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Walking is an important physical activity that offers major health benefits for
those who are able to perform the task. However, there are millions of people worldwide
who have lost the ability to walk from physical accidents or a disease which limits the
ability for them to use their legs. Often these patients use gait therapy to learn how to
walk again. During this gait therapy, a physical therapist may use gait rehabilitation
machines to assist the patient in learning to walk in a correct gait path.

Two gait rehabilitation machine iterations were designed to produce an effective
rehabilitation machine that could be used for both pediatric and adult use. The second
iteration was designed based on the failures of the first design. The goal was to design a
machine that is adjustable between pediatric and adult patients and to be cost effective for
small clinics and in-home patient use. Design for Manufacture (DFM) and Design for
Assembly (DFA) are two tools that can be applied to a product during the design stage of
the products life to ensure the product is designed to be cost efficient. However, when the
aforementioned designs were made, DFM and DFA principles were not fully applied in
the design stage and possible advantages of using them were missed during the design
and production of the two rehabilitation machines.

The goal of this study is to show the potential advantages of applying DFM and

DFA into the design process through the comparison of a DFM/DFA analysis of the gait



rehabilitative device iterations. After a DFM/DFA analysis was made of both design
iterations it was found that there was a 40.04% cost reduction in manufacturing and
assembling of Design 2 as compared to Design 1. Therefore, it was concluded that
Design 2 was a more cost effective design than Design 1. This study also highlights areas

for improvement in the current design iteration.
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CHAPTER 1 - INTRODUCTION

Walking is one of the most important physical attributes a human being possesses.
Having the ability to walk gives a person freedom and allows them to explore the world
around them. Walking is also a great form of exercise, especially if one can run in
addition to walking, and allows humans to be physically healthy and active. However,
according to [1] not being able to walk and be mobile can have a lot of negative physical
and psychological health risks. Some of these physical health problems include an
increased risk for blood clots and edema, heartburn and indigestion, kidney stones and
osteoporosis resulting from calcium drainage from long bones, changes in hormone
balance, bladder infections, pressure ulcers, atrophied muscles, difficulty expanding
lungs fully, weakened coughs, and lower back pain. Psychological health risks from
immobility include social isolation, depression, anxiety, apathy, mood swings, feelings of
helplessness, loss of normal sleep cycles, and delirium [1]. Walking is a true luxury that
is often taken for granted by those who have never experienced life without it.

There are millions of people worldwide who do not have the ability to walk,
whether it be from a physical injury or some disease which limits the use of their legs. In
the United States alone, according to the U.S. Census Bureau, 30.6 million people from
the ages 15 and above suffer difficulties with lower body function or mobility. This
includes difficulty walking, climbing stairs, and using a cane, crutches, wheelchair or
walker. Within those 30.6 million there are about 3.6 million people who use wheelchairs
and 11.6 million people who use other devices such as canes or walkers to assist in
walking. In addition, about 4.5 million children between the ages 6 and 14 have some sort

of disability [2].



Physical therapy for walking, also known as gait therapy, is a process in which a
therapist helps a patient learn to walk again through a series of guided tasks. This is
important for people who have recently had lower body surgery, injuries, strokes, and
ilinesses or diseases which affect lower body function. There are different types of
therapy that a therapist can use to help a patient learn to walk again through a correct gait
trajectory. First is by assisting the patient by manually moving their feet through a gait-
like trajectory. Second is to use a body-weight supported treadmill to train the patient.
The treadmill assists the therapist in moving the foot through a gait-like trajectory and the
patient doesn’t have to move. Third is through robotic-assisted gait therapy. This kind of
therapy uses automated actuation to assist in moving the patient’s foot through a gait-like
trajectory. Fourth is through the use of motorized foot-propelling devices, such as
elliptical machines. These elliptical machines move the patient’s foot through a looping
trajectory and require little assistance from the therapist [3].

Gait rehabilitation devices have been developed by researchers to assist therapists
and clinicians in helping their patients but many have some drawbacks. One such device
is the Lokomat which combines robotic gait orthoses with body-weight supported
treadmill systems [4-6]. The Lokomat offers adjustment between adult and pediatric
patients. However, the Lokomat is expensive and is not affordable for many small
rehabilitation clinics and home health centers [4]. It is also cumbersome and time
consuming to set up for each individual patient.

Another gait rehabilitation device which assists in gait therapy is the Intelligently
Controlled Assistive Rehabilitation Elliptical (ICARE). The ICARE was developed by

researchers at the University of Nebraska-Lincoln and Madonna Rehabilitation Hospital.
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The ICARE is a motorized elliptical machine that was modified to move the patient’s feet
through a gait-like motion [7]. It was designed so that patients with little muscular
strength could operate it and patients with a lot of muscular strength could drive the
machine themselves [8]. The ICARE is a relatively low cost, ergonomic, and effective
machine for gait rehabilitation but was designed only for adult use [7].

Since walking immobility is a serious pediatric issue too, there is a need for an
effective gait rehabilitation device for pediatric use. Therefore a pediatric gait
rehabilitation device that can also be adjusted for adult use was designed by Stolle [3].
This device was designed to accommodate gait training in a healthcare, rehabilitation, or
home-health settings. To achieve this, several primary design goals were established.
These goals for the device are to provide a normal gait motion, to be scalable and to
accommodate for a stride length between 6 and 40 inches, and be practical for small, low-
budget rehabilitation facilities to use without extensive personnel training. Secondary
design goals for the device include being adjustable for each leg independently to
accommodate for unilateral gait deficiencies, being an affordable and cost-effect device
for in-home patients, being operable in relatively smaller spaces, being motorized, being
backdrivable so that patients can manually drive the device, and being ergonomic. Two
iterations of the rehabilitative device were designed and built [3].

The purpose of this study is to address the affordability design goal and to show
how implementing Design for Manufacture (DFM) and Design for Assembly (DFA) into
a product’s design process can make the process and production more efficient and
reduce the overall cost. It is widely accepted that even though only 5% of the final cost of

a product is spent on the design of the product, over 70% of the product’s cost is



10

determined during the design process. In addition, generally more than 50% of the final
cost is incurred from the material used to produce the product [9]. Therefore it is
important to find the most efficient way to use this material. A secondary benefit of
applying DFM and DFA to the creation of new medical devices is that these methods
provide data which can be useful in securing Food and Drug Administration (FDA)
approval for putting such devices on the market [10]. The primary role of the FDA with
respect to medical devices is to regulate the marketing and commerce of the product and
to assure the product’s safety and effectiveness [10, 11].

The design of the rehabilitative device was more of a research driven design
process, whereas applying DFM and DFA is a more professional or commercially
acceptable design approach. In this study two design iterations of a rehabilitative
pediatric gait device are evaluated and analyzed using DFM and DFA. The gait device
was designed and built using the first design initially but after it was built it was
determined that the device was not functional and needed improvements. The designer
stated in [3] that the rail was shaky and tall, and its non-functionality was blamed on poor
tolerances, misaligned shafts, heavy components, rail weight, and large cam
accelerations. Some of these shortcomings relate directly to the need for DFM and DFA
methods in the design stage. Therefore a second iteration was designed based on the
failures of the first iteration. The goal is to show the potential advantages of applying
DFM and DFA into the design process through the comparison of the DFM/DFA analysis

of the gait rehabilitative device iterations.
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CHAPTER 2 — LITERATURE REVIEW

2.1 History

2.1.1 The Design Process

“The design process is the organization and management of people and the
information they develop in the evolution of a product” [12 ch.1]. Every product goes
through some sort of design process, whether it is structured or not, before it is put into
production and sent to market. In early history a whole product could be designed by a
single person, as long as that person had sufficient knowledge of physics, materials and
manufacturing processes that would be needed to construct the product. However, when
projects got too large and complex, this one-man operation ideology was no longer
suitable. One person could no longer have sufficient knowledge and time to handle all of
the complexity and manufacturing processes for a typical product. So this required the
production to consist of different groups of people who would be responsible for
marketing, design, manufacturing, and overall management. Having different groups of
people in charge of specific areas in the design process led to what is commonly known
as the “over-the-wall” design process. Over-the-wall refers to the idea that it is a one-way
communication between groups like throwing information from one group to another
over a wall. Often what is produced is not what the customer had in mind, and this is a
major downfall of the over-the-wall design process. This single-direction communication
method doesn’t allow clear communication and understanding between groups. It would
benefit the engineers to have better communication with the customer and marketing to
get a clear understanding of what is wanted. In addition, the design engineers do not

know as much about manufacturing processes as those people who are directly involved
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in manufacturing, so the manufacturers may know cheaper methods to produce the
product. For these reasons this design process method is inefficient and expensive and
could result in poor-quality products [12 ch.1].

Due to the inefficiency of the over-the-wall process, the concept of simultaneous
engineering broke through in the late 1970s and early 1980s. Simultaneous engineering
focused on the development of the manufacturing process with the advancement of the
product simultaneously. This process was achieved by having manufacturers be a part of
the design team and work with the design engineers throughout the design process. In the
1980s concurrent engineering and in the 1990s integrated product and process design
were processes that were built off of the simultaneous design philosophy [12 ch.1].

Since these three design processes are similar, this thesis will focus on concurrent
engineering. Groover [13 ch.39] refers to concurrent engineering as “an approach to
product design in which companies attempt to reduce the elapsed time required to bring a
new product to market by integrating design engineering, manufacturing engineering, and
other functions in the company.” The main focus is on combining the different teams of
people, design tools and techniques, and the information and processes used to develop
and manufacture the product. Using teams of people in the concurrent design method to
get different people working together during each phase of the design and development
of the product eliminates most of the problems that were seen in the over-the-wall
method. With the integration of people in design teams, information such as drawings,
plans, concept sketches and requirements can easily be shared with the right people at the
right time. This is a key point in concurrent engineering. In addition, having people with

different views work together helps address the entire life cycle of the product [12 ch.1].
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No matter what design philosophy or process is being used, all products go
through a life cycle. Different phases of the product’s life cycle are grouped into four
main areas: product development, production and delivery, product use, and the product’s
end of life. Before a product is developed there must be an established need for the
product. The need for new products comes from either the market need or the designer is
designing a new product idea that has yet to be brought to market. However, new design
idea projects make up only about 20% of new product developments, meaning about 80%
of new products are market driven. Within market driven design projects for a new
product is the process of redesigning an existing product. An engineer will redesign an
existing product if the market demand is to include new technology or a new model, fix
an existing problem, reduce the cost of the product, change the manufacturing process or
change the materials used to manufacture the product. There are useful techniques that
can be used during production that help in the redesign of existing products. Such
techniques include Design for Manufacture (DFM) and Design for Assembly (DFA) [12

ch.4].

2.1.2 DFMA

DFMA, design for manufacture and assembly, is a combination of the two design
techniques design for assembly (DFA) and design for manufacture (DFM). Boothroyd,
Dewhurst, and Knight [9 ch.1] define DFA as designing a product for the ease of
assembly and DFM as designing the collection of parts that form a product for the ease of
manufacture. Boothroyd, Dewhurst, and Knight [9 ch.1] also refer to the term
manufacture as the manufacturing of individual component parts of a product and, to

assemble as joining parts to form a completed product. Boothroyd, Dewhurst, and Knight
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[9 ch.1] have listed three main activities for using DFMA: 1) as the basis for concurrent
engineering studies to provide guidance to the design team in simplifying the product
structure to reduce manufacturing and assembly costs, and to quantify the improvements,
2) as a benchmarking tool to study competitors’ products and quantify manufacturing and
assembly difficulties and 3) as a should-cost tool to help control costs and to help
negotiate suppliers’ contracts.

Before understanding how to use DFMA it is important to know why and how it
came into existence. DFMA was developed from research on the topic of automatic
assembly. In 1963, Geoffrey Boothroyd and Alan Redford, Boothroyd’s graduate student,
started doing research in this field at Salford University in England. Boothroyd then
furthered this research at the University of Massachusetts with his colleagues Corrado
Poli and Laurence Murch. In the early 1970s they published a handbook of feeding and
orienting techniques for small parts. In order to catalog the various solutions to feeding
and orienting techniques a numerical part coding system was developed. The codes
pointed to which pages in the handbook showed automatic feeding solutions and also
showed which parts were easy and difficult to feed and orient, and those that cannot be
fed and oriented automatically. A systematic method was developed to quantify product
designs for the ease of automatic assembly so that product designers will have a
technique to avoid part shapes that are difficult to feed and orient. Therefore the Design
for Automatic Assembly method was developed. Boothroyd and Bill Wilson, his
colleague at the University of Massachusetts, visited the National Science Foundation
(NSF) to present a proposal on the idea that they could make a contribution to the subject

of Product Design for Ease of Manufacture. In 1978 they receive funding for a 3-year



research program to study Design for Manufacturability. Boothroyd, as part of his
contribution in the research program, pursed his interest in Design for Assembly. He
collaborated with Alan Redford and Ken Swift, colleagues of his in England, for the
automatic insertion of parts. The analysis method of Design for Manual Assembly was
developed by Boothroyd and his students. As part of Bill Wilson’s contribution, he
studied the initial Selection of Materials and Processes for the manufacture of parts.
Design for Manufacture was the third area of study and was contributed by Winston
Knight from Oxford University and Corrado Poli. From this research study was born

DFA and DFM. [9 ch.1].

2.2 Description of DFM and DFA

The design stage during the life of a product is very important because many of
the decisions that impact the development and the cost of the product are made in this
stage. In fact, according to many studies, around 70-80% of a product’s life cycle costs
are decided during the design stage. Many design methods or concepts have been

developed over the years in order to increase the efficiency of the design stage of a

15

product and to decrease the total cost and time to market for the product. These methods

have come to be known as part of the Design for X (DFX) methods. DFX can be split up

into three categories: 1) product scope, 2) system scope, and 3) eco-system scope [14].
Design methods included in DFX are design for manufacture, assembly, quality,
validation, reliability, quality, usability, maintenance, environment, obsolescence and
recyclability [14, 11]. It is important to incorporate these methods with a concurrent

engineering approach so that the product and its manufacturing processes can be
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improved simultaneously during the design stage. This thesis, however, focuses on DFM
and DFA.

Design for Manufacture (DFM) and Design for Assembly (DFA) are techniques
which are used to positively influence the manufacturability of a product. DFM and DFA
are two different techniques with their own set of guidelines and principles but since they
are similar they are often coupled together into one technique known as DFMA or Design
for Manufacture and Assembly. Groover [13 ch.39] defines design for manufacture and
assembly as “an approach to product design that systematically includes considerations of
manufacturability and assemblability in the design.” To most effectively incorporate
DFMA into a company the company needs to make organizational changes to implement
concurrent engineering. Concurrent engineering allows engineers to better interact and
communicate the principles and guidelines of DFMA in design teams. These principles
and guidelines help the design team design a product for maximum manufacturability.
Bakerjian and Mitchell [15], and Corbett et al. [16] cites typical benefits from using
DFMA guidelines. They are 1) shorter time to bring the product to market, 2) smoother
transition into production, 3) fewer components in the final product, 4) easier assembly,
5) lower production costs, 6) higher product quality, and 7) greater customer satisfaction
[13 ch.39].

2.2.1 DFM

Design for Manufacture or Design for Manufacturability, is a process that has
been developed with the goal of reducing manufacturing cost and improving product
quality [17 ch.9]. The main focus in DFM is to find the best manufacturing process for

the part and that the part form fits the selected manufacturing process. [12 ch.12]. DFM
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is proof of the importance of concurrent engineering. DFM can be considered the first
step in manufacturing but is implemented during the design of the product. To achieve
the goals of DFM, manufacturing engineers need to be a part of the design team from the
beginning. There are a general set of guidelines for DFM that ensure the designer will get
the most out of the process [17 ch.9].

Guidelines:

Reduce the overall number of parts

- Use standardized components

- Use common parts across product lines
- Design parts to be multifunctional

- Design parts for ease of fabrication

- Avoid overly tight tolerances

- Avoid secondary operations

Make good use of processes’ special characteristics

Design rules that should be used to get the most out of DFM include [17 ch.9]:

- Adequate distance between holes

- Write specific notes on engineering drawings

- Set dimensions from a specific surface or point and from a single datum

- Design the part for minimum weight while still meeting strength and stiffness
requirements

- Design parts to be fabricated using general purpose tooling

- Use generous fillets and radii

- Design parts to avoid repositioning during machining
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The first step in lowering manufacturing cost through the use of DFM is to reduce
the total number of parts. Having multiple parts that need to be machined increases the
machining time and subsequently increases machining cost. When a part is eliminated
from a design it no longer carries any penalties with it. Therefore the eliminated part
costs nothing. A part can be eliminated if:

- The part doesn’t move relative to another part

- The part doesn’t need to be made of a different material relative to

neighboring parts

- Assembly/disassembly is possible without it

A related approach is to design parts to be multifunctional. A way to eliminate
parts is to combine them into one part that can satisfy the functions of the separate parts.
This is an efficient way to eliminate parts and get the most out of the design [17 ch.9].

