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In this dissertation, optical Hall effect (OHE) measurements are used to deter-

mine the free charge carrier properties of important two-dimensional materials

and monoclinic oxides. Two-dimensional material systems have proven useful

in high-frequency electronic devices due to their unique properties, such as high

mobility, which arise from their two-dimensional nature. Monoclinic oxides ex-

hibit many desirable characteristics, for example low-crystal symmetry which

could lead to anisotropic carrier properties. Here, single-crystal monoclinic gal-

lium oxide, an AlInN/GaN-based high-electron-mobility transistor (HEMT)

structure, and epitaxial graphene are studied as examples.

To characterize these material systems, the OHE measurement technique is

employed. The OHE is a physical phenomenon where a change in a conduct-

ing sample’s optical response is observed when immersed in an external mag-

netic field (i.e. the optical analogue of the electrical Hall effect). To quantify this

change in a sample’s optical response, generalized ellipsometry was employed

for our OHE measurements. All necessary data is collected and analyzed with

appropriate optical models, providing the free charge carrier properties of inter-

est. To obtain the free charge carrier properties of the material systems studied

here, OHE measurements were performed in two different spectral ranges: in



the mid-infrared range for monoclinic gallium oxide, and in the terahertz (THz)

range for the HEMT structure and epitaxial graphene. Measurements in the THz

spectral range are made possible by exploiting Fabry-Pérot interferences inside

THz-transparent substrates, as well as within an additional cavity external to

the samples. Results for carrier concentration and mobility determined by OHE

are in excellent agreement with previous electrical Hall effect characterizations.

Results for effective mass are also in agreement with previous density functional

theory calculations. Characterizations of thorium dioxide and uranium diox-

ide, as well as cupric oxide are also included. Since no free charge carriers were

detected in these samples, these reports serve as introductions to infrared ellip-

sometry, THz ellipsometry, and the Fabry-Pérot enhancement techniques used

here.
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4.3.3 Fabry-Pérot enhanced THz Mueller matrix data . . . . . . . . 52

4.3.4 Best-match model analysis results . . . . . . . . . . . . . . . . 56

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.1 Experimental setup and procedure . . . . . . . . . . . . . . . . 60

4.5.2 Sample growth . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.3 Room temperature THz analysis . . . . . . . . . . . . . . . . . 61

4.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



ix

5 Cavity-enhanced optical Hall effect in two-dimensional free charge car-

rier gases detected at terahertz frequencies 63

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 In-situ terahertz optical Hall effect measurements of ambient effects on

free charge carrier properties of epitaxial graphene 74

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.1 In-situ optical Hall effect gas exposure monitoring . . . . . . . 79

6.3.2 Mobility and conductivity dependence on carrier density . . 81

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5.1 Cavity-enhanced terahertz optical Hall effect . . . . . . . . . . 85

6.5.2 Gas flow cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5.3 Terahertz ellipsometer . . . . . . . . . . . . . . . . . . . . . . . 86

6.5.4 Sample growth and characterization . . . . . . . . . . . . . . . 86

6.5.5 Ellipsometry and optical Hall effect model analysis . . . . . . 86

6.5.6 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Tunable cavity-enhanced terahertz frequency-domain optical Hall effect 91



x

7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3.1 Optical Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3.2 Optical Hall effect model for thin film layer stacks . . . . . . . 94

7.3.3 Tunable cavity-enhanced optical Hall effect . . . . . . . . . . . 94

7.3.4 Mueller matrix spectroscopic ellipsometry . . . . . . . . . . . 97

7.3.5 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.4 Instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4.1 Terahertz frequency-domain ellipsometer . . . . . . . . . . . . 98

7.4.2 Tunable cavity stage . . . . . . . . . . . . . . . . . . . . . . . . 98

7.5 Data Acquisition and Analysis . . . . . . . . . . . . . . . . . . . . . . 100

7.5.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.5.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.6.1 Two-dimensional electron gas characterization in a HEMT de-

vice structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.6.1.1 Sample structure . . . . . . . . . . . . . . . . . . . . . 105

7.6.1.2 Single-frequency tunable-cavity measurements . . . 107

7.6.1.3 Tunable-frequency tunable-cavity measurements . . 109

7.6.2 Environmental gas doping characterization in epitaxial graphene112

7.6.2.1 Sample structure . . . . . . . . . . . . . . . . . . . . . 112

7.6.2.2 Cavity-enhanced optical Hall effect simulations . . . 114

7.6.2.3 In-situ tunable-frequency single-cavity measurements115

7.6.2.4 In-situ time-dependent single-frequency single-cavity

measurements . . . . . . . . . . . . . . . . . . . . . . 115



xi

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Conclusion 120

Bibliography 125

List of Abbreviations 143

List of Symbols 145

List of own Publications 148



xii

List of Tables

2.1 Best-match model results for the room temperature IR-active phonon mode

parameters in single-crystal ThO2 and UO2. . . . . . . . . . . . . . . . . 25

2.2 Best-match model results for the room temperature IR-active impurity-

like phonon mode parameters in single-crystal ThO2 and UO2. . . . . . 26

3.1 Results for isotropic average free charge carrier properties in β-Ga2O3. . 41

3.2 Results for anisotropic free charge carrier properties in β-Ga2O3. . . . . 43



xiii

List of Figures

1.1 An illustration detailing the setup of a reflection-type spectroscopic ellip-

sometry experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Examples of TO and the corresponding LO modes for ThO2 are shown

for the primitive unit cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 The phonon dispersion along a high symmetry path in the Brillouin zone

for ThO2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Results of the anharmonic DFT calculations for energy and broadening

parameters of TO and LO phonon modes as a function of temperature. 16

2.4 Experimental and best-match model calculated ellipsometric data (Ψ, ∆)

for single-crystal ThO2 and UO2. . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Wavelength-by-wavelength extracted and best-match model calculated

Im{ε(ω)} and Im{ε−1(ω)} for single-crystal ThO2 and UO2. . . . . . . 21

2.6 Resulting optical constants n and k for the room temperature analysis of

ThO2 and UO2 compared with other n and k values from previous UO2

characterizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Results for ThO2 variable temperature characterization. . . . . . . . . . . 28

2.8 Resulting optical constants n and k for the variable temperature charater-

ization of ThO2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



xiv

3.1 MIR-OHE experimental and best-match model calculated Mueller matrix

difference spectra for the (010) cut β-Ga2O3 sample. . . . . . . . . . . . . 39

3.2 Same as Fig. 3.1 for the (2̄01) cut β-Ga2O3 sample. . . . . . . . . . . . . . 40

4.1 Change in the normalized Mueller matrix elements for single-crystal CuO

as a function of temperature at frequency ν = 0.715 THz and at angle

of incidence Φa = 45◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Experimental and best-match model calculated Fabry-Pérot enhanced Mueller
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Chapter 1

Introduction

In order to meet the growing demand for advanced electronic devices, more

sophisticated material systems must be explored and implemented. Some two-

dimensional material systems and monoclinic oxides are promising candidates

to further improve device performance. For example, high-electron-mobility

transistor (HEMT) structures, commonly used in radio communication circuitry,

can be enhanced by tuning layer compositions to improve its two-dimensional

electron gas (2DEG) mobility.1 Graphene has a wide range of applications in

high-frequency electronics due to unique properties, such as high 2DEG mo-

bility, which are a result of its two-dimensional nature.2 The monoclinic phase

of gallium oxide (β-Ga2O3) is useful in power electronics due to its large break

down voltage, and also as a transparent electrode material.3 In order to fabri-

cate more advanced devices, the free charge carrier properties of these materi-

als must be fully characterized. Typically, carrier concentration, mobility, and

carrier type are obtained using electrical Hall effect measurements. Although

it is a widely used technique, the electrical Hall effect has a disadvantage of

requiring electrical contacts to be fabricated onto the sample. To extract the

free charge carrier properties, ideal Ohmic behavior of the contacts is assumed,

which could yield inaccurate results depending on the sample’s surface po-
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tential. Additionally, the electrical Hall effect does not provide access to any

buried conducting layers. To address these issues, we employ our measure-

ment technique - the optical Hall effect (OHE). The OHE is a physical phe-

nomenon in which the optical response of a conducting sample is altered due

to the Lorentz force on free charge carriers from an externally applied magnetic

field.4,5 The OHE is the optical analogue of the electrical Hall effect, and can be

described by the classical Drude model with an additional magnetooptic con-

tribution. OHE measurements provide access to the effective mass parameter,

as well as carrier concentration, mobility, and carrier type. A major advantage

of the OHE technique is its non-contact, non-invasive nature, and ability to de-

tect buried conducting layers. In this dissertation, OHE measurements are used

to obtain the free charge carrier properties of single-crystal β-Ga2O3, a 2DEG

within an AlInN/GaN-based HEMT structure, and epitaxial graphene.

To quantify the optical response of these materials, the measurement method

employed here is spectroscopic ellipsometry. Spectroscopic ellipsometry mea-

sures the change in polarization of light after reflection off of or transmission

through a sample.6,7 Shown in Fig. 1.1 is the geometry and nomenclature of

the reflection-type ellipsometry experiments reported in this dissertation. In

standard ellipsometry, the change in polarization ρ can be expressed as

ρ =
rp

rs
=

Ep,outEs,in

Ep,inEs,out
= tan(Ψ)ei∆, (1.1)

where rp and rs are the complex-valued Fresnel reflection coefficients for p-

polarized and s-polarized light, respectively. For every measured frequency,

the quantities Ψ and ∆ are recorded. Ψ represents the polarization rotation of

the light, and ∆ represents the relative phase shift between p and s light com-
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Figure 1.1: An illustration detailing the setup of a reflection-type spectroscopic
ellipsometry experiment. Here, kin and kout are the incoming and outgoing
electromagnetic plane wavevectors, respectively, with their electric field vectors
designated as Ein and Eout. The scalar components of Ein and Eout are Ep,in,
Ep,out, Es,in, and Es,out where subscripts ‘p’ and ‘s’ indicate p-polarized (parallel
to the plane of incidence) and s-polarized (perpendicular to the plane of inci-
dence) light. Φa is the angle of incidence, and the Cartesian coordinate axes are
labeled x, y, and -z.

ponents. Standard ellipsometry is sufficient to measure the optical response

of isotropic samples or samples that exhibit no anisotropy within the sample

surface plane. However, when the material system under investigation causes

mode conversion (i.e. p-to-s or s-to-p light conversion) standard ellipsometry is
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no longer adequate, and generalized ellipsometry must be employed. In a gen-

eralized ellipsometry measurement, many different polarization states of light

are directed at the sample, and their change in polarization is determined. In

this dissertation, generalized ellipsometric data is experimentally recorded us-

ing the Mueller matrix formalism. The Mueller matrix is the 4× 4 matrix which

relates the input and output light Stokes vectors.6,7 Obtaining the complete

Mueller matrix allows one to fully characterize the optical response of any ma-

terial system. Therefore, generalized ellipsometry is used to obtain Mueller ma-

trix data in order to measure OHE signatures in the two-dimensional materials

and monoclinic oxides investigated here. These Mueller matrix measurements

are referred to as ‘OHE measurements’ throughout the dissertation. When the

resulting OHE data is analyzed with an appropriate optical model, the free

charge carrier properties can then be determined.

Chapter 2 is an article titled “Infrared-active phonon modes in single-crystal

thorium dioxide and uranium dioxide” which was previously published in the

Journal of Applied Physics.8 The infrared-active phonon modes in single-crystal

samples of thorium dioxide (ThO2) and uranium dioxide (UO2) are character-

ized by standard ellipsometry in the far-infrared (FIR) and mid-infrared (MIR)

spectral ranges. The ThO2 sample was investigated at room temperature and el-

evated temperatures, whereas UO2 was only studied at room temperature. The

experimental results from ellipsometry are compared with density functional

theory (DFT) predictions. Since no free charge carriers were detected in the

ThO2 and UO2 samples, OHE measurements were not performed. Therefore,

this chapter serves as an introduction to infrared ellipsometry (Reproduced

from [S. Knight et al., J. Appl. Phys. 127, 125103 (2020).], with the permission of

AIP Publishing).
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Chapter 3 is an article titled “Electron effective mass in Sn-doped monoclinic

single crystal β-gallium oxide determined by mid-infrared optical Hall effect”

which was previously published in Applied Physics Letters.9 A combined anal-

ysis of MIR-OHE data from (010) and (-201) surface cut samples were used to

experimentally determine the volume carrier concentration, mobility, effective

mass, and charge carrier type of Sn-doped single-crystal β-Ga2O3. Results for

concentration and mobility are in excellent agreement with previous electri-

cal Hall effect measurements. The results for the effective mass fall within the

broad range of values predicted by various DFT calculations (Reproduced from

[S. Knight et al., Appl. Phys. Lett. 112, 012103 (2018).], with the permission of

AIP Publishing).

Chapter 4 is an article titled “Electromagnon excitation in cupric oxide mea-

sured by Fabry-Pérot enhanced terahertz Mueller matrix ellipsometry” which

was previously published in Scientific Reports.10 Using terahertz (THz) Mueller

matrix ellipsometry, a sample of bulk single-crystal cupric oxide is measured

a function of frequency and temperature to detect an electromagnon excitation

which manifests as an optical absorption. The ability to detect this subtle exci-

tation relies on enhancement from Fabry-Pérot interferences inside the cupric

oxide substrate. Results for the excitation’s resonance frequency and broaden-

ing parameters are in excellent in agreement with previous THz time domain

spectroscopy studies on the same material. Since no free charge carriers were

detected in the cupric oxide sample, no OHE measurements were performed.

Therefore, this chapter serves an as introduction to THz ellipsometry, and sig-

nal enhancement due to Fabry-Pérot interferences inside THz-transparent sub-

strates (This article is licensed under a Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/)).
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Chapter 5 is an article titled “Cavity-enhanced optical Hall effect in two-

dimensional free charge carrier gases detected at terahertz frequencies” which

was previously published in Optics Letters.11 THz-OHE measurements are used

to extract the free charge carrier properties of 2DEG within an AlInN/GaN-

based HEMT structure. In this chapter, the magnetic field necessary for the

THz-OHE measurements is provided by a permanent magnet, in contrast to a

previous THz-OHE characterization which was conducted using a high-field

superconducting magnet.12 To compensate for the reduced magnetic field of the

permanent magnet, an additional enhancement effect is exploited, namely the

‘cavity-enhancement’ effect, which refers to additional Fabry-Pérot interferences

inside a cavity external to the sample (i.e. the sample-magnet surface air gap).

This enhancement effect allows the free charge carrier properties to be obtained

( c© http://dx.doi.org/10.1364/OL.40.002688 [2015] Optical Society of America.

One print or electronic copy may be made for personal use only. Systematic

reproduction and distribution, duplication of any material in this paper for a

fee or for commercial purposes, or modifications of the content of this paper

are prohibited.).

Chapter 6 is an article titled “In-situ terahertz optical Hall effect measure-

ments of ambient effects on free charge carrier properties of epitaxial graphene”

which was previously published in Scientific Reports.13 THz-OHE measurements

are performed on epitaxial graphene as a function of gas exposure to mon-

itor changes in the free charge carrier properties in-situ. The measurements

are performed using the same cavity enhancment configuration described in

Chapter 5. Large changes in the carrier properties are observed throughout the

experiment; possible doping mechanisms for which are discussed (This article

is licensed under a Creative Commons Attribution 4.0 International License
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(http://creativecommons.org/licenses/by/4.0/)).

Chapter 7 is a manuscript titled “Tunable cavity-enhanced terahertz frequency-

domain optical Hall effect” which has been submitted to Review of Scientific

Instruments14. This chapter expands upon the cavity-enhancement effect de-

scribed in Chapters 5 and 6. More advanced cavity-tuning techniques were

used to measure THz-OHE signatures in the previously mentioned HEMT

structure and epitaxial graphene sample. It is demonstrated that the external

cavity (i.e. the sample-magnet air gap) spacing can be used as another measure-

ment dimension (in addition to frequency and angle of incidence) to facilitate

the extraction of the free charge carrier properties (This submitted manuscript

has been reproduced with the permission of AIP Publishing).

Chapter 8 is a summary of all results and important concepts presented in

this dissertation.
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Chapter 2

Infrared-active phonon modes in single-crystal thorium dioxide

and uranium dioxide

2.1 Abstract

The infrared-active phonon modes in single-crystal samples of thorium dioxide

(ThO2) and uranium dioxide (UO2) were investigated using spectroscopic ellip-

sometry and compared with density functional theory. Both ThO2 and UO2 are

found to have one infrared-active phonon mode pair (consisting of one trans-

verse optic (TO) and one associated longitudinal optic (LO) mode), which are

responsible for the dominant features in the ellipsometric data. At room tem-

perature, our results for the mode pair’s resonant frequencies and broadening

parameters are comparable with previous reflectance spectroscopy characteriza-

tions and density functional theory predictions. For ThO2, our ellipsometry and

density function theory results both show that the LO mode broadening param-

eter is larger than the TO mode broadening. This signifies mode anharmonicity,

which can be attributed to the intrinsic phonon-phonon interaction. In addi-

tion to the main mode pair, a broad low-amplitude impurity-like vibrational

mode pair is detected within the reststrahlen band for both ThO2 and UO2. El-

evated temperature measurements were performed for ThO2 in order to study
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the mechanisms by which the phonon parameters evolve with increased heat.

The observed change in the TO resonant frequency is in excellent agreement

with previous density functional calculations, which only consider volume ex-

pansion of the crystal lattice. This suggests the temperature-dependent change

in the TO frequency is primarily due to volume expansion. The change in the

main mode pair’s broadening parameters are nearly linear within the temper-

ature range of this study, which indicates the intrinsic anharmonic scattering

(via cubic anharmonicities) as the main decay mechanism. (Reproduced from

[S. Knight et al., J. Appl. Phys. 127, 125103 (2020).], with the permission of AIP

Publishing)

2.2 Introduction

Due to their importance to nuclear fuel rods, thorium dioxide (ThO2) and ura-

nium dioxide (UO2) have been the subject of many scientific investigations.15,16

Heat transfer, fuel expansion, and related physical properties are of particu-

lar interest for fuel rods used in nuclear power plants,17 where heat must be

transferred from the core of the fuel rod to the outer surface. Because ThO2

and UO2 have low thermal conductivity, a better microscopic understanding of

lattice vibrations may help with designing improved thermal conductivity prop-

erties. This is all the more important because there are conflicting reports on

whether the infrared-active (IR) phonon modes significantly contribute to heat

transfer.18,17 ThO2 may be blended with UO2 to improve fuel rod efficiencies.19

Therefore, accurate measurement of the IR-active phonon modes of ThO2 and

UO2 is prerequisite for improvement of heat transport properties.

In order to fully characterize the IR-active modes, the complex-valued IR
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dielectric function ε(ω) must be determined from optical measurements. From

the spectral behaviors of Re{ε(ω)} and Im{ε(ω)}, physically meaningful pa-

rameters can be extracted, such as phonon mode frequency, amplitude, and

broadening parameters.20 So far, only IR reflectance (intensity) spectroscopy

has been used to optically characterize IR-active phonon modes in ThO2 and

UO2.21,22,23,24 This approach relies either on Kramers-Kronig transforms to ob-

tain both Re{ε(ω)} and Im{ε(ω)}, or relies on best-match model calculation

using reflectance data as model target with a predetermined parameterized

model for ε(ω). In contrast to reflectance spectroscopy, spectroscopic ellipsom-

etry (SE) measures two quantities (relative amplitude and relative phase shift

between s- and p-polarized light after reflection) instead just one quantity (re-

flectivity). This additional information allows Re{ε(ω)} and Im{ε(ω)} to be

extracted independently from each other, or can facilitate more accurate best-

match model calculations targeting two independent spectra of the ellipsomet-

ric data using a predetermined parameterized model.

In this work, we employed IR spectroscopic ellipsometry (IRSE) to extract

the dielectric functions of ThO2 and UO2. Our approach allows us to accurately

characterize their IR phonon modes. We compare our results with density func-

tional theory (DFT) calculations and previous reflectance spectroscopy. The

existence of an IR-active impurity-like vibrational mode pair is discussed, as

well as its possible anharmonic coupling to other phonon modes. For ThO2,

variable temperature measurements were performed at elevated temperatures

in order to investigate the variation of the phonon mode parameters with the

increase in the sample volume at elevated temperatures.
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2.3 Theory

2.3.1 Spectroscopic ellipsometry

Spectroscopic ellipsometry is a measurement technique, which quantifies the

change in the polarization of light ρ̃ after interaction with a sample.6,7,20 In the

case of reflection, the change in polarization can be written as

ρ̃ =
r̃p

r̃s
= tan(Ψ)ei∆, (2.1)

where r̃p and r̃s are the complex-valued Fresnel reflection coefficients for light

polarized parallel (p) and perpendicular (s) to the plane of incidence. At each

frequency, a (Ψ, ∆) pair is measured, where Ψ is rotation of the light’s polar-

ization state (about its axis of propagation), and ∆ is the relative phase shift

between the p and s components.

2.3.2 Optical model approach

To extract physically meaningful quantities from SE data (Ψ, ∆), an appropriate

optical model must be implemented. The optical model used here consists of

ambient air, a surface roughness layer, and bulk single-crystal ThO2 or UO2,

where all constituents meet at plane parallel interfaces. The dielectric function

for the surface roughness layer (εrough) is calculated by averaging the ambient

air (εair = 1) and bulk (εbulk) dielectric functions, via εrough = (1 + εbulk)/2. For

the ThO2 sample, a small silver contact (1% surface area coverage) must be

included in the optical model to account for the metallic reflectivity of a small

electric contact, which was furbished onto the sample.

