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Chronic low back pain (LBP) is a leading cause of disability but treatments for LBP 

are limited. Degeneration of the intervertebral disc leads to loss of neuroinhibitory sulfated 

glycosaminoglycans (sGAGs) which allows nerves from dorsal root ganglia (DRG) to 

grow into the core of the disc, leading to pain. Current treatments for LBP involve drugs 

that do not target the source of the pain and lack long term efficacy or use invasive surgeries 

with high complication rates. Treatment with a decellularized tissue scaffold that contains 

neuroinhibitory components may inhibit nerve growth and prevent disc-associated LBP. 

Here, a decellularized nucleus pulposus (NP) tissue scaffold was developed to be used as 

a treatment for low back pain. Results indicated that the decellularized tissue scaffold 

developed here removed over 99% of DNA and maintained 70% of the native sGAGs. 

After gelation, it was determined that the gel was not cytotoxic, and it exhibited 

neuroinhibitory properties. Following the research on a neuroinhibitory gel, the project 

shifted to the investigation of a recently discovered nanovesicle with active cargo that may 

be present in NP tissue. Matrix bound nanovesicles (MBVs) were successfully isolated 

from NP tissue. Analysis of the MBVs found within the decellularized tissue revealed that 

they polarized macrophages towards an inflammatory phenotype, which is different to 



 
 

previous literature investigating MBVs. Culture of nucleus pulposus cells with MBVs 

demonstrated that the NP cells started growing on top of each other, although this was the 

only morphological change. This work also characterized the protein contents of the NP-

derived suggesting that MBVs may be one reason that the NP cannot resolve inflammation 

during degeneration. The work presented here demonstrates that a decellularized NP tissue 

scaffold can be formulated into an injectable gel that exhibits neuroinhibitory properties 

for the treatment of low back pain. Along with this, the presence of MBVs were discovered 

within the decellularized NP and the NP derived MBVs had unique profile of contents and 

cellular responses.
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CHAPTER 1: INTRODUCTION 

1.1 Significance of the Study 

 Low back pain impacts a large portion of the world population in their lifetimes. 

This study aimed to create a minimally invasive, thermally forming hydrogel that could be 

injected into a painful, degenerate disc in the clinic to stop painful nerves from growing 

into the disc and to stabilize the degenerate disc. Decellularized nucleus pulposus tissue 

was used for this purpose because it contains proteins, proteoglycans, and polysaccharides 

native to the healthy disc. In doing so, this treatment is meant as a minimally invasive 

treatment for low back pain. In addition to the formation of an injectable gel, this study 

also investigated and expanded the knowledge on matrix bound nanovesicles derived from 

nucleus pulposus tissue, which are a recently discovered vesicle that are believed to be 

found in all tissues and have demonstrated regenerative properties.  

1.2 Purpose of the Study 

The purpose of this study was to adapt a decellularization process [1] for whole 

porcine nucleus pulposus, then use this decellularized tissue to create a thermally forming, 

injectable hydrogel that could maintain cell viability while preventing nerve growth. 

Following the successful development of this neuroinhibitory hydrogel, the study shifted 

to investigate a recently identified particle in other tissues that modulate cell response, 

matrix bound nanovesicles. Because this work investigated two different projects, this 

thesis is separated into two different arms, the neuroinhibitory gel project and the nucleus 

pulposus derived matrix bound nanovesicle project. 
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1.3 Statement of the Hypothesis 

This thesis tested a hypothesis specific to each project, which are described 

below. 

1.3.1 Creation of a neuroinhibitory gel: 

A previous decellularization process could be adapted for use here and the 

resulting decellularized tissue could be developed into a gel that exhibits neuroinhibitory 

properties. 

1.3.2 Nucleus Pulposus Derived Matrix Bound Nanovesicles: 

Matrix bound nanovesicles are present within the nucleus pulposus, and they 

modulate cell phenotypes present in this tissue. 

CHAPTER 2: Creation of an Injectable Gel for Treatment of Low 

Back Pain 

2.1 REVIEW OF LITERATURE 

2.1.1 Low Back Pain 

Low back pain (LBP) affects four out of five people in the world at least once in 

their lifetime, with 20% of those affected developing chronic LBP [2]. The high incidence 

of chronic LBP has made it the leading cause of years lived with disability for the past 

three decades [3]. Disc-associated LBP is a major contributor to chronic LBP, in which 

pain is attributed to the disc directly. Disc-associated LBP patients exhibit nerve growth 

deep within the previously aneural disc [4, 5].  These nerve fibers are stimulated and 

sensitized by the catabolic disc environment, leading to pain [6, 7]. The current gold 

standard of treatment for end-stage chronic LBP patients is a spinal fusion, which can be 

invasive, have high complication rates (14.3%-16% [8, 9] of patients), high costs [8-10], 
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long recovery times [11], and lead to reduced range of motion and increased potential for 

adjacent level degeneration [12, 13]. An alternative low-risk treatment that focuses on 

preventing a patient’s pain progression holds great potential for the treatment of disc-

associated LBP. 

 The intervertebral disc is composed of a gelatinous nucleus pulposus (NP) core 

surrounded by a lamellar annulus fibrosus (AF) as demonstrated in Figure 1 [14]. The 

healthy disc is predominantly avascular and aneural and receives the majority of nutrients 

from diffusion through adjacent cartilaginous endplates [14, 15]. Aging and injury can 

trigger disc degeneration, resulting in thickening of the cartilaginous endplates, reducing 

diffusion of nutrients into the NP [16-18]. This reduction in nutrient diffusion can lead to 

NP cell senescence [19]. Senescent NP cells secrete inflammatory cytokines and 

degradative enzymes, creating a catabolic environment that breaks down matrix 

components such as aggrecan [20-22]. Intact aggrecan has neuroinhibitory properties due 

to sulfated glycosaminoglycan (sGAG) side chains and thus, naturally inhibits nerve 

growth into a healthy disc [23]. During degeneration, cleavage of these sGAG side chains 

reduces the neuroinhibitory properties of the disc [24-27]. Further, senescent NP cells 

secrete several molecules that increase nerve growth, such as nerve growth factor (NGF) 

and brain-derived neurotrophic factor (BDNF) [7, 28, 29]. The loss of potently 

neuroinhibitory sGAGs and increased expression of NGF and BDNF results in ideal 

conditions for the ingrowth of nerve fibers into degenerated discs. Once painful nerve 

fibers are present in the disc, they can be sensitized and stimulated by the harsh catabolic 

environment of the degenerating disc, leading to pain [30]. A treatment that contains 

neuroinhibitory sGAGs and other neuroinhibitory components has the potential to prevent 
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disease progression by preventing nerve growth. Decellularized tissue scaffolds fabricated 

from healthy NP tissue hold promise to reintroduce neuroinhibitory properties to the NP 

and prevent pain progression. 

 

Figure 1. Anatomy of the intervertebral disc [14]. 

Decellularized tissue has been widely used over the past 50 years to engineer tissues 

such as: urinary bladder matrix [31], dermis [32, 33], and small intestinal submucosa [34-

36]. Decellularized tissues have been successful in treatments because decellularized 

scaffolds have similar properties, compositions, and architecture to native tissue, thereby 

improving their function and cellular recognition in vivo compared to other treatments [37]. 

For decellularization of the NP, maintenance of the extracellular matrix proteins and 

proteoglycans is crucial for its eventual function in the disc. Several groups have developed 

decellularization methods for the NP by using various detergents of differing 

concentrations and incubation times [38-44]. These decellularization methods focus on 
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improving the removal of cellular materials while maintaining native molecules, such as 

sGAGs [1, 38-44].  

2.1.2 Decellularized Nucleus Pulposus Scaffolds 

In all cases of clinical implantation of animal tissue, it is not feasible to implant 

animal tissue directly into the human body, as doing so will cause a multitude of immune 

responses and be rejected quickly. However, decellularization fixes this problem, as 

antigens from cells are removed in the decellularization process, leaving behind structural 

and other native molecules [37]. This is significant because, in clinical settings, one would 

be able to use much more readily available animal tissue compared to much rarer and hard 

to come by human tissue. This has led several researchers to investigate methods to 

decellularize nucleus pulposus tissue from other species, to be used in the future as clinical 

treatments. The two main species used for NP decellularization are porcine and bovine, 

due to their similarities in size and composition to human NP, as well as availability due to 

raising livestock [45]. 

Decellularization is a balance between the removal of cellular material and the 

maintenance of native proteins. Decellularized NP tissues have demonstrated the ability to 

cause stem cells to increase expression of anabolic proteins aggrecan and collagen type II, 

indicative of an NP-like phenotype [38-44]. This suggests that decellularized NP has the 

potential to promote a healthy nucleus pulposus environment, without pain. Several groups 

have developed decellularization protocols for either bovine or porcine NP. All literature 

of NP decellularization investigated the presence of DNA, as a marker of cellular 

contaminants, and native proteins through the measurement of sGAGs and/or collagen. The 

DNA removal of these decellularization methods ranged from 71% to ~98%, while the 
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sGAG maintenance ranged from ~54% to 97% [38-44]. The normalized collagen content 

ranged from 135% to 190% [38-44]. Lastly, cell viability was determined either 

qualitatively or quantitatively once the material had been applied to cells and all 

decellularization processes appeared to have minimal cytotoxicity [38-44]. The results of 

the analysis of NP decellularization methods are displayed in Table 1. Other 

characterization methods that were employed with less frequency involved staining tissue 

sections, generally with H&E and observing macroscopic changes between the control and 

decellularized tissue, determining the mechanical properties of the tissue following 

decellularization, determining the difference in swelling with water, and determining the 

effects of the decellularized tissues on stem cells [38-44]. In general, the decellularized 

tissues remained similar to fresh tissues in terms of micro- and macro-architecture, 

although staining did reveal less sGAG content in the decellularized tissues compared to 

control [38-44]. Mechanical properties of decellularized NPs were generally not 

significantly different from control tissues, the swelling capabilities of the decellularized 

NPs were lower than controls most likely due to loss of sGAGs [38-44]. The results 

demonstrated here helped to guide the choice of analysis, as well as set benchmarks for 

how effectiveness of the decellularization process. However, to date, no group has 

investigated the neuroinhibitory properties of decellularized NP. 

Table 1. Analysis of Various NP Decellularization. 

Species DNA 

Removal 

sGAG 

Maintenance 

Collagen 

Content 

Cell 

Viability 
References 

Porcine 93% 89% 135% Qualitative [38] 

Bovine ~85% ~54% Qual. N/A [40] 

Bovine 71% 97% Qual. 92.30% [41] 

Porcine ~98% ~81% 177% N/A [42] 

Porcine ~97% ~85% 190% ~83% [43] 

Bovine 93% 89% 135% Qualitative [44] 
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2.1.3 Injectable Formulations 

Even after the successful decellularization of NP, there is still a problem of how to 

reintroduce this scaffold back into the body. Leaving the decellularized scaffold intact 

would mean that surgery would be required to implant the scaffold into the patient’s disc, 

causing unnecessary damage to the outer AF. Intact scaffolds could also be the incorrect 

size and leave voids within the tissue. One alternative method is to make the decellularized 

scaffold injectable, generally through enzymatic digestion and thermal re-gelation [46-50]. 

The enzymatic digestion and regelation method holds promise for the NP, as it can allow 

the reforming of a gelatinous structure, similar to the native NP, in situ.  

Injectable hydrogels made from digested and re-gelled decellularized tissue have 

been developed as possible treatments for many diseases, from myocardial infarctions [51] 

to nerve degeneration [52] and osteoarthritis [53]. This process generally involves the use 

of an enzyme that can digest tissue, such as pepsin, followed by some form of 

supplementation, either with molecules that can naturally crosslink, drugs, cells, solutions 

to control the buffering capacity and ionic strength, or chemical crosslinkers. The digested 

tissue is then injected to the appropriate location and allowed to form a gel. Injectable 

hydrogels are generally used because they are non-invasive, easily targetable, and the gels 

form to the space that they are injected into [54, 55]. Injectable hydrogels are also an 

attractive form of treatment because they can be chemically modified, optimized to include 

specific drugs or cells, and the mechanical properties can be tuned to what is specifically 

needed for certain situations. 

While there have been several groups to develop decellularization processes for the 

NP, only a few have investigated the injectability of their solutions [38-44]. Briefly, Zhou 
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et. al. developed a decellularization method for porcine NP, then used this decellularized 

tissue scaffold to create a hydrogel by combining their crushed, lyophilized tissue with 20 

mg/mL chondroitin sulfate, PBS, and cells in DMEM [42]. The authors then used genepin 

as a crosslinker to fully form the gel. It was found that the gel was injectable and that there 

was an improvement in disc height, water content, and extracellular matrix synthesis in the 

model of intervertebral disc degeneration, indicative of a healthier NP over time [42]. Yu 

et. al. also developed a decellularization process for bovine NP and used this decellularized 

tissue scaffold to create a hydrogel by digesting their decellularized tissue with pepsin and 

adjusting the ionic strength with PBS [44]. Digestion of decellularized tissue with pepsin 

is a common method of solubilizing extracellular matrix tissue, without destroying the 

native molecules [44, 49, 56, 57]. The authors found that the gel was able to form on its 

own without the need for additional crosslinkers. It was demonstrated that the gel was 

injectable and that it did not cause any substantial immune response [44]. As demonstrated 

here, injectable hydrogels for the NP may be able to form on their own or need to 

supplement specific molecules that can form a hydrogel. While chemical crosslinkers are 

useful in being able to fine tune the mechanical properties of the injectable hydrogel, they 

can introduce unintended cytotoxicity [58]. To account for the need for supplementation in 

some tissues, molecules that naturally form a hydrogel, such as type I collagen can be 

supplemented to allow a gel to form after injection. Once the gel has formed, it will be able 

to modulate cell response.  

2.1.4 Immunomodulatory Tissue Scaffolds 

The immune response induced by a tissue scaffold is one of the critical factors for 

the success of the scaffold. If a scaffold or biomaterial can guide the immune response to 

become pro-regenerative, it will have increased therapeutic efficacy, and increase the time 



14 
 

that the biomaterial can function due to decreased degradation rate. In terms of 

immunomodulation for tissue engineering scaffolds, the key immune cell to target is the 

macrophage. Macrophages are innate immune cells and play many roles in immunity as 

well as tissue homeostasis. During times of tissue damage or infection, macrophages are 

polarized towards an inflammatory phenotype, where they secrete inflammatory cytokines 

and chemokines in order to fight off infection and alert other cells of what is happening 

[59]. This phenotype is termed the M1-like phenotype. During times of tissue remodeling 

and maintenance, macrophages can enter into an alternatively activated, pro-remodeling 

phenotype where they secrete anti-inflammatory cytokines and aid in the remodeling 

process through phagocytosis of damaged molecules [60]. This phenotype is termed the 

M2-like phenotype. These phenotypes exist along a spectrum of activation, however, there 

are known molecules that can drive macrophages to specific phenotypes. A few of these 

molecules include lipopolysaccharide for the M1-like phenotype and IL-4 and IL-13 for 

the M2-like phenotype [59]. The ideal macrophage response to a decellularized scaffold 

would be to polarize towards an M2-like phenotype, so that the macrophage can begin to 

remodel the scaffold accordingly. However, this response may be dependent upon the 

specific tissue, as the ideal response for NP tissue may be to push the tissue towards a more 

fibrillar state that lacks pain, instead of leading to more inflammation, which currently 

occurs during degeneration. It is important to understand the roles macrophages play in 

immunity and tissue homeostasis to modulate them to create a successful implantable 

scaffold. 