Using standardized components minimizes cost and improves quality because
standard commercially available components are used in the design. Since these
components are commercially standardized and widely used, the life and reliability of the
components has already been established. The designer can reduce cost by buying the
components in large quantities to get discounts, reduced design time from not having to
design special components, and from not having to use additional machining and tooling
cost to produce special components [17 ch.9]. However, it can be harmful to overuse
standardization. It can prevent design innovation if a designer or company uses standard
components to an extreme. Lots of breakthrough success can be attributed from breaking

away from standard components and innovating new ideas [9 ch.7].
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In relation to using standardized components, it is preferred to use parts that are
available to the manufacturer. Whether you are using special parts that have already been
designed and machined or standard parts, it is efficient to use parts that are abundantly
available. Using common parts on multiple products greatly reduces inventory cost [17
ch.9].

It is efficient to use the cheapest material that satisfies all of the functional
requirements. If possible the material should be produced using machining processes that
produce near net shape. Such processes include casting, extrusion, deep drawing,
blanking, and forging. Preshaping the material to a near net shape can help to minimize
the amount of machining done to a material [17 ch.9, 9 ch.7].

When setting tolerances for parts, the designer should approach this with great
care. The loosest tolerances and roughest surfaces that would give acceptable
performance for operating surfaces should be specified. Tighter tolerances and smoother
surfaces increase the machining cost because secondary finishing operations, precise
tooling, and skilled workers have to be used to achieve the tolerances and surface
roughness. This also increases the total machining time. As a guide to the difficulty of
machining specified tolerances, Boothroyd, Dewhurst, and Knight [9 ch.7] stated:

1. Tolerances from 0.127 - 0.25 mm (0.005 - 0.01 in) are readily obtained

2. Tolerances from 0.025 - 0.05 mm (0.001-0.002 in) are slightly more difficult

to obtain and increase production costs.

3. Tolerances 0.0127 mm (0.0005 in) or smaller require good equipment and

skilled operators and significantly add to production costs.
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2.2.2 DFA

After parts are manufactured in an efficient way, they need to be assembled
efficiently. DFA measures the efficiency with which a product can be assembled. To
assemble a product, a person, machine or robot must retrieve, handle and join the parts to
create the final product. Since most products are assembled from multiple parts, this
assembly process takes time which costs money. The cost of assembling a product is a
significant part of the labor cost in manufacturing. If a designer can decrease the number
of parts in an efficient way he will decrease the time for assembly which will result in
lower labor cost and save money. It will also decrease the product time to market [12
ch.12]. There are general DFA guidelines a designer can follow which will lower the cost
of assembly and will make the assembly process easier and more efficient.

Guidelines:

Reduce the overall number of parts

- Avoid the use of separate fasteners

- Design the product with a stationary base to build upon

- Design for an efficient assembly sequence

- Avoid tangling, nesting, and flexible components

- Design components for a specific type of retrieval, handling, and insertion
- Design components with end-to-end and rotational symmetry

- Design components which are not symmetric to be clearly asymmetric

- Minimize assembly directions

- Maximize component compliance in assembly

- Maximize component accessibility [12 ch.12, 17 ch.9]
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These guidelines can be split up into four sections which are: assembly efficiency,

component retrieval, component handling, and component insertion [12 ch.12].

A) Assembly Efficiency

The first step in making the assembly process efficient is to decrease the total
number of parts. Having fewer parts to assemble decreases the assembly time and can
save money in assembly cost. To evaluate the parts count in the current design to see if
there is room for improvement the designer needs to examine each part and decide if that
part is necessary or not. If a part doesn’t need to be separate from another part then
theoretically the parts can be combined. There are three criteria, mentioned earlier, for a
part to be separate [12 ch.12, 17 ch.9].

After the designer has examined each part and decided if it was necessary or not,
he has now found the theoretical minimum number of components for the design. After
the designer has found the theoretical minimum number of components, he can then
analyze the assembly of the current design. The improvement potential of the design can

now be calculated by using equation (1) [12 ch.12].

(actual number of)_( theoretical minimum )
components number of components

actual number of components

Improvement potential = x 100 (1)

This equation helps the designer to rate the design based on a percentage and

determine if there is potential for improvement. If improvement potential is:

Less than 10%, the design is outstanding

Between 11-20%, the design is very good

Between 20-40%, the design is good

Between 40-60%, the design is fair

Greater than 60%, the design is poor
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After a product is redesigned a similar equation to equation (1) can be used to rate
the redesigns actual improvement [12 ch.12].

(number of components )_(number of components )
in the inital design in the redesign
J g x100 (2)

number of components in the initial design

Actual Improvement =

The designer can also calculate the design efficiency based on assembly time once
the theoretical number of parts is found. Using equation (3) [17 ch.9, 9 ch.3] allows the

designer to calculate design efficiency.

Design Efficiency = t“tNﬂ (3)

Nmin IS the theoretical minimum number of parts, tm, is the estimated total
assembly time for the product and t; is the theoretical assembly time for one part, which
is the average time for a part that is not difficult to handle, insert or fasten. t, equals 3
seconds [9 ch.3].

It may not always be possible to reach the theoretical number of parts. However,
trying to decrease the number of parts in a design by combining parts together can result
in a conflict with DFM guidelines. Combining parts can create complex geometries with
high tolerances that can be difficult to machine and result in an increase in machining
cost. Therefore the designer needs to be aware of this conflict when he is redesigning the
product [12 ch.12].

A great way to reduce the total number of parts in a design is by reducing or
eliminating the need to use separate fasteners. Separate fasteners can carry a lot of
penalties and cost with them. When a part is eliminated it carries no penalty [17 ch.9].
Using fasteners increases the time in an assembly because they are an additional part that
needs to be handled, especially in cases like a bolt where there is usually a nut associated

with it. The nut increases handling time and usually requires an extra tool to be used. On
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average the handling time of a fastener is usually 10 seconds per fastener. Fasteners are
extra parts that need to be purchased and stored in inventory and then assembled which
adds extra cost to the total. Fasteners can also lead to failure in the design because they
are a point of concentrated stress. For these reasons it is a good idea to avoid using
separate fasteners as much as possible. However, fasteners can be important in a design if
there is a need for maintenance and the product needs to be disassembled [12 ch.12].
Standard fasteners should be used when fasteners are needed [17 ch.9]. The designer
should justify their reasoning when eliminating parts [12 ch.12].

Using a single part as the base for all other parts to be built upon it will help
ensure an efficient assembly. It helps avoid reorienting parts during assembly and will
decrease time of assembly. The base should also not be reoriented during assembly. An
ideal assembly would be building up from the base piece by piece in a single direction
like a pyramid [12 ch.12].

It is important to make the assembly sequence as efficient as possible. It is
desirable to simplify the design so that fewer surfaces need to be machined and all work
and assembly can be done on each surface before moving on to the next one [17 ch.9].
One should avoid creating multiple subassemblies which have to be joined to the final
assembly later, as well as, awkward and obstructed lines of assembly. In many cases if
the assembly sequence is easy for a robot to assemble it will be easy for manual
assembly. Humans are often able to move themselves more easily than a robot [12 ch.12].

B) Component Retrieval

It is important to minimize handling as much as possible and therefore the

retrieval of the components needs to be as efficient as possible. Tangling, nesting, and
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flexibility characteristics can make it difficult to retrieve components. It is very difficult
to pick up a component individually out of a bin if it has any one of these characteristics.
When components get jammed inside of each other it is considered nesting. When
possible, one should avoid using flexible components because they can be hard to
retrieve. Rather, components should experience negligible deflection under loading
typical of assembly operations [12 ch.12].

Components need to be designed for a specific type of assembly. As mentioned
before there are three different assembly methods that need to be considered while
designing a component: manual, robotic, and automatic assembly. These different
methods have different ways in which to grasp or retrieve the components. In manual
assembly a human worker grabs a part at their workstation, orients and positions the part
for insertion. The parts are then inserted together and may be fastened using tools. In
automatic assembly the parts are handled by a parts feeder that feeds the correctly
oriented parts to an automatic workhead for insertion [17 ch.9]. In robotic assembly,
robots use different types of end effectors to retrieve the components [12 ch.12].The
component needs to be designed for the most appropriate method of assembly. Generally
for manual assembly to be the most economical method of assembly the annual volume
of the product should be less than 250,000. If the annual product volume ranges from
250,000 to 2 million then robotic assembly is the most economical method. If the annual
product volume exceeds 2 million then special purpose machines are the most

economical choice [12 ch.12].
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C) Component Handling

To make assembly more efficient the components should be designed to be
symmetrical so they do not need to be reoriented. A component should be designed to be
end-to-end symmetrical and symmetrical about the axis of insertion (rotational
symmetry). End-to-end means the component can be inserted from either end. If a
component is restricted to only be inserted one way, then after retrieval it must be
oriented to be inserted in that way. This increases the time and complexity of assembly. If
the component was perfectly symmetrical then it doesn’t have to be specifically oriented
and handling becomes easier [12 ch.12].

If the cost to modify the components is more than the reduced assembly cost then
the designer might want to reconsider the modifications. Instead the designer could make
the part clearly asymmetric [12 ch.12].

D) Component Insertion

To make component insertion more efficient, the components should all be
designed to be inserted in a straight line from a single direction. This will reduce
reorientation of the base and any other additional assembly motion. If this is done in a
top-down manner along the downward direction, then the pieces will fall together from
above and will be assisted by gravity. To make insertion even easier and so that excessive
force doesn’t have to be used, the component should be designed to be self-aligning. This
can be accomplished by using relaxed tolerances and by making use of generous tapers,

chamfers and leads [12 ch.12, 17 ch.9].
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Another consideration while designing a component is to make the component
accessible for assembly and maintenance. There must be necessary room to use tools to

assemble and disassemble the components with ease [12 ch.12].

2.3 Related Software

After the 1960s, when tabular design for assembly methods were created,
researchers realized that the speed and ease of assembly analysis could be improved by
creating computer software to implement DFA. From this research spawned different
DFA software. Two methods that were created are Boothroyd and Dewhurst’s Design for
Manufacturing and Assembly software and the Mathieson-Summers connective-
complexity algorithm. This section of the paper will describe how each method is used
and how effective an analysis each can obtain [18].

2.3.1 Boothroyd and Dewhurst’s DFMA

Boothroyd and Dewhurst’s DFMA software requires the user to answer specific
questions about the assembly of the product, the subassemblies of the product, and the
components of the product. The answers to these questions provide the software with
specific information so that a DFA analysis can be made. There are two main sections of
the analysis: determining the theoretical minimum number of components and
determining product assembly times and costs. When the theoretical minimum number of
components is found, it shows the designer what parts can theoretically be eliminated
from the assembly [18].

After the theoretical minimum number is found the design efficiency, which
shows the designer how efficient the product is with respect to DFA, is calculated. This is

a way the designer can document the improvements of the product before and after DFA.
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cost of the product. This estimation is done by determining the size, symmetry, handling

and insertion difficulties of each part. The designer has to choose from multiple options

for each area to determine the correct assembly time of the part. The estimated assembly

time can be used to find a cost estimate of the assembly. [18]

The DFMA software requires the designer to evaluate eight different areas per
part: product definition, securing method, minimum part criteria, envelope dimensions,
insertion and orientation symmetry, handling difficulties, insertion difficulties, and
fetching distance. From these eight areas the designer has to answer a total of 49
questions per part. This can be a long and tedious process for complex products with a |
of parts. The software uses this information to automatically make assembly time
estimations for the specified product. Owensby et al. [18] determined that 16 of the 49
questions are subjective or are opinionated questions. This means that 33% of the total
analysis is based on the designer’s opinion. When this software is used by different
designers for the same product the designer may answer the subjective questions
differently which can result in different assembly time estimations. This reduces the
repeatability, consistency, and accuracy of the method. However, it does provide the
designer with validated assembly times and identifies eleven areas to focus on for

redesign. These are critical for an effective DFA method [18].

2.3.2 Mathieson-Summers
Mathieson-Summers connective-complexity method uses the physical
connectivity between the parts in the assembly to predict assembly times. Every part in

the assembly is evaluated by determining what other parts the part is connected to and

ot
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how they are connected. There are four general types of connection: surface contact,
fasteners, snap/press/interference fits, and other connections. An assembly bi-partite
graph is then created to represent the assembly architecture. The bi-partite graph is a
graph of two independent sets, the parts in the assembly and the connections between the
parts. It then uses previous predicted assembly times, which are based on the data in the
Boothroyd Dewhurst DFA tables, and maps graph properties of the assembly
architectures to the assembly times. Future assembly times of different architectures are
then predicted using a historical regression model [18].

To complete the analysis of this method only two types of information are needed
from the user. These are what parts is a part connected to and how are they connected.
Only five questions are asked to obtain this information and they are all objective. Once
the designer has decided that a part is connected to another then all that has to be done is
decide which of the four connection types are used. These questions are quick and easy to
answer, so it can be a relatively quick method. In fact, a study done by Owensby et al.
[18] determined that the Mathieson-Summers method could be implemented about 25%
faster than Boothroyd and Dewhurst’s DFMA method. Moreover, since the method only
takes hours to implement, according to the study done by Owensby et al. [18], and it only
requires the designer to answer five objective questions, it should provide a repeatable
and consistent analysis between different people. However, this method does not provide
any redesign features to improve the product assembly, and the predicted assembly times
provided by the method, in the study done by Owensby et al. [18], cannot be accepted as

correct because they have not been fully validated yet. Future work needs to be done on
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this method such as creating a set of formalized rules and validating the assembly times

[18].
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CHAPTER 3 - MACHINING

To create the rehabilitative gait machines [3] a certain amount of machining had
to be done to some parts in order for those parts to be able to be assembled with other
parts. Groover [13 ch.23] defines machining as “a manufacturing process in which a
cutting tool is used to remove excess material from a workpart so that the remaining
material is the desired part shape.” The cutting tool removes material from the work piece
by forming a chip through shear deformation of the work material. After the chip is
removed a new surface is left behind. In order for shear deformation to occur there needs
to be relative motion between the cutting tool and the work material. In most machining
operations relative motion is accomplished by a primary motion called the speed and a
secondary motion called the feed. The desired shape of the work surface is affected by
the shape of the tool and it is penetration into the work surface, which is achieved by a
combination of the speed and feed [13 ch.23].

Machining is primarily associated with shaping metals but it can also be applied
to plastics and plastic composites. Ceramics are difficult to machine because of their high
hardness and brittleness but they can be machined by abrasive machining processes. Any
regular geometry such as a flat plane, round hole, or cylinder can be cut by a machining
operation. In addition, almost any shape can be produced by combining several
machining operations. Machining can achieve tolerances less than 0.001 in (0.025 mm)
and surface finishes better than 16 pin (0.4 um). Because of these characteristics
machining is generally used to produce the final geometry, dimensions and surface finish

of a part [13 ch.23].
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There are many different kinds of machining operations that can all be used to
created different shapes, dimensions, and surface finishes. However, each operation has
its own limitations in what geometries, tolerances and surface finishes can be achieved.
Processes which are considered to be machining operations include: turning, drilling,
milling, shaping, planing, broaching, sawing, and machining operations that use abrasives
to cut material, such as grinding. The two most common types which were used during
this project to produce in-house machined parts were drilling and sawing [13 ch.23].

3.1 Drilling

Groover [13 ch.25] defines drilling as “a machining operation used to create a
round hole in a work part.” Drilling is most often performed on a drill press but can be
also be performed by other machining operations. For example, turning a workpiece into
a stationary drill bit is another way to perform a drilling operation. During most drilling
operations a rotating cylindrical tool with two cutting edges, called a drill or drill bit, is
fed into a stationary work piece to form a hole. The hole’s diameter matches that of the
drill bit [13 ch.25].