For the temperature and spectral range investigated here, the dominant con-
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tributions to ε(ω) come from IR-active phonon modes. The optical response of

IR-active phonon modes can be modeled using anharmonic broadened Lorentz

oscillators,20 which can be cast into the so-called four-parameter semi-quantum

(FPSQ) model.25 The FPSQ model was motivated by Gervais and Piriou per-

mitting for different phonon decay times of LO and TO modes in crystals with

multiple branches of phonon modes. By allowing for independent damping pa-

rameters of TO and LO modes, anharmonic effects in multiple (polar) phonon-

mode materials can be modelled.26,27,25,28 We used the following model dielec-

tric function to describe ε:

ε(ω) = ε∞

N

∏
i=1

ω2
LO,i −ω2 − iωγLO,i

ω2
TO,i −ω2 − iωγTO,i

. (2.2)

Here, index i specifies the phonon mode pair number, and N is the total

number of mode pairs. Corresponding to every phonon mode pair is a lattice

resonance with transverse optic (TO) and longitudinal optic (LO) character. To

avoid confusion, we refer to each term in Eq. 2.2 as “mode pairs” (i = 1, 2, ...),

and their corresponding TO and LO components as just “modes”. The parame-

ters ωTO, γTO, ωLO, γLO, and ε∞ are the: resonant frequency and broadening of

the TO resonance, resonant frequency and broadening of the LO resonance, and

high frequency dielectric constant, respectively. Anharmonic phonon interac-

tions may comprise, for example, optical phonon decays into acoustic phonons

(by cubic or quartic anharmonicities).29

2.3.3 Density functional theory calculations

Theoretical calculations of long wavelength active Γ-point phonon frequencies

were performed by plane wave density functional theory (DFT) using Quan-
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tum ESPRESSO (QE).30 We used the generalized gradient approximation (GGA)

exchange correlation functional of Perdew, Burke and Ernzerhof (PBE)31 and

ultrasoft pseudopotentials from the PSLibrary version 1.0.32 The valence config-

uration for thorium used here is [Rn] 5 f 0.5
6d1.5

7s2. The standard f cc fluorite

structures were first relaxed to force levels less than 10
−5 Ry Bohr−1. A regular

shifted 8× 8× 8 Monkhorst-Pack grid was used for sampling of the Brillouin

zone.33 A convergence threshold of 10−12 Ry was used to reach self consistency

with large electronic cutoffs of 110 Ry for the wavefunction and 1000 Ry for the

charge density. The structural relaxation yielded lattice constants of 5.61 Å for

ThO2 and 5.37 Å for UO2. The fully relaxed cells were used for subsequent

DFT phonon calculations.34

According to Born and Huang,36 the lattice dynamic properties in crystals

are categorized under different electric field E and dielectric displacement D

conditions.37 Specifically, E = 0 and D = 0 define the transverse optical (TO)

modes, associated with the dipole moment. E 6= 0 but D = 0 define the lon-

gitudinal optical (LO) modes. The latter can be obtained using Born effective

charges calculated by the QE’s phonon code.38 Thus, the parameters of the TO

modes are obtained as eigenvalues and eigenvectors of the dynamic matrix

without the electric field effects. The parameters of the LO modes were ob-

tained by adding so called non-analytical terms to the dynamic matrix in appro-

priate crystal directions. In cubic crystals, the tensors of Born effective charges

are isotropic, which leads to the same eigenvector being the solution for both

the TO and LO mode as shown in Figure 2.1. From the point of view of DFT,

a low bandgap UO2 is a semimetal, which makes the calculations of Born ef-

fective charges (and any other electric-field-related properties) problematic at

this particular level of theory. Therefore, we focused on calculations of phonon
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(a) 

 

 

 

 

 
 

 

(b) 

Figure 2.1: Examples of TO (a) and the corresponding LO (b) modes for ThO2
are shown for the primitive unit cell. Please, note that the modes, i.e. the atomic
displacement patterns, are exactly the same for these two modes. As described
in the text, the TO mode is an eigenvector of the dynamic matrix of interatomic
force constants. The LO mode was obtained by adding the non-analytical terms
to the dynamic matrix in the direction of the transition dipole of the TO. Semi-
transparent isosurfaces of electron charge density are shown around the oxygen
atoms in (b).
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Figure 2.2: The phonon dispersion along a high symmetry path in the Brillouin
zone for ThO2. Labeling of high symmetry points as in Ref. 35.

properties of ThO2. It is worth noting, however, that due to the similarity of the

crystal structure and the atomic mass, the lattice dynamical properties of ThO2

are expected to be qualitatively valid for UO2 as well. In addition to the Γ-point

phonons, the dynamical matrices were calculated over a regular 8× 8× 8 grid in

the first Brillouin zone. They were used to produce real-space interatomic force

constants, which in turn were used to plot the complete phonon dispersion

along a high-symmetry path through the first Brillouin zone, shown in Fig. 2.2.

The fluorite crystal structure with three atoms in the primitive cell possesses

nine phonon modes, three acoustic, and six optical modes. The optical phonon

modes further divide into three triply degenerated IR-active modes and three

triply degenerated Raman-active modes. Partial charges on atoms are quanti-
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Figure 2.3: Results of the anharmonic DFT calculations for energy (a) and
broadening parameters (b) of TO and LO phonon modes as a function of tem-
perature. Solid lines in (b) are fits to Eq. 2.4. The resulting best-match model fit
parameters are given in the text.

fied in terms of Born effective-charge tensors, i.e., mixed second-order deriva-

tives with respect to atomic displacement and electric field.38 For ThO2 the

Born effective-charge tensors are isotropic and the positive charge on thorium

equals the sum of negative charges on both oxygen atoms. Thus, the electric

field adds to the restoring force of the mode, which results in the higher fre-

quency of the LO mode while the eigenvector direction of the dynamic ma-

trix does not change. The LO mode is the highest frequency branch in the

phonon dispersion plot (between 500 and 600 cm−1). Figure 2.1 shows ren-

derings of atomic displacements for TO and LO modes as examples prepared

using XCrysDen39 running under Silicon Graphics Irix 6.5.

In order to verify the general trends of energy and broadening of the TO and
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LO phonon modes, we performed anharmonic calculations using D3Q code

integrated with the QE distribution.40,41,42 Due to the limitations of the code

(only implemented for norm-conserving pseudopotentials) for these calcula-

tions we used Hamann-Schlüter-Chiang-Vanderbilt (HSCV)43 pseudopotentials

and Perdew-Zunger (PZ)44 local density approximation exchange-correlation

functional. The calculations were performed on a regular shifted 6 × 6 × 6

Monkhorst-Pack grid with a large cutoff of 200 Ry for the wavefunction. These

parameters were tested to provide convergence of the harmonic phonon fre-

quencies to the level of 0.1 cm−1. The structure was again fully relaxed using

the same criteria as for the GGA calculations described above and the subse-

quent phonon calculations (second order harmonic and third order anharmonic)

were performed on a regular 8× 8× 8 grid in the first Brillouin zone. The re-

sulting anharmonic dynamical matrices were used to compute the intrinsic

phonon-phonon interactions, i.e., widths and energies of phonon modes as a

function of temperature in the temperature range of 0 K – 800 K. Calculations

were performed at a small displacement (1× 10−5 of the reciprocal lattice vec-

tor) from the Γ point, on a 200× 200× 200 regular unshifted grid, and with the

Gaussian smearing parameter of 10 cm−1. The results are presented in Figure

2.3.

2.4 Experiment

2.4.1 Crystal growth

Hydrothermal synthesis was used to grow the ThO2 and UO2 single-crystals

investigated in this work.45,46 Similar growth procedures were implemented

for both ThO2 and UO2. The mineralizer solution for both growth reactions
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was a 6M cesium fluoride solution (Alfa Aesar, 99.99%). Growth reactions were

contained in sealed silver ampoules (99.95% Ag, Refining Systems Inc.).

For the ThO2 single-crystal, a ThO2 seed crystal was suspended in the up-

per end of the silver ampoule on a silver seed rack. A charge of ThO2 nutri-

ent/feedstock (99.99% thorium oxide, International Bio-analytical Laboratories)

was placed into the lower end of the tube, with a porous silver baffle separat-

ing the feedstock and the seed crystal. The silver tubes were then placed in a

250 mL Inconel autoclave. Band heaters were installed on the autoclave to form

two temperature zones (feedstock and seed crystal zones). The dissolution zone

temperature was 650
◦C and the crystallization zone was 600

◦C. This generated

a pressure of 172 MPa. These conditions were maintained for 90 days.

The UO2 single-crystal was also grown on a ThO2 seed crystal. The mineral-

izer solution, temperatures, and pressures were the same for the UO2 (99.998%

uranium oxide, International Bio-analytical Laboratories) growth procedure.

However, the growth was only maintained for 50 days.

Both crystals were ground down to the (100) surface (3000 grit, Ultra Tec V5

faceting machine) and polished (0.10 µm diamond slurry applied to a ceramic

lap). The final dimensions of the ThO2 single-crystal are (12×6×1) mm3. The

dimensions of the UO2 single-crystal are (5×5×1) mm3.

2.4.2 Ellipsometric measurements

Spectroscopic ellipsometry in reflection was the measurement technique em-

ployed here. For the room temperature measurements on ThO2 and UO2, the

ellipsometric parameters Ψ and ∆ were measured from 100 cm−1 to 7000 cm−1

with a resolution of 2 cm−1. Data from 100 cm−1 to 400 cm−1 was acquired us-

ing a home-built Fourier transform-based far-infrared ellipsometer.5 Data from
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Figure 2.4: Experimental (dashed lines) and best-match model calculated (black
solid lines) ellipsometric data (Ψ, ∆) for single-crystal ThO2 (panel (a)) and
UO2 (panel (b)). The optical model parameters ωTO (solid vertical lines) and
ωLO (dashed vertical lines) are the TO and LO frequencies, respectively, that
correspond to the main IR-active phonon modes. The parameter ωimp (= ωTO,imp
= ωLO,imp) (dash-dot vertical lines) corresponds to the small-amplitude IR-active
impurity-like mode pair within the reststrahlen band. Data are taken at three
angles of incidence (Φa = 50

◦, 60
◦, and 70

◦), and at room temperature.

400 cm−1 to 7000 cm−1 was acquired using a commercially available Fourier

transform-based mid-infrared ellipsometer (IR-VASE, J.A. Woollam Co. Inc.).

These measurements were performed at three angles of incidence (Φa = 50
◦,

60
◦, and 70

◦). The WVASE software (J.A. Woollam Co. Inc.) was used to ac-

quire and analyze all data. All measurements were performed in an open air

environment.

For ThO2, additional variable temperature measurements were taken from

293 K to 648 K in increments of 25 K. These were performed using only the

far-infrared ellipsometer.5 Ψ and ∆ were measured from 100 cm−1 to 650 cm−1
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with a resolution of 2 cm−1. These measurements were performed at a single

angle of incidence (Φa = 70
◦).

To perform the variable temperature measurements, the ThO2 crystal was

mounted to an aluminum plate via vacuum seal. To elevate the temperature,

the aluminum plate was heated by a pyrolytic boron nitride/pyrolytic graphite

resistive heater. The temperature was read before and after each ellipsomet-

ric measurement by probing the sample surface with a k-type thermocouple.

During the measurement, the thermocouple was removed from the surface.

2.5 Results and discussion

2.5.1 ThO2 and UO2 room temperature characterization

In order to characterize the IR-active phonon modes in ThO2 and UO2, we im-

plemented the following three step approach. (i), we apply our optical model

and model dielectric function approach to compare experimental data with

best-match model calculated data to obtain the thickness of the surface rough-

ness layer and to identify all IR-active modes. (ii), we extract Re{ε(ω)} and

Im{ε(ω)} for ThO2 and UO2 for each measured wavelength separately by hold-

ing all other optical model parameters constant (surface roughness thickness

and ThO2 silver contact diameter). (iii), we perform a best-match model calcu-

lation using the FPSQ model and by directly comparing the result of the FPSQ

model with the wavelength-by-wavelength obtained dielectric function obtained

in the second step. In this best-match model calculation, we included evalua-

tions of the match in ε(ω) as well as the match in ε−1(ω) between model and

wavelength-by-wavelength obtained dielectric function.

Step (i): shown in Fig. 2.4 is the best-match model calculated ellipsometry
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Figure 2.5: Wavelength-by-wavelength extracted (broken lines) and best-match
model calculated (solid black lines) Im{ε(ω)} (panel (a)) and Im{ε−1(ω)}
(panel (b)) for single-crystal ThO2 (green) and UO2 (blue). The solid black lines
show the best-match model calculation using Eq. 2.2 to the wavelength-by-
wavelength extracted Im{ε(ω)} and Im{ε−1(ω)}. The resulting best-match
model parameters are shown in Tabs. 2.1 and 2.2. The TO and LO resonant
frequencies are labeled as ωTO and ωLO for the main phonon mode pair, and
ωimp (= ωTO,imp = ωLO,imp) for the impurity-like mode pair. To make the im-
purity mode features visible, Im{ε(ω)} and Im{ε−1(ω)} are also shown on a
logarithmic scale (inset plots). Note, ωimp does not exactly coincide with the
corresponding peak in Im{ε(ω)}, because the impurity mode broadening is
comparable to ωimp.
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Figure 2.6: Resulting optical constants n and k for the room temperature anal-
ysis of ThO2 and UO2 compared with other n and k values from previous UO2
characterizations. Optical constants determined in this work (ThO2 (green lines)
and UO2 (blue lines)) were converted from the best-match model calculated di-
electric function shown in Fig. 2.5. For comparison, dispersion model-calculated
optical constants from Axe and Pettit21 (red lines) were included, as well as val-
ues calculated from experimental reflectance spectra by DeVetter et al.24 (black
lines). Dotted lines were chosen for n and dashed lines for k.

data (black solid lines) to the experimental data (dashed lines) for ThO2 (panel

(a)) and UO2 (panel (b)). The analysis yields a surface roughness layer thick-

ness of (34± 1) nm for ThO2, and (22± 1) nm for UO2. In addition to the main

mode pair, a small IR-active impurity-like mode pair is detected for both crys-

tals within the reststrahlen band (band of high reflectivity). Because only two

mode pairs are observed, we designate the impurity mode pair index as i =

“imp”, and the main mode pair index as null (i = “”). We find there is limited
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sensitivity to the parameters ωTO,imp and ωLO,imp, therefore they were set equal

in the model analysis (ωimp = ωTO,imp = ωLO,imp), as was done in Ref. 47

for impurity-like modes detected in α-GaN thin films. In Fig. 2.4, the impurity

mode resonant frequency is labeled as ωimp, and the main mode as ωTO and

ωLO. The occasional spike-like features in Ψ and ∆ (Fig. 2.4) are due to noise in

low-reflectivity spectral ranges. For the ThO2, the small silver contact area was

found to be approximately 1% surface coverage of the sample. The analysis ver-

ifies both crystals are optically isotropic for the given temperature and spectral

range. No significant contribution from free charge carriers is detected.

Step (ii): shown in Fig. 2.5 is the wavelength-by-wavelength extracted Im{ε(ω)}

(panel (a)) and Im{ε−1(ω)} (panel (b)) for ThO2 (green dashed lines) and UO2

(blue dotted lines). The resulting best-match calculated ellipsometry data are

virtually indistinguishable from the measured data and are therefore not in-

cluded into Fig. 2.4.

Step (iii): shown in Fig. 2.5 is the best-match model dielectric function ob-

tained using the FPSQ model (black solid lines), obtained by direct comparison

with the wavelength-by-wavelength extracted dielectric function. Shown in

Tab. 2.1 are the resulting fit parameters for the main mode pair, DFT calculated

parameters, and previous results from reflectance spectroscopy. Our results are

similar to previous characterizations and our DFT calculations. For the exper-

iments that report values of γTO and γLO, it holds true that γTO < γLO. The

anharmonicity indicated by γTO 6= γLO is thought to arise from anharmonic

coupling between different phonon modes.48,25,26 The impurity mode pair also

exhibits anharmonicity since γTO,imp > γLO,imp. Best-match model results

for the impurity mode parameters in both crystals are given in Table 2.2. The

anharmonic DFT calculations on ThO2 show γTO < γLO as well [Fig. 2.3].
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Since our DFT calculations do not consider any impurity modes, this estab-

lishes the anharmonicity in the main phonon mode pair in ThO2 is intrinsic to

the material, and does not depend on the existence of an impurity like-mode

pair. However, the existence of impurities could of course influence the phonon

properties.

2.5.2 ThO2 variable temperature characterization

To further investigate ThO2, we performed ellipsometric measurements as a

function of temperature from 294 K to 648 K. The spectra acquired at each tem-

perature increment are analyzed independently, and using the model approach

described at room temperature. To examine the influence of heat on the surface

roughness layer, a separate, variable temperature experiment was performed in

the visible spectral range (1.0 eV to 6.5 e.V., RC2, J.A. Woollam Co., Inc.). No

significant change in the roughness layer’s thickness or dielectric function was

observed. We further assume that the IR optical properties of the small silver

contact area remain temperature independent. Therefore, we held these optical

model parameters constant as a function of temperature.

Using the approach described previously, we performed a wavelength-by-

wavelength fit to extract Re{ε(ω)} and Im{ε(ω)} for each measured temper-

ature. The FPSQ model is then fit to the wavelength-by-wavelength extracted

ε(ω) and ε−1(ω) [Fig. 2.7]. The resulting main mode pair and impurity mode

pair parameters are shown in Fig. 2.7. For the main mode pair, the resonant

frequency parameters (ωTO and ωLO) decrease with increasing temperature,

whereas the broadening parameters (γTO and γLO) increase with increasing

temperature, which is a typical behavior for IR-active phonon modes.51 For

the impurity-like mode pair, ωimp decreases with increasing temperature, but
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Table 2.1: Best-match model results for the room temperature IR-active phonon
mode parameters in single-crystal ThO2 and UO2. Error bars shown for this
work correspond to the 90% confidence interval within the best-match model
data analysis. The low-frequency (static) dielectric constant εDC is calculated
using the Lyddane-Sachs-Teller (LST) relation.49

Parameter DFT (this work) Ellipsometry (this work)
ThO2 UO2 ThO2

ωTO (cm−1) 260 (282.8± 0.2) (280.5± 0.1)
ωLO (cm−1) 554.8 (573.3± 0.5) (587.5± 0.2)
γTO (cm−1) 9.0f (14.8± 0.5) (8.2± 0.2)
γLO (cm−1) 18.4f (20.1± 1.1) (16.1± 0.5)
ε∞ 4.79 (5.2± 0.2) (4.7± 0.1)
εDC 21.9 21.1 20.4

Parameter Axe and Pettita Cherniab

UO2 ThO2 UO2

ωTO (cm−1) (278± 2) (279± 2) 283.4
ωLO (cm−1) (556± 4) (568± 4) 574.0
γTO (cm−1) 18.5 16.2 29.4
γLO (cm−1) - - 30.4
ε∞ 5.51 4.86 5.46

εDC 21.31 19.71 22.36

Parameter Schoenesc DeVetter et al.d Dolling et al.e

UO2 UO2 UO2

ωTO (cm−1) (280± 2) (277± 3) (284± 4)
ωLO (cm−1) (578± 2) (571± 1) (557± 20)
γTO (cm−1) 7.5 - -
γLO (cm−1) 14 - -
ε∞ 5.0 - -
εDC 21.5 - -

aRef. 21: ωTO and ωLO from Kramers-Kronig analysis. γTO, ε∞, and εDC from best-match model
parameter results using a Lorentz oscillator to render the dielectric function behavior.
bRef. 22.
cRef. 23.
dRef. 24.
eRef. 50.
fFrom the anharmonic calculation at 300K.
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Table 2.2: Best-match model results for the room temperature IR-active impurity-
like phonon mode parameters in single-crystal ThO2 and UO2. Error bars shown
correspond to the 90% confidence interval within the best-match model data
analysis.

Parameter Ellipsometry (this work)
UO2 ThO2

ωimp (cm−1) (394.3± 20.3) (419.6± 11.4)
γTO,imp (cm−1) (143.5± 85.5) (511.9± 68.6)
γLO,imp (cm−1) (133.8± 80.2) (443.7± 59.5)

interestingly γTO,imp and γLO,imp decrease with increasing temperature. This

anomalous behavior is discussed in more detail below.

To model the temperature-dependence of the resonant frequencies and

broadening parameters, we followed the same approach as in Ref. 28. Simi-

lar to Ref. 28, we find the change in our resonant frequencies is directly pro-

portional to the change in volume of the crystal lattice. The change in reso-

nant frequencies for a given change in volume can be quantified by the mode

Grüneisen parameter gj, where the index j specifies the particular lattice reso-

nance (here j = TO, LO, or imp). Assuming a temperature-independent gj, the

change in the jth resonant frequency can be written as ∆ωj(T) = −ωjgj(∆V(T)/V),

where ωj is the initial resonant frequency and V is the lattice volume.28 This

form also assumes that the only change in ωj(T) is due to the lattice expansion.

