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Stress-dependent second-order grain statistics of polycrystals

Christopher M. Kubea) and Joseph A. Turner
Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall,
Lincoln, Nebraska 68588-0526, USA

(Received 1 June 2015; revised 4 August 2015; accepted 16 September 2015; published online 30
October 2015)

In this article, the second-order statistics of the elastic moduli of randomly oriented grains in a poly-

crystal are derived for the case when an initial stress is present. The initial stress can be either resid-

ual stress or stresses generated from external loading. The initial stress is shown to increase or

decrease the variability of the grain’s elastic moduli from the average elastic moduli of the poly-

crystal. This variation in the elastic properties of the individual grains causes acoustic scattering

phenomenon in polycrystalline materials to become stress-dependent. The influence of the initial

stress on scattering is shown to be greater than the influence on acoustic phase velocities, which

defines the acoustoelastic effect. This work helps the development of scattering based tools for the

nondestructive analysis of material stresses in polycrystals. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4932026]

[MD] Pages: 2613–2625

I. INTRODUCTION

Ultrasonic grain scattering describes the interaction and

scattering of ultrasonic waves from grain boundaries in poly-

crystalline materials. The scattering is a result of adjacent

grains having relative differences in orientation. The orienta-

tion difference creates an impedance mismatch at the grain

boundary between the adjacent grains. Because the scatter-

ing occurs at the grain boundaries, measurements of ultra-

sonic scattering are sensitive to microstructural features and

changes. In previous studies, ultrasonic grain scattering

has been employed to extract measurements of grain dimen-

sions, grain shape, and elastic properties.1–13 Turner and co-

workers have developed robust measurement models that

allow the average grain diameter of equiaxed grains to be

determined with high precision.1–4 Other researchers have

applied similar models in order to estimate non-spherical

grain dimensions and shapes.5–10 Additional research has

focused on using ultrasonic grain scattering measurements

to estimate the elastic properties of polycrystalline

materials.11–13

Additive manufactured materials is one area that could

benefit from ultrasonic scattering based techniques. The

increased use of additive manufacturing has led to the possi-

bility of developing materials with tailored or customized

microstructures. Customization could allow the materials

engineer to optimize the material response and cater to its

intended application. Then, ultrasonic scattering could be

used to confirm the integrity of the manufactured part. Such

measurements can be incorporated into a quality control

setting in order to confirm the desired microstructural prop-

erties are in place during and after the additive manufactur-

ing process. Residual stress is one property that is important

to understand and possibly control in order to construct the

desired part.14–16 These internal stresses cause feature

distortion and possible poor fusion or disbonding of

layers.14–16 These issues are especially prominent for manu-

factured parts with thin walls, parts with overhangs, and

parts with tight geometrical tolerances.14–16

These present and future demands involving residual

stress analysis has motivated the development of using ultra-

sonic grain scattering as a stress monitoring tool. The idea of

relating stress to grain scattering was first proposed by

Turner and Ghoshal17 and was later explored experimentally

by Kube et al.18,19 However, the theory of Turner and

Ghoshal was developed for materials under applied loads17

rather than materials with residual stress. Residual stresses

are formed from complex thermomechanical plastic defor-

mation processes. Thus, modeling ultrasonic grain scattering

from polycrystalline materials having residual stresses

requires additional considerations.

In this article, the theoretical foundation relating ultra-

sonic grain scattering to residual stresses is derived.

Effective stress-dependent stiffness tensors, Ceff , which

define the acoustoelastic effect for single crystals, are used

as the orientation dependent stiffness of individual grains.

The intensity of ultrasound scattered from an aggregate of

stressed grains requires the eighth-rank stress-dependent

covariance tensor N, which is a measure of the average

spatial variation of the grain stiffnesses. A procedure for

determining all components of N is provided. The sensitiv-

ity of N to stress magnitudes is compared with the ensem-

ble average of Ceff , which allows us to estimate the

measurement resolution of a scattering based approach to

traditional acoustoelastic phase velocity techniques for

stress evaluation.

