University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Dissertations & Theses in Earth and Earth and Atmospheric Sciences, Department
Atmospheric Sciences of
7-2020

Characterizing peridotite xenoliths from southern Vietnam: insight
into the underlying lithospheric mantle

Kirby Hobbs
University of Nebraska - Lincoln, kirhobb@gmail.com

Follow this and additional works at: https://digitalcommons.unl.edu/geoscidiss

b Part of the Geochemistry Commons, and the Geology Commons

Hobbs, Kirby, "Characterizing peridotite xenoliths from southern Vietnam: insight into the underlying
lithospheric mantle" (2020). Dissertations & Theses in Earth and Atmospheric Sciences. 129.
https://digitalcommons.unl.edu/geoscidiss/129

This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in
Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska -
Lincoln.


https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/geoscidiss
https://digitalcommons.unl.edu/geoscidiss
https://digitalcommons.unl.edu/geosciences
https://digitalcommons.unl.edu/geosciences
https://digitalcommons.unl.edu/geoscidiss?utm_source=digitalcommons.unl.edu%2Fgeoscidiss%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/157?utm_source=digitalcommons.unl.edu%2Fgeoscidiss%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=digitalcommons.unl.edu%2Fgeoscidiss%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/geoscidiss/129?utm_source=digitalcommons.unl.edu%2Fgeoscidiss%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages

CHARACTERIZING PERIDOTITE XENOLITHS FROM

SOUTHERN VIETNAM: INSIGHT INTO THE UNDERLYING

LITHOSPHERIC MANTLE

by

Kirby P. Hobbs

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Earth and Atmospheric Sciences

Under the Supervision of Professor Lynne J. Elkins

Lincoln, Nebraska
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Extrusion tectonics has been invoked to explain the extensive basaltic
magmatism that has erupted over Indochina within the last 17 Ma. The basalts
display two-stage eruptive cycles consisting of tholeiites followed by alkaline
basalts. Lithospheric mantle xenoliths recently sampled from the alkaline basalts of
two volcanic centers, Pleiku and Xuan Loc, primarily consist of fertile spinel
lherzolites, and Xuan Loc also contains refractory spinel harzburgites. We measured
major elements in xenolith mineral separates, trace elements in clinopyroxenes and
orthopyroxenes, and Pb-Sr-Nd isotopic compositions in clinopyroxenes to
determine the origin and history of the subcontinental lithospheric mantle (SCLM)
beneath Vietnam. Most peridotites from Pleiku and Xuan Loc exhibit fertile major
element compositions, “depleted” and “spoon-shaped” rare earth element (REE)
patterns, and isotopic signatures ranging from typical depleted MORB mantle to an
even more depleted source (87Sr/86Sr = 0.702381 - 0.703365 and eng = +8.84 -
+30.28). A smaller group of peridotites from Xuan Loc show distinct refractory
major element compositions, “enriched” REE patterns, and more incompatible-

element enriched isotopic signatures (87Sr/86Sr = 0.704050 and eng = +3.16 in one



sample) than the fertile peridotites. Based on their major and trace element
compositions, Pleiku and Xuan Loc xenoliths have calculated equilibrium
temperatures of 807-1052 °C which indicate extraction depths of 30 to 45 km. We
interpret the fertile peridotites from Pleiku and Xuan Loc to sample recently
emplaced lithospheric mantle from the convecting asthenosphere, whereas the
refractory peridotites from Xuan Loc may represent partial melting residues derived
from older SCLM. We conclude that the extrusion of Indochina initiated regional
asthenospheric upwelling, resulting in the partial removal and replacement of the

lithospheric mantle.



Acknowledgements

The completion of my thesis would not have been possible without the
support and guidance of my advisor Dr. Lynne Elkins. During my undergraduate, Dr.
Elkins inspired my interest in geochemistry and provided me ample opportunity
and encouragement to grow and develop as an inspiring researcher. She brought me
into the extrusion tectonics project, during which, [ worked with amazing group of
scientists and was able to develop both my field and laboratory skills. She always
made time for her students, no matter how busy she was, and was patient and

understanding when [ needed help or had questions.

[ am also thankful my committee members for providing me with direction
with my thesis. Dr. Caroline Burberry was always available to provide insight into
the tectonic implications of my research. Dr. Richard Kettler helped sharpen my
skills as a geochemist and taught me the importance of explaining my ideas in a

clear but concise manner.

[ would also like to thank our collaborators Dr. John Lassiter and Dr. Nguyen
Hoang. Dr. Lassiter provided me with valuable input throughout my master’s degree
from sample processing to data interpretation. He also graciously hosted me at UT
Austin when doing the geochemical analysis of my samples. I also appreciate the
assistance from Dr. Aaron Satkoski, Dr. Staci Loewy, Dr. Nathaniel Miller, and Dr.

Omero Orlandini in getting my samples through geochemical analyses during my



visit. | would like to thank Dr. Hoang for hosting us in Vietnam when doing field

work and collecting samples.

This research was funded by the National Science Foundation in the form of

grant EAR-1758972.

[ am thankful for the insight and assistance from the UNITE lab research
group students: Yitong Lv, Nick Richard, and Juliet Messer. Finally, I would like to
thank my family for their encouragement throughout my academic studies. I
couldn’t have done this without the love and support of my fiancée, KyRae. She has
endured many late nights and frustrations and always manages to brighten up my

day while taking care of me.



Table of Contents

1. INErOAUCHION et —————— 1
R 5 7 Lol £ €2 o011 1 o L 4
2.1 GEOlOGIC BACKGTOUNG.....coueeereeeeeereeereseerseriseerasessssssssessssesssssassesssssssssssssssassssssssssssssssssassssssssassesas 4
2.2 Tracking magmatic procesSeS iN the SCLM........eeeeeeeeeeererrseriseerseeesssrissesassessssassesassenns 8
3. Analytical Methods........corinninni s —————— 10
3.1 Electron MiCroPrODE ANALYSIS .......cweereeerereseereseesserissessssessssssssessssssssssssssssssssssssssesssssssssssssssanss 10
3.2 In-Situ trace elemMeNt ANALYSIS ........oceweeererseerseersserissesssesssessssessssssssssssssassessssssssessssssasssssssanss 11
3.3 S7-Nd-PD iSOtOPE JEOCHCMISLTY ....cooeeeeeeereeerererrserissesissesssssssesssssssssssssssassssssssssssssssssssssssssanss 12
4. RESUILS .. 14
G 1 POLIOIOGY ovueverereeerarersseriseesassesssesassessssssssssassesassesssssssssssssssssssssssssssesssssssssssssssassssssssasssssnsssnsssssssassssas 14
4.2 MOJOT CLOIMIEIIELS ....eeoverererereeeerseriseesaseesssssassesassessssssssesssssssssssssssassesssssssssssssssasssssssssssssssssssssssssassesas 15
I e ol (11 T3 L N 18
4.4 ST-INU-PD ISOTOPES ....conevereerereresserissessssessssassesassesssssssssssssssssssssssssssessssssssssssssssssssssssassessssssssssssssassesas 25
4.5 Thermometry ANA DATOMELTY ......eeeeeeereeeeseressesiseissssissesassesssssssssasssssssssssssassessssssssssssssassesns 30
ST D R0 T ) 33
5.1 History of magmatic processes beneath INAOCRING.............ccoceorccronecrinsserossirsonsisissserens 33
5.1.1 EXtent of PATrtiQl MEIEING ......ceeeeeeeeeeeerseeeseriseeriseessseissesassesssssssssssssssasssssssssssssassssssssssess 34
5.1.2 Metasomatism of the SCLM beneath Vietnam..........ceeoneroseeenserssesnsessseaneens 40