The most common type of drill bit is called the twist drill and comes in diameters
ranging from 0.006 in (0.15mm) to 3.0 in (75 mm). Twist drills are commonly limited to
drilling hole depths at a maximum of four times its diameter. The body of the drill has
two spiral flutes cut into it and they are responsible for the extraction of chips out of the
hole. A typical angle for spiral flutes, also called the helix angle, is around 30°. The point
of the drill is generally a cone shape having a typical angle of 118°. Drill points most
commonly have a chiseled edge with two cutting edges that lead into the flutes. Chips are

formed from the relative motion between the cutting edges and the workpiece. Relative
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motion is accomplished from the drill bit being rotated and fed into the material [13

ch.25].

3.2 Sawing

According to Groover [13 ch.25], “Sawing is a process in which a narrow slit is
cut into the work by a tool consisting of a series of narrowly spaced teeth.” Sawing is
generally used to perform cutting operations. Chips are formed from the relative motion
between the stationary work material and the moving saw blade. For this study a bandsaw
was used to machine materials [13 ch.25].

Bandsawing is a type of sawing where the saw blade, also known as a bandsaw
blade, is a flexible loop with teeth on one edge. The blade is continuously driven through
the work material by a pulley-like drive mechanism in the bandsaw machine. The blade
travels in a continuous linear motion. Bandsaws are classified by the direction, vertical or
horizontal, of the blade motion during cutting. Vertical bandsaws are commonly used to
perform cutoff, contouring, and slotting operations while horizontal bandsaws are used
for primarily cutoff operations. Vertical bandsaws can be operated either manually or
automatically. In manually operation the material is fed into the saw blade by the
operator and in automatic operation the material is fed automatically through the blade
[13 ch.25].

The saw blades in all sawing operations have common features. The blade has a
tooth form, tooth spacing, and a tooth set. The tooth form is concerned with the rake
angle, clearance angle, tooth spacing, and other geometrical features of the cutting tooth.
Tooth spacing is the distance between adjacent teeth and is responsible for the size of the

teeth and the size of the gullet between teeth on the blade [13 ch25]. The tooth set, as
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defined by Groover [13 ch.25], “permits the kerf cut by the saw blade to be wider than

the width of the blade itself.” This allows the blade to pass through the workpiece without
binding.
3.3 Manufacturing Time Estimate

In order to make a cost estimate on the machining required for the manufacture of
two different designs of a rehabilitative gait machine, the total time it took to machine
different parts needs to be calculated. As mentioned above, the two machining processes
that were used to manufacture parts in-house were drilling and sawing. The parts that
were manufactured in-house were constructed from angle iron and square tube steel. As
can be seen from the Bill of Materials (BOM) in Appendices A and B, the angle iron used
was 1.25” by 1.25” with thickness 0.125” and the square tube steel used was 1” by 17
with thickness of 0.12”. The angle iron meets the ASTM A36 standard. The square tube
steel meets ASTM A500 and is 1005-1026 steel [19]. Theoretical drilling and sawing
machining times were calculated to make an estimate on the total machining time of the
parts. An experiment of drilling, using an upright drill press, and sawing, using a
horizontal hand bandsaw, was also performed to get a more realistic estimate on the time
it took to perform these machining operations. T,,,, machining time, is the time the drill

bit or saw blade is engaged in machining the material.

3.3.1 Drilling
For drilling a through hole, which is when the drill bit exits the opposite side of
the work, the machining time can be calculated using the equation [13 ch25]:

L, o_ttA
N

(4)
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where t is the work material thickness (in.), f, is the feed rate (in./min) of the drill into
the work material and A is an approach allowance that accounts for the drill point angle.
“A” represents the distance the drill must travel into the work material before it reaches

its full diameter and is measured in inches. “A” can be calculated using the equation [13

ch25]:
A= 0.5Dtan (90 - 2) (5)

where D is the diameter (in) of the drill bit, and 6 is the drill point angle, typically equal
to 118°.
The feed rate, f,., can be calculated using the equation [13 ch25]:

fr =Nf (6)
where N is the spindle speed (rev/min) and f is the feed (in./rev). N can be calculated

using the equation [13 ch25]:

v

N=—5 (7)
where v is the cutting speed (in./min) and D is the diameter (in) of the drill.

Cutting speeds can be found for drilling various materials in [20]. These are
traditional Handbook cutting speeds (given in feet per minute) used for drilling with high
speed steel (HSS) drill bits. These speeds can then be converted from feet per minute to
inches per minute by multiplying the value by 12. The cutting speed can then be inserted
into the previous equations to find the machining time. Also in the Machinery’s
Handbook [20] one can find feed (in/rev) ranges for various drill bit diameter ranges.
Viking Drill [21], states as a general rule feed equals 0.001 inch per revolution for every

1/16 inch of drill diameter, plus or minus 0.001 inch on the total. This general rule is

consistent with the feed ranges listed in [20].



35
A) Theoretical Drilling Time

Table 1. Theoretical Drilling Parameters

Angle Iron | Square Tube

Steel
Spindle Speed 1100 1100 rev/min
rev/min
Feed Rate 55in/min | 5.5 in/min
Approach 0.094 in 0.188 in

Distance
Machining Time | 0.0398 min | 0.778 min

) Angle Iron

The drill bits used for cutting the material are assumed to be HSS twist drill bits
with tip angles equaling 118°. The angle iron is an ASTM A36 material and is assumed
to have hardness values similar to 1018 carbon steel. From [22], an ASTM A36 material
has Brinell hardness values ranging from 119-159. From [20], the cutting speed of a 1018
carbon steel having Brinell hardness values ranging from 125-175 is 90 feet per minute
(fpm) or 1080 in./min. So the cutting speed, v, for drilling into angle iron equals 1080
in./min.

Holes with a diameter of 5/16” are to be drilled into angle iron that has a thickness
of 0.125 inches. The drill bit that is used is a 5/16” diameter HSS twist drill bit. A
diameter of 5/16” was used because it is a common size that can be used in a standard
setting.

Using the general rule stated in [21], the feed for a 5/16 drill bit equals 0.005
in./rev. This feed is used to calculate the feed rate. Once the feed rate and approach
distance are known and the thickness of the angle iron is 0.125 inches, the machining

time for drilling can then be found. Table 1 presents these machining parameters and the



36

time to drill a single hole into angle iron using a drill press. These values were calculated
using equations (4) through (7). Therefore, as can be seen from Table 1, the machining

time equals 0.0398 minutes or 2.39 seconds.

i) Square Tube Steel

The drill bits used for cutting the material are assumed to be HSS twist drill bits
with tip angles equaling 118°. Square tube steel is an ASTM A500 material made from
low carbon steel and it is assumed that it has hardness values similar to 1018 carbon steel.
From [20], the cutting speed of a 1018 carbon steel having Brinell hardness values
ranging from 125-175 is 90 feet per minute (fpm) or 1080 in./min. So the cutting speed,
v, for drilling into square tube steel equals 1080 in./min.

Holes with a diameter of 5/16” are to be drilled into the square tube steel that has
a thickness of 0.12 inches. Therefore the drill bit that is used is a 5/16” diameter HSS
twist drill bit. A diameter of 5/16” was used because it is a common size that can be used
a standard setting.

Using the general rule stated in [21], the feed for a 5/16 drill bit equals 0.005
in./rev. The feed is used to calculate the feed rate. Once the feed rate and approach
distance are found the machining time to drill a single hole into a piece of square tube
steel can then be found. However, square tube steel is hollow and when drilling straight
through it the drill bit will encounter two approach distances (the approach of drilling
through the top at the beginning of the drilling operation and the approach into the
bottom side of the square tube after drilling through the top). The drill bit will also cut
through the thickness, which equals 0.12 inches, twice. Therefore the thickness, t, equals

0.24 inches. Table 1 presents the machining parameters and the time to drill a single hole
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through a piece of square tube steel using a drill press. These values are calculated using
equations (4) through (7). Therefore, as can be seen in Table 1, the machining time equals
0.0778 min or 4.67 seconds.

B) Experimental Drilling Time

An experiment was done to try and achieve an accurate machining time for
drilling into angle iron and square tube steel. The same material was used in the
experiment as was used to make the theoretical machining time estimations. A Central
Machinery “Mini Vertical Milling/Drilling Machine” model 44991 was used for the
experiment and can be seen in Figure 1. This drill press was used because this is the drill
press that was available to the author in the lab and was used during the manufacturing of
the rehabilitative gait machine. A 5/16 inch diameter HSS drill bit was used to drill the
holes into the material. Cutting oil was also used during the experiment to lower the risk
of damaging the tool and to make the drilling operation more efficient. A total of five
trials were done each, for the angle iron and square tube steel. An average time in
seconds was taken for each experiment. These times can be seen respectively for angle

iron and square tube steel in Tables 2 and 3.



Figure 1. Central Machinery "Mini Vertical Milling/Drilling Machine

Table 2. Experimental Drilling Times for Angle Iron

Trial Time (sec) Standard
Deviation (sec)

92
120
106

91
104
Average 102.6 10.6

OB WIN-
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Table 3. Experimental Drilling Times for Tube Steel

Trial Time (sec) Standard
Deviation (sec)

1 57

2 59

3 58

4 63

5 66

Average 60.6 3.38

As can be seen in Table 2 the average time it took to drill one 5/16 inch hole into
a piece of angle iron equals 102.6 seconds or 1.71 minutes. So the experimental
machining time resulted in 102.6 + 10.6 seconds.

As can be seen in Table 3, the average time it took to drill one 5/16 inch hole into
a piece of square tube steel equals 60.6 seconds or 1.01 minutes. So the experimental
machining time resulted in 60.6 + 3.38 seconds.

When comparing the theoretical times with the experimental times it is clear to
see that there is a large difference in time. The theoretical machining time for drilling
angle iron is 2.39 seconds and the experimental machining time is 102.6 seconds. This
corresponds to an error of 4192.9%. The theoretical machining time for drilling square
tube steel is 4.67 seconds and the experimental machining time is 60.6 seconds. This
corresponds to an error of 1197.6%. There are many reasons for this high of an error.
First, the author is not an experienced drill press operator. The feed rate is determined
manually by the operator and therefore was not constant and the feed rate was probably
slower than what is expected for the cut. In addition, on the Central Machinery drill press
there was not an accurate spindle speed setting. It was a dial which had a range of speeds

but only the max and minimum settings were labeled. Therefore the spindle speed was
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not set correctly. The drill bit which was used during the experiment was not a new drill
bit; therefore the bit was used and worn. For the theoretical calculations it is assumed that
the drill bit used was not worn and could cut to its full potential.

This analysis or comparison shows that having the correct machining parameters
will greatly reduce the machining time. If the experiment was run on an automatic drill
press machine or by a professional machinist the correct feeds and speeds could have
been set. In addition, if a drill bit which had minimal to no tool wear were used the drill
cut would have been more effective. This would result in a faster and more efficient

machining time and would greatly reduce the error.

3.3.2 Bandsawing

Before the machining time can be calculated for bandsawing, the tooth variable-
pitch for the blade needs to be determined. This is done by first calculating the length of
cut, which “is the distance that any tooth of the blade is in contact with the work as it
passes through the cut” [20], and then using the tooth selection wheel chart found in [20]
to determine the best blade pitch for the particular job. The length of cut for solid
rectangular cross-section stock is the height of the cross-section. For a solid circular
cross-section stock the length of cut is the diameter of the cross-section. The length of cut
for angles, channels, 1-beams, tubes, pipe, and hollow or irregular shapes is calculated by
dividing the cross-sectional area of the cut by the distance the blade has to travel to finish
the cut [20].

Once the length of cut is found and the blade pitch is determined it is time to
determine the band speed (ft/min) which can be found in [20] for a given material.

However, these band speeds found in [20] are for a bimetal bandsaw having a length of
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cut of 4 inches with coolant. So it is assumed that the material is being cut with a bimetal
bandsaw blade. Therefore these band speeds need to be adjusted for different lengths of

cut other than 4 inches [20].

Increase speed by 15% for %4” length of cut (10/14 blade)

Increase speed by 12% for %4 length of cut (6/10 blade)

Increase speed by 10% for 1 %4” length of cut (4/6 blade)

- Decrease speed by 12% for 8” length of cut (2/3 blade)
After the band speed has been found and adjusted if needed then the cutting rate (in®min)
can be estimated from [20].

The time for machining,T,,, for bandsawing can be calculated using [20]:

A

T, = ——— 8
™ cutting rate ®)

where the cutting rate is measured in in.%/min. “A” is the area of the cut, which is the
cross-sectional area of the specific beam being cut [20].
A) Theoretical Sawing Time

Table 4. Theoretical Bandsaw Parameters

Angle Iron | Square Tube
Steel

Cross-sectional 0.297 in° 0.422 in°
Area
Length of Cut 0.168 in 0.422 in
Variable-pitch 10/14 8/12
Blade
Band Speed 270 fpm 300 fpm
Percent Adjustment +15% +12%
Adjusted Band 311 fpm 336 fpm
Speed
Cutting Rate 3.5in“/min | 3.75in/min
Machining Time 0.085 min 0.113 min
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)] Angle Iron

For all the calculations made it is assumed that a bi-metal bandsaw blade is being
used to cut the material. Before the machining time to cut a piece of angle iron into two
pieces can be calculated the length of cut first needs to be known. As mentioned earlier
the length of cut of angle iron equals the cross-sectional area divided by the distance the

blade has to travel to complete the cut. This is shown in the equation below:

L:E €))

where 4 is the cross-sectional area (in®) and d is the distance the blade has to travel (in)
to complete the cut. The cross-sectional area A for angle iron with equal side lengths can
be calculated using the equation:

A= (2l-t)t (10)
where [ is the length (in) of the side or leg of the angle and ¢ is the thickness (in). From
the BOM in Appendix A the angle iron used had lengths of 1.25 inches and a thickness of
0.125 inches. From equation (10) the cross-sectional area, 4, equals 0.297 in. Next is to
find the distance, d, the blade travels. In order to find this distance, the way the angle iron
is inserted into the vise needs to be known. Reference [23] stated an efficient way to load

the angle iron into the vise. This can be seen in Figure 2.

Figure 2. Angle Iron Loaded In a Vise
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The distance of the cut, d, can be calculated using the Pythagorean Theorem

which is represented in the following equation.

d=+a?+b? (11)
where a and b are the lengths of the angle iron, which equal 1.25 inches. Using equation
11, the distance of the cut, d, equals 1.77 inches. Now that the cross-sectional area and
the distance of the cut have been found the length of cut can now be calculated. Using
equation 9, the length of cut, L, equals 0.168 inches.

After the length of cut was found the tooth specification was determined for the
blade from the tooth selection wheel in [20]. Next is to determine the band speed required
to cut the given material. The angle iron is an ASTM A36 material. From [20], the band
speed required to cut A36 steel is found. However, since the length of cut is not 4 inches
the speed needs to be adjusted for the length of cut of the angle iron. Once the adjusted
band speed is found the cutting rate is estimated from [20]. Now the machining time, T,,,,
can be calculated. The machining parameters and machining time for cutting angle iron
using a band saw can be seen in Table 4. Therefore the machining time equals 0.085

minutes or 5.09 seconds.

i) Square Tube Steel
As with the angle iron, it is assumed that a bi-metal bandsaw blade was used to
cut the material for all cutting calculations. The length of cut for the square tube needs to
be calculated which requires the cross-sectional area and distance of the cut. The cross-
sectional area of square tube steel with equal side lengths was calculated using the
equation:

A=4t(l—-1t) (12)
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where t is the thickness (in) and [ is the length of the sides (in) of the square tube steel.
From the BOM in Appendices A and B, the square tube steel used was a 1” by 1” with a
thickness of 0.12”. Therefore using equation 12 the cross-sectional area, A, of the square
tube steel used equals 0.422 in. The distance of the cut is equal to the width of the square
tube steel which is equal to the length and equals 1 inch. Therefore using equation 9 the
length of cut for the square tube steel equals 0.422 inches.

After the length of cut was found the tooth specification was determined for the
blade from the tooth selection wheel in [20]. Next is to determine the band speed required
to cut the given material. The square tube steel is an ASTM A500 material and according
to [19] is a 1018 carbon steel. From [20], the band speed required to cut 1018 carbon
steel is found. However, since the length of cut is not 4 inches the speed needs to be
adjusted for the length of cut of the square tube steel. Once the adjusted band speed is
found the cutting rate is estimated from [20]. Now the machining time, T,,,, can be
calculated. The machining parameters and machining time for cutting square tube steel
using a band saw can be seen in Table 4. Therefore the machining time equals 0.113

minutes or 6.75 seconds.