The article is organized as follows. Section II provides

the background and derivation of the stress-dependent covar-

iance tensor N. The resulting expressions provide all of the

necessary elastic tensors needed to evaluate the stress-

dependence of scattering based models such as ultrasonic

attenuation20–22 or diffuse ultrasonic grain scattering. The

quantitative evaluation of N is provided in Sec. III. Thesea)Electronic mail: ckube@huskers.unl.edu
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results indicate that ultrasonic scattering based phenomenon

in polycrystalline materials has a stress dependence greater

than techniques based on classical acoustoelasticity. This

work supports the potential for the development of accurate

and sensitive ultrasonic based tools for the nondestructive

evaluation of residual stresses.

II. THEORY

For polycrystalline media, scattering of ultrasonic waves

from grain boundaries is intimately related to the scattering

of ultrasound from internal inhomogeneities. As a bulk wave

propagates in a direction through the polycrystal, each grain

boundary along the propagation path has a potential to scat-

ter a portion of the wave’s energy into various directions.

The resultant scattering is caused by the deviation of elastic

properties between the volume of grains contributing to the

scattering process and the mean elastic properties of the pol-

ycrystal, dCðxÞ ¼ CðxÞ � C0. In this case, CðxÞ is the elastic

modulus tensor of a grain located at the spatial position x

while C0 is the macroscopic elastic stiffness of the polycrys-

tal. Thus, each grain can act as an inhomogeneity while, in a

statistical sense, all of the other grains constitute a homoge-

neous medium surrounding the inhomogeneous grain. This

concept motivates the use of perturbation theory to model

wave propagation and grain scattering in random elastic

media.20–25 In such theories, the second- and higher-order

perturbations are able to capture the losses of energy from

the mean or average wave field due to scattering at grain

boundaries.

Second-order perturbations to the mean wave field

depend on the statistical covariance of the stochastic tensors

dCðxÞ and dCðx0Þ, where x0 is another position vector to a

different point in the polycrystal. The covariance is then

defined as

n ðx; x0Þ ¼ hdCðxÞdCðx0Þi � hdCðxÞihdCðx0Þi; (1)

where the operation h� � �i defines the expectation or average

value. For tensors defining physical properties of polycrys-

tals, the average value of the tensor is achieved using orien-

tation averages over all possible rotational transformations.

Details of ensemble and orientation averaging of tensors can

be located in Kr€oner’s treatise.26

Carrying out the orientation average in Eq. (1) requires,

first, the decoupling of the spatial and tensorial components,

which is achieved by assuming the grain orientations are

uncorrelated spatially.26,27 With this assumption, Eq. (1) is

given as

nabcd
ijkl ðx;x0Þ ¼ ½hdCijkldCabcdi�hdCijklihdCabcdi�gðx�x0Þ;

(2)

where gðx� x0Þ is a two-point correlation function of the

random and macroscopically homogeneous medium.28 The

spatial dependency x� x0 reduces to the magnitude jx� x0j
if the polycrystal is statistically isotropic. The spatially-

independent, tensorial part of the covariance is

Nabcd
ijkl ¼ hdCijkldCabcdi � hdCijklihdCabcdi; (3)

whose average is obtained using the method first proposed

by Morris.29

The tensor N is a statistical covariance measure between

different components of the fourth-rank elastic moduli. N
reduces to a measure of statistical variance when the compo-

nents of the elastic moduli are equal, i.e., i ¼ a; j ¼ b;
k ¼ c; l ¼ d. Physically, the variance of the elastic moduli

gives an average measure of the difference between the stiff-

ness of a single grain to the stiffness of the polycrystal en-

semble. Thus, the intensity of ultrasound scattered from

grain boundaries directly scales with the magnitude of N.