Several decellularized tissue scaffolds have been investigated for their roles in 

modulating the response of macrophages, namely small intestinal submucosa [61, 62], 
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skeletal muscle [63], and urinary bladder matrix [64]. There has not been clinical or 

histological evidence of delayed rejection of efficiently decellularized extracellular matrix 

biomaterials, suggesting that if the tissue is decellularized well enough, macrophages are 

polarized towards an M2-like phenotype [65]. The effect of inadequate decellularization 

was tested on porcine small intestinal submucosa, by varying the decellularization process 

to have non-decellularized, moderately decellularized, and completely decellularized tissue 

[66]. The authors demonstrated that the macrophage response was mostly M1-like in both 

the non-decellularized and moderately decellularized groups, however, the response 

shifted towards a predominantly M2-like response in the completely decellularized group, 

as demonstrated in Figure 2 [66]. The response to inadequately decellularized scaffolds is 

also important in the clinic as decellularized porcine heart valves are often used as a 

treatment for heart related diseases, however, inadequately decellularized porcine heart 

valves  have been linked to deaths of patients [67]. All of the papers cited here support the 

claim that properly decellularized tissue scaffolds polarize macrophages towards an M2-

like phenotype, whereas treatments without decellularized tissue scaffolds or inadequately 

decellularized tissue scaffolds showed predominantly M1-like responses [61-64]. 

Carbodiimide crosslinking of decellularized small intestinal submucosa caused a more M1-

like response in macrophages, compared to the uncrosslinked tissue scaffold, which caused 

an M2-like response as described [61]. This suggests that there are certain factors within 

the decellularized tissue scaffold that polarize macrophages towards an M2-like phenotype 

but are not able to be reached by the macrophages when the tissue scaffold is more 

crosslinked. One possible explanation for this is the presence of matrix bound nanovesicles 

within the decellularized tissues that modulate macrophage phenotype and have previously 
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been seen to polarize macrophages towards an M2-like phenotype, similar to the whole 

tissue effects described here [68, 69]. These vesicles will be discussed later in this thesis. 

 

Figure 2. Decellularized small intestinal submucosa polarizes macrophages toward M2 when 

fully decellularized. Small intestinal submucosa not decellularized (PBS only), moderately 

decellularized (1 hr PAA), and completely decellularized (2 hr PAA). Macrophages were cultured 

on the tissues for 14 days and were stained for CD68 (pan macrophage marker, purple), CCR7 (M1 

marker, orange), and CD206 (M2 marker, green) and counterstained with DAPI. Fully 

decellularized tissue caused a mostly M2 response, whereas tissues that were not fully 

decellularized caused a mostly M1 response [66]. 

2.1.5 Summary for Neuroinhibitory Gel 

Tissue specific decellularized scaffolds are useful as treatments for diseases 

because they contain the native proteins, proteoglycans, and polysaccharides of the healthy 

tissue, without the antigenic materials that may cause an immune response. The 

decellularized tissue scaffolds can modulate the immune response, generally towards an 

M2-like phenotype. To use this decellularized tissue scaffold as a minimally invasive 

clinical treatment, the tissue can be digested and supplemented to create a hydrogel. This 
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process has previously been performed with decellularized NP tissue, however, the 

neuroinhibitory properties of these NP gels have not been investigated before. 

2.2 METHODS 

2.2.1 Decellularization Process and Analysis 

2.2.1.1 Whole Disc Decellularization 

Cervical spines from commercial line Landrace/Yorkshire/Duroc young female 

pigs (~200 days of age) were aseptically collected and frozen (-80 °C) following humane 

slaughter at the United States Meat Animal Research Center Abattoir (Clay Center, NE, 

USA; USDA Material Transfer Agreement). Intact spines were thawed for two days at 4 

°C. The spines were then cleaned aseptically and the NPs of the C2-C7 intervertebral discs 

were surgically removed. Control NPs from each spine were either: 1) fixed in 4% 

paraformaldehyde (PFA) for 30 minutes, followed by 3 x 15 min washes in 1X phosphate 

buffered saline (PBS) for imaging, 2) eluted in media for cytotoxicity studies, or 3) frozen 

at -80 ºC and lyophilized for 2 days (FreeZone 4.5 L Freeze Dryer (7750020, Labconco)) 

for additional analyses described below. Remaining NPs were decellularized following the 

process as outlined in Table 2. This procedure was adapted from Wachs et. al. 2017 [1] by 

processing each whole intact NP at room temperature in a 50 mL tube (89039, VWR) filled 

up to the 45 mL mark, spinning on an orbital shaker (EW-07650, Stuart) at 18 rpm. 

Changes made to the previous protocol include replacing Triton X-200 (discontinued) with 

sodium deoxylcholate (SD), excluding RNase digestion, altering times for detergent 

washes, and including 1X PBS and water washes at the end of the process. Triton X-200 

was replaced with SD because triton X-200 was discontinued and SD had previously been 

used in decellularization methods for NP tissue, with positive results [38]. RNase was 

excluded from the decellularization process because it was determined that it caused 
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cytotoxicity with limited effect on the final RNA content. RNase is a fairly stable enzyme 

and so would remain in the tissue for long periods of time, while the RNA it was meant to 

cleave was relatively unstable and the vast majority of it would have degraded by the end 

of the process, naturally. On the other hand, DNase was included as it is relatively unstable 

and thus would have degraded by the end of the decellularization process, while the DNA 

it was meant to cleave was very stable and could still be present at high quantities following 

the decellularization process. The times for detergent washes were altered to reduce the 

cytotoxicity of the decellularized tissue scaffold, because preliminary work had 

demonstrated that reducing several of the detergent times had little effect on the 

decellularization efficacy but led to decreased cytotoxicity. Lastly, PBS and water washes 

were added at the end of the decellularized process to ensure as much residual detergent 

was removed as possible, again to decrease the cytotoxicity of the tissue scaffold. At the 

end of decellularization, NPs were either processed with fixation, elution, or lyophilization. 

A minimum of three spines were used for each analysis to account for biological variability 

(n=3 experiments). To account for increased variability in decellularized NP samples 

compared to control NP samples, at least one unprocessed control NP and at least three 

decellularized NP were analyzed for each spine. 

Table 2: The time spent in each wash step of the decellularization process 

 Wash liquid Time 

1 ddH20 7 hours 

2 100 mM Sodium/50 mM Phosphate buffer Overnight (10-12 hours) 

3 125 mM SB3-10 in 50 mM Sodium/10 mM 

Phosphate buffer 

4 hours 
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4 100 mM Sodium/50 mM Phosphate buffer 15 minutes 

5 3% (w/v) SD/0.6 mM SB-16 in 50 mM 

Sodium/10 mM Phosphate buffer 

1 hour 

6 100 mM Sodium/50 mM Phosphate buffer 3 x 15 minutes 

7 125 mM SB3-10 in 50 mM Sodium/10 mM 

Phosphate buffer 

1.75 hours 

8 100 mM Sodium/50 mM Phosphate buffer 15 minutes 

9 3% (w/v) SD/0.6 mM SB-16 in 50 mM 

Sodium/10 mM Phosphate buffer 

45 minutes 

10 100 mM Sodium/50 mM Phosphate buffer 3 x 15 minutes 

11 DNase (75 U/mL) in 50 mM Sodium/10 

mM Phosphate buffer 

34 hours 

12 50 mM Sodium/10 mM Phosphate buffer 3 x 90 minutes 

13 1X PBS 3 x 3 hours 

14 ddH2O 3 x 15 minutes 

Chemical Information For Decellularization Process 

3-(Decyldimethylammonio)-propanesulfonate inner salt (SB3-10) (D4266, Sigma-Aldrich) 

3(N,N-Dimethylpalmitylammonio)-propane inner salt (SB-16) (H6883, Sigma-Aldrich) 

Sodium deoxylcholate (SD) (D6750, Sigma-Aldrich) 

DNase (D4527, Sigma-Aldrich) 

 



20 
 

2.2.1.2 DNA Content 

DNA content of control and decellularized NP samples was analyzed using the 

Quant-iT PicoGreen dsDNA Assay Kit (P7589, Thermo Fisher) according to the 

manufacturer’s instructions to verify removal of antigenic DNA remnants after 

decellularization. Briefly, lyophilized control and decellularized NP samples were digested 

in 1 mL of 16 U/mL papain (P3125, Sigma-Aldrich) in 0.2 M sodium phosphate buffer 

containing 0.0975 M sodium acetate (W302406, Sigma-Aldrich), 0.0137 M 

ethylenediaminetetraacetic acid (E6758, Sigma-Aldrich), and 0.005 M cysteine HCl 

(C1276, Sigma-Aldrich) overnight in a 65 °C water bath. The remainder of the assay was 

conducted per the manufacturer’s instructions, DNA was quantified using the provided 

standards and normalized to the dry weight of the tissue scaffold. A total of n = 3 control 

NPs and n = 9 decellularized NPs were used for the outlined experiments. 

2.2.1.3 Sulfated Glycosaminoglycan Content 

sGAG content of control and decellularized NP samples was quantified to 

determine maintenance of sGAG after decellularization as a potential source of 

neuroinhibitory properties. A Blyscan Glycosaminoglycan assay kit (B1000, Biocolor) was 

utilized according to the manufacturer’s instructions. Briefly, lyophilized control and 

decellularized NP samples were digested in papain as described above (see DNA Content). 

The remainder of the assay was conducted per the manufacturer’s instructions by adding 1 

mL of the provided dye reagent to 100 µL of each sample and shaking at room temperature 

for 30 minutes. The tubes were then centrifuged at 12,000 rpm for 10 minutes to pellet out 

the now insoluble sGAG. The remaining liquid was carefully poured off and the bound dye 

was liberated through the addition of 500 µL of the provided dissociation reagent and 

vortexing. sGAG absorbance was quantified on a plate reader at 656 nm according to the 
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provided standards and normalized to the dry weight of the tissue scaffold. A total of n = 

3 control NPs and n = 12 decellularized NPs were used for the outlined experiments. 

2.2.1.4 Collagen Content 

Maintenance of collagen was determined after decellularization by analyzing 

collagen content in control and decellularized NP samples. Depending on the type of 

collagen, hydroxyproline can make up between 12.8-14.7% of the mass [70].  Thus, a 

middle value of 13.5% was used as the percentage of hydroxyproline in collagen as a 

conversion from hydroxyproline to collagen. A hydroxyproline assay (ab222941, Abcam) 

was conducted according to manufacturer’s instructions with slight modifications to 

determine collagen content. Briefly, lyophilized control and decellularized NP samples 

were digested in 1 mL of 16 U/mL papain (see above) at 65 °C overnight. This digested 

NP was lyophilized overnight to concentrate the tissue. The resulting lyophilizate was 

hydrolyzed with 200 µL of 5 M sodium hydroxide (NaOH) at 120 °C for 1 hour, then 

neutralized on ice with 200 µL of 5 M hydrochloric acid (HCl). The remainder of the assay 

was conducted per the manufacturer’s instructions by moving 10 µL of each sample and 

standard into a 96 well plate and allowing the liquid to evaporate at 65 °C on a hot plate. 

Once the liquid had evaporated and crystals formed, 100 µL of oxidation reagent was added 

to every well and incubated at room temperature for 20 minutes. 50 µL of provided 

developer solution was then added to each well and incubated at 37 °C for 5 minutes. 

Lastly, 50 µL of provided DMAB concentrate was added to each well and incubated at 65 

°C while covered. The absorbance of the plate at 560 nm was read using a plate reader. 

From the absorbance data a standard curve of soluble hydroxyproline was determined. 

Once the soluble hydroxyproline content of each well was known, that value was 

multiplied by three to get the total hydroxyproline (according to manufacturer) then divided 
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by 0.135, the value of hydroxyproline to collagen, to get the total collagen. The resulting 

data were normalized to the dry weight of the tissue scaffold. A total of n = 4 control NPs 

and n = 4 decellularized NPs were used for the outlined experiments. 

2.2.1.5 Cytotoxicity of Residual Chemicals 

Cytotoxicity of any residual chemicals in the decellularized NP tissue scaffold was 

evaluated by measuring the change in metabolic activity of human NP cells treated with 

media eluted from the decellularized NP using the AlamarBlue Assay (Thermo Fisher, 

88951) in accordance with ISO Standards 10993:5 [71] and 10993:12 [72]. This 

cytotoxicity processing is necessary because low levels of the decellularization chemicals 

may remain in the tissue scaffold and diffuse out after being implanted into a patient. 

Briefly, 100 mg of wet decellularized NP tissue scaffold was eluted in 1 mL complete NP 

media (ScienCell, 4801) for 72 hours at 37 °C. Human NP cells from a single, fetal donor 

(ScienCell, 4800), were grown to passage 4, then split and seeded in a 48 well plate coated 

with Poly-L-Lysine at a density of 7500 cells/well. The cells were allowed to adhere for 24 

hours before they were treated with eluted media. After cells were incubated for 48 hours 

with the eluted media, alamarBlue reagent was added to each well at a 1:10 ratio and 

incubated at 37 °C for 2 hours. The absorbance of the media was analyzed using a 

microplate reader (Synergy H1, Biotek, VT, USA) at 570 and 600 nm. The reduction of 

alamarBlue was calculated according to manufacturer’s instructions. All samples including 

untreated controls were measured in triplicate. A total of n=3 decellularized spines, with 4 

NP samples taken from each n, for a total of 12 decellularized NP were used in the outlined 

experiments. 
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2.2.1.6 α-galactose Epitope Immunostaining  

The α-galactosyl epitope (α-gal) content of decellularized NP scaffolds was tested 

because α-gal is known to elicit an immune response in humans, as humans and old-world 

monkeys do not express this epitope [73]. Immunostaining was used to test whether the α-

gal epitope was present in the NP tissue after decellularization. Fixed control and 

decellularized NP samples were utilized for α-gal immunostaining. Porcine muscle tissue 

was used as an additional positive control for α-gal due to its high cellularity and high α-

gal presence. After fixation and storage at 4 °C in PBS, the PBS was removed, and the 

tissues were soaked in a 30% sucrose solution at 4 °C overnight. The samples were then 

frozen in optimal cutting temperature (OCT) compound (4586, Scigen) and cryo-sectioned 

at 30 µm (CM1950, Leica). Sections were post-fixed to slides in 4% PFA for 30 minutes, 

followed by 2 x 15-minute washes in 1X PBS and another wash for 15 minutes in PBS 

with tween (PBST) (0.1% Tween 20 (BP337, Fisher Scientific) in 1X PBS). The sections 

were then blocked using blocking buffer (3% goat serum (G9023, Sigma-Aldrich), 0.3% 

Triton X-100 (93443, Sigma-Aldrich) in 1X PBS for 1.5 hours, followed by primary mouse 

α-gal antibody incubation (ALX-801-090-1, ENZO) (1:1000 in blocking buffer) overnight 

at 4 °C with mild agitation. The sections were washed 6 x 15 minutes in 1X PBST, then 

incubated with secondary antibody anti-mouse 488 (ab150117, Abcam) for 4 hours at room 

temperature with mild agitation. The sections were again washed 6 x 15 minutes with 1X 

PBST. Finally, sections were counterstained with DAPI (D1306, Thermo Fisher) (1:1000 

in 1X PBS) for 10 minutes, washed 3 x 5 minutes in 1X PBS, mounted using Prolong Gold 

(P36934, Fisher Scientific) and a glass coverslip. All steps were conducted at room 

temperature unless otherwise specified. Images were taken using a Zeiss Axio Observer at 

10X magnification and quantified by counting the number of positive α-gal epitopes in 
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three 10X images of control NP, decellularized NP, and muscle tissue from three different 

animals using ImageJ. A total of n=3 samples were used for each group with a minimum 

of 3 images analyzed per n. 

2.2.2 Creation of Injectable Neuroinhibitory Gel 

2.2.2.1 Comparison of DMEM + HEPES Gelation of Collagen and Tissue scaffold 

The intact AF provides a barrier to delivery to the NP; thus, an injectable 

formulation is essential. To create an injectable gel made from decellularized NP tissue, 

previous enzymatic digestion protocols were adapted [46, 74]. Twenty mg of lyophilized, 

decellularized NP was digested by 1 mg/mL of pepsin (P6887, Sigma-Aldrich) in 0.05 N 

HCl for 44 hours with spinning at 300 rpm using a magnetic stir bar. Prior work with 

altering the ionic strength by adjusting the concentration of PBS in solution found that 

lower ionic strengths allowed the tissue scaffold to gel much more robustly than high ionic 

strengths. This is because ionic strength has been demonstrated to have a strong effect on 

the gelation time, number of fibrils, and size of fibrils of collagen [75, 76]. Because of the 

low concentration of PBS, the buffering capacity of the solution would be impacted, as 

PBS was the only buffering capacity in the solution. To combat this, PBS was proposed to 

be replaced by DMEM (D2429, Sigma-Aldrich), to control ionic strength, and HEPES 

(H0887, Sigma-Aldrich), to control buffering capacity, so that these variables could be 

controlled independently of each other. Several experiments were performed to determine 

if this change was feasible and what concentrations would be optimal. Briefly, 

microcentrifuge tubes with 300 µL of solution were prepared on ice with concentrations of 

DMEM of 0.5X, 0.33X, 0.25X, and 0X and the collagen concentration was set at 2 mg/mL. 

