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ABSTRACT
We report the experimental evidence of evolving lattice distortion in high quality epitaxial orthorhombic SrIrO3(001) thin films fully strained
on (001) SrTiO3 substrates. Angle-resolved X-ray photoemission spectroscopy studies show that the surface layer of 5 nm SrIrO3 films is
Sr–O terminated, and subsequent layers recover the semimetallic state, with the band structure consistent with an orthorhombic SrIrO3(001)
having the lattice constant of the substrate. While there is no band folding in the experimental band structure, additional super-periodicity is
evident in low energy electron diffraction measurements, suggesting the emergence of a transition layer with crystal symmetry evolving from
the SrTiO3 substrate to the SrIrO3(001) surface. Our study sheds light on the misfit relaxation mechanism in epitaxial SrIrO3 thin films in the
orthorhombic phase, which is metastable in bulk.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5135941., s

I. INTRODUCTION

The combination of strong spin–orbit interactions and elec-
tron correlation has driven the recent research interest in 5d irri-
dates,1–6 including the correlated semimetal SrIrO3.7–12 Orthorhom-
bic SrIrO3, as schematically shown in Figs. 1(a) and 1(b), has
been theoretically predicted to host non-trivial topological phases.10

While the crystal structure of bulk SrIrO3 favors the monoclinic
distortion of the hexagonal BaTiO3 structure6,13 rather than the per-
ovskite phase, high-quality orthorhombic SrIrO3(001) films have
been grown on SrTiO3(001),7,9,14 (LaAlO3)0.3(SrAl1/2Ta1/2O3)0.7,8,14

and GdScO3
12 substrates. Epitaxial SrIrO3 films in the ultrathin limit

exhibit a range of interesting properties, including dimensional-
ity crossover, metal–insulator transition, and enhanced spin relax-
ation time,9,11,15 and it is essential to understand how the electronic
structure and lattice distortion evolve in these thin films.

The goal of this research is to further examine the crystal sym-
metry in epitaxial orthorhombic SrIrO3 thin films. This is key to
any effort to exploit the interfacial charge and control quantum con-
finement to engineer the electronic and magnetic states in SrIrO3.

Furthermore, characterizing the thin film is also important to gain
a deeper understanding of the finite size effects9,11,15 for SrIrO3 in
this metastable phase.10 Previous studies have shown that epitax-
ial SrIrO3 films strained on SrTiO3(001) are insulating when the
films are thinner than 4 unit cells thick.9,11,15 Obviously, thinner
SrIrO3(001) films are much more dominated by the surface. A key
question is how the effect of the epitaxial strain is entangled with
the quantum confinement in determining the electronic properties
of these ultrathin films.

II. EXPERIMENTAL AND THEORETICAL METHODS
The SrIrO3 thin films were grown on Ti–O terminated (001)

SrTiO3 and Nb doped SrTiO3 (Nb:SrTiO3; 0.05 wt. %) substrates
using off-axis radio frequency magnetron sputtering. The films were
deposited at 600 ○C in 150 mTorr process gas, composed of Ar and
O2 (ratio 2:1). The detailed growth conditions can be found else-
where.15 We performed the surface morphology and structure char-
acterizations on SrIrO3(001) samples grown on SrTiO3 substrates.
The spectroscopic measurements were performed on SrIrO3(001)
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FIG. 1. (a) The schematic of the crystal structure without distortion for SrIrO3 epitaxially grown on the SrTiO3 substrate. The black box denotes the ideal cubic perovskite
unit cell. (b) The real crystal structure of SrIrO3 with octahedral distortion. The black box denotes the orthorhombic unit cell, which is enlarged by

√

2a0 × 2a0 ×
√

2a0
with respect to the unit cell shown in (a). (c) The Brillouin zone of orthorhombic SrIrO3 (denoted by purple color), which can be unfolded into the large black Brillouin zone
corresponding to the structure shown in (a). The surface Brillouin zone is shown in the top.

grown on Nb:SrTiO3. After retrieving the samples from the growth
chamber, the films were promptly sealed in vacuum to minimize the
exposure to the ambient condition prior to the spectroscopy inves-
tigations. Four separate 5 nm samples were studied, and the results
were consistent from sample to sample.