B) Experimental Sawing Time

An experiment was done to try and achieve an accurate machining time for
sawing into angle iron and square tube steel using a bandsaw. The same material was
used in the experiment as was used to make the theoretical machining time estimations.
The bandsaw used in this experiment was a Milwaukee 6230N Deep Cut Portable
Bandsaw with Trigger Speed Control and can be seen in Figure 3. By the way it was used

to cut the material, it can be considered a horizontal bandsaw. This saw was used because



it was the saw available to the author in the lab and could have been used during the
manufacture of the rehabilitative gait machine. Coolant was not used for sawing during
the experiment. A total of five trials were done each, for the angle iron and square tube
steel. An average time in seconds was taken for each experiment. These times can be

seen respectively for angle iron and square tube steel in Tables 5 and 6.

Figure 3. Milwaukee 6230N Deep Cut Portable Bandsaw

Table 5. Experimental Sawing Times for Angle Iron

Trial Time (sec) Standard
Deviation (sec)
1 19.29
2 19.82
3 19.36
4 19.76
5 21.68

Average 19.98 0.87

45
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Table 6. Experimental Sawing Times for Tube Steel

Trial Time (sec) Standard
Deviation (sec)

1 10.66
2 10.48
3 10.25
4 8.1

5 8.16

Average 9.53 1.15

As can be seen in Table 5, the average time to cut a single piece of angle iron into
two pieces is 19.98 seconds or 0.333 minutes. Therefore the experimental machining time
for cutting angle iron with a bandsaw is 19.98 + 0.87 seconds.

As can be seen in Table 6, the average time to cut a single piece of square tube
steel into two pieces is 9.53 seconds or 0.159 minutes. Therefore the experimental
machining time for cutting angle iron with a bandsaw is 9.53 + 1.15 seconds.

When comparing the experimental results with the theoretical machining times it
can be seen that the experimental times are slower. The theoretical machining time for
sawing angle iron equals 5.09 seconds and the experimental time equals 19.98 seconds.
These times correspond to an error of 292.5%. The theoretical machining time for sawing
square tube steel equals 6.75 seconds and the experimental time equals 9.53 seconds.
These times correspond to an error of 41.2%. There can be a lot of factors which
correspond to these high errors. First, the author is not an experienced bandsaw operator
and machinist. This inexperience could result in incorrect and varying feed rates. In
addition, since the Milwaukee bandsaw is trigger controlled the band speed is hard to
determine resulting in incorrect band speeds. The trigger speed control ranges from 0 to

420 surface feet per minute. The blade used in the bandsaw was a cobalt XTL high
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performance bi-metal blade with tooth pitch of 14/18 teeth per inch. The blade was not
changed for cutting the angle iron and square tube steel during the experiment. Therefore
the correct blade tooth pitch was not used for sawing the angle iron and square tube steel.
The blade being used in the bandsaw also had some signs of tool wear. Coolant was also
not used during the experiment which resulted in a less effective and efficient operation.
This analysis shows that if all the parameters of the bandsaw operation were set
correctly a faster and more efficient machining time could be achieved. If the experiment
were run by an experienced or professional machinist a more efficient feed rate could
have been set. If a different bandsaw were used, one that allows the operator to accurately
set the band speed, and if coolant was used the sawing operation could have been more
effective. In addition, if the correct blade types for the specific cuts were used and a blade
with minimal to no tool wear were used, this would also have resulted in a more effective

cut.

3.4 Cost Estimation

A cost estimation for manufacturing certain parts is wanted to show how
machining extra parts can increase the total cost to produce a product. To perform cost
estimations of machining different components the equation below was used [13 ch.25]:

CoTy | G
Co= CoTp+ CoTr + + —

v T (13)
where C. is the total cost per unit product. C,is the cost rate, measured in $/min, for the
machine operator and the machine itself. Tj,is the handling time or the time it takes for
the operator to load, position, and unload the part into the machine. For the machining
operations done in this study the handling time will include two times: first is the time to

load and unload the part into the machine and second is the time it takes to position the
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part in place for the operation. This is done to provide a more specific penalty to drilling
and sawing. From [24], a general time for loading and unloading a part into a machine,

both a drill press and a band saw, is 30 seconds or 0.5 minutes. The time it takes to align
a drill bit in place with the point of interest on the part using a drill press is 203 seconds

or 3.38 minutes. The time it takes to align the band saw blade with the mark on the part is

11 seconds or 0.183 minutes. % is the cost of tool change time and S—t is the tooling
p P

cost. These are going to be assumed as zero for this study. This is because the costs
associated with the tool of the machine are dependent on the number of pieces machined
by a specific tool. Since only one rehabilitation device per design was produced the
number of machined pieces is minimal and tool change was assumed to have not
happened. It is also unknown for certain cost estimations how many pieces can be
machined from one tool. Therefore, cost associated with machine tools was viewed as
unimportant for this study. The cost estimate equation becomes:

Cp = C,Tn + C,T, (14)
where C,, is the cost per machining operation.

The cost estimate for the theoretical and experimental drilling and sawing times
can be seen in Table 7. Equation (14) was used to calculate the cost estimates. As
mentioned above, the handling time per cut for drilling is 3.88 min and the handling time
per cut is for sawing is 0.683 minutes. The cost rate is $58/hr. This is the cost rate for the
machine shop at the University of Nebraska-Lincoln College of Engineering. This cost
rate was picked because it is a known realistic cost rate for a machine shop and it is the
machine shop which manufactured parts for the production of both iterations of the

rehabilitative gait machine. The theoretical and experimental machining times were
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provided by Tables 1 through 6. The data in Table 7 shows the cost which is incurred

from just machining the material once for one hole or one cut. It doesn’t provide the total
cost per unit product because tooling factors are ignored.

Table 7. Theoretical and Experimental Cost Estimates

Drilling Sawing
Angle Iron Tube Steel Angle Iron Tube Steel
Theoretical Cost $3.79 $4.50 $0.74 $0.77
Experimental Cost $5.40 $4.73 $0.98 $0.81

3.5 Conclusion

The theoretical and experimental values for drilling and sawing in this study
provide lower and upper bounds on estimates of cost in realistic scenarios. From this
analysis it can be seen that having an inexperienced operator machine parts can greatly
increase the machining time. This increase in machining time results in an increase in
machining cost. However, this experiment does show realistic problems in creating
products in a lab or at-home setting. For this project quick machining, such as cutting
some angle iron to length or drilling holes in material so that they may be joined together,
was done in a lab setting with small-scale machining equipment. The machining was
done by an amateur or inexperienced machinist. Even though we didn’t have to pay
professional machinist shop rates, these quick machining operations can still incur
additional cost. The additional cost can come from buying new tools, such as drill bits
and saw blades, because the correct feeds and speeds were not followed by an
inexperienced operator. Therefore it is important to use the correct machining parameters
because it can reduce the machining time, reduce the tool wear, reduce the machining

cost, and overall make the machining process more effective and efficient.
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In addition, the drilling/sawing experiments could have been improved by doing
more trials to get a better data trend. A statistical analysis could then be made to find the
statistically adequate number of trials that can be done for the experiment. In addition, if
a large number of operators were to run the same experiment, a larger data set could be
achieved. This data set could then be analyzed and a better machining time average can
be found. Moreover, if drill bits and blades that were not used or worn would have been
used during the experiment and if the correct blade types were used for sawing the angle

iron and tube steel, better experimental results could have been found.
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CHAPTER 4 — DFM ANALYSIS

As previously mentioned, the goal of this project is to show how implementing
DFM and DFA into a product design process can reduce the cost and make the process
more efficient. In this chapter the first design of the rehabilitative pediatric gait machine
is evaluated and analyzed through the use of DFM. Even though the rehabilitative
machine has already been produced, the hope of this analysis to prove that if these
techniques were used during the design of the product the design could have been
improved lowering the cost to produce the product. An in-depth analysis is performed on
the rail, foot pedal, and rocker sub-assemblies and the cams to better show how DFM can
improve products. Cost estimations will be calculated for the machining of the rail, foot
pedal, rocker sub-assemblies and the cams to compare differences between the two
designs and to show how the decisions made related to manufacturing method affect the
cost.

Specific guidelines and rules for DFM are listed in the background/literature
review chapter of this paper. These guidelines do not have to be followed religiously but
are a good guide when first designing a product. Following these guidelines helps the
designer to create an efficient design. In this section the device will be analyzed to show

how the designer may or may not have considered DFM while designing the device.
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Table 8. DFM Guidelines Followed

DFM Guidelines: Design 1 | Design 2
Reduce Number of Parts X
Use Standardized

Components X X
Use Common Parts

Across Product Lines X X
Multifunctional Parts

Ease of Fabrication X X
Loose Tolerances X X
Avoid Secondary

Operations X X

Good Use of Processes'
Special Characteristics

From Table 8, it can be seen that overall both designs use commercially
standardized parts that are easy to fabricate or machine. The machine in both designs is
largely built up using 1.25” by 1.25” by 0.125” thick angle iron and 1” by 1” by 0.12”
thick square tube steel. These products are commercially available (for this project from
McMaster-Carr) and were ordered in bulk so as to keep the cost down. In addition, other
materials were used to construct both machines, but angle iron and square tube steel were
a large portion and are a main focus of this analysis. This can be seen in the BOM in
Appendices A and B. The angle iron and square tube steel are low carbon steels which
are made for easy fabrication. This ease of fabrication lowers the cost. For most of the
construction the fabrication or machining operations used for the angle iron and tube steel
included cutting the material to length and drilling holes into it so that different pieces
could be joined together through the use of fasteners. These are quick and easy
machining operations that are relatively cheap. Wood was used to construct the frame of

the machine in both designs. Wood has certain advantages for frame construction because
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wood can be easily machined and joined and is commercially standardized and available.
It is also lighter and cost less than if the frame were constructed out of steel. The angle
iron, square tube steel, and wood components required no secondary operations either.
Loose tolerances were used for both designs because the goal was to design a
rehabilitative gait machine that produced a proper gait path, not the precision of the
product.

The second design reduced the number of parts from design one. This will be
addressed more in the DFA chapter. Since only one machine was built from design one it
was not possible to use common parts across product lines for multiple products.
However, common parts were used between the constructions of both machine designs. If
multiple machines of both designs were produced then there would be common parts
used across product lines. So, for this study it will be considered that both designs used

common parts across product lines.

4.1 Design 1

Multiple parts and sub-assemblies had to be machined for the first design of the
rehabilitation machine. Of these sub-assemblies and parts were the rails, foot pedals,
rockers and cams. These sub-assemblies and cams are essential for an effective and
operable machine. These sub-assemblies and cams, as compared to other parts of the
machine, required a lot of machining before they could be assembled. An analysis was
made to show how machining these sub-assemblies and cams adds cost to the design of a
product, and if these costs were known earlier in the design they might warrant a
redesign. In the following figures are pictures of the rails, foot pedals, rockers and cams

of Design 1.



Foot
Orientation Rail

Figure 5. Design 1 Foot Pedal Sub-Assemblies

Attachment

Bar
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Figure 6. Design 1 Rocker Sub-Assemblies

Cost estimations for the machining of these sub-assemblies and cams was made
using equation (14) from Chapter 3. The cost rate for these cost estimations is $58/hour.
This was the cost rate of the UNL College of Engineering machine shop at the time of the
production of the first rehabilitation machine design. The handling time T, is considered
to be the time it takes for the operator to load, position, and unload the part into the
machine. Drilling and sawing were the primary machining operations used to
manufacture these sub-assemblies. As previously mentioned in Chapter 3, the time to
load and unload a part into a machine is 0.5 minutes, the time to position a drill press is
3.38 minutes, and the time to position a part with the saw blade is 0.168 minutes.
However, if there are two hole locations close enough to each other that the part did not
need to be unloaded and reloaded back into the drill press before the next hole needed to
be located and drilled, the drill is just repositioned to the next hole location. After being
repositioned and drilled then the part is unloaded. This results in a handling time of 0.5

minutes for loading and unloading once and 6.76 minutes for positioning the drill twice.
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Equations (4-12) from Chapter 3 were used to calculate the theoretical drilling and
sawing times. Theoretical machining times are used because they provide a more
desirable and consistent machining time. The theoretical machining times for drilling and

cutting the parts required to construct the rails, foot pedals, and rockers are presented in

Table 9.
Table 9. Theoretical Machining Times for Design 1
Slotted | 5/8 | P3 P4 |Carriage| Attachment
Angle Iron Square Tube Steel  [Angle Iron| Shaft | Bracket| Bracket| Plate Bar
Drilling Time (minutes) | 3/8" - 0.043|5/8" -0.057|3/8" - 0.064|5/8" -0.078 0.181 | 0.162 | 0.242
Sawing Time (minutes) 0.085 0.113 0031 0102 1 097 | 0.662 0.271

The machining times presented in Table 9 are the times to machine one single
part. For the angle iron and square tube steel the time listed is the time to make one cut or
drill one hole at 3/8” or 5/8” diameter. There are multiple holes drilled in the angle iron
and square tube steel at these diameters in order to construct the sub-assemblies. The P3
bracket is a 3.5” by 3.5” steel plate with thickness of 0.5” and a 2” diameter hole drilled
into it. The P4 bracket is a 3.125” by 3.625” steel plate with thickness of 0.5” and a
1.625” hole drilled into it. There are a total of four P3 brackets and eight P4 brackets, two
P3s and four P4s per rail, used in the construction of the two rails on the machine. A
picture showing how the brackets are attached to the rail can be seen in Figure 7. The
carriage plate is a 4.565” by 5.245” steel plate with thickness of 0.25”. Each carriage
plate has a total of 4 holes drilled into it. One hole is 0.625” in diameter and the other
three are 0.315” in diameter. There are a total of four carriage plates, two per foot pedal,
used in the construction of the foot pedals. The attachment bar is a 1” by 3” steel bar with
thickness of 0.25”. There a total of two of them and each one is welded to the carriage

plates and is used to attach the pulley belts to the foot pedal. The carriage plate and
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attachment bar can be seen in Figure 5. The 5/8” shaft is made from 1566 steel [19].
However, in order to use the process outlined in Chapter 3, the cutting speed for the shaft
will be the speed required to cut 1541 steel [20]. According to [25], 1541 steel is

comparable to 1566 steel.

(P4) @)

Figure 7. Angle Iron Frame with P3 and P4 Brackets

The machining times in Table 9 were used to calculate the machining cost
estimations. The following tables show the cost estimations for cutting and drilling
various materials to construct the rails, foot pedals, and rockers. Tables 11-13 show the
cost to machine the material used for the two rail sub-assemblies, the two foot pedal sub-
assemblies, and the two rocker sub-assemblies. Table 14 shows the total material cost to
manufacture the rail, foot pedal, rocker sub-assemblies and the cams for each design and
the percent change between Design 1 and Design 2. The plus sign means there was a
percent increase and the minus means there was a percent reduction. This does not
include the cost of the fasteners required to assemble the sub-assemblies together or to
other parts. All of the material required to manufacture and assemble the rehabilitative

machine for Design 1 and Design 2 can be found in the BOM in Appendices A and B.
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As an example for how these cost estimations were done the machining time and
cost estimation will be shown for drilling one 0.625” hole and three 0.315 hole in a
carriage plate. Table 10 shows the machining parameters used for drilling and cutting the
carriage plates. The steel used for the carriage plates is a low carbon steel which meets
ASTM A108 specifications and has a Rockwell hardness value of B70 [19]. From [26],
Rockwell hardness value of B70 corresponds to a Brinell hardness value of 121. Since
the steel is a low carbon steel it will be assumed that it is 1018 steel with Brinell hardness
of 121. From [20], the cutting speed of a 1018 carbon steel having Brinell hardness
values ranging from 100-125 is 100 feet per minute (fpm) or 1200 in./min. So the cutting
speed, v, for drilling into the carriage plates equals 1200 in./min. This cutting speed is
used to calculate the spindle speed, using equation (7) from Chapter 3, once a bit
diameter is specified.

The drill bits used for cutting the material are assumed to be HSS twist drill bits
with tip angles equaling 118°. Holes with diameters of 0.625” and 0.315” are to be drilled
into the plate which has a thickness of 0.25”. Using the general rule stated in [21], the
feed for 0.625” drill bit is 0.01 in./rev and the feed for 0.3125” (which is close to 5/167)
is 0.005 in./rev. These feeds and the corresponding spindle speeds are then used to
calculate the feed rate using equation (6) from Chapter 3. After using equation (5), from
Chapter 3, to find the approach distance the machining time can be calculated using
equation (4) from Chapter 3. These machining parameters and the machining time to
make one cut can be seen in Table 10.