The HEPES concentration was kept constant at 7.5 mM, as this is similar to the buffering 

capacity of 1X PBS, and prior work had demonstrated that buffering capacity had little 
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impact on gelation, so this value was used to keep buffering capacity consistent with 

previous work. The pH of each tube was adjusted to ~7.4 using 1 M NaOH. The different 

groups were: tissue + collagen, collagen alone, or tissue alone. Within each of these groups, 

different preparations were made using the above DMEM concentrations. The digested 

tissue was neutralized using 5M NaOH and was added to the appropriate tubes to a final 

concentration of 14.56 mg/mL or was replaced with water in the collagen only group. In 

the tissue only group, collagen was replaced with 0.02N acetic acid, to keep the pH the 

same as the other groups, as this is what the collagen was dissolved in. 100 µL of each tube 

was pipetted in duplicate into a 96 well plate and the absorbance was measured at 405 nm 

every minute for 45 minutes in a plate reader pre-heated to 37 °C. The absorbance at 405 

nm was used to determine the opacity of the solution, which is an indicator of collagen 

fibril formation [1]. A total of n=3 preparations of different digests were performed 

following the methods described above. 

2.2.2.2 Digestion and preparation of decellularized NP gel 

Following the previous study, the concentration of DMEM was chosen to be 0.5X, 

as this concentration balanced gelation of both the collagen and tissue, and collagen was 

increased slightly to 2.5 mg/mL to improve mechanical properties, as it was noted that the 

previous gels were fragile and difficult to handle. The digested NP tissue alone did not 

form a robust gel at 37 °C, so rat tail type I collagen (354249, Corning) was supplemented 

to create a more robust gel. Type I collagen was selected because there is an increase in 

type I collagen with aging and degeneration and it forms a gel more consistently than type 

II collagen. Since the goal of this material is not to regenerate a healthy disc, but rather to 

act as a neuroinhibitory supplement, collagen type will not impact this property. The 

neutralized tissue digest, as described here after it had been neutralized, was added to pre-
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mixed tubes containing DMEM and HEPES so that the final concentration of DMEM 

would be 0.5X and HEPES would be 7.5 mM. Collagen was added last up to a 

concentration of 2.5 mg/mL, to prevent premature crosslinking. The final pH of the 

resulting solution was adjusted to ~7.4 using 0.25M NaOH. The final formulation with 

supplemented collagen was termed regelled NP. 

2.2.3 Characterizing the Physical Properties of the Regelled NP 

2.2.3.1 Gelation kinetics  

Following the formulation of the regelled NP, 100 µL of regelled NP was prepared 

and pipetted in triplicate into a 96 well plate. The plate was then placed into a microplate 

reader, pre-heated to 37 °C and the absorbance was read once every minute for 45 minutes 

at 405 nm, following the same protocol as discussed in “3.1.2.1 Comparison of DMEM + 

HEPES Gelation of Collagen and Tissue scaffold”. The change in absorbance from the 

initial value and the normalized absorbance, (Equation 1), were calculated to show the 

percent of the maximum absorbance over time. A total of n = 3 different preparations were 

used with 3 samples analyzed for each n. 

1) 𝑁𝐴 =
𝐴2−𝐴1

𝑀𝑎𝑥−𝐴1
 

 

NA = normalized absorbance 

A2 = absorbance at a specific time 

A1 = initial absorbance 

Max = maximum absorbance value over the time course 

2.2.3.2 Mechanical characterization  

Mechanical characterization consisted of rheology of the gel and was compared to 

previously published data on healthy human NP tissue, however, the gel created here was 
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meant as a supplement to the degenerate disc to prevent pain progression, not as an NP 

replacement. Rheology testing was performed on gels using an Anton Paar MCR 302 with 

sand blasted plates and a humidity bath. Briefly, regelled NP and collagen control gels were 

formed by injecting the gel solutions into 8-mm diameter silicone molds (666305, Grace 

Bio-Labs), using 21 G needles (305129, BD), between two glass slides and thermally cross-

linked at 37 °C for 45 minutes. The gels were then allowed to soak in 1X PBS for 30 

minutes to become fully hydrated. An initial amplitude sweep was conducted to determine 

the limiting strain value of the linear viscoelastic region by measuring a shear strain range 

from 0.001-1% with 20 data points, angular frequency of 6.21 Hz, and the reading from 

0.1 to 100 rad/s. Following the amplitude sweep, a frequency sweep from 0.1-100 rad/s at 

0.01% strain, 20 data points were conducted on each gel at 37 °C in a humidity bath. 

Collagen gels with a concentration of 2.5 mg/mL were used as controls. A dynamic shear 

modulus of G* = 17 kPa and tan δ = 0.3 at 1 rad/s were used as mildly degenerate human 

NP rheological values and G* = 7.4 kPa and tan δ = 0.4 at 1 rad/s was used as healthy 

human NP rheological values [77, 78]. G* was calculated as G* = √𝐺′2 + 𝐺"2 and tanδ = 

G”/G’ where G’ = storage modulus and G” = loss modulus. N = 8 collagen control 

experimental replicates and 3 regelled NP groups, each with 6 replicates, for a total of 18 

regelled NP samples. 

2.2.3.3 Scanning electron microscopy  

SEM was performed to assess formation of collagen fibers after NP digestion and 

re-gelation. Fixed control NPs, decellularized NPs, collagen only gels and regelled NPs 

were processed for SEM using a graded dehydration method. Samples were dehydrated in 

increasing concentrations of ethanol (30%, 50%, 70%, 85%, 90%, 95%, and 100% in 

ultrapure water) for 15 minutes each at room temperature. Following this, the samples were 



28 
 

incubated in increasing percentages of hexamethyldisilazane (HMDS) (16700, Electron 

Microscopy Services) (25%, 50%, 75%, and 100% in ethanol) for 30 minutes each at room 

temperature in a fume hood. Finally, the samples were submerged in 100% HMDS 

overnight in a fume hood until the HMDS had completely evaporated. The dehydrated 

samples were secured to a pin stub mount using conductive tape and sputter coated in 

platinum/palladium (Pt/Pd) for 20 seconds (106 Autosputter Coater, Cressington). The 

coated samples were then imaged using a FEI Helios FIB/SEM 660 at a voltage of 5-10 

kV, current of 0.2 nA, 3 µs dwell time using secondary electron mode and Everhart-

Thornley detector unless a through lens detector was needed for finer resolution at higher 

magnifications. ImageJ was used to quantify the fiber diameter by drawing a line across 

each distinguishable fiber and measuring the distance of the line. A total of n = 3 different 

samples were characterized and at least 3 images per sample were analyzed for each group 

at 100,000X magnification to quantify fiber diameter.  

2.2.4 Culture and Analysis of NP Cells with Regelled NP 

2.2.4.1 NP cell culture 

Human NP cells (4800, ScienCell) were cultured in a T75 flask (CLS430641U, 

Sigma Aldrich) coated with 15 µg of Poly-L-Lysine (0413, ScienCell). NP cells were 

cultured in Complete Nucleus Pulposus Cell Media (4801, ScienCell), which was changed 

every two to three days. The NP cells were grown to confluency in hypoxia (3.5% oxygen, 

10% CO2, 86.5% N2) in a modular incubator chamber (MIC-101, Billups-Rothenberg) at 

37 °C before being used. NP cells from passages 2 and 3 were used in the following 

experiments to negate the effects of dedifferentiation. These cells were acquired from a 

single, fetal donor and the identity of the cells was verified by the company through 

immunofluorescence with antibodies for fibronectin and vimentin (ScienCell). 
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2.2.4.2 3D cell culture within regelled NP or collagen control gels 

NP cells were added to non-crosslinked regelled NP or collagen control solutions 

to attain a cell concentration of 2 million cells/mL. 30 µL of the gel and cell suspension 

was transferred to a sheet of parafilm to prevent sticking, then placed in the incubator at 37 

°C for 40 minutes to crosslink before being transferred individually to 48-well plates. 400 

µL of complete NP cell media was added to each well. Media was replaced every 2-3 days 

over the course of 7 days. 

An alamarBlue metabolic assay (88951, Thermo Fisher Scientific) was conducted 

on days 0, 1, 3, and 7 after initiation of culture to determine cell health. The alamarBlue 

assay measures the metabolic activity of cells by reducing resazurin in the electron 

transport chain to resoruflin. This reduction causes a change in color from blue to 

purple/pink that can be measured. Cells that are more metabolically active will reduce 

resazurin at a faster rate than less metabolically active cells, leading to a greater color 

change. At the desired time point, alamarBlue reagent was added to each well at a 1:10 

ratio and the plates were incubated at 37 °C in hypoxia for 3 hours. 200 µL of media from 

each well was moved in duplicate to a 96 well plate. The wells were then rinsed with 1X 

PBS before adding 400 µL of complete NP media and placing the plates back in the 

incubator under hypoxia. The absorbance of the removed media was analyzed using a 

microplate reader at 570 and 600 nm. The reduction of alamarBlue was calculated 

according to manufacturer’s instructions following equation 2. The reduction was then 

normalized to the DNA content of the respective wells, following the conclusion of the 

experiment. Gels were then frozen in water at -80 °C at respective time points for sGAG, 

collagen, and DNA assays. A total of n = 6 experimental replicates from each preparation, 
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with the collagen having 1 preparation and the regelled NP having three different 

preparations for a total of 6 collagen and 18 regelled NP. 

2) % 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
(𝐸𝑜𝑥𝑖600 𝑥 𝐴570)−(𝐸𝑜𝑥𝑖570 𝑥 𝐴600) 𝑥 100

(𝐸𝑟𝑒𝑑570 𝑥 𝐶600)−(𝐸𝑟𝑒𝑑600 𝑥 𝐶570)
 

 

𝐸𝑜𝑥𝑖570 = molar extinction coefficient (E) of oxidized alamarBlue reagent at 570 nm = 80586 

𝐸𝑜𝑥𝑖600 = E of oxidized alamarBlue reagent at 600 nm = 117216 

𝐴570 = absorbance of test wells at 570 nm 

𝐴600 = absorbance of test wells at 600 nm 

𝐸𝑟𝑒𝑑570 = E of reduced alamarBlue reagent at 570 nm = 155677 

𝐸𝑟𝑒𝑑600 = E of reduced alamarBlue reagent at 600 nm = 14652 

𝐶570 = absorbance of negative control well (media, alamarBlue reagent, no cells) at 570 nm 

𝐶600 = absorbance of negative control well (media, alamarBlue reagent, no cells) at 600 nm 

 At study end, all gels were lyophilized overnight. Due to the small masses 

remaining following lyophilization, the mass could not accurately be determined for 

normalization. Instead, the data were normalized to each gel, which was a known volume 

of solution. Three gels from each time point and group were digested in 1 mL of 16 U/mL 

papain (see above) overnight at 65 °C. sGAG, DNA, and hydroxyproline assays were 

conducted as described previously in the “Validation of Whole Disc Decellularization 

Methods” section. A total of n = 3 experimental replicates from each preparation, with the 

collagen having 1 preparation and the regelled NP having three different preparations for 

a total of 3 collagen and 9 regelled NP samples. 

2.2.5 Evaluation of Neuroinhibitory Properties of Regelled NP 

2.2.5.1 Dorsal root ganglia explant isolation process 

Studies using primary rat dorsal root ganglia explant culture tested the 

neuroinhibitory properties of the regelled NP. DRGs are located close to the disc and can 
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sprout pain-sensing neurons into degenerate disc, leading to pain, thus they are an ideal 

model cell type to validate neuroinhibition in vitro [4]. All animal experiments were 

conducted in accordance with the Guide for the Care and Use of Laboratory Animals and 

approved through the University of Nebraska-Lincoln’s Institutional Animal Care and Use 

Committee (IACUC). Adult male Sprague Dawley rats (CD Rat 001, Charles River) aged 

11-15 weeks were euthanized and L1-L6 DRGs were surgically removed and placed in 

cold trimming media: Neurobasal-A media (10888022, Thermo Fisher Scientific) with 

10% Fetal Bovine Serum (FBS) (26140079, Thermo Fisher Scientific), 1% GlutaMax 

(35050061, Thermo Fisher Scientific), 1% Penicillin/Streptomycin (15140122, Thermo 

Fisher Scientific) and 2% B-27TM Plus Supplement (A3582801, Thermo Fisher Scientific). 

DRGs were transferred into a 60 mm petri dish with cold trimming media and excess tissue 

around the DRG was trimmed using surgical spring scissors under a stereo microscope 

(Stemi 508, ZEISS). Trimmed lumbar DRGs were divided into two or three equally sized 

pieces before culture.  

2.2.5.2 Gel-within-gel fabrication and DRG explant culture 

To accurately model the growth of DRG neurons into a degenerative disc in vitro, 

we utilized our previously established gel-within-gel 3D culture method to model the in 

vivo environment of the DRG and NP [79]. Cut DRGs were embedded and cultured in type 

I collagen outer hydrogel which surrounded an inner ‘NP-like’ gel. Inner gels consisted of 

either regelled NP or type I collagen. Collagen inner gels were used as a positive control 

due to its neuro-permissive properties [79, 80].  To prepare the model, regelled NP and 

collagen gels were prepared as previously described herein with a final collagen 

concentration of 3.6 mg/mL, to match the final regelled NP collagen concentration, which 
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equate to the summation of the added type I collagen (2.5 mg/mL), and the collagen from 

the digested tissue (1.1 mg/mL).  

To form the inner gels, 100 µL of non-crosslinked collagen control or regelled NP 

were transferred into a 96 well plate with custom laser-cut plastic gel lifters and incubated 

for 60-90 minutes at 37 oC, 5% CO2. The inner gels were carefully lifted out and placed 

into a 48 well plate using the gel lifters. On ice, 150 µL of the prepared collagen outer gel 

was then pipetted to the outside of the inner gel, and a DRG explant was carefully 

embedded in the outer gel, close to the boundary between the two gels. The gel-within-gel 

was then incubated at 37 °C, 5% CO2 for 1 hour to induce collagen gel crosslinking, prior 

to media addition. The DRGs were cultured in complete media: Neurobasal-A media with 

10% FBS, 1% GlutaMax, 1% Penicillin/Streptomycin, 2% B-27TM Plus Supplement and 

0.05% Nerve Growth Factor (556NG100, Thermo Fisher Scientific) at 37 °C and 5% CO2 

for 15 days with half media changes every three days. Brightfield images were taken every 

3 days starting on day 6 using a Cytation 1 Biotek, to acquire z-stack images of either 2x2 

or 3x3 montages (depending on neurite length) encompassing the total neurite growth of 

all DRGs. This experiment was repeated three times with at least three inner gels per group. 

DRGs without any substantial neurite outgrowth in any direction after 15 days in vitro were 

excluded from this study.  

2.2.5.3 Neuroinhibition analysis 

A total of three experiments with 11 total collagen controls and 20 regelled NP gels 

were imaged and analyzed. On day 15, gels were fixed in 300 µL of 4% PFA for 1 hour at 

room temperature. DRGs were then washed 3 x 15 minutes with 1X PBS and stored in 1X 

PBS at 4 °C protected from light until immunostaining. Fixed DRGs in gels were stained 
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for neurofilament-H (NF-H). Briefly, the gels were permeabilized in 200 µL of blocking 

buffer (0.5% Triton X-100, 4% goat serum in 1X PBS) for 1 hour at room temperature. 