The surface morphology was examined using a Brunker Mul-
timode 8 atomic force microscope (AFM) under the tapping mode.
Figure 2(a) shows an AFM topography image of a 5 nm SrIrO3(001)
film, which exhibits atomically smooth terraces separated by 4 Å

steps. The typical root mean square (rms) roughness is 2 Å.
The structure characterizations were performed using a Rigaku
SmartLab x-ray diffractometer (XRD), with a copper source (λK,α
= 1.5406 Å). Figure 2(c) shows the out-of-plane XRD measurement
on the same sample as in Fig. 2(a). The as-grown SrIrO3 film is sin-
gle crystalline with no impurity phases, and the deduced c-axis lattice
constant is ∼4.02 Å, which is consistent with the compressive strain
imposed by the SrTiO3(001) substrate (−1.14%). The typical rocking
curves for the 5 nm films have a full-width-half-maximum of less

FIG. 2. (a) The atomic force microscopy
(AFM) image of a 5 nm orthorhombic
SrIrO3(001) film grown on a SrTiO3 sub-
strate showing atomically flat terraces.
The rms roughness of the film is ∼2 Å.
(b) The corresponding low energy elec-
tron diffraction of a 5 nm orthorhom-
bic SrIrO3(001) thin film grown on a Nb
doped SrTiO3 substrate. The electron
energy is 31.5 eV. The yellow box high-
lights the reciprocal lattice of the integer
order diffraction spots, while the red box
highlights the faint diffraction spots due
to the super-periodicity. (c) X-ray diffrac-
tion 2θ−θ scan with fits to the Laue
oscillations around the Bragg peaks of
SrIrO3. Inset: close-up scan around the
(002) peak taken on another 5 nm film.
Here, SrIrO3 is denoted as SIO, and
SrTiO3 is denoted as STO. (d) The small
angle x-ray diffraction (data in black)
about the SrIrO3 (001) diffraction beam,
with the fit to the data (red).
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than 0.1○, attesting to the high crystalline quality of the samples. The
film thickness was extracted by fitting to the finite-size oscillations
around main Bragg peaks [Fig. 2(c), inset] and the x-ray reflectiv-
ity (XRR) measurement [Fig. 2(d)]. In a previous study,15 using the
reciprocal space mapping and pole figure techniques, we have shown
that the SrIrO3 films are fully strained (up to 21 nm) and conform
to the four-fold symmetry of SrTiO3, indicating that the films are in
the orthorhombic phase.

The experimental electronic structure measurements were per-
formed on 5 nm thick SrIrO3 films using several spectroscopic
methods. The high-resolution angle-resolved photoemission spec-
troscopy (HR-ARPES) measurements were performed on the linear
undulator beamline (BL-1) of the Hiroshima Synchrotron Radia-
tion Center (HiSOR), Hiroshima University.16,17 We have conducted
HR-ARPES using a photon energy of 150 eV in the p-polarization
geometry, where the electric field vector lies in the plane of inci-
dence as well as the photoelectron detection plane. Based on the
matrix elements of the dipole transition, one can mainly detect the
initial-state orbitals having even symmetry with respect to the mir-
ror plane, which coincides with the plane of incidence. The sur-
face stoichiometry of SrIrO3(001) was established by angle-resolved
x-ray photoemission spectroscopy (ARXPS), obtained using non-
monochromatized Al Kα x-ray source, with a photon energy of
1486.6 eV, and a SPECS PHOIBOS 150 energy analyzer. The emis-
sion angles for ARXPS are all with respect to the surface normal.
Several successive annealing steps at ∼150 ○C change the surface sto-
ichiometry only slightly. Low energy electron diffraction (LEED)
patterns confirming surface lattice were taken in situ using an Omi-
cron SPECTALEED rear-view LEED optics system with an electron
beam energy of 31.5 eV, and was seen to be very sensitive to sur-
face preparation. The experimental band structure was compared
with first-principles density functional theory (DFT) calculations,
which were performed using a plane-wave pseudopotential method
with fully relativistic ultrasoft pseudopotentials,18 as implemented in
Quantum-ESPRESSO.19 The exchange and correlation effects were
treated within the generalized gradient approximation (GGA).20 In
the calculation, we used the plane-wave cut-off energy of 60 Ry, and
a 16 × 16 × 16 k-point mesh in the irreducible Brillouin zone. We
used a

√
2a0 × 2a0 ×

√
2a0 orthorhombic unit cell in the calcula-

tion, with a0 = aSTO =3.905 Å. All the atomic coordinates were
relaxed until the force on each atom was less than 0.001 eV/Å. Spin–
orbit coupling was included in all electronic structure calculations.
The calculated band structure is unfolded into the Brillouin zone for
SrIrO3 without distortion [Fig. 1(a)] using the code BandUP.21,22