Other temperature-dependent contributions, such as anharmonicity (i.e. the real

part of the phonon self-energy), electron-phonon coupling, spin-phonon cou-

pling, etc., were not considered.52,25 If this model is unable to fit ∆ωj(T), this is

indicative of other contributions to the frequency shift. To express (∆V(T)/V)

in terms of the linear expansion coefficient αL and change in temperature ∆T,

we write (∆V(T)/V) = 3αL∆T, where the volume expansion coefficient

αV = 3αL (assuming small differential changes in an isotropic material). Rear-
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ranging the prior equation for ∆ωj(T) to only fit for gj yields

ωj(T) = −ωj,init(gj3αL)(T − Tinit) + ωj,init. (2.3)

Here, ωj,init and Tinit are the initial resonant frequency and temperature

(ωj,init = ωj(Tinit), Tinit = 293 K). For ThO2, we find the average linear expan-

sion coefficient in our temperature range is αL = 9.9 × 10−6 K−1.53 Fitting

Eq. 2.3 to our results for ωTO(T), ωLO(T), and ωimp(T) gives gTO = 3.3± 0.1,

gLO = 0.8± 0.02, and gimp = 17.1± 1.0 [Fig. 2.7(c)]. The results for gTO are in

excellent agreement with previous DFT calculations, which predict gTO ≈ 3.2,

only considering volume change effects on the harmonic mode frequency.19

This suggests the temperature-induced change in ωTO is primarily due to vol-

ume expansion of the crystal lattice, and other temperature-dependent contri-

butions are not significant, or perhaps counterbalance each other.28 However,

the gLO parameter calculated in Ref. 19 is larger than our experimentally deter-

mined value. This could mean the change in ωLO is due to other temperature-

dependent contributions besides a pure volume change. In our anharmonic

DFT calculations, performed at a fixed cell volume, i.e., only including the ef-

fect of phonon self-energy, the frequency shift of the LO mode has a positive

slope [Fig. 2.3], possibly compensating the effect of the lattice expansion. It is

worth noting though, that our calculations only include third order anharmonic-

ity, while fourth order contributions, if present, can in principle be of the same

order of magnitude as the third order one, and not necessarily with the same

sign, further complicating the picture. For ωimp(T), the trend is not perfectly

linear, contrary to what Eq. 2.3 predicts. This also indicates other mechanisms

besides volume change.
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Figure 2.7: Results for ThO2 variable temperature characterization. Wavelength-
by-wavelength extracted (broken lines) and best-match model calculated (solid
black lines) Im{ε(ω)} (panel (a)) and Im{ε−1(ω)} (panel (b)) for single-crystal
ThO2 at 293 K (green) and 648 K (red). To make the impurity mode features
visible, Im{ε(ω)} and Im{ε−1(ω)} are also shown on a logarithmic scale (inset
plots in panels (a) and (b)). The solid black lines in panels (a) and (b) show
the best-match model results of Eq. 2.2 to the wavelength-by-wavelength ex-
tracted Im{ε(ω)} and Im{ε−1(ω)}. The resulting FPSQ model parameters
for all measured temperatures are shown in panels (c)-(e). The low-frequency
(static) dielectric constant εDC is calculated using the Lyddane-Sachs-Teller
(LST) relation.49 The solid black lines in panel (c) show the best-match model
results using Eq. 2.3 to match ωj(T). The solid black lines in panel (d) show the
best-match model using Eq. 2.4 for γj(T).
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Figure 2.8: Resulting optical constants n and k for the variable temperature
charaterization of ThO2. Optical constants (green for 293 K and red for 648 K)
were determined by converting the best-match model calculated dielectric
function shown in Fig. 2.7. Dotted lines are chosen for n and dashed lines for k.

To investigate the mechanism of anharmonic phonon-phonon scattering, we

implement the Bose-Einstein based model for γj(T) employed in Ref. 25. Since

γTO(T) and γLO(T) are reasonably linear within our temperature range, the

only term in the equation needed is the one which corresponds to decay via

cubic anharmonicities28

γj(T) = aj

[
n

(
ωj(T)

2

)
+

1
2

]
, (2.4)

where n(ω̃) = (eh̄ω̃/kBT − 1)−1 is the phonon occupation number evaluated at

the average frequency ω̃ = (ωj(T)/2). The parameters h̄, kB, aj are the reduced
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Planck constant, the Boltzmann constant, and the cubic anharmonic parameter,

respectively. Fitting Eq. 2.4 to γTO(T) and γLO(T) gives aTO = (4.8± 0.2) cm−1

and aLO = (20.2± 0.4) cm−1. Our anharmonic DFT calculated results for γTO(T)

and γLO(T) [Fig. 2.3] give similar fit parameter results of aTO = (5.7± 0.1) cm−1

and aLO = (21.3 ± 0.6) cm−1. A larger temperature range is used when fit-

ting the DFT results (0 K to 800 K) than for our ellipsometry results (293 K to

648 K). However, the aTO and aLO for DFT are nearly identical when only in-

cluding data within the range 293 K to 648 K. We can then conclude that the

dominant decay mechanism can be described phonon-phonon interactions via

cubic anharmoncities.29 It is worth noting that the Eq. 2.4 was introduced in

Ref. 25 to describe the decay of optical phonons into pairs of acoustic phonons

via cubic anharmonicities, while the anharmonic DFT code considers a more

complex decay mechanism involving triplets of phonons at arbitrary wavevec-

tors over a fine grid of q-points within the Brillouin zone (in our case on a grid

of 200× 200× 200 points). The Eq. 2.4 however, describes thermal occupations of

phonon states within the Bose-Einstein statistics and hence should be applicable

in either case.

Interestingly, γTO,imp(T) and γLO,imp(T) decrease with increasing tempera-

ture. This dependence cannot be fit by the model in Ref. 25, and is not typi-

cal for IR-active phonon modes in pure crystals.51 However, the temperature-

dependence of impurity-like modes is not well understood. While the exact

nature of the impurity mode is unclear, it may be a result of subtle anharmonic

phonon-phonon interactions, as reported for MgO.54 This however, falls outside

of the scope of our current study.
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2.6 Conclusion

In summary, IRSE experiments and DFT calculations were used to study the

IR-active phonon modes in ThO2 and UO2. Their dielectric functions are ex-

tracted from the ellipsometric data in order to determine the phonon mode

resonant frequency and broadening parameters. In agreement with previous

results, we find γTO < γLO for both crystals, which is indicative of lattice an-

harmonicity due to anharmonic interaction between phonon modes. For ThO2,

additional ellipsometric measurements were performed at elevated tempera-

tures. For the main TO resonance, our experimentally determined results for

the mode Grüneisen parameter are in excellent agreement with previous DFT

calculations, which suggests the temperature-induced change in the TO res-

onant frequency is due to volume expansion of the crystal lattice. However,

the mode Grüneisen parameter for the main LO resonance does not exactly

match the DFT predictions. This indicates the temperature-dependence of the

LO resonant frequency is determined by additional factors besides just volume

change. By implementing the Bose-Einstein based model in Ref. 25 to describe

the broadening’s temperature-dependence, we find the decay mechanism of the

main mode’s IR-active phonons can be described as cubic anharmonicity. For

the detected impurity-like mode pair, the broadening parameters decrease with

increasing temperature. This behavior is not predicted by the Bose-Einstein

model, and more investigation is need to understand temperature-dependence

of the impurity-like modes.
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Chapter 3

Electron effective mass in Sn-doped monoclinic single crystal

β-gallium oxide determined by mid-infrared optical Hall effect

3.1 Abstract

The isotropic average conduction band minimum electron effective mass in

Sn-doped monoclinic single crystal β-Ga2O3 is experimentally determined by

mid-infrared optical Hall effect to be (0.284± 0.013)m0 combining investigations

on (010) and (2̄01) surface cuts. This result falls within the broad range of val-

ues predicted by theoretical calculations for undoped β-Ga2O3. The result is

also comparable to recent density functional calculations using the Gaussian-

attenuation-Perdue-Burke-Ernzerhof hybrid density functional, which predict

an average effective mass of 0.267m0. Within our uncertainty limits we detect

no anisotropy for the electron effective mass, which is consistent with most pre-

vious theoretical calculations. We discuss upper limits for possible anisotropy

of the electron effective mass parameter from our experimental uncertainty lim-

its, and we compare our findings with recent theoretical results. (Reproduced

from [S. Knight et al., Appl. Phys. Lett. 112, 012103 (2018).], with the permis-

sion of AIP Publishing)
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3.2 Introduction

Single crystal gallium (III) oxide is a desirable material for optical and elec-

tronic applications due to its unique physical properties such as its transparent

conducting nature and wide band gap.3 As a transparent conductor, Ga2O3

is useful for various types of transparent electrodes, for example in flat panel

displays,55 smart windows,56,57 photovoltaic cells,56 and gas sensors.58 Due to

its wide band gap, Ga2O3 has a larger breakdown voltage than SiC and GaN,

which makes it an excellent candidate for power devices.59,60,61,62,63 Among

the five phases, the monoclinic β phase is the most stable, and is expected to

possess highly anisotropic properties which may prove useful for various ap-

plications.64,65 Tuning of the free charge carrier concentration to enhance the

electrical conductivity has been achieved by Sn doping, for example, which is a

well established technique.59

Precise knowledge of the free charge carrier properties is imperative for elec-

tronic and optoelectronic device design and operation. Experimentally deter-

mined results for effective mass, free charge carrier concentration, and mobil-

ity parameters are currently scarce for β-Ga2O3. Numerous theoretical inves-

tigations have yielded a wide range of values for the electron effective mass:

from 0.12m0 to 0.39m0, where m0 is the free electron mass.66,67,68,63,69,70,71,72

Most calculations predict only minimal anisotropy. Although, recent Gaussian-

attenuation-Perdue-Burke-Ernzerhof (Gau-PBE) hybrid density functional cal-

culations predict slightly higher anisotropy.68 Using a combination of optical

transmission and electrical Hall effect measurements, the authors in Ref. 73

estimate a range of values for electron effective mass parameter along the b

and c crystal directions to be m∗b = 0.5m0 to 1.0m0 and m∗c = 1.0m0 to 2.0m0,
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respectively. Electrical Hall effect measurements on β-Ga2O3 allow access to

free charge carrier concentration and mobility,74,75,76,73 but this technique alone

cannot resolve the effective mass parameter.

The optical Hall effect is a physical phenomenon exploited in our measure-

ment technique, which employs generalized spectroscopic ellipsometry in com-

bination with external magnetic fields to obtain the free charge carrier prop-

erties of semiconducting materials without electrical contacts.5,77,78,79,4 This

technique measures the change in the polarization of light after interaction with

a sample due to a Lorentz force acting on the free charge carriers. In contrast

with the electrical Hall effect, the optical Hall effect is capable of obtaining the

effective mass, carrier concentration, mobility, and charge carrier type parame-

ters simultaneously.

In this work, we experimentally determine the electron effective mass in

Sn-doped monoclinic single crystal β-Ga2O3 by mid-infrared optical Hall ef-

fect (MIR-OHE) measurements. We compare our results to values reported in

previous theoretical and experimental work, and we discuss the anisotropy of

the effective electron mass parameter. Here we find no discernible anisotropy

and assume an isotropic average parameter. We discuss the amount of finite

anisotropy that may remain hidden within our present experimental error bars

for the effective mass to be potentially discovered by subsequent experiments.

3.3 Experiment

Two surface cuts, (010) and (2̄01), of Sn-doped single crystal β-Ga2O3 are inves-

tigated in this work. The crystals were grown using the edge-defined film-fed

growth method by Tamura Corp. (Japan).80,81,82 The dimensions for the (010)
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surface are (0.65×10×10)mm, and (0.65×10×15)mm for the (2̄01) surface. The

optical response of β-Ga2O3 is governed by the monoclinic Cartesian dielectric

function tensor.83 Here the Cartesian direction x is contained within the sample

surface plane and is oriented along the propagation direction of light incident

on the sample. The z direction is oriented into the sample surface. The crystal

directions in β-Ga2O3 are denoted a, b, and c, where the monoclinic angle β

= 103.7◦ lies between a and c.84 We choose to align a and b along x and -z, re-

spectively, such that c lies within the x-y plane. For practicality, we introduce

the direction c? parallel to y, so that a, b, and c? form a pseudo-orthorhombic

system. We define azimuth angle φ as a rotation about the z axis for a given

crystal axes orientation.83 For the (010) surface, φ = 0
◦ corresponds to a aligned

along x. For the (2̄01) surface, φ = 0
◦ corresponds to b aligned along y.

Generalized spectroscopic ellipsometry is the measurement technique em-

ployed here to determine the free charge carrier properties of β-Ga2O3. El-

lipsometric data is obtained using the Mueller matrix formalism.6,85 WVASE

(J.A. Woollam Co. Inc.) is used to acquire and analyze the data. The MIR-OHE

data is measured using a home-built Fourier transform infrared ellipsometer in

the spectral range of 550 cm−1 to 1500 cm−1 with a resolution of 2 cm−1. The

home-built ellipsometer is capable of attaining the upper-left 3 × 3 block of the

complete 4 × 4 Mueller matrix.5 The MIR-OHE data is obtained at +6 T, 0 T,

and -6 T, with the magnetic field parallel to the incoming infrared beam. Each

surface cut is measured at one in-plane azimuth orientation. These measure-

ments are performed at angle of incidence Φa = 45
◦ and at temperature T =

300 K. Additional measurements at zero field were performed at multiple in-

plane orientations, and included into the data analysis. Note that the anisotropy

of the effective mass parameter is determined by the anisotropy in the plasma
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frequency as discussed further below. The anisotropy of the plasma frequency

parameter is determined at zero field and multiple azimuth orientations. Hence,

OHE data were only measured at one azimuth orientation for each sample.

In addition to the MIR-OHE measurements, zero magnetic field Mueller ma-

trix data is measured at multiple azimuth orientations for each surface cut. The

data is obtained using a commercially available MIR ellipsometer (IR-VASE,

J.A. Woollam Co. Inc.) and the afore mentioned home-built ellipsometer in the

spectral range of 150 cm−1 to 1500 cm−1 with a resolution of 2 cm−1. The zero

magnetic field data is not shown here, but is included in Ref. 83. These mea-

surements are performed at Φa = 50
◦, 60

◦, and 70
◦ and at room temperature.

3.4 Optical model approach

Ellipsometry is an indirect measurement technique which requires a physical

parameterized model be fit to experimental data to determine the desired pa-

rameters.7 The model approach used here is very similar to that of Ref. 83. The

two phase optical model consists of ambient air and β-Ga2O3 joined at a planar

interface. The dielectric function tensor of β-Ga2O3 at long wavelengths consists

of contributions from optical phonon modes and free charge carriers. These

contributions are modeled using the eigendielectric displacement vector sum-

mation approach described in Refs.83,86. In this approach contributions from

individual dielectric resonances, in this case phonon modes and free charge

carriers, are added to a high frequency dielectric constant tensor ε∞. The anhar-

monically broadened Lorentz oscillator model is used to represent phonon res-

onance contributions.86 No substantial Drude contribution was detected in the

off-diagonal components of the monoclinic dielectric function tensor.83 Thus,
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we employ an orthorhombic Drude model where three independent Drude con-

tributions are added to the dielectric function response along axes a (εxx), b

(εzz), and c? (εyy).

The magnetic field dependent free charge carrier contribution to the dielec-

tric function tensor εFC(ω) is described using the classical Drude formalism

including the change induced by the Lorentz force4,5

εFC(ω) =
ωp

2

−ω2I − iωγ + iω


0 −bz by

bz 0 −bx

−by bx 0

ωc

. (3.1)

Here, I is the identity matrix, and 〈bx, by, bz〉 are the scalar components of mag-

netic field vector B, where each component is the projection along x, y, and

z, respectively. At zero magnetic field, the classical Drude model parameters

include the screened plasma frequency tensor ωp =
√

Nq2/ε0ε∞m∗, and the

plasma broadening tensor γ = q/µm∗. These parameters depend on the free

charge carrier properties which include effective mass m∗, free charge carrier

volume density N, and mobility µ, where m∗ and µ are diagonal second rank

tensors. In the isotropic average approximation of a given tensor, its values

are replaced by an isotropic scalar and the corresponding unit matrix. The

parameter ε0 is the vacuum dielectric permittivity, and q is the elementary

electric charge. At non-zero magnetic field, the cyclotron frequency tensor is

ωc = q|B|/m∗.
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3.5 Results and Discussion
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Figure 3.1: MIR-OHE experimental (green dots) and best-match model cal-
culated (solid red lines) Mueller matrix difference spectra (∆Mij = Mij(+6 T) -
Mij(−6 T)) for the (010) cut β-Ga2O3 sample at azimuth angle φ = 112.5◦. All
measurements are performed at temperature T = 300 K, and at angle of inci-
dence Φa = 45

◦. The magnetic field B is parallel to the incoming infrared beam.
Taken from Ref. 83, vertical lines signify the wave numbers of LPP (dotted lines)
and transverse optical phonon modes (solid lines) polarized in the a-c plane
(blue), and along the b axis (brown).

Figs. 3.1 and 3.2 show experimental and best-match model calculated MIR-

OHE difference spectra for the (010) and (2̄01) surface cut of β-Ga2O3, respec-

tively. The MIR-OHE signals are strongest in the vicinity of the zero magnetic

field reflectance minima for samples with a sufficient free charge carrier contri-

butions.87 For the samples investigated here, the reflectance minimum and MIR-

OHE signal appear at the edge of the reststrahlen band at around 900 cm−1.
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Figure 3.2: Same as Fig. 3.1 for the (2̄01) cut β-Ga2O3 sample at azimuth angle
φ = 181.7◦.

Due to the coupling of longitudinal optical phonon modes and free charge car-

riers, the so called longitudinal phonon plasmon (LPP) modes are now exper-

imentally observed. Since the spectral locations of the reflectance minima are

governed by the LPP modes, the strongest MIR-OHE signatures occur in the

vicinity of the highest frequency LPP modes, which are indicated by the vertical

dotted lines in Fig. 3.1 and Fig. 3.2.83 The unique shape of the signal is gov-

erned by changes in the dielectric function tensor due to phonon modes near

this spectral range. We note that until this report, MIR-OHE difference data

between positive and negative magnetic field were only seen in the off-block-

diagonal Mueller matrix elements (i.e. M13, M23, M31, M32).87 However, for the

(010) surface (Fig. 3.1) a small difference is seen in the on-block-diagonal ele-
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Table 3.1: Results for isotropic average free charge carrier properties in β-Ga2O3.
The theoretical Gau-PBE average effective mass parameter is calculated by
taking the harmonic mean of the predicted values along the a, b, and c crystal
axes, which can be found in Table 3.2. Error bars shown correspond to the 90%
confidence interval within the best-match model data analysis.

Method Parameter Value

MIR-OHE for m∗ (0.284± 0.013)m0
(010) surfacea N (4.2± 0.1)× 1018 cm−3

µ (44± 2) cm2/Vs

MIR-OHE for m∗ (0.283± 0.011)m0
(2̄01) surfacea N (5.9± 0.1)× 1018 cm−3

µ (43± 1) cm2/Vs

Gau-PBEb m∗avg 0.267m0

aThis work
bTheory, Ref. 68

ments (i.e. M12, M21, M22, M33). This is due to the dielectric function tensor for

the (010) surface at azimuth angle φ = 112.5◦ possessing non-zero off-diagonal

elements at |B| = 0. In contrast, the (2̄01) surface at azimuth angle φ = 181.7◦

possesses negligible off-diagonal tensor components at |B| = 0 since the a-c

plane lies within the plane of incidence.

Assuming separate sets of isotropic free charge carrier properties for the

(010) and (2̄01) surfaces, the model parameters are fit to the MIR-OHE differ-

ence data and zero magnetic field data simultaneously. The final best-match

model fit is presented in Fig. 3.1 and Fig. 3.2, and the resulting parameters are

shown in Table 3.1. The zero magnetic field data alone would allow one to de-

termine the isotropic plasma frequency ωp and broadening γ, which are func-

tions of m∗, N, and µ. The addition of the MIR-OHE data in the analysis allows

m∗, N, and µ to be accurately resolved. In order to improve the best match be-

tween model calculated and experimental data, the model for the (010) and
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(2̄01) surfaces must be assigned independent sets of free charge carrier proper-

ties to account for a potentially different Sn dopant distribution and activation.

However, each surface shares the same phonon mode parameters and ε∞. Since

the phonon mode parameters and ε∞ in Ref. 83 were derived assuming iden-

tical Drude parameters for the (010) and (2̄01) surfaces, these quantities were

also included in the best-match model fit to properly determine the free charge

carrier properties. The analysis confirms the expected n-type conductivity for

each surface cut. The azimuth angle φ = 112.5◦ and φ = 181.7◦ for the (010) and

(2̄01) surface, respectively, are determined by applying the zero magnetic field

model to the zero-field MIR-OHE measurement.

The electron effective mass parameters experimentally determined in this

work are m∗ = (0.284 ± 0.013)m0 for the (010) surface and m∗ = (0.283 ±

0.011)m0 for the (2̄01) surface. These fall within the broad range of values re-

ported for various density functional theory calculations: (0.12 to 0.13)m0,66

(0.22 to 0.30)m0,68 (0.23 to 0.24)m0,67 (0.26 to 0.27)m0,63 (0.27 to 0.28)m0,69,70

(0.34)m0,71 and (0.39)m0.72 The best-match model parameter results for the

isotropically averaged mobility parameter µ for the two surfaces compare well

with values determined previously by electrical Hall effect measurements for

samples with similar free electron densities.74 Our best-match model parameter

results for the electron density N are in excellent agreement with the nominal

Sn density of 1.7× 1018 cm−3 provided by the crystal manufacturer. The electron

density obtained by electrical Hall effect measurements is approximately equal

to the doped Sn density.

Ueda et al. estimated electron effective mass parameters m∗b = 0.5m0 to 1.0m0

and m∗c = 1.0m0 to 2.0m0 from optical transmission and electrical Hall effect

measurements.73 There is a rather large discrepancy between the effective mass
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Table 3.2: Results for anisotropic free charge carrier properties in β-Ga2O3. Error
bars shown correspond to the 90% confidence interval within the best-match
model data analysis.

Method Parameter Value

MIR-OHE for m∗a (0.288± 0.044)m0
(010) surfacea m∗b (0.283± 0.046)m0

m∗c? (0.286± 0.044)m0
N (4.1± 0.3)× 1018 cm−3

µa (45± 4) cm2/Vs
µb (42± 4) cm2/Vs
µc? (42± 3) cm2/Vs

MIR-OHE for m∗a (0.295± 0.039)m0
(2̄01) surfacea m∗b (0.276± 0.037)m0

m∗c? (0.311± 0.044)m0
N (6.0± 0.5)× 1018 cm−3

µa (44± 3) cm2/Vs
µb (44± 3) cm2/Vs
µc? (41± 3) cm2/Vs

Gau-PBEb m∗a 0.224m0
m∗b 0.301m0
m∗c 0.291m0

aThis work.
bTheory, Ref. 68.

parameters reported in this work and by Ueda et al. A critical discussion of the

results by Ueda et al. was given by Parisini et al. suggesting revision of data

analysis in Ref. 73.88

The anisotropy of m∗ may be defined by considering the ratios (m∗a/m∗b)

and (m∗b/m∗c?). These quantities are comparable to the squares of the ratios

of the plasma frequencies determined by the orthogonal Drude model ap-

proximation, via (ωp,b/ωp,a)2 = (m∗a/m∗b) and (ωp,c?/ωp,b)
2 = (m∗b/m∗c?).