The blocking buffer was removed and 200 µL of primary antibodies against NF-H (mouse 

α-NF-H, Ab528399, DSHB) (1:500 in blocking buffer) were added to each well for 36 

hours at 4 °C. The primary antibody was removed, and the gels were washed 3 x 4 hours 

in PBST (0.05% Tween 20 in 1x PBS) with mild agitation on a rocker plate at room 

temperature. Secondary antibody (α-mouse 488, ab150117, Abcam) (1:500 in blocking 

buffer) was added and incubated overnight at 4 °C, protected from light. The secondary 

antibody was removed, and the gels were washed 3 x 4 hours in PBST at room temperature, 

with mild agitation on a rocker plate, protected from light. The gels were stored in 1X PBS 

at 4 °C, protected from light until imaged. Following staining, the gels were imaged using 

a widefield fluorescence plate imager (Cytation 1, Biotek) at 488 nm to visualize the 

neurons. Representative images were taken on a ZEISS Confocal microscope LSM 800. 

Brightfield photos of the whole gel-within-gels were taken using a digital camera (EOS 

Rebel T6i, Canon) attached to a stereomicroscope (Stemi 508, Zeiss) to be used for drawing 

the boundaries between gels.  

Using Adobe Photoshop CC 2019, the brightfield images were overlaid over the 

fluorescent images taken from the Cytation plate imager and gel boundaries were drawn. 

Gels without distinct boundaries were excluded from analysis. ImageJ software, Simple 

Neurite Tracer tool, and a modified Sholl analysis were used to quantify the: 1) maximum 

radial distance, 2) total distance travelled in the inner gel, 3) number of neurites extending 

within the inner gel at specific distances from the gel boundary, and 4) the number of 

neurites extending away from the inner gel at specific distances from the DRG body [79]. 



34 
 

The maximum radial distance was determined by drawing a straight line the tip of the 

longest neurite to where it initially crosses the gel boundary. The maximum neurite length 

was determined by tracing the longest nerves using the simple neurite tracer tool up until 

the gel boundary. Only the largest values were used from each image for both the radial 

distance and neurite length. Sholl analysis has previously been used to determine the 

amount of neurite branching based on distance from the cell body [81, 82]. This method 

was modified here to represent distance from the boundary of the inner and outer gels, as 

well as the number of neurites growing away from  the DRG body. Sholl analysis was able 

to determine the number of neurites at a given distance from the gel boundary. A total of 

n=3 experiments were conducted with at least 3 replicates per condition in each 

experiment. 

2.2.6 Statistical Analyses 

Statistical analysis was conducted using the GraphPad Prism 7.03 software. 

Statistical significance was determined in the DNA experiment on the decellularized tissue 

scaffold between the control and the treatments using an unpaired T-test with Welch’s 

correction. Statistical significance was determined in the sGAG, collagen, α-gal, and SEM 

fiber diameter experiments using a one-way ANOVA with multiple comparisons with 

Tukey’s post-hoc test. A two-way ANOVA with multiple comparisons between days 

(Sidak’s post-hoc test) and within each treatment group (Tukey’s post-hoc test) was used 

to determine significance for the DNA, sGAG, collagen and alamarBlue assays in the NP 

cell culture in gels. A two-way ANOVA with multiple comparisons between groups at the 

same time was used to determine significance for the gelation kinetics of the ionic strength 

experiment. In the neuroinhibition experiments, t-tests with Welch’s correction were used 

for the maximum neurite length, maximum radial distance analyses, and distance of the 
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DRG from the boundary, while a two-way ANOVA with multiple comparisons and Sidak’s 

post-hoc test was used for the Sholl analysis to determine significance. Significance was 

set as p≤0.05 for all analyses. Error bars for all graphs represent the standard deviation. 

2.3 RESULTS 

2.3.1 Development of an Injectable Decellularized Tissue Scaffold 

2.3.1.1 Decellularization Process and Analysis 

To analyze the efficacy of the NP decellularization process, the concentrations of 

DNA, sGAG, and collagen were determined. The PicoGreen assay demonstrated 99.0% 

reduction in DNA in the decellularized NP samples compared to the control NP tissue, with 

the decellularized NP samples having a normalized DNA content of 1.19 ± 0.94 ng 

DNA/mg tissue compared to 111.78 ± 5.18 ng/mg in the control NP, suggesting that native 

cells and antigens were successfully removed (Fig. 3A). The Blyscan assay demonstrated 

retention of 74.0% of sGAGs in the decellularized NP compared to the control NP samples, 

with control NP samples having sGAG content of 50.27 ± 5.40 µg/mg and the 

decellularized NP samples having 37.19 ± 5.27 µg/mg (Fig. 3B). The hydroxyproline 

assay results suggested that collagen took up a greater proportion of the total mass of the 

decellularized NP compared to control NP (227.3 ± 49.1 µg/mg decellularized NP vs 146.9 

± 54.7 control NP), however the decellularized and control NP were not significantly 

different from each other (Fig. 3C). Enrichment of collagen in decellularized NP compared 

to control NP was due to the removal of cells and other antigens thereby reducing the 

overall mass, while maintaining the amount of collagen in the tissue. The ratio of 

sGAG:hydroxyproline was calculated to be 10.16:1 in control tissue and 4.85:1 in 

decellularized NP.  
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Cytotoxicity of remaining chemicals after decellularization was tested using an 

alamarBlue assay to measure the metabolic activity of NP cells treated with eluted media 

from decellularized NP samples compared to control NP cells with normal growth media. 

Control NP cells exhibited a reduction of alamarBlue of 92.8 ± 3.36%, whereas NP cells 

treated with eluted media had a reduction of alamarBlue of 80.28 ± 9.30%, which are 

significantly different. When normalized to control, NP cells treated with eluted media had 

a  metabolic activity of 86.5 ± 10.0% (Fig 3D). The eluted NP cells have a 14% reduction 

in metabolic activity, which is below the recommended value by ISO 10993:5 for 

cytotoxicity [83]. Cytotoxicity of the final regelled NP on DRG cultures was assessed 

below during neuroinhibition studies. 
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Figure 3. The decellularization process removes cells while maintaining extracellular matrix 

proteins. DNA (A), sGAG (B), and collagen (C) concentrations were compared before and after 

the decellularization process and after making into a gel. DNA was significantly reduced in the 

decellularized NP compared to control, while sGAG and collagen were maintained. D) Metabolic 

activity of NP cells treated with conditioned medium from decellularized NP tissue scaffold, 

normalized to untreated control shows a slight reduction to 86% of the control, which indicates 

minimal cytotoxic effects. *Indicates significant difference p < 0.05. 

Following the characterization of the decellularization process, the concentration 

of an antigenic epitope was also investigated to ensure removal of antigenic materials. α-

gal epitopes are an antigen that is present in porcine tissue, but not humans, so lack of 

removal can cause an immune response. Quantification of α-gal epitopes revealed very few 
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α- were present in either the control or decellularized NP samples. Figure 4A-I shows 

representative images of α-gal in muscle, control NP, and decellularized NP. Analysis of 

α-gal epitopes (Fig. 4J) revealed there was a significant reduction in the number of α-gal 

epitopes in the control NP samples and decellularized NP samples compared to the muscle 

tissue, but no difference between control and decellularized NP.  

 

Figure 4. Control NP and decellularized NP contain negligible amounts of α-gal antigen. 

Representative individual channel images for α-gal epitope (green), cell nuclei (blue, DAPI), and 

phase channels in muscle (A-C), control NP (D-F), and decellularized NP (G-I). Red arrows 

indicate positive staining for the α-gal epitope. Comparison of number of epitopes normalized to 



39 
 

µm2 in muscle, control NP, and decellularized NP (J). Both the control and decellularized NP had 

significantly fewer positive alpha gal epitopes compared to muscle. Scale bar = 200 µm. *Indicates 

significant difference p < 0.05. 

  

2.3.1.2 Creation of Injectable Neuroinhibitory Gel 

Ionic strength of a collagen solution plays a crucial role in how fibrils form. The 

effects of ionic strength were investigated on digested tissue, collagen only, and on digested 

tissue with collagen. Figure 5A-D demonstrates the average change in absorbance of 

digested tissue, collagen only, or digested tissue with collagen at 0.5X, 0.33X, 0.25X, or 

0X DMEM concentrations, respectively. Digested tissue with collagen always tended to 

have a much greater change in absorbance than that of tissue alone or collagen alone, which 

suggests some form of interaction between the two that accounts for more than additive 

absorbances. Because 0.5X DMEM balanced the crosslinking of the collagen alone, as well 

as the tissue alone, which is necessary for integration of the two solutions together to form 

a cohesive gel, 0.5X DMEM was selected to be used for the final solution. 
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Figure 5. Ionic strength has opposite effects on collagen and digested tissue. Gelation kinetics 

graphs of digested tissue + collagen, digested tissue alone, and collagen alone at DMEM 

concentrations of A) 0.5X, B) 0.33X, C) 0.25X, D) 0X. * = significant difference between Digested 

Tissue + Collagen vs Digested Tissue, # = significant difference between Digested Tissue + 

Collagen vs Collagen, & = significant differences between Digested Tissue vs Collagen. 

 

2.3.1.3 Characterization of the Physical Properties of the Regelled NP 

Following optimization of the gelation solution, the next steps were to investigate 

the strength of the gel and compare to native tissue. The gelation kinetics and mechanical 

properties analysis focused on regelled NP with 0.5X DMEM and 2.5 mg/mL of added 

collagen, to increase the robustness of the gel. The normalized gel absorbance was used to 

determine the start and end of the gelation process. Collagen gels started and finished 

forming before the regelled NP, starting at 3 minutes, and reaching 95% of its maximum 

value after 12 minutes. The regelled NP started forming later at 8 minutes and reached 95% 
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of its maximum value after 17 minutes (Fig. 6A and 6B). Results from rheological analysis 

of the regelled NP and control collagen displayed a stable dynamic shear modulus (400-

530 Pa and 300-400 Pa respectively) and tan δ (0.4-0.7 for both regelled NP and collagen) 

from 0.1 to 20 rad/s followed by an increase up to 100 rad/s where all samples had a 

dynamic shear modulus of ~11,000-12,000 Pa and a tan δ of 0.72-1.4 for the regelled NP 

and 17,500 Pa and a tan δ of 0.63 for the collagen (Fig. 6D). In comparison, human NP 

ranges in dynamic shear modulus from 7.4-19.8 kPa and tan δ of 0.424-0.577 [77, 78, 84].  

 

Figure 6. Gelation and mechanical properties of the regelled NP compared to collagen 

controls. A) The change in absorbance measured over time of collagen and regelled NP 

demonstrate a large and significant difference, suggesting that the regelled NP becomes more 

opaque than collagen. B) The normalized absorbance of the gels suggests that collagen only reaches 

its maximum value much sooner than the regelled NP. C) Rheology comparing the storage (G’) 

and loss (G”) moduli between collagen and regelled NP, suggests that regelled NP is weaker than 

collagen. There were no significant differences between the G” of either group but the G’ of 

collagen was significantly different than that of regelled NP at 69.5 and 100 rad/s. D) Rheology 

comparing the dynamic shear modulus (G*) and tan(δ) of collagen and regelled NP suggest that 

regelled NP is weaker than collagen. G* of collagen was significantly different from that of regelled 

NP at 69.5 and 100 rad/s, while tan(δ) was significantly different at 23.4 rad/s. Error bars were 

omitted from C and D to improve clarity. 

 

After discovering that the mechanical properties of the regelled NP were similar to 

collagen, but low compared to native NP tissue, the microstructure of the regelled NP was 
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investigated to determine if there were any significant differences that could cause the 

difference in mechanical properties. SEM imaging revealed that collagen gels tended to 

have smaller, less organized fibers, compared to native tissue, decellularized NP tissue, 

and regelled NP, whereas control NP tissue had thicker, more dense collagen fibers, as well 

as cell debris covering much of the fiber surface (Fig. 7A-H). Decellularized NP had a 

looser fiber network, and the fibers were not as entangled compared to the other gels. The 

final regelled NP had thick fibers, similar to control NP, although fibers were less dense, 

more similar to decellularized NP. The diameters of the fibers were quantified for each 

group and were found to have no significant differences between any group, although 

regelled NP tended to have slightly thicker fibers compared to the other groups (Fig. 7I). 
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Figure 7. Scanning electron microscope images show similar fiber thickness between control 

NP (A, B), decellularized NP (C, D), collagen only (E, F), and regelled NP (G, H). 

Quantification of fiber diameter between groups. There were no significant differences between 

any group (I). Scale bar = 10 µm for 5000X and 0.5 µm for 100,000X. 

 

2.3.1.4 Culture and Analysis of NP Cells with Regelled NP 

 Following the investigation of the physical properties of the regelled NP, the effects 

of the regelled NP was investigated on NP cells in order to verify that it could sustain native 

cell growth over time. Human NP cells were cultured in the regelled NP gels and DNA 

was measured to indicate whether cells proliferated over time while cultured within the 

gels. Regelled NP exhibited significant increases in DNA on days 3 and 7 compared to day 

0, while the collagen group was significantly lower than the regelled NP group on day 3 
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(Fig. 8A). Increasing DNA indicated the gels do not inhibit cell proliferation. Normalized 

alamarBlue results showed that metabolic activity of human NP cells on day 7 cultured in 

regelled NP was significantly higher than every other day of that same gel (Fig. 8B). 

Normalized metabolic activity for day 7 regelled NP was also significantly greater than the 

day 7 collagen (Fig. 8B). The results of sGAG quantification reveal that regelled NP 

samples have a large amount of sGAG at day 0, which reduced over the first 3 days and 

subsequently starts to slowly increase over time, although not significantly (Fig. 8C). The 

control collagen gels have low sGAG that gradually increased over time, although not 

significantly. The hydroxyproline assay demonstrated a significant but minor decrease 

between days 0 and 1 in the regelled NP group, but there were no other differences within 

either group over the time course (Fig. 8D). The collagen group was significantly lower 

than the regelled NP group at each time point, but also did not exhibit any differences over 

the time course. These data demonstrate a constant collagen content over the 7-day time 

course for both samples. The sGAG:hydroxyproline ratio on day 0 was 4.25:1 and reduced 

to 0.162:1 by day 7. 
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Figure 8. NP cells remain viable in regelled NP gels over 7 days and become more active 

compared to collagen. PicoGreen DNA results (A) demonstrated an increase from day 0 to day 7 

in the regelled NP groups, while collagen on day 3 was decreased. AlamarBlue (B) showed a 

significant increase in metabolic activity of each group of gels normalized to DNA on day 7 in the 

regelled NP gels to all other time points. The regelled NP groups were also significantly greater 

than the collagen group on day 7. The sGAG quantification (C) revealed a significant decrease in 

the regelled NP groups from day 0 to the following days, however all groups appeared to increase 

in sGAG from day 3 to day 7, although not significant. Quantification of collagen content (D) was 

stable over time in both groups, with only day 0 and day 1 in the regelled NP group being 

significantly different. The collagen control group was significantly lower than the regelled NP at 

each time point. *Indicates significant difference p < 0.05. 

 

2.3.1.5 Evaluation of Neuroinhibitory Properties of Regelled NP 

To prevent pain, the regelled NP must exhibit neuroinhibitory properties, to be able 

to prevent nerve growth in the clinic. DRG neuroinhibition results demonstrated a 

significant reduction in number and distance of neurites growing into regelled NP 

compared to collagen controls. Figure 9 shows representative images of DRGs cultured in 

the gel-within-gel model on day 15, with fluorescent staining of the neurites with NF-H. 

Figure 10A and 10B show representative images of the neurite length analysis. Maximum 
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neurite length in the inner gels was lower in regelled NP compared to collagen controls 

(1201.1±258.3 µm vs.1763.9±407.5 µm) although this difference was not significant 

(Fig. 10C). Figure 10D and 10E show representative images of the radial distance. 

Analysis revealed there was a significant reduction in the maximum radial distance, or the 

linear distance from the neurite crossing the boundary to the tip, of neurites in regelled NP 

samples compared to collagen controls (975.9±41.64 µm vs. 1601.3±381.1 µm) (Fig. 

