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Abstract:  

 Plant mitochondrial genomes are strange – they are unusually large, consist of huge 

amounts of non-coding DNA, and contain of several overlapping regions throughout the genome. 

The genome is made of several different sized linear and circular molecules and different 

mitochondria within a cell will have different pieces of the genome. Even if multiple 

mitochondria contain the same region of the genome, these sequences can differ by single 

nucleotide polymorphisms (SNPS). This is known as heteroplasmy. Heteroplasmy has been 

documented in Arabidopsis thaliana using whole-genome sequencing data. While heteroplasmy 

is well-documented, its existence in the mitochondrial genome is unexpected and it can be hard 

to quantify the degree to which heteroplasmy exists. This project sought to illustrate the 

existence of heteroplasmy in A. thaliana using melt-curve analysis and probe detection. Melt 

curve analysis takes advantage of the fact that DNA denatures at different temperatures 

depending upon the sequence; while probe detection quantifies different DNA sequences by the 

degree of fluorescence. The goal of this project was to show that both methods were successful 

in illustrating heteroplasmy in mitochondria and demonstrate heteroplasmy in DNA where one 

single base is different in a population. Both methods proved to be successful in illustrating 

heteroplasmy; however, there were drawbacks to each. Both methods required accurate 

knowledge of the presence of single nucleotide polymorphisms in the DNA sequences and melt 

curve analysis had a relatively high limit of detection.   

 

Key Words: Heteroplasmy, melt-curve analysis, SNP detection, genetics, fluorescent probes, 

mitochondria, biological sciences  
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Introduction: 

 Plant mitochondrial genomes are unusually large, ranging in size from 200 kilobases 

(kb) to 10 Megabases (Mb). This large size is the result of the accumulation of “junk” DNA, or 

non-coding DNA.  This point is best illustrated when comparing the mitochondrial genomes of 

Arabidopsis thaliana and a human’s mitochondrial genome. A human’s mitochondrial genome 

codes for 37 genes and is made up of 18kb; while A. thaliana has a mitochondria genome of 

367kb and only codes for 58 genes.  

In addition to their large size, plant mitochondrial genomes may also be mapped as a 

circle, which leads one to assume plant mitochondria possess a single DNA molecule. However, 

pulse field gel electrophoresis (PFGE) has shown that the genome is not actually circular (Klein 

et al 1994). Rather, the genome is made up of several different sized linear and circular 

molecules and different mitochondria within an individual cell will have different amounts of 

these genomic fragments. Additionally, many mitochondria do not have any DNA at all (Wang 

et al 2010). When DNA is present the different molecules have repeated and overlapping 

regions. The overlaps may be aligned when mapping the genome, which is likely why the 

genome may be mapped as a circle.  

The repeated regions will often recombine with one another (Mackenzie 2007). In fact, 

these recombination events are typical within plant mitochondria and have become a 

recognizable characteristic of plants (Kmiec et al 2006). A consequence of these recombination 

events is that the mitochondrial DNA within a single mitochondrion and throughout all the 

mitochondria of a single plant are different (Barr et al 2005). This presence of multiple different 

genomes in a single cell or organism is known as heteroplasmy and has been found in A. 

thaliana. In A. thaliana there are two large repeated regions, and several other repeats of unusual 
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size (ROUS). The two large repeats recombine regularly throughout the mitochondria. The 

ROUS sequences may also recombine throughout the mitochondria and these recombination 

events produce heteroplasmic cells and plants (Wynn and Christensen 2019)  

While ROUS recombination has been observed, these recombination events are rare and 

do not occur in every cell or every mitochondria. As such, some mitochondria may have two 

repeats that have been recombined, while others have no presence of recombination or the 

recombination has reverted. This is a type of “structural heteroplasmy” where mitochondria 

throughout a single plant and within a single cell have differently structured genomes due to 

recombination.  

Evidence illustrates that this structural heteroplasmy exists, but less is known about the 

existence of heteroplasmic single nucleotide polymorphisms (SNPs). The presence of 

heteroplasmic SNPs would not be the expected pattern. Mitochondria are maternally inherited, 

but there is limited knowledge of how many mitochondria are passed on to offspring.  This 

pattern of inheritance could be considered a type of bottleneck. The degree to which a bottleneck 

may exist contributes to the amount of heteroplasmy that exists (Roze et al 2005). For example, 

if maternal inheritance is tightly regulated and very few mitochondria are passed on, the 

likelihood of heteroplasmy may be diminished. However, data illustrates that the mitochondrial 

genomes do vary and are heteroplasmic. In fact, throughout the mitochondrial DNA of A. 

thaliana, there is evidence of DNA molecules SNPs at consistent loci (Wynn et al, in 

preparation).  