The parameters ωp,a, ωp,b, and ωp,c? are the plasma frequencies correspond-

ing to the a, b, and c? directions, respectively. Information about the plasma
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frequencies can be gathered without the use of magnetic fields. Generalized

ellipsometry measurements at zero field and at multiple sample azimuth ori-

entations, for both the (010) and (2̄01) surfaces, were taken and subsequently

analyzed simultaneously with the MIR-OHE data. This approach provided

sufficient sensitivity to determine the anisotropy of the free charge carrier

parameters. The resulting effective mass parameters are shown in Table 3.2.

The ratios are (m∗a/m∗b) = (1.02+0.38
−0.28) and (m∗b/m∗c?) = (0.99+0.37

−0.27) for the

(010) surface, where the upper and lower scripted numbers refer to the up-

per and lower uncertainty limit of the effective mass parameter ratio. The up-

per/lower limits come from taking the ratios within the maximum/minimum

parameter deviations in the numerator and denominator using the mass pa-

rameters and error bars as shown in Table 3.2. For the (2̄01) surface, the ratios

are (m∗a/m∗b) = (1.07+0.33
−0.25) and (m∗b/m∗c?) = (0.89+0.29

−0.22). Our findings suggest

a small deviation from isotropy, however, which is well within the uncertainty

limits for both surfaces investigated. Nonetheless, the possibility of a small

anisotropy would be consistent with recent theoretical investigations.67,66,70,63

Yamaguchi calculated the electron effective mass ratios of (m∗a′/m∗b′) = 0.96 and

(m∗b′/m∗c′) = 1.07 at the Γ point, where m∗a′ , m∗b′ , and m∗c′ are diagonal Carte-

sian effective mass tensor components.67 Furthmüller and Bechstedt predict

ratios of (m∗a′/m∗b′) = 1.01 and (m∗b′/m∗c′) = 1.03.63 He et al. finds ratios of

(m∗a?/m∗b?) = 0.95 and (m∗b?/m∗c?) = 1.05.66 Recent density functional calcu-

lations using the Gau-PBE approach predict ratios of (m∗a/m∗b) = 0.74 and

(m∗b/m∗c ) = 1.03 for undoped β-Ga2O3.68 We note that the theoretical results

reported so far are inconsistent, however, all theoretical predicted ratios could

fall within our experimental error bars and no conclusive statement about a

finite anisotropy of the effective electron mass parameter can be made at this
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point. Within our uncertainty limits, the mobility parameter is found to be es-

sentially isotropic. This is consistent with previous theoretical investigations

for intrinsic mobility,89 experimental Hall effect measurements using the bar

method90 and using the Van der Pauw method.91,75 A nearly isotropic mobility

is also reported for electron channel mobility in silicon-doped Ga2O3 metal-

oxide-semiconductor field-effect transistors (MOSFETs).92

Electron effective mass values for monoclinic oxides similar to β-Ga2O3 have

been calculated by density functional methods. Monoclinic θ-Al2O3, an iso-

morph of β-Ga2O3, is predicted to possess similar effective mass values and

anisotropy. The values are calculated to be 0.41m0, 0.41m0, and 0.37m0 along

the [100], [010], and [001] crystallographic directions, respectively.93 The effec-

tive mass is virtually isotropic regardless of the structural complexity of the

low symmetry monoclinic structure. In contrast, monoclinic transition metal

oxides ZrO2 and HfO2 are predicted to have much higher effective masses

and stronger anisotropy.94 The predicted values for ZrO2 are 3.1m0, 3.2m0, and

3.7m0 along the x′, y′, and z′, respectively, where z′ is analogous to c?. The pre-

dicted values for HfO2 are 8.2m0, 1.6m0, and 1.0m0 along the same respective

directions.

3.6 Acknowledgements

This work was supported by the Swedish Research Council (VR) under Grant

No. 2013-5580 and 2016-00889, the Swedish Governmental Agency for Innova-

tion Systems (VINNOVA) under the VINNMER international qualification pro-

gram, Grant No. 2011-03486, the Swedish Government Strategic Research Area

in Materials Science on Functional Materials at Linköping University, Faculty
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Chapter 4

Electromagnon excitation in cupric oxide measured by

Fabry-Pérot enhanced terahertz Mueller matrix ellipsometry

4.1 Abstract

Here we present the use of Fabry-Pérot enhanced terahertz (THz) Mueller ma-

trix ellipsometry to measure an electromagnon excitation in monoclinic cupric

oxide (CuO). As a magnetically induced ferroelectric multiferroic, CuO exhibits

coupling between electric and magnetic order. This gives rise to special quasi-

particle excitations at THz frequencies called electromagnons. In order to mea-

sure the electromagnons in CuO, we exploit single-crystal CuO as a THz Fabry-

Pérot cavity to resonantly enhance the excitation’s signature. This enhance-

ment technique enables the complex index of refraction to be extracted. We

observe a peak in the absorption coefficient near 0.705 THz and 215 K, which

corresponds to the electromagnon excitation. This absorption peak is observed

along only one major polarizability axis in the monoclinic a-c plane. We show

the excitation can be represented using the Lorentz oscillator model, and dis-

cuss how these Lorentz parameters evolve with temperature. Our findings are

in excellent agreement with previous characterizations by THz time-domain

spectroscopy (THz-TDS), which demonstrates the validity of this enhancement
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technique. (This article is licensed under a Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/))

4.2 Introduction

Multiferroic materials are usually defined as materials which exhibit more than

one type of ferroic order, for example ferroelectricity and ferromagnetism95,96,97.

This valuable characteristic allows for the implementation of electrical switch-

ing of magnetic order, or magnetic switching of electrical order, and which

is of interest for potential device applications. One excellent material candi-

date is cupric oxide (CuO), where ferroelectricity is induced by antiferromag-

netic order, i.e., CuO is an induced-multiferroic material98. This characteris-

tic gives rise to a special quasiparticle excitation called the electromagnon. In

contrast to a magnon (a spin wave driven by the magnetic field of an electro-

magnetic wave), an electromagnon is a spin wave driven by the electric field

of an electromagnetic wave99. Electromagnons could provide a means to ad-

vance the field of magnonics, in which spin waves are used for information

processing100,101,102,103. Previously, electromagnons have been identified at

low temperatures (< 70 K) in multiferroic rare-earth manganites (RMnO3 and

RMn2O5)99,104,105,106,107, and TbFeO3

108. However, in CuO electromagnons are

seen at relatively higher temperatures (213 K to 230 K)109. To progress towards

room temperature multiferroic devices which utilize electromagnons, it is im-

portant to investigate materials such as CuO110.

Electromagnons in CuO have been previously characterized by THz time-

domain spectroscopy (THz-TDS)109,111,112,113. Reference109 provides a detailed

report of the measurement and analysis of this excitation. In Ref. 109, THz-TDS
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is used to measure the optical absorption, α, of CuO as a function of tempera-

ture (200 K to room temperature) and frequency (0.2 THz to 2 THz). When the

electric field of the THz beam is parallel to [101] crystal direction, the authors

observed a distinct peak in the change of the absorption coefficient ∆α near

0.73 THz and 214 K. This absorption peak corresponds to the electromagnon

excitation.

In general, THz-TDS provides information about the electric field amplitude

and phase after interaction with the sample, and therefore allows one to deter-

mine the complex-valued refractive index, ñ. THz Mueller matrix ellipsometry

is an alternative approach to access ñ in the THz spectral range5,114,115,116,117.

Ellipsometry is a technique which measures the change in the polarization of

light after interaction with a sample6,7. An ellipsometric measurement provides

information about the relative amplitude and relative phase shift between s-

and p-polarized light, and therefore also grants access to ñ. Since ellipsome-

try measures relative changes in amplitude and phase, it has the advantage of

not depending on the source intensity. The THz ellipsometer system used in

this work is described in Ref. 5. This THz source generates a monochromatic

THz beam, in contrast to white-light THz pulses used in THz-TDS. Employing

monochromatic THz sources has the benefit of a more direct measurement that

does not require an additional step of Fourier-type transforms.

When the THz wavelength (λ ≈ 1 mm) is comparable to the substrate

thickness, and when the coherence length of the THz light source is exceed-

ing the substrate thickness by at least one order of magnitude, spectrally-sharp,

resonant Fabry-Pérot interference features can be present in the spectrum of

samples deposited onto THz-transparent substrates. This is due to the inter-

ference from multiple reflections off the internal front and back interfaces of
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the substrate. When measured by THz Mueller matrix ellipsometry, these fea-

tures can be used sensitively to determine the properties of two-dimensional

electron gases (2DEGs), for example118,11,119,13. In this work, we exploit bulk

single-crystal CuO itself as a THz Fabry-Pérot cavity to enhance the sensitivity

to small changes in ñ as a function of the substrate temperature. A previous

report has also demonstrated the use of THz Mueller matrix ellipsometry to

identify an electromagnon in TbMnO3

120. However, this was accomplished by

measuring a single reflection off a bulk single-crystal, and not by exploiting

the Fabry-Pérot enhancement technique described here. For our experimental

parameters, a single reflection of the CuO surface would only offer very limited

sensitivity to ñ. Our enhancement technique allows accurate characterization

of CuO as a function of frequency and temperature in order to observe its elec-

tromagnon excitation. We also discuss the application of the Lorentz oscillator

model to fit the excitation, and report how these model parameters evolve with

temperature. We compare our results with previous investigations by THz-TDS

and find excellent agreement.

4.3 Results and Discussion

4.3.1 Experimental approach

An illustration of the measurement approach used here is shown in panels (a)

and (b) of Fig. 4.1. A thin wafer of single-crystal (010) CuO is exploited as a

THz Fabry-Pérot cavity to enhance the electromagnon’s optical signature. The

enhancement is caused by interferences between multiple reflections off the

front and backside interfaces, as seen in Fig. 4.1. To measure these interferences

as a function of temperature and frequency, we employ THz Mueller matrix
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ellipsometry which provides information about the change in polarization after

reflection off the CuO. The measured Mueller matrix data contain very unique

features caused by the Fabry-Pérot interferences. These features are very sensi-

tive to changes in ñ, which enables the characterization of the electromagnon.

4.3.2 Optical model approach

The optical model used here consists of a nominally 0.7 mm thick layer of

bulk single-crystal CuO with plane parallel interfaces, as shown in Fig. 4.1.

The frequency and temperature dependent optical response of CuO is gov-

erned by ñ(ω, T) which is dependent on the complex permittivity (i.e. dielec-

tric function) ε̃(ω, T) and complex permeability µ̃(ω, T) through the equation

ñ(ω, T) =
√

ε̃(ω, T)µ̃(ω, T). As determined in Ref. 109, we assume µ̃(ω, T) = 1

for the temperature and frequency range investigated here. The dominant con-

tributions to ñ(ω, T) in this range are due to either electromagnons or phonons,

both of which behave as electric dipoles, and therefore are represented by

ε̃(ω, T). Although CuO is a monoclinic crystal, we find the orthorhombic ap-

proximation sufficient to fit the measured THz data. For this approximation,

we place the three orthogonal major polarizability axes along the [101̄], [101],

and [010] crystal directions. This approach was also used by the authors in Ref.

109 to analyze their THz-TDS data. Note for monoclinic crystals, the direction

of the pseudo-orthorhombic major polarizability axes (or dielectric axes) can

vary with frequency in the a-c plane121. The directions of these major polariz-

ability axes are not related to the a and c crystallographic directions, but are

determined by the sum of all dipole-like resonances polarized in the a-c plane

that contribute to ε̃ (or in general ñ)122. The major polarizability directions can

be experimentally determined by placing an (010) surface cut crystal between
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two polarizers which are crossed at 90
◦ (such that the a-c plane is parallel to

the surface of the polarizers), rotating the crystal, and observing the intensity

minimums121,111. As demonstrated in Ref. 111, these axes in CuO fall near the

[101̄] and [101] crystal directions at THz frequencies. The diagonal Cartesian

dielectric tensor used for the orthorhombic approximation is

ε̃ =


ε̃xx 0 0

0 ε̃yy 0

0 0 ε̃zz

 , (4.1)

where the tensor elements ε̃xx, ε̃yy, and ε̃zz, are the permittivities along the

major polarizability axes [101̄], [101], and [010], respectively. The schematics in

Fig. 4.1(a) and 4.1(b) include the Cartesian directions x and y, the major polar-

izability directions [101̄] and [101], and the plane of incidence. The [010] and z

directions are omitted for clarity. The direction x is contained within the sample

surface plane and oriented along the propagation direction of incident light.

The directions x, y, and z are fixed to the THz ellipsometer, while the major

polarizability axes (and therefore the CuO crystal) are rotated during the experi-

ment. For the (010) surface cut CuO investigated here, azimuth angle φ = 0◦ is

defined as +x aligned along [101̄]. A positive φ corresponds to a rotation of the

major polarizability axes in the a-c plane in the +x to +y direction.

4.3.3 Fabry-Pérot enhanced THz Mueller matrix data

Shown in Fig. 4.1 is the change in the acquired Mueller matrix elements as a

function of temperature at a single frequency (ν = 0.715 THz). Data is mea-

sured at 205 K, 210 K, 212 K, 213 K, 214 K, 215 K, 217 K, 220 K, 225 K, and

230 K. The Fabry-Pérot enhanced experimental data (green open circles with
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Figure 4.1: Change in the normalized Mueller matrix elements (∆Mij = Mij(T) -
Mij(T=200 K)) for single-crystal CuO as a function of temperature at frequency
ν = 0.715 THz and at angle of incidence Φa = 45◦. Experiment (open green cir-
cles with dotted lines) and best-match model calculated data (red solid lines) are
for the Fabry-Pérot enhanced case, in which multiple reflections off the backside
of the CuO crystal are included. To demonstrate the extent of the enhancement,
simulated non-enhanced data are shown (blue solid lines) where only the first
reflection off the CuO surface is considered. Panels (c) and (d) show data for
two different azimuth orientations (φ = 46.9◦ and φ = 1.8◦, respectively) of the
investigated (010) surface cut. Shown in panels (a) and (b) are illustrations of
the THz beam’s multiple reflections at the front and backside interfaces for each
measured azimuth orientation (not to scale). The vertical dashed lines mark the
AF1 (< 213 K) to AF2 (213 K to 230 K) phase transition, where CuO becomes an
induced-multiferroic in the AF2 phase. This characteristic of the AF2 phase gives
rise to the electromagnon excitation.

dotted lines) and best-match model calculated data (red solid lines) show signif-

icant changes as a function of temperature due to the variation in ε̃. The largest

change in the data is seen between 213 K and 214 K where the CuO transitions

from antiferromagnetic (AF1 phase: < 213 K) to a magnetically induced fer-
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roelectric multiferroic (AF2 phase: 213 K to 230 K). This substantial change in

the Mueller matrix is caused by a change in ε̃ due to the appearance of the

electromagnon absorption in the AF2 phase. To demonstrate the magnitude of

the Fabry-Pérot enhancement, simulated data for no enhancement effect (blue

solid lines) are included in Fig. 4.1. This non-enhanced data is for the case of

an infinitely thick CuO crystal, where no reflections off the backside are consid-

ered. The ε̃(T) used to generate the non-enhanced data is determined from the

Fabry-Pérot enhanced data analysis. This analysis will be discussed in detail

further below. The non-enhanced data is nearly zero for all temperatures. This

shows the Fabry-Pérot enhancement technique is crucial for obtaining ε̃ in our

experiment.

Two different azimuth orientations of the (010) CuO are measured in our

experiments, as illustrated in Fig. 4.1(a) and 4.1(b). Figure 4.1(c) shows data for

azimuth angle φ = 46.9◦, and Fig. 4.1(d) shows φ = 1.8◦. For φ = 46.9◦, the

major polarizability axes in the a-c plane ([101̄] and [101]) have been rotated

to near the midpoint between the x and y axes (Fig. 4.1(a)). Since the CuO is

anisotropic within the a-c plane, the φ = 46.9◦ orientation exhibits large p-to-s

and s-to-p light mode conversion. This mode conversion is quantified by the off-

block-diagonal Mueller matrix elements (M13, M23, M31, and M32). In contrast,

the off-block-diagonal elements for φ = 1.8◦ are minimal, because the major

polarizability axes are near the x and y axes (Fig. 4.1(b)).

Shown in Fig. 4.2 is the Fabry-Pérot enhanced Mueller matrix spectra for a

single temperature (215 K). Data is measured in increments of 0.005 THz in the

available frequency ranges. The minimums in the simulated total reflectivity

(M11) are shown in Fig. 4.2 as vertical dotted lines to demonstrate the reflectiv-

ity is related to the Mueller matrix. In Fig. 4.2, panels (a) and (b) show data for
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Figure 4.2: Experimental (broken lines) and best-match model calculated (red
solid lines) Fabry-Pérot enhanced Mueller matrix spectra for single-crystal CuO
at 215 K and angle of incidence Φa = 45◦. Panels (a) and (b) show data from the
azimuth orientation φ = 46.9◦ measurement, and panels (c) and (d) show data
for the φ = 1.8◦ measurement. The acquired on-block-diagonal Mueller matrix
elements (M12, M21, M22, and M33) are shown in panels (a) and (c), and the
off-block-diagonal elements (M13, M23, M31, and M32) are shown in panels (b)
and (d). Vertical dashed lines indicate the total reflectivity (i.e. M11) minima for
the respective azimuth orientations.

the φ = 46.9◦ orientation, and panels (c) and (d) show data for φ = 1.8◦. Here,

the Mueller matrix elements are separated into on-block-diagonal (left two pan-

els: (a) and (c)) and off-block-diagonals (right two panels: (b) and (d)). As pre-

viously mentioned for Fig. 4.1, due to the orientation of the major polarizability

axes in the a-c plane the φ = 46.9◦ orientation shows sizable off-block-diagonals,

whereas φ = 1.8◦ are minimal. The sharp oscillating features in Fig. 4.2 are due

to Fabry-Pérot interferences, which are highly sensitive to ε̃, φ, and CuO thick-
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ness. The number of oscillations in the spectrum is dependent on ε̃ and CuO

thickness. Increasing the CuO thickness causes the number of oscillations to

increase, and decreasing the thickness causes the number to decrease. For the

CuO sample investigated here, the maximum sensitivity to ε̃ occurs near the re-

flection minimum of each oscillation. Therefore, a large number of oscillations

is desirable to achieve increased sensitivity at as many points in the spectrum

as possible. For our experiment, we find a nominal CuO thickness of 0.7 mm is

optimal.

4.3.4 Best-match model analysis results

Shown in Fig. 4.3 are the results of the best-match model analysis of the Fabry-

Pérot enhanced data. The analysis is performed by employing the method de-

scribed in the Optical model approach section. To determine ε̃ independently

for each point in the (ω, T) array, the Mueller matrix data (Mij) and Mueller

matrix difference-data (∆Mij = Mij(T)−Mij(T = 200 K)) for all measured tem-

peratures and frequencies are analyzed simultaneously. With respect to fre-

quency, multiple data points are grouped together and assigned the same value

for ε̃ in the analysis. The bounds for these sections in units of THz are: 0.360,

0.402, 0.438, 0.600, 0.687, 0.720, 0.755, 0.794, 0.830, 0.866, 0.902, and 1.17. This

creates 13 independent piecewise sections for which all frequencies in one sec-

tion have a constant value. We refer to this analysis as the piecewise constant

fit approach. The values chosen for the bounds are the Mueller matrix zero-

crossings seen in Fig. 4.2(b). With respect to temperature, all 10 increments are

assigned independent values of ε̃. This piecewise constant fit approach creates

a two-dimensional array of values for ε̃ (13 piecewise sections with respect to

frequency × 10 points with respect to temperature). The analysis reveals no
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Figure 4.3: Results of the best-match model analysis. Panel (a) shows a
false color map of the difference in absorption coefficient (∆αyy = αyy(T) -
αyy(T=200 K)) along the [101] major polarizability direction as a function of
temperature and frequency. The peak in ∆αyy near 0.705 THz and 215 K corre-
sponds to the electromagnon excitation. Colored square symbols indicate all
individual data points from the piecewise constant fit. On the same color scale
is a smoothed contour plot to guide the reader’s eye. The dashed line marks
the AF1 to AF2 phase transition. Panel (b) shows parameters from the Lorentz
oscillator analysis (solid symbols) as a function of temperature. Panel (c) shows
an example Lorentz oscillator fit (red solid lines) to the piecewise constant fit
values (open symbols) for ∆ε̃yy at 215 K.

features of interest in ε̃xx(ω, T). Due to limited sensitivity in the z direction,

we set ε̃zz(ω, T) to a constant value in the analysis (see Methods for further

details). However, for ε̃yy(ω, T), a distinct peak in the absorption coefficient,

αyy = 2ω
c Im{

√
ε̃yy}, is seen, and which corresponds to the electromagnon exci-

tation. Figure 4.3(a) shows a false color map of the difference in the absorption

coefficient ∆αyy along the [101] direction (∆αyy = αyy(T)−αyy(T = 200 K)). The

peak seen near 0.705 THz and 215 K corresponds to the electromagnon exci-
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tation. A sharp increase in ∆αyy is observed from 213 K to 214 K due to the

sudden appearance of the electromagnon in the AF2 phase.

