2020 9/3/2020 0300PM SCAL 30.04 50.17 3.66 120 m AGL - X 

2020 9/3/2020 0548PM SCAL 29.81 53.94 3.55 120 m AGL - - 

2020 9/4/2020 1246PM SCAL 29.03 52.76 3.07 120 m AGL - - 
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Figures 

ENREC1 CWSI Maps 
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ENREC2 CWSI Maps 
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SCAL CWSI Maps 
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ENREC1 DANS Maps 
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ENREC2 DANS Maps 
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SCAL DANS Maps 
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Code: Extraction of Twet and Tdry Values 

#Add all libraries 
import rasterio 
from rasterio.plot import show 
import numpy as np 
import pandas as pd 
from matplotlib import pyplot as plt 
import seaborn as sns 
import os 
import matplotlib.pyplot as plt 
import rioxarray as rxr 
import earthpy as et 
import cv2 as cv 
from skimage import feature 
import scipy.stats as st 
from osgeo import gdal 
from sklearn.mixture import GaussianMixture as GMM 

# Insert Tiff image froma folder 
fp = r"image path " 
img = rasterio.open(fp) 
show(img) 

# Open data  
fps = rxr.open_rasterio(fp, masked=True) 
plt.show() 

# For Maximum and Minimum Values 
print('Min:', np.nanmin(fps)) 
print('Max:', np.nanmax(fps)) 

#convert nan values to numbers 
if np.all(fps): 
    value = np.nan_to_num(fps) 
value 

#fit within the boundary of the image and open (resets the extent) 
with rasterio.open(fp) as src: 
   oviews = src.overviews(1)  
   oview = oviews[-1]  
   print('Decimation factor= {}'.format(oview)) 
   thumbnail = src.read(1, out_shape=(1, int(src.height // oview), int(
src.width // oview))) 
 
print('array type: ',type(thumbnail)) 
print(thumbnail) 
 
plt.imshow(thumbnail) 
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#convert any nan value again to 0 (zero) 
thumbnail = thumbnail.astype('f4') 
thumbnail[thumbnail==0] = np.nan 

#add matrix to different variable name 
data = thumbnail 

#convert matrix to an array 
val = np.array(data) 

#remove values less than zero in the array 
val[val<0]=0 

#Custom variable for Gaussian Mixture Model 
X = val 

#Train GMM syntax for bimodal distribution 
gm = GMM(n_components=2, max_iter=1000, covariance_type='full').fit(X) 

#check GMM recreated GMM 
print(gm.means_) #Need Further steps to extract and then follow below 

#recreating new values and removing zeros 
reval = val[val !=0] 

#Check array 
reval 

#plot the new image 
plt.imshow(val) 

#requires mean and sigma for conifendense interval 
mean, sigma = np.mean(reval), np.std(reval) 

mean 

sigma 

#Extracting Twet and Tdry from Confidence Interval Syntax 
from scipy import stats 
conf_int = stats.norm.interval(0.99, loc=mean, scale=sigma) 

#Shows Twet and Tdry values (lower and upper CIs) 
conf_int 
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