
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Mechanical (and Materials) Engineering --
Dissertations, Theses, and Student Research

Mechanical & Materials Engineering, Department
of

Summer 8-2017

Cyber-Physical System Characterization and Co-
Regulation of a Quadrotor UAS
Seth E. Doebbeling
University of Nebraska - Lincoln, sdoebbeling2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/mechengdiss

Part of the Acoustics, Dynamics, and Controls Commons, Navigation, Guidance, Control and
Dynamics Commons, Robotics Commons, Systems Engineering Commons, and the Systems
Engineering and Multidisciplinary Design Optimization Commons

This Article is brought to you for free and open access by the Mechanical & Materials Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Doebbeling, Seth E., "Cyber-Physical System Characterization and Co-Regulation of a Quadrotor UAS" (2017). Mechanical (and
Materials) Engineering -- Dissertations, Theses, and Student Research. 127.
http://digitalcommons.unl.edu/mechengdiss/127

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mechengdiss?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mechengdiss?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mechengineer?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mechengineer?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mechengdiss?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/294?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/226?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/226?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/221?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/221?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mechengdiss/127?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages

CYBER-PHYSICAL SYSTEM CHARACTERIZATION AND CO-REGULATION OF A

QUADROTOR UAS

by

Seth Doebbeling

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Mechanical Engineering and Applied Mechanics

Under the Supervision of Professor Justin Bradley

Lincoln, Nebraska

August, 2017

CYBER-PHYSICAL SYSTEM CHARACTERIZATION AND CO-REGULATION OF A

QUADROTOR UAS

Seth Doebbeling, M.S.

University of Nebraska, 2017

Adviser: Justin Bradley

An Unmanned Aircraft System (UAS) is a Cyber-Physical System (CPS) in which a host of

real-time computational tasks contending for shared resources must be cooperatively man-

aged to obtain mission objectives. Traditionally, control of the UAS is designed assuming

a fixed, high sampling rate in order to maintain reliable performance and margins of sta-

bility. But emerging methods challenge this design by dynamically allocating resources to

computational tasks, thereby affecting control and mission performance. To apply these

emerging strategies, a characterization and understanding of the effects of timing on con-

trol and trajectory following performance is required. Going beyond traditional control

evaluation techniques, in this work we characterize the trajectory following performance,

timing, and control of a quadrotor UAS under Discrete Linear Quadratic Regulator control

(DLQR) designed at various sampling rates. We introduce new metrics for characterizing

cyber-physical quadrotor performance, and provide empirical evidence that high-sampling-

rate control strategies over 50 Hz may not significantly improve control performance for

our quadrotor platform and hence may not effectively allocate resources that could be used

to improve other (non-control related) mission objectives. We then propose a strategy in

which a model representing the sampling rate is augmented to the state-space model of a

quadrotor UAS, controllers are designed for this holistic system to more effectively allo-

cate these resources. We develop a full nonlinear equation co-regulation simulation suite in

MATLAB and provide analysis of the UAS in following a trajectory under traditional control

design as well as our proposed co-regulation design for comparison. Under co-regulation

we are able to reduce the maximum power consumption by ~12% and the time averaged

normalized state error by ~75% for a unit step in x, y, and z, while maintaining relatively

good cross-tracking performance. Results illustrate the need for a higher level trajectory

planning and generation technique capable of translating mission tasks into smooth trajec-

tories and providing both physical and cyber reference commands suitable for our variable

rate co-regulation architecture. Therefore, we design a low level, kinematic trajectory gen-

erator capable of easily adjusting timing constraints which provides a first step toward such

a motion tracking architecture.

iv

DEDICATION

To my parents. Thank you, you are my inspiration and my foundation. I would not be who

I am today without your guidance.

v

ACKNOWLEDGMENTS

This work was supported in part by NSF award #1638099.

vi

Contents

Contents vi

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Contributions . 6

1.1.1 Co-regulation of a Quadrotor UAS 6

1.1.2 CPS Trajectory Generation . 7

1.2 Innovations . 7

2 Related Work 8

2.1 Computer Control . 8

2.1.1 Sensor Scheduling . 11

2.2 Motion Planning . 12

2.3 Application to UAS . 15

2.4 Our Work . 18

3 Characterization of UAS Performance Under Discrete Control 20

3.1 Quadrotor UAS System Model . 21

vii

3.1.1 Nonlinear Physical Model . 21

3.1.2 Linear Physical Model . 22

3.2 LQR Formulation . 24

3.2.1 Physical System Control . 24

3.3 Real-time Requirements . 26

3.4 Experimental Setup . 28

3.5 CPS Metrics . 31

3.5.1 Cumulative Time-Weighted State Error 32

3.5.2 Translational Bounds . 33

3.5.3 Control Effort . 34

3.6 Results . 35

3.6.1 Traditional Disturbance Rejection Experiment 35

3.6.2 Trajectory Following Experiments 36

3.6.3 Characterizing the Relationship Between Trajectory Following Per-

formance and Sampling Period . 38

3.6.3.1 Variation of Gain and H2-norm 38

3.6.3.2 State Error . 39

3.6.3.3 Control Effort . 41

3.7 Discussion of Results . 42

3.7.1 Utilization Metric . 44

4 Cyber-Physical UAS Co-regulation 46

4.1 CPS Model and Control . 46

4.1.1 Computational Model and Control 48

4.2 Evaluation Metrics . 50

4.2.1 State Error Metrics . 50

viii

4.2.2 Power and Energy Estimates . 52

4.3 Results . 53

4.3.1 Simulation Setup . 53

4.3.2 Results . 54

5 Toward Cyber-Physical UAS Trajectory Generation 59

5.1 Introduction . 59

5.2 Background . 60

5.3 Method . 62

5.3.1 Trajectory Planning . 64

5.3.2 Trajectory Generation . 66

5.4 Experimental Setup . 68

5.4.1 Experimental Results . 69

5.5 Discussion . 71

5.5.1 Pseudo Trajectories . 72

5.5.2 Trajectory Tracking . 74

6 Conclusions 76

6.1 Future Work . 78

A Quadrotor Dynamics 80

B Linearization 95

C Investigation of Noise Model 105

C.1 Data Dependent System Modeling . 106

C.1.1 ARMA Model Fit . 107

C.1.2 Green’s Function . 109

ix

C.1.3 Frequency Analysis . 109

C.2 Noise Modeling . 110

Bibliography 113

x

List of Figures

1.1 CPU utilization and availability for different tasks, assuming that the attitude

controller has a worst case execution time of 0.5 ms. 3

1.2 Traditional Hybrid Architecture (left) and CPS Hybrid Architecture (right).

Subscript “p, c” represent “physical” and “cyber” respectively. 4

3.1 Quadrotor frame orientations. 21

3.2 Disturbance rejection on the roll axis at different sampling rates. A higher

sampling rate results in higher controller gains and more aggressive control.

Lower sampling rates result in a more narrow control input operating range,

but the response also takes longer to converge to the reference state. Note

that the response for 1 kHz (blue) is nearly identical to the 100 Hz plot, and is

obscured by it. 35

3.3 The paths taken by the UAS as it follows five commanded waypoints in space

at different sampling rates of the controller. 37

3.4 Variation in the controller gain and the H2 norm of the discretized system

across different sampling periods. 39

3.5 The change in average trajectory tracking error and the maximum deviation

from the trajectory for a single leg (step response) as the sampling period changes. 40

xi

3.6 The change in average trajectory tracking error and the maximum deviation

from the trajectory in Figure 3.3 as the sampling period changes. 40

3.7 The increase in time-weighted average control effort metric against increasing

sampling periods for a step response and for the trajectory in Figure 3.3. 41

3.8 CPU utilization and availability for different tasks, assuming that the attitude

controller has a worst case execution time of 0.5 ms. 45

4.1 Co-Regulation Block Diagram . 50

4.2 The quadrotor’s physical performance under co-regulation suffers an approx-

imate 1 percent overshoot in position but generates control inputs which are

significantly smaller in magnitude than the traditional DLQR controller. 55

4.3 Position of traditional DLQR response at 50Hz and 5Hz in comparison to co-

regulation at xc,ref= 30Hz . 56

5.1 Motion planning overview . 61

5.2 Test trajectories generated with a mission execution time of three seconds and

time-step resolution of 0.01 seconds . 69

5.3 Test trajectories generated with a minimum execution time (sec) which results

in a continuous path and time-step resolution of 0.01 seconds 70

5.4 Test trajectories with pseudo points generated with a mission execution time of

three seconds and time-step resolution of 0.01 seconds 72

5.5 Test trajectories with pseudo points generated with a minimum execution time

(sec) which results in a continuous path and time-step resolution of 0.01 seconds 73

A.1 Quadrotor frame orientations. 80

C.1 Roll Angle motion capture system data for a flight with minimum control input

of ~37sec in duration . 106

xii

C.2 DDS program results for ARMA(2,1) model fit to roll data. The results list

a co-variance γ0 = 2.98 × 10−4, mean µ = 0.0148, average X̄ = 0.0121,

variance σ2
a = 3.64 × 10−5, residual sum of squares RSS = 0.270, and the

number of unified auto-correlations greater than 3 #UAC > 3 = 26 for N =

7425 samples. 108

xiii

List of Tables

3.1 System Constants . 31

3.2 CPS metrics . 32

3.3 Table summarizing the trend in the proposed metrics for different trajectories. . 43

4.1 CPS co-regulation metrics . 52

4.2 Evaluation metrics of co-regulation and DLQR at different rates for step re-

sponse and trajectory following. 56

5.1 Evaluation metrics of test trajectories generated with time-step resolution of

0.01 seconds . 71

5.2 Evaluation metrics of test trajectories with pseudo points generated with time-

step resolution of 0.01 seconds . 73

C.1 Model and statistical parameters calculated by DDS program for ARMA(2,1)

model of roll data. 109

1

Chapter 1

Introduction

The design and development of robotic control systems, with advances in autonomy and

associated increasing demands on computation, can no longer rely on a “black box” view

of the computational system to adequately meet the requirements of next generation smart

autonomous vehicles. Unmanned Aircraft Systems (UAS), where computational resources

are scarce due to size and weight restrictions, are one example of such a system. The com-

mon assumptions of plentiful resources, instantaneous computation, and model emulation

accuracy become decreasingly valid as systems grow in complexity and try to meet in-

creasing demands. Under these scenarios, the consideration of computational and physical

demands in control design can lead to improved overall system and mission performance

by dynamically allocating computational and physical resources according to system per-

formance.

As a result, control strategies that consider physical and computational limitations and

performance are gaining popularity [1]. The design, consideration, and intersection of

computational resources with communication and physical resources is the objective of

Cyber-Physical Systems (CPS) research [2]. We make the assumption that “cyber” and

“physical” components are defined as in [3] where “cyber” refers to the intangible, com-

2

putational, algorithmic, and software components of the system and “physical” refers to

components consisting of mass and/or capable of generating a physical force.

Control strategies like event-triggered control [4], optimal sampling instances [5], and

time-varying control [6] all consider the regulation of computational resources alongside

physical actuation and control. This gives a system the ability to dynamically use resources

for control as needed. The potential benefits of such a control strategy to a robotic vehicle

include: more timely and targeted resource allocation, allowing the vehicle to accomplish

more with the same resources; more computation available for accomplishing mission ob-

jectives like data collection; and reduced control effort. While hybrid strategies like event-

triggered, optimal sampling, and time-varying control adjust computational resources re-

actively, they do not consider how to plan for this dynamic allocation to meet mission

performance objectives.

In this work we focus on the development and application of a CPS co-regulation mech-

anism [3, 7] that simultaneously, and in response to system performance, adjusts control

inputs alongside the sampling period of the real-time computing task executing the control

software to realize the benefits described for a quadrotor UAS system.

Consider a quadrotor UAS hosting an on-board board camera and global positioning

system (GPS) and carrying a small, light-weight survival kit on a search and rescue mis-

sion. The UAS is tasked with surveying an area of terrain too difficult for human rescuers

to navigate using the on-board camera and locate distressed hikers. Once the hikers are

located, the UAS must drop the survival kit, indicate to a ground station that the distressed

hikers have been found, and transmit their GPS location as well as images of their condi-

tion. In addition, the UAS is tasked with performing periodic flight maneuvers as gestures

to indicate to the hikers which direction to seek help, stay put, or otherwise. Given a con-

trol design in which cyber and physical resources are fixed, the UAS may easily be limited

in its performance while executing one or more of its mission tasks. Consider Figure 1.1,

3

Figure 1.1: CPU utilization and availability for different tasks, assuming that the attitude controller has a
worst case execution time of 0.5 ms.

which represents resource allocation on a real-time system for an inner flight control loop,

guidance and navigation, and advanced computer vision. In a fixed-rate design, the design

engineer must choose a single sampling period for the system to operate at. If the sampling

rate (inverse of sampling period) is high, the UAS may be better able to efficiently cover

the search area as well as perform flight gestures once the hikers are located; however,

there are less resources for image processing and transmission to indicate the state of the

hikers and the severity of the terrain surrounding them to nearby rescuers. Design at lower

rates may provide for better evaluation of the situation for rescuers, but the UAS may face

limitations in surveying the area effectively with the given payload and may not be able to

accurately converge on the hikers position or gesture information to them. Under a variable

rate control such as co-regulation, the UAS may be able to transition between the entire

range of sampling periods in Figure 1.1 under a single control design. The UAS may then

dynamically allocate resources to each of the real-time system task to most effectively exe-

cute the mission, using lower control rates when vision processing is prioritized and higher

rates when aggressive flight maneuvers are required.

4

Figure 1.2: Traditional Hybrid Architecture (left) and CPS Hybrid Architecture (right). Subscript “p, c”
represent “physical” and “cyber” respectively.

In Figure 1.2 we show a traditional hybrid architecture alongside a potential CPS hy-

brid architecture. In the traditional hybrid robotic architecture (left in Figure 1.2), a reactive

controller provides an input, Up, to the system to command small movements of the con-

trolled object through space and time [8]. To command larger movements, a guidance

and deliberative planning layer uses the explicit mathematical relationships between ac-

tuators and movement (e.g. kinematics, dynamics, constraints, etc.), Pp, to discretize the

desired larger movement into accomplishable reference commands, X̃p,ref , for the reac-

tive controller [9]. Similarly, to develop a CPS hybrid architecture (right in Figure 1.2),

where cyber effectors (i.e. sampling rate) are controlled alongside physical ones, a cyber-

physical control input, Ucp, is given to the combined cyber-physical system to move the

physical object through space and time simultaneously with adjustments to the sampling

rate. Commanding larger adjustments is accomplished by issuing cyber-physical reference

5

commands, X̃cp,ref , from a trajectory planner that requires a corresponding relationship

between both cyber and physical effectors and the movement through physical and cyber

space and time, Pcp (red dashed line around “Coupling” block in Figure 1.2). This enables

a cyber-physical guidance and planning layer to optimize physical and cyber trajectories

where physical and cyber performance is coupled. In this work we focus on characteri-

zation of the cyber-physical system, followed by design of a hybrid control scheme, and

an important first step toward a CPS trajectory planner as we work toward development of

such a CPS hybrid architecture as described in Figure 1.2.

Toward the goal of directly coupling cyber and physical resources to mission perfor-

mance for a quadrotor UAS, we develop a CPS co-regulation mechanism through three

stages of characterization, design, and development.

We first characterize the relationship between control task period (or sampling period),

control gain, and reference trajectory following performance of a quadrotor UAS. A care-

ful characterization of the imposed sampling rate of the controller influences stability mar-

gins [10], and schedulability [11]. Although the relationship between sampling rate and

control performance is understood [12], we take the important next step of characterizing

the relationship between sampling rate and trajectory following performance - the relation-

ship required to more optimally trade off cyber and physical resources at the planning layer.

We also introduce new metrics that explicitly measure trajectory following performance of

a cyber-physical vehicle system, going beyond traditional controller performance metrics.

We then propose a hybrid control design called “co-regulation” in which both com-

putational and physical resources are allocated in real-time under a unifying, closed loop

control architecture. We evaluate the controller under metrics that build off of those de-

fined in characterization of trajectory following performance as well as previous work to

compare our variable rate co-regulation control design to standard fixed rate controllers.

Finally we design and analyze a low level trajectory generator employing kinematic

6

equations and physical constraints on velocity, acceleration, and time suitable for the de-

signed co-regulation controller. The trajectory generator is a first step toward a higher level

motion tracking architecture which optimally commands resource allocation at a mission

planning level.

1.1 Contributions

1.1.1 Co-regulation of a Quadrotor UAS

In this work we propose a new Riemannian/Lebesgue hybrid method for a quadrotor UAS

we call “co-regulation” wherein computational and physical resources are allocated and

controlled according to feedback from the computational and physical system.

Similar formulations have been pursued in [7, 3] for different systems and scenarios.

Here we build on that work in 3 distinct ways. First, we apply our strategy to a quadro-

tor UAS representing the first discrete-time-varying control strategy for a quadrotor UAS.

Next, we evaluate our system by assessing performance of the UAS in following a trajec-

tory in addition to a common step-response as in most controller assessments. This gives a

much better indication of how the UAS will behave in a real mission and gives us a strat-

egy for developing a high-level planning algorithm that leverages our co-regulation strat-

egy. Finally, we demonstrate that common strategies of over-design using time redundancy

in sampling to improve safety margins [13] offer very little improvement in performance

and, in fact, almost no improvement is seen for our quadrotor in sampling over 50Hz.

Since some commercial quadrotors sample at 1000Hz, this implies that ~95% of control

resources may be poorly utilized and could possibly be put to use in accomplishing other

mission objectives.

7

1.1.2 CPS Trajectory Generation

Toward optimal allocation of cyber and physical resources for a quadrotor UAS executing

mission tasks, kinematic trajectory generation technique is adapted to three-dimensional

Cartesian coordinates and used to generate smooth trajectories under physical constraints

on velocity, acceleration, and time. The generator designed forms a series of discrete tra-

jectory points with associated information for estimations of state variables at given time

instances. The period at which these points are generated can be made to correspond to the

sampling period of control tasks under a higher level motion planning architecture with the

aim of effectively allocating cyber and physical resources at a lower level. This trajectory

generator may be a useful tool for increasing precision in trajectory following control for a

UAS as well as cyber-physical efficiency.

1.2 Innovations

The application of a cyber-physical co-regulation control architecture to a quadrotor UAS

model is a novel contribution. That is, for a quadrotor UAS, this is the first application of

a real-time, varying sampling rate control scheme. Coupled with this design, evaluation of

the control scheme in regard to trajectory following through several newly defined metrics

is an extension of traditional controller performance analysis. We also make an important

first step toward the development of a cyber-physical motion planning architecture through

the design of a trajectory generator suitable for such a system. When coupled with estimates

of cyber and physical effectors the trajectory generator may be used to adjust trajectory

points to more efficiently manage cyber and physical resources.

8

Chapter 2

Related Work

The area of Cyber-Physical Systems research arose out of the area known as “cybernetics,”

an ancestor of research areas such as control, real-time systems, optimization, autonomy,

artificial intelligence, and others [14].

One specific CPS research aim is to investigate new methods, models, and integrations

that bridge the divide between discrete computation and continuous control and movement

through space [15]. We briefly discuss the role of computation in control and present related

work that considers computation and control simultaneously, including within UAS. This

is followed by review of several motion planning schemes related to autonomous robotics

as we aim to provide insight into computational and physical trade-offs in their design.

2.1 Computer Control

Generally, computer control strategies can be divided up into Riemannian, Lebesgue, and

Hybrid sampling techniques [16]. Riemannian sampling represents traditional constant

sample-and-hold periods seen in digital/computational control techniques [17, 18]. This

approach is nearly universal due to the strong foundation of digital control, and because

9

periodic sampling matches traditional real-time task scheduling algorithms that primarily

consider time-triggered periodic task sets [11].

The implementation of the chosen sampling rate is typically represented by assigning

a periodicity value to the real-time computational control task. Ideally, either an offline

real-time task schedule is then designed, or an online scheduling algorithm is selected [11]

and implemented on a Real-Time Operating System (RTOS) to guarantee timing deadlines

will be met. Typically, however, because of the complexity of implementation on an RTOS

and since certifications and performance guarantees may not be strictly regulated for ap-

plications of certain CPS, a best-effort round-robin architecture (or similar) on a Linux

distribution or other micro-controller may be relied upon to provide timing with significant

variability. In this scenario, where a processor hosts a multitude of tasks and the execu-

tion of one or more tasks may become aperiodic, time redundancy is employed to try and

mitigate the consequences of missed deadlines [13]. That is, to ensure tasks meet exe-

cution deadlines, redundancies across multiple processors may be employed, consuming

computational resources.

Under Lebesgue sampling, in contrast, control inputs are obtained as needed in irreg-

ular intervals and result in the flexible and dynamic allocation of both control and com-

putational resources that could lead to improved efficiency and performance for a CPS.

One strategy for Lebesgue sampling, event-triggered control [19, 20], issues control inputs

based on limits of output deviation from nominal conditions, also called “control by ex-

ception” [21]. Historically, event-triggered control has been applied to relatively simple

systems, but recently has been applied to a quadrotor UAS, though with limitations in ap-

plicability [22]. The primary difficulty with this strategy is the lack of a mature theoretical

framework for designing and analyzing these control strategies [16].

Another Lebesgue sampling strategy uses optimal control techniques to solve for the

optimal control input and sampling instant simultaneously. In [5] optimality is shown for a

10

narrow class of systems and a quantization strategy is used to reduce computational com-

plexity. A similar approach in a receding horizon framework is proposed in [6]. These

strategies provide the dynamic resource allocation desired, but depend on precise execu-

tion and timing of the computational system. Also, since no feedback is used, they may be

susceptible to noise, disturbances, and environmental changes.

Finally, hybrid strategies combine Riemannian and Lebesgue sampling approaches to

reap the benefits of predictability of Riemannian sampling with the resource savings and

efficiency of Lebesgue sampling. In [23] an adaptive hybrid switching strategy switches

between time-triggered and event-triggered controllers, and the controller is shown to be

stable for a class of disturbances. The implications of this cooperation between software

execution, real-time progression, and control performance are highly consequential. For

system performance and margins of stability, the on-board control software must meet

deadlines, usually over-designed for worst-case contingency management. For cyber per-

formance, devoting fewer resources to control implies available resources for other com-

puting activities. As a result, on a constrained system the design is a resource allocation

and performance trade off.