Using equation (14) in Chapter 3, the estimated cost to drill one 0.625” hole and

three 0.315 hole in a carriage plate is calculated. As mentioned earlier, the cost rate is
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$58/hr. For the one 0.625” hole the handling time is 3.88-min (0.5-min for

loading/unloading and 3.38-min for positioning) and the machining time is 0.072-min.

After converting the cost rate to minutes, the cost to machine one 0.625 hole in a

carriage plate is $3.82. Since the three 0.315” holes are close enough to each other that

the plate does not need to be unloaded from the drill press for each hole, the handling

time equals 10.64-min (0.5-min for loading/unloading and three times 3.38-min or 10.14-

min for position for all three holes). The machining time is 0.171-min (the time to

machine one hole, 0.057-min, times 3). The cost to machine these three holes is $10.45.

Therefore, the drilling cost for one carriage plate is $14.27. In addition, the drilling cost

for all four carriage plates is $57.08, which can be seen in Table 12.

Table 10. Parameters for Machining Carriage Plates

Drilling Sawing
0.625” | 0.315” | 4.565” | 5.245”
Cutting Speed (in/min) | 1200 | 1200 | 0.25 0.25 Length of Cut (in)
Spindle Speed 611 1213 | 10/14 | 10/14 | Variable-pitch Blade
(rev/min)
Feed Rate (in/min) 6.11 6.07 300 300 Band Speed (fpm)
Approach Distance (in) | 0.188 | 0.095 | +15% | + 15% | Percent Adjustment
345 345 Adjusted Band Speed
(fpm)
1.14 1.31 Cross-sectional Area
(in%)
3.7 3.7 Cutting Rate (in°/min)
Machining Time (min) | 0.072 | 0.057 | 0.308 | 0.354




Table 11. Total Machining Cost for Design 1 Rail Sub-Assemblies

Cost to Cut | Cost to Drill | Sub-Total

Angle Iron $11.84 $170.57 $182.41
Tube Steel $21.56 $238.32 $259.88
Slotted $5.52 $5.52
Angle Iron

Shafts $3.04 $3.04
P3 Bracket $9.12 $15.72 $24.84
P4 Bracket $18.08 $31.28 $49.36
Total $525.05

Table 12. Total Machining Cost for Design 1 Foot Pedal Sub-Assemblies

Cost to Cut | Cost to Drill | Sub-Total
Tube Steel $7.70 $117.36 $125.06
Carriage $7.84 $57.08 $64.92
Plates
Shafts $1.52 $1.52
Attachment $3.18 $3.18
Bar
Total $194.68

Table 13. Total Machining Cost for Design 1 Rocker Sub-Assemblies

Cost to Cut | Cost to Drill | Sub-Total
Angle Iron $2.96 $64.38 $67.34
Square $6.16 $64.78 $70.94
Tube Steel
Total $138.28
Table 14. Material Cost of Sub-Assemblies and Total
Design 1 | Design 2 | Percent Change
Rail $427.89 | $660.00 +54.2%
Foot Pedal | $164.85 | $566.44 +243.6%
Rocker $45.54 $45.54 0%
Cams $805.64 | $85.46 -89.4%
Total $1443.92 | $1357.44 -5.99%
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4.1.1 Rail

The rail subassemblies for the first design are constructed mostly of angle iron
and square tube steel. The angle iron and square tube steel are built into a frame which
acts as a rail for the foot pedals. As mentioned before, the angle iron and steel tube used
are commercially standardized and available. They are relatively easy to machine. Since
they were used in abundance they could be ordered in bulk to save money. From
McMaster-Carr, the angle iron and square tube steel can be ordered in lengths of 6 feet
(72-inches). To construct one rail frame, four 72-inch long pieces and eight 9.9375-inch
long pieces of angle iron were needed. This meant that eight cuts each at 9.9375-inches
need to be machined. In addition, twenty 3/8” holes and four 5/8” holes per rail were
drilled into the angle iron.

Twelve 6-inch pieces of square tube steel were used in the construction of one
rail. Therefore, twelve cuts each at 6 inches need to be machined per rail. Two cuts at 60
inches long of square tube steel are used to build the foot orientation rail, which can be
seen in Figure 4. In addition, twenty-six 3/8” holes and six 5/8” holes per rail were drilled
into the square tube steel.

In addition to machining multiple cuts of angle iron and square tube steel, other
material had to be machined in ordered to completely manufacture the rails. As
mentioned earlier, there are two P3 brackets and four P4 brackets per rail that were
machined. A 5/8” diameter shaft was cut into two 6 inch rods per rail which were used to
help assemble the rail. Zinc plated slotted angle iron was cut into four 9.9375 inch pieces
per rail which were used as a guide for the foot orientation rail. The cost of machining the

two rail sub-assemblies can be seen in Table 11 and the material cost can be seen in
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Table 14. The estimated total cost to manufacture the rail sub-assemblies of Design 1 is

$952.94.

4.1.2 Foot Pedal

Similar to the rail sub-assemblies, the foot-pedal sub-assemblies were also
constructed primarily out of square tube steel. The components which make up the foot
pedal can be seen in Figure 5. A single foot pedal is composed of five 12-inch pieces of
square tube steel and two carriage plates. In addition to cutting the tube steel to length,
ten 3/8” holes and six 5/8” holes per foot pedal had to be drilled into the square tube
steel. The outside carriage plate also has an attachment bar welded to it so that the pulley
belts can attach to the foot pedal. A 5/8” shaft is used to join the carriage plates and
square tube steel. Each pedal also includes six 54-mm diameter skateboard wheels and a
5” rigid thermoplasticized rubber caster. The cost of machining the two foot pedal sub-
assemblies can be seen in Table 12 and the material cost can be seen in Table 14. The

estimated total cost to manufacture the foot pedal sub-assemblies of Design 1 is $359.53.

4.1.3 Rocker

The rocker sub-assemblies were constructed of angle iron and square tube steel
joined together by fasteners. The rocker sub-assemblies can be seen in Figure 6. Two 3-
foot pieces of angle iron and four 4-inch pieces of square tube steel per rocker were
machined to produce the rocker. In addition to cutting the material to length, nine 3/8”
holes had to be drilled into the angle iron and eight 3/8” holes and one 5/8” hole had to be
drilled into the square tube steel per rocker. The cost of machining the two rocker sub-
assemblies can be seen in Table 13 and the material cost can be seen in Table 14. The

estimated total cost to manufacture the rocker sub-assemblies of Design 1 is $183.82.
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4.1.4 Cams

There are eight cams machined for Design 1. A cam can be seen in Figure 5. The
cams were machined out of four 18" by 18" by 0.5" thick A36 steel plates. The steel
plates are commercially available as they were ordered from McMaster-Carr [19]. The
material cost of the cams can be seen in Table 14. However, they were not easy to
fabricate. The cams had to be machined (by University of Nebraska-Lincoln College of
Engineering Machine Shop) specifically to a certain shape. The machining time for one
cam is about 3 hours. This includes the handling time and machining time. Using
equation (13) from Chapter 3, the total cost per cam equals $174. This was calculated by
using the University of Nebraska-Lincoln College of Engineering Machine Shop rate
which was $58/hour. Since eight cams were manufactured for this design, the total cost to
machine all the cams equals $1392. Adding the material cost to the total machining cost

gives a total cost of $2197.64.

4.2 Design 2

The second design of the rehabilitative gait machine was redesigned to create a
better and more effective machine. Similar to Design 1, a lot of parts and sub-assemblies
for the rehabilitative gait machine had to be machined for the construction of the
machine. However, through the use of DFM concepts the rail, foot pedal, and rocker sub-
assemblies were redesigned. In addition, because of these redesigns the cams were also
redesigned. These redesigns of the rail, foot pedal, and rocker sub-assemblies and the

cams can be seen in the following figures.
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Foot Pedal

Figure 8. Design 2 Rail and Foot Pedal Sub-Assemblies

- . ¥
i -

Figure 9. Design 2 Foot Pedal Sub-Assembly (Close-Up)




Rockers

Figure 11. Cam in Design 2
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Cost estimations for the machining of these sub-assemblies and cams was made

using equation (14) from Chapter 3. As mentioned earlier, the cost rate for these cost

estimations is $58/hour. The handling time T}, is considered to be the time it takes for the

operator to load, position, and unload the part into the machine. Drilling and sawing were

the primary machining operations used to manufacture these sub-assemblies. The same

time to load and unload a part into a machine and the time to position a drill press and to

position a part with the saw blade used for Design 1 will be used for Design 2. Equations

(4-12) from Chapter 3 were used to calculate the theoretical drilling and sawing times.

Theoretical machining times are used because they provide a more desirable and

consistent machining time. The theoretical machining times for drilling and cutting the

parts required to construct the rails, foot pedals, and rockers are presented in Table 15.

Table 15. Theoretical Machining Times for Design 2

5/ "
Anglelron | Square Tube Steel 1" by 1.5" Aluminum | 2" by 1.5" Aluminum | Shaft|Hinge
Drilling Time (minutes) |3/8" - 0.043]3/8" - 0.064|5/8" -0.078|8 mm - 0.066|0.5" -0.047|8mm - 0.066|0.5" -0.088 0.037
Sawing Time (minutes) 0.085] 0.113 0.107 0.214 0.102

The machining times presented in Table 15 are the times to machine one single

part. For the angle iron and square tube steel, the time listed is the time to make one cut

or drill one hole at 3/8” or 5/8” diameter. Multiple holes at these diameters were drilled in

order to manufacture the rocker sub-assemblies. The 5/8” shaft is made from 1566 steel

[19]. However, in order to use the process outlined in Chapter 3, the cutting speed for the

shaft will be the speed required to cut 1541 steel [20]. According to [25], 1541 steel is

comparable to 1566 steel. The hinge is assumed to be made of 1018 steel with Brinell

hardness of 100-125 so that the process outlined in Chapter 3 for drilling can be followed.




67

McMaster-Carr, the distributor of the hinge, did not provide information for what type of

steel the hinge was made of.

4.2.1 Rail

It can easily be noticed that the rail in design 1 is made primarily of angle iron
and square tube steel throughout. Using the DFM guideline of reducing parts, the angle
iron and square tube steel parts in the first design do not meet all the criteria for a part to
be separate. All the angle iron parts are made from the same low carbon ASTM A36 steel
and all the square tube steel parts are made from the same low carbon ASTM A5Q00 steel.
There is no reason why the angle iron and square tube steel parts need to be a different
material. Therefore all these parts can theoretically be combined. This inspired the
redesign of the rails into the rails which are now being used for design 2. The rails for the
second design can be seen in Figure 8. The rail, which is a commercially available
component, is made of anodized aluminum and is 74 mm wide and 1500 mm long. The
cost of one rail is $330.00. Therefore the total material cost of the rails in design 2 is

$660.00 [19]. This can be seen in Table 14.

4.2.2 Foot Pedal

The foot pedals needed to be redesigned because of the redesign of the rails. The
new rails, which are special standardized parts, can only be used with matching carriages.
The carriages are made of anodized aluminum and use sleeve bearings to handle
conditions, such as dirt, water, impact and vibration. Each carriage also includes four
mounting holes 38-mm deep with an M8 thread size and thread pitch of 1.25-mm. Four
total carriages were used, two for each foot pedal. Each carriage cost $113.08 and

therefore the carriages used for the foot pedals cost $452.32 [19]. This carriage cost is
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included in the material cost seen in Table 14 for the foot pedal of Design 2. The other
materials included in the cost in Table 14 are aluminum blocks, hinges, and a foot rest
which were used to construct the foot pedals. Two 6-inch long by 1.5” by 2” aluminum
blocks had to be cut from a 1-foot long stock. Two 8-mm diameter holes and one 0.5-inch
diameter hole had to be drilled into each block. Four 6” long by 1.5” by 1”” aluminum
blocks had to be cut from a 2-foot long stock. Two 8-mm diameter holes and one 0.5-inch
diameter hole had to be drilled into each block. Two hinges, one for each foot pedal, each
had four 3/8” holes drilled into them. The cost to machine the aluminum blocks and the
hinges can be seen in Table 16. The table shows the total cost for all the machining done
on the six aluminum blocks and the two hinges. Therefore, the estimated total cost to
manufacture the foot pedal sub-assemblies in Design 2 is $665.35. The foot pedals can be
seen in Figures 8 and 9.

Table 16. Total Machining Cost for Design 2 Foot Pedal Sub-Assemblies

Cost to Cut | Cost to Drill | Sub-Total
1" Aluminum $3.04 $43.80 $46.84
Block
2" Aluminum $1.74 $21.97 $23.71
Block
Hinge $28.36 $28.36
Total $98.91
4.2.3 Rocker

The same rockers used in Design 1 were used in Design 2. However, because of
the redesign some additional machining was done to the rockers. Holes were drilled into
the angle iron so that the rehabilitative gait machine could be adjustable for different
stride lengths. Twenty 3/8” diameter holes were drilled into one angle iron side of each

rocker. The cost to machine the angle iron and square tube steel for the Design 2 rockers
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can be seen in Table 17 and the material cost can be seen in Table 14. Therefore, the
estimated total cost to manufacture the rocker sub-assemblies in Design 2 is $199.52. The
rockers can be seen in Figure 10.

Table 17. Total Machining Cost for Design 2 Rocker Sub-Assemblies

Cost to Cut | Cost to Drill | Sub-Total
Angle Iron $2.96 $80.08 $83.04
Square $6.16 $64.78 $70.94
Tube Steel
Total $153.98
4.2.4 Cams

The cams for Design 1 were redesigned to decrease the number of cams being
manufactured for the machine. After redesigning, the number of cams was decreased to
two. This greatly reduced the cost of manufacturing Design 2. Two Cams were machined
out of an 8” by 12” by 0.5 thick A36 steel plate. This plate was commercially available
from McMaster-Carr [19]. The material cost for the cams can be seen in Table 14.
However, they were not easy to fabricate. The cams had to be machined (by University of
Nebraska-Lincoln College of Engineering Machine Shop) specifically to a certain shape.
The machining time for one cam is about 3 hours. This includes the handling time and
machining time. Using equation 13 the total cost per cam equals $174. This was
calculated by using the University of Nebraska-Lincoln College of Engineering Machine
Shop rate which was $58/hour. Since two cams were manufactured for this design the
total cost to machine all the cams equals $348. Adding the material cost to the total
machining cost gives a total cost of $433.46. Figure 11 shows one of the cams used in

Design 2.
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4.3 Discussion

The data presented in this chapter help to show how using DFM techniques early
in the design process can help reduce cost and eliminate the need for redesign. This is
being done by analyzing the cost to manufacture two different designs of a rehabilitative
gait machine. The second design is a redesign of the first. The three main sub-assemblies
and the cams of both machines were analyzed and are compared to show that if DFM was
used during the design stage of Design 1 then the redesign or Design 2 would have been
done during this stage and money wouldn’t have been spent to construct Design 1. The
cost to manufacture the rail, foot pedal, and rocker sub-assemblies, cams, and their sum
for both designs can be seen in Table 19. The redesign of Design 1 resulted in a 47%
reduction in manufacturing cost. This proves that the DFM techniques could have
reduced the cost if they were used effectively during the design stage of the first design.
As can be seen in Table 19, there was a reduction in cost to manufacture the rails and the
cams and there was an increase in cost to manufacture the foot pedals and rockers. Even
though there was not a reduction in cost for all the sub-assemblies, the reductions made
were significant enough to reduce the total cost. Notably, the redesign of the cams
reduced the cost significantly. The cams had the highest reduction in both material and
machining cost which resulted in the highest reduction in overall manufacturing cost.

The increases in cost can be greatly attributed to the redesign of specific parts.
Redesigning the rail caused an increase in the foot pedal cost because only specific
carriages can be used with the rails. The penalty of cost primarily comes from the
specifically designed carriages. In addition, aluminum was machined so that a foot pedal

could be built upon the carriages. Therefore, the foot pedals were not made of only angle
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iron and square tube steel which was cheap to buy in bulk. However, the number of parts
was reduced for the foot pedals which reduced machining time and cost. Two carriages
per foot pedal were also used to make the machine adjustable for different stride lengths.
The rocker sub-assembly was also more expensive to manufacture for the second design.
However, as mentioned earlier, this is because additional machining had to be done in
order to make the machine adjustable for different stride lengths.