10F). Figure 10G and 10H show representative images of the Sholl analysis, which found 

that there were significantly fewer neurons in the regelled NP compared to collagen at all 

distances up to 700 µm away from the gel boundary, except at 600 µm (Fig. 10I). The 

second Sholl analysis demonstrated no significant differences in the number of neurites 

between collagen or regelled NP at any distance on the opposite side of the inner gel. The 

average distance of the DRGs from the boundary of each group were also calculated as 

278.4±118.3 µm for collagen and 244±140.9 for regelled NP µm. These distances were 

not significantly different from each other. These data indicate that any residuals left in the 

regelled NP are not cytotoxic to neurons and their support cells in culture. Taken together, 

these data demonstrate the regelled NP has robust neuroinhibitory properties compared to 

collagen controls.  
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Figure 9. DRGs show reduced growth and altered morphology into the inner gel in regelled 

NP compared to collagen. Representative maximum projection confocal images of day 15 DRGs 

in regelled NP gels (D-F) and collagen gels (A-C). Scale bar = 500 µm. 
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Figure 10. Neurite growth into regelled NP inner gels is significantly inhibited compared to 

collagen inner gels. Representative images (A,B) and analysis (C) for maximum neurite length 

into the inner gels. Representative images (D, E) and analysis (F) for maximum radial distance into 

the inner gels. Representative images of Sholl analysis (G,H) and quantification of the number of 

neurons at specific distances into the inner gel (I). Graphs C and F show the average and standard 

deviation of the gels individually to show the scattering of the individual points. Scale bar = 2000 

µm. *Indicates significant difference p < 0.05. 

 

2.4 DISCUSSION 

Previous publications have developed NP decellularization methods with varying 

success in the removal of DNA and maintenance of extracellular matrix proteins [38-43, 

85]. Some of these decellularization techniques have demonstrated high maintenance of 

glycosaminoglycans, key components of the NP that help to maintain osmotic pressure, as 

well as provide the NP with neuroinhibitory properties, yet no literature has demonstrated 

maintenance of the neuroinhibitory properties of the decellularized NP tissue scaffold. In 

this study, we successfully optimized a semi-high throughput decellularization process for 
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whole porcine NP, created a thermally gelling hydrogel from the decellularized NP, and 

demonstrated the regelled NP maintains cell viability and prevents nerve growth. 

Several studies have found that most painful, degenerate discs contain nerves, due 

to a loss in neuroinhibition [25-27]. Reintroducing a neuroinhibitory gel has the potential 

to stop further ingrowth of nerves and halt the progression of disc-associated LBP. To 

investigate the neuroinhibitory properties of our regelled NP, we used our in vitro model 

[79] of innervation that involves culturing whole DRGs in an outer gel and allows the 

nerves to grow into an inner gel. In this study, the inner gel was composed of either the 

regelled NP or a matched collagen control gel. These data demonstrated that regelled NP 

had robust neuroinhibitory properties as exhibited by greater than two times fewer neurites 

at almost all distances up to 800 µm within the inner gel by the Sholl analysis. There are 

several factors that contribute to neuroinhibition in the body. The first contributing factor 

to neuroinhibition is the stiffness of the material that the nerve is growing into [86]. Our 

rheology data indicate that regelled NP and collagen have similar mechanical properties, 

therefore, mechanics is likely not a major contributor to the neuroinhibition seen in the 

regelled NP compared to collagen. The next contributing factor to neuroinhibition is the 

porosity of the material [87]. A porosity of ~80% was shown to promote the greatest nerve 

density and length with these values decreasing at 70 and 90% in a rat hemisection lesion 

[87]. SEM analysis revealed no significant difference in fiber diameter or fiber density 

between control NP, decellularized NP, collagen, and regelled NP. Although porosity 

cannot be calculated from SEM images, macroscopic evaluation of fibers and void space 

suggests similar fiber density and thus, likely similar porosity between all groups. Another 

factor contributing to neuroinhibition is the presence of neuroinhibitory molecules in the 
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material. Some common neuroinhibitory molecules include aggrecan, a proteoglycan 

present in the NP, chondroitin-6-sulfate, a major sGAG found on proteoglycans in the NP, 

and semaphorin3A, an axon guidance molecule in the nervous system [23, 24, 88]. While 

aggrecan and chondroitin-6-sulfate have been found in large quantities in the NP, 

semaphorin3A is demonstrated more in the outer annulus fibrosus with ~80% of cells 

expressing it, with a decreasing concentration into the NP, with only ~5% of cells 

expressing it [88]. We believe that our regelled NP likely contains more sGAGs and 

semaphorin 3A than collagen controls which may contribute to the neuroinhibitory 

properties. However, additional studies are needed to validate this claim.  

When using decellularized tissue scaffolds, the removal of cellular DNA is crucial 

to the decellularization process to prevent an immune response when applied in vivo. It is 

speculated that during degeneration, there is infiltration of immune cells, which can 

recognize foreign cellular components and cause a host to reject the implanted material 

[89]. Thus, our removal of more than 99% of the original DNA from the tissue, as an 

indicator for cells, increases the chances of a host accepting the decellularized tissue 

scaffold. Due to the high removal of DNA and lack of alpha-gal found within the 

decellularized NP, it is unlikely that this tissue scaffold would cause an immune response 

due to species differences when implanted in a host. Porcine tissue has had clinical success 

previously with dermis (Fortiva, RTI Surgical, Inc.) and small intestinal submucosa (SIS, 

Cook Biotech), suggesting that porcine NP may also be implanted without problem after 

decellularization. Besides DNA removal, the other important aspect of decellularization is 

maintenance of native proteins. In the NP, the majority of the extracellular matrix is 

composed of sGAGs and type II collagen [90, 91]. The decellularization process used here 
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attempted to maintain as much of the native sGAGs and collagen as possible, to maintain 

the neuroinhibitory and structural capabilities of the tissue scaffold. Here, the sGAG 

maintenance was 74.0%, comparable to other NP decellularization processes which have a 

range of retentions between 55-97% [1, 38-44]. The normalized sGAG values presented 

here of 50.27 ± 5.40 µg/mg and 37.19 ± 5.27 µg/mg for control and decellularized NP, 

respectively, are generally lower than what has been determined in other work, which range 

from ~20 µg/mg  to ~500 µg/mg in porcine NP [1, 38-44]. The large difference in sGAG 

across literature may be due to differences in species, animal age, and disc level. A common 

comparison used in NP decellularization is the ratio of sGAG:hydroxyproline as this ratio 

is an easy way to tell the amount of functional proteins compared to structural proteins 

found within the tissue scaffold. Here, this ratio was 10.16:1 in control tissue, 4.85:1 in 

decellularized NP, and 4.25:1 in the regelled NP. In comparison, the ratio of 

sGAG:hydroxyproline for healthy NP tissue is 27:1 [92], while other decellularized NP 

tissue scaffolds have been found at 21:1 [38], 2-4:1 [39], and ~8-20:1 [42]. These results 

suggest that the regelled NP is similar in the ratio of sGAG to collagen to decellularized 

NP tissue. Because the regelled NP is meant as a neuroinhibitory supplement, the 

sGAG:hydroxyproline ratio does not need to reach the levels of natural tissue. Further, our 

SEM images illustrated collagen fibers of similar orientation and thickness at each stage of 

the decellularization process, suggesting that our process retains the microstructure of a 

native NP.  

Following decellularization, we were able to form digested NPs using an enzyme 

digestion process followed by collagen supplementation, which can then be injected 

through a small-bore needle and gel at 37 °C within 20 minutes to create the regelled NP. 
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The metabolic activity of the cells in the regelled NP increased over time compared to the 

collagen group, with a significant difference by day 7, suggesting that the cells in the 

regelled NP are more active compared to the collagen group. This may be due to the cells 

recognizing the decellularized tissue scaffold and acting on cues that the scaffold gives the 

cells, whereas the collagen gel would not have these same cues due to the lack of 

decellularized tissue. Similar phenomena have been demonstrated with pulmonary [93], 

preosteoblast [94], and kidney and mesenchymal stem cells [95] when cultured on 

decellularized porcine lung [93], tilapia skin [94], and porcine kidney tissues [95], with 

increases in metabolism by these cells when cultured on the decellularized tissue scaffolds. 

The increases in metabolic activity demonstrated in previous literature and in this thesis 

suggest that the cells recognize some aspect of the decellularized tissue and may act to 

remodel the tissue accordingly [95]. Increases in anabolic gene expression have also been 

demonstrated with stem cells cultured on decellularized NP tissue compared to controls 

lacking the decellularized tissue, which would suggest an increase in metabolism as well 

[42, 44]. In our study, the DNA assay showed a small but significant increase over time in 

the concentration of DNA in the regelled NP compared to collagen controls which suggests 

there was minimal cell death and the cells continued to proliferate over the course of the 

study. The significant increase in DNA in the regelled NP but not the collagen over 7 days 

suggests that some components in the decellularized NP are giving cues to the NP cells to 

proliferate, as the presence of decellularized tissue was the only difference between the two 

groups. Interestingly, there was a significant decrease in sGAG in the regelled NP observed 

from day 0 to 1. This may be due to diffusion of the sGAGs into the media due to the large 

surface area exposed to media in the 30 µL gels. Our re-gelled NPs cultured with sensory 
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neurons studies still exhibited robust neuroinhibitory properties, suggesting the resultant 

sGAG loss is either less in these larger gels, or the loss is not sufficient to reduce 

neuroinhibitory properties. Future work will examine the function of these scaffolds in vivo 

to verify the lack of an immune response as well as to probe the mechanism of 

neuroinhibition. In conjunction with the sGAGs, the levels of collagen were also 

investigated over time and showed few differences, with only days 0 and 1 in the regelled 

NP being significantly different. Between groups, the collagen and the regelled NP were 

significantly different at each time point, due to the collagen found naturally in the 

decellularized NP. Taken together, these results indicate that the regelled NP is not 

cytotoxic and may promote enhanced cell proliferation and remodeling compared to 

collagen gels, due to the increased metabolic activity of the cells in the regelled NP. 

While the regelled NP has promise for preventing nerve growth in the disc, there 

are also some limitations. These include the regelled NPs low mechanical properties 

compared to human NP, which ranges in dynamic shear modulus from 7.4-19.8 kPa and 

tan δ of 0.424-0.577 [77, 78, 84], suggesting this material must be used in conjunction with 

native tissue to bear load. While these data suggest that the mechanical properties of the 

regelled NP are lower than native tissue, this is not a large limitation, because this gel is 

meant to act as a supplement to the NP, and not a total replacement. Another limitation of 

this research was the loss of sGAG from day 0 to day 1 in the regelled NP during the three-

dimensional culture, which was most likely due to washing out of unbound sGAG during 

media changes due to diffusion; however, this did not seem to impact the neuroinhibition 

results. Another limitation of this work was that the regelled NP did not exhibit complete 

neuroinhibition, only partial, as some of the DRG neurites were still able to pass the inner 
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gel boundary. This feature will be investigated in the future by determining if neurites are 

traveling along the top or bottom of the gels instead of traveling through the gel. 

Supplementation of sGAG to the regelled NP may be possible to boost the regelled NP’s 

neuroinhibitory properties. Future work that can be investigated include the effects of this 

gel on cultured stem cells and the gel’s ability to differentiate stem cells towards a nucleus 

pulposus-like phenotype for NP regeneration, as well as the effects of LBP alleviation in 

vivo. 

CHAPTER 3: Matrix Bound Nanovesicles 

3.1 Review of Literature 

3.1.1 Introduction to Matrix Bound Nanovesicles 

Matrix Bound Nanovesicles (MBVs) are extracellular vesicles secreted by cells that 

are embedded within the extracellular matrix, instead of being secreted into the 

extracellular space, like exosomes or microvesicles. MBVs were recently discovered 

embedded within the extracellular matrix of urinary bladder matrix, small intestinal 

submucosa, dermis, brain, heart, muscle, ovary, pancreas, and tendon [68, 96-98]. Similar 

to microvesicles, MBVs range in size from 20-400 nm in diameter [96, 97, 99, 100], are 

secreted through blebbing of the plasma membrane [101-103], and contain various 

intravesicular proteins and micro RNA (miRNA), as well as lipids in the membrane [68, 

96-99]. Figure 11 demonstrates that MBVs are present in many different tissue types. 
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Figure 11. MBVs are present in many tissues. A) TEM images of MBVs in a urinary bladder 

matrix sheet either untreated, treated with pepsin, or treated with proteinase-K. B) TEM images of 

MBVs isolated from proteinase-K treated Xenmatrix, MatriStem, Biodesign, and decellularized 

porcine dermis, urinary bladder matrix, and small intestinal submucosa. C) Nanoparticle tracking 

analysis size data of MBVs isolated from various decellularized tissues [97]. 
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Figure 12 demonstrates the difference in secretion and embedding between MBVs 

and some more common extracellular vesicles, exosomes and microvesicles. Previous 

research has shown that MBVs have immunomodulatory properties, specifically with 

macrophages [68, 69, 97]. It is possible that MBVs are contained within the decellularized 

NP tissue developed here and exhibit a tissue specific response. Thus, MBVs were 

investigated as part of this thesis as a possible mechanism of action for how the 

decellularized NP scaffolds interacted with macrophages and NP cells. Research from the 

first project demonstrated that NP cells remained viable within regelled NP and increased 

their metabolic activity, suggesting increased remodeling of the tissue, thus, the effect of 

MBVs derived from the decellularized NP tissue were investigated to determine if the 

MBVs within the regelled NP were a possible reason for this change. To research MBVs 

and understand the data that will be collected on them, it is important to consider how they 

are isolated, how they are characterized, what contents they may have, and how they 

interact with cells. 
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Figure 12. Different mechanisms of secretion of microvesicles, exosomes, and MBVs. 

3.1.2 Isolation and Purification of MBVs from Tissue 

Because MBVs are trapped within the extracellular matrix of tissues, as seen 

through transmission electron microscopy (TEM) and scanning electron microscopy 

(SEM) of whole decellularized tissues [96, 104], they are more difficult to isolate than 

other vesicles such as exosomes or microvesicles. The isolation process for MBVs involves 

the disruption and/or digestion of the surrounding tissue matrix [97]. However, disruption 

of the tissue can lead to large amounts of contaminating protein in solution with the MBVs 

that must be removed. Multiple isolation methods have been developed for similar vesicles 

like exosomes and can be adapted for MBVs. The methods that have had some success for 

MBV isolation so far include: 1) differential centrifugation, 2) tangential flow filtration, 3) 

size exclusion chromatography, and 4) density gradient centrifugation [99, 105]. All 
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methods to isolate EVs attempt to increase yield, or the number of EVs isolated, while 

trying to maintain high purity, or the ratio of the number of isolated EVs to the amount of 

contaminating protein. Different methods of digesting tissue can lead to varying yields due 

to the differences in how the tissue is digested, even when using the same isolation method, 

however, the yields still follow the same general trends as described below [99]. 

Differential centrifugation is generally considered the gold standard to isolate 

exosomes due to its simplicity and relative ease of use [106-110]. Differential 

centrifugation involves centrifuging a solution at increasing speeds to remove large 

contaminants, ending with a final centrifugation at greater than 100,000 x g, to pellet down 

the nanoscale vesicles [106, 107, 109-111]. While differential centrifugation is relatively 

easy to perform and is able to remove large contaminants, it requires a specialized 

ultracentrifuge and is unable to separate small vesicles from other small contaminants such 

as protein aggregates [105, 112]. This method of isolation generally has a high yield of 

particles but also a relatively high concentration of contaminating proteins [99]. 

Differential centrifugation is the most commonly used method to isolate MBVs at this time, 

although methods (or combinations of methods) that result in an increased purity may 

become more common [68, 69, 96, 97, 100, 113]. The current method that has been used 

to isolate MBVs from dermis, urinary bladder matrix, and small intestinal submucosa did 

so through digestion using collagenase, followed by centrifugation at 500 x g for 10 

minutes, 2500 x g for 20 minutes, and 10,000 x g for 30 minutes, each repeated three times 

[97]. The supernatant was then centrifuged at 100,000 x g for 70 minutes and passed 

through a 0.22 µm filter [97]. Investigation into the presence of RNA and the effects on 

cells demonstrated that the MBVs were biologically active and could modulate the cell 
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phenotype [97]. While this process has been adapted slightly over time, it still remains very 

similar to this process. 