Several related areas have investigated and leveraged this tradeoff. In [12] an explo-

ration of the impact of sampling rate and control gain on step response is given for a

system of inverted pendulums. Very high sampling rates typically result in better per-

formance as the discrete controller approaches its continuous counterpart, though with

some caveats [24]. Quality of Service (QoS) research investigates tradeoffs between cy-

ber resource allocation and system performance (including controllers) for various discrete

“service” intervals in the cyber system. This research confirms the trend that allocating

more cyber resources generally results in better performance [25, 26]. Networked Control

Systems has traditionally sought to identify conditions under which stability and perfor-

mance can be guaranteed for a system wherein sensing, control, and actuation occur on

11

networked computers [27, 28]. More recently, in [29], an optimization strategy is used to

identify communication and control inputs simultaneously while taking into account packet

loss. Event-triggered control research seeks to maximize cyber resource allocation [30, 31]

while maintaining control performance guarantees. While successful in some instances,

a fully-developed theory similar to digital control has still eluded the community [16]. A

few mechanisms utilizing optimal control techniques to generate control trajectories and

sampling instants form a time-varying sampling rate controller in [6, 5], and have produced

successful theoretical results, although with increased computational complexity.

2.1.1 Sensor Scheduling

In feedback control an estimator is often used to make estimates of state variables based

off of measurements made by one or more sensors. Sensors may be required to measure

multiple states and may have limitations on the rate in which they are able to sample a given

system. For a real-time system, energy, control rate, and computational constraints on the

system as a whole may limit an estimator’s ability to process all sensor measurements for

a given time-step. In such scenarios, a process referred to as sensor scheduling is often

used to optimize a pattern for either a set of sensors making measurements or which states

a single sensor measures for a given time-step to reduce system error [32, 33, 34]. A

high rate of sensor sampling may quickly become energy consuming and computationally

intensive, where in contrast, the absence of state measurements for relatively long periods

of time may result in a large accumulation of state error as the controller is unaware of

deviations in the system state [32]. For systems with high sensitivity the latter may even

result in instability.

For simple linear systems with Gaussian noise profiles, sensor scheduling solutions are

well understood and can be obtained a priori as the noise profile is independent of the sys-

12

tem [33]. However, for hybrid systems which may be adjusting physical and computational

resources resulting in dynamic constraints on sensor scheduling, a more complex problem

arises. As our co-regulation technique falls into an extreme case of such a hybrid system

in which the sampling rate of the control task has the potential to vary at each discrete

time-step, a real-time optimal sensor scheduling algorithm may be required. If the sensor

update rate deviates largely from the control rate, large amounts of state error may accu-

mulate. While operating at low control rates which may approach the limits on stability as

the controller cannot respond as quickly to large deviations, poor sensor scheduling may

be catastrophic. Conversely, limitations on sensor update rates and sensor scheduling con-

straints may constrict bounds on the region of stability for controllers designed outside of

such sensor constraints.

Nevertheless, in this work we will assume ideal sensors and full state feedback such

that sensors may sample infinitely fast while consuming infinitesimal amounts of energy or

computational resources, and we leave sensor scheduling for future work.

2.2 Motion Planning

Autonomous robots are rapidly expanding their ability to perform a variety of tasks, re-

quiring higher level motion planning techniques. For mobile autonomous robots, these

motion planning techniques may vary widely in regard to the mission task or ability to

assess the environment. In surveying structures or otherwise, coverage trajectories are of-

ten sought after where the robot is tasked with sweeping through an entire area to provide

complete visual inspection or environment mapping [35][36][37]. In contrast, target inter-

ception/rendezvous trajectories are often concerned with optimal path calculation [38][39]

and obstacle avoidance [40]. GPS and vision based navigation vary still in that the robot is

better equipped to analyze feedback on a static or dynamic environment [41, 42][43].

13

In the field of autonomous robotic manipulators, a robot is typically given a series of

waypoints to which a trajectory planner assigns target velocity and accelerations given the

kinematics of the robot and limitations on velocity and acceleration specified by the man-

ufacturer or through experimental results. At run-time a trajectory generator generates a

continuous function which satisfies the requirements set forth by the trajectory planner

via either a higher order polynomial spline or a linear approximation with higher order

(parabolic) blends between linear segments [44]. Although linear functions with parabolic

blends can better approximate a series of linear segments between waypoints (perhaps the

desired result), this technique can only generate continuous functions for position and ve-

locity. Therefore, for a system with inertia, this may result in extreme values of jerk (i.e.

the first time derivative of acceleration) when switching between zero acceleration in lin-

ear segments and large accelerations in the parabolic blends, making it difficult for a robot

to execute the generated trajectory and causing wear on actuators. As a result several

techniques which optimize or place bounds on jerk have been developed using higher or-

der polynomials, which provide for smoother transitions between values of acceleration

[45, 46, 47].

The authors of [9] expand on several different approaches similar to a linear approx-

imation with parabolic blends in which lower order dynamic constraints are enforced in

motion planning. In the context of small fixed wing UAS, algorithms for following a se-

ries of straight-line segments with methods for waypoint switching including a sphere of

acceptance and half plane penetration are explored. Note that this is similar to trajectory

following techniques we employ in Chapters 3 and 4 with the caveat that we switch refer-

ence waypoints when the simulation reaches an associated time, rather than when the UAS

reaches a certain point in space. This points to the differences in path following, which is

independent of time, and trajectory following in which the vehicle is expected to adhere to

time requirements as well as cross-tracking. It should also be noted that motion planning

14

in a partially known or unknown environment based on behavioral methods and on-board

sensor information, i.e. reactive motion planning, is subjugated here by a deliberative mo-

tion planning approach as outlined in [9] where explicit paths and trajectories are computed

based on global knowledge of the environment. That is, waypoints are specified by a higher

level planner (Voronoi graphs, Rapid Exploration of Random Trees (RRT) [9], A* [38], the

user, etc.) in such a way that the vehicle will avoid any objects given it follows the provided

waypoints to some degree of accuracy. However, as also stated in [9], deliberative motion

planning has a strong dependence on the precision of the given dynamic model, which, in

the case of UAS, given unpredictable environmental and feedback disturbances, is never

sufficient; therefore, the motion planning algorithm must be constantly recomputed. As a

result, simple lower order models must be used to ensure computational efficiency.

With the addition of circular orbit following algorithms for smoother transitions be-

tween straight-line segments [48], vector field path following techniques are outlined in

[49, 50] which allow for path following even under large environmental disturbances. How-

ever, straight-line and orbital path following computation is performed under the constraint

of a constant speed and therefore may result in a variety of paths depending on whether

conservation of path length, minimum execution time, or waypoint interception is desired

[48][49]. Alternatively, optimizing the combination of straight-line and orbital paths for the

shortest path lengths, known as the Dubins path [51], is a common technique for fixed-wing

aircraft [52].

Multirotor UAS, however, are much more agile than fixed-wing UAVs and have less

demanding constraints on motion and velocity. A method exploiting the agility of a mul-

tirotor UAS is presented in [53] which relies on nonlinear modeling and control as well

as higher order, optimization constraints on snap, the second derivative of acceleration

which provides smooth accelerations and precise timing. Other aggressive maneuvers are

achieved through event-triggered or scheduled trajectory generation to construct a trajec-

15

tory as a series of sub-trajectories for which separate controllers have been designed [54].

Although such methods allow for impressive maneuverability, they may become compu-

tationally expensive in scenarios where precision performance or aggressive maneuvering

is not prioritized. Other approaches, like that of [55], seek to minimize time in trajectory

planning using optimal control coupled with nonlinear modeling and constraints as well

as higher order polynomial approximations. In [56] a time optimal control method formu-

lated in [57] is applied to a quadrotor UAS which employs limitations on control effort

and is computationally inexpensive (up to 100 iterations of algorithm for each control input

generated at 50 Hz). Similarly in [58] kinematic equations with maximum velocity and

acceleration constraints are imposed to generate a sub-optimal, computationally simplis-

tic trajectory while maintaining sufficient physical performance. A series of sweeps over

the generated trajectory under acceleration and velocity constraints are used to optimize

the trajectory with respect to time. Therefore, lower order optimal control techniques are

feasible given model simplifications and fixed limitations on acceleration.

2.3 Application to UAS

Unmanned Air Systems (UAS) are a compelling platform on which to apply these method-

ologies as they may have very limited physical and computational resources due to size and

weight restrictions in conjunction with increasing autonomy and mission demands. For ex-

ample, an Ascending Technologies Hummingbird quadrotor system, a small to mid-sized

research grade quadrotor UAS commonly used in the NIMBUS Lab1, has a rotor-to-rotor

diameter of 340 mm and a max payload of only ~200 g. A three cell 2200 mAh LiPo bat-

tery may supply ~20 min of flight time without payload [59]. The Hummingbird operates

via a two level processor framework in which the low level processor (LLP) is mainly re-
1http://nimbus.unl.edu

http://nimbus.unl.edu

16

sponsible for maintaining attitudes required for stable flight, and the high level processor

(HLP) runs additional algorithms for processes such as path planning and sensor fusion.

In the NIMBUS Lab, control software is used to autonomously drive the vehicle through a

series of waypoints, or otherwise, to execute various missions. As an example, consider a

quadrotor UAS tasked with surveying a complex environment containing many obstacles

and boundaries using a suite of small, lightweight sensors. Computational tasks for the mis-

sion, such as video collection, image processing, storage, and communication of data, must

contend for resources while the computer maintains a high quality of service [25] for basic

autonomy tasks (e.g. control, planning, localization). Because sensors must be lightweight

they may have reduced quality requiring more computation to compensate (e.g. advanced

estimation schemes). Although high control authority may not be needed in all phases

of flight, controllers are typically designed for worst-case noise, disturbances, and portion

of the flight envelope, and time redundancy is often used in selecting a sampling rate to

improve safety margins [13]. That sampling rate is enforced by the real-time computer sys-

tem in which resource allocation is done through scheduling CPU cycles according to fixed,

worst-case execution time (WCET) estimates and task periods of many tasks competing for

execution, which (ideally) provides timing guarantees for each task [11]. However, because

WCET and task periods are constant, and typically over-designed using time redundancy

as a safety margin, tasks are allocated fixed resources regardless of their performance or

needs at run-time.

This fixed design for the worst case scenario has consequences. For a surveillance

quadrotor UAS during more quiescent periods of flight, it means over-allocated resources

in flight control are wasted while other processes such as data collection may be limited by

fixed resources. Similarly, in executing an aggressive maneuver, flight control tasks may be

at a loss for resources while data collection resources are idly wasted. In contrast, in a UAS

that dynamically allocates resources according to control and mission performance, those

17

resources can be diverted to improving image processing, sensing, communication or other

surveillance tasks when appropriate, or towards increasing control authority if desired.

In cyber-physical control of a UAS, this trade off between physical performance and

computational resources is capitalized on. However, in dynamically allocating resources,

the impacts of variability on performance, while maintaining stability, must first be un-

derstood. Typically, a tight feedback control loop is used to provide reactive behavior to

the vehicle [9]. This loop is composed of physical components and cyber components.

Initially, physical sensors representing system properties are read, and translated into the

digital signals fed into a computer. A controller, modeled in software and executed as a

real-time computational task, reads these sensed values and computes a digital control in-

put [11]. The digital control input is then converted into a continuous signal and fed to

actuators. This control input is “held” (a zero-order hold) until the control task executes

again, restarting the cycle. The question of how often the control task should be executed is

governed by the sampled-data assumption, and chosen by the control engineer according to

various rules of thumb typically involving noise bandwidth, eigenvalues, and the Nyquist

frequency [18, 60].

For quadrotors, control systems and their real-time requirements have been studied [61,

62]. Others have implemented an event-triggered control system for attitude stabilization,

which is more resource aware [22]. In related work, the authors examined the response-

time constraints for a real-time controller implemented onboard the quadrotor [63]. They

analyze the response rate of actuators at different operating conditions in order to design

a controller that has an update rate of at least as much as the sampling rate of the various

sensors. Seghour et al. [64] implemented a real-time embedded control system for stabi-

lizing a quadrotor; however, they do not reason about the response time or the control rate

chosen.

These methods demonstrate and leverage traditional control analysis techniques by as-

18

sessing controller response to step inputs – the generally accepted strategy in controller

design [18]. However, assessing trajectory following performance as a function of cyber

resource allocation provides another trade-off to exploit in the pursuit of dynamic resource

allocation for the holistic cyber-physical system. Here, we extend traditional controller

analysis by investigating trajectory following performance and providing the mathematical

relationship needed to apply a full cyber-physical control and planning architecture for a

UAS. This architecture will enable a more dynamic UAS that can adjust computation in re-

sponse to performance at both a low, reactive control level, as well as a higher, deliberative

planning level.

2.4 Our Work

The culmination of the state of the art discussed above illustrates that cyber and physi-

cal effectors in quadrotor UAS are not typically allocated efficiently. With knowledge of

the cyber and physical characteristics and limitations, real-time allocation of resources in

a CPS like a quadrotor UAS may then increase performance and functionality. The rest

of this work is structured as follows. In the following chapter we seek to characterize

the effects of fixed rate (Riemannian sampling) control at different rates as the UAS ex-

ecutes a trajectory (without a higher level generation technique). We begin by defining

nonlinear and linear physical models for the physical system followed by design of the

physical control law, a discrete linear quadratic regulator, by which control inputs will be

generated for the physical system. Analysis is conducted to illustrate the characteristics of

the physical system across a broad range of sampling rates. Then, in Chapter 4 the CPS

design is completed with the addition of a cyber control law. We implement our hybrid

Riemannian/Lebesgue co-regulation technique and conduct analysis of cyber and physical

system effectors. Our variable rate co-regulation implementation is compared to fixed rate

19

techniques in driving the quadrotor UAS through a trajectory (again without a higher level

generation technique). In Chapter 5, we present a suitable trajectory generation technique

as a first step toward a higher level motion planning architecture which may be used to

provide better CPS performance and deliberation. Finally conclusions and a brief outline

of future research aims are provided.

20

Chapter 3

Characterization of UAS Performance

Under Discrete Control

In this chapter we will examine the affects of sampling period in discrete control of a

quadrotor UAS system. We seek to characterize the relationship between sampling rate

and physical performance of the system in execution mission trajectories. In order to do

so we define a system model and provide analysis of trajectory following performance for

controllers designed across a wide range of sampling rates. Effective analysis is achieved

through the definition of several CPS metrics designed to measure cyber-physical perfor-

mance. This provides insight into a suitable range of sampling rates for which dynamic

allocation of cyber-physical resources may be most effective.

Much of the work presented in Chapter 3 was conducted in collaboration with Ajay

Shankar, a graduate student researcher in the NIMBUS Lab1 at the University of Nebraska-

Lincoln, USA, and published in the International Conference on Unmanned Aircraft Sys-

tems [65].
1http://nimbus.unl.edu

http://nimbus.unl.edu

21

Figure 3.1: Quadrotor frame orientations.

3.1 Quadrotor UAS System Model

3.1.1 Nonlinear Physical Model

A quadrotor is a six degree of freedom system in which translational movements are

achieved by rotational displacements generated by combinations of individual rotor thrusts.

The system is under actuated as its six degrees of freedom must be controlled by four in-

puts: either individual rotor commands or a net upward thrust generated collectively by

all four motors, and pitch, roll, and yaw moments generated by thrust imbalances between

pairs of rotors [66, 67, 68]. Being underactuated, the system requires active control, of-

ten via autopilot software, to retain stable flight. The flight dynamics of a quadrotor UAS

are nonlinear, and although several methods for nonlinear control of quadrotor vehicles

exist [69, 70, 71, 72], typically a linear system is used for control design. In this work

we leverage nonlinear equations for high-fidelity simulation, and use a linearized system

model for control design as it is effective and potentially less computationally intensive

than nonlinear control.

22

The system state consists of the vehicle’s position X̃p = (x, y, z)T in an inertial frame

{i, j, k}, orientation in roll (φ), pitch (θ), and yaw (ψ) angles of the vehicle frame {êx, êy, êz}

with respect to the inertial frame (see Figure 3.1), velocity in R3, and angular rate of change

in roll, pitch, and yaw,

Xp =
(
x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇

)T
.

We derive the equations of motion via Newton and Euler’s equations in the body frame

of the UAS with respect to an inertial world frame similar to the procedures described

in [67, 72]. The nonlinear equations in R3 are

a = n/m+ f drag/m− g

α = I−1 [τ − (ω × Iω)] ,

(3.1)

where a is the linear acceleration of the UAS, n is the net thrust vector, m is the total

mass, f drag is the force due to drag, g is the gravitational force vector, α is the angular

acceleration, I is the moment of inertia with respect to the center of the vehicle (also

assumed to be center of mass), τ is a vector of torques produced by the vehicle’s rotors,

and ω represents angular velocity. Here, α, ω, τ , and I are calculated about principal axes

of the UAS, and corrections are imposed relating α and ω to state variables φ̇, θ̇, ψ̇, and

their derivatives φ̈, etc. (see Appendix A).

3.1.2 Linear Physical Model

For controller design we linearize the nonlinear Equations (3.1) about a stable hover (see

Appendix B). From this procedure we derive the system matrices Ap and Bp [67, 72]

23

relative to the physical system stateXp. This provides a traditional linear state space model

Ẋp = ApXp +BpUp. (3.2)

A =



06×6 I6×6

0 g 0 −Dx
m

0 0

03×3 −g 0 0 0 −Dy
m

0 03×3

0 0 0 0 0 −Dz
m

03×6 03×6



B =



08×4

0 0 0 1/m

I−1xx 0 0 0

0 I−1yy 0 0

0 0 I−1zz 0


where 0a×b is a sub-matrix of a by b dimensions consisting of all zeros, Ia×b is an identity

sub-matrix of a by b dimensions, m and g are the mass of the vehicle and acceleration due

to gravity, Dx, Dy, and Dz are the coefficients of linear drag forces acting in each of the

coordinate axes, and Ixx, Iyy and Izz are the mass moments of inertia of the quadrotor’s

body about the pitch, roll and yaw axes respectively. The input vector, Up, consists of

independent torques in roll (τφ), pitch (τθ), and yaw (τψ), and the magnitude of the net

thrust (N)

Up = (τφ, τθ, τψ, N)T .

Note that in linearizing about an operating point in which the vehicle is in a stationary

hover, the net thrust input N is biased for a vertical component of gravity (i.e. z-axis of

24

the body frame) which does not appear in the system matrix, A, (see Appendix B). In our

linear model all inputs are considered independent of each other so long as motor saturation

is not reached. As a result, the input values are each constrained to physical specifications

provided by the manufacturer [59] so that the motors operate safely in a range of 1-70

percent of max power.

3.2 LQR Formulation

3.2.1 Physical System Control

To allow the UAS to follow a trajectory we implement non-zero position reference tracking

by adding three integrator states to the state vector and subsequently augment the sys-

tem matrices [60]. The reference state is a position vector in R3 represented by X̃p,ref =

(x, y, z)T . In our trajectory guidance algorithm we enable following of an arbitrary trajec-

tory by submitting a series of reference points, X̃p,ref , to the controller at the appropriate

times. The augmented system is

Ẋp,aug = Ap,augXp,aug +Bp,augUp +Bp,rX̃p,ref

Xp,aug =
(
x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇, 0, 0, 0

)T
Up = (τφ, τθ, τψ, N)T

Ap,aug =

Ap,12×12 012×3

I3×3 03×12


Bp,aug =

Bp,12×4

03×4

 , and Bp,r =

012×3

−I3×3

 .

(3.3)

25

Equations (3.2) and (3.3) are expressed in the continuous time domain. However, since

they will be implemented in software in an embedded, real-time system, we employ digital

control techniques to transform the system into the discrete domain for control design.

For this, the plant is discretized at a fixed sampling rate using a zero order hold (ZOH)

approximation, in which the control inputs are held constant between updates. The discrete

system can be obtained by

Φp = eAp,augTd , and Γp =

Tdˆ

0

eAp,augηBp,augdη

where Φp and Γp are the discrete time counterparts of system matrices Ap,aug and Bp,aug

respectively, Td is the fixed sampling period of the control task, and η is an integration

variable. The discrete time linear control law with respect to time step k is then,

Xp,aug[k + 1] = ΦpXp,aug[k] + ΓpUp[k] +Bp,rX̃p,ref . (3.4)

as described in [18, 17].

Once the system matrices are computed for a given sampling period, we design a DLQR

controller to maintain a stable hover at a given reference. Note that in the DLQR, the

gain matrix, KTd , is specific to the sampling period Td used to generate the ΦTd and ΓTd

matrices [18]. This implies that a real-time system designed with the control task executed

at a different periodicity, or under jitter or missed deadline conditions, will result in poor

performance of the controller.

26

3.3 Real-time Requirements

If the control signals are not generated in a timely sequence, the quadrotor may become

unstable [60]. As a result, flight control code must be executed correctly and completely

before a specified deadline. A controller and planner implemented in software must con-

sider the dynamics and limitations of the vehicle and on-board sensors as well as the timing

and scheduling of software tasks in the computer. A low control task period (high sampling

rate) can better approximate a continuous model, potentially offering better performance at

the expense of computation. Conversely, a high task period (low sampling rate) is easier

to achieve computationally amongst many competing autonomy-related tasks, but this may

be detrimental to performance. This is compounded in a digital system by sensor values

and control inputs that are “sampled and held” until the next time the control task is exe-

cuted [18]. In this duration, the vehicle continues to react based on its dynamics, possibly

becoming unstable.

In computer-based control, the sampled-data assumption is often employed to construct

digital controllers that are executed periodically according to a real-time schedule. The

sampled-data assumption presumes that sensors are read, and the control input is calculated

and sent to the actuators at a single, and periodically recurring, instant of time, t. It assumes

there is no delay in the states or control input, only that the control input is then held by

the actuators for the entire sampling period, Td, called a zero-order hold (ZOH) [18]. The

sampling period of the discrete system is, ideally, matched by the control task execution

period enforced by the real-time computing schedule [11]. However, in a real-time system,

the only timing guarantee is that deadlines will be met, not that the period between task

completion times is consistent. This means that control inputs may not be given at regular

time intervals, and there will be state delay in the control input calculation (thus violating

the sampled-data assumption) [3].

27

Consider an implication following this assumption. From the simplified model in Equa-

tion (3.2), the angular roll acceleration at a given time t can be written as:

φ̈(t) =
τφ(t)

Ixx
.