Since electromagnons primarily behave as electric dipoles, the Lorentz oscil-

lator has been used to model their optical response109,120. The electromagnon

excitation in CuO has been previously modeled by using the sum of two Lorentz

oscillators109

∆ε̃yy(ω, T) = ε̃yy(ω, T)− ε̃yy(ω, T = 200 K)

=
∆εa ·ω2

a
ω2

a −ω2 − iωγa
+

∆εb ·ω2
b

ω2
b −ω2 − iωγb

,
(4.2)

where ∆εa,b, ωa,b, and γa,b are the amplitude, center frequency, and broad-

ening parameters for each mode, respectively. This model is fit to the change in

the dielectric function ∆ε̃yy relative to 200 K in an attempt to isolate the elec-

tromagnon and lessen the contributions from phonon modes109. Mode a is the

main electromagnon mode, and mode b is a broad low-amplitude shoulder

mode to the electromagnon. We fit the mode a parameters in Eqn. 4.2 to the

values of ∆ε̃yy(ω, T) from the piecewise constant fit to obtain the Lorentz os-

cillator parameters as a function of temperature. Due to the limits of our avail-

able spectral range, the mode b parameters were fixed to values determined

in Ref. 109 (∆εb = 0.012, ωb/2π = 1.23 THz, and γb/2π = 2.2 THz). Although

the mode b parameters change with temperature, we hold them constant for

all temperatures, as an approximation. Our analysis reveals this approxima-

tion does not significantly affect the results. Figure 4.3(b) shows the results

of the Lorentz oscillator model analysis for the main electromagnon mode a.

The ∆εa and ωa parameters show similar trends of a dramatic increase from

213 K to 214 K followed by a gradual decrease to zero. Note, ωa(T) does not
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exactly coincide with maximum for ∆αyy(T), because γa is comparable to ωa.

The γa parameter seems to follow a similar trend until 220 K and 225 K. Since

the absorption peak is beginning to move outside the available spectral range at

220 K, it is more difficult to determine γa, which is reflected in the larger error

bars for the 220 K and 225 K data points. These results are in excellent agree-

ment with the parameters provided in Ref. 109 where the Lorentz model is fit

to only ∆αyy, instead both the real and imaginary parts of ∆ε̃yy as in this work.

Shown in Fig. 4.3(c) is an example of the Lorentz oscillator best-match model

fit to the piecewise constant fit values for ∆ε̃yy(ω, T = 215 K). We note elec-

tromagnons can also contribute to the magnetoelectric tensors (i.e., gryotropic

tensors, or cross tensors), which enable dynamic electric influence of magnetic

polarization, and dynamic magnetic influence of electric polarization120. For

example, Ref. 120 discusses the characterization of an electromagnon in single-

crystal TbMnO3 in which a small contribution to one of the magnetoelectric ten-

sors is modeled using a Lorentz oscillator. In general, it is possible to use the

Mueller matrix to differentiate contributions in ε̃, µ̃, and the magnetoelectric

tensors123,120. However for CuO, a more rigorous analysis is needed consider-

ing its complex monoclinic nature.

4.4 Conclusion

A Fabry-Pérot enhanced terahertz (THz) Mueller matrix ellipsometry approach

was used to determine the electromagnon excitation in monoclinic cupric ox-

ide (CuO). A single-crystal CuO cut with parallel interfaces was exploited

as a THz Fabry-Pérot cavity to resonantly enhance the excitation’s signature.

This enhancement technique enables the complex index of refraction to be ex-
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tracted. We observe a peak in the absorption coefficient near 0.705 THz and

215 K, which corresponds to the electromagnon excitation. Our findings are in

excellent agreement with previous characterizations by THz time-domain spec-

troscopy (THz-TDS). We propose the use of the THz enhancement technique to

detect small absorption changes in anisotropic crystals caused by subtle excita-

tions such as electromagnons.

4.5 Methods

4.5.1 Experimental setup and procedure

The THz ellipsometer sub-system described in Ref. 5 is used to measure bulk

single-crystal CuO as a function of temperature and frequency. The THz el-

lipsometer operates in the polarizer-sample-rotating-analyzer configuration

which allows access to the upper-left 3×3 block of the complete 4×4 Mueller

matrix. All Mueller matrix data shown here has been normalized to the M11

element. The THz source is a backward wave oscillator (BWO) equipped with

GaAs Schottky diode frequency multipliers. The detector is a liquid helium

cooled bolometer. The magneto-cryostat sub-system is used to cool the sample,

but no magnetic field is applied at any point during the experiment. Inside the

cryostat, the sample was always measured starting from the lowest temperature

(200 K) up to the highest temperature (297 K).

4.5.2 Sample growth

One disk-like wafer (nominally 8 mm in diameter and 0.7 mm thick) of single-

crystal (010) CuO was grown using the optical float zone method124. Polycrys-

talline cylindrical feed rods were prepared using high purity (99.995%) CuO
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starting chemical and sintered at 900
◦ C for three days under oxygen flow.

Single-crystal was grown using a four mirror optical floating-zone furnace un-

der 9 bar oxygen pressure124. The growth was carried out using a sintered feed

rod at a growth rate of 3.5 mm/h with feed and seed rods counter-rotating

at 30 rpm. One cylindrical disk of (010) single-crystal was cut from the large

as-grown crystal for these experiments.

4.5.3 Room temperature THz analysis

At room temperature outside the cryostat, Fabry-Pérot enhanced THz Mueller

matrix data were taken to determine the unknown sample parameters: CuO

wafer thickness, and θ (rotation of the major polarizability axes about the [101̄]

direction). Considering only one angle of incidence is available when measur-

ing through the cryostat (Φa = 45◦), these parameters must be obtained out-

side the cryostat. These measurements were performed at multiple angles of

incidence (Φa = 40◦, 50◦, and 60◦), at four azimuth orientations (nominally

φ = 0◦, 45◦, 90◦, and 135◦), and in the frequency range of 0.65 THz to 0.9 THz

in increments of 0.005 THz. All the data is analyzed simultaneously to find the

CuO thickness is (0.669± 0.003) mm, and θ = (5.2± 0.6)◦. Change in the CuO

thickness with temperature is set in the optical model according to expansion

coefficients reported in Ref. 125. θ is fixed in the analysis for all temperatures

as it does not depend on φ, temperature, or any other experimental variables.

Values of φ for each azimuth orientation measured through the cryostat are de-

termined by applying the optical model for outside the cryostat. The values for

φ when the sample is mounted in the cryostat are found to be φ = (46.9± 0.5)◦

and φ = (1.8± 0.6)◦.

Analysis of data measured outside the cryostat also allows the room tem-
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perature ε̃ to be extracted. At room temperature CuO exhibits minimal dis-

persion from 0.65 THz to 0.9 THz109, therefore we assume constant values for

ε̃ in this range. We find the tensor elements of ε̃ near 0.775 THz are: ε̃xx =

(10.56± 0.09) + i(0.31± 0.01), ε̃yy = (9.64± 0.08) + i(0.17± 0.01), and ε̃zz =

(11.94± 0.12) + i(0.33± 0.09). These results are in excellent agreement with val-

ues reported in Ref. 109. This analysis confirms the validity of our orthorhom-

bic approximation described in the Optical model approach section. Due to

limited sensitivity in the z direction for data taken through the cryostat, we fix

ε̃zz to (11.94 + i0.33) for all temperature dependent measurements.
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Chapter 5

Cavity-enhanced optical Hall effect in two-dimensional free

charge carrier gases detected at terahertz frequencies

5.1 Abstract

The effect of a tunable, externally coupled Fabry-Pérot cavity to resonantly en-

hance the optical Hall effect signatures at terahertz frequencies produced by a

traditional Drude-like two-dimensional electron gas is shown and discussed in

this communication. As a result, the detection of optical Hall effect signatures

at conveniently obtainable magnetic fields, for example by neodymium perma-

nent magnets, is demonstrated. An AlInN/GaN-based high electron mobility

transistor structure grown on a sapphire substrate is used for the experiment.

The optical Hall effect signatures and their dispersions, which are governed by

the frequency and the reflectance minima and maxima of the externally cou-

pled Fabry-Pérot cavity, are presented and discussed. Tuning the externally

coupled Fabry-Pérot cavity strongly modifies the optical Hall effect signatures,

which provides a new degree of freedom for optical Hall effect experiments

in addition to frequency, angle of incidence and magnetic field direction and

strength. ( c© http://dx.doi.org/10.1364/OL.40.002688 [2015] Optical Society

of America. One print or electronic copy may be made for personal use only.
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Systematic reproduction and distribution, duplication of any material in this

paper for a fee or for commercial purposes, or modifications of the content of

this paper are prohibited.)

5.2 Introduction

The optical Hall effect (OHE) in semiconductor layer structures is the occur-

rence of magneto-optic birefringence detected in response to incident electro-

magnetic radiation, caused by movement of free charge carriers under the mag-

netic field-induced influence of the Lorentz force126. In general, this birefrin-

gence leads to polarization mode coupling which is conveniently detected by

generalized ellipsometry at oblique angle of incidence and at terahertz (THz)

frequencies, for example. THz-OHE has recently been demonstrated as non-

contact and therefore valuable tool for the investigation of free charge carrier

properties in semiconductor heterostructures5,127,118,128,129,130,131,132. The OHE

discussed in this work is not to be confused with the “polarization-dependent

Hall effect of light”, described for example in Refs.133,134. Previous instrumental

approaches, discussed more detailed in Refs.132,5, rely on high magnetic fields

provided either by conventional, water-cooled or superconducting, liquid He-

cooled electromagnets resulting in comparably large and costly experimental

setups. In general, OHE configurations capable of detecting signals at low and

conveniently obtainable magnetic fields are desirable. The use of small mag-

netic fields for THz magneto-optic measurements was demonstrated recently

by Ino et al. for bulk-like InAs135. Due to low effective mass and high electron

concentration, the low field still yielded large enough signals for detection. The

signal-to-noise separations of the OHE signatures depend on many factors, the
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most important are low effective mass, high mobility and high carrier density,

but also crucial is the thickness of the physical layer that contains the charge

carriers. The OHE signals are defined by and presented here as the differences

between the off-diagonal Mueller matrix elements determined for opposing

magnetic field directions5. The amplitude of the OHE signals is proportional to

the percentage of cross-polarization at the given frequency131,136 and is caused

only by the Drude-like magneto-optic contribution of the two-dimensional elec-

tron gas (2DEG). Note, the off-diagonal Mueller matrix difference spectra are

expected to be zero if there is no external magnetic field. These signals, in first

approximation, scale linearly with the magnetic field amplitude. Hence, the

first approach to detect OHE signatures in samples with very thin layers, or

low-mobile, heavy-mass and low-density charge carriers where the OHE signa-

tures are weak is to increase the magnetic field amplitude.

In this communication, we demonstrate and exploit the enhancement of the

OHE signal obtained from samples with plane parallel interfaces deposited on

THz transparent substrates using an external and tunable optical cavity. We

show that an OHE signal enhancement of up to one order of magnitude can

be achieved by optimizing the cavity geometry, which is very useful for small

magnetic field strengths. This signal enhancement allows the determination of

free charge carrier effective mass, mobility, and density parameters using OHE

measurements at low magnetic fields. An AlInN/GaN-based high electron

mobility transistor structure (HEMT) grown on a sapphire substrate is inves-

tigated as an example, while the cavity enhancement phenomenon discussed

here is generally applicable to situations when a layered sample is deposited

onto a transparent substrate. This cavity enhancement may be exploited in par-

ticular for layered samples grown on technologically relevant low-doped or
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Figure 5.1: Schematic drawing of the beam path through the sample and the
external optical cavity, shown for example for an AlInN/GaN/sapphire high
electron mobility transistor (HEMT) structure with two-dimensional electron
gas (2DEG). The sapphire substrate and metallic cavity surface are parallel and
separated by the distance dgap. Here, the magnetic field B is perpendicular to
the sample surface with the positive magnetic field direction oriented into the
sample. The metal cavity backside may be formed by an appropriately surface-
coated permanent magnet. Note that HEMT layer structure, substrate and cavity
are not to scale.

semi-insulating substrate materials such as SiC, Si, or GaAs, etc.

5.3 Theory

For a thin-film layer stack deposited on a transparent substrate, where the sub-

strate thickness is much larger than the combined layer thickness of all sub-

layers in the stack, and where the substrate thickness may be multiple orders

of the wavelength at which the OHE signatures are detected, the fraction of

the incident beam transmitted through the entire sample is coupled back into

the substrate using an external cavity. For example, a highly reflective surface

placed at a distance dgap behind and parallel to the backside of the substrate,
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Figure 5.2: Model-calculated contour plots of typical THz-OHE data, here
for example ∆M13,31 = M13,31(+B) - M13,31(−B) and ∆M23,32 = M23,32(+B) -
M23,32(−B) for the AlInN/GaN HEMT sample are shown as a function of fre-
quency and dgap. The vertical solid and dashed black lines indicate the sample’s
s-polarized reflection maxima and minima, respectively. The s-polarized reflec-
tivity maxima and minima of the external cavity and which depend on dgap,
are shown as horizontal solid and dashed black lines, respectively. All data was
calculated for an angle of incidence Φa=45

◦ and a magnetic field magnitude of
|B|=0.55 T. Note that the p-polarized modes occur indistinguishably close to the
s-polarized modes and are omitted for clarity.

as shown in Fig. 5.1, permits THz radiation to be coupled back into the sample

and thereby produce an enhancement of the OHE signal. The enhancement is

due to the positive interference of wave components traveling back and forth

within the coupled cavity-substrate while undergoing polarization conversion

upon passing the magneto-optic birefringent 2DEG multiple times. Thereby,

the amount of polarization converted light increases and which gives rise in

the measured off-diagonal Mueller matrix elements. In our example discussed

below we have achieved up to one order of magnitude enhancement by varying

dgap.

Figure 5.2, shows model-calculated contour plots of the THz-OHE signal

(difference of the Mueller matrix elements calculated for B = 0.55 T and B =



68

−0.55 T) illustrating the enhancement phenomenon. The structure used for the

calculation is a AlInN/GaN HEMT structure deposited on a 350 µm thick c-

plane Al2O3 substrate, similar to the HEMT structure discussed in Ref. 130. The

non-trivial off-block Mueller matrix components ∆M13,31 and ∆M23,32 show pe-

riodic resonances which depend on the frequency of the THz probe beam ν and

dgap. The frequency is varied over the range from 600 to 1000 GHz and the dgap

ranges from 0 to 1000 µm to obtain overview over an experimentally feasible

parameter range and to gain insight into the multiplicity of the occurrences of

coupled-substrate-cavity mode enhancements of the OHE signal.

In order to show that these occurrences are related to the minima in re-

flectance for the substrate and cavity modes, the maxima (minima) of the s-

polarized reflectivity of the sample and the cavity are plotted as solid (dashed),

vertical and horizontal lines, respectively. The signatures follow a commonly ob-

served anti-band crossing behavior, where the bands of the substrate reflectance

minima couple with the OHE bands and induce strongest changes with fre-

quency and cavity thickness. The resonance frequency of the sample Fabry-

Pérot mode is determined by the sample’s substrate thickness which is much

larger than the total HEMT thickness (see further below). The p-polarized

modes which occur indistinguishably close to the s-polarized modes are omit-

ted for clarity in Fig. 5.2.

It is interesting to note, that there are regions in frequency and dgap where

the OHE signal is very small or vanishes. Hence, experimental configurations

where both frequency and dgap can be varied over sufficiently large regions,

that is, to cover at least one period of coupled substrate-cavity modes will be

valuable for practical applications.
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Figure 5.3: The panels a) and b) show the corresponding experimental (green
lines) and best-model calculated (red solid lines) data ∆M13,31 and ∆M23,32 at
three different dgap values. The ∆M13(∆M23) and ∆M31(∆M32) spectra are shown
as open and closed data points respectively. The panels a) and b) also include
best-model calculated data for dgap → ∞ as blue solid lines for comparison.

5.4 Experiment

For the experimental verification of this enhancement effect an AlInN/GaN-

based HEMT structure was grown using metal-organic vapor phase epitaxy

on a single side polished c-plane sapphire substrate with a nominal thickness

of 350 µm. Subsequent to the growth of a 2 µm thick undoped GaN buffer

layer, a 1 nm thick AlN spacer layer was deposited, followed by a 12.3 nm thick

Al0.82In0.18N top layer137. The THz-OHE data presented here were obtained

using a custom-built THz ellipsometer138,5. THz-OHE data were measured in

the spectral range from 830 to 930 GHz with a resolution of 2 GHz at an angle

of incidence Φa = 45◦ and for three different gap distances dgap of 104.7 µm,

194.5 µm, and 280.7 µm.
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The measurements were facilitated by mounting the HEMT structure onto a

Ni-coated, high-grade N42 neodymium permanent magnet using adhesive spac-

ers to create a homogeneous air gap between the Ni-coated surface of the mag-

net which serves as the metallic cavity backside and the HEMT structure. The

THz Mueller matrix measurements were carried out with the sample mounted

on the north and on the south pole-face of the permanent magnet to obtain

THz-OHE data (differences of the Mueller matrix elements M13, M23, M31, and

M32 measured at opposing magnetic fields). Across the sample area illuminated

by the THz probe beam, the magnetic field strength provided by the permanent

magnet was B = (0.55 ± 0.005) T. For values of dgap used here, the change in

the magnetic field magnitude at different gap values is negligible at the sample

position.

In addition to the THz-OHE measurements, the sample as well as the metal

magnet surfaces were investigated using a commercial (J.A. Woollam Co. Inc.)

mid-infrared (MIR) ellipsometer in the spectral range from 300 to 1200 cm−1 at

Φa = 60
◦ and 70

◦ in order to determine the HEMT layer thickness parameters

and phonon mode parameters, and the optical constants of the magnet sur-

face metal layer (Ni). All measurements were carried out at room temperature

and analyzed simultaneously. The experimental and model calculated data are

reported using the Mueller matrix formalism6.

5.5 Results and Discussion

The experimental MIR-SE and THz-OHE data sets were analyzed simultane-

ously using an optical model composed of eight phases including a AlInN top

layer/2DEG/AlN spacer/GaN buffer/Al2O3 substrate/air gap/Ni cavity sur-
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face130. Nonlinear regression methods where used to match the lineshape of

experimental and optical model calculated data as close as possible by varying

relevant model parameters using parameterized model dielectric functions6.

The THz and MIR dielectric function tensors of the optically uniaxial sam-

ple constituents GaN, AlInN, AlN and Al2O3 are composed of contributions

from optically active phonon modes εL(ω) and free-charge carrier excitations

εFC(ω). Details on the parametrization approach are omitted here for brevity

and we refer to previous publications126,136,131,139,140. The optical response of

the magnet’s Ni mirror surface that forms the external cavity is described

using the classical Drude formalism using the static resistivity parameter of

ρ = (1.72 ± 0.49) × 10−5 Ωcm and the average-collision time parameter of

τ = 6.15 × 10−16 s. ρ is obtained as best-match model parameter from MIR-SE

data analysis, and is within typical values for Ni141,142. The average-collision

time parameter is taken from Ref. 141 and not varied in the model analysis.

Fig. 5.3 shows experimental (green lines) and best-model calculated (red

solid lines) THz-OHE spectra (differences of the Mueller matrix elements M13,

M23, M31, and M32) measured at B = 0.55 T and −0.55 T. For this sample

structure and the perpendicular magnetic field orientation, the magnetic-field-

induced changes in the Mueller matrix elements M13(M23) equal those in M31(M32).

For comparison, best-model calculated data for dgap → ∞ is shown as blue

solid lines. Based on the best-model analysis the low background free charge

carrier densities of the AlInN, GaN, and AlN layers were found to have a negli-

gible contribution to the THz-OHE signal. We find a good agreement between

experimental and best-model calculated data for the different dgap values.

The maxima and minima depicted in Fig. 5.3 are due to the coupling of the

Fabry-Pérot oscillations in the sample structure with those of the external cav-
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ity. The experimentally accessed range in frequency and dgap was selected to

sufficiently cover the response of the HEMT sample-substrate-cavity mode un-

der the influence of a small magnetic field to detect the enhanced OHE signal.

Depending on the distance dgap between sample backside and cavity surface

the frequency dependent response of the OHE signal changes where extrema

occur in the vicinity of the intersection of the sample and cavity reflection ex-

trema. Comparing ∆M13,31 and ∆M23,32 reveals distinct differences. Whereas

∆M23,32 shows a derivative-like shape with a single pair of maximum and min-

imum in the range from 830 to 930 GHz, ∆M13,31 exhibits a single maximum

or minimum and a strong amplitude variation, depending on dgap. The largest

amplitude is observed for dgap = 194.5 µm where ∆M13,31 is approximately 0.15.

The smallest change is observed for dgap = 104.7 µm where ∆M13,31 ≈ 0.07. The

best-model calculated data excluding the cavity enhancement shown as solid

blue line in Fig. 5.3 a) is almost vanishing and the cavity enhances the OHE sig-

nal by one order of magnitude. The largest amplitudes of ∆M23,32 ≈ 0.1 can be

observed for dgap = 104.7 µm and 280.7 µm (Fig. 5.3 b). The largest amplitudes

in ∆M23,32 without the cavity effect is approximately 0.05 which is a factor of

two smaller than the OHE signal amplitude observed for dgap = 104.7 µm and

280.7 µm.

The best-model sheet density, mobility, and effective mass obtained for the

2DEG are N = (1.02 ± 0.15) × 1013 cm−2, µ = (1417 ± 97) cm2/Vs, m∗ =

(0.244± 0.020)m0, respectively. These results are in good agreement with the

results of high-field (B = 7 T) THz-OHE measurements on the same sample

N = (1.40± 0.07)× 1013 cm−2, µ = (1230± 36) cm2/Vs, m∗ = (0.258± 0.005) m0.

Excellent agreement between THz-OHE and electrical measurement results

were reported previously on similar samples130. The OHE response measured
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at multiple frequencies and multiple dgap values provides sufficient informa-

tion to determine the Drude model parameters independently. We find in our

numerical data analysis that N, µ, and m∗ are uncorrelated parameters. Ideally

the polaronic effects on the effective mass need to be considered. However, as

discussed in Ref. 143, these corrections have been found negligible for GaN and

are not considered in our present analysis. Note, that increasing the number of

data sets obtained at different cavity lengths into the numerical data analysis re-

duces the error bars on the 2DEG parameter set. Our findings demonstrate that

the cavity enhancement of the THz-OHE signal allows the investigation of free

charge carrier properties of two dimensional free charge carrier gases at low

magnetic fields which may be conveniently provided by permanent magnets.

A variation in dgap provides a new degree of freedom to tune the experimen-

tal conditions so as to reach a maximum response for a given frequency range.