For this study, reducing the number of parts had the most influence in reducing
cost. Decreasing the number of parts not only decreases the amount of material in a sub-
assembly but it also decreases the amount of machining done for that sub-assembly,
thereby, reducing the machining cost. This can be seen in Table 18. The reduction in
machining cost from Design 1 to Design 2 for these sub-assemblies and cams is 73.3%.
The reduction in material cost for these sub-assemblies and cams is 5.99%. Even though
there was a 54.2% increase for the material cost of the rails there was significant
reduction of 100% in machining cost. This led to a 30.7% reduction in overall
manufacturing cost of the rails. This shows that reducing the machining that needs to be
done on a product, regardless of what operation or material, plays a significant role in
cost reduction. For this study, machining played more of an importance in cost reduction
than the material used. This shows that when designing a product it is important to pay
attention to how much machining has to be done in order to produce a product. This
study also shows that there is more room for improvements in machining than the raw
material to reduce cost. This is the purpose of DFM. DFM helps a designer to evaluate
and analyze the design so that any additional penalties from having too many parts to

machine and complex machining can be avoided. It gives the designer an effective way to
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find the minimal amount of machining that needs to be done to their product in order to
manufacture and assemble it. This can be best seen between the rails and cams of both
designs.

Table 18. Machining Cost of Sub-Assemblies and Total

Design 1 | Design 2 | Percent Change
Rail $525.05 -100%
Foot Pedal | $194.68 | $98.91 -49.2%
Rocker $138.28 | $153.98 +11.4%
Cam $1392 $348 -75%
Total $2250.01 | $600.89 -73.3%

Table 19. Manufacturing Cost of Sub-Assemblies and Total

Design 1 | Design 2 | Percent Change
Rail $952.94 | $660.00 -30.7%
Foot Pedal | $359.53 | $665.35 +85.1%
Rocker $183.82 | $199.52 +8.5%
Cam $2,197.64 | $433.46 -80.3%
Total $3693.93 | $1,958.33 -47%

For these main sub-assemblies and the cams, the redesign using DFM guidelines
proved to be effective in reducing the cost to manufacture. This shows that if the DFM
guidelines would have been used early on in the design process the machine could have
been manufactured more efficiently and effectively. The redesign also helped reduce the

bulkiness of the first design and made it more ergonomic.



73
CHAPTER 5 — DFA ANALYSIS

As previously mentioned, the goal of this study is to show how implementing
DFM and DFA into the design of a rehabilitative gait machine can reduce the cost and
make the process more efficient. In this chapter the first and second design of a
rehabilitative pediatric gait machine is evaluated and analyzed through the use of DFA.
DFA is a technique or set of guidelines that helps a product to be assembled efficiently.
DFA guidelines are presented and outlined in Chapter 2. A DFA table is used to perform
an analysis of the DFA guidelines and presents penalties for how a part is assembled into
the product in response to violations of those guidelines [10]. An assembly index and
assembly times for various operations are the penalties presented in a DFA table. The
assembly index represents the penalties associated with how the part is retrieved, handled
and inserted. The higher the assembly index the more difficult it is to assemble that part.
Therefore, the assembly index represents the difficulty to assembly a part and is a way to
measure that difficulty. The times for the different assembly operations in the DFA tables
are provided in [24]. These are estimated times for similar assembly operations used in
the construction of the machine, as opposed to the exact times to do the specific
operations used to assemble the machine. The primary goal of DFA is to reduce assembly
cost and improve product quality, and it has been found that reduction of parts is one
important aspect of this. This is shown in the DFA tables. These DFA tables were
produced for both designs of the machine and can be seen in Appendices C and D.
However, in this chapter an in-depth analysis will be performed on the rail, foot pedal
and rocker sub-assemblies to show how DFA can improve a product and make its

assembly more efficient.
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5.1 Design 1

The first design of the rehabilitative machine has multiple parts and sub-
assemblies which were assembled to produce the final product. Of these sub-assemblies,
the most essential for an effective and operable machine are the rail, foot pedal, and
rocker sub-assemblies. Multiple parts are used to construct each of these sub-assemblies.
An analysis is performed on each sub-assembly to show how the assembly of multiple
different parts can carry various penalties and add cost through assembly time. The goal
is to reduce these penalties and time to reduce cost and to make the product more
effective and to make the process more efficient. Tables 20 through 23 show the

assembly order and penalties of each sub-assembly.

5.1.1 Rail

As mentioned before, the rails of Design 1 are constructed mostly of angle iron
and square tube steel. The rail sub-assemblies of Design lalso include two small sub-
assemblies as parts to fully construct the rail sub-assembly. These two small sub-
assemblies are frames made of angle iron. In this study the focus is on how these angle
iron and square tube steel parts are assembled together to create a rail. Therefore, any
fastening method is examined in this analysis and different forms of fastening carry
different penalties with them. In addition, how the part and fastener are retrieved,
handled, and inserted carries different penalties. Table 20 shows the analysis of how all
the parts in one rail are assembled. It also shows how all the parts to assemble the angle
iron frame, which is a part in the rail assembly, are assembled. The DFA table in Table

20 shows the number of parts in the assembly, the theoretical number of parts, the
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assembly index, the time to assemble each part, and the total assembly time. The table

helps a designer to evaluate the product using DFA guidelines.
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Table 20. DFA Table for Design 1 Rail Sub-Assembly (frame assembly included)
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As can be seen in Table 20 for one angle iron frame, the assembly index is 56, the
total number of parts is 9 and the estimated total time for assembly is 402 seconds or
0.112 hours. The goal is to minimize the assembly index and parts count to decrease the
difficulty and assembly time. After performing a parts analysis, the theoretical number of
parts for this single frame is 2.

From Table 20 for one rail assembly, the total number of parts is 74, the assembly
index is 378, and the estimated assembly time is 570 seconds or 0.16 hours. Using
equation (1) from Chapter 2, the improvement potential for one Design 1 rail is 78.4%.
The design of the rails in Design 1 is considered poor and is in desperate need of redesign
because the improvement potential is greater than 60% [12]. The design efficiency, which
is based on the time of assembly, can also be calculated using equation (3) from Chapter
2. The design efficiency for the rails is 8.42%. A cost estimation for the assembly of the
rail can also be calculated, using equation (15), to help illustrate how the assembly can
affect the total cost of a product.

Co = Cotima (15)
where C, is the cost of assembly, C, is the cost rate, and t,,, is the estimated total
assembly time for the product. For this study the cost rate for assembly will be the hourly
minimum wage for Nebraska. The hourly minimum wage for Nebraska is $9.00 per hour
[27]. Using equation (15), the cost of assembly for one Design 1 rail is $1.44. The cost
for assembling the angle iron frames should also be included in the total cost of the rail
assembly. Using equation (15), the estimated cost to assemble the two angle iron frames,

which are included in one rail assembly, is $2.01. Therefore, the estimated total cost to
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assemble one rail assembly is $3.45. The estimated total cost to assemble two rails is
$6.90.

Since the foot orientation rail was included in the DFM analysis of the rail sub-
assembly it will also be included in the DFA analysis. The foot orientation rail is a
separate assembled part but is considered as part of the entire rail sub-assembly. The
assembly index is 436, the total number of parts is 72, and the estimated total time for
assembly is 540 seconds or 0.15 hours. This can be seen in Table 21. After performing a
parts analysis, the theoretical number of parts for a single foot orientation rail is 7. Using
equation (1), the improvement potential for one foot orientation rail is 90.3%. Similar to
the rail, the design of the foot orientation rails is considered poor and is in desperate need
of redesign because the improvement potential is greater than 60% [12]. Using equation
(3), the design efficiency for the foot orientation rails is 3.89%. Using equation (15) to
calculate a cost estimation for assembly, with a cost rate of $9.00 per hour, the estimated
cost of assembly for one foot orientation rail is $1.35.

There is one rail and one foot orientation rail per sub-assembly. So the estimated
cost to assemble one rail sub-assembly is $4.80. The total estimated cost for assembling

two rail sub-assemblies is $9.60.
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Table 21. DFA Table for Design 1 Foot Orientation Rail Assembly
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5.1.2 Foot Pedal

Similar to the rails of the first design, the foot pedal sub-assembly is constructed
of mostly square tube steel. Other parts that are used to construct one foot pedal are two
carriage plates, six wheels, and one caster. However, for this DFA study only four wheels
will be assembled to the foot pedal. The other two wheels are assembled after the foot
pedal is assembled to the rail of the machine. The parts are assembled using bolts and
nuts. Table 22 is a DFA table analysis of the assembly of one foot pedal and can be seen
below. From this table, the total number of parts is 28, the assembly index is 132, and the
estimated total assembly time is 223 seconds or 0.062 hours. After performing a parts
analysis, the theoretical number of parts for a foot pedal is 13. Using equation (1), the
improvement potential for a foot pedal is 53.6%. The foot pedal design is considered fair
because the improvement potential is between 40-60% [12]. Using equation (3), the
design efficiency of the foot pedal is 17.5%. Using equation (15) with a cost rate of
$9.00, the estimated time to assemble one foot pedal sub-assembly is $0.56. The
estimated total cost of assembly for two foot pedal sub-assemblies is $1.12.

5.1.3 Rocker

The rocker sub-assemblies are constructed of angle iron and square tube steel.
The angle iron and square tube steel parts are assembled using bolts and nuts. Table 23 is
a DFA table of one rocker sub-assembly. Table 23 shows the total number of parts in a
rocker sub-assembly is 14, the assembly index is 78 and the estimated total assembly
time is 83 seconds or 0.023 hours. After a parts analysis of the sub-assembly, the
theoretical number of parts was found to be 1. Using equation (1), the improvement

potential for a rocker sub-assembly is 92.9%. The design of the rocker is considered poor
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and is in desperate need of a redesign because the improvement potential is greater than
60% [12]. Using equation (3), the design efficiency of a rocker is 3.6%. Using equation
(15) with a cost rate of $9.00 per hour, the estimated time to assemble one rocker sub-

assembly is $0.21. The estimated cost to assemble two rocker sub-assemblies is $0.42.
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Table 22. DFA Table for Design 1 Foot Pedal Sub-Assembly
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Table 23. DFA Table for the Rocker Sub-Assembly
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5.2 Design 2

The second design of the rehabilitative gait machine was redesigned to create a
better and more effective machine. Even though it was redesigned, different parts and
sub-assemblies still had to be assembled to create the final product. Through the use of
DFA concepts the rail, foot pedal, and rocker sub-assemblies were redesigned. These
redesigns are then evaluated using DFA concepts to compare the improvements with the

first design.

5.2.1 Rail

After evaluating the rail design from Design 1, the rail was redesigned to be only
one part. The rail is manufactured from anodized aluminum and is 74 mm wide and 1500
mm long [19]. The largest factor in being able to have a rail as one part is by performing
a parts analysis on the first rail. As explained in Chapter 4, there is no need for the rail to
be constructed of multiple pieces of angle iron and square tube steel. All the angle iron
parts can be combined and all the square tube parts can be combined. In addition, the
material can be all of one type. There was no DFA table made for the rail of Design 2
because the rail is one single part. However, the improvement between the two designs
can be calculated. Using equation (2) from Chapter 2, the actual improvement from

Design 1 to Design 2 is 98.9%.

5.2.2 Foot Pedal

As previously mentioned, the foot pedals had to be redesigned because of the rail
redesign. In addition, from the analysis made of Design 1, it was concluded that there is
53.6% improvement potential for redesign. However, the foot pedal for Design 2 was not

a direct redesign of the foot pedal from Design 1 because the foot pedals had to be
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redesigned with specific parts because of the new rails. The new rails can only be used
with matching carriages. Each foot pedal used two of these carriages and other parts to
build the foot pedal. An analysis of the foot pedal design for Design 2 can be seen in the
DFA table in Table 24. From Table 24, the number of parts in the foot pedal sub-
assembly is 21, the assembly index is 151, and the estimated time to assemble the sub-
assembly is 147 seconds or 0.041 hours. The theoretical number of parts was found after
performing a parts analysis to be 8. Using equation (1) from Chapter 2, the improvement
potential for the Design 2 foot pedal sub-assembly is 61.9%. The design of the foot
pedals from Design 2 are considered poor and are in desperate need of redesign [12].
Using equation (3) from Chapter 2, the design efficiency of the design is 16.3%. Using
equation (15) with a cost rate of $9.00, the estimated cost to assemble one foot pedal sub-
assembly is $0.37. The estimated total cost to assemble the foot pedal sub-assemblies is
$0.74. Now that a DFA analysis has been made for each foot pedal design, the two
designs can be compared. Using equation (2), the actual improvement from Design 1 to
Design 2 is 25%.

5.2.3 Rocker

The same rocker sub-assembly from Design 1 was used in the production of the
Design 2 rehabilitative gait machine. The rocker for Design 2 was slightly redesigned
because it had to have some additional machining done so that the machine could be
adjustable. This was addressed in Chapter 4. There are no assembly differences between
the two rocker sub-assembly designs. Therefore, there was 0% actual improvement made

to the rocker sub-assembly.
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Table 24. DFA Table of Design 2 Foot Pedal Sub-Assembly

noyum ajqissodul Ajquiasse(sip)
[euarew uasayip

N :uononpal sued uonow aniejal J1 pannbal ped 1unod sued pue xapul A|quasse aziwiuiw :[eo9)
A4 8 161 TC 1ejol
[44 0T 0T 1 9T 4 V1 14 T Salijeusd Jo NNS
e 1 0 9T 4 T Z 4 [ T NN
0T S 0 8T 4 € Z 4 4 jog
€ € T 8 T Z Z 4 Z d1e|d [epad 1004
6T 6T 0 S T € 4 Je|j00
0T 0T T 8T T € 4 4 Z (iInu papjam) poy papealyL
0¢ 0T 0 8T [ € 4 Z 4 ljog
€ € T 14 T 4 4 3009 WNUILWN|Y YOIyl ul T
€ € T 4 T 4 abeLue) 1004
9 € 0 8T 4 € Z 4 Z M3I2S/1109
€ € T v T 4 [ abuIH
0z o1 0 8T 4 € 14 4 Z Jjog
€ € T 4 T 4 >00]g WNUILWN|Y YOIyl ut g
0z 0T 0 8T 4 € 4 [ 4 jog
€ € T 4 T 4 3009 WNUIWN|Y YOIyl ul
T T abele) 1004
(€+) mands|  (2+) (c+) (e+) (e+) (¢+) (¢+)  feapy(t+) (2+) (e+) (e+) (¢+) wwg>
(T+) 1smL ()] (T+) wwet>
NALSYH [ dH Ss3d arN 40 v papasu [ wwAhs | wwAs | alqixald pajbuey Irews
S|00} | Uasul ON | pus ON
10 AnesH
2oe|d Ul ploy = dIH
9ouelsIsal = SIY umop doy Jou = AIN
pajoniisgo = 940 JNoyp Juswubife = v
sainxiq
Jad swiL mEEmw@q pauINbay xopul sued # Hasu| s|pueH TN ued
; ued Alquassy ;
|ejoL 0} dWIL




87

5.3 Discussion

The data presented in this chapter helps to show how using DFA techniques or
guidelines early in the design process can help reduce cost and eliminate the need for
redesign. This was done by analyzing DFA tables of the rail, foot pedal, and rocker sub-
assemblies for both designs. The DFA tables present information about how a part was
retrieved, handled, and inserted into an assembly. The DFA tables show the total number
of parts, the assembly index, the theoretical number of parts, and the estimated assembly

time of each assembly. Tables 25 and 26 show a summary of the data from the DFA

tables.
Table 25. Design 1 DFA Table Data
Number | Assembly | Theoretical | Improvement | Assembly | Total
of parts Index Number of Potential Time Cost
Parts

Rail: 74 378 16 78.40% 570 $2.88
-Frame 9 56 2 804 $4.02
-Orientation 72 436 7 540 $2.70
Rail

Foot Pedal 28 132 13 53.60% 223 $1.12
Rocker 14 78 1 92.90% 83 $0.42
Total 1080 $11.14

Table 26. Design 2 DFA Table Data
Number | Assembly | Theoretical Actual Assembly | Total
of parts Index Number of | Improvement Time Cost
Parts

Rail 1 0 98.90% 0 $0
Foot Pedal 21 151 8 25% 147 $0.74
Rocker 14 78 1 0% 83 $0.42
Total 229 $1.16

The total cost in the right hand column of Tables 25 and 26 is the cost to assemble

all the specific sub-assemblies. For example, for one Design 1 machine there are two rail
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sub-assemblies which includes four frames and two orientation rails. The cost in Table 25
shows the cost to assemble the two rail sub-assemblies, the four frames and the two
orientation rails. The assembly time is given in seconds. The other data in Tables 25 and
26 is just for one sub-assembly. Therefore, the total assembly index for all the sub-
assemblies in Design 1 is 2160 and the total assembly index for all the sub-assemblies in
Design 2 is 458.