5.2 Thermal state of the SCLM and equilibration depths of Vietnam xenoliths........... 45
5.4 Implications fOr eXtrUSION LECEOMICS ....ccuerreeererereerireesserissesassessssssssssssesssssssssssssssssssssssssess 48
5.5 Working model for the SCLM beneath VIetNAM........eeoneeesserereerseeissersssesassesssseseens 49
6. CONCIUSIONS.....ciiiiririsissnnm AR 50
7. Ref@IENCES. ...t 52
APPENDIX A. Mineral Major Element Data........c.coummmmmmmmsssssns 64
APPENDIX B. Clinopyroxene and Orthopyroxene Trace Element Data.............. 77

APPENDIX C. Tree Inversion Dia@rams.......cccmmmmmsmsmssmsmmsssmsmssmssssssssssss 84



Vi

List of Tables
Table 1. Table of Sr-Nd-Pb isotopic compositions of Vietnam xenoliths ........ccccoecuu..... 27
Table 2. Table of equilibrium temperatures and PreSSUTES........oeeseesmesseesesseesseenns 32

List of Figures

Figure 1. Diagram of extrusion due to the Indo-Eurasia colliSion.......coonnnescesneeneens 3
Figure 2. Map of study area and sample collection localities.........ccuemenreeneereennerseensenseens 7
Figure 3. Fertile versus refractory Samples tyPes ... eenneeneessensessesssessesssessesssesnns 15
Figure 4. Compositional variation between clinopyroxene rims and cores ................. 17
Figure 5. Clinopyroxene trace element spider diagrams .........cooerermeenseneesnesseesesseesseenne 20
Figure 6. Orthopyroxene trace element spider diagram .........coneeneenseneesnesneesseeseesseenne 24
Figure 7. Pb isotope compositions of CliNOPYTOXENES ......occvereereereereemseesesseesesseessesseessesnns 28
Figure 8. Sr versus Pb and Nd isotopic compositions of clinopyroxenes.........ccccccoueenn. 29
Figure 9. Comparison of calculated equilibrium temperatures ..........ooeeneenneereesseenn. 33
Figure 10. Major elements as a proxy for melt depletion .........cnneenreneesneerecnennn. 38
Figure 11. Extents of partial melting determined from spinel Cr#........ccoonneenerreenennn. 39

Figure 12. Plots of spinel Cr# versus titanium and Nd isotopes versus trace element
0= 1 (01 44
Figure 13. Model of the geothermal gradients below Pleiku and Xuan Loc................. 47

Figure 14. Diagram of lithospheric erosion beneath Vietnam.......c.cceonnrenceeneenccneenn. 50



1. Introduction

The diffuse igneous province of Indochina is a collision-adjacent, complex
tectonic region with extensive basaltic magmatism (Hoang et al., 1996; Hoang and
Flower, 1998). The Vietnamese plateau basalts record two-stage eruptive cycles
starting at ~17 Ma and consist of large volumes of tholeiites followed by smaller
quantities of alkaline basalts, many of which host lithospheric mantle xenoliths.
Prior geochemical analysis of basalts has included major element, trace element,
and Sr-Nd-Pb isotopes and suggests that early-stage tholeiitic volcanism records
contributions from a subcontinental lithospheric mantle (SCLM) source while later-
stage volcanism reflects an asthenospheric source (Hoang et al., 1996, Hoang and
Flower, 1998). Hoang et al. (2013) suggests that the early-stage volcanism may have
been enriched by crustal assimilation. Traditional tectonic regimes of mantle
upwelling, such as regional extension, do not adequately explain the observed
abundance (70,000 km?) of volcanism (Hoang and Flower, 1998). Previous studies
have proposed a role for extrusion tectonics, positing that the adjacent Himalayan
collision extruded Southeast Asia eastward and caused mantle upwelling beneath
Indochina (Fig. 1) (Hoang et al., 1996; 2013; Flower et al., 1998; Hoang and Flower,
1998; Jolivet et al., 2018). However, the origin and character of the mantle upwelling

has not been well explained.

Lithospheric mantle xenoliths provide a chance to constrain the depth,
temperature, and composition of local SCLM. Subcontinental lithospheric mantle is

typically an ancient, cold layer variably enriched in trace elements that separates



the continental crust from the convecting asthenosphere (McDonough, 1990).
Mantle lithospheric xenoliths are typically thought to represent the SCLM or
recently emplaced asthenosphere and may track magmatic processes such as partial
melting, melt enrichment, and metasomatic events. Diffusion of major and trace
elements can be used to calculate the temperature and pressure of the underlying
SCLM (Brey and Kohler, 1990; Ballhaus et al., 1991; Liermann and Ganguly, 2003;
Putirka, 2008; Liang et al,, 2013). Mantle xenoliths thus provide a “window” into the
SCLM, and by characterizing the SCLM spatially and temporally, we can further

constrain the mantle dynamics and provide more realistic tectonic models.

To date, mantle xenoliths from Vietnam have not been adequately studied to
achieve such constraints on regional tectonics and dynamics. One study in central
Vietnam (the Pleiku volcanic center) by Nguyen and Kil (2019) has suggested that
the mantle beneath Indochina has experienced a prior melt depletion event and
various chemical re-enrichment processes. Based on their major element data,
Pleiku lithospheric mantle xenoliths from Vietnam have calculated equilibrium
temperatures ranging from 841-11312C and may have experienced 1-20%
fractional melting (Nguyen and Kil, 2019). The current study expands this
previously limited dataset and further characterizes the SCLM using measured
major/trace elements and Sr-Nd-Pb isotopic compositions in xenoliths collected
from the Pleiku and Xuan Loc volcanic centers, comprising a total of 25 spinel
peridotite samples. The three objectives of this study are to: (1) track magmatic

processes in local SCLM; (2) compare the SCLM sampled by xenoliths at two sites in



Vietnam to characterize its spatial variability (Pleiku and Xuan Loc); and (3)

constrain mantle evolution beneath an extruding Indochina.

SIBERIA Mongolla

INDIAN OCEAN C;/;p

500 km

Figure 1. Extrusion of Indochina due to the India-Eurasia collision (Phach and Anh, 2018). ASRR =
Ailao Shan-Red River Fault Zone.



2. Background

2.1 Geologic Background

Indochina was rifted from Gondwana and then was sutured to Asia during
the closure of a series of Tethyan ocean basins in the Permian and Triassic
(Metcalfe, 2013). Subsequent subduction-related magmatism occurred over
Indochina during the Cretaceous as a result of northward subduction of the Tethyan
seafloor, emplacing Cordilleran-type granitic batholiths (Shellnutt et al., 2013;
Gibbons et al.,, 2015). The initial collision of Indian continental lithosphere with
Eurasia occurred at ~50 Ma in the Miocene (Gibbons et al., 2015). The continued
movement of the Indian block northward (~3000 km) after the initial continental
collision led to the onset of extrusion tectonics in Asia, which is thought to have
occurred before 35 Ma (Royden et al., 2008; Rohrmann et al., 2012). The extrusion
and clockwise rotation of Indochina occurred as left-lateral movement along large-
scale transform faults (Fig. 1) (e.g., Ailao Shan-Red River Fault Zone, Mae Ping Fault
Zone) until ~17 Ma, when motion along the transform faults became right-lateral
concurrent with the cessation of South China Sea rifting (Zhu et al,, 2009; Li et al,,
2015). This reconfiguration event was followed by the onset of diffuse volcanic
activity in Indochina at ~17 Ma, which has continued through the Holocene and
peaked within the last three million years (Hoang et al., 1996; Hoang and Flower,
1998). The dominant driving mechanism of the anomalous Cenozoic basaltic
magmatism across Indochina has previously been attributed to either extrusion

tectonics or extension tectonics (Flower et al., 1998; Hoang and Flower, 1998;
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Cullen et al.,, 2010). The extrusion tectonic model was applied to Indochina Cenozoic
volcanism as an explanation for the sequence of 1) early-stage tholeiites, thought to
be partial melts sourced from melting of refractory SCLM due to upwelling
asthenosphere, followed by 2) alkali basalts, thought to be partial melts sourced

from the decompressing asthenosphere.