According to Fig. 5.2, other gap lengths, e.g., 150 µm will provide even larger

signals in this situation. For a given sample system the experimental configu-

ration can be optimized by calculating the coupled substrate-cavity modes and

then selecting frequency range and dgap accordingly. Furthermore, varying the

dgap at a fixed frequency may be used to maximize the OHE signal.
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Chapter 6

In-situ terahertz optical Hall effect measurements of ambient

effects on free charge carrier properties of epitaxial graphene

6.1 Abstract

Unraveling the doping-related charge carrier scattering mechanisms in two-

dimensional materials such as graphene is vital for limiting parasitic electrical

conductivity losses in future electronic applications. While electric field doping

is well understood, assessment of mobility and density as a function of chem-

ical doping remained a challenge thus far. In this work, we investigate the ef-

fects of cyclically exposing epitaxial graphene to controlled inert gases and am-

bient humidity conditions, while measuring the Lorentz force-induced birefrin-

gence in graphene at Terahertz frequencies in magnetic fields. This technique,

previously identified as the optical analogue of the electrical Hall effect, per-

mits here measurement of charge carrier type, density, and mobility in epitaxial

graphene on silicon-face silicon carbide. We observe a distinct, nearly linear

relationship between mobility and electron charge density, similar to field-effect

induced changes measured in electrical Hall bar devices previously. The ob-

served doping process is completely reversible and independent of the type of

inert gas exposure. (This article is licensed under a Creative Commons Attribu-
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tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/))

6.2 Introduction

Two dimensional materials are a new class of materials that attracted signif-

icant interest due to their unique electronic, optical, and mechanical prop-

erties. Many properties differ dramatically from the bulk substances. Exam-

ples include silicene, molybdenum disulfide, hexagonal boron nitride, and

graphene144,145,146,2. These materials have wide spread applications such as

high-frequency electronics, sensing elements, mechanically durable and lightweight

materials, medicine, energy storage, and more. Common to all two dimensional

materials is their extremely large surface to volume ratio, which make them

very susceptible to substrate and ambient gas adsorption effects. Graphene,

one of the most studied two dimensional materials, has been shown to sub-

stantially change in its properties as a function of substrate, substrate polarity,

and ambient media (gases, liquids)147,148,149,150,151,152,153. Ambient induced dop-

ing is observed for many types of graphene, for instance epitaxial graphene

on SiC147,148,149, exfoliated graphene on SiO2

150, and types of chemical vapor

deposition (CVD) grown graphene151. However, the effect of ambient doping

on the free charge carrier mobility is rarely explored, mostly due to the lack of

experimental techniques capable of independently assessing carrier density and

mobility without further modifying graphene. For instance standard electrical

Hall effect measurements require contacts and Hall bar fabrication, which in-

volve multiple processing steps that may modify graphene properties. In this

work, ambient effects on the free charge carrier density and mobility of epitax-

ial graphene grown by Si-sublimation on the Si-face (0001) of 4H-SiC is studied
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as an example.154

This type of graphene typically exhibits n-type conductivity due to a com-

plex interaction with the Si-face SiC substrates via the buffer layer155,156. The

intrinsic electron doping of pristine monolayer epitaxial graphene on Si-face

SiC was found to be on the order of 10
13 cm−2.148 The polarity of the Si-face

SiC also gives rise to high hydrophilicity, which is relatively unchanged with

addition of a graphene monolayer157. Similar to other two dimensional ma-

terials, graphene’s properties are also extremely sensitive to adsorbed gas

molecules147,148,158,149,159. Previous studies of the electrical properties of epi-

taxial graphene on SiC as a function of the ambient conditions employ contact-

based techniques or Kelvin probe approaches and typically do not report changes

in Ns and µ simultaneously. For example, the authors in Ref. 147 use a 4-point

probe device to perform resistance and thermo-electric power measurements

during various phases of gas exposure and annealing cycles. Ref. 148 reports

on characterization using a Hall bar device and Scanning Kelvin Probe Mi-

croscopy (SKPM), and which do not provide changes in Ns and µ simultane-

ously. In order to fully understand the ambient doping and scattering mech-

anisms in epitaxial graphene, accurate information on the free charge carrier

parameters as a function of the ambient conditions is required. Here we report

on the first in-situ, contactless determination of the majority free charge car-

rier type, Ns, and µ using terahertz-frequency optical Hall effect measurements

(THz-OHE)11,119,5. We expose a monolayer graphene sample to various gases

and report the results of the best-match model data analysis from optical Hall

effect measurements. Along with Ns and µ, the THz-OHE signal allows us to

determine the majority free charge carrier type (electrons). This is important

information since the majority carrier type of epitaxial graphene on Si-face SiC
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can vary from sample to sample160,158,129. We find that exposure to ambient

causes significant changes in the free charge carrier properties sheet carrier

concentration Ns and mobility µ for epitaxial graphene on SiC.

6.3 Results and Discussion

4H-SiC 

substrate

dgap

a = 45

Graphene

= 100 µm

Top surface of permanent magnet

B

Humidity/temp.

sensors

Gas input Gas output

B

Permanent 

magnet

(a) (b)

(c) (d)

1ML

2ML

Figure 6.1: (a) Schematic of single-layer epitaxial graphene on SiC substrate
located on top of a permanent magnet within a sealed gas chamber with optical
ports for polarized THz radiation, and THz ellipsometer setup. (b) Schematic
of the cavity-enhancement of the THz optical Hall effect using a resonant cavity
between the sample and magnet surface. (c) Representative micro-reflectance
map of the graphene surface. (d) Representative micro-Raman spectrum of 1ML
and 2ML sample areas.

Figure 6.1a details a conceptual drawing of the sample arrangement within

the gas flow cell. Ellipsometric data are measured at oblique incidence as a
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Figure 6.2: Best-match model results for sheet carrier density Ns and mobility
µ as a function of time. The shaded regions correspond to exposure to dif-
ferent types of gas at various relative humidities (RH). The flow rate of 0.5
liters/minute at normal pressure is constant for all exposure phases. Error bars
for the best-match model parameters are shown here for each data point as
vertical lines. Solid lines depict single-process exponential decay functions, for
which rate constants and equilibrium parameters are given in the text.

function of time for various gas exposure phases. Figure 6.1b depicts the scheme

of the optical Hall effect arrangement, where an external cavity is added. The

cavity significantly enhances the optical Hall effect in two-dimensional charge

carrier densities11. The sample investigated here consists of 99% monolayer

(ML) graphene and 1% bilayer (BL) inclusions as illustrated in a representative

microscopic reflectance-converted-thickness map in Fig. 6.1c. Reflectivity and

low-energy electron microscopy mapping, and scan lines confirm the thickness
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homogeniety of the epitaxial graphene sample over the entire surface area of

10 mm×10 mm. A representative micro-Raman spectrum for 1ML and 2ML

sample areas is shown in Fig. 6.1d. See the Methods section for further details

on the experimental setup.

6.3.1 In-situ optical Hall effect gas exposure monitoring

Figure 6.2 shows the in-situ optical Hall effect best-match model results for

sheet carrier density Ns and mobility µ as a function of gas exposure for the

ML graphene sample. After growth, the sample was exposed to normal am-

bient conditions (air measured with relative humidity (RH) of 45%) for ap-

proximately 15 minutes, and then mounted in the gas flow cell. During the

experiment, large dynamic changes in Ns and µ are observed when changing

the gas type. It can be seen that nitrogen and helium exposure (both 0% RH)

increases Ns while ambient exposure (45% RH) decreases Ns. This behavior is

consistent with previous results on epitaxial graphene on SiC148,158. The change

in Ns from air exposure can be explained by a redox reaction at the surface of

the graphene involving various environmental gases, which results in electron

withdrawal147. Exposure to an inert gas, such as nitrogen or helium, is thought

to cause the doping agents at the graphene surface to desorb, which reverses

the electron withdrawal.

The prolonged exposure of single-layer graphene to inert gases drastically

changes Ns and µ. We observe an approximate single process exponential decay

with mean life time τ for both quantities, where the exposure to helium results

in faster changes (τHe ≈ 45 min) than the exposure to nitrogen (τN2 ≈ 50 min).

The exposure to air results in electron reduction at a rate (τAir ≈ 20 min) faster

than the observed changes during the exposure to the inert gases. We esti-
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mate the equilibrium electron density (Ns,∞) and mobility (µs,∞) parameters

for infinite exposure time of helium, nitrogen, and air as 2.2× 1012 cm−2 and

1960 cm2/Vs, 1.9× 1012 cm−2 and 2100 cm2/Vs, and 8.8× 1011 cm−2 and 2530

cm2/Vs, respectively. There is a noticeable difference in Ns,∞ and µs,∞ for He

and N2 exposure. The cause of this difference is unknown at this point. The

difference may be explained by more effective impurity desorption from He

compared to N2, or in different modifications of the graphene-SiC interaction.

One possible scenario for the explanation of the time evolution of the results

shown in Fig. 6.2 is an ambient acceptor doping redox reaction at the graphene

surface involving O2, H2O, and CO2

147. To summarize this previously pro-

posed mechanism, first thin films of water form at surfaces when exposed to

ambient. These films contain dissolved CO2, which reacts with water causing

an excess of H+. O2 dissolved in the water film reacts with H+ and electrons

borrowed from the graphene and forms additional water molecules, thereby

chemically acceptor doping the graphene. While this reaction may not be the

only possible chemical process, it is described as the most dominant161. In prin-

ciple, it is also possible that the observed changes in Ns and µ may be related

to a modification of the Van der Waals interaction between Si-C and C-C at

the SiC-graphene interface. However, exposure to ambient and different inert

gases of bare SiC substrate and a sample containing only a buffer layer grown

at the same conditions as the epitaxial graphene show no change in the THz-

OHE signals. We also note that both SiC substrate and the buffer sample do not

produce any free charge carrier related response.
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Figure 6.3: Panel (a) shows mobility µ versus sheet density Ns for all data in
Fig. 6.2. Panel (b) shows conductivity σ versus Ns, where σ is expressed in quan-
tum units (e2/h). Red lines show the best-match model fit for µ(Ns). Arrows
indicate directions of time evolution. Colors and symbols identify phases of gas
exposure as in Fig. 6.2.

6.3.2 Mobility and conductivity dependence on carrier density

In order to investigate the free charge carrier scattering mechanisms, which are

affected by the observed chemical acceptor doping of graphene, µ and conduc-

tivity σ are plotted as a function of Ns in Fig. 6.3. Figure 6.3a shows the results

in Fig. 6.2 as µ versus Ns. Figure 6.3b depicts the results from Fig. 6.2 now as

σ versus Ns, where σ = Nseµ and e is the electron charge162. Interestingly, the

same nearly linear dependence of µ versus Ns with time is observed regardless

of the type of gas exposure. Since different scattering mechanisms produce dif-

ferent functional dependencies of mobility versus density, one might anticipate

that exposure to different gases would result in different traces of µ versus Ns.

However, the observed common traces for He and N2 suggest that the scatter-

ing mechanisms which cause variations in µ are similar. The common traces for
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inert and ambient gases seem to suggest that inert gases reverse the scattering

mechanism influence from air exposure.

In an attempt to apply a model for µ as a function of Ns, Matthiessen’s

rule is applied to combine a constant mobility contribution µconst and an Ns-

dependent contribution µn ∼ 1/Ns (Fig. 6.3a)163,164. This model approach has

been used, in part, by Tanabe et al.165 to describe electrical Hall effect results

for µ versus Ns, where Ns is varied by electric field-effect doping. In Tanabe

et al., µconst represents a constant contribution from charged impurity (long

range) scattering, and µn represents the Ns-dependent point (short range) scat-

tering contribution165. In contrast with our work, the ambient conditions were

not varied in the experiments performed by Tanabe et al.. Therefore, our ex-

periment may include different contributions to charge carrier scattering and

further experimentation is needed to determine the exact source of mobility

limitation. Furthermore, the fabricated Hall bars and electrodes in Tanabe et al.

may introduce additional contributions to carrier scattering compared to our

virgin sample. In Tanabe et al., the number of charged impurities is likely not

to vary throughout the experiment, unlike this work in which impurities can

be introduced by gases. Our observation suggests that it is possible only the

carrier density in the graphene changes as a result of gas exposure and where

the observed change in mobility is only given by the µ(Ns) dependence. This

would also provide a possible explanation why both µ(Ns) and σ(Ns) (Fig. 3(a)

and 3(b)) show so little dependence on the gas species. A variation in number

of charged impurities during our experiment could also explain the change in

µ, if number of charged impurities is proportional to Ns
166,167,168,162,169,170,171.

Other possibilities for the observed µ change include acoustic phonon scatter-

ing172, or even gas-induced modifications to interactions between graphene,
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buffer layer, or SiC substrate. The best-match model parameters for µ(Ns) are

µconst = (3214± 35) cm2/Vs and a = (1.20± 0.03)× 1016 (Vs)−1, where a is the

proportionality constant in µn = a/Ns clearly describe all observed data points.

Note that parameter a does not necessarily correspond to any specific scattering

mechanism, but is reported here to describe the observed relationship.

Recent electrical Hall bar experiments on very similar epitaxial graphene

also show a linear µ versus Ns dependence173. In the report by Yager et al.,

many Hall bar devices were fabricated and investigated on primarily 1ML

graphene. In contrast to our work, the variation in Ns reported by Yager et

al. is a result of variation of small 2ML coverage inside certain devices. In Ref.

173 it is noted that one would never know why the results are so inconsistent,

unless microscopic images of the devices are inspected and variations in 2ML

coverage are detected. One advantage of the THz-OHE, and ellipsometry in

general, is the ability to acquire an average response over the entire sample.

This eliminates parameter variations associated with fabricating devices to ob-

tain consistent values of Ns, µ, and carrier type.

6.4 Conclusions

In summary, we have obtained Ns and µ of epitaxial graphene as a function of

gas exposure using the cavity-enhanced in-situ THz-OHE, which allows con-

tactless determination of these properties. In addition to the free charge carrier

properties, the THz-OHE allows access to the majority carrier type, which is

determined to be electrons. The results of the best-match model analysis reveal

important information about the ambient doping and scattering mechanisms

for epitaxial graphene on Si-face (0001) 4H-SiC. In agreement with previous
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works148,147, it is found that exposure to an inert gas, such as helium or nitro-

gen, reverses the electron withdrawal caused by ambient. The change in Ns and

µ as a function of gas exposure can be approximated by a single process expo-

nential decay function. The results indicate epitaxial graphene on Si-face SiC

could take longer than one day to reach its final ambient state. This is impor-

tant to consider when studying graphene recently exposed to ambient, since its

properties may differ from day to day.

The observed µ versus Ns dependence is universal for all phases of gas ex-

posure. This suggests inert gases reverse the scattering mechanism influence

caused by air exposure. When a model is applied for µ as function of Ns, we

find one constant and one ∼ 1/Ns term is needed to describe the dependence.

This suggests that it is possible only the carrier density in the graphene changes

as a result of gas exposure and where the observed change in mobility is only

given by the µ(Ns) dependence. This scenario also provides explanation for

the observed universality of µ(Ns) and σ(Ns) dependencies on the gas species.

However, further investigation is needed to distinguish the exact mechanisms

which control and limit µ. The experiments performed here demonstrate the

ability of the in-situ THz-OHE to obtain Ns, µ, and majority carrier type with a

high time resolution which is valuable for characterizing two-dimensional mate-

rials. Examining the relationship between these properties enables insight into

the doping processes and scattering mechanisms as function of environmental

variables.
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6.5 Methods

6.5.1 Cavity-enhanced terahertz optical Hall effect

The measurement technique implemented here is the cavity-enhanced terahertz

optical Hall effect. Recently, this technique has been demonstrated as viable

non-contact method to obtain free charge carrier properties using low-field per-

manent magnets11,119. A tunable, externally-coupled cavity is used to enhance

the THz-OHE signal, which allows the accurate determination of a sample’s

free charge carrier properties even at low magnetic fields. Placing the sample

near the THz reflective metal surface of the permanent magnet allows the typ-

ically unused radiation emitted out the backside of the sample to be reflected

back in (Fig. 6.1b), thus enhancing the THz-OHE signal. Model simulations

are used to determine the ideal external cavity size, which for this graphene

sample is 100 µm.

6.5.2 Gas flow cell

The body of the gas flow cell (Fig. 6.1a) is constructed from Delrin, and the

top and bottom lids are acrylic. The gas cell window material is homopolymer

polypropylene and each window is 0.27 mm thick. The flow rate used in the

cell is approximately 0.5 liters/minute. The background pressure for all gas

exposure phases was 1 atm. A vacuum pump (Linicon) is used to flow unal-

tered ambient gas into the cell, and pressurized purge lines are used to provide

nitrogen and helium flow. The permanent magnet mounted inside the cell is

high-grade neodymium (N42). The magnetic field near the north surface is 0.55

Tesla, which is determined using a Hall effect sensor (Lake Shore). THz radia-

tion shielding (not shown) is used to suppress edge reflections from side walls,
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sample boundaries and magnet surfaces. The THz beam spot covers the entire

sample. Any radiation incident on the edges of sample is suppressed by the

THz radiation shielding.

6.5.3 Terahertz ellipsometer

Measurements were performed using a custom-built rotating-analyzer THz

ellipsometer at the Terahertz Materials Analysis Center in Linköping Univer-

sity119,154. The instrument is capable of measuring the upper-left 3×3 block of

the Mueller matrix, which fully characterizes the THz-OHE signal.

6.5.4 Sample growth and characterization

Monolayer graphene is grown by high-temperature sublimation in Ar atmo-

sphere on Si-face 4H-SiC154,174. The representative 532-nm-wavelength reflectance-

converted-thickness map (Fig. 6.1c) is obtained with a 300 nm lateral step res-

olution and a 100× objective175. The sample dimensions are 10 × 10 × 0.35

mm.

6.5.5 Ellipsometry and optical Hall effect model analysis

In this work, ellipsometry is used to determine graphene’s free charge carrier

properties. This is a technique, which measures polarization changes in electro-

magnetic radiation upon, in this case, reflection off a sample7. Ellipsometry is

an indirect measurement technique that requires an optical model be fit to ex-

perimental data to obtain desired sample parameters. The fit algorithm used is

the Levenberg-Marquardt non-linear regression method176. Here, ellipsometric

data are reported in the Mueller matrix formalism6.
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Figure 6.4: In-situ experimental (green triangles) and modeled (red lines)
Mueller matrix data as a function of time for all gas exposure phases. The
shaded regions correspond to different types of gas flow at various relative
humidities (RH). Data shown here is acquired at a single frequency ν = 428 GHz.
Mueller matrix elements not shown here are either similar or identical to the
elements depicted and are excluded for brevity. Data is acquired at an angle of
incidence Φa = 45

◦ and at room temperature.

The sample’s optical response is governed by the dielectric function. In the

THz spectral range, the dielectric function consists of contributions from free

charge carriers and a magnetooptic contribution, which is due to the presence

of magnetic field, as described in Ref. 4 and 126.

A stratified layer model is used to represent the graphene/SiC substrate/external

cavity/metallic magnet surface system (Fig. 6.1b). The millimeter wavelength

of the THz beam renders it insensitive to non-electrically conductive thin films

of few nm thickness only. Hence, any intricate dielectric variations near the

graphene-SiC interface, such as the formation of a buffer layer, is undetectable

by our present ellipsometry setup. On the contrary, free charge carriers produce
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very large dielectric responses, and are clearly detectable. Here, a 1 nm thick

layer containing free charge carriers is used to represent the graphene atop

the SiC substrate with no intermediate layers. The SiC substrate is insulating

and no free charge carrier contribution is included for this layer. In the same

vain, a water film is not included in the THz optical model either since previ-

ous experiments for similar samples and for similar environmental conditions

have shown water adsorbates on epitaxial graphene on SiC to be approximately

1 nm thick157. Using previously determined dielectric constants for water at

THz frequencies177, our simulations show the change in polarization due to

such a film can be neglected. This also implies that the inclusion of a water

and/or buffer layer would have no effect on the accuracy of the reported Ns

and µ values. Furthermore, the response of the bare Si-face SiC substrate as

well as a buffer layer sample mounted on the permanent magnet were inves-

tigated by exposing to N2 and unaltered ambient gas. No change in the mea-

sured data is observed when switching between the gases.

To obtain the parameters Ns and µ, the optical model was fit to the in-situ

data acquired at a single frequency (ν = 428 GHz). The parameters were deter-

mined by a point-by-point analysis, meaning Ns and µ were determined by a fit

process to the experimental data obtained for each point in time separately.

Due to experimental constraints, effective mass m∗ is not obtained in the

analysis and has been implemented as function of Ns using the equation m∗ =√
(h2Ns)/(4πv2

f ), where vf = 1.02 × 106 m/s is the Fermi velocity, accord-

ing to Ref. 178. The cavity-enhanced THz-OHE is, in fact, capable of attaining

m∗ in addition to Ns and µ11. However to improve the time resolution of the

in-situ measurement, experimental data was only obtained at one frequency

ν = 428 GHz, one angle of incidence Φa = 45
◦, and one sample-magnet air
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gap distance dgap = 100 µm. If one or more of these variables were utilized dur-

ing the in-situ measurement the sensitivity to all free charge carrier properties

would increase.

During data analysis, to correct for slight misalignment of the THz ellip-

someter we employ one frequency- and time-independent correction matrix

in the optical model. The correction is made by matrix multiplication of the

Mueller matrix representing the sample-magnet system and a correction matrix

representing a small constant offset induced by the instrument. To find the cor-

rection matrix values used in the analysis, all the elements of that matrix were

fit to data obtained at multiple frequencies (385 to 395 GHz) before the gas flow

experiment. In this spectral range, there are no changes due to the sample or

magnet, but only changes from minor instrument non-idealities.