Comparing Tables 25 and 26, one can see that there is a significant improvement
in the rail design. Since the rail is only one part it doesn’t take any time to assemble it and
therefore there is no cost due to assembly incurred. There is also no assembly index
because the rail did not have to assembled, therefore no difficulty in assembling. There
was also good improvement seen in the foot pedal design. There was a 7-part decrease in
the amount of parts which resulted in an improvement of 25%. There was also a 14.4%
increase in the assembly index but a 34.1% decrease in the assembly time. This means
that the foot pedal sub-assembly for Design 2 was harder to assemble but the operations
were quicker. The reason why the first design is easier to assemble but has a larger
assembly time probably corresponds to the welding that was done for the attachment bar
on the carriage plate. Welding takes longer than a usual nut and bolt assembly but the nut
and bolt assembly requires holes to be drilled into the parts so that they may be joined.
There are no improvements for the rocker sub-assembly because the same rocker
assembly was used in both designs.

As can be seen, there is an 89.6% cost reduction for the assembly of these three

main sub-assemblies. This helps to prove that if DFA guidelines were used during the
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design stage of the product, a reduction in cost can be made. The assembly process can
also be improved and be easier and more efficient.

An important fact to note is that the times given for assembly are more of an
average overall of the assembly operation, which includes retrieving, handling, and
inserting. However, time is primarily based on the insertion method. The times for
assembling a part or fastener do not take into account the specifics of the assembly. It
should also be noted that there was not a time for assembly for all operations included in
the assembly of these sub-assemblies. Therefore, for unknown assembly operation times,
a time of 3 seconds was considered appropriate. As stated in Chapter 2, 3 seconds is the
average time for a basic assembly (handling and insertion) for a part. For these reasons
these assembly times are only estimates and cannot be used as an exact time. For future
research it could be advantageous to quantify the assembly times into specific retrieving,
handling, and inserting operations for more exact time estimations.

In addition to looking at the design from an assembly time stand point, the
assembly index can also provide interesting insights. The assembly index does take into
account the specifics of the retrieving, handling, and insertion. The DFA tables in Tables
20-24 also show a sum of specific penalties associated with assembling a part. As can be
seen in Table 20, the highest reoccurring penalty in the rail assembly of Design 1 is a
handling penalty of a part being heavy or needing tools to install. The sum of penalties
for the penalty of heavy or tools needed is 16. This fact of having to lift heavy parts or
using tools to assemble attributes to the difficulty of assembly. However, the highest

amount of penalties came from the insertion of the parts. Insertion had a total sum of
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penalties of 36. This means that most of the time and difficulty can be attributed to
insertion.

As can be seen in Table 22, the most reoccurring penalty in the foot pedal
assembly of Design 1 is the alignment for insertion. Insertion of all the parts also had the
highest sum of penalties of 60. This means that most of the time and difficulty can be
attributed to insertion. As can be seen in Table 23, the rockers’ most reoccurring
individual penalty was also alignment for insertion. Insertion of all the parts also had the
highest sum of penalties of 30. This means that most of the time and difficulty can be
attributed to insertion as well.

The rail assembly for Design 2 has no penalties from assembly because it was not
assembled. As can be seen in Table 24, the most reoccurring penalty in the foot pedal
assembly of Design 2 is fastening for insertion. This means that the use of fasteners
attributed the most difficulty and time in assembling the foot pedal. Insertion of all the
parts also has the highest sum of penalties of 54. This also means that most of the time
and difficulty can be attributed to insertion. The rocker in Design 2 is the same as Design
1 and therefore has the same penalty distribution.

The fact that insertion played the largest role in the assembly index for the
assembly of the sub-assemblies presented helps defend the time estimate. The time for
assembly given in the tables is mostly dependent on insertion. This is sufficient for this
estimate because the insertion of parts in the sub-assemblies had the largest sum of
penalties which means insertion can be attributed for affecting the assembly time the
most. Therefore, if the designer can make the insertion of parts easier for assembly he can

decrease the difficulty and assembly time, which will help lower cost. This is especially
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true for fasteners, because they carry an extra insertion penalty with them. It can also be
noticed in Table 20-24 that the fasteners (nut and bolt) have the largest assembly time
associated with them. The designer can make the insertion of parts or fasteners easier for
assembly to decrease difficulty and assembly time by incorporating DFA techniques in

the design process.
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A pediatric rehabilitative gait machine that can be adjustable was designed and

built by Stolle [3]. The machine was built with the goal of creating a cost effective

rehabilitation machine that could be affordable for use by hospitals, small clinics and in-

home patient use. Two design iterations of the rehabilitation machine were built. The first

design or Design 1 was initially designed and built, but after it was determined that the

machine was not functional and needed improvements, a second design or Design 2 was

made. In this study a DFM/DFA analysis was made of both design iterations. The goal

was to show the potential advantages of using DFM/DFA during the design process of a

product’s life cycle. This was shown through the comparison of the DFM/DFA analysis

of Design 1 and Design 2. Tables 27 and 28 show the manufacturing and assembly data

for all the main sub-assemblies in the machine and the data for the whole machine itself.

Table 27. Design 1 Data Summary

Machining | Material | Manufacturing | Assembly | Assembly
Cost Cost Cost Cost Index
Rail $525.05 $427.89 $952.94 $9.60 1740
Foot Pedal $194.68 $164.85 $359.53 $1.12 264
Rocker $138.28 $45.54 $183.82 $0.42 156
Cams $1,392.00 | $805.64 $2,197.64 $0.00 0
Sub-Assembly Total | $2,250.01 | $1,443.92 $3,693.93 $11.14 2160
Machine $2,250.01 | $4,606.03 $6,856.04 $19.35 2360
Table 28. Design 2 Data Summary
Machining | Material | Manufacturing | Assembly | Assembly
Cost Cost Cost Cost Index
Rail $0.00 $660.00 $660.00 $0.00 0
Foot Pedal $98.91 $566.44 $665.35 $0.74 302
Rocker $153.98 $45.54 $199.52 $0.42 156
Cams $348.00 $85.46 $433.46 $0.00 0
Sub-Assembly Total | $600.89 $1,357.44 $1,958.33 $1.16 458
Machine $600.89 $3,515.90 $4,116.79 $5.76 1282
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6.1 Design 1

In Chapters 4 and 5 a DFM and DFA analysis was made on the main sub-
assemblies of Design 1. These sub-assemblies include the rails, foot pedals, and rockers
of the machine. The cams were also analyzed using DFM. A cost estimation was made
for both manufacturing and assembly to illustrate the advantages of incorporating
DFM/DFA into a design process. This shows how DFM/DFA can make the design more
cost effective. It was determined that the total cost estimate to machine these sub-
assemblies and cams is $2,250.01 and this can be seen in Table 27. It was also
determined that the estimated total manufacturing cost, which for this study is the
machining and material cost, for these sub-assemblies and cams is $3,693.93 and can be
seen in Table 27.

After a DFA analysis was performed on Design 1 it was determined that the
estimated total assembly cost for these sub-assemblies is $11.14 and this can be seen in
Table 27. The assembly cost estimations were primarily based on the time for insertion.
The total assembly index, which is a measurement of the difficulty to assemble, for these
sub-assemblies is 2160.

6.1.1 DFM/DFA Analysis of the Entire Machine

Performing the same DFM/DFA analysis used in Chapters 4 and 5, an analysis is
made on the whole Design 1 gait rehabilitation machine. The machining cost estimate for
this analysis is going to be the total machining cost estimate made for the sub-assemblies
and cams. There was additional minimal machining done for the machine other than the
sub-assemblies and cams. Therefore, the machining cost estimate for the sub-assemblies

and cams is a sufficient estimate for the machine as a whole. The material cost for the
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Design 1 gait rehabilitative machine can be found in the BOM of Design 1 in Appendix

A. The total material cost, which includes the raw material and ordered parts (excluding
fasteners), is $4,606.03. Therefore the estimated total manufacturing cost is $6,856.04.

After performing a DFA analysis, through the use of a DFA table, it was found
that the estimated time to assemble the whole machine is 4,445 seconds or 1.23 hours and
this can be seen in the DFA table in Appendix C. Adding the time to assemble the sub-
assemblies (except for the rail because it is included in the DFA table) the estimated total
assembly time is 7,745 seconds or 2.15 hours. The estimated total cost of assembly, using
the Nebraska minimum wage as a cost rate of $9.00 [27], can be calculated using
equation (15). The estimated total cost of assembly is $19.35 and can be seen in Table 27.
The assembly index is 2,360 and can be seen in the DFA table for Design 1 in Appendix
C and Table 27. This is the assembly index to assemble all parts and sub-assemblies
together to create the final product.

The total number of parts, given in the DFA table, for Design 1 is 427. After
performing a parts analysis, the theoretical number of parts is 185 parts. Using equation
(1) from Chapter 2, the improvement potential for Design 1 is 56.7%. Design 1 is
considered fair because the improvement potential is between 40-60% [12]. The Design 1

gait rehabilitation machine can be seen in Figure 12.
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Figure 12. Design 1 Gait Rehabilitation Machine

6.2 Design 2

In Chapters 4 and 5 a DFM/DFA analysis was made of the main sub-assemblies
of Design 2. The sub-assemblies included the rails, foot pedals, and rockers of the
machine. The cams were also analyzed through DFM. Cost estimations were made to
illustrate the advantages of using DFM/DFA. It was determined that the estimated total
cost to machine these sub-assemblies for Design 2 is $600.89 and this can be seen in
Table 28. This shows that the redesign of these sub-assemblies resulted in a 73.3%
decrease in machining cost. This is primarily influenced by the redesign of the rail sub-
assembly and the cams. Redesigning the machine from Design 1 resulted in a reduction
of cams which reduced the manufacturing cost of cams by 80.3% and this can be seen in
Table 28. The rails of Design 2 are purchased pre-manufactured anodized aluminum rails.
They required no additional machining. These rails required special carriages to be used

with them. Because of this the machining cost of the foot pedals decreased by 49.2% but
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the material cost of the foot pedals increased by 243.6%. However, because the
machining cost was so high for Design 1, there was still a 47% decrease in the estimated
total manufacturing cost for these sub-assemblies, which was $1,958.33 for Design 2 and
this can be seen in Table 28.

After a DFA analysis was performed on Design 2 it was determined that the
estimated total assembly cost of these sub-assemblies is $1.16 and this can be seen in
Table 28. The redesign of these sub-assemblies resulted in an 89.6% cost reduction for
assembly. This cost reduction can be attributed to the 98.9% design improvement to the
rail sub-assemblies and a 25% design improvement of the foot-pedal sub-assemblies. The
total assembly index for assembling these sub-assemblies is 458. This results in a 78.8%
reduction in assembly index or difficulty to assemble. These improvements in assembly
can also be attributed to the redesign of the rails because the rails for Design 2 did not

need to be assembled.

6.2.1 DFM/DFA Analysis of the Entire Machine

Performing the same DFM/DFA analysis from Chapters 4 and 5, an analysis was
made for the whole Design 2 gait rehabilitation machine. The machining cost estimate for
this analysis is going to be the total machining cost estimate made for the sub-assemblies
and cams. There was additional minimal machining done for the machine other than the
sub-assemblies and cams. Therefore, the machining cost estimate for the sub-assemblies
and cams is a sufficient estimate for the machine as a whole. The material cost for the
rehabilitative machine can be seen in the BOM for Design 2 in Appendix B. The total
material cost, which is the raw material and ordered parts (excluding fasteners), is

$3,515.90. This corresponds to an overall 23.7% reduction in material cost. The
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manufacturing cost for the Design 2 machine is $4,116.79. This corresponds to an overall
40% reduction in manufacturing cost from the first design.

After performing a DFA analysis of Design 2, using a DFA table, the estimated
assembly time to assemble the whole machine is 1,831 seconds or 0.51 hours. This can be
seen in the Design 2 DFA table in Appendix D. To obtain the total assembly time for the
machine, the foot pedal and rocker sub-assemblies’ assembly times need to be added. The
estimated total assembly time for the Design 2 gait rehabilitation machine is 2,291
seconds or 0.64 hours. The estimated total cost of assembly can be calculated using
equation (15) with a cost rate of $9.00. Therefore, the estimated total cost of assembly for
Design 2 is $5.76. This corresponds to a 70.2% reduction in assembly cost. The assembly
index for Design 2 is 1,282. This corresponds to a 45.7% decrease in difficulty of
assembly.

The total number of parts, from the Design 2 DFA table, of Design 2 is 218.
Knowing the number of parts from Design 1 and using equation (2) from Chapter 2, the
actual improvement can be found to be 48.9%. The Design 2 gait rehabilitation machine

can be seen in Figure 13.
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Figure 13. Design 2 Gait Rehabilitation Machine

6.3 Conclusion

Throughout this study two iterations of a gait rehabilitation machine were
compared using DFM and DFA principles. The data presented throughout this study
show that using DFM and DFA during the design process can help a designer to analyze
their design and make their product more cost efficient and effective. Even though the
DFM and DFA techniques were applied to the designs after the two machines were built,
these techniques show cost estimations for manufacturing and assembly and show where
improvements can be made. If the original designer would have incorporated DFM and
DFA into the design of the machine initially, he could have noticed where improvements
needed to be made in the design before the machine was built. If DFM and DFA would
have been incorporated into Design 1, then the redesign or Design 2 may not have been
necessary. If only Design 2 were manufactured and assembled the designer would have
saved a total of $6,875.39 for manufacturing and assembling Design 1. This total savings

is based on a machining cost rate of $58 per hour and an assembly cost rate of $9 per
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hour. The machining cost rate is an established rate by a professional machine shop and
includes employees’ salaries and benefits, tooling cost, and overhead cost. Therefore, the
machining cost presented in this study represents a realistic cost. The assembly cost rate
is simply just an employees’ hourly minimum wage. It does not include any benefits, or
overhead cost. Therefore, the assembly cost presented in this study represents the lower
bounds of what the cost of assembly could be.

If overhead, benefits, etc. were included in the cost rate for assembly, the cost rate
would be higher and therefore the cost for assembly would change significantly. If it is
assumed that the assembly cost rate for a product assembly factory is similar to the
established machining cost rate of $58/hour for the UNL machine shop then the assembly
cost for this study would be 6 times as much. This would greatly increase the assembly
cost and total cost to create the two gait rehabilitation machine iterations and could
provide a more realistic cost estimation.

When DFM disagrees with DFA or vice versa in the design of a part or product, it
is up to the designer which problem outweighs the other. The easiest way is to look at the
cost to assemble and the cost to manufacture the part, compare them, and then choose the
cheapest option. However, in addition to the cost, the designer needs to look at how these
decisions affect the parts around it and whether or not it makes the neighboring parts
more expensive to manufacture or assemble. The designer has to choose the best option
for the design of the product as a whole.

The goal of this project was to show how applying DFM and DFA into the design
process of a product can make the process more efficient and reduce the overall cost of

the product. In addition, the project also aims to provide data that can be used to design a
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third iteration gait rehabilitation machine. This was done through the comparison of
DFM/DFA analysis of the gait rehabilitative device iterations.

There is a fair amount of uncertainty in comparing DFM and DFA analysis and
cost estimations of the two design iterations. Elements of uncertainty (limitations of this
study) include:

- The theoretical machining times don’t take into account the material strength of
the machine itself, the vibration of the machine, tolerances, and the damages from
heat produced by the interaction of the cutter with the material.

- The machining cost estimates for the two gait rehabilitation machines only takes
into account the machining cost to produce the rail, foot pedal, rocker sub-
assemblies and the cams.

- The assembly cost rate is not a fully realistic cost rate. It doesn’t take into account
overhead and benefits.

- The times for assembling parts into the product assembly are estimations based on
a similar task. They are not the exact times for the given operation.

- For non-relatable assembly operations an assembly time of 3 seconds (an
accepted average) was used.

- The cost of fasteners was not included in the material cost.