We compute the rotation angle by integrating φ̈ twice over the (k + 1)th discrete time-

interval, where k ∈ [0, t/Td], as follows:

φ =
1

Ixx

ˆ (k+1)Td

kTd

(ˆ (k+1)Td

kTd

τφ(t)dt

)
dt.

In this case the input torque is held constant throughout each sampling period and is only

recomputed at the end of the step. Therefore,

τφ(t) = KTd,φτ
max
φ , kTd ≤ t < (k + 1)Td,

where τmaxφ is the maximum torque that can be applied, and KTd,φ is the roll gain constant

chosen suitably for a given Td. Plugging τφ(t) into the relationship for φ, we have,

φ =
1

Ixx

ˆ (k+1)Td

kTd

(ˆ (k+1)Td

kTd

KTd,φτ
max
φ dt

)
dt

= KTd,φ

τmaxφ

Ixx
T 2
d ,

(3.5)

which implies a quadratic relationship between the angular displacement and the amount of

time the input is applied for. Using Equation (3.5) we can compute the maximum amount of

time the full input can be applied to the system while keeping the angular rotations within

vehicle limitations.

Because of the zero-order hold behavior of discrete systems, Equation (3.5) has signifi-

cant implications. The control system has a strong real-time dependency - if a deadline for

28

a new commanded input is missed, and since KTd,φ is a constant, the rotation angle may

become unbounded. It follows that if the discrete sampling period, Td, is too large, then the

gain, KTd,φ needs to be reduced to prevent input saturation.

In a cyber-physical UAS, the same processor executes a multitude of computing tasks,

and CPU cycles may become a contended resource that must be allocated appropriately.

Small and infrequent delays in meeting the deadlines imposed by the choice of sampling

period may lead to a degraded quality of service and instability, but also may be accounted

for by time redundancy [25]. While repeated or consistent timing misses may cause an

unbounded response on the UAS, committing a larger amount of CPU-time to UAS flight

performance may degrade the performance of another important service task (e.g. sensing,

data collection). As a result, understanding the limits and implications of sampling rate for

the holistic cyber-physical system allows us to balance these resources over the course of a

mission.

Finally, it is critical to note that a given digital control strategy is a function of both

controller design and selected sampling period. That is, changing the sampling period,

even while holding control design variables constant, results in a different value of KTd ,

effectively re-characterizing the controller itself [18]. The implication is that intelligently

trading cyber and physical resources requires us to develop new control techniques that

account for the nonlinear relationship between digital, linear control design and sampling

rate.

3.4 Experimental Setup

Our simulation experiments are designed to demonstrate the effect of varying the software

control task period, or sampling period, of flight control tasks as the UAS executes a mis-

sion trajectory.

29

The nonlinear equations discussed in Section 3.1 are used to model and simulate the

flight of the quadrotor. The controller utilizes a discrete-time linear quadratic regulator

(DLQR) strategy on the augmented linear system in Equation (3.3), allowing it to drive the

vehicle to a given reference point in space and time. By varying the reference with respect

to time, a trajectory is generated for the UAS to follow as the simulation progresses.

We choose LQR control for two reasons: 1) LQR has a closed-form solution and is a

stabilizing optimal control algorithm with good margins of stability, thus making it easier to

compare controllers with similar performance at different sampling rates; and 2) in finding

the optimal gain, LQR minimizes the error on the state vector,Xp,aug, and the control input,

Up. This is particularly useful for UAS applications where a large control input may be

undesirable. Because our objective is to isolate the relationship between sampling rate and

trajectory following performance, we use a MATLAB-based nonlinear equation simulation

with full state feedback and do not model external disturbances or sensor noise. Under the

sampled data assumption we assume ideal sensors are read and control inputs are calculated

and transmitted to actuators without delay or uncertainty.

In order to study the effect of a changing sampling period, we perform a sweep over

a range of values for Td, generating a corresponding set of ΦTd ,ΓTd , and KTd matrices.

Because we are interested in a highly accurate relationship between sampling period and

trajectory following performance, we use a fourth-order Runge-Kutta ordinary differential

equation solver, ode45 in MATLAB, to simulate the system using the nonlinear equations

in Equation (3.1). However, ode45 is a continuous-time solver, unsuited to the zero-order

hold paradigm. As a result, we leverage it as part of a larger simulation technique designed

to simulate both the correct zero-order hold behavior and corresponding transients of the

system response for each time period during which the input is held, 0 ≤ j < m where j

represents an internal ode45 time step on kTd ≤ t < (k + 1)Td. These modifications are

described as follows.

30

Algorithm 1 Algorithm to simulate the control of quadrotor flight at one discrete sampling
rate.
Data: Nonlinear system model, f(X), sampling_period
// initialize system constants
Td ←− sampling_period
lin_model←− linearize(f(X), Td)
Q←− 10 · I15×15 · q
R←− 2 · I4×4
begin

ΦTd ,ΓTd ←− discretize(lin_model, Td)
Kgain ←− dlqr(ΦTd ,ΓTd)
k ←− 0
Xall = []
Xinit ←− initial_state()
while kTd ≤ simulation_length do
Uk ←− input_vector(Xinit,Kgain)
[X1 . . . Xm] = ode45(f(X), Td, Uk Xinit) // Simulate
Xall = [Xall;X1 . . . Xm]
k ←− k + 1 // propagate discrete time step
Xinit ←− Xm // new initial state

end
end

An outer loop iterates over discrete time steps, k, computing and holding Up[k] =

−KTdXp[k] for the sampling period duration Td. That is, Up(t) = Up[k], where kTd ≤

t < (k + 1)Td. Within each sampling period, Up[k] is passed and held as an input to the

nonlinear system model, which is simulated using ode45. The initial system state for

each discrete step is the final state propagated by ode45 in the previous iteration. Because

ode45 is a one-step solver, the output from each execution of ode45 can be appended to

the previous one to put together a complete continuous system response. This ensures that

the control system follows a discrete-time sample and hold behavior, but we also obtain

the transient response for each sampling interval. A pseudo code for the algorithm that

simulates the system for a specific sampling period is shown in Algorithm 1.

This simulation strategy was previously outlined in [3]; however, here we improve it in

31

several key ways. First, we increase the fidelity of the simulation by using full nonlinear

equations to simulate the movement of the vehicle through space and time. Second, we de-

veloped a trajectory generation, or guidance algorithm which deconstructs high-level plans

into a series of waypoints which are passed to the co-regulation framework at the appropri-

ate time. This gives us the ability to assess trajectory-following performance providing a

better indication of how a controller affects overall mission performance.

The simulation is run with the UAS initially in a stable hover at the origin of the inertial

frame, and with the parameters listed in Table 3.1 which are specific to the Ascending

Technologies Hummingbird [59], a medium-sized, general purpose research UAV used in

the NIMBUS Lab. Uniform and manually tuned Q and R values (also in Table 3.1) were

used in designing each of the DLQR controllers.

Parameter Value Parameter Value
g 9.80665 m/s2 m 0.515 kg
Dx 0.0075 kg/s Ixx 0.0040 kg m2

Dy 0.0075 kg/s Iyy 0.0040 kg m2

Dz 0.015 kg/s Izz 0.0044 kg m2

Q 10I15×15q R 2I4×4
q = [100 100 100 100 100 100 10 10 10 1 1 1 50 50 50]T

Table 3.1: System Constants

3.5 CPS Metrics

The ability of a UAS to follow a given path is often expressed through a controller’s ability

to minimize cross-track error [9, 73]. This analysis may be coupled with a measurement

of control effort to gain some understanding of the amount of energy expended by the con-

troller through inputs to the system [73, 74]. Additionally, analysis of different trajectories

in relation to one another may involve estimates of power or energy consumption [75]. To

quantify the relationship between sampling rate and trajectory following performance, we

32

Name Abbreviation Description
Cumulative State Error CSE cumulative time weighted average of positional state error
Maximum State Error MSE maximum deviation from straight line path

Control Effort CE time weighted squared average of control input

Table 3.2: CPS metrics

introduce several different CPS metrics [65]. We design these metrics to capture the per-

formance of a controller in tracking a given trajectory and minimizing physical state error

as well as control effort. The metrics also place an emphasis on the controller’s ability

to reduce error in a timely manner. Each of these metrics can be computed for a specific

sampling rate and simulation, which can then be combined to form an explicit mathemati-

cal relationship between sampling rate and trajectory following performance. Although we

characterize these metrics in the context of a quadrotor UAS, they are, in principle, more

generally applicable to a broad class of cyber-physical vehicle systems. These metrics are

listed in Table 3.2 and described below.

3.5.1 Cumulative Time-Weighted State Error

In our experiments, the reference point, X̃p,ref , is given at specific time intervals throughout

the simulation. Therefore, by changing the position of the reference waypoint with respect

to time, the UAS can be commanded through a desired trajectory. We define the state error

at any given time step, k, as the squared Euclidean distance between X̃p[k] (the position

states from the current state vector Xp[k]) and the corresponding reference state vector

at that time, X̃p,ref [k]. Given the reference state to which the controller must drive the

system, a cumulative time-averaged state error (CSE) can be defined for the position state

vector over the entire mission. Weighting each state error by the simulation time yields the

33

following equation for cumulative time weighted average of state error,

CSE =
1

ttot

n∑
i=0

ti

(
X̃p(ti)− X̃p,ref (ti)

)2
(3.6)

where X̃p is the vehicle’s position in R3, ti is ode45’s discretization of continuous time

(t), ttot is the total amount of simulation time, n is the total number of internal simulation

steps, i.e. i ∈ [0, n]. Weighting by time has the advantage of more aggressively penalizing

the state error as time progresses, while having a smaller weight associated with initial

offsets in the system. This definition of state error as a metric for system design captures

the effectiveness of a cyber control system in driving the state of the physical system to the

reference state within a short amount of time, and with minimal overshoot.

3.5.2 Translational Bounds

The ability to place bounds on maximum offsets from a desired trajectory is useful in plan-

ning mission objectives and helps to identify worst case flight envelopes and failure states.

As the controller responds to commanded target waypoints, this metric of maximum state

error (MSE) determines the farthest point the UAS reached from the ideal desired trajectory

line connecting two successive target waypoints, l = X̃p,ref,next(ti)− X̃p,ref,prev(ti),

MSE = max

(
||l× (X̃p,ref,prev(ti)− X̃p(ti))||

||l||

)
. (3.7)

where || · || represents the magnitude of a vector quantity. This metric is used to set a

standard for mission success which hinges on whether or not the UAS remained within a

desired maximum distance from the given path throughout execution and could be used to

determine possible failure states in order to invoke a contingency control strategy.

34

3.5.3 Control Effort

For a quadrotor UAS, minimization of control effort is essential for decreasing power and

energy demands thereby preventing possible damage to components and potentially in-

creasing vehicle endurance.

To analyze the control effort of the system, we compute the time-averaged control effort

(CE) over all simulation time as follows:

CE =
1

ttot

n∑
i=0

Up(ti)
2ti, (3.8)

where Up(ti) = Up[k] = const. on kTd ≤ ti < (k + 1)Td. As before, weighting the value

of the control effort with the simulation time rewards the natural response of the system to

a reference step, which, generally would require less control effort as error is reduced. This

metric is also proportional to the energy consumed for propulsion and is approximately

proportional to total energy consumed in a system where propulsion dominates energy

resources.

In part, this metric is motivated by the mathematical realization that a controller with

higher gains may more quickly converge to the reference state by generating larger control

inputs for a shorter amount of time (without saturating). This metric favors such a con-

troller, as compared to one which applies smaller inputs for a longer duration, thus taking

longer to converge.

Intuitively, we expect each of these metrics to increase as the sampling period is in-

creased. That is, with longer sampling periods there should be higher state error, a higher

control effort (CE), and a typically larger maximum deviation from the ideal trajectory.

35

(a) Rejecting an initial roll angle of φ = 0.2 radians
for different sampling rates.

(b) Rolling torque, τφ, generated by the controller at
different sampling rates in order to bring the vehicle to
a stable hover.

Figure 3.2: Disturbance rejection on the roll axis at different sampling rates. A higher sampling rate results
in higher controller gains and more aggressive control. Lower sampling rates result in a more narrow control
input operating range, but the response also takes longer to converge to the reference state. Note that the
response for 1 kHz (blue) is nearly identical to the 100 Hz plot, and is obscured by it.

3.6 Results

We now present the results of several important test cases representing various scenarios

we regularly find in our UAS missions.

3.6.1 Traditional Disturbance Rejection Experiment

We begin by first characterizing the performance of the controller in rejecting a disturbance

represented by an initial non-zero attitude angle. This represents a traditional control sys-

tem performance metric - evaluating a step response. At time t = 0, the system is initialized

at the origin of the inertial space p = (0, 0, 0) with φ = 0.2 rad and other components of

the state vector set to zeros.

Figure 3.2a shows the progression of φ for different sampling rates as the controller

brings the system to a stable hover at the origin. As expected, a higher sampling period

results in a longer settling time and larger overshoot.

Although DLQR is a stabilizing controller, it stabilizes the linear approximation of the

36

nonlinear system. However, the stable region of a closed-loop nonlinear system changes

with the sampling period [76]. As a result, there are states that may exceed the bounds on

disturbances from which the DLQR controller can recover. We hypothesize this is the case

for the DLQR controller designed and operated at a 1.0 s sampling period in Figure 3.2a.

The initial condition 0.2 rad exceeds the region of stability for the DLQR controlled non-

linear system. The control input required to reject the disturbance is shown with different

sampling rates in Figure 3.2b. We note that for high sampling rates, as anticipated, the con-

trol input changes in a much smoother fashion, but the maximum control effort required

is higher. For lower sampling rates, however, the maximum control effort is smaller in

magnitude, and the system takes longer to settle.

3.6.2 Trajectory Following Experiments

We now assess the controller’s performance in following a single, straight line trajectory

by driving the vehicle to a point p = (x1, y1, z1) in space, starting from a stable hover

at the origin. The commanded reference is held constant throughout the length of the

simulation so that the controller causes the vehicle to go to, and hover at, p. In the following

subsections, we use this test to analyze the various metrics defined previously.

Finally, to assess complex trajectory following performance, we develop trajectories

consisting of reference waypoints and issue commands to the vehicle to follow. We de-

sign the framework such that a new waypoint might be made available at any time instant,

whether the vehicle has reached its current waypoint or not. Therefore, if several distant

waypoints arrive in quick succession, it is not necessary that the vehicle would ever reach

any single one of them. This design decision was based on a cyber-physically co-regulated

and co-optimized UAS with a mission planner that could decide whether reaching each

waypoint in a complex trajectory may be subjugated by the desire to conserve resources.

37

Figure 3.3: The paths taken by the UAS as it follows five commanded waypoints in space at different sampling
rates of the controller.

This may then be achieved by allowing for less aggressive control (conserving computa-

tional resources) at the expense of precision tracking.

Figure 3.3 shows the path taken by the UAS as it follows five commanded waypoints

in space. The effect of a low sampling rate is clear for certain course legs, most notably

the first and the last ones. This becomes less predictable as the simulation progresses.

For instance, for three consecutive waypoints pi, pj and pk, if the angle between the two

consecutive waypoints, pipj and pjpk, is obtuse, then it is possible that the vehicle under-

shoots the waypoint pj and is then better poised to reach pk. Because DLQR is a stabilizing

controller, as long as the states of the vehicle remain within the region of stability of the

closed-loop nonlinear system, the controller will always recover. As a result, contrary to the

step response in Figure 3.2a, where initial conditions were beyond the disturbance limits

that ensure stability, in Figure 3.3 the vehicle successfully navigates the trajectory, although

with reduced performance. If design of the control system includes similarly large sampling

period, a more rigorous mathematical characterization of the bounds on disturbances and

38

regions of stability, similar to [76], is needed.

3.6.3 Characterizing the Relationship Between Trajectory Following

Performance and Sampling Period

We now demonstrate the relationship between trajectory following performance of our UAS

and the sampling period of the software control task using the metrics we discussed in Sec-

tion 3.5.

3.6.3.1 Variation of Gain and H2-norm

We noted in Equation (3.5) that for a larger sampling period, the gain of the system should

decrease. Since we have multiple elements in the input vector, we quantify the control gain

here as the L2-norm of theKTd matrix. Another useful analysis tool is theH2-norm, which

represents the energy of the output of the system [24]. This tool can be used to identify

potentially destabilizing intermediate sampling periods of the system if the H2-norm is

infinite at a given sampling period. We perform a sweep on a wide range of sampling

periods and plot the variation in the controller gain and the H2-norm of the system in

Figure 3.4. Much like the analysis in [12], gain decreases with sampling period.

In our case, where the DLQR design parameters remain constant as we change sampling

period, analysis of the gain vs. sampling period curve in Figure 3.4 can be used to select

the lowest feasible sampling period of control as long as motor saturation is not reached.

In practice, however, sampling rate will most likely be limited by constraints in the cyber

system (i.e. how much processing time can be devoted to control computation).

The high-gain operation of the controller at small sampling periods can potentially

saturate the actuators, thereby violating the assumption that the thrust and torques on each

39

Figure 3.4: Variation in the controller gain and the H2 norm of the discretized system across different sam-
pling periods.

of the axes are independently controllable. Knowing the matrixKTd designed for a specific

Td, and a given state vector Xp(t) at time t, we can check for saturation:

U(t) = −KTdXp(t) ≤ Up,max

where Up,max is determined appropriately using maximum rotor thrust from system speci-

fications [59].

3.6.3.2 State Error

We introduced the cumulative time-weighted state error (CSE) and defined it as a metric to

characterize the performance of a controller over a trajectory leg. Observing the traversed

paths in Figure 3.3, we expect this metric to increase in magnitude as the sampling period

increases. The maximum deviation from the trajectory leg is also expected to increase, as

the sampling period becomes longer, due to the sample and hold nature of control. The

trend in these two metrics is captured first in Figure 3.5 representing a single trajectory

40

Figure 3.5: The change in average trajectory tracking error and the maximum deviation from the trajectory
for a single leg (step response) as the sampling period changes.

Figure 3.6: The change in average trajectory tracking error and the maximum deviation from the trajectory
in Figure 3.3 as the sampling period changes.

leg from the origin to a waypoint (i.e. a step response), as a function of sampling period.

In Figure 3.6 we again show the trend in these two metrics, but this time for the entire

trajectory shown in Figure 3.3. While the tracking errors for a step response follow a

smooth trend as sampling period varies, the tracking errors for the trajectory (and similarly

41

Figure 3.7: The increase in time-weighted average control effort metric against increasing sampling periods
for a step response and for the trajectory in Figure 3.3.

control effort) do not. We speculate this is a result of internal resolution changes and

numerical error in MATLAB’s ode45 solver coupled with effects previously discussed in

regard to path geometry in which the vehicle may find itself poised differently in regards to

reaching a newly generated target waypoint.

3.6.3.3 Control Effort

Using our control effort metric, CE (Equation (3.8)), as the sampling period increases, we

expect the value of CE to increase since the controller will operate at a lower gain, but for a

longer amount of time. However, it is important to note that the magnitude of the maximum

control input generated by the controller will now be smaller as in Figure 3.2b.

We accumulate the time-weighted control effort expended over a given mission for

various sampling rates and plot the trend, in Figure 3.7, against the sampling period for the

controller as it drives the vehicle to a stable hover at a single waypoint (blue plot) and also

as it drives the vehicle through the entire trajectory (red plot).

42

3.7 Discussion of Results

To develop a cyber-physical UAS, we must consider both limitations in cyber resources

and performance expectations of the physical system. Our results capture this trade-off and

imply that control analysis must go beyond traditional controller performance assessment

and include trajectory following performance in order to trade off resources at each level

of the autonomy architecture.

Intuitively, a controller designed to operate at a higher sampling period may cause un-

desired overshoots in the system state because the dynamics of the system act faster than

appropriate control signals are generated. Additionally, the control effort (CE metric) in-

creases, implying the system may need to spend more energy over a longer period of time,

though with smaller power requirements. The benefit, however, is the increased availability

of computing resources for other tasks (vision, data collection, sensing, etc.).

Choosing lower sampling periods allows for the selection of a higher-gain controller

resulting in increased precision and the ability to conduct more aggressive maneuvers. Un-

fortunately, this trade-off results in large control inputs which may adversely affect me-

chanical actuators. For the cyber system, a smaller sampling period adversely affects the

schedulability of additional tasks that the system must perform, particularly aperiodic tasks

which are often scheduled in available slack time in the cyber system [11].

However, from the above results, the state error and control effort of the system follow

a relatively flat curve as sampling period increases up to a range of approximately 0.02 s

- 0.1 s. Therefore, in our idealized, no-noise simulation environment, the sampling rate

of control can be lowered to this range without incurring a significant cost in state error or

control effort. This illustrates the opportunity for savings in cyber resources while sampling

at 0.02 s versus 0.002 s provided we can design appropriate controllers that are robust to

noise and disturbances.

43

Circle Square Spiral

Rate(Hz) 1k 500 100 50 10 2 1k 500 100 50 10 2 1k 500 100 50 10 2

CSE 0.681 0.682 0.686 0.691 0.734 1.057 0.517 0.517 0.520 0.523 0.554 0.827 3.582 3.590 3.608 3.632 3.850 5.433

MSE 0.375 0.375 0.374 0.374 0.373 0.390 0.310 0.310 0.310 0.309 0.303 0.296 0.985 0.985 0.985 0.985 0.985 0.985

CE 0.0021 0.0021 0.0021 0.0022 0.0027 0.0203 0.0247 0.0247 0.0251 0.0255 0.0309 0.2368 0.1200 0.1201 0.1204 0.1216 0.1548 0.1570

Table 3.3: Table summarizing the trend in the proposed metrics for different trajectories.