The basaltic plateaus across central and southern Vietnam cover an area of
23,000 km? and have an estimated volume of ~8,000 km3 (Hoang and Flower,
1998). The Pleiku basaltic plateau (Fig. 2) covers an area of ~4,000 km? and is
characterized by the two-stage eruptive cycle typical of most eruptive centers in
southern Vietnam (Hoang and Flower, 1998; Hoang et al., 2013). The Xuan Loc
basalts (Fig. 2) are younger (5.0 - 0.3 Ma) than the Pleiku basalts (6.5-0.2 Ma) and
cover an area of ~2400 km? (Hoang et al., 2013). The earlier stage eruptives at both
localities consist of quartz and olivine tholeiites (with high SiO; (48-55 wt%) and
low FeO (8-10.5 wt%)) and have been dated at Pleiku from 6.5-3.4 Ma using Ar/Ar
methods (Hoang et al,, 1996, 2013; Hoang and Flower, 1998). In both locations,
tholeiites are overlain by smaller eruptions of predominantly alkali basalts (with
relatively low SiOz (40-50 wt%) and high FeO (9-14.5 wt%)) that have been dated at
Pleiku from 2.4-0.2 Ma (Hoang et al,, 1996, 2013; Hoang and Flower, 1998). Alkali
basalts from both volcanic plateaus host numerous mantle-derived xenoliths
including garnet lherzolites, spinel lherzolites, spinel harzburgites, wehrlites,
websterites, and pyroxenites (Hoang and Flower, 1998; Hoang et al., 2013). Basalts

from both localities have 206Pb /204Pb, 207Ph /204PD, 208Pb /204Pb, 87Sr /86Sr, and eng



that plot from the Indian MORB field towards an enriched mantle 2 (EM2)
composition (where “enriched” refers to elevated time-integrated incompatible
element concentrations recorded as relatively high 206Pb /204Ph, 207Pb /204PD,

208pb /204Pb, 87Sr/86Sr and low &enq), with slightly more enriched isotopic
compositions in Pleiku basalts relative to Xuan Loc; more silica-rich basalts (i.e.,
quartz and olivine tholeiites) likewise exhibit more enriched isotopic compositions

relative to silica-poor basalts (alkali basalts) (Hoang et al., 1996, 2013).
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centers are modified from published literature (Hoang et al., 2013; Phach and Anh, 2018).



2.2 Tracking magmatic processes in the SCLM

The compositions of mantle xenoliths provide insight into magmatic
processes that have affected the local lithospheric mantle, such as the nature of
prior melt extraction (e.g., the degree of melting). During partial melting and melt
extraction, incompatible elements are preferentially distributed into the melt,
leaving residual peridotites depleted in these elements and where the relative
degree of each element’s depletion strongly correlates with its incompatibility in
residual minerals (Frey and Green, 1974; Michael and Bonatti, 1985). Melting
models can help to relate the incompatible element concentrations of the residual
rock to the degree of prior melting. The evolution of the solid composition in
response to melting can also vary significantly depending on the type of melting
assumed (e.g., fractional or batch melting). The fractional melting model assumes
that each infinitesimal increment of melt is produced and instantaneously removed
from the system, whereas in batch melting the residue and melt are in chemical
equilibrium throughout the melting process. To apply these methods to the study of
residual rocks, Johnson et al. (1990) revised the basic melting equations of Gast
(1968) and Shaw (1970) to describe melting as the change of element concentration
in clinopyroxene (cpx) during melting of mantle peridotites, because cpx hosts the
highest concentrations of trace elements and is therefore typically analyzed for
empirical concentration measurements. They suggested that the extreme
fractionation of rare earth elements (REE) in cpx in mantle peridotites could only be

achieved by realistic degrees of near fractional melting (Johnson et al., 1990).



Metasomatism is an additional process that occurs when an external fluid
component is brought into the system and causes the enrichment of incompatible
elements in the affected rock through fluid-rock chemical interactions and
reequilibration. Metasomatic agents can be magmas or volatile-rich aqueous and
carbonitic fluids. Typically, metasomatism is classified as “modal” when the
metasomatic agent introduces new phases (i.e., precipitates new minerals along
reactive pathways) and “cryptic” when metasomatism is only recorded in trace
element compositions (Dawson, 1984). Tracking the characteristics (e.g., source,
timing, and melt/fluid compositions) of metasomatism is complicated due to
possible overprinting of previous magmatic events and the multiple processes that
control elemental fractionation mechanisms (Ionov, 2002). The composition of the
metasomatic agent is one of the main controlling factors over observed variations in
trace elements in the host rock, as the external fluid may be enriched in some
incompatible elements but not others. Variable metasomatic enrichment can also be
the product of chromatographic fractionation of elements with time and distance
from the chromatographic “column” (e.g., interstitial fluid-filled veins in peridotites)
and may also preferentially re-enrich harzburgites over lherzolites in trace elements
(Toramaru and Fujii, 1986; Navon and Stolper, 1987). From modelling results, lonov
et al. (2002) found that chromatographic fractionation effects can cause a large
range of trace element patterns in host rocks during a single metasomatic event, and
that the location of a mineral /rock within this “column” determines whether the

trace element patterns produced are primarily controlled by the composition of the
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metasomatic agent or by trace element fractionation between coexisting phases.
While this system is complex, we can still use the relative enrichment or depletion of
elements interpreted from REE patterns and isotopic compositions (i.e., the time-
integrated incompatible element concentrations) to better understand the

magmatic history of the SCLM.

3. Analytical Methods

3.1 Electron microprobe analysis

The analytical techniques for this study were conducted at the University of
Texas at Austin. Major elements for spinel (sp), orthopyroxene (opx), cpx, and
olivine (ol) were measured on mineral separates in epoxy mounts with a JEOL JXA-
8200 electron microprobe analyzer (EPMA) that uses wavelength dispersive
spectrometry (WDS). Generally, at least one core and rim measurement was
analyzed per grain and five grains were measured for each sample. Spot size was a
diameter of 2 um with a beam voltage of 15 kV and current of 50 nA. Elemental
concentrations were acquired using Ko peak signals with analyzing crystal
detectors and were assigned as follows: LiFH - Mn, Ti, Cr; LiF - Fe, Ni; PETH - Ca;
TAP - Na, Mg, Al, Si. The on-peak count times were variable for elements in each
mineral (40-120 s on-peak with equal time spent measuring background signals)
and correspond to expected element concentrations, with minor elements having

longer count times than major elements. The off-peak correction method was linear
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for all elements in ol and opx (except Ti, for which we used an exponential
correction in ol). Spinel was calibrated using the mean atomic number (MAN)
background intensity calibration curve. For cpx we conducted the measurements
across two rounds, one using the linear off-peak correction method and the other
using the MAN background intensity calibration curve. Natural and synthetic
crystalline solids with known major element compositions were used as standards,
and the matrix corrections used were ZAF and ¢(pZ) (Armstrong, 1988). Average
calculated major element concentrations have standard deviations commonly

within 5% (Appendix 1).

3.2 In-situ trace element analysis

Trace element measurements were performed for the same cpx and opx
epoxy mounts prepared for major element analysis, using an Agilent 7500ce
inductively-coupled plasma mass spectrometer (LA-ICP-MS) with a NWR193-FX
laser ablation system. The analytical spot size was a diameter of 150 pm to increase
the signal intensity of the low trace element concentrations in opx and overlapped
the EPMA spot locations. Samples were pre-ablated, with a dwell time of 60 s and
washout time of 30 s. The Si wt.% from the EPMA measurements was used as the
internal standard, NIST 612 was used as the primary analytical standard, and NIST
610, BHVO-2G, and NIST 616 were used as secondary standards. Analysis of NIST

610 and BHVO2G for all elements was generally within 5% of accepted values (for
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NIST 610, [Tm] was < 10 %; for BHVO2G, [Na] and [Nd] were within <10% and [Ca]
and [Pb] were <20%). Results of NIST 616 analysis for all elements were within 10
% of expected values, except for elements with concentrations near detection limits
(i.e., Nd, Gd, Dy, Ho, and Er, which were within 20 % of expected values). [Ti] and
[Yb] for NIST 616, however, did not agree with expected values within 20%. NIST

610 concentrations are reproducible in all elements to within 5% (20) (Appendix 2).