6.4 Future Work

Future work can still be done with this study. A new design of the gait
rehabilitative machine can be made based on the results of the DFM and DFA analysis of
Design 2. This new design can then be analyzed during the design stage, using DFM and

DFA, to find the most efficient and effective design possible. A cost analysis can then be
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made to compare with Design 2 to illustrate the improvements that were made to the
design.

After performing a DFM and DFA analysis on Design 2, it can be seen that the
foot pedal and rocker sub-assemblies could use a further redesign. As can be seen in
Table 26 in Chapter 5, a rocker can be redesigned to be one part and a foot pedal can be
redesigned to be 8 parts. This parts reduction can result in a reduction of additional
machining that needs to be done to create these sub-assemblies. In addition, a new design
which doesn’t use cams could greatly reduce the manufacturing cost. This is because the
cams require complex machining, which can be expensive, and a large amount of
material for just two parts. The improvement potential of Design 2 is 58.7% which means
that the design is fair.

This study can also be used to show the impact using DFM and DFA can make in
product design. Through the use of these methods a designer can discover the problem
areas in the design and can exploit them and find efficient alternatives. A designer can
save time and money by limiting the amount of additional machining that needs to be
done and by finding the most efficient way to assemble the parts in the product.

Material accounts for most of the manufacturing cost for a product. For Design 1
it accounts for 67.2% and for Design 2 85.4%. Therefore, a designer needs to find the
most efficient way to use this material. The designer should find a skilled professional
machinist to machine the material if needed. An inexperienced machinist can add
unwanted time and money by using incorrect feeds and speeds and other specific
machining parameters. In addition, as can be seen in Chapter 5 and the DFA tables in

Appendices C and D, assembly time is heavily influenced by how a part is inserted into
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an assembly or how two parts are joined. It is important for the designer to use these
methods to find alternative ways to assemble parts which limit the difficulty of inserting.
This will help save time and money and make the assembly easier. This thesis presents a
designer with a method and reason for applying DFM and DFA principles. This thesis
shows that if a designer knows and consciously uses these principles during the design of
a product then he can obtain a cost efficient and effective product with a minor need for

redesign.
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APPENDIX A -DESIGN 1 BILL OF MATERIALS

List of Ordered Parts

Part Mumber:
£B31K14

8735K11
61125K69
B3B4KTE

6412K15
£384K45
6435K15
93830A150
G436K18
6435K18
6435K15

B384KE4

63B4KTE

£384K45
5909K11
5909K71
35374K12
22099K35

6325K79

6384K45

63B4K76

6384KTS

6384KE4

B3B4K76

14587K161
6435K16

Part Description:
11/4"0.D., 3/8" bore track follower
1/8" by 1/2" by 12" long rectangular

Teflon strip
5-lobe threaded knob
5/8" steel bearing
5/8" inner bore one-piece shaft coupler
with set screws
3/8" steel bearing
5/8" baore one-piece collar
Oversized 3/16" by 3/16" keystock
1" diameter bore, 2-piece clamping
1" diameter bore, 1-piece clamping
5/8" diameter bore, 1-piece clamping
1" diameter bore, 2" 0.0, double sealed
bearing
5/8" diameter bore, 1 3/8" 0.0, double
sealed bearing
3/8" diameter bore, 1 1/8" outer
diameter, double-sealed bearing
10-mm bore thrust bearing cage
10-mm bore thrust bearing washers
21/4" 0.0, 2-piece machinable bore
35-tooth ANSI-40 sprocket
12-pitch, 1.25" pitch diameter steel
plain-bore spur gear
3/8" steel bearing
5/8" steel bearing
3/4" shaft diameter, 1 5/8" 0.0, double-
sealed bearing
1" shaft diameter, 2" 0.D., double-
sealed bearing
0.625" diameter, 1.375" 0.D. double-
sealed bearing
0.75" diameter fully keyed shaft
0.75" diameter single-piece collars

Biller:
McMaster

McMaster
MchMaster
McMaster

McMaster
McMaster
McMaster
McMaster
McMaster
McMaster
McMaster

MchMaster

McMaster

McMaster
McMaster
McMaster
McMaster
McMaster

McMaster
McMaster
McMaster
McMaster
McMaster
McMaster

McMaster
MchMaster

Unit Cost:
523.17

57.29
53.17
511.82

512.20
510.18
52.06
50.83
55.44
5274
52.06

518.63

511.82

510.18
53.70
51.23

513.83

52041

527.03
510.18
511.82
515.37
518.63
511.82

521.20
52.43
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(== - s R =
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Total Cost:
5185.36

57.29
512.68
511.82

524.40
520.38
532.86
53.72
55.44
516.44
516.48

537.26
58456

540.76
529.60
519.68
52778
5582

527.03
561.14
511.82
512286
57452
54728

S84 80
538.88



List of

Ordered Parts Continued...

FPart Number: FPart Description:
E436K18 1" diameter single-piece collars
100 mm lang, 40 -tooth S0 timing belt
B=L40 pulley stock,
100 mm lang, 30-tooth HL timing belt
B=L30 pulley stock,
100 mm lang, 24 -tooth B0 timing belt
B=L24 pulley stock,
MTFPE41-LOG0-A-  40-tooth, 503" bore steel KL timing belt
FUG pulley
12" wide, 1244 mm lonng, single sided
TEM430-L050 closed end, rubber sL timing belt
2" wide, 1600.2 mm long, single sided
TEME3I0XLOG0 closed end, rubber sL timing belt

W2 wide, 1518 tooth, TTI0 mm lang,

zingle sided closed end, rubber =L
TEOG-+L050-1515 timing beelt

Shepherd 5" Gray Rigid TP Caster
Shepherd 2" Rigid Rubber Caster

Each setincludes 4 -B4mm diameter
skateboard wheels and 8 ABEC-3

53mm Black set of 4 skateboard wheels

and & ABEC-T bearings
E235k143 12-pitch, 304" wide, B' long steel gear
12-pitch, 1.25" pitch diameter steel plain-
E325ETA biare spur gear
1" Bore, 2" 0.0, double- sealed stesl ball
B34 54 biearing
808" bore, 1308" 0.0, double-sealed
E334ETE steel ball be aring
1" 0.0, cold-drawn steel tube, 0.25" wall
F9955K3M thickness - 3 ft lang
1346K29 58" Dia Orive Shaft - B long
BaselFace-Mount OC Mataor, 90% OC,
E216K TS MEMA BEC, 314 hp, 518" shaft dia
AC o OC Mator Speed Contral,
Fra3Eh] Monreversing, Indoor Enclosure
FRaller Chain, AMS] Mumber 40, 112"
E2EIKIT3 Fitch - & ft long
Bf3" bore, 3-tooth hardened-tooth
ZE00TH finished sprocket

Galvanized Steel Eyebolt with Mut and
Shoulder, 51613 Thread Size, 3-104"

J018T24 Shank Length
Steel Extension Spring, 5.0" Length,
SEE4RIZE A007 00, 072" wire - pkgof &
Rigid Aluminum Tubing, 58" 00O, 495"
SETEKIT IO, 065" wall Thickness - & ftlong

Girip Fast 308" 10: 1332 00:1-12" Zine-
Flated Fender W ashers [B Pieces]

Biller:
Mlchaster

Mlizumi
Mlizumi
Mlizumi
Mlizumi
Mlizumi
Mlizumi
Misumi
MMenards
Mlenards
Ebay
Ebay -
Oiownhillstor
Mlchaster
Mlchaster
Mlchaster

Mlchaster

M aster
Mlcilaster

Mlcilaster
Mlcilaster
Mlcilaster

Mlcilaster

M aster
M aster
M aster

MMenards

Unit Coxst:
F2.74

F42.23
4114
3690
F25.30
1010
1330
$122.00
753
$1.75
$10.99

$10.00
$74.95

Favnz
FI2E2
182

$50.05
$49.58

F702.E9
F2av.os
F36.32

F14.46

5.3
11.30
$19.94

$0.54

Gty
g

1

1

1

1

Total

Total Cost:
+10.95

14223
4104
£73.E0
£A0.60
£20.20
£33.90
#182.00
$15.98
$14.00
$32.97

£20.00
$74.95

15408
$r4a2
$47.28

$50.05
$49.52

FrE2ED
F28v.08
F36.32

F14.48

$I0.E2
1.0
$19.94
$396

$3.144 45
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List of Raw Material

Machine Component:

1- Frame (x2)

Foot Pedal (x2)

Rocker (x2)

Rack (x2)

Total Angle Iron

Total Square Tube Steel
Coupler (x2)

Crank (x2)

Total 1/2" x 2" steel plate
Carriage Plates:

Center Brackets (P3)
Center Brackets (P4)
Total Steel for Brackets
Pinion Plates

Cams
Wood

Foot Orientation Rail Guide

Part Number:

9017K474
6527K364

8910K949

8910K12

8910K21

8910K21

8910K12
1388K375

Description (material):

4-72" angle Iron (Top and Bottom L-track)
8-915/16" angle Iron (For side supports of
Frame)

12 - 6" Square tube Steel (End spacer/stopper
of L-track - top/bottom)

2 - 60" Square tube steel (middle/inside track
of frame)

5- 12" square tube steel (Bolted together to
make a pedal)

2 - 3'angle Iron (To build rocker)
4 - 4" square tube steel (Top/bottom end
spacer/stopper)

1-11/2'square tube steel (To connect gear
rack to rocker)

1/8"by 11/4" by 11/4" - 6' long
1"by 1"- 6ftlong
1-16"long, 1/2" by 2" steel plate
1-10"long, 1/2" by 2" steel plate
1/2" by 2" steel by 6' long
1/4" by 6" by 2' long steel plate
31/2" by 31/2" by 1/2" steel plate - machined
(2 per frame)
31/8" by 35/8" by 1/2" steel plate - machined
(4 per frame)
4" by 1/2" by 3' long steel plate
4" by 1/2" by 1' long steel plate
111/4" by 51/2" by 1/4" steel plate -
machined (1 per gear pinion)
6" by 1/4" - 2' long steel plate
18" by 18" by 1/2" thick A36 steel plate
2" by 6" by 8" wood stud
Plated Slotted Steel Angle 1-1/4" x 1-1/4" x 8
ft. - 18 Gauge

Total Material Cost:

Biller:

McMaster
McMaster

McMaster
McMaster

McMaster
McMaster

McMaster
McMaster
Menards

Menards

Cost:

$15.16
$24.14

$54.69
$47.92

$59.50
$25.65

$47.92
$201.41
$3.29

$16.90

Qty:

16

24

10

13

= P NN

e

R L

1
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Total Cost:

$197.08
$193.12

$54.69
$47.92

$59.50
$25.65

$47.92

$805.64
$13.16
$16.90

$1,461.58



APPENDIX B — DESIGN 2 BILL OF MATERIALS

List of Ordered Parts

Part Number:

6109K62

6109K61

89955K801
5913K64
6412K16
2299K35
7820-53R
7820-53L
93410A112
94815A107
8920K26
57445K24
7208K53
7208K54

91290A460
16175A48
59935K83
6436K16

282075

2500741
94563A571
6280K189
6831K14
5909K11
5909K71
6435K18
6435K15
6435K16
2299K35
1497K161
98830A150
1346K25

6215K75

7793K51
6261K173
1497K141
6236K36
6261K173

Part Description:
74mm wide guide rail for sleeve-bearing carriage -
1500mm long

Extra-wide sleeve-bearing carriage for 74mm wide guide

rail
1" O.D. cold-drawn steel tube, 0.25" wall thickness - 3 ft
long
1" bore diameter stamped-steel mounted ball bearing
Black Oxide Steel 0.75" Shaft Coupling
35-tooth ANSI-40 machinable sprocket
Plastic Foot Pedal
Plastic Foot Pedal
0.5" - 10x 24" long ACME Fully Threaded Rod
0.5" - 10 ACME Hex Nut
8mm diameter steel rod - 1 ft long
8mm |.D. Black Oxide Steel Collar
0.625" diameter steel-flange mounted ball bearing
0.75" diameter steel-flange mounted ball bearing
M8 x 1.25 Metric Black Oxide Steel Socket Head Cap
Screws (pack of 25)
6" by 5" surface mount hinge without holes
M8 x 1.25 Metric Ball Joint Rod End
3/4", 2-piece clamping collar
3/8" bore High-Load Dry-Running Sleeve Mounted
Bearing
1/2" or 5/8" bore, 9-tooth hardened-tooth finished
sprocket
3/8" hitch pin with reusable cotter pin
5/8" bore, 9-tooth sprocket, ANSI - 40
11/4" 0.D., 3/8" bore track follower (Cam Follower)
10-mm bore thrust bearing cage assembly
10-mm bore thrust bearing washers
1" diameter bore, 1-piece clamping collar
5/8" diameter bore, 1-piece clamping collar
0.75" diameter single-piece collars
35-tooth ANSI-40 machinable sprocket
0.75" diameter fully keyed shaft-12" long
Oversized 3/16" by 3/16" keystock
5/8" Dia Drive Shaft - 2ft long
Base/Face-Mount DC Motor, 90V DC, NEMA 56C, 3/4 hp,
5/8" shaft dia
AC to DC Motor Speed Control, Nonreversing, Indoor
Enclosure
Roller Chain, ANSI Number 40, 1/2" Pitch - 8 ft long
5/8 diameter fully keyed shaft - 12" long
45-tooth ANSI-40, 5/8 dia Sprocket
Roller Chain, ANSI Number 40, 1/2" Pitch - 3 ft long

Biller:

McMaster-Carr

McMaster-Carr

McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
Sears
Sears
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr

McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr

McMaster-Carr

McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr

McMaster-Carr

McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr

Unit Cost ($):

$330.00
$113.08

$50.05
$12.69
$13.78
$29.41
$17.99
$17.99
$21.83
$2.60
$3.06
$4.24
$26.65
$35.52

$8.71
$14.42
$6.71
$5.59

$12.47

$14.46
$5.65
$11.88
$23.17
$3.70
$1.23
$2.74
$2.06
$2.43
$29.14
$21.20
$0.93
$19.26

$752.69

$287.08
$36.32
$19.67
$61.58
$13.62

Qty:

2
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Total Cost ($):

$660.00
$452.32

$50.05
$50.76
$13.78
$29.41
$17.99
$17.99
$21.83
$5.20
$6.12
$25.44
$213.20
$71.04

$8.71
$28.84
$26.84
$11.18

$24.94

$14.46
$11.30
$23.76
$46.34
$29.60
$19.68
$10.96
$8.24
$9.72
$29.14
$42.40
$1.86
$19.26

$752.69

$287.08
$36.32
$19.67
$61.58
$27.24

$3,186.94
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List of Raw Material

Machine Component: Part Number: Description (material): Biller: Cost: Qty: Total Cost:
Longitudal Power
Transmission Bar 1" x 1" x 0.120" wall thickness Steel Tube - 6 ft long 2
Rocker(x2) 2 - 3" angle Iron (To build rocker) 4
4 - 4" square tube steel (Top/bottom end spacer/stopper) 8
Total Angle Iron 9017K474 1/8"by 11/4" by 11/4"-6'long McMaster $15.16 2 $30.32
Total Square Tube Steel 6527K364 1" by 1" - 6 ft long McMaster $24.14 2 $48.28
6527K364 1" by 1" - 3 ft long McMaster $14.48 1 $14.48
Coupler(x2) 1-16" long, 1/2" by 2" steel plate 2 $2.00
Crank(x2) 1-10"long, 1/2" by 2" steel plate 2 $2.00
Total 1/2" x 2" steel plate 8910K949 1/2" by 2" steel - 6' long McMaster $54.69 1 $54.69

Metal To Build Up Foot Pedal:

8975K432 5" wide by 0.25" thick by 6" long Aluminum 6061 plate McMaster  $6.11 3 $18.33
8975K253 1.5" tall by 2" wide aluminum 6061 block- 1 ft long McMaster $25.25 1 $25.25
8975K52 1" tall by 1.5" wide aluminum 6061 block - 2 ftlong ~ McMaster $24.05 1 $24.05
Used in connection of power
transmission bar to rocker 8975K237 1" x 2" Aluminum bar - 1/2 ft long McMaster $10.94 1 $10.94
Cams 1388K371 8" by 12" by 1/2" thick A36 steel plate McMaster $85.46 1 $85.46
Wood 2" by 6" by 8" wood stud Menards $3.29 4 $13.16

Total Material Cost: $328.96
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