There are two methods by which heteroplasmic SNPs may have arisen in plant 

mitochondria, despite the maternal bottleneck. The first method is paternal leakage. Paternal 

leakage occurs during fertilization when some paternal mitochondria DNA is taken up by the 
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maternal plant and reaches the offspring during seed production (Kmiec et al 2006). This 

paternal mitochondrial DNA is then apparent in the offspring plant. The second method through 

which heteroplasmy may arise is random mutation, which is a possible during both the DNA 

repair and replication processes (Kmiec et al 2006). These random mutations may be the source 

of heteroplasmy, but then they may also be passed onto offspring, depending on the degree of a 

bottleneck present during reproduction.  

While both of these methods may give rise to heteroplasmy, detecting it and quantifying 

the degree to which heteroplasmy exists in plants is challenging. The most accurate method of 

illustrating heteroplasmy is currently considered to be whole genome sequencing (WGS). A 

major drawback to this method is cost – WGS is very expensive and requires a significant read 

depth in order to correctly identify a heteroplasmic SNP.   

Another method of detection is melt curve analysis (Temesvári et al 2011). Melt curve 

analysis is reliant upon the fact that DNA denatures at slightly different temperatures, depending 

on its base sequences. Guanine and Cytosine pairs (G/C pairs) tend to have a slightly higher 

melting temperature than Adenine and Thymine pairs (A/T pairs) due to the number of hydrogen 

bonds; G/C pairs have three hydrogen bonds, while A/T pairs have two. Melt curve analysis is 

very accurate and can detect variations as minute as a single base pair. 

One final method used to detect heteroplasmy utilizes probes (Lyon 2011). Probes anneal 

to specific DNA sequences and possess a fluorophore and a quencher. The quencher inhibits 

fluorescence until it is removed during DNA replication by DNA polymerase. The degree of 

fluorescence quantifies the amount of the specific DNA sequence within the sample.  

Ultimately, the goal of this project was to illustrate and quantify heteroplasmy in 

Arabidopsis thaliana using melt curve analysis and probes. A. thaliana was chosen because it is 
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an ideal model organism – it has a short life cycle, it is easy to obtain DNA from, and our lab has 

previously shown the existence of heteroplasmy in A. thaliana mitochondria using NextGen 

Sequencing. While accurate, NextGen Sequencing is incredibly expensive. Thus, we sought to 

validate our bioinformatics findings using melt curve analysis and probe detection. We 

hypothesized that both methods would be accurate means of detection with the hope that they 

could detect SNPs occurring in A. thaliana that occurred with a frequency of 5% in the 

population.    

Methods: 

Experimentation was completed under the guidance of Dr. Alan Christensen at the 

University of Nebraska-Lincoln. Arabidopsis thaliana seeds were obtained from Lehle Seed 

Company (Round Rock, Texas, USA). All seeds were planted on soil and grown in a walk-in 

growth chamber with 16 hours light, 8 hours dark cycle days at 22°C. DNA was extracted using 

CTAB DNA extraction from mature plants after they began to flower (Allen et al 2006). 

Mitochondria DNA was purified using Strehle’s prep (Strehle et al 2018).  

Melt Curve Using Quantitative Polymerase Chain Reaction 

Qualitative polymerase chain reaction (qPCR) was performed using a 96-well plate with 

a reaction volume of 20µl/well. Samples were run using the Bio-Rad CFX96 Real-Time System. 

qPCR amplifies DNA similarly to polymerase chain reaction (PCR); however, after each 

replication cycle, the amount of DNA in the reaction well is recorded using fluorescence. Each 

reaction well contained 10µl Sybr Green master mix (Bio-Rad), 4µls forward and reverse 

primers (2.5mM), and 2µl template DNA (0.5ng/ml). Plates were spun at 4,000rpm and then 

placed in the Real-Time System. The CFX96 Real-Time System program performed the 
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following cycling protocol: ten minute denaturing step at 95°Celsius (C), 45 cycles of 10s at 

95°C, 15s at 60°C, and 16s at 72°C.   

Sybr Green Master Mix fluoresces at a wavelength of 497nm and binds to DNA and 

stains it, effectively quantifying the DNA. Fluorescence was measured using the Sybr channel in 

the Real-Time system. qPCR also provides a Cq mean, which is the point at which the 

fluorescence curve enters the exponential phase. This point was calculated using multi-variate 

regression and using the average of three technical replicates. qPCR also recorded a melting 

temperature, which was the temperature at which the DNA denatured and fluorescence 

recordings dropped. This temperature was dependent on the bases in a particular DNA sequence. 

qPCR is sensitive enough to detect the melting temperature between two identical DNA 

sequences with a single base difference.  