III. SURFACE TERMINATION
From the x-ray photoemission spectra, we find that the top-

most Sr–O surface layer is distinct from the bulk. Confirmation that
the surface termination of SrIrO3(001) is Sr–O comes from plotting
the Sr to Ir core level intensity as a function of emission angle. In
Fig. 3, the Sr 3d to the Ir 4f core level photoemission intensities
have been plotted, as a function of emission angle. This ratio
increases at the very highest take-off angles, which in turn are the
most surface sensitive.23–25 For a conductive oxide like SrIrO3, the
electron mean free path varies from about 15 Å at 0○ to about 2.6 Å
at 80○ incident angle for an electron kinetic energy of about 1300 eV,

FIG. 3. The Sr 3d core level to the combined Ir 4f and 5p1/2 core level photoe-
mission intensities plotted as a function of angle. The emission angles are all with
respect to the surface normal. Several successive sample annealing treatments,
at ∼150 ○C, change the surface stoichiometry only slightly: red are the intensity
ratios taken before and blue are taken after annealing.

because as this system is metallic, there are plasmon electron kinetic
energy loss mechanisms. Since the larger take-off angles are highly
surface sensitive, this tends to suggest that the surface is Sr–O ter-
minated and suggests that there is a large difference in enthalpy
between the surface and the bulk.

Several successive sample annealing treatments, at ∼150 ○C,
change the surface stoichiometry only slightly, as is evident in the
Sr 3d to the Ir 4f core level photoemission intensities. This is despite
that annealing the surface successively leads to elimination of the
expected C4v LEED pattern, possibly as a result of IrO2 sublima-
tion.9,26 The very sharp increase in the relative Sr 3d intensity and
increase in the core level binding energy suggest that the surface
electronic structure, due to the Sr–O termination, is extremely thin
and restricted to the topmost surface. This Sr–O surface termina-
tion, observed here, is consistent with prior growth studies where a
“self-organized” conversion of the surface termination from IrO2 to
SrO occurs during the initial growth of SrIrO3

9 and from RuO2 to
Sr–O in the growth of SrRuO3.26

Recent transport studies have shown that the critical thickness
for a metal–insulator transition is 4 unit cells in bare SrIrO3 thin
films15 and 3 unit cells in SrIrO3 films encapsulated by SrTiO3 top
layers,11 which clearly illustrate the potential influence of the sur-
face layer at the atomic scale. In this regard, SrIrO3 differs signif-
icantly from other oxides, like strontium perovskites,27 where the
Sr enrichment at the surface persists well away from the surface.
Additionally, unlike many other oxides or perovskites, the surface
of SrIrO3 is incredibly fragile. Changes in vacuum conditions and
modest annealing were seen to lead to a reduction or loss of surface
order, as observed in LEED.
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FIG. 4. The experimental valence band electronic structure of a 5 nm thick
orthorhombic SrIrO3(001) thin film as derived from angle-resolved photoemission,
taken at room temperature with a photon energy of 150 eV. Superimposed on
experiment are the results from the DFT calculated band structure, on the left
(light blue circles mark a large contribution to the spectral weight).

Despite the strong surface to bulk core level shift of Sr, in
the Sr–O surface layer, the experimental band structure probed
via HR-ARPES is consistent with unreconstructed SrIrO3(001).
Figure 4 shows the band structure of SrIrO3(001) from the Γ (surface
Brillouin center) to the M point (the edge of the surface Brillouin
zone). This experimental band structure (Fig. 4) is consistent with
the semimetallic character of SrIrO3, in excellent agreement with
previous reports on orthorhombic SrIrO3 thin films,7–9,12 and very
different from the distorted hexagonal SrIrO3.6 Superimposed on
the experimental data along -k are the DFT calculations of bulk
orthorhombic SrIrO3, which well captures the position and energy
levels of the heavy and light hole bands. There is clear evidence for
an occupied density of states near the measured Fermi level (EF),
which is away from the Brillouin center at 0.7 Å−1, as well as sig-
nificant dispersion of the occupied bands, symmetric about the Bril-
louin zone edge.7–9 The Brillouin zone critical M point placement is
also consistent with ao = 3.905 Å for SrTiO3. We have increased the
energy window of the calculated band structure by a factor of 1.2,
to improve the match between theory (left) and experiment (right)
in Fig. 4. The surface Brillouin zone from the band structure is con-
sistent with the unfolded SrIrO3(001), i.e., a tetragonal SrIrO3(001),
similar to previous reports.9