Density gradient centrifugation is similar to differential centrifugation except that 

the final ultracentrifugation involves the use of a density gradient, often sucrose based, to 

further separate out particles. Because vesicles have a different density than contaminating 

protein, they should be found in different locations in the density gradient [105, 112]. This 

process involves the use of an ultracentrifuge, as well as a density gradient solution, to 

better purify the isolated EVs compared to just differential centrifugation, usually at the 

cost of yield [105, 112]. Density gradient centrifugation was first developed for exosomes, 

where it had slightly worse yield than differential centrifugation and tangential flow 

filtration but higher purity than these two methods [107, 114-116]. This method was also 

used to isolate urinary bladder matrix MBVs and tended to have worse yield than 

differential centrifugation, ultrafiltration, and size exclusion chromatography  [99]. Along 

the same lines, this method tended to have higher purity compared to the other three 

isolation methods [99].  

Tangential flow filtration is another method used to isolate exosomes that could be 

applied to MBVs. During tangential flow filtration, a solution is passed across a filter and 

anything smaller than the pore size of the filter is allowed to pass through. This method of 

isolation has been performed with exosomes with good yield, however, the purity of the 

sample remains low [117-119]. Tangential flow filtration is easy to perform, is easily 

scalable from small volumes such as single milliliters up to large volumes such as several 

liters and is relatively fast. The drawbacks to using tangential flow filtration are that it 

traditionally requires a specialized system to perform, although smaller tube and 
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centrifuge-based systems have been developed, such as the Corning Spin-X tubes 

(431482). Tangential flow filtration has the same problem as differential centrifugation in 

that it separates particles non-specifically and thus has problems with protein 

contamination [120, 121]. This method of isolation has been used previously with MBVs 

from urinary bladder matrix, which showed a high MBV yield but had the largest 

concentration of contaminating protein out of all methods tested, which is similar to results 

from exosome isolations [99, 118].  

Size exclusion chromatography is a method often used by biologists and chemists 

to separate molecules or particles based on size and has been used to isolate exosomes as 

well. To perform size exclusion chromatography, a solution is passed through a column of 

beads and depending on the size of the particle being isolated, the particles will pass 

through the column at different speeds and thus fractions of the elute can be collected. Size 

exclusion chromatography is becoming more widely used to isolate small vesicles due to 

its availability, relative ease of use, and the great purity of isolated vesicles compared to 

other methods [120, 121]. Previous literature isolating exosomes with size exclusion 

chromatography has demonstrated excellent results in terms of purity, but low yields of 

particles [106, 111, 122, 123]. Some downsides of size exclusion chromatography are that 

it has low flow through and that it is difficult to control the electrostatic and hydrophobic 

interactions that occur, which can cause the isolation to become less pure [122, 124]. Size 

exclusion chromatography has been previously used to isolate urinary bladder matrix 

MBVs, followed by ultrafiltration to concentrate the MBVs [99]. The combination of size 

exclusion chromatography and filtration methods had a lower yield compared to the other 
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methods, except density gradient centrifugation, although it had the second lowest 

concentration of contaminating proteins, causing it to be pure [99]. 

There have been other studies comparing methods of isolation in other vesicles to 

try to determine the best method for MBV isolation, although there is no current consensus 

[125-128]. The best method to isolate MBVs may be tissue dependent, due to the different 

methods needed to digest tissues, and may involve the use of two methods together. 

Previous work has combined differential centrifugation, tangential flow filtration, and size 

exclusion chromatography to isolate exosomes from blood plasma, which demonstrated a 

very low amount of contaminating protein, coupled with a moderate particle yield 

compared to each isolation method alone [129]. Preliminary work in our lab on 

decellularized nucleus pulposus tissue has demonstrated that differential centrifugation 

followed by tangential flow filtration results in a concentrated solution of MBVs that 

appears to be relatively pure as well. More research in this area needs to be performed to 

determine the best methods or combination of methods to isolate MBVs with high yield 

and purity. 

3.1.3 Characterization of MBV Size 

 Characterization of MBV size is important to verify the presence and quantity of 

MBVs, and to separate them from other EVs. Due to the similar sizes and compositions of 

exosomes and MBVs, the characterization methods often used for exosomes can also be 

used for MBVs. 

Often, the first way to characterize EVs is to measure their size. For EVs these 

methods often include: TEM or SEM to visualize the size and morphology of the EVs, as 

well as staining to verify presence of lipids in the membrane [130, 131] and nanoparticle 
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tracking analysis, to determine the size and concentration [130, 132]. Some other, less often 

used methods to characterize size of EVs include dynamic light scattering, atomic force 

microscopy, tunable resistive pulse sensing, and flow cytometry, although special 

techniques need to be used such as aggregating the EVs, due to their small size [133-139]. 

At this time, only TEM, SEM, and nanoparticle tracking analysis have been conducted on 

MBVs to characterize their size, which was determined to be between 20-400 nm in 

diameter in urinary bladder matrix, small intestinal submucosa, and dermis, both before 

and after being isolated from the tissues [68, 69, 96, 97, 99, 100, 140]. 

3.1.4 MBV Cargo and Surface Markers 

 Characterization of the cargo of MBVs is important to determine their potential 

roles in matrix homeostasis and cell signaling. MBVs have been shown to contain various 

intravesicular miRNA and proteins, as well as membrane lipids, all of which can be used 

for cell signaling [68, 69, 96, 97, 99, 100, 140]. miRNAs have a wide range of applications 

in MBVs, including cell signaling and modulation of cell phenotype, while lipids protect 

the intravesicular contents from degradation and can act as another method of signal 

transduction. Analysis of the miRNA and lipid profiles of MBVs from different tissues 

demonstrated that the “fingerprint” of these molecules is different between MBVs from 

different tissue sources, as well as from parent cells and other extracellular vesicles 

secreted from the same cells [96, 97]. While miRNA and lipids are important MBV cargo 

to be investigated, they were not included within the scope of this thesis due to time 

constraints and a lack of knowledge on the miRNA cargo of MBVs, thus, only previous 

work investigating the protein content of MBVs will be discussed. 
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 MBVs contain various proteins as their cargo and on their surface, much like other 

EVs. Proteins contained within the MBVs can play many roles, including cell signaling, 

remodeling of the extracellular matrix, or immune modulation. Research performed to date 

has used various cytokine arrays and Western blots to determine specific protein contents 

in MBVs. For example, MBVs from porcine small intestinal submucosa and mouse small 

intestinal submucosa contained high levels of IL-33, Reg3G, CD26, Endostatin, IL28, 

VEGF, ICAM-1, and CD142 [68], as shown in Figure 13. The MBVs were isolated from 

their respective tissues using differential centrifugation and the content of 111 proteins 

were measured using a cytokine array (ARY028, R&D Systems) [68]. It was noted that IL-

33 was contained at high levels in both types of MBVs, thus, IL-33 was investigated more 

closely as a regulator of macrophage phenotype and was determined to be necessary for 

MBVs to polarize macrophages towards an M2-like phenotype [68]. However, depending 

on the environment, IL-33 can also induce an M1-like phenotype in macrophages when 

there is a lack of type 2 cytokines such as IL-4 or IL-13 [141].  Besides IL-33, important 

proteins such as VEGF, which regulates vascularization; ICAM-1, an adhesion molecule 

that is involved in activation of the immune system; and CD26, which regulates the 

immune response, signal transduction, and apoptosis; were all present at high levels in the 

MBVs from small intestinal submucosa [68, 142-147]. 
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Figure 13. The most prevalent proteins contained within small intestinal submucosa MBVs 

[68]. 

Additional research may reveal certain surface markers that are conserved between 

MBVs and may be used as specific MBV markers, similar to CD9, CD63, TSG101, Alix, 

and CD81 in exosomes, although no MBV specific markers have been identified at this 

time [101, 148-150]. It is likely that the concentrations of proteins vary in MBVs from 

different tissues, due to the variable roles that they may need to play, and that the miRNA 

and lipid profiles also differ between MBV types. Further research into the protein contents 

and cell surface markers of MBVs may elucidate their roles in the extracellular matrix and 

determine various markers that differentiate them from other EVs. 

3.1.5 Influence of MBVs on Macrophages 

Unlike other EVs, MBVs are embedded within the tissue and are believed to be 

released during tissue remodeling, as the only method to isolate MBVs currently is to 

disrupt the surrounding tissue. Because MBVs are only revealed when tissue is broken 

down and they contain miRNA, proteins, and lipids that affect cells, it is important to 
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investigate what occurs when different relevant cells are exposed to MBVs. For this reason, 

various work has explored the effect of specific tissue derived MBVs on macrophage 

function and their potential therapeutic effects.  

 Macrophages play many roles in the body: they are the body’s first of line of 

defense against pathogens in the innate immune system and act as antigen presenting cells 

to activate the adaptive immune system. Macrophages also act as mediators of 

inflammation and repair during tissue damage and release cytokines and enzymes 

depending on their polarization [151, 152]. It is believed that because macrophages are 

present at sites of tissue breakdown, they would be exposed to MBVs during release and 

may phagocytose MBVs, and thus alter their phenotype [151, 152]. This is due to the fact 

that MBVs can only be isolated after digestion of the tissue, which is similar to the 

degeneration of the tissue in vivo. Several studies have also demonstrated that MBVs can 

modulate macrophage phenotype, which will be described here [153-156]. 

Prior work demonstrated that decellularized urinary bladder matrix, small intestinal 

submucosa, and dermis tissue scaffolds polarized macrophage phenotype away from an 

M1-like phenotype, towards an M2-like phenotype [153-156]. After MBVs were identified 

in small intestinal submucosa and urinary bladder matrix tissue scaffolds, it was 

hypothesized that they may be the mechanism of polarizing macrophage phenotype  [69, 

97]. Therefore, recent studies have examined the effects of MBVs compared to 

decellularized tissue scaffold on macrophage phenotype. The researchers compared the 

effects of isolated urinary bladder matrix and small intestinal submucosa MBVs to the 

effects of the whole decellularized tissue scaffolds on naïve, M2, and M1 macrophages 

[68, 69, 97]. The results of initial experiments found that MBVs tended to polarize 
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macrophages towards M2-like phenotypes, similarly to the decellularized tissue scaffolds 

that the MBVs were isolated from, as demonstrated in Figure 14 [69, 97]. Continuation of 

this research saw that IL-33 was present in MBVs from both porcine and mouse small 

intestinal submucosa [68]. IL-33 is a known mediator of M2-like phenotype in 

macrophages, and MBVs from animals lacking this cytokine had a drastic reduction in M2-

like response in macrophages [68]. Taken together, the results of these experiments 

demonstrate that MBVs can modulate macrophage phenotype, similarly to the whole tissue 

they are derived from, and this modulation is dependent upon the molecules that are found 

within the MBVs. 

 

Figure 14. MBVs recapitulate extracellular matrix effects on macrophage phenotype. 

Macrophages were grown and treated either with the controls demonstrated, 250 µg/mL ECM, or 

25 µg/mL MBVs. The macrophages were then stained for M1-like markers (TNF and iNOS), M2-

like markers (Fizz1 and Arg1), or a pan marker (F4/80) and all treatments were counterstained with 

DAPI. There was high signal in the Fizz1 and Arg1 stained macrophages when treated with urinary 

bladder matrix, small intestinal submucosa, and the MBVs isolated from those tissues [69]. 

MBVs have the potential to alter the macrophage response and thus potentially 

drive tissue repair and regeneration, due to the ability of the macrophages to become 

polarized towards a pro-remodeling, M2 phenotype, however, the potential of MBVs to 
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induce this change must be investigated further. Anti-inflammatory MBVs may be an 

excellent therapeutic approach to help shift the immune response and aid in tissue repair. 

MBVs embedded in diseased tissue may also aid in immune system avoidance through 

macrophages, allowing the disease to progress. In either case, continued research on the 

effect of MBVs from novel tissues is needed to further increase the knowledge of this 

young field. 

3.1.6 Summary for MBVs 

MBVs are a recent discovery and so the knowledge on them is currently limited. It 

is believed, however, that MBVs are novel, nano-scale vesicles secreted by cells and 

embedded within the surrounding extracellular matrix. MBVs are similar in size and shape 

to other types of EVs, like exosomes and microvesicles, but MBVs differ from these other 

vesicles because they are embedded within the extracellular matrix and can be isolated 

following digestion of the tissue. MBVs are likely present in some quantity in all tissues 

and are specific to the cells that secreted them, indicated by a different lipid profile than 

exosomes and parent cells. However, more research on whether MBVs can be found in 

other unique tissues needs to be performed to confirm this belief. MBVs encompass cell 

specific miRNA, proteins, and lipids, either inside of the MBV, or on the membrane. Once 

the surrounding matrix starts to degrade, MBVs are thought to be released and can be taken 

up by cells, as noted that the only method to currently isolate MBVs is to digest the 

decellularized tissue, however, MBV release and uptake has not been studied in vivo at 

this time. Preliminary research has demonstrated that macrophages are polarized towards 

an M2-like phenotype when cultured with MBVs from small intestinal submucosa and 

urinary bladder matrix. The results discussed in this thesis demonstrate that MBVs may 

recapitulate the effects of their source tissue on macrophages, even when the source tissue 
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causes an inflammatory response, however, more research must be done in MBVs isolated 

from novel tissues to confirm. Because MBVs are a recent discovery, not much is known 

about how they function within tissues or the true reason they are secreted by cells. The 

MBV arm of this thesis attempted to investigate whether MBVs could be found in NP 

tissue, and to elucidate any differences between NP MBVs and previously described 

MBVs. This project arm also attempted to demonstrate the effects of MBVs on cells and 

determine what roles the MBVs may play in the NP. 

3.2 METHODS 

3.2.1 Isolation and Characterization of Matrix Bound Vesicles in Decellularized Porcine 

Nucleus Pulposus Tissue 

3.2.1.1 Isolation of MBVs 

MBVs were isolated according to a previously developed protocol with minor 

modifications [97, 113, 140]. This method was chosen because it was known to work for 

MBVs and is considered the gold standard for MBV isolation. This method also did not 

require previous training to perform. Briefly, lyophilized, crushed decellularized tissue (see 

“Whole Disc Decellularization” above) was digested in 5-20 mg increments in 1 mL of 

100 ng/mL Liberase DL (05401160001, Sigma-Aldrich) for 12 hours at room temperature, 

spinning on a tube revolver at a setting of 10 (88881001, Thermo Scientific). The digest 

solution was then centrifuged 3 x 10,000 x g for 30 minutes while moving the supernatant 

to new tubes to remove large contaminants. Following the centrifugation, the digest was 

passed through a 0.22 µm filter (229747, Celltreat), to remove large contaminants. The 

resulting solution was then centrifuged in 8x1 cm ultracentrifuge tubes at 100,000 x g at 4 

°C for 70 minutes on a Beckman Coulter Optima L-100K Ultracentrifuge with a Ti90 rotor. 

Once pelleted, the supernatant was poured off and the pellet was resuspended with 500-

1000 µL of 1X PBS. To break apart protein aggregates, the solution was passed through a 
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27G needle (305136, Beckton Dickinson). The solution was then filtered twice using a 

Corning Spin-X centrifuge tube at 4000 x g for 15 minutes at 4 °C. After each 

centrifugation, the top of portion of the tube was resuspended in 1 mL of sterile 1X PBS. 

This step was added to further isolate the MBVs from contaminating small 

proteins/molecules, as they would pass through the filter, while the MBVs would not. 

3.2.1.2 Determining Concentration of MBVs Using Nanoparticle Tracking Analysis 

To be able to determine MBV size and concentration, the isolated MBVs were 

imaged using a Malvern NanoSight NS300. The MBVs were diluted 1:60 and 3x1 minute 

videos were taken at an infusion rate of 100, camera level 15, camera shutter 1206, camera 

gain 366, camera histogram 3294, and a detection threshold of 4. A total of n=3 MBV 

isolation batches were analyzed with 3 videos of each batch. 