Primers were designed by Emily Wynn, graduate student in Dr. Christensen’s lab, and 

obtained from Eurofins Genomics. Primers were diluted with double distilled water. Primers 

with greater G/C content than A/T were preferred and annealing temperature of all primers were 

between 50°C and 65°C. The efficiency of all primers used in experimentation was determined 

using a standard curve. The standard curve used a single sample of Col-0 DNA that was serially 

diluted using 1:10 dilutions. With each dilution it was expected that the Cq mean would increase 

by 3.2 because with 1:10 dilutions the DNA needs to be doubled 3.2 times to reach the same 

concentration as the previous dilution. An increase of 3.2 indicated an efficiency of 100%.  Col-0 

DNA was chosen as a positive control because it is the wild-type DNA. 

A. thaliana DNA was amplified using PCR and primers flanking Repeat A, with an 

annealing temperature of 60°C and an extension time of 16 seconds. Amplicons obtained were 

A11 (sequence between the forward A1 primer and reverse A1 primer) and A22 (sequence 
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between A2 forward and reverse primers). All primer details can be found in Table 1 in the 

supplemental data. A11 and A22 amplicons have a single nucleotide difference at position 509. 

This is a cytosine (A11) to thymine (A22) change and results in a different melting temperature 

between A11 and A22. DNA was cleaned up using a GeneJET PCR Purification Kit (Thermo 

Scientific). Following purification, DNA was diluted to a concentration of 0.5ng/µl. 

Concentration was recorded using a QuBit Fluorometer (Thermo Fisher).  

Following dilutions, A11 and A22 samples were aliquoted into the following ratios of 

A11:A22 DNA: 50:50, 70:30, 30:70, 80:20, 90:10, 95:5, all at 0.5ng/µl. These DNA samples 

were run in qPCR using the A Internal 2 primers. The A Internal 2 primers amplified both the 

A11 and A22 equally because the primer sequence was internal to the repeated sequences of A11 

and A22. A Internal 2 primers amplified the specific region in A11 and A22 amplicons that 

differed by a single base (C→T change). The entire region amplified was 75 bases in length 

(including primers). A small amplicon region was required in order to increases the effectiveness 

of the Real-Time system to detect a SNP in a DNA sequence. qPCR was performed with an 

extension time of 16 seconds and an annealing temperature of 60°C. These experiments were 

performed using Columbia-0 DNA. 

Melt Curve Analysis Using Probe 

Probe SNP detection was performed using qPCR with a 96-well plate (20µl reaction 

volume). Experiments were performed using mitochondrial Col-0 DNA (.5ng/µl). There is a 

frequently occurring SNP in the A. thaliana mitochondrial genome at position 70194, identified 

by WGS (Wynn et al, in preparation). Two probes were designed to anneal to the wildtype SNP 

(Guanine) and the mutant SNP (Adenine). Each reaction well contained 10µl SsoAdvanced 

Universal Probes Supermix (Bio-Rad), 2µls forward and reverse Ung176 primer (2.5µM), 2µls 
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wild type probe and mutant probe (1.25µM), and 2µls template DNA. Thermocycler performed 

the following cycling protocol: ten minutes at 95°C for denaturing followed by 45 cycles of 95°C 

for 10s, 60°C for 15s, and 72°C for 5s. Primers and probes were designed by Emily Wynn and 

obtained from Integrated DNA Technologies. The primers were diluted with double distilled 

water.  

The probes were diluted with TE, stored at -20 degrees Celsius, and kept away from light 

in order to prevent degradation. The wild type probe fluoresced at a wavelength of 518nm and 

was read using the Hex channel on the Real-Time system. The mutant probe fluoresced at a 

wavelength of 556nm and was read using the Fam channel on the Real-Time system. The 

SsoAdvanced Universal Probes Supermix used did not fluoresce. This prevented inaccurate data 

outputs by the Real-Time since the wild type mutant fluoresces in the same channel as Sybr 

Green Master Mix. Four technical replicates were used and the Cq means of the individual probe 

fluorophores were obtained by the cycle number in which fluorescence exceeded a set threshold. 

Ratios of Cq means obtained from qPCR between wildtype probe and mutant probe allowed us 

to determine the ratio of the wildtype SNP to mutant SNP at position 70194 of the A. thaliana 

mitochondria genome.  