6.5.6 Experimental data

Figure 6.4 shows changes in the Mueller matrix data acquired at a single fre-

quency (ν = 428 GHz) as a function of time for different gas exposures. The

Mueller matrix elements depicted here are M12 and M23. For this sample and

permanent magnet configuration, the M12 element experiences the largest

change with variation in the free charge carrier properties. The frequency

ν = 428 GHz was chosen because this is where the maximum change in M12 oc-

curs. The M23, as well as all other off-block-diagonal Mueller matrix elements,

characterize the THz-OHE signal and would be zero if there were no magnetic

field present. The negative value of this element indicates the sample is n-type,

since the sample is mounted on the north pole-face of the permanent magnet.

Note that a sign reversal of this element would indicate a reversal of conductiv-

ity from n-type to p-type. Such type of change, for example, can be induced by
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use of reactive gases such as NO2

158.

Breaks in the experimental data near the end of each gas flow phase are

where data was obtained at multiple frequencies to verify the optical model.

This is verification was done before the point-by-point analysis was performed.

Data recorded prior to those reported here were taken during repeated gas

exposure cycles, and were found highly reproducible. Note, certain Mueller

matrix elements are excluded for brevity. The M21 and M32 are omitted due

to being essentially equal to M12 and M23 respectively. M13 and M31 are essen-

tially equal and are omitted since they resemble M23. M22 and M33 show very

little change and are omitted.
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Chapter 7

Tunable cavity-enhanced terahertz frequency-domain optical

Hall effect

7.1 Abstract

Presented here is the development and demonstration of a tunable cavity-

enhanced terahertz frequency-domain optical Hall effect technique. The cavity

consists of at least one fixed and one tunable Fabry-Pérot resonator. The ap-

proach is suitable for enhancement of the optical signatures produced by the

optical Hall effect in semi-transparent conductive layer structures with plane

parallel interfaces. The physical principle is the constructive interference of

electric field components that undergo multiple optical Hall effect induced po-

larization rotations upon multiple light passages through the conductive layer

stack. Tuning one of the cavity parameters, such as the external cavity thick-

ness, permits shifting of the frequencies of the constructive interference, and

enhancement of the optical signatures produced by the optical Hall effect can

be obtained over large spectral regions. A cavity-tuning optical stage and gas

flow cell are used as examples of instruments that exploit tuning an external

cavity to enhance polarization changes in a reflected terahertz beam. Perma-

nent magnets are used to provide the necessary external magnetic field. Con-
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veniently, the highly reflective surface of a permanent magnet can be used to

create the tunable external cavity. The signal enhancement allows the extraction

of the free charge carrier properties of thin films, and can eliminate the need for

expensive super-conducting magnets. Furthermore, the thickness of the external

cavity establishes an additional independent measurement condition, similar

to, for example, the magnetic field strength, terahertz frequency, and angle of

incidence. A high electron mobility transistor structure and epitaxial graphene

are studied as examples. (This submitted manuscript has been reproduced with

the permission of AIP Publishing)

7.2 Introduction

The optical Hall effect (OHE) is a phenomenon in which the optical response

of a conductive material is altered by the presence of an externally applied

magnetic field.126 This effect can be measured with generalized ellipsometry

at oblique angles of incidence and at terahertz (THz) frequencies. Previously,

the THz-OHE has been proven as a viable non-contact method to obtain the

free charge carrier properties of semiconductor heterostructures using high-field

superconducting magnets.5,118,128,129,130,179,132 This approach allows the extrac-

tion of a sample’s carrier concentration, mobility, and effective mass parame-

ters by using a THz-transparent substrate as a Fabry-Pérot cavity to resonantly

enhance the THz-OHE signal. Recently, it has been shown these properties

can be conveniently obtained with permanent magnets.11,154,117,119 Using low-

field permanent magnets to provide the external field significantly decreases

the magnitude of the THz-OHE signal. However, one can compensate for this

by exploiting an externally-coupled Fabry-Pérot cavity to further enhance the
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signal. In Ref. 11, different external cavity thickness values are achieved by

simply stacking multiple layers of adhesive spacers between the sample and

magnet. This method is useful because it is straight-forward and low cost, but

only large increments of cavity thickness can be produced. The cavity-tuning

optical stage described in this work improves on this previous approach and

is capable of finely tuning the cavity thickness thus providing a new measure-

ment dimension. As an example of the cavity-tuning stage described here a

sample-permanent magnet arrangement is placed inside a gas flow cell to im-

prove sensitivity to small variations of free charge carrier parameters under

varying gas flow conditions. This experiment highlights the advantage of the

small footprint of this enhancement technique.

In this work, we discuss the concept of THz-OHE signal enhancement due to

an externally-coupled cavity. An optical model is used to choose desirable mea-

surement parameters, such as angle of incidence, frequency, and external cavity

thickness. Details of the instrument design and data acquisition are explained.

Experimental and model-calculated data are presented and compared with

data for the case of no cavity-enhancement. It is demonstrated that the cavity-

enhancement technique allows extraction of the free charge carrier properties of

a two-dimensional electron gas (2DEG) at THz frequencies.

7.3 Method

7.3.1 Optical Hall effect

We refer to the OHE as a physical phenomenon that describes the occurrence

of magnetic-field-induced dielectric displacement at optical wavelengths, trans-

verse and longitudinal to the incident electric field, and analogous to the static
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electrical Hall effect.126,4 We have previously described data acquisition and

analysis approaches for the method of the OHE in the mid-infrared, far-infrared,

and THz spectral regions.126,132,5,117

7.3.2 Optical Hall effect model for thin film layer stacks

The OHE can be calculated by use of appropriate physical models. The models

contain two portions, one describes a given material’s dielectric function under

an external magnetic field, the second portion describes the wave propagation

within a given layer stack. We have provided a recent review on this topic in

Ref. 4. Briefly, in the THz spectral range the dielectric function can be approx-

imated by a static contribution due to phonon excitations and higher energy

electronic band-to-band transitions. Contributions due to free charge carriers

can be well described by the Drude quasi-free electron model.180,181 In the pres-

ence of a static external magnetic field, an extension of the Drude model pre-

dicts magneto-optic anisotropy182 and which is the cause of the classical OHE

in conductive materials. (For quantum effects see, for example, Refs.127,183,184)

7.3.3 Tunable cavity-enhanced optical Hall effect

The principle of the enhancement of the OHE in a layer stack is the constructive

superposition of the magneto-optically polarization converted electromagnetic

field components from multiple passages through the layer stack in the pres-

ence of an external magnetic field. Each time of passage, the electromagnetic

field components undergo an additional polarization rotation caused by the

magneto-optic anisotropy created by the response of the free charge carriers un-

der the influence of the Lorentz force and within the conductive layer(s). At an

interference maximum, the sensitivity to the portion of reflected light that has
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Figure 7.1: Principle of the tunable cavity-enhanced frequency-domain THz-
OHE method, here applied to characterize a two-dimensional electron gas
(2DEG). The 2DEG of interest may be part of a multiple layer stack with differ-
ently, low-conducting constituents, for example, directly at the interface of a
substrate (Fig. 7.1(a-1)), or ontop of the layer structure (Fig. 7.1(a-2)), or within
(Fig. 7.1(a-3)). The differently, low-conducting constituents (layers) should them-
selves be sufficiently THz transparent. The principle configuration requires a
THz-transparent substrate. If the substrate has a finite thickness (dsub), incident
plane wave electric field (Ei) components are retro-reflected and pass the layer
structure multiple times, where the first 2 orders are shown here for brevity
only (Er,1, Er,2). A mirror placed at the opposite side of the substrate (Fig. 7.1b)
can be used to control the frequencies of constructive interference maxima by
dgap, where fractions of plane wave components reflected off the mirror exit the
sample, and only the first order of those are shown (Er,3). If the mirror surface is
distanced to the backside of the substrate by dgap, the frequencies of constructive
interference maxima can be tuned by dgap (Fig. 7.1(c)). The angle of incidence
is Φa. Fig. 7.1(d) depicts the situation when the mirror is removed (dgap → ∞).
Fig. 7.1(e) depicts the case when the substrate is optically infinite (dsub → ∞),
and against which the enhancement of the tunable cavity-enhanced OHE is to be
referenced. The magnetic field B direction is not relevant for the enhancement.
Here, all examples are discussed with direction of B perpendicular to the cavity
interfaces. Drawing not to scale.
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undergone polarization discriminating reflection or transmission optical inten-

sity measurement is greatly enhanced towards the causes of the magneto-optic

anisotropy.11 The magnitude of the enhancement can be significant and which

depends on the free charge carrier properties in a given sample configuration.

Examples are discussed in this work.

The principle of the tunable cavity-enhanced OHE method is demonstrated

in Fig. 7.1. All configurations require the layer stack to be supported by a THz-

transparent substrate. The substrate must have a flat and polished backside

whose surface is parallel to the front of the substrate carrying the layer stack.

The thickness of the substrate dsub should be such that spectrally neighboring

Fabry-Pérot interference maxima and minima within the substrate can be suffi-

ciently resolved with a given spectroscopic setup. Plane wave electric field (Ei)

components incident under an angle Φa then pass the sample layer structure

multiple times due to multiple internal reflections within the substrate cavity.

The frequencies of such maxima are controlled by the angle of incidence, the

substrate thickness and the substrate index of refraction. In principle, the sub-

strate thickness is adjustable by depositing the sample layer stack onto different

substrates. This, however, requires multiple fabrication steps. If a second cavity

is created by the introduction of a mirror, placed at distance dgap, the portion of

electromagnetic waves lost at the backside of the substrate is fed back into the

substrate, and introduces additional fractions of plane wave components pass-

ing the layer stack. The two Fabry-Pérot cavities (substrate, gap) couple, and

produce coupled Fabry-Pérot resonances. The frequencies of the coupled inter-

ference maxima can then be tuned by dgap, for any given but fixed dsub. Then,

the magneto-optic signal enhancement occuring at interference maxima, lim-

ited to certain frequencies for a given dsub without external cavity, can be tuned
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spectrally. Thereby, a new magneto-optic spectroscopy method is created where

in addition to frequency, the external cavity is tuned by changing its thickness,

dgap.

Also shown in Fig. 7.1 are the limiting cases, when the external cavity is

zero (dgap → 0, Fig. 7.1(b)), infinite (dgap → ∞, Fig. 7.1(d)), and when both

cavity and substrate are infinite (dsub → ∞, Fig. 7.1(e)). The case dgap → 0

requires deposition of a metal layer onto the backside of the substrate. The

case dgap → ∞ occurs when the substrate is THz-transparent and has parallel

interfaces. The case dsub → ∞ occurs when the layer stack is deposited onto a

non-transparent substrate or when the backside of a transparent substrate is not

parallel, for example, if the substrate consists of a wedge or a prism.

7.3.4 Mueller matrix spectroscopic ellipsometry

The generalized ellipsometry concept185, its spectroscopic extension,186 and the

Mueller matrix formalism187 are employed in this work. The Mueller matrix

connects Stokes vector188 components of electromagnetic waves before and after

interaction with the sample upon reflection or transmission. For the use of the

Mueller matrix concept in spectroscopic generalized ellipsometry we refer the

reader to recent reviews (see, e.g., Refs.136,6). For use of the Mueller matrix

formalism in the OHE189, and in particular, for data format definition we refer

to Ref. 5.

7.3.5 Data analysis

Non-linear parameter regression analysis methods are used for data analysis.

The experimental data are compared with calculated OHE data. The calculated

data are obtained with appropriate physical models and model parameters. Pa-
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rameters are varied until a best-match is obtained minimizing an appropriately

weighted error sum. The error sum takes into account the systematic uncer-

tainties determined during the measurement for each experimental data value.

Best-match model parameter uncertainties are obtained from the covariance

matrix using the 90% confidence interval.5

7.4 Instrument

The tunable cavity and sample must be placed within a THz spectroscopic

ellipsometer system, and subjected to an external magnetic field. Ellipsometer,

sample stage, and magnetic field designs are discussed in this section.

7.4.1 Terahertz frequency-domain ellipsometer

Two THz frequency-domain ellipsometer instruments are used in this work.

Both instruments operate in the rotating-analyzer configuration which en-

ables acquisition of the upper left 3×3 block of the 4×4 Mueller matrix. The

frequency-domain source is a backward wave oscillator (BWO) with GaAs

Schottky diode frequency multipliers. Technical details are described in Ref.

5 and Ref. 117.

7.4.2 Tunable cavity stage

Use of permanent magnet: A principle design of the sample holder for the

tunable cavity-enhanced THz-OHE is shown in Fig. 7.2. In this design, the per-

manent magnet serves both as mirror as well as for providing the external mag-

netic field. The mirror properties of the magnet surface must be characterized

by THz spectroscopic ellipsometry measurements at multiple angles of inci-
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Figure 7.2: Technical schematic of the sample holder with cavity-tuning adjust-
ment controls. The instrument is comprised of the spring-loaded sample tip-tilt
plate (STP), the sample (SA), the stepper motor (SM), the mirror housing plate
(MHP), the adjustment screw (AS), and the permanent magnet (PM). The exter-
nal cavity distance (sample-magnet air gap) is labeled dgap. The plate containing
the AS is removable which allows the user to flip the permanent magnet to the
opposite pole-face and redo experiments with opposite field direction without
disturbing the sample alignment.

dence prior to its use in the sample stage. The permanent magnet (PM) sits

flush inside a hole in the mirror housing plate (MHP). The micrometer adjust-

ment screw (AS) rests inside a brass bushing in the back plate. The rounded tip

of the AS is made of ferromagnetic material which attracts the magnet provid-

ing synchronous PM-AS movement. The stepper motor (SM) is attached to the

back of the setup and is connected to the AS by a flexible bellows shaft coupler.

The flexible coupler allows a dgap range of approximately 0 µm to 600 µm. The

stepper motor is operated by a commercially available motor controller (Thor

Labs Inc.), which uses LabVIEW programming. The minimum dgap increment
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is 1.6 µm, corresponding to one step of the motor. The back plate in Fig. 7.2 is

removable and allows the user to flip the magnet to the opposite pole-face and

redo experiments without disturbing the sample alignment.

Use of fixed cavity spacer adjustments: For simplifying the tunable cavity-

enhanced sample stage, non-magnetic adhesive spacers can be placed between

the sample and the mirror surface dispensing with the need for the stepper

motor in Fig. 7.2. This option is suitable for in-situ measurements when limited

space is available. However, no tuning of the cavity after sample mounting can

be performed.

Use of external electromagnet: For use of the sample holder with an external

electromagnet, the permanent magnet can be replaced by a non-magnetic insert

with a THz mirror at the front towards dgap and the sample backside. The nor-

mal reflectance properties of the mirror can be evaluated by performing THz

spectroscopic ellipsometry measurements at multiple angles of incidence prior

to its use. The external magentic field can be provided by electromagnets, for

example, by placing the stage within a Helmholtz coil arrangement.

7.5 Data Acquisition and Analysis

7.5.1 Data acquisition

Magnetic field calibration: The permanent magnet mounted in the sample

holder is a high-grade neodymium (N42) magnet. With the use of a permanent

magnet the change in magnetic field strength at the sample surface upon vari-

ation of dgap can be substantial. Hence, it is necessary to implement the mag-

netic field as a function of distance in the optical model. Using a commercially
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available Hall probe (Lakeshore), the magnetic field is measured at multiple

dgap values. For our instrument, within approximately 1 mm of the magnet

surface the field is approximately linear and can be approximated using by:

± B = ±[0.55− (5.1× 10−5)× (dgap + dsub)] [T], (7.1)

where the plus and minus sign refers to the two respective pole orientations of

the magnet. The parameters dgap and dsub are in units of micrometers.

Mirror calibration: Separate ellipsometry experiments are performed in the

mid-infrared spectral range to determine the optical properties of the metal-

lic permanent magnet surface as mirror. Data analysis is performed using the

classical Drude model parameters for static resistivity of ρ = (9.53± 0.04) ×

10−5 Ωcm and the average-collision time τ = (1.43 ± 0.08) × 10−16 s. These

parameters are used here to model-calculate the optical reflectance of the mag-

net surface for the model analysis in the THz spectral range for the cavity-

enhanced measurements. The magnet surface behaves as an ideal metallic

“Drude” mirror characterized by metal electron carrier scattering time and re-

sistivity, and no magneto-optic polarization coupling occurs because the metal

electron effective mass is too large and the mean scattering time is too short

in order for the free charge carriers to respond to the external magnetic field

producing measurable magnetooptic birefringence.

Mirror-to-ellipsometer alignment: The mirror surface is aligned first and then

the sample is mounted and aligned. The mirror surface is aligned to the el-

lipsometer’s coordinate system by use of a laser diode mounted such that the

laser diode beam is parallel to the plane of incidence, perpendicular to the
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sample surface, and coincides with the center of the THz beam at the sample

surface. A gap value dgap is selected in the middle of the range of values an-

ticipated for experiments. To align the mirror, the alignment laser diode beam

is reflected off the mirror surface and the mirror is adjusted until the beam re-

flects back into the laser aperture. The adjustment is performed by moving the

entire stage relative to the ellipsometer system.

Sample-to-mirror alignment: Once the mirror is aligned, the sample is mounted

to the sample tip-tilt plate STP (Fig. 7.2). STP serves as an adjustable frame to

mount the sample. The sample can be mounted via adhesive, for example, or

mechanical clamps. STP contains three micrometer screws secured against the

MHP by springs, creating a tip-tilt ability. This is necessary to ensure that the

sample surface is also aligned to the ellipsometer’s coordinate system. The sam-

ple surface is aligned using the same alignment laser as for the mirror.

Ellipsometry data acquisition: After mounting the sample stage into the el-

lipsometer system, data are acquired in a selected spectral range, for selected

angles of incidence Φa, and gap distance dgap. Figure 7.3 depicts a flow chart

describing the data acquisition process. First, the sample-mirror air gap dis-

tance dgap is set. Next, the frequency-domain source frequency is set. Then the

polarizer angle is set and the intensity at the detector is recorded. The process

is repeated for all polarizer settings as described in Ref. 5, and a Fourier trans-

form of the signal is performed to determine the Fourier coefficients, which are

stored and then subject to a regression analysis. As a result, the elements of the

upper 3×3 block of the Mueller matrix are obtained. The procedure is repeated

for different settings of gap distance, frequency, or angle of incidence, for exam-
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set BWO output frequency

set polarizer angle

record intensity at detector

Fourier transformation

store Fourier 

coefficients

Mueller matrix regression

set sample-magnet air gap distance dgap

THz data acquisition

End

Figure 7.3: Flow chart describing the data acquisition process of the cavity-
tuning optical stage and ellipsometer.
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ple. The acquisition process can be repeated with the magnetic field direction

reversed, for example, by reverting the magnet direction, or by reverting the

currents in external electromagnetic coils. The experiment can also be repeated

with a mirror without a magnet for acquisition of field-free ellipsometry data.

7.5.2 Data analysis

Data measured by tunable cavity-enhanced THz-OHE are analyzed using

model calculations and numerical regression procedures. Multiple data acqui-

sition modes are available, and which will be discussed by examples further

below.

Cavity-enhanced data at tunable gap thickness: Data obtained as a function

of gap thickness are compared with calculated data.

Cavity-enhanced data at tunable frequency: Data obtained at a fixed gap

and/or substrate thickness but as a function of frequency are compared with

calculated data.

Cavity-enhanced data at tunable frequency and tunable gap thickness: Data

over a 2-dimensional parameter set can be obtained tuning both gap thickness

and frequency and are compared with calculated data.

Cavity-enhanced data at magnetic field reversal: Field-reversal OHE data ob-

tained at opposing magnetic field directions, ∆Mij = Mij(B) − Mij(−B), are

taken and the difference data is compared with calculated data.
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7.6 Results and Discussion

Here we discuss two sample systems as examples for the application of the

tunable cavity-enhanced OHE. Both samples contain 2DEGs. The characteri-

zation of their free charge carrier properties is demonstrated. One sample is

comprised of a transistor device structure for a high electron mobility transistor

(HEMT) based on group-III nitride semiconductor layer structures. The second

sample is an epitaxial graphene sample grown on a silicon carbide substrate.

7.6.1 Two-dimensional electron gas characterization in a HEMT device struc-

ture

7.6.1.1 Sample structure

Growth: The sample investigated is an AlInN/AlN/GaN HEMT structure

grown using an AIXTRON 200/4 RF-S metal-organic vapor phase epitaxy sys-

tem. The HEMT structure consists of a bottom 2 µm thick undoped GaN buffer

layer, a 1 nm thick AlN spacer layer, followed by a 12.3 nm thick Al0.82In0.18N

top layer.137,12 The substrate is single-side polished c-plane sapphire with a

nominal thickness of 350 µm.

Optical sample structure: All sample constituents are optically uniaxial and

the layer interfaces are plane parallel. In a separate experiment, the HEMT

structure was investigated using a commercial (J.A. Woollam Co. Inc.) mid-

infrared (MIR) ellipsometer from 300-1200 cm−1 at Φa = 60
◦ and 70

◦ at room

temperature in order to determine phonon mode parameters of the AlInN top

layer. No distinct phonon features are seen in the THz measurements. However,

the MIR analysis is used to help determine the dielectric function of the HEMT
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structure constituents in the THz spectral range. Phonon parameters for the

substrate, GaN buffer layer, and AlN spacer layer are taken from Ref. 190, 130,

and 87, respectively. The thickness of the AlInN and AlN layers are found by

growth rate calculations and not varied in the analysis. The best-match model

layer thickness for the GaN layer is (2.11± 0.01) µm. For the AlInN top layer, the

best-match model frequency and broadening parameters for the one-mode type

E1- and A1-symmetry are ωTO,⊥ = (625.4± 0.8) cm−1, ωLO,⊥ = (877.8) cm−1,

γ⊥ = (40.8 ± 1.5) cm−1, ωTO,‖ = (610) cm−1, ωLO,‖ = (847.8 ± 0.4) cm−1,

γ‖ = (11.3± 0.4) cm−1 which are in good agreement with previous works191.