Table 3.3 summarizes the trend in the above metrics for select sampling periods as the

vehicle moves along several more complex trajectories. We consider three additional tra-

jectories, a circle, a square, and a spiral, and compute the same metrics across the entire

mission. The circular trajectory consists of eight equally spaced (in space and time) ref-

erence points about the origin at a radius of one and height of 0.5. Similarly the spiral

trajectory is centered about the origin with a radius of one and an increasing height of 0.5

every second. The spiral consists of twenty-one equally spaced waypoints. The square

trajectory is defined by four sides of length two at a height of two. All simulations begin

with the vehicle initialized at the origin. In the cases of the circle and the spiral, the first

waypoint is located at p1 = (0, 1, 0), and in the case of the square the first waypoint is

p1 = (0, 0, 2). The square is defined in the first quadrant with the first side along the x-axis

and the last side along the y-axis. Once again, large changes in error do not occur until

the sampling rate reaches a range of approximately 0.02 s - 0.1 s. Also note that the values

calculated for each of these evaluation metrics depend largely on the geometry of the tra-

jectory and how it is defined. That is, following a more complex trajectory, or one defined

by a higher number of waypoints, especially those consisting of smooth curves, may result

in unique results. This suggests the importance of a high level CPS trajectory planner and

CPS controller that is able to dynamically adjust resources, thus enabling higher precision

following of complex trajectories and reducing resources for following simpler ones.

44

3.7.1 Utilization Metric

In a UAS there exists a set of computational tasks to which a scheduler must allocate

appropriate resources to ensure computing deadlines are met. This task set may contain

tasks with non-deterministic execution times, varying logical priority, sporadic, aperiodic,

and other periodic tasks [11]. For example, a UAS executing a camera-based surveillance

mission might have computationally intensive vision processing algorithms, guidance and

navigation tasks, and a top-level planner in addition to the on-board state-estimation, sensor

fusion, and attitude stabilization algorithms. To complicate this further, there may also

be aperiodic tasks with quick deadlines that are triggered by a user input from a ground

station. In such a scenario, it is critical to ensure that task priorities and deadlines in the

real-time schedule be set correctly and perform predictably, but it is also an opportunity

to dynamically adjust task priorities and deadlines depending on the environment, system

performance, and mission context.

In this context, it is useful to examine resource utilization of the control task in the real-

time system as a metric for cyber performance analysis. The utilization of the ith real-time

task is computed as utili = ei/pi, where ei and pi are execution time and the period of

the task [11]. The total resource utilization is then the summation over all tasks. Since

ei is difficult to know beforehand, it is usually substituted with the worst-case execution

time (WCET) [77]. Given two processes with similar CPU requirements, the one with a

larger period will have smaller CPU utilization. This drives efforts towards developing on-

demand controllers that can guarantee performance even at higher sampling periods. This

frees up cyber resources, which the scheduler might allocate to other tasks in the system.

As an example, in a hover, the likelihood of running into a stationary object is low. This

may be an opportunity to turn off a laser scanner and reduce the priority and task period of

the corresponding sensor task, thus freeing up cyber resources for communicating collected

45

Figure 3.8: CPU utilization and availability for different tasks, assuming that the attitude controller has a
worst case execution time of 0.5 ms.

data to a ground station. Figure 3.8 shows the decrease in CPU utilization for the attitude

control loop of our UAS as sampling period increases, thereby accommodating other tasks

which may have larger WCETs.

46

Chapter 4

Cyber-Physical UAS Co-regulation

With a better understanding of the affects of sampling rate in discrete LQR control of a

quadrotor UAS in regard to trajectory following performance, we may now better formulate

and analyze our new methods of CPS co-regulation1. In this chapter we formulate our

cyber-physical co-regulation technique and compare its performance through CPS metrics

to a discrete LQR control scheme in order to illustrate the potential for savings of cyber and

physical resources through dynamic allocation versus a fixed rate control design scheme.

4.1 CPS Model and Control

We employ two types of controllers for our simulation experiments. The first is a fixed-rate

discrete linear quadratic regulator (DLQR) which we will use as the baseline for compar-

isons against our co-regulation strategy. After discretizing the system, DLQR controller

can then be designed by choosing appropriate Q and R matrices [18]. In this type of con-

trol design a controller is typically designed assuming timing guarantees will be met by
1The work presented in this chapter as well as portions of Chapters 1 and 2 give rise to a paper in prepa-

ration titled Co-Regulation of Computational and Physical Effectors in a Quadrotor UAS and co-authored by
Seth Doebbeling and Justin Bradley.

47

the computer system. In the real-time system a well designed control task will read sensor

values, compute a control input, and send the output to actuators quickly and with minimal

delay. In practice, however, particularly at slower sampling rates, due to preemption and

nondeterminism in task executions there can be significant delay between each phase of

the control task resulting in stale data, or irregular control inputs to actuators [78, 3]. To

mitigate these effects, control designers select a sampling rate much faster than the sys-

tem dynamics and rely on oversampling and time redundancy to improve safety margins.

In co-regulation, however, we are exploring the low end of the sampling rate spectrum to

conserve these wasted resourced, and hence, seek a discrete-time-varying control strategy.

This leads to the second type of controller which we will use in our co-regulation strat-

egy. Since we will change the sampling rate dynamically at discrete intervals in response to

system performance we need a discrete-time-varying control strategy [79]. In this case the

system matrices Φp and Γp formulated in Chapter 3 become functions of the time step k as

they must be recalculated as the sampling rate varies. Therefore, Equation (3.4) becomes

Xp,aug[k + 1] = Φp[k]Xp,aug[k] + Γp[k]Up[k] +Bp,rX̃p,ref .

We employ an emerging class of controllers, a forward-propagation discrete Riccati-based

(FPRB) controller. These controllers are built upon the same optimal control foundation

as other algebraic Riccati equation (ARE) based controllers (e.g. LQR) but rather than

propagating the ARE backward in time, or finding a steady state solution to the ARE, it

is propagated forward in time. Although research is still needed to provide performance

guarantees for forward-propagation techniques we have found success with it in other sys-

tems [3, 80].

Although other standard control techniques are often implemented on quadrotor UAS,

such as PID, we find the optimization characteristics of the FPRB important for co-regulation

48

purposes. That is, FPRB is rooted in LQR optimal control and seeks to minimize the cost

of state error and control input to the system–an objective of co-regulation. This comple-

ments parallel work in which we are developing an architecture for planning, guidance,

and control wherein resource allocation is determined by trade-offs represented by cost

metrics. LQR is, in a sense, sensitive to the energy used to generate large inputs for the

system and regulates this cost to compute an optimal controller gain. Although some level

of aggressive control capability tends to be lost in LQR as opposed to PID, an LQR pro-

vides improved stability guarantees [81]. This realization is beneficial to a co-regulation

framework in which margins of stability may be approached.

4.1.1 Computational Model and Control

For co-regulation we model the computational system as a set of task execution rates (in-

verse of traditional task period) of mission critical tasks. In a complete co-regulation frame-

work,

Ẋc = AcXc +BcUc

would consist of task rates for the complete set of mission critical tasks (e.g. navigation, im-

age processing, communication, control, sensing, planning, etc.) and each of these would

be co-regulated alongside and in response to system performance. In this paper we focus

on just the control task sampling rate and model it as we have in other work [3] where the

computational system consists of a single state, the sampling rate xc of the control task,

and a single input uc modeled as

ẋc = uc.

A second controller is now needed to calculate the computational control input uc, which

adjusts the sampling rate, in real time, as the dynamics of the system change. This control

law consists of two components. The first component scales the error between the current

49

sampling rate and a desired reference rate. This has the effect of pushing the sampling rate

toward the desired reference rate. The second component scales the difference between

the current physical state to the reference state. This pushes the sampling rate toward a

faster rate to provide better control authority when needed. The computational control law

is represented as

uc = kcp(Xp −Xp,ref)− kc(xc − xc,ref)

where Xp,ref is a reference vector containing the three components of X̃p,ref and twelve

zeros and xc is the current sampling rate. The coupling gain, kc,p, is used to increase the

sampling rate of the system in response to physical state error. The gain, kc, drives the

system toward the desired reference sampling rate xc,ref .

The full CPS co-regulatiom model can now be realized by augmenting the physical

state-space control model of the quadrotor UAS with the state-space model of the compu-

tational control task. This results in the combined modelẊp

Ẋc

 =

Ap 0

0 Ac


Xp

Xc

+

Bp 0

0 Bc


Up (Xp, Uc)

Uc (Xp, Xc)

 . (4.1)

where subscripts p and c represent “physical” and “computational” respectively. Again, by

“physical” we mean the vehicle occupying space, i.e. its sensors, actuators, and dynamics

of motion. By “computational” we mean the the algorithms and tasks executed by the

computer. The model is also represented in block diagram form in Figure 4.1. Because

our co-regulation strategy utilizes feedback and linear control, we get fast, low complexity,

reactive control to respond to disturbances and noise where other related methods cannot.

Additionally, our formulation allows a designer to leverage the rich theory of linear state-

space control in the design of a more holistic system controller. Because our method is

a hybrid Riemannian/Lebesgue method, we reap the benefits of both. In our formulation,

Xc is the time-varying sampling rate of the physical UAS control task giving us the benefit

50

Figure 4.1: Co-Regulation Block Diagram

of retaining a periodic control task and thereby leveraging traditional real-time scheduling

algorithms. However, because that sampling rate can change periodically, our sampling

instants are not equidistant, and therefore, will save computation where appropriate.

4.2 Evaluation Metrics

4.2.1 State Error Metrics

To quantitatively evaluate the performance of the proposed co-regulation control strategy,

we introduce several evaluation metrics. We begin with a metric set forth in our previous

work [3] and outlined in Section 3.5, namely, the discrete time weighted average of the

square of the control input (i.e. the control effort (CE)). On the computational side, we also

reuse the time averaged percent of maximum sampling rate (i.e. the computational rate

metric (CR)), defined in [3] as

CR =
1

ttot

n∑
i=0

ti xc,i =
n(n+ 1)

2ttotxc,max
(4.2)

51

where ttot is the total simulation time (in seconds) and xc,max is the maximum allowable

sampling rate set for the controller. We use a maximum allowable rate of 1 kHz in our

simulation experiments as this is the sampling rate of our commercial platform [13].

We also make use of the time averaged square of physical state error, i.e. the physical

state error (PSE), in [3]

PSE =

∣∣∣∣∣
∣∣∣∣∣
[

1

ttotX2
p,j,max

n∑
i=0

(Xp,j(ti)−Xp,j,ref (ti))
2 ti

]∣∣∣∣∣
∣∣∣∣∣ . (4.3)

where j ∈ [1,m] and m is the number of states in Xp (excluding integrator states) and

the physical state error is the norm of a dimensionless vector consisting of the normalized,

time-weighted average of each state error. Note that here we examine the entire state, in

contrast to the cumulative state error (CSE) defined in the previous chapter (Section 3.5)

where only the positional states were considered. A complementary metric for measuring

trajectory-following error (TSE) is also defined in which we consider only the positional

states X̃p = (x, y, z)T and examine their deviation from the line connecting successive

reference way-points, l = X̃p,ref,next(ti)− X̃p,ref,prev(ti).

TE =
1

ttot

n∑
i=0

||l×
(
X̃p,ref,prev(ti)− X̃p(ti)

)
||

||l||
ti. (4.4)

This metric assumes the ideal path is one defined by a series of straight lines between

successive way-points. This metric gives a measure of how close to an ideal straight line

path the control strategy can provide.

We also reuse the maximum state error (MSE) defined in Section 3.5 to capture the

maximum deviation from the ideal trajectory. These metrics are listed in Table 4.1.

52

Name Abbreviation Description
Control Rate Metric CR time averaged percent of maximum sampling rate
Physical State Error PSE norm of time averaged normalized state error

Tracking Error TE time averaged deviation from straight line path
Maximum State Error MSE maximum deviation from straight line path

Control Effort CE time weighted squared average of control input

Table 4.1: CPS co-regulation metrics

4.2.2 Power and Energy Estimates

By examining the mechanics of a single stationary rotor system consisting of a motor and

propeller we can calculate an approximation of the power usage by a multi-rotor vehicle

during operation [68]. Assuming there is no free stream movement of the surrounding

air (i.e. no wind), it follows that the majority of displaced air moves with a velocity v

parallel to the rotor thrust T. Therefore, the power for a given rotor may be approximated

as P = Tv.

Momentum theory tells us that for a thin actuator disk (i.e. a propeller spinning at

sufficient speed) of area A pushing a fluid with density ρ, the power required to produce a

given thrust T [82] is

P =

√
T3

2ρA
. (4.5)

We approximate the average power usage,

PWR =
1

ttot

n∑
i=0

Pi ti, (4.6)

as well as the maximum power drawn from the system for propulsion,

MXP = maxi (Pi) , (4.7)

as an additional means of evaluating the efficiency of our co-regulation design. These

53

metrics are important for indicating the nature of the control effort over time and the role

that plays in energy consumption and maximum power draw.

4.3 Results

4.3.1 Simulation Setup

Co-regulation, as described here, is not realizable given built-in MATLAB functionality,

as functions like c2d, and dlqr require linearized models with a fixed sampling rate

employing Riemannian sampling techniques, and therefore yielding a static gain. Instead,

our co-regulation leverages these functions at discrete intervals when the sampling rate is

updated yielding a hybrid Riemannian/Lebesgue sampling technique. That is, an initial

physical control input is calculated at time t = 0 with an initial physical state and sampling

rate, and is held constant (i.e. a zero-order hold (ZOH)) for one sampling period (Td).

After one period, a new sampling rate may be calculated via the computational control

law. The new rate is then used to re-discretize the system and generate a new control input

for the physical system to be held for the length of the new sampling period. Via this

process, both the sampling rate and physical system gain become dynamic throughout the

entire simulation. During each period, Td, in which there is a constant control input, the

non-linear dynamics from Equation (3.1) are used to simulate the motion of the UAS using

ode45. This gives us response characteristics of the system in the transients between ZOH

samples. We now reconsider the algorithm in Section 3.4 (shown here as Algorithm 2) in

which at this point the sampling period Td changes according to the cyber control law for

each propagation of the discrete time-step k.

Simulations are run with the parameters listed in Table 3.1 and the sameQ andR values

are used in designing both the DLQR controllers and FPRB controllers used. We manually

54

Algorithm 2 Algorithm to simulate the control of quadrotor flight under varying discrete
sampling rate.
Data: Nonlinear system model, f(X), sampling_period
// initialize system constants
Td ←− sampling_period
lin_model←− linearize(f(X), Td)
Q←− 10 · I15×15 · q
R←− 2 · I4×4
begin

ΦTd ,ΓTd ←− discretize(lin_model, Td)
Kgain ←− dlqr(ΦTd ,ΓTd)
k ←− 0
Xall = []
Xinit ←− initial_state()
while kTd ≤ simulation_length do
Uk ←− input_vector(Xinit,Kgain)
[X1 . . . Xm] = ode45(f(X), Td, Uk Xinit) // Simulate
Xall = [Xall;X1 . . . Xm]
k ←− k + 1 // propagate discrete time step
Xinit ←− Xm // new initial state

end
end

tune the computation control gain kcp and kc heuristically through visual inspection of step

response characteristics such as rise time and settling time for several simulations using a

broad range of values. The gain values used in our experiments are

kcp = [1 1 1 1 1 1 1 1 1 1 1 1 0 0 0]

kc = 0.75 .

4.3.2 Results

Variations in the system state, inputs, and sampling rate are shown for a step response in

Figure 4.2. There we show a comparison of a traditional DLQR controller employing fixed

sampling rates of 50 Hz and 5 Hz, as well as the proposed co-regulation at a reference sam-

55

pling rate of 30 Hz. We select 50 Hz and 5 Hz for DLQR control as the former is considered

sufficient for positional control (30 Hz being a typical control rate in the NIMBUS Lab) and

the latter a minimum for reliable control.

(a) Traditional DLQR Control @
50 Hz

(b) Co-Regulation @ xc,0, xc,r =
30 Hz

(c) Traditional DLQR Control @
5 Hz

Figure 4.2: The quadrotor’s physical performance under co-regulation suffers an approximate 1 percent over-
shoot in position but generates control inputs which are significantly smaller in magnitude than the traditional
DLQR controller.

The step responses in Figure 4.2 show that significant computational resources can be

saved with nominal loss of physical performance using co-regulation (Figure 4.2b. That

is, the system can operate at a significantly lower rate using smaller inputs over a longer

period of time, while incurring a small (approximately 1%) overshoot in position.

However, in the context of UAS it is much more valuable to examine the effects of

co-regulation as the UAS executes a trajectory. Because we seek to conserve as many com-

putational resources as possible, for use by other processes, throughout the entire course of

a mission, we expand our controller analysis beyond a traditional step response and apply

the above co-regulation techniques and evaluation metrics to more advanced trajectories.

Figure 4.3 shows the UAS executing a commanded trajectory under traditional DLQR

56

Step Trajectory
Control Strategy TE MSE PSE CE CR PWR MXP TE MSE PSE CE CR PWR MXP
DLQR @ 1 kHz 1.0000 1.0000 4.1315 1.4468 1.000 1.0001 1.1184 1.0000 1.0000 1.6058 1.0000 1.0000 1.0000 1.0000
DLQR @ 50 Hz 1.0288 1.0282 4.0527 1.4468 0.0500 1.0002 1.1216 2.0346 2.0276 1.3732 4.4964 0.0500 1.0233 1.2035
Co-Reg @ 30 Hz 1.7404 1.8415 1.0000 1.0000 0.0307 1.0009 1.0036 3.1404 1.4259 1.0058 5.4015 0.0340 1.0415 1.0777
Co-Reg @ 15 Hz 1.9038 1.8863 1.0238 1.0213 0.0157 1.0012 1.0000 4.6199 2.2813 1.0000 9.8102 0.0194 1.0638 1.1762
DLQR @ 5 Hz 1.2404 1.2742 4.0582 1.6383 0.0050 1.0000 1.1477 2.3715 2.3130 1.4728 5.6715 0.0050 1.2089 1.2445

Table 4.2: Evaluation metrics of co-regulation and DLQR at different rates for step response and trajectory
following.

Figure 4.3: Position of traditional DLQR response at 50Hz and 5Hz in comparison to co-regulation at xc,ref=
30Hz

control at 50 Hz, and 5 Hz, in comparison with co-regulation using a reference sampling

rate of 30 Hz. Table 4.2 illustrates the trends in the metrics described in Section 4.2 for

both step response and the trajectory in Figure 4.3 simulated under different DLQR and

co-regulation controllers.

For comparison we select frequencies at both extremes of the sampling rate spectrum

as well as intermediate frequencies that represent more typical implementations. We are

57

most interested in frequencies for which the quadrotor system approaches lower bounds

on stability as this is where the largest trade-offs in physical and computational resources

are likely to occur, but also where minimal control performance can be anticipated. The

difference in trends in TE and PSE for both the step response and trajectory data convey

an interesting characteristic of our co-regulation framework. DLQR controllers more ag-

gressively apply control inputs (larger inputs for shorter amount of time) in comparison

to our co-regulation technique. As a result, the DLQR controller is able to retain altitude

by quickly applying large control inputs, whereas under co-regulation and longer, smaller

control inputs, the UAS experiences a brief loss in altitude when traversing laterally. This

allows DLQR to more closely follow a strait line trajectory, as indicated by the TE metric.

In contrast, by applying inputs for a longer period of time, the UAS under co-regulation

builds more momentum resulting in a faster rise time and under-damped system character-

istics, whereas under DLQR control the system exhibits an over-damped response causing

it to slow much more drastically as it approaches a target waypoint. This may be desired

in a single step response, but for successive trajectory legs this behavior results in a larger

PSE as the DLQR control departs from the first trajectory leg as a new reference command

is made before reaching the first target waypoint. This implies that co-regulation is bet-

ter able to minimize state error but less capable of making more precise movements. The

amount of control effort required for a step response highlights our co-regulation strategy

but proves less promising in terms of trajectory execution. However, it is intuitive that

as trajectories become more complex and sampling rate minimums are approached more

control authority will be required to maintain stable flight and trajectory tracking. Com-

putational savings are best illustrated in Table 4.2 by the CR metric and MXP. In all cases

as sampling rate decreases the savings in CR increase, and as we switch from DLQR to

co-regulation maximum power requirements decrease.

These results highlight the complex trade-offs between high and low sampling rates

58

and demonstrate the performance of a strategy that tries to take advantage of both. Co-

regulation utilizes significantly fewer computational resources compared with high-rate

DLQR control, and much lower state error compared with low-rate DLQR control. On the

downside, trajectory following is less robust for co-regulation. This suggests that future

work is needed to design the physical FPRB controller and the computational controller to

improve performance.

We point out that in our simulations, controllers with sampling rates greater than 50 Hz

yield results with negligible performance improvements, as shown in Chapter 3. This illus-

trates the strong need for an analysis of trajectory-following performance for any controller,

particularly if a high sampling rate is assumed to be better without a thorough analysis. It

also indicates the computational savings that could be realized by employing a Lebesgue

or hybrid Riemannian/Lebesgue control strategy such as co-regulation.

Finally, examining the effects of co-regulation over trajectories is crucial as it informs

the generation of more efficient trajectories by identifying maneuvers or paths which re-

quire fewer resources to complete. A co-regulation strategy complete with both a physi-

cal and computational trajectory planner would trade off prioritizing physical performance

and computational performance as the mission requires. It could do this by setting target

way-points appropriately as well as associating target sampling rates for different mission

segments. The result would be a high-level planner that could optimally allocate physi-

cal and computational resources as a plan that would be executed by a low-level reactive

co-regulation layer that leverages the advantages of feedback to improve robustness.

59

Chapter 5

Toward Cyber-Physical UAS Trajectory

Generation

5.1 Introduction

Although set-point or point-to-point trajectory tracking may be a sufficient method in some

quadrotor UAS missions, a quadrotor cannot perfectly execute a series of piecewise straight

lines connecting successive waypoints. Therefore, in order to better evaluate the physical

performance of our rate varying control (and others for that matter) a higher level motion

planning scheme which can generate a smooth path trajectory based off of physical limita-

tions of the system. Consequentially, as our co-regulation technique showed better results

for reducing state error than cross track error we may seen improvements when evaluating

physical performance with respect to a feasible trajectory. Higher level motion planning

will also allow for time constraint to be enforced more effectively. That is, instead of

providing the next target waypoint to the controller at arbitrary times, whether the vehi-

cle has reached the current point or not, a trajectory generated with smooth functions of

position and velocity can provide better timing guarantees on passing through successive

60

waypoints. Finally, in the experiments conducted above, the cyber control law is always

driven to a constant minimum reference when physical state error is low. Ideally a higher

level motion planner would associate a potentially different target sampling rate to each

generated trajectory point to optimize the allocation of both cyber and physical resources.