3.3 Sr-Nd-Pb isotope geochemistry

Strontium, Nd, and Pb isotopes were measured in cpx separates. After hand-
picking, the cpx separates were leached using a 2 N HCl solution in an ultrasonic
bath for 5 minutes to remove surface coatings. 100 mg of separates from each
sample were then dissolved in 5 mL concentrated HF and 1 mL concentrated HNO3
in an oven at 105°C. After the initial dissolution, the samples were dried and then
dissolved in 6 N HCl in an oven at 105°C. The samples were dissolved in HCI + HBr
and passed through AG 1-X8 anion exchange resin to separate Pb. The washes
containing Sr and Nd were then dried down and redissolved in HNO3. The samples
were passed through Sr-Spec resin to separate Sr followed by RE-Spec resin to
separate the rare earth elements. Finally, the rare earth portions were converted to
a HCI solution and passed through LN-Spec resin to separate Nd from other REE

(procedures after Lassiter et al., 2003).
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Lead isotopes were measured using a Nu Plasma 3D multi-collector ICP-MS.
Lead separates were diluted to concentrations of 10 ppb in 2% HNO3z and doped
with 2 ppb Tl for pseudo-internal standard normalization. 203T] and 2°5T] were used
to correct for mass fractionation of Pb and Hg isotopes using an exponential law.
NBS 981 was used for standard-sample-bracketing to correct for analytical drift
using the accepted values of 206Pb /204Pb = 16.9405, 207Pb /204Pb = 15.4967, and
208ph /204Pb = 36.7220. Standard-sample-bracketing consists of standard runs before
and after each unknown or secondary standard and is used to linearly interpolate
analytical drift of unknown samples using the inferred drift from the standard runs.
BCR-2 and BHVO-2 were used as secondary standards and were measured within
0.21% of accepted values (Table 1). Five samples with low Pb concentrations were
additionally diluted to a concentration of 0.25 ppb and analyzed using a multi-Daly

detector array.

Strontium and Nd isotopes were measured using a Triton thermal ionization
mass spectrometer as metals precipitated on Re filaments. We measured NBS 987
87Sr/86Sr = 0.701254 £+ 0.000009 (20; n=33). BCR-2 and BHVO-2 were measured as
secondary standards and are within 0.000008 of accepted values (Table 1). The Nd
standard is JNdi-1 and we measured a 43Nd/144Nd ratio of 0.512114 + 0.000013
(20; n=15). The cpx separates generally contained 2.5-50 ng of Pb, 1,000-10,000 ng
of Sr, and 100-1,000 ng of Nd making the impact of the procedural blanks (<130 pg

Pb; <140 pg Sr; < 200 pg Nd) negligible.
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4. Results

4.1 Petrology

Mantle peridotite xenoliths from Pleiku and Xuan Loc are classified as group-
1 xenoliths based on the classification scheme by Frey and Prinz (1978) and consist
of sp, cpx, opx, and ol (Fig. 3). By definition, group-1 xenoliths are typically
lherzolites, harzburgites, and dunites that contain Cr-rich, Al203-poor and TiOz-poor
sp and pyroxenes (Frey and Prinz, 1978). All samples from Pleiku for this study are
lherzolites; however the Pleiku basaltic plateau has also produced harzburgite and
dunite xenoliths (Hoang et al., 2013; Nguyen and Kil, 2019). Xuan Loc samples are
more diverse, containing lherzolites, harzburgites, and dunites. Sample XL-1 is a
dunite and only contains ol with minor cpx and sp. Samples have been further
subdivided into two groups based on sp Cr# (molar Cr / (Al + Cr)) after methods
type-R (refractory) samples have sp Cr# 20.25, where the relative “fertility” of the
peridotite refers to how readily and productively it generates magma upon partial
melting (Fig. 3). Based on this Cr# definition, Pleiku samples from this study are all

type-F peridotites, while Xuan Loc samples are both type-F and type-R peridotites.
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Figure 3. Olivine (01), orthopyroxene (Opx) clinopyroxene (Cpx), and spinel (Sp) mineral separates
of a) a fertile sample (PL-2) and b) a refractory sample (XL-12). Fertile samples have higher modal
cpx and, therefore, have higher potential to generate melting. Refractory samples have lower modal

cpx, likely due to previous melt extraction.

4.2 Major elements

Major element data for ol, opx, cpx, and sp mineral separates from Pleiku and
Xuan Loc peridotites are given in Appendix A. Clinopyroxene and opx display
variations between rim and core measurements in all samples except PL-5 and XL-
11. The core-to-rim variation is present across all localities and sample types (Fig.
4). Clinopyroxene Al203 and Cr203 concentrations are lower in the rims by ~0.2 to
1.0 wt % and ~0.1 to 0.2 wt %, respectively. Similarly, opx grains have rims that are
lower by ~0.1 to 0.6 wt % in Al203 and by up to 0.1 wt % in Cr203. Samples PL-1 and

XL-14 also display rims with slightly higher CaO (0.75 wt % and 0.94 wt %,
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respectively). Due to this variation, average core and rim compositions of each
mineral are presented as separate data sets (Appendix A). Averaged core
measurements are expected to best preserve the compositions of the peridotites
prior to entrainment and exhumation and, thus, have been used to characterize the

SCLM.

The Mg# (molar Mg / (Mg + Fe?*)) of ol from Pleiku and Xuan Loc xenoliths
are between 0.86 and 0.92 (Appendix A), which lies within the compositional range
of SCLM (Arai, 1994). Lherzolites have overlapping but slightly higher ol Mg# (0.89-
0.92) than harzburgites and dunites (0.86-0.91). Olivine Mg# correlates with cpx
Mg#, opx Mg#, and sp Cr#. The CaO content of ol is less than 0.06 wt% and NiO is

between 0.3 to 0.42 wt % for all samples.

We find that sp compositions are highly variable across Vietnam peridotites.
Spinel grains in lherzolites have Al,03 and MgO ranges of 52.86 to 60.04 wt% and
19.28 to 20.88 wt%, respectively. Harzburgite and dunite samples have lower Al203
(32.32-34.56 wt%) and lower MgO (12.95-16.70 wt%) than lherzolites. One dunite
sample, XL-1, has notably higher FeO (26.10 wt%) and lower Al203 (23.98 wt%)
than the other refractory, i.e., harzburgite and dunite samples (13.50 wt. % and
33.08 wt. %, respectively). Spinel Cr# for the lherzolites (0.08-0.17) and
harzburgites/dunites (0.40-0.50) all lie within the compositional range previously

documented for SCLM-derived xenoliths (Arai, 1994).
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Lherzolites from Pleiku and Xuan Loc have cpx with high Al,03 (5.52-7.2
wt%), low Cr# (0.06-0.13), and high Na20 (1.18-1.93 wt%). Clinopyroxene grains
from harzburgites generally exhibit comparatively low Al,03 (1.72-3.15 wt%), high
Cr# (0.20-0.25), and high Naz0 (1.18-1.93 wt%). Orthopyroxene displays a similar
trend to cpx, with lherzolite-hosted grains exhibiting high Al203 (3.39-4.43 wt%)
and low Cr# (0.04-0.98 wt%), while opx in harzburgites exhibits relatively low Al203

(1.86-2.16 wt%) and high Cr# (0.11-0.14).

1.2 1 1 1 |

B Pleiku Type-F
@ Xuan Loc Type-F _
(O Xuan Loc Type-R

Cr,0,% greater in rim

1.0

o .
Cr,0,% greater in core

O ‘.O

Cr203|n Rim/Core

08 |- b 5 (£ i
O 5|2
5|
0.6 ! ! ! == |
0.6 0.8 10 12

Alzosin Rim/Core

Figure 4. Clinopyroxene Al203 rim/core ratio versus cpx Cr20s3 rim/core ratio.