IV. SUPER-PERIODICITY
Figure 1(a) shows SrIrO3 having the hypothetic perovskite crys-

tal structure without distortion. The black box in Fig. 1(a) denotes

the ideal cubic perovskite unit cell. Figure 1(b) exhibits the real crys-
tal structure of a SrIrO3 thin film with octahedral distortion.12 This
distortion leads to the orthorhombic unit cell (

√
2ao × 2ao × √2ao),

as shown in Fig. 1(b). The resulting Brillouin zone is also shown in
Fig. 1(c) (the small purple volume). In a previous study, Schütz and
colleagues9 found in their LEED studies a 2 × 2 super-periodicity
[p(2 × 2)] for 4 unit cell thick films, and a centered 2 × 2 super-
periodicity [i.e., a c(2 × 2) in real space or (√2/2) × (√2/2) R45○

in reciprocal space] for a 3 unit cell thick film. In contrast, the LEED
image in Fig. 2(b) shows evidence for a super-periodicity that dif-
fers from both of these two aforementioned super-structures.9 In
fact, the extra diffraction spots in LEED for these orthorhombic
SrIrO3(001) films can be described as a (√2/4) × (√2/4) R45○

reciprocal space structure, as indicated by the extra diffraction spots
in the LEED. The super-position of orthogonal rectangular lattice
domains, also with a super-periodicity, cannot be excluded either
as the origin of the additional diffraction beams observed in the
LEED [Fig. 2(b)]. Precise determination of the origin of the super-
periodicity would be aided by intensity vs voltage analysis of the
LEED or additional diffraction studies. Considering the cubic sym-
metry of the SrTiO3 substrate, such a super-periodicity can originate
either from a surface reconstruction or from lattice twining of a rect-
angular distortion due to the collective rotation and tilt of the Ir–O6
octahedral,9 at the subsurface layer.

To clarify which scenario can apply to our system, we combined
the LEED data with the HR-ARPES results. Due to the large scat-
tering cross section of Ir, the penetration depth of LEED (31.5 eV
electron energy) could be deeper than the photoemission mean free
path at 150 eV: although very material dependent, the electron mean
free path frequently increases rapidly at kinetic energies below 50 eV,
but rises only slowly at kinetic energies higher than 50 eV.25 This
is distinct from the LEED study shown in Ref. 9, which is per-
formed at a much higher electron energy (120 eV) and thus more
surface sensitive. Therefore, the fact that there is little evidence of
band folding in the band structure, shown in Fig. 4, suggests that
the topmost surface layer is not subject to a surface reconstruc-
tion at room temperature, and that the super-periodicity arises well
away from the surface region. The explanation is that the angle-
resolved photoemission is not influenced by multiple diffraction
effects of the Sr–O top layer. Schütz et al.9 attributed the (√2/2)
× (√2/2) R45○ reciprocal space structure for insulating SrIrO3 to
a substrate clamping effect, which suppresses the Ir–O6 octahedral
distortions. Assuming a similar clamping effect exists in our 5 nm
(12.5 unit cells) films, the observed (√2/4) × (√2/4) R45○

reciprocal space structure reveals a transition region from the
interfacial layer (3 unit cells) to the topmost surface layer. The
evolving crystal symmetry with distance from the substrate in
this thickness range has previously been observed in epitax-
ial manganite thin films,28 which has been attributed to com-
peting misfit relaxation mechanisms. As orthorhombic SrIrO3
is metastable in the bulk, such dislocations/misfit can form
due to the evolving lattice symmetry.10,29 Another possible sce-
nario is the heterogeneous placement of IrO6 oxygen octahedra
tilts across the 12 monolayers film, which can possess certain
super-periodicity, although a super-periodicity near the surface
appears excluded by the placement of the Brillouin zone edge in
the band mapping. The lattice distortion can have pronounced
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impact on the electronic and magnetic properties of ultrathin SrIrO3
films, and further affect the performance of SrIrO3-based electronic
devices.29,30

V. CONCLUSIONS
In conclusion, we have investigated the surface termination,

electronic structure, and crystal symmetry of strained orthorhom-
bic SrIrO3(001) thin films on SrTiO3 substrates. The Sr–O ter-
minated surface states could contribute to the thickness-driven
metal–insulator transition. While there is evidence in low energy
electron diffraction of a super-periodicity, no band folding is seen
in the experimental band structure, indicating the absence of surface
reconstruction. The observed super-periodicity is attributed to a dis-
tortion of the orthorhombic structure well into the film, which may
originate from the misfit relaxation from the epitaxial strain.
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