5.2 Background

Terminology in varying robotics communities used to describe how a robot moves through

space may vary slightly. Figure 5.1 provides a hierarchical view of the motion planning

structure as defined in this work. At some level a mission is defined as a series of tasks for

the robot to complete in which failure or success may be defined. Autonomous robots must

generate a series of sequential actions to execute mission tasks [83]. A motion planning

architecture, along with environmental and dynamic system models, provides deliberation

as to how the robot should traverse a given space. Paths may be calculated by search al-

gorithms such as A* [83][38], deterministic or stochastic processes [84], or some other

heuristic. For each mission task, a path, consisting of some combination of curves and

waypoints, is generated which, if followed to some degree of accuracy, will result in suc-

cessful execution. A trajectory differs from a path in that it must also include a dimension

in time. That is, a path, or portion thereof, must also include constraints on execution time,

velocity, etc. This is achieved via a model of system dynamics and kinematics which de-

scribes how the system reacts to actuation with respect to space and time (i.e. the physics

of the system).

For a UAS, nonlinear three dimensional dynamics as well as performance and compu-

tational limitations make guidance non-trivial, and environmental disturbances along with

feedback uncertainty can result in poor execution of even sophisticated planning strategies.

Consequentially, waypoint path following is often implemented to ensure the UAS remains

61

Figure 5.1: Motion planning overview

on the desired path with no guarantees on timing [9]. Waypoint tracking coupled with

high gain, high sampling rate control may then be used to achieve execution of a path with

loose, sub-optimal timing guarantees. According to a survey by Goerzen et al. [85], UAS

are typically modeled in three dimensional space with environmental and feedback sen-

sor disturbances and are subject to speed and acceleration constraints or in more complex

cases, typically involving aggressive maneuvers [54, 53] or nonlinear aerodynamic effects

[86, 68], higher order constraints derived from derivatives of the equations of motion.

The latter may quickly become computationally expensive given higher order optimiza-

tion functions and nonlinear dynamics and control, whereas kinematic approaches with

lower order dynamic models and constraints that are more computationally conservative,

may, even in the absence of external disturbances, result in poor performance as discon-

tinuities in higher order dynamics are ignored. It follows that in a cyber-physical system

(CPS) control architecture which seeks to trade off computational and physical resources

depending on mission objectives, motion planning algorithms must be carefully chosen to

complement that strategy. A cyber-physical trajectory generator would be responsible for

allocating cyber and physical resources at a low level while being computationally efficient

and sufficiently precise in generating the standard for physical performance evaluation.

62

5.3 Method

Traditional guidance navigation and control for UAS prioritize path following over time

dependent trajectory tracking for several reasons. Environmental disturbances and model-

ing approximations result in large uncertainties in defining timing guarantees [9], plentiful

computational resources provide for high gain, high rate control, and sequential mission

planning provides deliberative waypoint tracking which yields satisfactory timing in com-

mon applications. However, at low, varying rate control, careful consideration of where to

move as well as how to move must be taken to effectively manage physical and compu-

tational resources. Two controllers tasked with converging to the same value in the same

amount of time while operating at two different control rates will generate unique system

inputs consuming differing amounts of computational and physical resources. In our vary-

ing rate co-regulation technique we wish to directly manipulate the differences in these

generated inputs so as to efficiently manage resources.

For our CPS control architecture we desire a trajectory generation technique which can

generate trajectories with bounds on control effort and sufficient physical performance for

execution by a discrete, varying sampling rate controller. We desire a trajectory genera-

tor which can calculate the necessary physical resources required for execution while bal-

ancing computational resources required for generating control inputs sufficient for cross-

tracking requirements. Therefore, an aggressive or computationally expensive trajectory

generator is undesirable as it may require a large amount of cyber resources in and of itself.

We also desire a generator which produces points at discrete time steps corresponding to

the sampling rate of control so as to calculate necessary physical inputs and choose the

most effective time-step interval and physical input combination to continue the trajectory.

Still, the generated trajectory must be feasible given the dynamic constraints of the sys-

tem. We expect the UAS to intercept intermediate waypoints without stopping, and as a

63

result, the trajectory generator must produce a continuous function in position. Therefore,

some type of smoothing function for straight line transitions must be implemented. In

evaluating trajectory following performance it is expected that this will prevent excessive

punishment in such transitions. Here, as we intend to trade off computational efficiency

with precision cross-tracking, we prefer a computationally inexpensive, real-time trajec-

tory generation technique which provides a continuous function the vehicle may be able to

execute (i.e. within cross-tracking bounds) based on a series of discretely spaced trajectory

points. Therefore, motion planning algorithms with higher order polynomials are feasible

so long as saturation is not reached. It follows that, given typically high thrust to weight

ratios and very agile rotational dynamics due to rotor geometry and low moments of inertia

(i.e. capability for high angular acceleration), one can assume that roll and pitch dynamics

can tolerate large amounts of jerk, and may be neglected in trajectory generation so long as

saturation is not reached [56]. Note this assumption comes with the caveat that rotational

dynamics in yaw are significantly slower but do not have a large influence on trajectory

tracking so long as heading is not specified or is held constant. However, this kinematic ap-

proach does not provide for more aggressive maneuvers or precise execution. We adhere to

the assumptions made in [56] in which constraints on maximum velocity and acceleration

ensure the prevention of saturation. As a result a numerical kinematic based approach in

R3 using linear segments with parabolic blends (outlined in one dimension in [44]) is im-

plemented to generate a continuous trajectory. We begin by defining the maximum velocity

and accelerations attainable by the vehicle based on system specifications. The maximum

velocity is set to 3 m/s as specified in documentation and maximum accelerations set based

on maximum thrust limitations [59]. Deliberate path planning is considered to be done a

priori by the user or some higher level path planner which specifies a series of waypoints

outlining an obstacle free piecewise straight-line path.

64

5.3.1 Trajectory Planning

Once the performance limitations have been set, the trajectory generator takes in the pre-

specified waypoints, and the amount of time that will be spent traversing each straight line

between consecutive waypoints is calculated using either the maximum velocity and dis-

tances or some user specified time. If the user specifies a time that is not possible to execute

while touching each leg of the trajectory during execution, a trajectory will be generated

for the minimum amount of time in which each leg is touched. Under the assumption that

the vehicle will always start from rest at the origin and end at rest, the trajectory generator

calculates velocities for the linear segments and accelerations for the quadratic blend re-

gions as well as corresponding linear segment times and blend region times based on the

specified or calculated leg times. These values are calculated for intermediate trajectory

legs as in [44][87] with some slight modification into R3 as,

vj =
pj+1 − pj
tleg,j

(5.1)

amax,j = sign(vj − vj−1) · amax (5.2)

tblend,j = max

(
vj − vj−1
amax,j

)
(5.3)

tlinear,j = tleg −
1

2
tblend,j −

1

2
tblend,j−1 (5.4)

where pj is the position of the jth waypoint vj is the velocity of the jth leg, amax,j is the

maximum acceleration of the jth blend, tleg,j is the jth leg time, tblend,j is the time for the

jth blend and tlinear,j is the time for the jth linear segment. Note that in Equation 5.3 each

component of the velocity difference is divided by its corresponding component of amax,j .

The first and last legs of the trajectory however, must take into account the fact that the

entire blend regions while starting from rest and coming to a stop reside in their respective

65

leg times. Therefore, the values for the first and last legs are calculated as follows [44]. For

the first,

amax,1 = sign(p2 − p1) · amax (5.5)

tblend,1 = tleg,1 −

√
tleg,j −

2(p2 − p1)
amax,1

(5.6)

v1 =
p2 − p1

tleg,1 − 1
2
tblend,1

(5.7)

tlinear,1 = tleg,1 − tblend,1 −
1

2
tblend,2 (5.8)

and for the last,

amax,n+1 = sign(pn+1 − pn) · amax (5.9)

tblend,n+1 = tleg,n −

√
tleg,n −

2(pn+1 − pn)

amax,n+1

(5.10)

vn =
pn+1 − pn

tleg,n − 1
2
tblend,n+1

(5.11)

tlinear,n = tleg,n − tblend,n+1 −
1

2
tblend,n. (5.12)

Where n is the total number of trajectory legs. Note that Equations 5.6 and 5.10 may result

in complex numbers. Therefore, if a complex number arises, an appropriate amount of

time is allocated to the first or last leg to ensure all calculated values remain real. At this

point the generated trajectory will approach a waypoint on a straight-line path and curve

away from the point before reaching it in order to transition to the next linear segment,

essentially rounding corners. If the user prefers the trajectory to pass through the specified

waypoints, a series of calculated pseudo waypoints can be placed relative to the original

waypoints in such a way that the original waypoints become the point of inflection on the

blend regions. This results in linear segments that differ from the straight-line trajectory

defined by the original waypoints. This formulation is illustrated in Algorithm 1. Based on

66

Algorithm 3 Converting waypoints to through points by introducing pseudo waypoints
if want pseudo points
pseudo_points← first_waypoint;

for n = 2 : number_waypoints - 1
pseudo_points← [pseudo_points, waypoints(n)± velj−1+velj

||velj−1+velj || ·
1
2
tblend,j];

end
pseudo_points← last_waypoint;

end

the new, pseudo waypoints, new leg times, velocities, accelerations, linear times, and blend

times are calculated using Equations 5.1-5.4. Finally the points at which blend regions

begin and end are specified as,

pblend,j = pj + vj ·
1

2
tblend,j

pblend,j−1 = pj − vj−1 ·
1

2
tblend,j

where pblend,j is the jth blend point. Note that for the first and last waypoints (p1, plast),

blend points pblend,j−1and pblend,j are replaced by pj and plast respectively.

5.3.2 Trajectory Generation

Once velocities and accelerations are calculated for linear segments and blend regions,

trajectory points are calculated using the basic kinematic equations of motion for a point

mass. Note that this means the trajectory is unaware of any inertia the system may have

differing from that of a point mass and that any system with obscure dynamics like that of a

quadrotor can still be expected to deviate from the trajectory depending on control. During

the linear segments the trajectory points are calculated with a constant velocity (i.e. zero

acceleration)

ptraj = pblend,j + vj · tlinear,j (5.13)

67

and in the blend region an acceleration blends the preceding velocity into the velocity of

the next trajectory leg as

ptraj = pblend,j−1 + vj−1 · tblend +
1

2
ablend · t 2blend,j (5.14)

where ablend =
(

vj−vj−1

tblend,j

)
. If the dimensions of the original straight-line path are such that

the computed velocities and accelerations along with linear and blend times are insufficient

to execute the trajectory (e.g. a ’sharp’ turn) the linear segment between blends may be lost

(becomes negative) resulting in an overlap of adjacent blend regions. In such a case the

velocity of the lost linear segment, as well as corresponding times, are adjusted to facilitate

the generation of a continuous path according to,

t∗leg = tleg − tlinear

v∗j =
pj+1 − pj

tleg

t∗linear = 0

a∗blend =

(
vj − vj−1
tblend,j

)

p∗blend,j = pblend,j−1 + v∗j · tblend,j +
1

2
a∗blend · t 2blend

p∗blend,j+1 = p∗blend,j

where the notation ∗ represents a corrected value.

68

5.4 Experimental Setup

The method outlined in the above section was implemented in a MATLAB function which

takes in a series of waypoints, a time-step value for spacing between generated trajectory

points, and a trajectory execution time and returns a series of generated trajectory points

as well as the corresponding time and velocities associated with reaching each point. For

several different trajectories, each generated under two different execution time constraints,

we evaluate several characteristics of the generated trajectories in comparison to each other.

First we evaluate the deviation of the generated trajectory from the original straight-line

path connecting the specified waypoints,

cross-track error =
||(ptraj − pj)× (ptraj − pj+1)||

||pj+1 − pj||

which we will call the cross-track error. This deviation occurs primarily in rounding cor-

ners in the straight line path, or in generating trajectories through the addition of pseudo

waypoints. We also examine the ratios of time spent in both the blend regions and linear

segments of the trajectories, as we expect this to be an indicator of both physical and com-

putational performance of the eventual CPS control implementation. Correspondingly we

evaluate generated velocities and accelerations for each trajectory and resulting estimates

of power consumption by an ideal vehicle which could execute the generated trajectory

given the enforced constraints on time, velocity, and acceleration. The power is estimated

at each time-step using Equation 4.5, and the maximum and average power for each mission

is recorded.

69

5.4.1 Experimental Results

Four test trajectories were generated with complete mission execution times of five seconds,

three seconds (Figure 5.2), and a sub-optimal minimum time (Figure 5.3).

Figure 5.2: Test trajectories generated with a mission execution time of three seconds and time-step resolution
of 0.01 seconds

Portions of the trajectory shown in red illustrate the blend regions for which the state

of the vehicle is propagated via Equation 5.14 under a constant acceleration value, ablend.

Portions indicated in blue represent linear segments of the trajectory connecting successive

blend regions calculated via Equation 5.13 under a constant velocity. Trajectories were

chosen to examine varying degree of turns and motion in three dimensions. The trajectories

analyzed are believed to capture maneuvers that may be a part of a typical mission for a

quadrotor UAS. Additional trajectories were tested less extensively to ensure robustness.

70

Figure 5.3: Test trajectories generated with a minimum execution time (sec) which results in a continuous
path and time-step resolution of 0.01 seconds

It is also important to note that although the trajectory planner assumes an obstacle free

path provided by a higher level path planner, there are scenarios where the vehicle may

deviate significantly from the planned path to meet timing requirements. In these scenarios,

an additional check of maximum deviation by the trajectory generator which, if violated,

raises the minimum mission time by adjusting constraints on velocity and acceleration

accordingly may be useful to ensure obstacles are avoided. Calculated values for cross-

track error, power estimates, and timing ratios are listed in Table 5.1 for each generated

trajectory.

71

Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4
Mission Time: 5sec 3sec Min: 1.7sec 5sec 3sec Min: 1.9sec 5sec 3sec Min: 2.2sec 5sec 3sec Min: 1.9sec

Cross-Track Error: 0.0064 0.0304 1.1370 0.0120 0.0699 0.9493 0.0857 0.3731 1.2050 0.0141 0.0644 1.3614
Avg. Power Est. (J/s): 86.10 94.13 109.69 90.03 105.19 137.10 102.36 135.41 184.76 91.39 107.64 138.64
Max Power Est. (J/s): 224.59 224.59 128.37 224.59 224.59 210.74 376.35 376.35 376.35 224.59 224.59 223.27

tlinear : tblend 20.831 6.730 0 11.015 3.168 0.060 7.424 1.967 0.475 13.283 3.906 0
%tlinear 95.4 87.1 0 91.7 76.0 5.7 88.1 66.3 32.2 93.0 79.6 0
%tblend 4.6 12.9 100 8.3 24.0 94.3 11.9 33.7 67.8 7.0 20.4 100

Table 5.1: Evaluation metrics of test trajectories generated with time-step resolution of 0.01 seconds

5.5 Discussion

From Table 5.1 we see that, for the same trajectory, as the constraint on mission time

approaches the minimum feasible time, the cross-track error increases. Execution of the

trajectory in less time requires faster velocities and more blending (rounding) of corners

of the straight-line path, therefore, higher deviation from the straight-line path. This may

seem intuitive, but consider a vehicle under active control attempting to track the generated

trajectory. Higher velocities and sharper (less rounded) corners will likely be more difficult

for the controller/vehicle to execute, resulting in a larger tracking error. That is, whereas

here, the cross-track error is calculated as the difference between the straight-line path and

the generated trajectory and results in an increase in error as mission time is decreased,

actual tracking of the generated trajectory by a controller/vehicle may produce the oppo-

site trend as the vehicle cannot perfectly track a piecewise straight-line trajectory without

stopping. Shorter times and increased velocities also result in larger accelerations and thus

larger power requirements. In contrast, the maximum power usage data in Table 5.1 is more

consistent, implying at least some saturation of thrust (max acceleration reached in one or

multiple directions) was achieved during each mission. An examination of the accelera-

tions produced by the trajectory generator confirms this is the case. It is also interesting

to note that in several cases of minimum mission time the maximum power usage is re-

duced as average power increases likely due to larger turning radii. Evaluation of time

72

ratios for linear segments and blend regions supports intuition wherein more time spent in

blend regions, where larger accelerations occur, results in higher power consumption by

the system.

5.5.1 Pseudo Trajectories

Trajectories are also generated with the use of pseudo points to convert the pre-specified

waypoints into through points in the trajectory. The same test trajectories shown in Fig-

ures 5.2 and 5.3 are shown with pseudo points in Figures 5.4 and 5.5.

Figure 5.4: Test trajectories with pseudo points generated with a mission execution time of three seconds and
time-step resolution of 0.01 seconds

Similar analysis of the pseudo trajectories is conducted and illustrates the same trends

as that of Table 5.1. The data for the pseudo trajectories is shown in Table 5.2. Comparison

73

Figure 5.5: Test trajectories with pseudo points generated with a minimum execution time (sec) which results
in a continuous path and time-step resolution of 0.01 seconds

Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4
Mission Time: 5sec 3sec Min: 1.8 5sec 3sec Min: 2.5 5sec 3sec Min: 2.6sec 5sec 3sec Min: 2.1sec

Cross-Track Error: 0.0084 0.0338 0.9020 0.0424 0.1593 1.0857 0.1833 0.4583 1.0532 0.0275 0.1318 1.0342
Avg. Power Est. (J/s): 86.36 95.80 124.82 89.47 104.70 118.17 99.86 133.28 168.29 88.98 105.37 140.27
Max Power Est. (J/s): 217.73 213.20 172.55 213.90 206.68 158.15 370.51 366.60 362.74 171.92 176.90 171.27

tlinear : tblend 20.160 6.308 0 10.167 2.858 0.188 5.747 1.339 0.336 10.209 2.843 0.028
%tlinear 95.3 86.3 0 91.0 74.1 15.8 85.2 57.2 25.1 91.1 74.0 2.7
%tblend 4.7 13.7 100 9.0 25.9 84.2 14.8 42.8 74.9 8.9 26.0 97.3

Table 5.2: Evaluation metrics of test trajectories with pseudo points generated with time-step resolution of
0.01 seconds

of Table 5.1 and Table 5.2 shows that with the addition of pseudo points a larger cross-track

error occurs as there are more blend regions. Note that the cross-track here is calculated as

the difference between the generated pseudo trajectory and the pseudo straight-line path.

Power estimates are comparable, though slightly lower with the use of pseudo points de-

74

spite the increase in the amount of time spent in blend regions. This is likely a result of the

fact that given the pseudo points the trajectory produces larger turns (less ’sharp’ corners)

than the trajectory without pseudo points, thus requiring lower velocities and accelerations,

and consequently less power.

5.5.2 Trajectory Tracking

In using the trajectory generation strategy outlined above in conjunction with the co-regulation

design described in Chapter 4, future work is required. The discrete LQR scheme described

above requires modification in order to track both positions and velocities without gener-

ating conflicting control signals between the two. That is, under positional control the

controller will attempt to bring the vehicle to a stop after driving it to the next waypoint;

however, using integrator states on velocity will also try to bring the vehicle to a non-zero

velocity at the next waypoint as specified by the trajectory generator. This results in poor

tracking of the generated trajectory.

Trajectory following for UAS is an area of high research interest and proves to be non-

trivial. The under-actuated nature of a quadrotor UAS categorizes it in a unique class of

mechanical systems [88] for which trajectory tracking is not well understood. Classical

control techniques can be used to track trajectories if the system model is decoupled and

linearized around local operating points in such a way that the system is divided into sev-

eral fully actuated systems or the system becomes linearly time-invariant through design

of several scheduled controllers for different portions of the flight envelope [89]. One

example of this methodology is shown in [58] in which a UAS is commanded to a refer-

ence position while achieving a specified velocity (i.e. set-point tracking). However, these

methods are unable to accommodate for singularities resulting from excessive angles of

attack, thus constraining their application to more fundamental trajectories and, although

75

beneficial in enforcing timing constraints on waypoint following, they cannot be effectively

used to follow the trajectories described here due to the relatively short spacing between

successive waypoints. Amongst the robotics community, perhaps the most promising tra-

jectory tracking technique for this work is that of a supervisory back-stepping nonlinear

control technique [89, 90, 91, 92]. In [89] a Lyapunov-based back-stepping control law

is formulated and an estimator-based supervisory control law discretely switches between

controllers to solve the trajectory tracking problem for an under-actuated system. Similarly

in [92] a quadrotor UAS system is divided into three subsystems (under-actuated, fully-

actuated, and rotor subsystems) and nonlinear back-stepping control techniques are also

used. A geometric (coordinate independent) approach to the integrator back-stepping for-

mulation is also used in [91] for a helicopter model and in [93] a purely geometric approach

with a hierarchical tracking control scheme is implemented on a quadrotor UAS. Finally,

in [90] a back-stepping trajectory tracking controller is implemented along with numeri-

cal feed-forward differentiation and filter compensation to decouple linear and rotational

dynamics without the use of an inner/outer loop structure.

In addition to trajectory tracking, a planner which can deliberate and assign target sam-

pling rates to the generated trajectory to optimize the allocation of cyber and physical re-

sources is needed for full functionality with the co-regulation design. Although, the de-

scribed trajectory generation is suitable for such a planner in that each trajectory point is

calculated at a discrete time-step which may be easily varied during trajectory generation,

a planner which can capitalize on this feature has yet to be designed.

76

Chapter 6

Conclusions

Control and real-time computing are coupled by implementing control laws on a digital

device requiring the periodic execution of a task. Characterizing this coupling and the

performance of the system allows us to design planning algorithms that trade off cyber and

physical resources and ensure predictable performance. In Chapter 3, we have investigated

and quantified the effects of varying sampling periods of a controller on a quadrotor UAS as

it follows various trajectories. This provides a mathematical relationship for developing a

cyber-physical planning algorithm that trades off cyber and physical resources for improved

mission performance.

We also introduced new metrics that quantify both the physical and cyber performance

of a quadrotor UAS following a reference trajectory. The results provide us with a means

for developing a higher-level CPS planner that computes coupled cyber-physical trajecto-

ries and reference commands for a low-level reactive cyber-physical control strategy. The

results also serve as a pointer to the awareness for considering timing requirements while

designing control laws.

A new hybrid method is proposed in Chapter 4, where physical and computational ef-

fectors are co-regulated simultaneously. Our method leverages the benefits of feedback

77

control to vary, in discrete-time, the sampling period of the controller according to phys-

ical system performance, which subsequently is used to calculate the control law for the

physical effectors.