4.3 Trace elements

Average trace element data for cpx and opx from Pleiku and Xuan Loc
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peridotites are given in Appendix B. The primitive mantle normalized trace element

concentrations and REE patterns (REEpwm) for cpx are shown in Fig. 5. Type-F cpx
from Pleiku and Xuan Loc display depleted and spoon-shaped REEpym patterns. The

“depleted” and “spoon-shaped” patterns for Pleiku xenoliths are generally more

steeply sloped than those for Xuan Loc samples, with a median (Ce/Yb)pm 0of 0.17 for

Pleiku versus 0.51 for Xuan Loc. All type-F xenoliths have a relatively flat slope fro
the middle rare earth elements (MREE) to heavy rare earth elements (HREE), with
Pleiku and Xuan Loc having (Sm/Yb)pm from 0.53 to 1.04 and 0.60 to 1.22,

respectively. “Depleted” patterns show a positive steep slope from LREEs to light

m

rare earth elements (MREE) with Pleiku and Xuan Loc showing (La/Sm)pm from 0.10

to 0.14 and 0.33 to 0.61, respectfully. “Spoon-shaped” patterns are similar, but also
exhibit a LREE enrichment with (La/Ce)pm 1.08 to 1.79 (Pleiku) and 1.22 and 1.38
(Xuan Loc). XL-8 has an “enriched” REEpm pattern exhibiting a negative slope from

LREE to MREE ((La/Sm)pu = 1.55).

The Type-R cpx have enriched REEpm patterns and, in this study, are only
present in the Xuan Loc suite of samples but similar REE patterns are exhibited by
Clinopyroxenes from the refractory xenoliths have elevated LREE and low HREE
with steep negative slopes from LREEs to HREEs. These enriched patterns exhibit

(Ce/Yb)pm from 6.14 to 9.15. Clinopyroxene from sample XL-1 has an S-shaped
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REEpum pattern and a positive slope from the MREEs to HREEs but has (La/Sm)pm of

0.71.

Additional trace element compositions show that incompatible elements in
cpx (Rb, Nb, Pb, Sr, Ti) are fractionated from the surrounding REE (Fig. 5). Rubidium
in cpx is depleted in almost all samples, with concentrations near or below
analytical detection limits. Titanium, Pb, and Nb display negative anomalies across
all samples compared to neighboring REE (Fig. 5). Sample PL-2 has a steep negative
slope from Upm to Pbpm. Strontium is variably enriched and depleted when
compared to surrounding REEpy, with high-Sr samples roughly correlating with the

spoon-shaped REEpy patterns.

Orthopyroxenes display REEpym patterns that strongly correlate with cpx
patterns (Fig. 6). Type-F opx have REEpy that exhibit depleted and spoon-shaped
patterns. Some samples have opx LREEs that are near or below analytical detection
limits. Type-R opx have convex downward REEpm patterns with a negative slope
from LREE to MREE and a positive slope from MREE to HREE. Moderately
incompatible elements (Ti, Zr, and Hf) have positive anomalies relative to REE. The
Lu/Hf ratios in opx are systematically higher by a factor of 3.8 than those in

coexisting cpx.
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abyssal peridotites (Warren, 2016).
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4.4 Sr-Nd-Pb isotopes

The Sr, Nd, and Pb isotopic compositions of cpx mineral separates from
Pleiku and Xuan Loc are given in Table 1 and Figures 7 and 8. Samples PL-1, PL-3,
and PL-6 contained <2 ng of Pb, which is near analytical detection limits, and thus
will not be used for interpretation. Clinopyroxene from Pleiku lherzolites exhibit
highly variable isotopic compositions: 206Pb /204Pb = 17.39-18.86, 207Pb /204Pb =
15.48-15.58, 208Pb /204Pb = 37.30-38.85, 87Sr/86Sr = 0.702381-0.703365, and &ng =
+8.84 - +30.28 (143Nd/144Nd = 0.513091-0.514190) (Fig. 7; 8). Where enqa describes
143Nd /144Nd in terms of the deviation from the chondritic uniform reservoir (CHUR)

evolution line:

14-3Nd
< 144Nd)

sample

—1|x10*

CHUR

Clinopyroxene from the Xuan Loc peridotites display a similar range of isotopic
compositions to those from Pleiku: 206Pb /204Pb = 17.13-18.37, 207Pb /204Pb = 15.44-
15.57, 208Ph /204Ph = 37.08-38.64, 87Sr/86Sr = 0.702565-0.704050, and eng = +3.16 -

+14.29 (143Nd/144Nd = 0.512800-0.513371).

The Pb isotopic compositions mostly lie within the Indian-MORB field and
form positive correlations between 20Pb /204Ph and both 207Pb /204Pb and

208ph /204Pb that plot above the northern hemisphere reference line (NHRL) (Fig. 7).
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The Xuan Loc cpx compositions have systematically more radiogenic 298Pb /204Pb

than Pleiku cpx on a plot of 206Pb /204Pb versus 208Pb /204Pb (Fig. 7).

Lead and Sr isotopes do not exhibit well-defined correlations with trace
element data or with each other. Clinopyroxene 87Sr/86Sr and enq exhibit a negative
correlation extending from the Indian-MORB field to highly radiogenic 43Nd /144Nd
and unradiogenic 87Sr/86Sr (Fig. 8). The one type-R xenolith with 87Sr/86Sr and
143Nd /144Nd measurements (XL-1) plots to the right of the type-F xenoliths within
the MORB field. Type-F xenoliths also have highly variable 143Nd /144Nd (0.512921-
0.348419) with many samples plotting to the left of and above the MORB field in

Figure 6.
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Figure 8. (a) 206Pb/204Pb and (b) ena versus 87Sr/86Sr of cpx in Pleiku and Xuan Loc peridotites. Error

bars (20) are smaller than symbol size. Grey field shows Indian-MORB field range. MORB fields and

enriched mantle (EM) compositions are from literature data (Hofmann, 2007). Pleiku and Xuan Loc

basalts are from Hoang et al. (1996; 2013).
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4.5 Thermometry and barometry

Calculated equilibrium temperatures and pressures for Vietnam xenoliths
are presented in Table 2. Temperatures based on major element composition were
calculated using the two-pyroxene thermometer (Tgkn) of Brey and Kohler (1990) at
an assumed pressure of 15 kbar and temperatures based on REE + Y compositions
were calculated using the two-pyroxene thermometer (Trgg) of Liang et al. (2013).
For Tgky, a £5 kbar change in pressure results in a 10 °C difference. Differences
between Tgky are noticeable between calculations made with average core
measurements and calculations made with average rim measurements for samples
PL-1 and XL-14, with the core temperatures being higher by 345 °C and 155°C,
respectively. This temperature difference corresponds to an increase in CaO wt%
from the core to the rim, indicating that Ca-Mg-Fe exchange between pyroxene pairs
was likely not in equilibrium. We thus do not consider the temperatures derived
from these two samples to be robust. All other samples have core and rim
temperatures that internally agree within 100 °C. Trgg values exhibit low
uncertainties (determined from the linear fit of the inversion diagram; Table 2),
except for samples PL-1, XL-5, and XL-11, which exhibit poorer fits (Appendix C).
Samples XL-5 and XL-11 also have low HREE concentrations in opx (Fig. 5),
indicating that the higher temperature uncertainty derives from lower analytical

precision.
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The equilibrium Tgkn temperatures are highly variable for Pleiku and Xuan
Loc xenoliths, with ranges of 601-1005 °C and 721-930 °C, respectively. Treg has a
narrower range, with Pleiku xenoliths having a calculated range of 862-996 °C and
Xuan Loc xenoliths having temperatures of 807-1052 °C. Many samples from Xuan
Loc and one sample from Pleiku have Trer temperature estimates much higher than
Tgkn, and two Xuan Loc samples (XL-3 and XL-9) have higher Tgkn temperatures
than Treg (Fig. 9). Temperatures do not correlate with sample type or other fertility

indices.