3.2.1.3 Imaging MBVs Using Transmission Electron Microscopy 

To be able to view the MBVs, they were imaged using a transmission electron 

microscope. Three batches of MBVs were isolated and resuspended. 10 µL of the 

suspensions were mixed 1:1 with 4 % PFA in a microcentrifuge tube. 3-5 µL of the fixed 

MBVs were added dropwise to TEM grids (01824, Ted Pella) and the drops were allowed 

to dry before adding another drop. Following fixation, uranyl acetate was added the grids 

as a negative stain to visualize lipids. The grids were stored at room temperature in a 

desiccator until needed. The grids were imaged at 200 kV using a FEI Technai Osiris 

(scanning) TEM with a high-angle angular dark-field (HAADF) detector and at 80 kV on 

a Hitachi H7500. Using the Technai Osiris, energy-dispersive X-ray spectroscopy (EDX) 

data was also collected from one image of MBVs to determine the elemental composition. 
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3.2.1.4 Protein Content Quantification of MBVs 

 The protein content of the MBVs was determined using an R&D Proteome profiler 

Mouse XL Cytokine Array (ARY028, R&D Systems). This cytokine array was chosen 

because it measured a wide variety of different proteins and included molecules that were 

important for this research, such as various interleukins, as well as pro- and anti-

inflammatory cytokines and chemokines. Triton X-100 was added to the MBVs to a 

concentration of 1% and frozen at -80 °C to lyse the vesicles. The MBVs were then thawed, 

and the assay was performed according to manufacturer’s instructions. Briefly, the 

membranes were blocked using a provided solution. The membranes were then incubated 

with the lysed MBV solution overnight at 4 °C. The MBV solution was removed, and the 

membranes were washed. A solution of detection antibodies was added to the membranes, 

after which the membranes were washed. The membranes were then incubated in a solution 

of streptavidin-HRP, followed by a short incubation with the provided chemi-luminescent 

substrate. The membranes were imaged for 10 minutes using a Bio Rad Chemi Doc XRS+ 

with Image Lab Software. The adjusted pixel density was used to quantify the amount of 

each cytokine present on each membrane by drawing a circle with an area of 1.9 mm2 

around each dot. The average of the outside pixels along the circle was then subtracted 

from each pixel inside of the circle and the pixel density was then determined inside each 

circle. The values determined from the software were then normalized to the mass of 

protein added to each membrane, determined from the BCA assay. Each protein was dotted 

in duplicate on each membrane. A total of n=3 membranes were analyzed, with each 

membrane analyzing a different isolation batch of MBVs. 
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3.2.2 Determining Effects of Matrix Bound Vesicles on Cells 

Macrophages were chosen for this experiment because they are the chief innate 

immune cell of the body. In cases of disc degeneration or herniation, they would be the 

first immune cell to arrive and initiate some form of response, either pro-regenerative or 

pro-inflammatory. NP cells were also chosen to be exposed to the MBVs because NP cells 

are native to the disc and are immediately be exposed to MBVs during degeneration, thus 

how they react is important to analyze. 

3.2.2.1 MBV Preparation 

MBVs were prepared as described above in “3.2.1.1 Isolation of MBVs”. Briefly, 

three different isolations, each using decellularized tissue from at least 2 different spines, 

were digested and centrifuged accordingly. Following the analysis of the size, 

concentration, and contents, the three isolations were combined into one stock MBV 

solution. This stock MBV solution was then used to prepare various medias for culturing 

both macrophages and NP cells at concentrations of 5, 10, and 15 µg/mL MBVs determined 

using the BCA assay. Preliminary work had used the same concentrations of MBVs and 

demonstrated a dose dependent response of macrophages. 

3.2.2.2 Isolation of Macrophages 

Macrophage precursors were isolated from mouse femur bone marrow through a 

previously established protocol in our lab. Briefly, macrophage precursors were isolated 

from CD1 mice according to established protocols [157]. Briefly, the tibia and femur were 

resected from the mouse and placed in Dulbecco’s phosphate-buffered saline (DPBS) 

(14190136, Thermo Fisher). Muscle and ligamentous tissue were then trimmed off the 

bones and the bones were transferred to fresh DBPS. The metaphysis was removed from 

each end of the bone and the marrow was flushed into a 50 mL conical tube using a 25-
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gauge needle and cold DPBS. Non-cellular material was removed by straining the cell 

suspension through a 70 µm filter (08-771-2, Fisher Scientific). The cell suspension was 

then pelleted via centrifugation at 500 x g for 10 minutes. Contaminating red blood cells 

were lysed by incubating the cell pellet for 5 minutes in 3 mL of ACK lysis buffer 

(A1049201, Fisher Scientific). Finally, the cells were counted and frozen down at 6 million 

cells/mL in 70% FBS, 20% DMEM:F12 and 10% dimethyl sulfoxide.  

3.2.2.3 Macrophage cell culture 

Mouse bone marrow was plated at 6 million cells/mL in non-treated 48 well plates 

(82051-004, VWR) and cultured with complete macrophage media for six days to drive 

cells to macrophage phenotype [157]. Macrophages were cultured in 300 µL of Complete 

Macrophage Cell Media (88% DMEM:F12 (SH0023.01, Cytiva), 10% fetal bovine serum 

(26-140-079, Fisher Scientific), 1% penicillin/streptomycin (15-140-122, Fisher 

Scientific), 1% GlutaMax (35050-061, Life Technologies), and 50 ng/mL macrophage-

colony stimulating factor (M9170, Sigma-Aldrich)), which was half-changed every two to 

three days. The macrophages were grown to confluency in normoxia at 37 °C before being 

used. Primary macrophages were used in the following experiments to negate the effects 

of dedifferentiation. Cells from three different mice were used in these experiments to 

account for cell variability. Once the macrophages reached 80% confluence, interferon-δ 

(IF005, Fisher Scientific) was added to the media in half of the wells to a concentration of 

20 ng/mL. The cells were allowed to incubate for 4 hours at 37 °C at normoxia before all 

media was removed and replaced with either 300 µL complete macrophage cell media in 

the untreated wells or 300 µL of complete macrophage cell media containing 100 ng/mL 

lipopolysaccharide (LPS) (L4516, Sigma-Aldrich) in the interferon-δ treated wells. The 

cells incubated for 24 hours with or without LPS at 37 °C in normoxia. The cells that 



73 
 

received no polarization treatment were maintained as naïve macrophages, while the cells 

that were treated with interferon-δ and LPS were M1-like. M2-like macrophages were 

obtained by treating the macrophages with 20 ng/mL of IL-4 and Il-13, instead of treatment 

with MBVs. 

3.2.2.4 Treating Macrophages with MBVs 

 Following polarization, the media was removed and frozen for later use in assays, 

then replaced with media containing 0, 5, 10, 15 µg/mL of MBVs or 20 ng/mL of IL-4 and 

IL-13, with or without 100 ng/mL of LPS, depending on whether the cells were naïve or 

M1. The cells incubated for 48 hours at 37 °C in normoxia before the media was removed 

and frozen for use in assays, and the cells were fixed in 4% PFA for 15 minutes. This study 

included in-plate duplicates of each treatment, with three different plates of cells, each from 

a different mouse. 
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Figure 15. The different pathways macrophages take to metabolize arginine, based on their 

phenotype. Macrophages metabolize arginine depending upon their polarization. If polarized 

towards M1, they metabolize arginine to nitric oxide and citrulline, whereas when M2, they 

metabolize arginine to  ornithine and urea. The divergence in metabolism can be taken advantage 

of by measuring the concentrations of various downstream products to easily determine the 

phenotype of a population of macrophages [158]. 

3.2.2.5 Urea and Nitrite Assays on Macrophage Media 

Both the urea and nitrite assays were conducted to determine the phenotype of 

macrophages non-destructively, due to the divergent metabolism of macrophages based on 

activation. M1 macrophages produce more nitrite from arginine while M2 macrophages 

produce urea. Figure 15 [158] demonstrates how macrophages can break down arginine to 

produce either nitrite or urea, depending on their phenotype. The M1-likeness can be 

determined by the ratio of nitrite/urea, which should be independent of the number of 
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macrophages. Thus, a urea assay (DIUR-100, BioAssay Systems) was conducted on media 

taken from the macrophages treated with MBVs, induplicate, according to the 

manufacturer’s instructions. Briefly, a standard curve was made and 50 µL of both the 

standard and samples were pipetted in duplicate into a 96 well plate. 200 µL of the working 

reagent was added to each well and the plate was allowed to incubate at room temperature, 

in the dark, for 50 minutes, before having the absorbance of each well be read on a plate 

reader at 430 nm. 

For the nitrite assay (PAG2930, VWR), a standard curve was made and 50 µL of 

both the standard and samples were pipetted in duplicate into a 96 well plate. 50 µL of the 

Sulfanilamide solution was added to each well and the plate was allowed to incubate at 

room temperature, in the dark, for 10 minutes. 50 µL of the NED solution was then added 

to each well and the plate was allowed to incubate at room temperature, in the dark, for 

another 10 minutes before having the absorbance of each well be read on a plate reader at 

535 nm. 

3.2.2.6 NP cell culture 

Human NP cells (4800, ScienCell) were cultured in a 48 well plate (82051-004, 

VWR) coated with 0.15 µg of Poly-L-Lysine per well (0413, ScienCell). NP cells were 

cultured in 300 µL of Complete Nucleus Pulposus Cell Media (4801, ScienCell), which 

was changed every two to three days. The NP cells were grown to confluency in normoxia 

at 37 °C before being used. Passage 2 NP cells were used in the following experiments to 

negate the effects of dedifferentiation. These cells were acquired from single, fetal donor 

and the identity of the cells was verified by the company through immunofluorescence with 
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antibodies for fibronectin and vimentin (ScienCell). Three different donors were used in 

these experiments to account for donor variability. 

3.2.2.7 Treating NP cells with MBVs 

Once the NP cells reached 80% confluence, all media was removed and frozen for 

later analysis, then replaced with either 300 µL complete NP cell media or 300 µL of 

complete NP cell media containing 10 ng/mL IL-1β (200-01B, PeproTech). The cells 

incubated for 24 hours with or without IL-1β at 37 °C in normoxia before the media was 

removed and frozen, then replaced with 300 µL of complete NP cell media, with or without 

IL-1β, and 30 µL of CCK-8 solution (ab228554, Abcam). The cells incubated for 2 hours 

at 37 °C in normoxia before the CCK-8 media was removed and read according to the 

manufacturer’s instructions, and the media was replaced with complete NP cell media 

containing 0, 5, 10, or 15 µg/mL of MBVs, with or without 10 ng/mL of IL-1β, depending 

on the group. The cells incubated for 48 hours at 37 °C in normoxia before the media was 

removed and frozen, then replaced with 300 µL of complete NP cell media, with or without 

IL-1β, and 30 µL or CCK-8 solution. The cells incubated for 2 hours at 37 °C in normoxia 

before the CCK-8 media was removed and read and the cells were fixed in 4% PFA for 15 

minutes. The CCK-8 data was used to determine the number of cells before and after 

treatment with MBVs. The number of cells was determined by creating a standard curve 

of cells and conducting the CCK-8 assay on them as described. Brightfield images were 

taken every day using an ISS VistaVision microscope to observe morphological changes 

in the NP cells. This study included in-plate duplicates of each treatment, with three 

different plates of cells, all with a different donor. 
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3.2.3 Statistical Analyses 

Statistical analysis was conducted using the GraphPad Prism 7.03 software. 

Statistical significance was determined in the nitrite and urea assays using a two-way 

ANOVA with multiple comparisons within each group and of the same treatment between 

groups. Significance was determined in the CCK-8 analysis using a two-way ANOVA. 

Significance was set as p≤0.05 for all analyses. Error bars for all graphs represent the 

standard deviation. 

3.3 RESULTS 

3.3.1 Isolation and Characterization of Matrix Bound Vesicles in Decellularized Porcine 

Nucleus Pulposus Tissue 

3.3.1.1 Isolation and Size Quantification of MBVs 

 Following isolation of MBVs from the decellularized porcine NP tissue, the physical 

characteristics of the MBVs were investigated to compare to previously described MBVs. The 

total average diameter of the MBVs was 114.4 ± 12.75 nm. The distribution of the sizes 

of MBVs determined from the nanoparticle tracking analysis are shown in Figure 16. The 

size data collected from the nanoparticle tracking analysis demonstrated that the MBVs 

isolated here were of similar size to previously described MBVs from other tissues [68, 69, 

96, 97, 99, 100, 140]. Following the nanoparticle tracking analysis, a BCA protein assay 

was conducted to determine the total protein content of the MBVs. The average amount of 

protein isolated from each crush was 0.314 ± 0.052 µg/mg tissue. 
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Figure 16. Size distributions of MBVs using nanoparticle tracking analysis. The size 

distributions of the MBVs were determined as previously described using nanoparticle tracking 

analysis. Each graph shows the average size distribution across three videos, for different MBV 

isolations. 

3.3.1.2 Imaging MBVs Using Transmission Electron Microscopy 

 Following the verification that there were protein and particles present from the 

digestion and isolation of MBVs from decellularized NP tissue, three batches of MBVs 

were imaged using a TEM. Figure 17 A and B shows representative images of the MBVs 

which show a mostly rounded shape, with small crystalline formations located inside. 

Figure 17 C demonstrates MBVs stained with uranyl acetate, demonstrating the presence 

of lipids, which suggests a lipid membrane. This was an important finding, because the 

presence of lipids in these vesicles suggests that they are secreted from cells and adds 

evidence that these particles are truly MBVs. Figure 17D shows an EDX spectrum of the 

elemental composition of the MBVs. This spectrum shows high contents of calcium, 
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phosphorus, potassium, magnesium, and chlorine. The high levels of copper and oxygen 

are likely due to the copper grid and atmosphere, respectively. 

 

Figure 17. Representative Images of MBVs from two different isolations. A, B) Macroscopic 

images of MBVs from two different isolations demonstrated similarity in size and shape. C) 
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Macroscopic image of MBVs stained with uranyl acetate. D) EDX data of an MBV. The large 

copper spike is most likely due to the copper background from the grid. 

 

3.3.1.3 Protein Content Quantification of MBVs 

 Once the physical characteristics of the NP MBVs had been investigated, the protein 

contents of the MBVs were next investigated. Selected protein content of the MBVs was 

analyzed using a 111-protein array to determine the contents of the MBVs and compare 

the most prevalent proteins with previous literature. Figure 18A-C shows images of the 

membranes. It was noted that the dots were slightly dim, which is due to the low mass of 

protein that was analyzed for each membrane (21.29, 47.3, and 13.24 µg respectively). 

Figure 18D demonstrates the average adjusted pixel density between all three membranes 

of the ten most prevalent proteins. These most prevalent proteins play roles in immune 

regulation (IL-33, CCL22, coagulation factor III, IL-1ra, IL-28A/B, LIF, and IL-1a), 

matrix homeostasis (MMP-2), and cell signaling (fetuin A and proprotein convertase 9). 
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Figure 18. MBVs contain specific proteins. A-C) Representative images of each membrane with 

a different MBV isolation. D) A graph of the normalized adjusted pixel density of the 10 most 

prevalent proteins from the array. 