We implemented our co-regulation strategy in a full nonlinear simulation environment,

and, going beyond traditional control analysis, we explored trajectory-following perfor-

mance for our UAS under several fixed-rate control strategies as well as our co-regulation

strategy. We have shown that significant computational resource savings can be realized

while still maintaining reasonable control performance. The co-regulation strategy less ag-

gressively applies physical control inputs (i.e. smaller thrusts) for longer periods of time,

which results in less precise flight performance but with significant savings in computa-

tional processing. Finally, we have provided strong evidence that control strategies that

execute at > 50 Hz most likely provide little to no trajectory following performance im-

provement, but have high computational cost. Those resources could be used to improve

performance on other tasks, particularly those involving data collection and transmission.

Toward designing a cyber-physical trajectory generator, in Chapter 5 we have used a

computationally simple kinematic trajectory generator with constraints on maximum ve-

locities and accelerations. The generator uses linear approximations with parabolic blends

to turn a straight-line path connecting pre-specified waypoints into a continuous function

through space with associated velocities and accelerations. The generator also ensures the

mission is executed in the desired mission time so long as saturation is not reached. The

generated trajectory can be augmented with the addition of pseudo waypoints to provide a

trajectory that passes through the pre-specified waypoints, instead of deviating from them

to better track the straight-line path. The implications of estimated power and time require-

ments were examined and show that a reduction in mission execution time results in larger

blends, and as a result, larger power requirements and cross-tracking error when comparing

the generated trajectory to the straight-line path. Implementation of the trajectory tracker

78

in a control system architecture is needed to better asses the effectiveness of the designed

trajectory generator and how it may best serve a cyber-physical system.

6.1 Future Work

Future work is most immediately focused on obtaining experimental flight results on our

AscTec Hummingbird platform. The proposed co-regulation is non-trivial for implementa-

tion due to lack of an on-board real-time system, but empirical results on a physical system

will provide much more insight into the magnitude of computational savings and perfor-

mance limitations. Toward implementation on a physical vehicle it may also be useful to

explore the effects of external disturbances and noise on the system. We did not explore

these effects in this work because we were interested only in the relationship between dif-

ferent sampling rates and control and as such wanted to isolate those effects. However,

in Appendix C we present a possible approach to acquiring a meaningful noise profile to

apply to our control technique. Prior to implementation on a physical system we also de-

sire formal guarantees on stability of the system. As a formal stability analysis of rate

varying control techniques is of current research interest [94, 95, 96], a standard technique

has yet to be accepted by the community. Still a formal stability analysis for the described

co-regulation technique is an aim for future work; though, an approach to such analysis

remains unclear as conducting stability analysis for each discrete controller over a range of

sampling rates from 1 Hz to 1000 Hz may be highly inefficient. In addition, complications

arising from non-ideal sensors will likely require investigation into real-time optimal sen-

sor scheduling techniques as mentioned in Chapter 2. As the controllers in this work were

manually tuned during experiments, an optimal tuning technique for co-regulation is also

desired. Toward the goal of a higher level motion planning architecture, future work will

also include investigation into trajectory tracking and adapting successful techniques to ac-

79

count for cyber trajectory generation as well as physical trajectory tracking. This points

to an all encompassing analytical model for which optimal execution with regard to CPS

effectors can be achieved at a mission level.

80

Appendix A

Quadrotor Dynamics

In the following discussion we will derive a dynamic model for a small quadrotor vehicle

for further use in simulation and control environments. We begin by first defining an inertial

reference frame {î ,ĵ ,k̂}. This frame is considered fixed with the origin at the point of

takeoff for the vehicle and the positive k̂ direction pointing upward. Our physical model of

the quadrotor vehicle will consist of a solid sphere of mass M and radius r with four thin

Figure A.1: Quadrotor frame orientations.

81

rods extending from its center at right angles from each other (all in the same plane) with a

point mass mr at the end of each of them. The mass of each thin rod is noted as mrod. We

then define a right handed body (or vehicle) frame {êx,êy,êz} with the origin fixed at the

center of the vehicle (assumed to be the center of mass), the positive êx axis pointing out of

what will be considered the front of the vehicle, the positive êz axis pointing upward, and

the êx and êy axis aligned with the arms of the quadrotor. The position of the body frame

is simply calculated by the vector connecting the origins of each frame, and the orientation

of the body frame (along with any vector or matrix in the body frame) can be described

with the application of a rotation matrix R. This rotation matrix is constructed using three

intrinsic1 rotations about the inertial axes through respective Tait-Bryan angles2 {φ,θ,ψ} as

follows:

Rx =


1 0 0

0 cos(φ) sin(φ)

0 −sin(φ) cos(φ)



Ry′ =


cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)


1Intrinsic rotations are are described in terms of the moving (rotated) frame (i.e. RxRy′Rz′′). The

second and third rotations are about ‘new’ or non-inertial axis which are defined by the previous rotation.
Successive extrinsic rotations in contrast are defined as rotations about only the inertial axes or original
(fixed) frame no matter the orientation of the moving frame (the frame being rotated) (i.e. RxRyRz) .

2Classical (proper) Euler angles include rotations about first an axis in the fixed frame, followed by a
rotation about an intermediate (nodal) axis, and then a rotation about the same axis as the first rotation (i.e.
RzRyRz). On the contrary Tait-Bryan angles include rotations about three separate axes (i.e. RxRyRz).
The number of possible rotation combinations including both the classical Euler and Tait-Bryan angles totals
at 12. Including both extrinsic and intrinsic combinations doubles the total possibilities. Intrinsic Tait-Bryan
angles are the convention in aeronautics as they are intuitive when describing the roll, pitch, and yaw of a
vehicle

82

Rz′′ =


cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1



Rxyz = Rz′′Ry′Rx (A.1)

=


c(ψ)cos(θ) c(θ)sin(ψ) −s(θ)

−c(φ)s(ψ) + c(ψ)s(φ)s(θ) c(φ)c(ψ) + s(φ)s(ψ)s(θ) c(θ)s(φ)

s(φ)s(ψ) + c(φ)c(ψ)s(θ) −c(ψ)s(φ) + c(φ)s(ψ)s(θ) c(φ)c(θ)


where c(θ) and s(θ) are short-hand notation for cos(θ) and sin(θ) respectively. Converting

from the body frame to the inertial frame is achieved by applying the same rotations in the

reverse order as:

RT
xyz = Rzyx(−φ,−θ,−ψ)

Note here that the correct mathematical derivation for reversing the transform includes

multiplying an equation by the inverse of each rotation matrix in the correct order, but for

rotations about coordinate axes the inverse is equal to the transpose. Also note that here

Rx,Ry′ ,Rz′′are written in terms of counter-clockwise rotations as viewed looking at the

origin down the axis of rotation. In terms of aviation, these rotations are known as roll (φ),

pitch (θ), and yaw (ψ), and the body frame orientation may be referred to as the ENU (East

North Up) convention3.

Using Newtonian mechanics, the motion of the center of mass of a quadrotor, relative

to the inertial frame, can be modeled by calculating the sum of the forces on the vehi-
3ENU along with NED (North East Down) are standard axes conventions for depicting aerial vehicle

orientation. ENU has been selected because it is consistent with the software (ROS) we utilize for autonomous
flight (see http://www.ros.org/reps/rep-0103.html#coordinate-frame-conventions).

http://www.ros.org/reps/rep-0103.html#coordinate-frame-conventions

83

cle. In particular there exists a gravitational force, a thrust produced by each of the four

rotors analogous to a net thrust at the center of mass, and a force due to drag. There is

most certainly an amount of selectivity when considering the level of accuracy at which to

approximate these forces as may become clear in later discussion. Each of the four inde-

pendent motor thrusts produces a moment about the center of the vehicle in either the êx or

êy axis of the body frame (roll and pitch respectively). As a result, unequal motor thrusts

result in a rotation of the quadrotor in space. A reactive moment is also produced in the

êz axis (yaw) as a result of drag induced as each rotor travels through the air along with

conservation of momentum. In order to achieve zero yaw, rotors adjacent to one another are

rotated in opposite directions canceling opposing moments, when operated at equal speeds.

The resulting equations of motion are then:

∑
F cm = macm = T net + F drag −mg (A.2)

∑
M cm = τ = Icmα+ ω x Icmω (A.3)

where m = M + 4mr + 4mrod is the total mass of the vehicle, acm is the acceleration

of the center of mass, T net is the net thrust, F drag is the drag force, g = 9.8066m
s2

, Icm

is the moment of inertia tensor, α is the angular acceleration, τ is the torques exerted on

the vehicle by the motors, and ω is the angular velocity. Alternatively the above moment

equation may be written using the skew symmetric matrix4 form of the angular velocity

vector, Ω, as follows:

τ = Icmα+ ΩIcmω

4A skew symmetric matrix is one in which −A = AT . The skew symmetric form of a vector involves
filling the skew symmetric matrix with the components of the vector such that multiplying an arbitrary vector
by the skew symmetric matrix is the equivalent of performing the outer (cross) product of the two vectors
(i.e. Aab = a x b where a and b are vectors and A is the skew symmetric form of vector a).

84

where for any vector of constant magnitude λ,

Ωλ = ω xλ

Ω may be derived in the following manner [44]:

λf = Rλ0

=⇒ λ0 = RTλf

λ̇f = Ṙλ0 = Ṙ(RTλf)

The vector representation of angular velocity gives us [97, 44]:

λ̇ = ω xλ

∴ λ̇f = ω xλf = ṘRTλf = Ωλf

=⇒ Ω = ṘRT

However, because Ṙ is non-trivial to calculate, another approach may be used. This method

essentially corrects for each intermediate rotation of the transform R leaving the residual

components of angular velocity at each stage in terms of the Tait-Bryan angles via the

equation [67]:

ω = θ̇3ê3 +R3θ̇2ê2 +R3R2θ̇1ê1

for the transform listed above,Rxyz, this equation yields:

ω = ψ̇k̂ +Rz θ̇ĵ +RzRyφ̇î

85

ω =


cos(θ)cos(ψ) sin(ψ) 0

−cos(θ)sin(ψ) cos(ψ) 0

sin(θ) 0 1




φ̇

θ̇

ψ̇

 (A.4)

The components of ω may then be used to construct the skew symmetric form Ω as:

Ωxyz =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


Due to the simplicity of geometry used to describe the physical model of the quadrotor,

the moment of inertia tensor becomes a trivial sum of commonly known inertia tensors for

basic shapes when considering rotations about the principal axes. We will start with the

sphere of mass M and radius r centered at the origin of the body frame. The inertial tensor

for a uniform sphere about an axis coinciding with its diameter is [98]:

Is =


2
5
Mr2 0 0

0 2
5
Mr2 0

0 0 2
5
Mr2


Next for a point massm at a distance of l away from the origin along the êx axis the moment

of inertia is:

Ip =


ml2 0 0

0 0 0

0 0 0


For modeling each rotor as a point mass positioned on each of the êx,−êx, êy, and−êy axes

86

we get:

Ir =


2ml2 0 0

0 2ml2 0

0 0 4ml2


The moment of inertia tensor for a uniform thin rod of mass mrod and length l about an

axis perpendicular to the bar, and at the end of the bar, is used to model the arms of the

vehicle. This inertial moment is I = 1
3
mrodl

2[98]. Following the same symmetry as used

for calculating moment of inertia tensor for the network of point masses above, the inertial

tensor for four rods each with one end at the origin and aligned with the êx,−êx, êy, and−êy

axes the tensor becomes:

Irod =


2
3
mrodl

2 0 0

0 2
3
mrodl

2 0

0 0 4
3
mrodl

2


The total mass moment of inertia tensor for our physical model is then simply the sum of

each of these three tensors, Icm = Is + Ir + Irod.

By examining the mechanics of a single stationary rotor system consisting of a motor

and propeller one can calculate a thrust approximation for a flying single or multi-rotor

vehicle at a state of hover. By conservation of energy we have that:

KE0 +
∑

W0−f = KEf

where KE is kinetic energy and W is work done in the system. For a stationary rotor

system the work done by the rotor on the air is:

W ≡
ˆ
Pdt =

ˆ
F ·vdt

87

where P is the power expended by the system, F is the force the propeller exerts on the

air also known as the thrust, and v is the velocity of the air displaced by the propeller.

When considering a stationary system and assuming there is no free stream movement of

the surrounding air (i.e. no wind), we can assume that the majority of displaced air moves

with a velocity parallel to the force F . Replacing F with T for thrust and differentiating,

it follows that:

P = Tv

Momentum theory tells us that for a thin actuator disk (i.e. a propeller spinning at sufficient

speed) of areaA pushing a fluid with density ρ, the power required to produce a given thrust

is:

P =

√
T 3

2ρA

therefore,

v =

√
T

2ρA

Solving for T and substituting v = $r′ where $ is the angular velocity of the rotor and r′

is the radius of the rotor, gives us a usable equation for thrust:

T = 2ρAr′2$2

Noting that the rotating propeller is, in fact, not a thin disk, better results may be attained

by experimentally determining a thrust coefficient CT to be used in the previous equation

yielding [66]:

T = CTρAr
′2$2

Turning to a electro-mechanical view of the system and examination of the motor used to

drive the propeller (a DC brushless motor in this discussion), the power expended by the

88

system may also be modeled as:

P = imV

Characteristic of a DC brushless motor, the torque generated is related to the current by a

motor torque coefficient κτ by:

τm = κτ (im − iNL) = κτ iL

where iNL is the no load current of the motor, τm is the motor torque, and im is the amount

of current drawn by the motor. Using Ohm’s law we also know that the voltage across the

motor is:

V − VEMF = imRm

where V is the nominal voltage, Rm is the impedance of the motor, and VEMF = κv$ is

the back-emf of the motor. It follows that:

P = i2mRm + imκv$

= (
τm
κτ

+ iNL)2Rm + (
τm
κτ

+ iNL)κv$

Assuming that iNL � iLand iNL is therefore negligible, and that our motor is sufficiently

efficient (implying resistive losses are also negligible) the power of the system may be

approximated as:

P ≈ τm
κτ
κv$

Noting that the torque on the motor is linearly proportional to the amount of thrust produced

by the rotor by some constant κT we can write [99]:

P ≈ κvκT
κτ

T$

89

=⇒ κvκT
κτ

T$ =

√
T 3

2ρA

T = 2ρA(
κvκT
κτ

)2$2

In either case the thrust may be modeled as proportional to the square of the angular velocity

of the propeller:

T = k$2

where k is a physical parameter of the system.

Given the geometry of our physical model, the torques (moments) in the êx and êy

direction, as mentioned, are generated by the thrust of each individual rotor by:

τ =
∑

r xF =
∑

l xT

more specifically, the torques about the pitch and roll axes, τθ and τφ respectively, become:

τ φ = lêy x k$
2
2 êz − lêy x k$2

4 êz

= lk$2
2 êx − lk$2

4 êx

τ θ = lêx x k$
2
1 êz − lêx x k$2

3 êz

= lk$2
1 êy − lk$2

3 êy

Forces due to drag on the vehicle are also important to consider when dealing with

aerodynamics. As mentioned above one important artifact of drag on the rotors is the

generation of a reactive torque in the êz direction formerly known as yaw. The equation for

90

drag on an object transversing a fluid (in this case air) is given as [99]:

F ′drag =
1

2
CdragρAcν

2

where F ′drag is the force due to drag on the propeller, Cdrag is the drag coefficient, ρ is again

the density of air, Ac is the cross-sectional area of the propeller blade, and ν = $r′ is the

translational velocity of the blade. This equation assumes the propeller blade is moving

at a high relative velocity, reflected in the square of the term ν. This assumption along

with the value of Cdrag are dependent on the Reynolds5 number of the system. Making the

substitution ν = $r′ the reactive torque on the vehicle generated by the drag may then be

represented as [99]:

τdrag =
1

2
CdragρAcr

′3$2

Once again this may also be simply modeled as:

τdrag = b$2

where b is a physical parameter of the system. Summing τdrag for all of the rotors while

taking into consideration the direction of drag, we can then write an equation for the net

yaw torque:

τψ = b$2
1 − b$2

2 + b$2
3 − b$2

4

There are several other affects of drag to be considered in modeling a quadrotor system

in flight. For the drag force Fdrag seen in Equation A.2 above, we will assume the vehi-

cle moves with relatively low velocity in near laminar conditions (low Reynolds number)
5Reynolds number is a dimensionless ratio of inertial forces to viscous forces for an object transversing

a fluid. This ratio is used to characterize the nature of flow of the fluid in which the object is immersed. High
Reynolds numbers (on the order of 103 and above) are associated with aggressive or turbulent flow while low
Reynolds numbers (on the order of 10−1and below) are associated with passive (laminar) or negligble flow.

91

therefore inducing Stokes’s drag, or linear drag, modeled as:

Fdrag = −Dυ

whereD is drag coefficient dependent on physical geometry of the vehicle and properties of

the fluid it transverses (air), and υ is the velocity of the vehicle. Some other retarding affects

not represented here include blade flapping, interference drag, non-laminar drag, and so on.

Note that in the following equations D becomes a matrix containing drag coefficiants for

each of the three principal axes of the quadrotor along the diagonal. These effects, although

important in some scenarios, are not considered dominant in the model described in this

discussion.

Equations A.2 and A.3 now become [67]:

m


ax

ay

az

 = RT
xyz


0

0

(
∑
k$2

i)z′

−Dxyz


υx

υy

υz

−m


0

0

gz




τφ

τθ

τψ

 = Icm


αφ

αθ

αψ


b/i

+ Ωx′y′z′Icm


ωφ

ωθ

ωψ


b/i

where {î, ĵ, k̂} =⇒


x

y

z

 and {êx, êy, êz} =⇒


x′

y′

z′

. The notation b/i represents

the derivatives of angles in the body frame with respect to the inertial frame. Note that

the equation of rotational dynamics is expressed in the body frame of reference while the

equation of translational dynamics is expressed in the inertial frame of reference. Solving

92

for accelerations and expressing both in the body frame yields [67]:


ax′

ay′

az′

 = Rxyz


ax

ay

az

 =
1

m


0

0∑
k$2

i

−
1

m
Dx′y′z′Rxyz


υx

υy

υz

 (A.5)

−Rxyz


0

0

g

−


ωθυz′ − ωψυy′

ωψυx′ − ωφυz′

ωφυy′ − ωθυx′




ax′

ay′

az′

 =
1

m


0

0∑
k$2

i

−
1

m


Dx′υx′

Dy′υy′

Dz′υz′


−


−gsin(θ)

gcos(θ)sin(φ)

gcos(θ)cos(φ)

−


ωθυz′ − ωψυy′

ωψυx′ − ωφυz′

ωφυy′ − ωθυx′




αφ

αθ

αψ


b/i

= I−1cm


τφ

τθ

τψ

− I
−1
cmΩx′y′z′Icm


ωφ

ωθ

ωψ


b/i

(A.6)


αφ

αθ

αψ


b/i

=


τφ
Ix

τθ
Iy

τψ
Iz

−


ωθωψIz−ωθωψIy
Ix

ωφωψIx−ωφωψIz
Iy

ωφωθIy−ωφωθIx
Iz



93

where I−1cm =


1
Ixx

0 0

0 1
Iyy

0

0 0 1
Izz

. Here again the vector representation of angular velocity

generates an additional term for rotational correction in the translational equation. Recall

that from Equation A.4 we may also write Equations A.5 and A.6 in terms of the Tait-Bryan

angles. Expressing Equations A.5 and A.6 in the inertial frame gives us:


ax

ay

az

 =
1

m
RT
xyz


0

0∑
k$2

i

−
1

m
Dxyz


υx

υy

υz

−


0

0

g

 (A.7)


ax

ay

az

 =
1

m


[sin(φ)sin(ψ) + cos(φ)cos(ψ)sin(θ)]

∑
k$2

i

[−cos(ψ)sin(φ) + cos(φ)sin(ψ)sin(θ)]
∑
k$2

i

[cos(φ)cos(θ)]
∑
k$2

i


− 1

m
RT
xyzDx′y′z′


υx

υy

υz

−


0

0

g



RT
xyz




αφ

αθ

αψ


b/i

= I−1cm


τφ

τθ

τψ

− I
−1
cmΩx′y′z′Icm


ωφ

ωθ

ωψ


b/i

 (A.8)

Note here that (in Equation A.8 especially) calculations are made in the body frame of

reference and then transformed (through RT
xyz) for realization in the inertial frame. This is

due to the nature of rotations not being realizable without two different frames expressed

in relation to each other. As a result, the following control will be implemented in the body

94

frame of reference and a transform to the inertial frame will be enforced before generating

graphical representations of the vehicle, providing the perspective of an observer in the

inertial frame.

95

Appendix B

Linearization

The equations of motion derived for a quadrotor vehicle (Equations A.5-A.6 and A.7-A.8)

form two systems of non-linear functions. In order to autonomously operate the vehicle,

either system must be organized in a manner in which it is possible to implement active

control due to the fact that the system is inherently unstable. Although several methods

for nonlinear control of quadrotor vehicles exist [100, 70, 69], linear controllers such as

PID and LQR may be more common [101]. In order to implement a linear controller, the

equations of motion must be linearized about a defined operating point. In this discussion

the Taylor series expansion of the equations of motion will be used as the primary method

of linearization. The general form of the Taylor series expansion is shown here:

F (x1, x2, x3, ...) = F (a1, a2, a3, ...) +
∂F (x1, x2, x3, ...)

∂x1
|x1=a1,x2=a2,... (x1 − a1)

+
∂F (x1, x2, x3, ...)

∂x2
|x1=a1,x2=a2,... (x2 − a2) + ...+HOT

where ai are the values of the function variables xi at the operating point, and F is the

function being linearized. In order to effectively linearize the equation the higher order

96

terms (HOT) are neglected and the Taylor expansion becomes an approximation of F .

F (x1, x2, x3, ...) ≈ F (a1, a2, a3, ...) +
∂F (x1, x2, x3, ...)

∂x1
|x1=a1,x2=a2,... (x1 − a1) (B.1)

+
∂F (x1, x2, x3, ...)

∂x2
|x1=a1,x2=a2,... (x2 − a2) + ...