Equilibrium pressures of Vietnam xenoliths were calculated using major
element compositions with the two-pyroxene barometer (Pp3g) of Putirka (2008)
using equation 38, which is temperature-independent. Calculated pressures from
Pleiku xenoliths range from 8.9-13.3 kbar, while type-F peridotites from Xuan Loc
display pressures of 10.1-14.1 kbar and type-R xenoliths are lower with a range of
7.4-8.7 kbar. The uncertainty for calculated Pp3g values (£3.7 kbar) is relatively high
for the estimated pressures of the Vietnam xenoliths, but there is nonetheless a

calculated pressure difference of ~4 kbar between fertile and refractory samples.



Table 2. Equillibrium temperatures (°C) and pressures (kbars) of Vietnam xenoliths.

Type TBKN TREE (10) PP38
Pleiku
PL-1 F 686 920 100 8.9
PL-2 F 864 889 +37 13.6
PL-3 F 873 888 26 13.0
PL-5 F 948 985 +32 11.6
PL-6 F 601 875 +32 10.7
PL-7 F 897 892 +48 119
PL-8 F 1005 996 16 12.2
PL-9 F 876 862 +18 133
Xuan Loc
XL-3 F 926 821 +52 12.8
XL-4 R 812 - 8.7
XL-5 R 856 969 186 8.0
XL-7 F 903 1052 £51 14.0
XL-8 F 833 1043 +36 11.7
XL-9 F 930 853 +41 14.1
XL-11 R 767 984 +95 74
XL-12 R 833 - 8.3
XL-14 F 832 807 =11 133
XL-15 F 838 807 =20 12.0
XL-16 F 888 970 47 119
XL-18 F 848 898 +22 11.6
XL-19 F 721 903 +51 10.1
XL-20 F 775 880 +45 113

Major element equilibrium temperatures are calculated from the two-pyroxene
thermometer (T, ) of Brey and Kohler (1990). T, has an error (10) of 15 °C. Trace
element equilibrium temperatures are calculated rom the two-pyroxene REE
thermometer (T,..) of Liang et al. (2013) and the uncertainties are from the linear fit
of the inversion diagrams. Equillibration pressures (P, ) are calculated from the
two-pyroxene barometer of Putirka (2008) which has an error of +3.7 kbars.
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Figure 9. Comparison of equilibrium temperatures of Vietnam xenoliths with Tree plotted against
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5. Discussion

5.1 History of magmatic processes beneath Indochina

The observed variations in major element, trace element, and isotopic
compositions among Vietnam xenoliths are indicative of mantle residues that have

undergone variable degrees of progressive melt extraction and other magmatic
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processes (e.g., melt addition, refertilization, and metasomatism). There are two
compositional groups of xenoliths, type-F and type-R, that suggest the SCLM

beneath Indochina may record two distinct histories.

5.1.1 Extent of partial melting

Constraining the extent of prior melting experienced by lithospheric mantle
xenoliths using incompatible element concentrations can help identify local
lithospheric mantle histories and rock types. When estimating the degree of melting,
sp Cr # and HREE concentrations in cpx are useful due to being highly correlated
and having lower susceptibility to metasomatism (Warren, 2016). Fractional
melting processes can account for extreme fractionation of LREE during melting
and, thus, are a better fit than batch or equilibrium melting for many observed
residual peridotites in the literature (Johnson et al.,, 1990; Hellebrand et al., 2001).
The melting model of Hellebrand et al. (2001) utilizes the strong correlation
between sp Cr# and HREE to calculate the degree of fractional melting as a function
of sp Cr#, assuming an initial composition drawn from a LREE-depleted lherzolite
from Loubet et al. (1975). The Hellebrand et al. (2001) empirical function was
derived using the degrees of melting calculated from Dy, Er, and Yb, after the
method of Johnson et al. (1990). Calculations using this model for Vietnam xenoliths
yields values with a range of 15-17% for type-R xenoliths from Xuan Loc and values

up to 6.1% melting for type-F xenoliths from both localities (Fig. 11). Applying this
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melting model to the published Pleiku dataset by Nguyen and Kil (2019) yields
melting degrees of 10.3-18.5% and up to 7.1% for type-R and type-F xenoliths,

respectively.

Type-R harzburgites and dunites also exhibit major element and trace
element compositions similar to mantle xenoliths from ancient SCLM (McDonough,
1990; Griffin et al., 2008), namely low cpx Al203 (1.72-3.15 wt%), high cpx Mg#
(0.915-0.937) and high (LREE/HREE)pum (Fig. 10). These systematics are not unique
to SCLM, however, as similar characteristics have been found in abyssal peridotites
(Warren, 2016). Low modal cpx is indicative of previously fertile mantle peridotites
where cpx was ultimately consumed by extensive melting (Herzberg, 1999). Type-R
samples from Xuan Loc have high sp Cr#s and strong depletions in HREE (Appendix
A; B), which also indicate a high degree of melt extraction. There is also a strong
negative correlation between Ti and sp Cr# across all type-R xenoliths, indicating
high degrees of partial melt extraction (Fig. 11). The refractory harzburgites from
Pleiku (Nguyen and Kil, 2019) have major and trace element compositions that
resemble type-R refractory samples from Xuan Loc, indicating that both the Pleiku
and Xuan Loc volcanic centers overlie SCLM containing highly-depleted residues.
However, all type-R xenoliths from Pleiku and Xuan Loc also have relatively high
LREE enrichment, and the single type-R ena measurement (3.16) is relatively

unradiogenic (Table 1), suggesting a further history of melt-rock interactions.
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Type-F xenoliths from Vietnam contain cpx with relatively fertile major
element compositions (e.g., Al203 = 5.70-7.17 wt%) that fall within the range of
abyssal peridotites, though Vietnamese xenoliths are slightly less fertile than
estimates for depleted mantle cpx compositions (7.87 wt. % Al203 in cpx)
(Workman and Hart, 2005; Warren, 2016). The depleted and spoon-shaped REEpm
patterns exhibited by some type-F lherzolites from Pleiku and Xuan Loc is consistent
with partial melting with subsequent enrichment during silicate-melt
metasomatism. Clinopyroxenes from abyssal peridotites display similar LREE
patterns to our xenoliths, although they typically display more extreme positive
LREE to MREE slopes (Warren, 2016; and references therein). While Type-F
lherzolites from Pleiku and Xuan Loc both exhibit depleted and spoon-shaped REEpm
in cpx, Pleiku displays a lower (LREE/HREE)pm than Xuan Loc ((Ce/Yb)pm of 0.17
versus 0.51, respectively). This likely indicates a difference in SCLM source
compositions between the two locations and will be discussed further below.
Sample XL-8 is an outlier in that it displays an elevated, enriched signature in LREE.
However, it does show relative depletion in other incompatible trace elements (Rb,
Nb, Pb, Zr, and Ti) and likely experienced metasomatism that overprinted any

previous extraction of LREE.