Note, certain phonon parameters are functionalized according to Ref. 191, and

were not varied in the analysis. In order to obtain an excellent match between

experimental and model-calculated THz-OHE data, a low-mobility electron

channel was included in the AlInN top layer. This same low-mobility channel

was also included in our previous model analysis for the same HEMT struc-

ture.12,11 A mobility value of µ = 50 cm2/Vs for a similar HEMT structure is

adopted for this sample, and an effective mass parameter of 0.3 m0 is taken

from density function calculations in Ref. 192. The volume density value for the

low-mobility channel was previously determined to be N = 1.02× 1020 cm−3.

This value is not varied in our analysis.

Previous OHE characterization: In Ref. 12 we reported field-reversal high-

field OHE measurements on the same HEMT sample without external cavity.

The high field measurements were performed in a cryogenic superconducting

magnet setup. In Ref. 11 we reported field-reversal cavity-enhanced OHE mea-

surements using a permanent magnet and various adhesive spacers (discrete

settings for dgap) on the same sample. The results reported in this work are
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in excellent agreement with those reported previously. All THz-OHE results

further compare well with Hall effect and C-V measurements done on similar

samples.193,1

7.6.1.2 Single-frequency tunable-cavity measurements

Figure 7.4 shows experimental and best-match model data for field-reversal

cavity-enhanced OHE data as a function of dgap for the HEMT sample. The

experiment was performed at two different, fixed frequencies of ν = 860 GHz

and 880 GHz for a dgap range of 120 µm to 520 µm in increments of 3 µm. The

experimental data for both frequencies are analyzed simultaneously. The layer

stack optical model for the best-match model calculation is AlInN/AlN/GaN/sapphire

substrate/external cavity/mirror (magnet surface). The external magnetic field

is oriented normal to the sample surface. All off-block diagonal Mueller ma-

trix elements are zero for the HEMT sample structure without external mag-

netic field. To begin with, the solid blue lines in Figs. 7.4(a,b) are model calcu-

lated data for the same HEMT structure in the absence of the cavity enhance-

ment (Fig. 7.1(e), dsub = ∞, dgap = ∞), where we assumed that the field at

the layer stack is B = ±0.55 T. Specifically, ∆M13 = ∆M31 = −0.0004 and

∆M23 = ∆M32 = 0.004. Data are below our current instrumental uncertainty

limit for the individual Mueller matrix elements of δMij ≈ ±0.01. Hence,

the 2DEG within the HEMT layer structure would not be detectable. In the

cavity-enhanced mode, however, large off-diagonal Mueller matrix elements

appear, far above the current instrumental uncertainty level, upon variation

of the gap thickness dgap. Features in Figs. 7.4(a,b) are due to Fabry-Pérot in-

terference enhanced cross-polarized field components after reflection at the

layer stack. Minima and maxima occur as a function of gap thickness. The
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Figure 7.4: Experimental (green symbols) and best-match model calculated data
(red solid lines) field-reversal cavity-enhanced OHE data as a function of the
external cavity thickness dgap, at two frequencies for a HEMT layer structure
on sapphire. Closed and open triangles represent ∆M13 and ∆M31 respectively.
Closed and open squares represent ∆M23 and ∆M32 respectively. The blue
solid lines are model-calculated data for the case of no cavity-enhancement
(dgap=∞, dsub=∞). All data is obtained at angle of incidence Φa = 45◦ and at
room temperature.
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cross polarization is produced only by the free charge carrier gas within the

HEMT structure under the influence of the Lorentz force. The potential to use

the variation of gap thickness as a new parameter variation measurement con-

figuration is obvious. In particular, for this sample, and for the scans shown

in Figs. 7.4(a,b), compared with the blue lines (no cavity enhancement) cav-

ity thickness parameters can be adjusted where the OHE signal enhancement

reaches -0.124 at ν=860 GHz in Fig. 7.4(a) for ∆M13,31 and 0.088 for ν=880 GHz

in Fig. 7.4(b) for ∆M23,32. The best-match model 2DEG sheet density, mobility,

and effective mass parameters obtained from the OHE data in Figs. 7.4(a,b) are

Ns = (1.23± 0.13)× 1013 cm−2, µ = (1245± 64) cm2/Vs, m∗ = (0.272± 0.013)m0,

respectively. The results are in excellent agreement with electrical measure-

ments and with our previous THz-OHE experiments.11

7.6.1.3 Tunable-frequency tunable-cavity measurements

False-color rendering of model calculated data of cavity-enhanced field-reversal

THz-OHE data versus frequency, gap thickness, and angle of incidence are

shown in Fig. 7.5. The color type indicates positive or negative values, the color

intensity indicates the magnitude of the OHE data. The three-dimensional ren-

dering is insightful as it indicates distinct regions within which the data rapidly

switches signs, and regions within which data takes very large values. All three

parameters, frequency, gap thickness, and angle of incidence influence the OHE

data, and proper selection may result in strong OHE data, while poor choices

may result in disappearance of the OHE data. The horizontal plane indicated at

45
◦ identifies the angle of incidence at which experiments are performed in this

work. False-color rendering of experimental and model-calculated data at angle

of incidence of 45◦ are shown in Fig. 7.6(a) as a function of frequency and gap
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Figure 7.5: False-color three-dimensional surface rendering of model-calculated
cavity-enhanced field-reversal THz-OHE data for an AlInN/AlN/GaN HEMT
structure grown on a sapphire substrate as functions of frequency ν, external
cavity distance dgap, and angle of incidence Φa. Data for ∆M13,31 = M13,31(+B) -
M13,31(−B) are shown as example. Values within the range of -0.02 to 0.02 are
omitted for clarity. The green horizontal plane at Φa = 45◦ indicates the instru-
mental settings for the angle of incidence in this work. Model parameters given
in text. Note that the model calculated plot for ∆M23,32 is similar in appearance
to ∆M13,31 and is excluded here for brevity.
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Figure 7.6: (a) False-color two-dimensional surface rendering of experimental
(left two columns) and model-calculated (right column) cavity-enhanced field-
reversal THz-OHE data for an AlInN/AlN/GaN HEMT structure grown on a
sapphire substrate as functions of frequency ν and external cavity distance dgap.
The angle of incidence is Φa = 45◦. Data for ∆M13,31 = M13,31(+B) - M13,31(−B)
are shown as example. Parameter details given in text. (b) Same as in (a) for
fixed cavity thickness dgap = 420 µm. The solid blue line indicates model cal-
culated data when dsub=∞ and dgap=∞. Solid green symbols indicate ∆M13

and ∆M23, and open symbols indicate ∆M31 and ∆M32. The blue solid lines are
model-calculated data for the case of no cavity-enhancement (dgap=∞, dsub=∞).
All data taken at room temperature.

thickness. An excellent agreement between both experiment and model calcula-

tion is obtained. Fig. 7.6(b) shows data at a fixed cavity thickness. Data are sim-

ilar to those in Figs. 7.4(a,b), except now the frequency is tuned. Figs. 7.6(a,b)

identify frequency and gap regions where the OHE data is very small. The

blue solid lines are identical to those in Figs. 7.4(a,b) for the case of no cavity-

enhancement. All experimental data in Fig. 7.6 is analyzed simultaneously and

the resulting best-model sheet density, mobility, and effective mass parameters

for the 2DEG are Ns = (1.22 ± 0.12) × 1013 cm−2, µ = (1262 ± 59) cm2/Vs,

m∗ = (0.268± 0.012)m0. The results are identical within the error bars to those
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obtained from the single frequency gap thickness scans as well as to our previ-

ous OHE investigation reports.5,11

The central results obtained from this section are (i) the demonstration of the

strong enhancement obtained by use of multiple interference through substrate

and external cavities, and (ii) the obvious appearance from Fig. 7.5 and the

support from our experiments that OHE measurements can be performed both

as a function of frequency and gap thickness.

7.6.2 Environmental gas doping characterization in epitaxial graphene

In this section we demonstrate the use of the cavity-enhanced OHE method for

detecting changes in the properties of a 2DEG upon exposure to various exter-

nal gas compositions. The purpose of this section is to demonstrate the use of

this method when transient physical changes to a sample limit the time dura-

tions during which spectroscopic scanning measurements can be performed.

7.6.2.1 Sample structure

Growth: The sample studied here is graphene epitaxially grown on Si-face

(0001) 4H-SiC by high-T sublimation in Ar atmosphere.13 Reflectivity and low-

energy electron microscopy mapping, and scan lines verify the primarily one

monolayer coverage across the 10×10 mm sample surface.

Optical sample structure: The sample is optically modeled by considering the

graphene monolayer as a 1 nm highly conductive thin film on top of the SiC

substrate as described in Ref. 13. All sample constituents have plane parallel

interfaces. No free charge carriers are detected in the SiC substrate. Due to the

ultrathin layer thickness of the graphene, ellipsometry data cannot differentiate
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between the thickness and the dielectric function of the layer. Instead, a new

parameter emerges, the sheet free charge carrier density, This parameter takes a

constant ratio with the assumed layer thickness, and hence can be determined

independently and accurately (Further details are discussed in Refs.13,4).

In-situ gas cell design: The schematics of the in-situ gas flow cell used in this

work is shown in Fig. 7.8(a). The THz ellipsometer instrument is schemati-

cally indicated by source, polarizer, analyzer, and detector at angle of incidence

Φa = 45
◦.117 The cell is equipped with a humidity and temperature sensor, gas

inlets, and gas outlets. The side walls of the flow cell are made from Delrin,

and the cover and base portions are made from acrylic. THz-transparent win-

dows are produced from homopolymer polypropylene. The thickness of the

transparent sheets is 0.27 mm. Normal ambient gas is pushed through the cell

using a vacuum pump (Linicon). Nitrogen and helium flow was provided by

additional purge lines. The background pressure in the cell was 1 atm through-

out the experiment. The flow rate was 0.5 liters/minute.

Fixed cavity-enhancement settings: The sample consists of a 2DEG (graphene)

at the surface of a THz-transparent substrate (dsub = 355 µm). The substrate is

placed with its backside using adhesive spacers onto the permanent magnet

(Fig. 7.8(a)). The sample is mounted with the neodymium (N42) magnet into

the gas cell. The gap thickness dgap was thereby fixed at 100 µm. OHE data

acquisition is identical to the procedure in Fig. 7.3 with fixed cavity thickness.
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Figure 7.7: False-color three dimensional surface rendering of model-calculated
cavity-enhanced single-field THz-OHE data for an epitaxial graphene layer
on SiC as a function of frequency ν, external cavity distance dgap, and angle
of incidence Φa. Data for M23(+B) are shown only (0.02 to 0 (red) and -0.04

to -0.17 (blue)). Data with values between -0.04 and 0 are omitted for clarity.
The black sphere at the intersection of the three black lines illustrates the point
where in-situ gas cell data was taken for the gas flow experiments on the sample
shown on this work. For model calculations the following parameters are used:
Ns = 8.69 × 1011 cm−2 and µ = 2550 cm2/Vs. The effective mass parameter of
m∗ = 0.019 m0 is calculated as a function of Ns as in Ref. 194.

7.6.2.2 Cavity-enhanced optical Hall effect simulations

Figure 7.7 shows model-calculated THz-OHE data for M23 as function of ν,

dgap, and Φa for epitaxial graphene grown on SiC. Figure 7.7 can be used as a

guide to find optimal values for ν, dgap, and Φa to perform a THz-OHE mea-

surement. The black sphere and three intersecting lines illustrates the point

chosen to perform the in-situ THz-OHE measurement. Only a single set of

measurement parameters is chosen to minimize time between measurements
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in order to resolve sharp dynamic changes in the Mueller matrix data during

the gas flow experiment. For practical reasons, dgap = 100 µm and Φa = 45◦

were chosen. Therefore, ν = 428 GHz was selected for the in-situ measurement.

Unlike Fig. 7.5, Fig. 7.7 is not THz-OHE difference data since the gas flow ex-

periment is only performed using the north pole-face of the permanent magnet.

7.6.2.3 In-situ tunable-frequency single-cavity measurements

Figures 7.8(c,d) depict experimental and best-match model data for single-

field-orientation cavity-enhanced OHE data as a function of frequency for the

graphene sample. These measurements were performed at two different points

during the gas exposure experiment: the first spectral measurement was after

three hours of exposure to helium, and the subsequent spectral measurement

after two hours of exposure to ambient air (labeled ‘T1’ and ‘T2’ in Fig. 7.8(b),

respectively). Indicated in Figs. 7.8(c,d) are also the THz-OHE data without cav-

ity enhancement (blue lines: dgap,sub = ∞). Comparing the cavity-enhanced data

to the case of no cavity-enhancement indicates large changes in the Mueller

matrix data are entirely due to interference enhancement in the substrate and

external cavity. The off-block-diagonal element M23 is selected to show the

OHE signature enhancement.

7.6.2.4 In-situ time-dependent single-frequency single-cavity measurements

Figure 7.8(b) shows the in-situ cavity-enhanced THz-OHE data taken at a sin-

gle frequency, ν = 428 GHz, for M12 and M23. Analyzing the data allows the

extraction of the graphene’s free charge carrier properties Ns, µ, and charge

carrier type as a function of time. The carrier type is determined to be n-type

during each gas phase. It is found that Ns increases with helium and nitrogen
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exposure, and decreases with air exposure. An inverse relationship is observed

for µ and Ns throughout the gas flow experiment. The lowest Ns occurred at

the end of the second air phase where Ns = (8.40 ± 0.72) × 1011 cm−2 and

µ = (2595± 217) cm2/Vs. The highest Ns occurred at the end of the helium

phase where Ns = (2.31 ± 0.29) × 1012 cm−2 and µ = (1961 ± 250) cm2/Vs.

Further details on the in-situ THz-OHE gas exposure experiment can be found

in our previous publication.13 Sensitivity to the free charge carrier properties as

a function of gas flow is entirely dependent on the cavity-enhancement effect,

as demonstrated in Figs. 7.8(c,d). The variations in free charge carrier proper-

ties upon exposure with He and Air, indicated by the blue lines in Figs. 7.8(c,d),

would not have been detectable with the same instrument without the exter-

nal cavity stage since the changes in Mueller matrix elements are below the

detection limit.

7.7 Conclusion

We demonstrated a tunable cavity-enhanced THz frequency-domain OHE tech-

nique to extract the free charge carrier properties of 2DEG layers situated on

top of THz-transparent substrates. A HEMT structure grown on sapphire and

epitaxial graphene grown on SiC are studied as examples. For the HEMT struc-

ture sample, the OHE signatures are enhanced by tuning an externally cou-

pled Fabry-Pérot cavity via stepper motor. Data measured as a function of

external cavity size and frequency are analyzed to obtain the carrier concen-

tration, mobility, and effective mass parameters of the 2DEG located within the

HEMT structure. For the epitaxial graphene on SiC sample, an external cavity

of fixed size is used to enhance the OHE signal during a gas flow experiment.
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This enhancement effect allows the extraction of the graphene’s carrier con-

centration and mobility as a function of time throughout the experiment. In

our experiments, the Fabry-Pérot cavity-enhancement is made possible by the

THz-transparent substrates as well as the external cavity (air gap) between the

sample’s backside and the reflective metal surface. The magnetic field necessary

for the OHE experiments is provided by a permanent magnet; for which the

metallic coating also provides the reflective surface for the external cavity. Our

enhancement technique can be expanded upon by using superconducting mag-

nets to measure samples with much lower free charge carrier contributions. In

general, our technique is a powerful method for materials characterization, and

can be used to study even more complex sample structures.
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Chapter 8

Conclusion

In summary, OHE measurements were used to determine the free charge car-

rier properties of important two-dimensional materials and monoclinic oxides.

Bulk single-crystal β-Ga2O3, an AlInN/GaN-based HEMT structure, and epi-

taxial graphene were characterized as examples of such materials. OHE mea-

surements were performed in two different spectral ranges: the MIR range for

single-crystal β-Ga2O3, and the THz range for the HEMT structure and epitax-

ial graphene. For the THz-OHE measurements, Fabry-Pérot interferences inside

the substrates and external cavity were exploited to increase the OHE signal-

to-noise ratio. Results for free charge carrier properties extracted using OHE

were compared with previous results from electrical Hall effect measurements,

as well as DFT calculations. Since no OHE measurements were performed for

the ThO2, UO2, and CuO samples, these investigations serve as introductions to

infrared ellipsometry and Fabry-Pérot enhanced THz ellipsometry. All results

and important concepts throughout dissertation are summarized as follows:

• MIR/FIR characterization of single-crystal ThO2 and UO2

Standard ellipsometry was used to characterize the infrared-active phonon

modes of single-crystal samples of ThO2 and UO2.8 Both crystals were
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found to have one main infrared-active mode pair, in addition to a broad

low-amplitude impurity-like mode pair within the reststrahlen band. Fur-

ther elevated temperature measurements were performed only on the

ThO2 sample. All infrared-active phonon mode center frequency param-

eters were found to decrease with increasing temperature. Trends in the

temperature evolution of the TO center frequency match previous DFT

calculations which only consider volume change effects. All results are

comparable to previous reflectance spectroscopy charaterizations and DFT

predictions. No significant Drude contribution was detected, therefore, no

OHE measurements were performed.

• Free charge carrier properties of Sn-doped single-crystal β-Ga2O3

Volume carrier concentration, mobility, and effective mass of Sn-doped

monoclinic single-crystal β-Ga2O3 were determined by MIR-OHE in a

combined analysis of (010) and (-201) surface cut crystals.9 The extracted

carrier type (n-type), carrier concentration (N = (4.2± 0.1)× 1018 cm−3)

and mobility (µ = (44± 2) cm2/Vs) are in excellent agreement with pre-

vious electrical Hall effect measurements. The electron effective mass is

found to be m∗ = (0.284± 0.013)m0 which falls within the range of values

predicted by various DFT calculations. No anisotropy in the mobility or

effective mass is detected within our uncertainty limits.

• THz characterization of single-crystal CuO

Generalized THz ellipsometry was employed to characterize a single-

crystal sample of CuO as function of frequency and temperature to mea-

sure an electromagnon excitation.10 This excitation manifests as an optical

absorption near 0.705 THz and 215 K. The complex-valued dielectric func-
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tion which corresponds to the electrmagnon excitation was modeled using

the Lorentz oscillator approach. Fabry-Pérot interferences inside the CuO

significantly enhance the measured signal-to-noise ratio, allowing this

subtle excitation to be characterized.

• Free charge carrier properties of an AlInN/GaN-based HEMT structure

THz-OHE measurements were employed to determine the free charge car-

rier properties of a 2DEG within an AlInN/GaN-based HEMT structure.11

The carrier type (n-type), sheet density (Ns = (1.02± 0.15)× 1013 cm−2),

and mobility (µ = (1417 ± 97) cm2/Vs) are comparable with previous

electrical Hall effect results from similar samples. The effective electron

mass is found to be m∗ = (0.244± 0.020)m0. The necessary magnet field

was provided by a low-field (B = 0.55 T) permanent magnet. To enhance

the THz-OHE signal, the external cavity (i.e. sample-magnet air gap) was

exploited as a Fabry-Pérot cavity to provide additional constructive in-

terference. All results obtained with this cavity-enhanced technique are

excellent agreement with a previous characterization using a high-field

superconducting magnet (B = 7 T) and no external cavity-enhancement.

• Free charge carrier properties of epitaxial graphene as a function of gas

exposure

In-situ THz-OHE measurements were used to determine the free charge

carrier properties of epitaxial graphene grown on SiC as a function of gas

exposure.13 The same cavity-enhancement effect described for the HEMT

structure was implemented for these experiments. Sheet density (Ns) and

mobility (µ) experience large changes when exposed to cycles of ambient

air and dry helium. For example, at the end of the second ambient air
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cycle: Ns = (8.40± 0.72)× 1011 cm−2 and µ = (2595± 217) cm2/Vs. At

the end of the first cycle of dry helium: Ns = (2.31± 0.29)× 1012 cm−2 and

µ = (1961± 250) cm2/Vs. Since the measured THz-OHE data provided

limited sensitivity to the effective mass parameter, it was written as a

function of Ns, and was not varied during the analysis.194

• Fabry-Pérot cavity tuning techniques for obtaining 2DEG free charge

carrier properties

Techniques for precisely tuning an external Fabry-Pérot cavity in order

to enhance THz-OHE signatures in certain samples was shown experi-

mentally and discussed.14 The previously mentioned HEMT structure

and epitaxial graphene sample were used as examples to demonstrate the

ability of this technique to determine the free charge carrier properties

of 2DEGs situated on top of THz-transparent substrates. To accurately

vary the external cavity (i.e. sample-magnet air gap), a stage containing

a stepper motor and micrometer screw was constructed which provides

a change in dgap of only 1.6 µm. Variation of dgap was used as an another

measurement dimension, in addition to frequency and angle of incidence,

to facilitate the extraction of 2DEG carrier properties. Results for Ns, µ,

and m∗ obtained using these more advanced cavity-tuning techniques are

in excellent agreement with all other THz-OHE characterizations. 1

The studies reported here provide crucial information necessary for future elec-

tronic device design. The experimentally determined room temperature ef-

fective mass in β-Ga2O3 and the HEMT structure may be used in subsequent
1Note, Chapters 2 through 7 are only first-authored publications or manuscripts. All

other non-first-authored works are also included in the List of own Publications sec-
tion (previously cited in dissertation:83,119,86,115,154,45, and not previously cited in disserta-
tion:13,14,15,16,17,18,19,20,21,22).



124

investigations to help identify their limiting factors. The in-situ gas exposure

experiments for epitaxial graphene demonstrate its sensitivity to changes in

humidity and gas composition, which must be considered during device fabri-

cation. Additional OHE measurements could be performed on these materials

as a function of temperature to determine the carrier scattering mechanisms

which limit mobility. As more complex material systems are integrated into

devices, it is important to continue exploring the OHE technique which is sen-

sitive to all constituents in multilayered semiconductor structures. Emerging

β-Ga2O3 epitaxal layer structures could be a candidate for characterization by

MIR-OHE or THz-OHE, for example.
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[11] S. Knight, S. Schöche, V. Darakchieva, P. Kühne, J.-F. Carlin, N. Grandjean,

C. Herzinger, and M. Schubert, Opt. Lett. 40, 2688(2015).
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