F (x) ≈ F (a) +∇F (x) |x=a (x− a)

For the quadrotor system an operating point will be chosen as a point when the vehicle

is in a hovering state. In the body frame, the vehicle is motionless at the origin while in

a hover. Therefore, assuming full state feedback on position, velocity, Tait-Bryan angles,

and Tait-Bryan angular velocities, x = (x1, ..., x12) =
(
x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇

)
and

a = (a1, ..., a12) = 0. As mention above, both Equations A.5 and A.6 in the body frame

and Equations A.7 and A.8 in the inertial frame consist of six independent functions of the

state variables, three translational and three rotational. Therefore,



ax′

ay′

az′

αφ

αθ

αψ



=



F1(x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇)

F2(x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇)

F3(x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇)

F4(x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇)

F5(x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇)

F6(x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇)



= F (x)

the equations of motion may then be linearized using Equation B.1 one function at a time

yielding six linear equations of motion for the system model. Using a linear algebra ap-

97

proach,



ax′

ay′

az′

αφ

αθ

αψ



=



∂F1(x,y,z,...)
∂x

|x=0,y=0,...
∂F1(x,y,z,...)

∂y
|x=0,y=0,... · · ·

∂F2(x,y,z,...)
∂x

|x=0,y=0,...

. . .

...





x

y

z

φ

θ

ψ

ẋ

ẏ

ż

φ̇

θ̇

ψ̇



+ F (0)

F (0) =



F1(0, 0, 0, ...)

F2(0, 0, 0, ...)

F3(0, 0, 0, ...)

F4(0, 0, 0, ...)

F5(0, 0, 0, ...)

F6(0, 0, 0, ...)


Note that this representation is realized if the inputs are considered to be constant at the

operating point (a hover in this case). However, a more technical representation in which

98

this assumption is not necessary is:

F (x,u) ≈ F (a,ua) +∇F (x,u) |x=a,u=ua

 (x− a)

(u− ua)


In the body frame then via Equation B.1,

F1(x
′, y′, z′, φ, θ, ψ, υx′ , υy′ , υz′ , φ̇, θ̇, ψ̇) = −Dx′υx′

m
+ gsin(θ)

−(−φ̇cos(θ)sin(ψ) + θ̇cos(ψ))υz′ + (φ̇sin(θ) + ψ̇)υy′

≈ 0 + 0 + 0 + 0 + 0 + (gcos(θ)− φ̇sin(θ)sin(ψ)υz′ + φ̇cos(θ)υy′) |x=0 (θ)

+ (φ̇cos(θ)cos(ψ)υz′ − θ̇sin(ψ)υz′) |x=0 (ψ) + (−Dx′

m
) |x=0 (υx′)

+ (φ̇sin(θ) + ψ̇) |x=0 (υy′) + (−φ̇cos(θ)sin(ψ) + θ̇cos(ψ)) |x=0 (υz′)

+ (cos(θ)sin(ψ)υz′ + sin(θ)υy′) |x=0 (φ̇) + (cos(ψ)υz′) |x=0 (θ̇)

+ (υy′) |x=0 (ψ̇)

≈ gθ − Dx′

m
υx′

F2(x
′, y′, z′, φ, θ, ψ, υx′ , υy′ , υz′ , φ̇, θ̇, ψ̇) = −Dy′υy′

m
− gcos(θ)sin(φ)

−(φ̇sin(θ) + ψ̇)υx′ + (φ̇cos(θ)cos(ψ) + θ̇sin(ψ))υz′

99

≈ 0 + 0 + 0 + 0 + (−gcos(θ)cos(φ)) |x=0 (φ)

+ (gsin(θ)sin(φ)− φ̇cos(θ)υx′ − φ̇sin(θ)cos(ψ)υz′) |x=0 (θ)

+ (−φ̇cos(θ)sin(ψ)υz′ + θ̇cos(ψ)υz′) |x=0 (ψ)

+ (−φ̇sin(θ)− ψ̇) |x=0 (υx′)

+ (−Dy′

m
) |x=0 (υy′) + (φ̇cos(θ)cos(ψ) + θ̇sin(ψ)) |x=0 (υz′)

+ (−sin(θ)υx′ + cos(θ)cos(ψ)υz′) |x=0 (φ̇)

+ (sin(ψ)υz′) |x=0 (θ̇) + (υx′) |x=0 (ψ̇)

≈ −gφ− Dy′

m
υy′

F3(x
′, y′, z′, φ, θ, ψ, υx′ , υy′ , υz′ , φ̇, θ̇, ψ̇) =

∑
k$2

i

m
− Dz′υz′

m
− gcos(θ)cos(φ)

−(φ̇cos(θ)cos(ψ) + θ̇sin(ψ))υy′ + (−φ̇cos(θ)sin(ψ) + θ̇cos(ψ))υx′

100

≈
∑
k$2

i

m
− g + 0 + 0 + 0 + (gcos(θ)sin(φ)) |x=0 (φ)

+ (gsin(θ)cos(φ) + φ̇sin(θ)cos(ψ)υy′ + φ̇sin(θ)sin(ψ)υx′) |x=0 (θ)

+ (φ̇cos(θ)sin(ψ)υy′ − θ̇cos(ψ)υy′ + φ̇cos(θ)cos(ψ)υz′

− θ̇sin(ψ)υz′) |x=0 (ψ)

+ (φ̇cos(θ)sin(ψ) + θ̇cos(ψ)) |x=0 (υx′)

+ (−φ̇cos(θ)cos(ψ)− θ̇sin(ψ)) |x=0 (υy′)

+ (−Dz′

m
) |x=0 (υz′) + (−cos(θ)cos(ψ)υy′ + cos(θ)sin(ψ)υx′) |x=0 (φ̇)

+ (sin(ψ)υy′ + cos(ψ)υx′) |x=0 (θ̇)

+ 0

≈
∑
k$2

i

m
− g − Dz′

m
υz′

F4(x
′, y′, z′, φ, θ, ψ, υx′ , υy′ , υz′ , φ̇, θ̇, ψ̇) =

τφ
Ix
−
(
Iz − Iy
Ix

)
ωθωψ

=
τφ
Ix

+

(
Iz − Iy
Ix

)
(φ̇2cos(θ)sin(θ)sin(ψ)

−φ̇θ̇sin(θ)cos(ψ) + φ̇ψ̇cos(θ)sin(ψ)

−θ̇ψ̇cos(ψ))

101

≈ τφ
Ix

+ 0 + 0 + 0 + 0 +

(
Iz − Iy
Ix

)
(−φ̇2sin(θ)sin(θ)sin(ψ)

+ φ̇2cos(θ)cos(θ)sin(ψ)− φ̇θ̇cos(θ)cos(ψ)− φ̇ψ̇sin(θ)sin(ψ)) |x=0 (θ)

+

(
Iz − Iy
Ix

)
(φ̇2cos(θ)sin(θ)cos(ψ) + φ̇θ̇sin(θ)sin(ψ)

+ φ̇ψ̇cos(θ)cos(ψ) + θ̇ψ̇sin(ψ)) |x=0 (ψ)

+ 0 + 0 + 0

+

(
Iz − Iy
Ix

)
(2φ̇cos(θ)sin(θ)sin(ψ)− θ̇sin(θ)cos(ψ)

+ ψ̇cos(θ)sin(ψ)) |x=0 (φ̇)

+

(
Iz − Iy
Ix

)
(−φ̇sin(θ)cos(ψ)− ψ̇cos(ψ)) |x=0 (θ̇)

+

(
Iz − Iy
Ix

)
(φ̇cos(θ)sin(ψ)− θ̇cos(ψ)) |x=0 (ψ̇)

≈ τφ
Ix

F5(x
′, y′, z′, φ, θ, ψ, υx′ , υy′ , υz′ , φ̇, θ̇, ψ̇) =

τθ
Iy
−
(
Ix − Iz
Iy

)
ωφωψ

=
τθ
Iy

+

(
Ix − Iz
Iy

)
(−φ̇2cos(θ)sin(θ)cos(ψ)

−φ̇θ̇sin(θ)sin(ψ)− φ̇ψ̇cos(θ)cos(ψ)

−θ̇ψ̇sin(ψ))

102

≈ τθ
Iy

+ 0 + 0 + 0 + 0 +

(
Ix − Iz
Iy

)
(φ̇2sin(θ)sin(θ)cos(ψ)

− φ̇2cos(θ)cos(θ)cos(ψ)− φ̇θ̇cos(θ)sin(ψ) + φ̇ψ̇sin(θ)cos(ψ)) |x=0 (θ)

+

(
Ix − Iz
Iy

)
(φ̇2cos(θ)sin(θ)sin(ψ)− φ̇θ̇sin(θ)cos(ψ)

+ φ̇ψ̇cos(θ)sin(ψ)− θ̇ψ̇cos(ψ)) |x=0 (ψ)

+ 0 + 0 + 0

+

(
Ix − Iz
Iy

)
(−2φ̇cos(θ)sin(θ)cos(ψ)− θ̇sin(θ)sin(ψ)

− ψ̇cos(θ)cos(ψ)) |x=0 (φ̇)

+

(
Ix − Iz
Iy

)
(−φ̇sin(θ)sin(ψ)− ψ̇sin(ψ)) |x=0 (θ̇)

+

(
Ix − Iz
Iy

)
(−φ̇cos(θ)cos(ψ)− θ̇sin(ψ)) |x=0 (ψ̇)

≈τθ
Iy

F6(x
′, y′, z′, φ, θ, ψ, υx′ , υy′ , υz′ , φ̇, θ̇, ψ̇) =

τψ
Iz
−
(
Iy − Ix
Iz

)
ωφωψ

=
τψ
Iz

+

(
Iy − Ix
Iz

)
(−φ̇2cos(θ)cos(θ)sin(ψ)cos(ψ)

−φ̇θ̇cos(θ)sin(ψ)sin(ψ) + φ̇θ̇cos(θ)cos(ψ)cos(ψ)

+θ̇2cos(ψ)sin(ψ))

103

≈ τψ
Iz

+ 0 + 0 + 0 + 0 +

(
Iy − Ix
Iz

)
(2φ̇2sin(θ)cos(θ)sin(ψ)cos(ψ)

+ φ̇θ̇sin(θ)sin(ψ)sin(ψ)− φ̇θ̇sin(θ)sin(ψ)sin(ψ)) |x=0 (θ)

+

(
Iy − Ix
Iz

)
(−φ̇2cos(θ)cos(θ)cos(ψ)cos(ψ)

+ φ̇2cos(θ)cos(θ)sin(ψ)sin(ψ) + θ̇2cos(ψ)cos(ψ)− θ̇2sin(ψ)sin(ψ)

− 2φ̇θ̇cos(θ)cos(ψ)sin(ψ) + 2φ̇θ̇cos(θ)cos(ψ)sin(ψ)) |x=0 (ψ)

+ 0 + 0 + 0

+

(
Iy − Ix
Iz

)
(−2φ̇cos(θ)cos(θ)cos(ψ)sin(ψ)

− θ̇cos(θ)sin(ψ)sin(ψ) + θ̇cos(θ)cos(ψ)cos(ψ)) |x=0 (φ̇)

+

(
Iy − Ix
Iz

)
(2θ̇cos(ψ)sin(ψ)− φ̇cos(θ)sin(ψ)sin(ψ)

+ φ̇cos(θ)cos(ψ)cos(ψ)) |x=0 (θ̇)

+ 0

≈τψ
Iz

Therefore, after linearizing, Equations A.5 and A.6 become:


ax′

ay′

az′

 =
1

m


0

0∑
k$2

i −mg

−
1

m


Dx′υx′

Dy′υy′

Dz′υz′

−

−gθ

gφ

0

 (B.2)

104


αφ

αθ

αψ


b/i

= I−1cm


τφ

τθ

τψ

 (B.3)

A control strategy may now be formulated.

105

Appendix C

Investigation of Noise Model

In a closed loop control system, sensors are often used to generate feedback from the output

as a means of calculating error in the system’s state. A typical design process involves sim-

ulating control techniques through implementation on a digital system and injecting some

type of noise profile into the system as random disturbances on the system plant or feed-

back sensor(s). In our work as we are interested in comparing different control techniques,

noise is omitted from simulation as a means to more accurately compare the controllers

themselves. However, in testing a simulated controller for implementation, perhaps the

most simple case involves injecting a Gaussian noise profile into the system [102]. Here

we investigate the noise profile for an indoor motion tracking system used for small UAS

in an effort to create a statistical model which more accurately represents the noise profile

for a specific physical system during flight. A more specific and physically related model

may be beneficial in improving simulation accuracy and consequently control design via

improved filtering and tuning.

When flying the quadrotor UAS indoors, a motion capture system may be used to track

reflective markers mounted in a unique configuration on the vehicle itself. Alternatively,

when flying outdoors the vehicle relies on GPS in relation to satellites. This is less accurate,

106

Figure C.1: Roll Angle motion capture system data for a flight with minimum control input of ~37sec in
duration

within ~3 meters, and subject to random walk disturbances and otherwise. Here, we will be

investigating data collected from a motion capture system as it is much more accurate and

easily accessible. Data describing the vehicle’s roll angle (rotation about the y-axis) relative

to the world frame is collected from the motion capture system for a flight of approximately

37 seconds in duration with minimum control inputs and plotted in Figure C.1. Note that

the data have been calibrated for sensor drift. Although only roll data are analyzed here,

similar data relating to pitch and yaw angles as well as positions in x, y, and z may be

analyzed in a similar fashion.

C.1 Data Dependent System Modeling

Modeling analysis often follows an approach similar to that of the previous section in which

a mathematical formulation of differential equations (or similar discrete formulation) is

conducted, almost always with the use of simplifying assumptions, to approximate the dy-

namics and response of the system. The level of accuracy, in comparison to nature, the

derived model achieves is directly related to the assumptions made, and it follows that the

107

derived response can only be an approximation of the natural one. Data Dependent System

(DDS) modeling approaches a system with a methodology in the reverse direction so to

speak. That is, DDS begins with data from the natural response of the system and statis-

tically fits a difference/differential equation with a white noise (i.e. random disturbance)

forcing function to the response. The order and number of parameters in the DDS model

are determined by the least squares method in which the order of the difference/differential

fit is increased until the residual sum of squares of errors (RSS) is minimized at some con-

fidence interval [103, 104]. For the purposes of this report, the data will only be fit to an

auto-regressive moving average (ARMA) model of second order regression and first order

moving average (i.e. ARMA(2,1)); therefore, the reduction in the RSS may not be opti-

mized. A DDS modeling and analysis program1 was used to fit the ARMA(2,1) model and

provide information for the following analysis.

C.1.1 ARMA Model Fit

Fitting the finite set of data points for roll angle consisting of N sampled data points, Xt,

where t is time (a nominal index) and Xt−j refers to the previous point j time steps before

Xt to the ARMA(2,1) difference equation yields

Xt − φ1Xt−1 − φ2Xt−2 = at − θ1at−1 (C.1)

where at is the random error for measurement Xt, φj is the jth auto-regressive parameter,

and θj is the jth moving average parameter. Note that as the motion capture system collects

data at 200Hz the units on time steps t is 0.005 seconds. The DDS program internally

fits the model in Equation C.1 to the data and calculates the ARMA parameters as well
1’DDS Toolbox 2007’ by Jason Dreyer available at https://www.mathworks.com/matlabcentral/fileexchange/19462-

dds-toolbox-2007

https://www.mathworks.com/matlabcentral/fileexchange/19462-dds-toolbox-2007
https://www.mathworks.com/matlabcentral/fileexchange/19462-dds-toolbox-2007

108

Figure C.2: DDS program results for ARMA(2,1) model fit to roll data. The results list a co-variance γ0 =
2.98× 10−4, mean µ = 0.0148, average X̄ = 0.0121, variance σ2

a = 3.64× 10−5, residual sum of squares
RSS = 0.270, and the number of unified auto-correlations greater than 3 #UAC > 3 = 26 for N = 7425
samples.

as several statistical properties of the data like mean, variance, etc. The results generated

by the DDS program for the ARMA(2,1) model fit to the roll data shown in Figure C.1

are shown in Figure C.2. The parameters calculated by the DDS program are listed in

Table C.1. Note that the number of unified auto-correlations greater than three (#UAC >

3) is not equal to zero, implying that the residuals of the ARMA(2,1) model are correlated

in some way. This implication that the random error (at) for the model is not a linearly

independent series alludes to the inaccuracy of the fit. Nonetheless for the purposes of this

discussion we will continue with ARMA(2,1).

109

ARMA(2,1) Model Parameters
Number of samples (N): 7425 Mean (µ) : 0.0148

Degrees of freedom (dof): 7421 Average (X̄): 0.0121
φ1: 1.1432 Variance (σ2

a): 3.644E-5
φ2 : -0.1464 Variance (γ0): 2.980E-4
θ1: 0.7946 Residual Sum of Squares (RSS): 0.2705

Number of auto-correlations greater than 3 (#UAC > 3) : 26

Table C.1: Model and statistical parameters calculated by DDS program for ARMA(2,1) model of roll data.

C.1.2 Green’s Function

By introducing the back-stepping operator, B, where BnXt = Xt−n, to Equation C.1,

(1− φ1B − φ2B
2)Xt = (1− θ1B)at

and factoring and solving for Xt, we arrive at,

Xt =
(1− θ1B)

(1− λ1B)(1− λ2B)
at =

∞∑
j=0

Gjat−j (C.2)

where λi is the ith characteristic root of the difference equation (Equation C.1) and Gj is

the Green’s function. The Green’s function at discrete sample intervals, j, represents the

weight in the system response given to the random disturbance at. That is, the Green’s

function captures the effect of a discrete unit impulse function at j = 0 on the response of

the system as time progresses.

C.1.3 Frequency Analysis

The DDS program also estimates properties of a given difference equation’s continuous

counterpart. That is, a second order difference equation with a non-zero, first order forcing

function (i.e. ARMA(2,1)) can be used to also estimate properties like natural frequency,

110

damping ratio, and power contribution (co-variance) for a corresponding continuous system

model (i.e. a spring, mass, damper system).

d2x

dt2
+ 2ζωn

dx

dt
+ ω2

nx = f(t) (C.3)

This is accomplished by using the characteristic roots of the difference equation, λ1 and

λ2 from Equation C.2, to approximate the characteristic roots of the homogeneous solution

to the corresponding differential equation. This conversion from the discrete to contin-

uous time domain is made using the principle of co-variance which states that because

co-variance is the difference in values of a regression model at two points in time, it is the

same whether the model is a discrete or continuous one. Therefore, we can directly com-

pare the discrete co-variance, γk, and the continuous co-variance, γ(s), where s = 4k, and

s and 4k are the continuous lag and the discrete lag respectively. Since the co-variance

in both cases is a function of the characteristic roots of their corresponding discrete and

continuous models, the continuous roots can be calculated and used to find the damping

ratio, ζ , and natural frequency, ωn, of the system. For the ARMA(2,1) model fit to the roll

data discussed above, the DDS program calculates a damping ratio of ζ = 1 and a natural

frequency of ωn = 5.98× 10−4. It is again important to note that although the ARMA(2,1)

is fit for the purposes of this paper it may not be the best fit as the RSS was not optimized.

C.2 Noise Modeling

Now that we have a differential model approximated from the roll data itself, which in-

cludes system noise, we can compare it to our derivation in Appendix A and B. In terms of

roll angle (φ) we have,
d2φ

dt2
=

τφ
Icm

(C.4)

111

Note that according to the analytical derivation, in which there is no noise, ωn = 0 and

we have no information on the damping ratio, ζ. In comparison, (note for the following

comparison x in Equation C.3 is equal to roll angle, φ) the DDS model coefficients on the

dx
dt

and x terms are significantly small, 1.2×10−3 and 3.58×10−7 respectively. Perhaps the

fact that the coefficient of the first derivative may not be of a negligible order of magnitude,

but is still significantly small, alludes to the effects of linearizing the systems equations of

motion. That is, the nonlinear dynamics may not be negligible to the motion of the vehicle

but are dominated by linear effects. By adding a noise profile, η(t), to Equation C.4,

d2φ

dt2
+ η(t) = f(t)

and equating it with Equation C.3 we get the difference between our control law and em-

pirical measurements as

η(t) = 2ζωn
dφ

dt
+ ω2

nφ

which we can then inject into our control framework as noise. Noise profiles for other state

feedback variables in our control architecture may also be realized in a similar fashion.

DDS modeling analysis of the motion capture system positional data along the x-axis of

the world frame yields ζx = −1 and ωn,x = 1.17× 10−6 and from Equation A.7,

d2x

dt2
+
Dx

m

dx

dt
=
Tnet,x
m

or
d2x

dt2
+
Dx

m

dx

dt
+ ηx(t) = f(t).

In comparison with Equation C.3, we see that

ηx(t) = (2ζxωn,x −
Dx

m
)
dx

dt
+ ω2

n,xx.

112

Results of this comparison show a very small coefficient on the x term (i.e. very little noise,

∼ 10−12meters) but can be used to approximate the drag coefficient of the vehicle along

the x-axis as Dx = 2mζxωn,x ≈ −1.2× 10−6 kg
s

.

Here we have modeled each control variable and its corresponding linear dynamics as a

single input single output model, and in doing so, we were unable to reach a model in which

the residual error was a linearly independent function of time. It follows that since the

quadrotor system is more accurately a nonlinear, multiple input - multiple output system,

multiple regression analysis coupled with a nonlinear analytical model may provide more

accurate results.

113

Bibliography

[1] W. Wolf, “Cyber-physical Systems,” Computer, vol. 42, no. 3, pp. 88–89, 2009.

[2] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems: the next

computing revolution,” in Proceedings of the 47th Design Automation Conference.

ACM, 2010, pp. 731–736.

[3] J. M. Bradley and E. M. Atkins, “Coupled Cyber-Physical System Modeling and

Coregulation of a CubeSat,” IEEE Transactions on Robotics, vol. 31, no. 2, pp. 443–

456, Apr 2015.

[4] W. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to event-triggered

and self-triggered control,” in Decision and Control (CDC), 2012 IEEE 51st Annual

Conference on. IEEE, 2012, p. 3270âĂŞ3285.

[5] E. Bini and G. M. Buttazzo, “The optimal sampling pattern for linear control sys-

tems,” Automatic Control, IEEE Transactions on, vol. 59, no. 1, p. 78âĂŞ90, Jan.

2014.

[6] K. Kowalska and M. Mohrenschildt, “An approach to variable time receding horizon

control,” Optimal Control Applications and Methods, vol. 33, no. 4, p. 401âĂŞ414,

2012.