 Probes may be used in qPCR in varying ratios, when compared to the concentration of 

primers. They may be used in any ratio ranging from 1:1 ratio of primer concentration to probe 

concentration to 1:4 primer concentration to probe concentration. To determine the most efficient 

ratio of primer to probe, we ran an assay with varying ratios of primer to probe from 1:1 to 1:4 

using Col-0 DNA. Upon completion of the assay, the 1:1 ratio of primer:probe and 1:2 ratio of 

primer:probe results were similar; while the 1:3 ratio and 1:4 ratio were not accurate. Probes are 

also costly; thus, in order to preserve probes, the 1:2 ratio was chosen and used for following 
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experiments. Upon completion of experimentation, Cq means of probe fluorescence were 

obtained and analyzed. To determine the fold different between the mutant SNP and wildtype 

SNP in a sample the following equation was used: 2−(Cqmean FAM−Cqmean Hex). This provided the 

fold ratio of mutant SNP to wildtype SNP.  

Results: 

Melt Curve Analysis  

 All primer efficiencies obtained were between 1.24 and 2.7. Efficiency above 1 could 

indicate the presence of PCR inhibitors; since we are not using these primers to quantify DNA, 

they should not interfere with the detection of our melt peaks (Table 1).  

 A11 had an average melting temperature of 75.8°C, A22 had an average melting 

temperature of 75.27°C. When A11 and A22 were in wells alone they exhibited a single melting 

temperature, indicating that all amplicons in the reactions had identical sequences. (Figures 1 and 

2).  

When A11 and A22 amplicons were mixed in varying ratios, Real-Time PCR detected 

two melting temperatures per reaction well, indicating the presence of two different amplicons 

that differed by a single base. Two melting temperatures were obtained for the 1:1 mix, the 70:30 

mix of A11:A22, and the 30:70 mix of A11:A22. On the melt curves for the mixed samples, 

there is a dip in the melt peak that illustrates the reading of two different temperatures found in 

one, single sample of DNA (Figures 3 and 4).  

A single melting temperature was obtained for 80:20, 90:10, and 95:5 mixes of A11 an 

A22, indicating that the Real-Time system could not detect an amplicon in a proportion of less 

than 30% (Figure 5).  

Probe Detection of SNPS 
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 The ratio of primer to probe was determined running an assay with the following ratios of 

primer to probe: 1:1, 1:2, 1:3, and 1:4. The 1:1 and 1:2 ratios produced accurate results; while the 

1:3 and 1:4 ratios produced inaccurate results (Figures 6 and 7).  

To determine if the SNP identified by the probe was localized in the mitochondrial DNA 

or the nuclear DNA, experiment was performed using mitochondrial Col-0 DNA. The SNP 

appeared in the mitochondrial DNA. The SNP occurred in 6.49% of the mitochondrial genomes. 

Vardict previously predicted around 10% of the genome to possess this SNP (Figure 8). 

Discussion:  

Overall, it is evident from sequencing data that A. thaliana have heteroplasmic 

mitochondria. This is clear and easy to identify when using whole-genome sequence data. 

However, experimentation has illustrated that other methods to detecting heteroplasmy, such as 

melt curve analysis and the use of probes, can detect SNPS, but that these methods require 

extensive knowledge of DNA sequences. Regardless, these methods are quick and inexpensive 

procedures that may be used to test samples for the presence or absence of various mitochondrial 

and nuclear SNPs.   

With regards to identifying heteroplasmy and SNPs using melt curve analysis, we found 

the limit of detection to be 30%. In other words, Real-Time PCR had the abilities to detect a base 

change in a specific DNA sequence that occurred in 30% of the DNA within the sample. Due to 

this limit of detection, melt curve analysis would not have been able to detect the SNP at position 

70194 that we used probe to measure. In addition to the SNP at position 70194, we know from 

our NextGen sequencing data that there are SNPs in lines of Col-0 that have SNPs occurring at a 

rate of 5%. These SNPs will not be able to be identified or illustrated using melt curve analysis. 

As such 30% as the limit of detection is a drawback to melt curve analysis.  
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Another limit to melt curve analysis is that it can only be used to identify a single SNP 

among a small sequence of DNA where users know the exact position of the SNP. This is 

because Real-Time PCR requires primers that result in the amplification of a specific sequence. 

This sequence needs to be small and contain a single base change between two identical DNA 

sequences for the results to be the most accurate. If there are multiple SNPs in the amplified 

sequence, the technique will not be as accurate and difficult to interpret. Therefore, another 

drawback of melt curve analysis is the requirement of accurate information regarding the DNA 

sequences and potential changes to those sequences. 