Recent studies of abyssal peridotites indicate a globally heterogeneous upper
mantle composition, and have revealed that there are ultradepleted mantle domains
(i.e., isotopically more depleted than the Depleted MORB Mantle reservoir (DMM))

that have been preserved in the convecting upper mantle (Liu et al., 2008; Salters et
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al,, 2011; Stracke etal., 2011, 2019; Stracke, 2012; Byerly and Lassiter, 2014).
Furthermore, xenoliths with fertile major and trace elements and depleted isotopic
signatures have been found in several localities (e.g., Eastern and Western Europe,
Rio Grande Rift, Zealandia) and attributed to juvenile mantle lithosphere that was
recently emplaced from the convecting upper mantle (Downes, 2001; Byerly and
Lassiter, 2012; Scott et al., 2014). Type-F xenoliths from Vietnam exhibit
unradiogenic 87Sr/86Sr and highly variable but relatively radiogenic ena
compositions that span the range of abyssal peridotites, from estimates of depleted
mantle to a more depleted source (Fig. 8) (Salters and Stracke, 2004; Workman and
Hart, 2005; Hofmann, 2007). Sample PL-2 from Pleiku is anomalous in that it has
more radiogenic 87Sr/86Sr (0.703365) than would be expected given its very high enq
value of +30.28. The relatively radiogenic 87Sr/86Sr ratio suggests ancient
reenrichment in Rb by metasomatism (Alibert, 1994). Type-F xenoliths exhibit little
to no metasomatism, which would be expected to occur from subduction-derived
fluids during the emplacement of granitic crust in the Mesozoic (Nam et al., 2001;
Shellnutt et al.,, 2013). Given the similarities in major, trace, and isotopic
compositions between type-F xenoliths and the DMM, we interpret these xenoliths

to be derived from recently emplaced asthenospheric mantle beneath Indochina.
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characterize xenoliths that have undergone extensive melt extraction. N & K = Pleiku xenoliths from

Nguyen and Kil (2019).



Cpx ALO, wt%
N

b20

10 t

CpxYb

1.0

39

B PleikuType-F
A @ Xuan Loc Type-F
(O Xuan Loc Type-R
e ' A PleikuType-F (N &K)
. A Pleiku Type-R (N & K)
AA

A
A

AAO AAA
A 8 %)A

Fertile Type-F Refractory Type-R

A

0.2 0.4

0.6

ol ]
N
A
m .
~N
N
\\ A
~
0 0
.. A A
A 15\\\\
8A\*\\
A
1 1 1 1 1
0.2 04 0.6

Spinel Cr#

Figure 11. Spinel Cr# vs a) Al203 wt% in cpx and b) Yb in cpx normalized to chondrite. Low Alz03,

low Yb, and high sp Cr# characterize xenoliths that have undergone extensive melt extraction. The

dashed line and tickmarks show the calculated degree of melting as a percentage, where the degrees

of melting are a function of sp Cr# (Hellebrand et al., 2001) and Yb concentration (Johnson et al.,

1990). N & K = Pleiku xenoliths from Nguyen and Kil (2019).
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5.1.2 Metasomatism of the SCLM beneath Vietnam

Given that LREE are highly incompatible, they should be strongly depleted by
removal from the source rock during partial melting. The apparent enrichment in
these elements in type-R xenoliths and type-F xenoliths with “spoon-shaped” REEpm
patterns requires an additional explanation, and likely indicates metasomatism of
incompatible-element depleted residues by the later addition of a LREE-enriched
melt. Type-F xenoliths only display enrichment in the most incompatible elements.
The lack of significant melt-rock interactions exhibited by type-F xenoliths may
indicate that they were not a constituent of the SCLM beneath Indochina during

previous emplacement of subduction-derived melts in the Mesozoic.

Depletions of Ti relative to HREE and enrichment in LREE in mantle rocks
have previously been used to characterize the metasomatic agents responsible for
melt-rock interactions (Coltorti et al., 1999). Given the notably low Ti/Eu (<1500)
and high (La/Yb)x in type-R cpx from Xuan Loc, CO2-rich silicate melts (i.e.,
subduction-related melts) may provide a potential metasomatic agent, a scenario
that has previously been suggested for the refractory xenoliths from Pleiku (Nguyen
and Kil, 2019). This scenario is supported by sample XL-1, which exhibits
characteristics typical of metasomatism by a CO-rich silicate melt, with its extreme
depletions in Nb, Zr, and Hf and the presence of cpx with no opx. However, recent

studies have shown that Ti anomalies can instead be attributed to the slower
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diffusion of high field strength elements (HFSE) compared to HREE within
refractory mantle rocks (Byerly and Lassiter, 2015). This diffusion rate effect may
cause refractory cpx to exhibit a lower Ti/Eu ratio than cpx from more fertile
lherzolites. In support of the latter scenario, two of the type-R xenoliths from Xuan
Loc (samples XL-4 and XL-5) with Ti/Eu < 1500 also exhibit high rim/core
variations in TiO2 wt % (rim/core ratio of 1.35 and 1.16, respectively), indicating
that Ti is not in equilibrium, and these samples likewise do not have the extreme Hf
and Zr depletions expected from metasomatism by CO2 -rich melts. There are also
positive anomalies of HFSE in opx (Fig. 6) in type-R xenoliths, which may offset the
negative anomalies exhibited by cpx. Furthermore, subduction-derived, COz-rich
silicate melts like those posited to have metasomatized Pleiku xenoliths (Nguyen
and Kil, 2019) are expected to be enriched in Pb, Sr, and Rb and highly depleted in
Nb (Ionov, 2002). Type-R xenoliths from Xuan Loc do exhibit slight Nb depletions
compatible with interactions with such a magma, but they also have negative

anomalies in Rb and Pb, making the carbonated magma scenario less consistent.

Chromatographic metasomatism during reactive porous flow from a COz-rich
silicate melt may likewise have caused some of the observed variations between
type-R and type-F xenoliths (Ionov, 2002), but chromatographic metasomatism
typically induces strong fractionations in LREE ratios causing “U-shaped” REEpm
patterns (Orejana and Villaseca, 2008). It is thus difficult to broadly identify a single
type metasomatism, and we observe evidence that subduction-related melt

metasomatism has potentially affected some of the xenoliths and not others. The
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Vietnam xenoliths do demonstrate evidence of interactions with small volumes of
melt in the SCLM that overprinted preexisting REE depletion signatures, but not
pervasively enough to fully erase the depletion history recorded in the major

element compositions.

While type-F xenoliths from Pleiku and Xuan Loc share similar
characteristics that may suggest similar processes have modified the SCLM in both
locations, samples from the two sites exhibit a few distinct differences in trace
element and isotopic composition. Specifically, Pleiku type-F xenoliths display
higher levels of depletion in LREE, less radiogenic 2°8Pb /204Pb, and more radiogenic
end than Xuan Loc xenoliths. This may indicate that the type-F xenoliths from Pleiku
were initially derived from asthenosphere that had higher levels of ancient melt
extraction than the Xuan Loc xenoliths. Another possibility is that metasomatism in
Xuan Loc xenoliths enriched LREE concentrations while also contributing a more
unradiogenic eng composition to the affected rocks, which could explain the notably
more isotopically enriched composition of sample XL-8 (Fig. 8). The comparatively
short half-lives of 238U and 232Th relative to 147Sm and 87Rb, in addition to the
behavior of U and Th during metasomatism, could have contributed to the slightly
elevated 208Pb /204Pb relative to 206Pb /204Pb observed in all Xuan Loc xenoliths,
suggesting the Pb isotope signatures may likewise be a product of melt-rock
interactions (Wittig et al., 2010). This interpretation requires a significant amount of
time to produce the ingrowth of Pb. Another, more likely scenario, is that the

elevated isotopic signatures preserve a noticeable difference in the source
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composition between Xuan Loc and Pleiku xenoliths. This interpretation would
indicate that Xuan Loc xenoliths have a source slightly more enriched in Th relative

to U when compared to the source of Pleiku xenoliths.