3.3.2 Determining Effects of Matrix Bound Vesicles on Cells 

3.3.2.1 Treating Macrophages with MBVs 

 Macrophages have been found to be present in degenerate NP tissue, most likely 

due to disruption of the AF to allow infiltration [89, 159]. Thus, we wanted to investigate 

the impact of the NP MBVs on macrophages to determine how the macrophages would 

react and if they would be able to act to repair the tissue. The specific phenotypes used here 

were naïve and M1-like macrophages as these would be the phenotypes that are most likely 

to be present in the degenerate NP. To investigate the effects of MBVs on both naïve and 

M1-like macrophages, macrophages were treated with concentrations of 0, 5, 10, and 15 

µg/mL of MBVs for 48 hours in complete media. The media was removed and tested for 

urea and nitrite immediately before treatment and after treatment with MBVs. Nitrite was 

used as an indicator of an M1-like phenotype, while urea was used as an indicator of an 

M2-like phenotype. If low levels of both were present, this was an indicator of a naïve 
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phenotype. Figure 19A-B demonstrates the naïve macrophage readings. The naïve 

macrophages did not express readable amounts of nitrite before treatment with MBVs, 

however, after treatment, the nitrite significantly increased in a concentration dependent 

fashion with MBV concentration (Fig. 19A). In contrast, the naïve macrophages 

demonstrated low levels of urea expression before treatment with MBVs, however, after 

treatment with MBVs, there were no readable urea levels, except in the M2-like 

macrophages, which did not receive MBVs (Fig. 19B). Figure 19C-D demonstrates the 

M1-like polarized macrophage readings. The M1-like macrophages expressed high levels 

of nitrite both before and after treatment with MBVs, with the only significant differences 

occurring between 15 µg/mL of MBVs and 0 and 5 µg/mL and M2-like polarized 

macrophages after treatment (Fig. 19C). The M1-like macrophages demonstrated low 

levels of urea before treatment with MBVs, and no urea expression following MBV 

treatment, with significant decreases in the 0 and 10 µg/mL and the M2-like macrophages 

(Fig. 19D). Combined, these data demonstrate that NP MBVs polarize macrophages 

toward an M1-like phenotype if they are naïve and keep M1-like macrophages in and M1-

like phenotype. 
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Figure 19. MBVs polarize macrophages towards an inflammatory phenotype. Graphs 

demonstrating the concentrations of nitrite (A and C) and urea (B and D) before and after treatment 

with MBVs. The groups were split naive (complete media) and M1-like (pretreated with interferon-

δ, then LPS in complete media) macrophages. * Indicates significant difference p < 0.05 within the 

same treatment between the different times. # Indicates significant difference p < 0.05 of the within 

the same time but between different treatments. 

3.3.2.2 Treating NP cells with MBVs 

Similar to macrophages, NP cells were treated with varying concentrations of 

MBVs, both with and without treatment with IL-1β to create an inflammatory NP 

phenotype similar to the degenerate disc. Figure 20A-D shows representative images of 

the NP cells both before and after treatment with MBVs. It was noted that while the NP 

cells did not drastically change their morphology, they did begin to overlap during 

proliferation, as well as stop lining up in an orderly fashion, following treatment with 

MBVs, suggesting the MBVs had some effect on NP cell growth. The effect of MBVs on 

NP cell proliferation was also investigated. Figure 20E and F shows the number of 
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untreated and IL-1β treated cells calculated using the CCK-8 assay and a standard curve of 

NP cells before and after treatment with MBVs. The CCK-8 assay is used to measure the 

number of cells that are present. There were no significant differences present between any 

groups, indicating that the number of viable cells did not significantly change, however, all 

of the after-treatment readings have more cells than before. This suggests that the NP 

MBVs did not halt proliferation, which would be indicative of a senescent phenotype, 

common in degenerate discs. 
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Figure 20. MBVs cause NP cells to grow on top of each other and stop lining up. A-D) 

Representative images of NP cells both before and after treatment with MBVs. E) The number of 

untreated cells before and after treatment with MBVs. F) The number of IL-1β treated cells before 

and after treatment with MBVs. There were no significant differences between any groups. 

3.4 DISCUSSION 

Decellularized tissue scaffolds have long been known to modulate cell function 

towards regeneration. Recent discoveries in urinary bladder matrix, small intestinal 

submucosa, and dermis have identified MBVs as one potential mechanistic pathway for 

modulation of cell function [68, 96-98]. To date, no one has explored the presence or 

function of MBVs in NP tissue, which, from the work presented here, appears to behave 

differently compared to previously described MBVs. 

The cell culture experiments revealed that naïve macrophages treated with MBVs 

secreted much more nitrite and much less urea compared to before MBV treatment, which 

suggests NP MBVs are pro-inflammatory. Interestingly, if the macrophages were already 

polarized towards an M1-like phenotype, they secreted relatively similar levels of nitrite, 

regardless of treatment. In contrast, macrophages generally secreted urea no matter the 

polarization before treatment with MBVs but only produced urea when polarized towards 

an M2-like phenotype following treatment with MBVs. These results suggest that the NP 

MBVs isolated here polarize both naïve and M1-like macrophages toward an M1-like 

phenotype, which is different to previous literature, which suggested that MBVs from 

urinary bladder matrix and small intestinal submucosa polarized macrophages towards an 

M2-like phenotype [68, 69]. This result suggests that NP MBVs cause cells to act similarly 

to when they treated with the whole decellularized tissue. In fact, this result has already 

been investigated in urinary bladder matrix and small intestinal submucosa, as both of these 

whole tissues also polarized macrophages towards an M2-like phenotype [69, 97]. NP 
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tissue, on the other hand, causes an inflammatory, M1-like response, even when 

decellularized and placed within a host [39]. It appears that instead of only acting in an 

anti-inflammatory manner, as was originally believed, MBVs are dependent upon their 

parent tissue, and have effects similar to the tissue as a whole. Further research into the 

causes of these differences between MBVs derived from different tissues needs to be 

performed, however, one possibility is that MBVs are the mediators of tissue breakdown. 

Because tissues are different, they also have different methods of breakdown and 

remodeling. In the case of the NP, this tissue naturally breaks down over time and lacks a 

method to remodel, and so the MBVs mimic this response to cells. On the other hand, the 

tissues that MBVs have been isolated from previously and have been shown to modulate 

macrophages toward an M2-like phenotype; urinary bladder matrix, small intestinal 

submucosa, and dermis; are all tissues that have high turnover and are constantly 

remodeling. In these tissues, macrophages would be much more inclined to aid in the 

remodeling process compared to the NP. Thus, the MBVs from these tissues also mimic 

this remodeling response in cells. 

Following the investigation into the effects of MBVs on cells, the cargo of the 

MBVs were also investigated. MBVs contain miRNA, proteins, and lipids that can have 

effects on cells and the surrounding tissue. Due to time constraints as well as a lack of 

information on miRNA present in MBVs, only protein cargo of MBVs were investigated 

in this thesis. The most prevalent proteins from NP MBVs were IL-33 and MMP-2. IL-33 

is a member of the IL-1 family and plays many roles in macrophage activation, showing 

roles in polarizing macrophages to both M1- and M2-like phenotypes [160]. This is most 

likely due to its role in regulating the expression of IL-1ra on many different cell types, 
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including macrophages [160]. IL-33 is generally considered as an alarm signal for cell or 

tissue damage [160]. In most tissues, IL-33 activates Treg and Th2 cells to then secrete IL-

4 and IL-13 [160, 161]. Increased secretion of IL-4 and IL-13 polarize macrophages 

towards an M2-like response [160, 161]. However, if these and other M2 cytokines are not 

present in large enough quantities or pro-inflammatory cytokines, like IL-12 are present, 

IL-33 can cause macrophages to instead be polarized ed towards an M1-like phenotype 

[161]. The data collected here suggested that NP MBVs polarize macrophages towards an 

M1-like phenotype. One reason this may occur is that anti-inflammatory cytokines are not 

present in enough quantities to offset the effect of pro-inflammatory cytokines on IL-33 

receptor expression on macrophages, polarizing them towards an M1-like phenotype. IL-

33 was investigated thoroughly as being a key regulator of macrophage phenotype in 

MBVs, to polarize them towards an M2-like phenotype, in small intestinal submucosal 

MBVs [68]. MBVs from small intestinal submucosa required IL-33 to polarize 

macrophages towards an M2-like phenotype, as MBVs isolated from the small intestinal 

submucosa of IL-33 negative animals resulted in activation of macrophages towards an 

M1-like phenotype, instead of the M2-like phenotype from IL-33 positive animals [68]. 

Our results indicate that IL-33 is present in NP MBVs, however, macrophages cultured 

with the NP MBVs appeared to become polarized towards an M1-like phenotype, which is 

different to previous literature. This suggests that while IL-33 is important in MBV 

mediated macrophage polarization, there are other factors that should be considered as 

well, that are different between the two types of MBVs. 

MMP-2 is a matrix metalloproteinase that is involved in the breakdown of the 

extracellular matrix, specifically type IV collagen, and is thought to be involved in multiple 
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pathways involved in vascularization and the nervous system through regulation of growth 

of new vasculature and neurons [162, 163]. Previous literature on small intestinal 

submucosa found most MBV solutions contained some MMP-2 but not at the levels 

demonstrated here, which may be due to the different tissue sources of the MBVs [68]. The 

other most prevalent proteins included CCL22, Coagulation Factor II (CD142), IL-1ra, IL-

28A/B, LIF, IL-1α, Fetuin A, and Proprotein Convertase 9. Of these proteins, Coagulation 

Factor III [164], IL-28A/B [165], LIF [166], and IL-1α [167] act as pro-inflammatory 

cytokines, however, IL-28A/B can play both pro- and anti-inflammatory roles [165]. 

CCL22, IL-1ra, and Fetuin A act as anti-inflammatory cytokines, with CCL22 invoking a 

type II immune response [168], IL-1ra acting as a competitive inhibitor of IL-1α and IL-

1β [169], and Fetuin A acting to inhibit pathogen associated molecular pattern activation 

of innate immune cells [170]. Lastly, Proprotein Convertase 9 plays minimal roles in 

inflammation, instead acting as a processor or protein precursors [171]. Overall, the 

majority of prevalent proteins in NP MBVs have some pro-inflammatory or degradative 

roles, with only a few of the proteins acting to oppose the others. In comparison, MBVs 

from small intestinal submucosa contained more proteins involved in other pathways 

besides inflammation such as endostatin, a regulator of angiogenesis [172], HGF, a 

regulator of cell growth and motility [173], MPO, an antimicrobial agent [174], and Reg3G, 

an immunosuppressive [68, 175]. Another key protein found in small intestinal submucosa 

was CD40, which is a costimulatory cytokine required for immune cell response, and was 

not very prevalent in NP MBVs [65]. The lack of CD40 may be one reason that NP MBVs 

polarized macrophages toward an M1-like response, whereas MBVs from other tissues 

polarized macrophages towards an M2-like response.  
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Other important cytokines that were present in our NP MBVs but not the most 

prevalent, include IL-7, CXCL10, IL-10, and IL-13 and ranking 11, 20, 21, and 29 

respectively. IL-7 is involved in B and T cell activation, as well as bone homeostasis [176, 

177]. CXCL10, otherwise known as interferon gamma-induced protein 10, is a chemokine 

for macrophages, T cells, and other immune cells, and also inhibits angiogenesis [178, 

179]. IL-10 is a key anti-inflammatory cytokine that inhibits the activity of most immune 

cells and polarizes macrophages towards an M2-like phenotype [180, 181]. Lastly, IL-13 

is a key anti-inflammatory cytokine, and plays many roles in immune cells [182]. While 

the protein content of the MBVs is important and likely played key roles in the effects on 

cells, the miRNA and lipid contents that were not investigated, most likely also aided in 

the cell effects. Future work should investigate the miRNA and lipid cargo of the NP MBVs 

to better determine their roles in the effect the MBVs had on cells. miRNA likely plays a 

large role in modulation of cell phenotype, as previous literature demonstrated the presence 

of some miRNA in MBVs from urinary bladder matrix and small intestinal submucosa that 

highly expressed miRNA involved in modulation of macrophage phenotype [96, 99]. 

Lipids of MBVs are also important to investigate, as it is known that they can be used for 

cellular signaling, however, much less is known about the roles of lipids in MBVs. Along 

with the investigation into miRNA and lipid cargo, the effects of the various proteins that 

were prevalent within MBVs can also be investigated for their specific roles in the effects 

the MBVs had on cells. 

NP cells were cultured and treated with MBVs similarly to the macrophages. 

Instead of polarizing the NP cells using LPS, IL-1β was used as it is a common pro-

inflammatory cytokine found within the degenerated disc. Before treatment with MBVs, 
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the NP cells appeared to align in rows, even when treated with IL-1β. However, after 

treatment with any concentration of MBVs, the NP cells started to become less organized 

and started to overlap with each other. While there was no visible change in NP cell 

morphology, this overlapping is an indicator of altered cellular function. It was also noted 

that the NP cells continued proliferating during the MBV treatment, suggesting that the 

cells did not become senescent, which often occurs in mid to late-stage disc degeneration. 

More research to determine what is happening to the NP cells, as well as what causes the 

MBVs to have these effects must be performed. These experiments could include 

evaluating the gene expression changes of known NP markers ACAN, COL2, or SOX9, as 

well as possibly treating the NP cells with MBVs from other tissues that are known to 

promote a remodeling phenotype and determine if NP cells have the capacity to regenerate 

the degenerate NP if given the current signals.  

TEM and NanoSight analysis determined that there were particles isolated from the 

decellularized tissue scaffold with the same size and appearance as previously determined 

MBVs, however, there appeared to be a crystalline formation within the MBVs that had 

not been seen previously. One hypothesis for these crystals is that they are similar to the 

calcifying nodes of matrix vesicles, as the MBVs isolated here are secreted by chondrocyte-

like cells, which secrete matrix vesicles in other parts of the body, and calcium was present 

in the EDX of the MBVs [111]. Further research will need to be performed to fully 

elucidate what the crystalline formations are. 

 The first limitation of the MBV project arm was that it required vast amounts of 

decellularized tissue to generate usable amounts of MBVs. The average tissue requirement 

was 3.18 mg to isolate 1 µg of MBVs. To ensure that all experiments could be performed, 
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the amount of MBVs used for the protein array was lower than what was suggested by the 

manufacturer, which led to dim readings and increased noise. To combat this limitation, 

MBV isolations specifically for protein determination should be performed, to ensure 

adequate mass of proteins. This study also did not investigate the total protein content of 

NP MBVs, only the proteins that could be read using the cytokine array. This means that 

no knowledge was obtained on other, possibly important proteins. In the future, further 

studies investigating a wider range of proteins, using either another protein array or mass 

spectrometry, should be used to get a better understanding of the protein contents of MBVs. 

Along with the fact that only a select few proteins were analyzed using the cytokine array, 

neither miRNA nor lipids were investigated in any capacity in this work. miRNA most 

likely play a large role in cell phenotype modulation and could account for some of the 

differences between NP MBVs and other MBVs that were noticed. Future work should 

investigate the total miRNA contents of NP MBVs and compare this to the contents of 

other MBVs. Another limitation of this study was that only one isolation method was used 

here. It is possible that the amount of decellularized tissue needed to isolate usable amounts 

of MBVs could be decreased using another isolation method that was discussed in the 

literature review section. For the readings of nitrite and urea from macrophage media, many 

of the values were unreadable, making analysis difficult. A few reasons for this include 

that the values were actually very low or that the assays were not sensitive enough to 

measure such small readings. In the future, some solutions to this problem would be to 

either use more sensitive assays or to culture the macrophages for longer, to allow the 

analytes to accumulate further. Another limitation is that the NP cells did not react very 

much to the MBVs, so it was difficult to visually determine how the MBVs impacted them, 
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unlike the macrophages, which were very easy to visually tell differences between the 

treatments. The work with NP cells and MBVs was preliminary and suggests that further 

work would be useful to further elucidate the effects of NP MBVs on the native NP cells. 

Chapter 4: Conclusions 
The decellularization and gelation process developed here for porcine nucleus 

pulposus is not cytotoxic and the resulting gel exhibits neuroinhibitory properties, which 

could be explored in the future for the treatment of low back pain. This decellularized NP 

tissue scaffold can be engineered into a thermally forming injectable gel, which would 

improve the ability to translate to the clinic. The presence of matrix bound nanovesicles 

was also investigated in the decellularized NP. MBV-like vesicles could be isolated from 

the NP tissue but, unexpectedly, treating macrophages and NP cells with the MBVs 

polarized them towards an unhealthy, inflammatory phenotype, contrary to expectation 

based on the results of previous literature. While the results of macrophages treated with 

MBVs presented in this thesis may be different to previous literature, the NP MBVs appear 

to have the same effect on macrophages as the whole NP tissue. Instead of acting in a pro-

regenerative manner independent of the tissue they are derived from, it appears that MBVs 

act in a similar manner to how treatment with the whole parent tissue would result. More 

research must be performed to verify the results demonstrated here, especially in unique 

tissues that have different properties to the ones investigated previously. This research also 

further increased the knowledge in the field of MBVs and raised new questions on the 

effects of tissue specific MBVs on cells, as well as their source tissue. 
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