Knowledge of the specific sequence is also a limitation when using probes. Probes rely 

on primers to amplify a small, specific sequence of DNA. Probes must also be specifically 

designed to anneal to an exact sequence of DNA. In order to use probes to identify heteroplasmy, 

two probes must be created to anneal to the wildtype and mutant DNA sequences. Despite the 

inherent drawbacks of the probes, there are several aspects of this method that ultimately make 

them more efficient than melt curve analysis. The probes have the ability to detect SNPs in a 

wide range of proportions and can identify SNPS present in small samples. Additionally, probes 

are useful for illustrating the presence of specific mutations located in mitochondrial genome.  

Going forward, these experimental methods have applications in DNA repair. It may be 

helpful to investigate the outcomes of DNA repair when inducing DNA damage in A. thaliana 

using Cipro, or other adverse agents. We can also use melt curve analysis to try and understand 

what happens to the internal SNP within repeats A11 and A22 during recombination. For 

example, following recombination if A11 possesses the SNP, but A22 does not, what would 

happen when A12 and A21 recombine? This could provide insight into what is happening to a 

DNA strand during ROUS recombination. Additionally, probe analysis could be used to study 
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the presence of SNPs over the course of generations to help us understand the extent of a 

bottleneck present during plant reproduction.  
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Supplemental Data 

Table 1. Primer and probe pairs used for PCR and qPCR, along with the annealing temperature 

(𝐓𝐦) in degrees Celsius, and amplicon size (including primer length) in base pairs.   

 

Primer 

Name 

Sequence (5’-3’) 𝐓𝐦 Amplicon 

Size 

Efficiency 𝑹𝟐 

A1 

Forward 

Primer 

CATGTACGTAGGGCCTTCCA 62.4 625 N/A N/A 

A1 

Reverse 

Primer 

ATTCGGTGACTTTCGCGGT 60.2 625 N/A N/A 

A2 

Forward 

Primer 

GATGCCCGTTTACGATGCAA 60.4 602 N/A N/A 

A2 

Reverse 

Primer 

AAACACCCTAACAGTGCCTC 60.4 602 N/A N/A 

A Internal 

2 

Forward 

Primer 

TGGCACGAAAAGGAAATCCG 60.4 75 2.7 0.99 

A Internal 

2 Reverse 

Primer 

CCCTCACTGAACCGACTTGA 62.4 75 2.7 0.99 

Ung 176 

Forward 

Primer 

TATCCCGAAGATACAAGCGCC 62.6 81  1.24 0.958 

Ung 176 

Reverse 

Primer 

CCACTCCTTCTGTGAGGCAA 62.4 81 1.24 0.958 
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Wildtype 

Probe 

 

5HEX/CCGGTCCTC/ZEN/ 

TTCTCTTGTGTCGAAGTGT/31ABkFQ 

63.0 N/A N/A N/A 

Mutant 

Probe 

 

56-FAM/CCGGTCCTC/ZEN/ 

TTCTCTTGTGTCAAAGTGT/31ABkFQ 

61.7 N/A N/A N/A 

 

 

Figure 1: A11 Melt Curve Results. Ilustrates the melting temperature of A11 DNA sample 

(average melting temperature 75.8°C). 

 

 

Figure 2: A22 Melt Curve Results. Ilustrates the melting temperature of A22 DNA sample 

(average melting temperature 75.27°C). 
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Figure 3: 1 to 1 Mixture of A11 to A22 DNA. Illustrates the “dip” in the melt curve, which 

signals the presence of two different DNA sequences within a sample.  

 

 

Figure 4: 70:30 and 30:70 Ratios of A11 to A22 Samples: Illustrates the ability of system to 

detect two different melting temperatures depending on the ratio of one DNA sequence, with one 

single base change from another sequence in a single sample  

  

 

Figure 5: Limit of Detection for Real-Time qPCR. For ratios of A11:A22 above 70:30, only a 

single melting temperature was detected per sample.  
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Figure 6: 1:1 and 1:2 Primer to Probe Comparison. Illustrates that the difference between the 1:1 

ratio of primer to probe is not significantly different than the results of the 1:2 ratio. 

 

Figure 7: 1:3 and 1:4 Primer to Probe Comparison. Results are inaccurate and significantly 

different than those obtained from the 1:1 and 1:2 ratios.  

 

 
 

Figure 8: Illustrates the melt curve of nuclear DNA and mitochondria DNA, showing that the 

SNP is located within the A. thaliana mitochondria genome.  
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