44

d 6000 T T T T T
. 4000 F - A -
€
2 O
;
3 '
O 2000 f ® y
®
] o A0
N A A -
A
A A
O 1 L 1 1 O IA A
0 0.2 0.4 0.6
Spinel Cr#
b 10 p T T T T T T 1
O B rleiku Type-F
@ Xuan Loc Type-F
O Xuan Loc Type-R :
A Pleiku Type-F (N &K) | 1
-Qc PS A Pleiku Type-R (N &K)
P
\C
(] L
Sl :
: ]
O 1
L]
N |
0.1 1 1 1 1 1 1
0 10 20 30
£Nd
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5.2 Thermal state of the SCLM and equilibration depths of Vietnam xenoliths

Calculating equilibrium temperatures from mantle xenoliths will allow better
constraints on the depths from which the xenoliths were derived and, thus, the
depth to the SCLM. Equilibrium temperatures calculated from Vietnam xenoliths
(721-10529C) indicate a relatively hot SCLM layer beneath Indochina (Table 2; Fig.
9). Temperatures are relatively consistent in the xenoliths across Pleiku and Xuan
Loc. In general, we expect that discrepancies between calculated Tgxn and Tree
values for a xenolith rock may indicate a complex cooling history, possibly due to
slower diffusion of trivalent REE compared to divalent Ca, Mg, and Fe in pyroxenes
during slow cooling (Liang et al., 2013; Dygert and Liang, 2015). Such diffusion
effects should produce a higher Tree than Tgkn value for a single sample (Liang et al.,
2013). Most Tgkn temperatures for Pleiku xenoliths (721-10052C) fall within the
range calculated by Nguyen and Kil (2019) (841-11319C), except for our sample PL-
6 (Tskn = 601 °C). Due to the slower diffusion of REE and the relatively minor
standard deviations of calculated Treg values within each sample suite, we interpret
Tree values to best represent equilibrium conditions prior to exhumation and will

use them to estimate the extraction depths of the xenoliths.

One method for determining the extraction depths of Vietnam xenoliths is to
use heat flow data with the local geothermal gradient. Unfortunately, there are
currently no local heat flow data in the immediate vicinity of the study areas, so best
estimates come from regional datasets, which have been compiled into a heat flow

map (Hall, 2002). From this map, the estimated heat flow values for our study areas
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are 85 mW/m? and 90 mW /m? for Pleiku and Xuan Loc, respectively. The measured
thickness of the crust is 32 km at Pleiku and 28 km at Xuan Loc, from broadband
seismic data (Yu et al.,, 2017). We assumed average densities (p) of 2800 kg/m3 and
3250 kg/m?3 for the crust and mantle, respectively, with thermal conductivities of
2.7 W/(m-K) for the crust and 4.0 W/(m-K) for the mantle (Turcotte and Schubert,
2002). The heat generation (HG) of the crust was calculated using the model of

Hasterok and Chapman (2011):
HG = 10~%p[3.5Ck,o + 9.67Cy + 2.63Cry]

where C; values indicate concentrations for the species i. We used the estimated
abundances of heat producing elements for average crust from Rudnick and
Fountain (1995). Using these methods and our range of calculated Trgg values, the
calculated range of extraction depths for Vietnam xenoliths is 35-45 km (9.8-13.0
kbar) for Pleiku and 29-45 km (8.0-13.0 kbar) for Xuan Loc (Fig. 13). There is no
significant difference in depths of equilibration between type-F and type-R
xenoliths. Due to the lack of local heat flow data, these estimates have high
uncertainty. However, they are relatively consistent with the equilibrium pressures
(Pleiku = 8.9-13.3 £3.7 kbar; Xuan Loc = 7.4-14.1 +3.7 kbar) calculated from the

Putirka (2008) barometer.
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5.4 Implications for extrusion tectonics

The presence of mantle xenoliths with an asthenospheric source composition
at depths between 30-45 km (Fig. 13), and with inferred relatively young ages
(inferred from the apparent lack of metasomatism from subduction-derived melts)
implies that the SCLM beneath Vietnam has been relatively recently replaced by
younger convecting asthenosphere, which suggests that older continental
lithospheric mantle must have been partially removed during an earlier event. The
type-F xenoliths exhibit 87Sr/86Sr (0.703724-0.703365) and eng isotopes (5.51-
30.28) that range from values resembling ultra-depleted mantle (Cipriani et al.,
2011; Stracke et al,, 2011; Mallick et al., 2014) to those of MORB (Salters and
Stracke, 2004; Workman and Hart, 2005; Hofmann, 2007). Type-F xenoliths also
have relatively fertile compositions that likely experienced only small degrees of
partial melting, suggesting the xenoliths were a part of the asthenospheric mantle
that underwent decompression melting. In this scenario, the metasomatism
expressed in the LREE (Fig. 5) and core/rim variations (Fig. 4) occurred after partial

melting.

Determining the source of type-R xenoliths is more complex, given the high
levels of overprinting of trace elements and isotopic compositions due to likely
metasomatism (e.g., Fig. 5). Mantle xenoliths with similar trace element and isotopic

characteristics are often attributed but are not unique to pre-Phanerozoic
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lithosphere (e.g., Rio Grande Rift, Colarado Plateau, Zealandia, North China Craton,
Central Asian Orogenic Belt) (McDonough, 1990; Byerly and Lassiter, 2012; Liu et
al, 2012; Pan et al., 2013; Scott et al,, 2014; Warren, 2016). Type-R xenoliths from
Xuan Loc and from Pleiku (Nguyen and Kil, 2019) also exhibit characteristics of
peridotites that have experienced high degrees of fractional melting, and the Xuan
Loc type-R xenolith measured for radiogenic isotopes (XL-1) has an enriched
isotopic signature (87Sr/86Sr = 0.704050, and eng = 3.16), making type-R xenoliths a
possible candidate for the residues of older lithospheric mantle that has been

partially removed.

5.5 Working model for the SCLM beneath Vietnam

The presence of fertile and refractory mantle beneath Vietnam concurrent
with high heat flow and voluminous basaltic eruptives across Indochina may
indicate a history of partial lithospheric removal and replacement (Fig. 14). During
the India-Eurasia collision Indochina was extruded along the Ailao Shan-Red River
Fault Zone until the cessation of the South China Sea rifting (Zhu et al., 2009; Li et al,,
2015). The lack of a “free boundary” during extrusion could have caused the hot
convecting asthenosphere, which was flowing parallel to the direction of extrusion,
to also upwell and thermally erode the refractory SCLM mantle resulting in the
voluminous (70,000 km?) first-stage eruption of tholeiites. In this scenario,

subsequent upwelling of the underlying asthenosphere resulted in small degrees of
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decompression melting and the eruption of alkali basalts. Melts derived from deeper
in the asthenosphere may have interacted with younger, recently-emplaced
lithosphere (type-F xenoliths) and the older, remnant refractory SCLM (type-R
xenoliths), resulting in variable degrees of melt-rock metasomatism. This likely
formed a relatively heterogeneous SCLM where young, asthenospheric mantle was

emplaced adjacent to the older, refractory mantle.
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Figure 14. Diagram of lithospheric erosion beneath Vietnam. a) Local extension and erosion of the
SCLM followed by the b) emplacement of the convecting mantle adjacent to refractory mantle.

Modified after Pan et al. (2013).

6. Conclusions

In this study, we have characterized two suites of xenoliths from southern
Vietnam. The measured major elements of peridotite mineral separates, trace

elements of cpx and opx, and Sr-Nd-Pb isotopic compositions of cpx in the Pleiku
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and Xuan Loc mantle peridotites provide the following insights into the lithospheric

mantle of Vietnam:

(1)

(2)

(3)

(4)

The lithospheric mantle beneath Vietnam experienced a complex history of
partial melting and subsequent metasomatism which is preserved in spinel
peridotites that can be divided into two groups based on their sp Cr#.
Type-F spinel peridotites from Pleiku and Xuan Loc exhibit fertile
compositions with depleted and spoon-shaped REEpm patterns indicative of
lithosphere that has undergone low degrees of partial melting and
subsequent small degrees of melt metasomatism. They show Sr-Nd isotope
compositions that resemble newly accreted SCLM.

Type-R spinel peridotites from Xuan Loc display refractory compositions
with enriched and S-shaped REEpwm patterns that indicate high degrees of
partial melting followed by metasomatic enrichment and share
characteristics typical of ancient refractory SCLM.

The extrusion of Indochina may have induced asthenospheric upwelling
(associated with later-emplaced type-F xenoliths) beneath Vietnam, causing
thermal erosion and partial melting of older refractory lithosphere
(resembling type-R xenoliths). The upwelling asthenosphere underwent
decompressive melting and partial accretion to the subcontinental
lithosphere. The current SCLM beneath Vietnam thus consists of young

fertile mantle adjacent to refractory older mantle.
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