114

[7] J. M. Bradley and E. M. Atkins, “Toward Continuous State-Space Regulation of

Coupled Cyber-Physical Systems,” Proceedings of the IEEE, vol. 100, no. 1, pp.

60–74, Jan 2012.

[8] R. Murphy, Introduction to AI Robotics. MIT press, 2000.

[9] R. W. Beard and T. W. McLain, Small Unmanned Aircraft: Theory and Practice.

Princeton University Press, 2012.

[10] L. H. Keel and S. P. Bhattacharyya, “Stability margins and digital implementation

of controllers,” in Digital Controller Implementation and Fragility. Springer,

2001, pp. 13–24. [Online]. Available: http://link.springer.com/chapter/10.1007/

978-1-4471-0265-6_2

[11] J. Liu, Real-Time Systems. Prentice Hall, 2000, lCCB: 99051522.

[12] F. Zhang, K. Szwaykowska, W. Wolf, and V. Mooney, “Task Scheduling for Con-

trol Oriented Requirements for Cyber-Physical Systems,” in Real-Time Systems

Symposium, 2008. IEEE, 2008, pp. 47–56.

[13] D. Gurdan, J. Stumpf, M. Achtelik, K. M. Doth, G. Hirzinger, and D. Rus, “Energy-

efficient Autonomous Four-rotor Flying Robot Controlled at 1 kHz,” in Proceedings

2007 IEEE International Conference on Robotics and Automation, Apr. 2007, pp.

361–366.

[14] N. Wiener, Cybernetics or Control and Communication in the Animal and the

Machine. MIT press, 1965, vol. 25.

[15] “Cyber-Physical Systems (CPS) (nsf17529) | NSF - National Science Foundation.”

[Online]. Available: https://www.nsf.gov/pubs/2017/nsf17529/nsf17529.htm

http://link.springer.com/chapter/10.1007/978-1-4471-0265-6_2
http://link.springer.com/chapter/10.1007/978-1-4471-0265-6_2
https://www.nsf.gov/pubs/2017/nsf17529/nsf17529.htm

115

[16] K. J. Åström and B. M. Bernhardsson, “Comparison of riemann and lebesgue sam-

pling for first order stochastic systems,” in Decision and Control, 2002, Proceedings

of the 41st IEEE Conference on, vol. 2. IEEE, 2002, p. 2011âĂŞ2016.

[17] K. J. Åström and B. Wittenmark, Computer-controlled systems: theory and design.

Prentice-Hall New York, 1984.

[18] G. F. Franklin, M. L. Workman, and D. Powell, Digital Control of Dynamic Systems.

Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1998.

[19] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks,”

Automatic Control, IEEE Transactions on, vol. 52, no. 9, p. 1680âĂŞ1685, 2007.

[20] C. S. Draper, Inertial Guidance. Pergamon Press, 1960.

[21] H. Kopetz, “Should responsive systems be event-triggered or time-triggered?”

IEICE Transactions on Information and systems, vol. 76, no. 11, pp. 1325–1332,

1993. [Online]. Available: http://search.ieice.org/bin/summary.php?id=e76-d_11_

1325

[22] J. F. Guerrero-Castellanos, J. J. Téllez-Guzmán, S. Durand, N. Marchand, and J. U.

Alvarez-Muñoz, “Event-triggered nonlinear control for attitude stabilization of a

quadrotor,” in Unmanned Aircraft Systems (ICUAS), 2013 International Conference

on, May 2013, pp. 584–591.

[23] H. Voit, A. Annaswamy, R. Schneider, D. Goswami, and S. Chakraborty, “Adap-

tive switching controllers for systems with hybrid communication protocols,” in

American Control Conference (ACC), 2012. IEEE, 2012, p. 4921âĂŞ4926.

http://search.ieice.org/bin/summary.php?id=e76-d_11_1325
http://search.ieice.org/bin/summary.php?id=e76-d_11_1325

116

[24] S. L. Osburn and D. S. Bernstein, “An exact treatment of the achievable closed-loop

H2 performance of sampled-data controllers: From continuous-time to open-loop,”

Automatica, vol. 31, no. 4, p. 617âĂŞ620, 1995.

[25] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin, “QoS Negotiation in Real-

Time Systems and Its Application to Automated Flight Control,” Computers, IEEE

Transactions on, vol. 49, no. 11, pp. 1170–1183, 2000.

[26] F. Xia, L. Ma, J. Dong, and Y. Sun, “Network QoS management in cyber-

physical systems,” in Embedded Software and Systems Symposia, 2008. ICESS

Symposia’08. International Conference on. IEEE, 2008, p. 302âĂŞ307.

[27] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results in networked

control systems,” Proc. of the IEEE, vol. 95, no. 1, p. 138âĂŞ162, 2007.

[28] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked control sys-

tems,” IEEE Control Systems Magazine, vol. 21, no. 1, p. 84âĂŞ99, 2001.

[29] X. Cao, P. Cheng, J. Chen, and Y. Sun, “An online optimization approach for con-

trol and communication codesign in networked cyber-physical systems,” Industrial

Informatics, IEEE Transactions on, vol. 9, no. 1, pp. 439–450, 2013.

[30] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed event-triggered

control for multi-agent systems,” Automatic Control, IEEE Transactions on, vol. 57,

no. 5, pp. 1291–1297, 2012.

[31] A. Eqtami, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Event-triggered control

for discrete-time systems,” in American Control Conference (ACC), 2010. IEEE,

2010, pp. 4719–4724.

117

[32] L. Shi, P. Cheng, and J. Chen, “Sensor data scheduling for optimal state estimation

with communication energy constraint,” Automatica, vol. 47, no. 8, pp. 1693–1698,

2011.

[33] A. V. Savkin, R. J. Evans, and E. Skafidas, “The problem of optimal robust sensor

scheduling,” Systems & Control Letters, vol. 43, no. 2, pp. 149–157, 2001.

[34] M. P. Vitus, W. Zhang, A. Abate, J. Hu, and C. J. Tomlin, “On efficient sensor

scheduling for linear dynamical systems,” Automatica, vol. 48, no. 10, pp. 2482–

2493, 2012.

[35] P. Cheng, J. Keller, and V. Kumar, “Time-optimal uav trajectory planning for 3d

urban structure coverage,” in Intelligent Robots and Systems, 2008. IROS 2008.

IEEE/RSJ International Conference on. IEEE, 2008, pp. 2750–2757.

[36] R. N. De Carvalho, H. Vidal, P. Vieira, and M. Ribeiro, “Complete coverage path

planning and guidance for cleaning robots,” in Industrial Electronics, 1997. ISIE’97.,

Proceedings of the IEEE International Symposium on, vol. 2. IEEE, 1997, pp. 677–

682.

[37] F. Bonin-Font, A. Ortiz, and G. Oliver, “Visual navigation for mobile robots: A

survey,” Journal of intelligent and robotic systems, vol. 53, no. 3, p. 263, 2008.

[38] J. J. Ruz, G. Pajares, M. Jesus, and O. Arevalo, UAV trajectory planning for static

and dynamic environments. INTECH Open Access Publisher, 2009.

[39] T. McLain and R. Beard, “Trajectory planning for coordinated rendezvous of un-

manned air vehicles,” in AIAA Guidance, Navigation, and Control Conference and

Exhibit, 2000, p. 4369.

118

[40] F. Kunwar and B. Benhabib, “Rendezvous-guidance trajectory planning for robotic

dynamic obstacle avoidance and interception,” IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), vol. 36, no. 6, pp. 1432–1441, 2006.

[41] R. C. Arkin, “Motor schema-based mobile robot navigation,” The International

journal of robotics research, vol. 8, no. 4, pp. 92–112, 1989.

[42] I. Ohya, A. Kosaka, and A. Kak, “Vision-based navigation by a mobile robot

with obstacle avoidance using single-camera vision and ultrasonic sensing,” IEEE

Transactions on Robotics and Automation, vol. 14, no. 6, pp. 969–978, 1998.

[43] Y. Watanabe, A. Calise, and E. Johnson, “Vision-based obstacle avoidance for uavs,”

in AIAA Guidance, Navigation and Control Conference and Exhibit, 2007, p. 6829.

[44] J. J. Craig, Introduction to robotics: mechanics and control. Pearson Prentice Hall

Upper Saddle River, 2005, vol. 3.

[45] A. Piazzi and A. Visioli, “Global minimum-jerk trajectory planning of robot ma-

nipulators,” IEEE transactions on industrial electronics, vol. 47, no. 1, pp. 140–149,

2000.

[46] S. Macfarlane and E. A. Croft, “Jerk-bounded manipulator trajectory planning: de-

sign for real-time applications,” IEEE Transactions on Robotics and Automation,

vol. 19, no. 1, pp. 42–52, 2003.

[47] A. Gasparetto and V. Zanotto, “A new method for smooth trajectory planning of

robot manipulators,” Mechanism and machine theory, vol. 42, no. 4, pp. 455–471,

2007.

119

[48] E. P. Anderson, R. W. Beard, and T. W. McLain, “Real-time dynamic trajectory

smoothing for unmanned air vehicles,” IEEE Transactions on Control Systems

Technology, vol. 13, no. 3, pp. 471–477, 2005.

[49] D. R. Nelson, D. B. Barber, T. W. McLain, and R. W. Beard, “Vector field path

following for miniature air vehicles,” IEEE Transactions on Robotics, vol. 23, no. 3,

pp. 519–529, 2007.

[50] ——, “Vector field path following for small unmanned air vehicles,” in American

Control Conference, 2006. IEEE, 2006, pp. 7–pp.

[51] L. E. Dubins, “On curves of minimal length with a constraint on average curvature,

and with prescribed initial and terminal positions and tangents,” American Journal

of mathematics, vol. 79, no. 3, pp. 497–516, 1957.

[52] M. Owen, R. W. Beard, and T. W. McLain, “Implementing dubins airplane paths on

fixed-wing uavs,” in Handbook of Unmanned Aerial Vehicles. Springer, 2015, pp.

1677–1701.

[53] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control

for quadrotors,” in Robotics and Automation (ICRA), 2011 IEEE International

Conference on. IEEE, 2011, pp. 2520–2525.

[54] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and control for pre-

cise aggressive maneuvers with quadrotors,” The International Journal of Robotics

Research, vol. 31, no. 5, pp. 664–674, 2012.

[55] Y. Bouktir, M. Haddad, and T. Chettibi, “Trajectory planning for a quadrotor heli-

copter,” in Control and Automation, 2008 16th Mediterranean Conference on. Ieee,

2008, pp. 1258–1263.

120

[56] M. Hehn and R. D’Andrea, “Quadrocopter trajectory generation and control,” IFAC

Proceedings Volumes, vol. 44, no. 1, pp. 1485–1491, 2011.

[57] O. Purwin and R. D’Andrea, “Trajectory generation and control for four wheeled

omnidirectional vehicles,” Robotics and Autonomous Systems, vol. 54, no. 1, pp.

13–22, 2006.

[58] G. Hoffmann, S. Waslander, and C. Tomlin, “Quadrotor helicopter trajectory track-

ing control,” in AIAA guidance, navigation and control conference and exhibit,

2008, p. 7410.

[59] “AscTec Research UAVs.” [Online]. Available: http://www.asctec.de/en/

uav-uas-drones-rpas-roav/asctec-hummingbird/

[60] N. S. Nise, Control systems engineering, 6th ed. John Wiley and Sons, 2011.

[61] P. Castillo, P. Albertos, P. Garcia, and R. Lozano, “Simple real-time attitude stabi-

lization of a quad-rotor aircraft with bounded signals,” in Proceedings of the 45th

IEEE Conference on Decision and Control, Dec. 2006, pp. 1533–1538.

[62] J. F. Guerrero-Castellanos, N. Marchand, A. Hably, S. Lesecq, and J. Delamare,

“Bounded attitude control of rigid bodies: Real-time experimentation to a quadrotor

mini-helicopter,” Control Engineering Practice, vol. 19, no. 8, pp. 790 – 797, 2011.

[63] Corona-Sánchez, J. J. and Rodríguez-Cortés, H., “Experimental real-time validation

of an attitude nonlinear controller for the quadrotor vehicle,” in Unmanned Aircraft

Systems (ICUAS), 2013 International Conference on, May 2013, pp. 453–460.

[64] S. Seghour, M. Bouchoucha, and H. Osmani, “From integral backstepping to integral

sliding mode attitude stabilization of a quadrotor system: Real time implementation

http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-hummingbird/
http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-hummingbird/

121

on an embedded control system based on a dspic µc,” in Mechatronics (ICM), 2011

IEEE International Conference on, Apr. 2011, pp. 154–161.

[65] A. Shankar, S. Doebbeling, and J. Bradley, “Toward a cyber-physical quadrotor:

Characterizing trajectory following performance,” in International Conference on

Unmanned Aircraft Systems. IEEE, June 2017.

[66] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling, esti-

mation, and control of quadrotor,” IEEE robotics & automation magazine, vol. 19,

no. 3, pp. 20–32, 2012.

[67] R. Beard, “Quadrotor dynamics and control rev 0.1,” 2008.

[68] G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin, “Quadrotor helicopter flight

dynamics and control: Theory and experiment,” in AIAA Guidance, Navigation and

Control Conference and Exhibit, 2007, p. 6461.

[69] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode techniques ap-

plied to an indoor micro quadrotor,” in Proceedings of the 2005 IEEE international

conference on robotics and automation. IEEE, 2005, pp. 2247–2252.

[70] R. Xu and U. Ozguner, “Sliding mode control of a quadrotor helicopter,” in

Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006,

pp. 4957–4962.

[71] A. A. Mian and W. Daobo, “Modeling and backstepping-based nonlinear control

strategy for a 6 DOF quadrotor helicopter,” Chinese Journal of Aeronautics, vol. 21,

no. 3, pp. 261–268, 2008.

[72] F. Sabatino, “Quadrotor control: modeling, nonlinearcontrol design, and simula-

tion,” 2015.

122

[73] P. Sujit, S. Saripalli, and J. B. Sousa, “An evaluation of uav path following algo-

rithms,” in Control Conference (ECC), 2013 European. IEEE, 2013, pp. 3332–

3337.

[74] J. M. Bradley and E. M. Atkins, “Coupled cyber-physical system modeling and

coregulation of a CubeSat,” IEEE Transactions on Robotics, vol. 31, no. 2, p.

443âĂŞ456, Apr. 2015.

[75] N. Kreciglowa, V. KaKumar, and V. Kumar, “Energy efficiency of trajectory genera-

tion methods for stop-and-go aerial robot navigation,” in Interational Conference on

Unmanned Aircraft Systems, IEEE, Ed., 2017.

[76] T.-T. Lee and S.-H. Lee, “Discrete optimal control with eigenvalue assigned inside

a circular region,” IEEE Transactions on Automatic Control, vol. 31, no. 10, pp.

958–962, October 1986.

[77] R. Wilhelm, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, P. Stenström,

J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Fer-

dinand, and R. Heckmann, “The worst-case execution-time problem - overview of

methods and survey of tools,” ACM Transactions on Embedded Computing Systems,

vol. 7, no. 3, pp. 1–53, Apr. 2008.

[78] K. G. Shin and X. Cui, “Computing time delay and its effects on real-time control

systems,” IEEE Transactions on control systems technology, vol. 3, no. 2, pp. 218–

224, 1995.

[79] F. Yang, Z. Wang, and Y. S. Hung, “Robust Kalman filtering for discrete

time-varying uncertain systems with multiplicative noises,” IEEE Transactions on

Automatic Control, vol. 47, no. 7, pp. 1179–1183, 2002. [Online]. Available:

http://ieeexplore.ieee.org/abstract/document/1017567/

http://ieeexplore.ieee.org/abstract/document/1017567/

123

[80] A. Weiss, I. V. Kolmanovsky, M. Baldwin, R. S. Erwin, and D. S. Bernstein,

“Forward-integration riccati-based feedback control for spacecraft rendezvous ma-

neuvers on elliptic orbits,” in CDC, 2012, p. 1752âĂŞ1757.

[81] M. Faessler, D. Falanga, and D. Scaramuzza, “Thrust Mixing, Saturation, and

Body-Rate Control for Accurate Aggressive Quadrotor Flight,” IEEE Robotics and

Automation Letters, 2016.

[82] G. J. Leishman, Principles of helicopter aerodynamics with CD extra. Cambridge

university press, 2006.

[83] R. D. Eubank, J. M. Bradley, and E. M. Atkins, “Energy-aware multiflight planning

for an unattended seaplane: Flying fish,” Journal of Aerospace Information Systems,

pp. 1–19, 2016.

[84] M. L. Puterman, Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons, 2014.

[85] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning algorithms

from the perspective of autonomous uav guidance,” in Selected papers from the 2nd

International Symposium on UAVs, Reno, Nevada, USA June 8–10, 2009. Springer,

2009, pp. 65–100.

[86] H. Huang, G. M. Hoffmann, S. L. Waslander, and C. J. Tomlin, “Aerodynam-

ics and control of autonomous quadrotor helicopters in aggressive maneuvering,”

in Robotics and Automation, 2009. ICRA’09. IEEE International Conference on.

IEEE, 2009, pp. 3277–3282.

[87] T. Kunz and M. Stilman, “Turning paths into trajectories using parabolic blends,”

Georgia Institute of Technology, Tech. Rep., 2011.

124

[88] M. Reyhanoglu, A. van der Schaft, N. H. McClamroch, and I. Kolmanovsky,

“Dynamics and control of a class of underactuated mechanical systems,” IEEE

Transactions on Automatic Control, vol. 44, no. 9, pp. 1663–1671, 1999.

[89] A. P. Aguiar and J. P. Hespanha, “Trajectory-tracking and path-following of un-

deractuated autonomous vehicles with parametric modeling uncertainty,” IEEE

Transactions on Automatic Control, vol. 52, no. 8, pp. 1362–1379, 2007.

[90] Z. Zuo, “Trajectory tracking control design with command-filtered compensation

for a quadrotor,” IET control theory & applications, vol. 4, no. 11, pp. 2343–2355,

2010.

[91] E. Frazzoli, M. A. Dahleh, and E. Feron, “Trajectory tracking control design for

autonomous helicopters using a backstepping algorithm,” in American Control

Conference, 2000. Proceedings of the 2000, vol. 6. IEEE, 2000, pp. 4102–4107.

[92] T. Madani and A. Benallegue, “Control of a quadrotor mini-helicopter via full state

backstepping technique,” in Decision and Control, 2006 45th IEEE Conference on.

IEEE, 2006, pp. 1515–1520.

[93] T. Lee, M. Leoky, and N. H. McClamroch, “Geometric tracking control of a quadro-

tor uav on se (3),” in Decision and Control (CDC), 2010 49th IEEE Conference on.

IEEE, 2010, pp. 5420–5425.

[94] D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched

systems,” IEEE Control systems, vol. 19, no. 5, pp. 59–70, 1999.

[95] J. C. Geromel and P. Colaneri, “Stability and stabilization of discrete time switched

systems,” International Journal of Control, vol. 79, no. 07, pp. 719–728, 2006.

125

[96] J. Daafouz, P. Riedinger, and C. Iung, “Stability analysis and control synthesis for

switched systems: a switched lyapunov function approach,” IEEE transactions on

automatic control, vol. 47, no. 11, pp. 1883–1887, 2002.

[97] S. Thornton and J. Marion, Classical Dynamics of Particles and Systems 5th edn

(Belmont, CA: Brooks/Cole), 2004.

[98] M. R. Spiegel, S. Lipschutz, and J. Liu, “Mathematical handbook of formulas and

tables,” 1968.

[99] A. Gibiansky, “Quadcopter dynamics, simulation, and control,” 2010.

[100] A. A. Mian and W. Daobo, “Nonlinear flight control strategy for an underactuated

quadrotor aerial robot,” in Networking, Sensing and Control, 2008. ICNSC 2008.

IEEE International Conference on. IEEE, 2008, pp. 938–942.

[101] J. Li and Y. Li, “Dynamic analysis and pid control for a quadrotor,” in 2011 IEEE

International Conference on Mechatronics and Automation. IEEE, 2011, pp. 573–

578.

[102] S. Bouabdallah, P. Murrieri, and R. Siegwart, “Design and control of an indoor micro

quadrotor,” in Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE

International Conference on, vol. 5. IEEE, 2004, pp. 4393–4398.

[103] K. P. Rajurkar and J. Nissen, “Data-dependent systems approach to short-term load

forecasting,” IEEE transactions on systems, man, and cybernetics, no. 4, pp. 532–

536, 1985.

[104] K. Rajurkar, S. Pandit, and W. Wittig, “Pulse current signal as a sensor for on-

line computer control of edm.” in Manufacturing Engineering Transactions. North

American Manufacturing Research Inst of SME, 00001400, 1983.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Summer 8-2017

	Cyber-Physical System Characterization and Co-Regulation of a Quadrotor UAS
	Seth E. Doebbeling

	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Co-regulation of a Quadrotor UAS
	CPS Trajectory Generation

	Innovations

	Related Work
	Computer Control
	Sensor Scheduling

	Motion Planning
	Application to UAS
	Our Work

	Characterization of UAS Performance Under Discrete Control
	Quadrotor UAS System Model
	Nonlinear Physical Model
	Linear Physical Model

	LQR Formulation
	Physical System Control

	Real-time Requirements
	Experimental Setup
	CPS Metrics
	Cumulative Time-Weighted State Error
	Translational Bounds
	Control Effort

	Results
	Traditional Disturbance Rejection Experiment
	Trajectory Following Experiments
	Characterizing the Relationship Between Trajectory Following Performance and Sampling Period
	Variation of Gain and H2-norm
	State Error
	Control Effort

	Discussion of Results
	Utilization Metric

	Cyber-Physical UAS Co-regulation
	CPS Model and Control
	Computational Model and Control

	Evaluation Metrics
	State Error Metrics
	Power and Energy Estimates

	Results
	Simulation Setup
	Results

	Toward Cyber-Physical UAS Trajectory Generation
	Introduction
	Background
	Method
	Trajectory Planning
	Trajectory Generation

	Experimental Setup
	Experimental Results

	Discussion
	Pseudo Trajectories
	Trajectory Tracking

	Conclusions
	Future Work

	Quadrotor Dynamics
	Linearization
	Investigation of Noise Model
	Data Dependent System Modeling
	ARMA Model Fit
	Green's Function
	Frequency Analysis

	Noise Modeling

	Bibliography