The magnitude of N depends strongly on the degree of the

elastic anisotropy of individual grains along with the macro-

scopic elastic anisotropy of the bulk polycrystal. For exam-

ple, if the polycrystal contains grains of cubic elastic

symmetry and has macroscopic elastic properties of ortho-

rhombic symmetry, the magnitude of N is a function of the

elastic anisotropy constant for single-crystals � ¼ c11

� c12 � 2c44 along with the 12 macroscopic elastic anisot-

ropy constants W400, W420, W440, W600, W620, W640, W660,

W800, W820, W840, W860, and W880.30

In this article, the variation of the grain-to-grain elastic

properties caused by a homogeneous material stress is

considered. This variation is naturally captured using the co-

variance tensor N. The material stress influences N in

two distinct ways. First, if the stress is not hydrostatic,

the polycrystal will exhibit a stress-induced anisotropy of the

polycrystals macroscopic elastic properties. In this case, the

elastic moduli of the individual grains gain symmetry de-

pendence about the principle directions of the material

stress. Second, the stress (including hydrostatic) causes the

elastic properties of the individual grains to differ further

from the average elastic properties of the polycrystal.

The characterization of the stress-dependence in N was

first given by Turner and Ghoshal17 and later demonstrated

experimentally by Kube et al.18,19 The present theory utilizes

a more commonly used elastic constitutive relation,31–37

which is valid for both residual and mechanical stresses.

This constitutive relation leads to different stress-dependent

elastic properties than those given by Turner and Ghoshal.17

An error involving the compliance relation to the shear con-

stant c44 used in the calculations of Turner and Ghoshal is

also corrected here [see Eq. (A5) in Appendix A].17

The theory is divided into two sections, which result in

the outcome of an expression for the stress-dependent

eighth-rank covariance tensor N. Section II A follows from

the theory of acoustoelasticity developed by Man and co-

workers and Huang et al.31–37 In this treatment, a constitu-

tive relation for elastic media containing an initial stress is

employed in order to derive equations of motion for a small-

amplitude harmonic plane wave. A stress-dependent

Christoffel equation follows from the equation of motion,

which is applicable to materials belonging to any crystallo-

graphic symmetry group. From this Christoffel equation,

definitions of the stress-dependent effective elastic moduli

Ceff are obtained. The orientation dependent parts of Ceff

2614 J. Acoust. Soc. Am. 138 (4), October 2015 Christopher M. Kube and Joseph A. Turner



allow its components to be written with respect to a general

coordinate system. This description allows Ceff to represent

the stiffness of an individual crystallite or grain having a

specific orientation. A method of polycrystalline homogeni-

zation is used in Sec. II B to define the stress-dependent

effective elastic moduli of the polycrystal by making use of

ensemble averages on Ceff . Finally, Sec. II C defines the

covariance tensor in the form Nabcd
ijkl ¼ hCeff

ijklC
eff
abcdi�

hCeff
ijklihCeff

abcdi, which is a function of the initial stress r.

A. Stress-dependent Christoffel equation for a single
grain or crystallite

An appropriate constitutive relation is needed in order

to represent the situation of elastic wave propagation in a

material containing an initial stress. Constitutive relations

based on hyperelastic material models provided the first

attempts to address acoustoelasticity.38–40 These early

models considered the initial stress to be a result of a defor-

mation process that takes the material from a natural mate-

rial configuration to an initial configuration. Then, an

infinitesimal displacement of a small-amplitude elastic

wave is superimposed on the initial deformation in order to

bring the material into its current configuration. However,

Pao et al. pointed out that residual stresses are often mani-

fest due to inhomogeneous processes involving plastic

deformation, which are not able to be properly represented

with a hyperelastic material model.41 Observing the need

for an improved model, Man and Lu proposed a constitu-

tive relation based on linear elasticity and the incremental

elasticity tensor.31 A constitutive relation of this form is

able to represent a material in its initially stressed configu-

ration. Thus, the possible complex plastic deformation

processes that led to the initial state of stress are of no con-

cern. A number of models for acoustoelasticity32–37 related

closely to the formalism of Man and Lu31 followed. Due to

the advantage of its applicability to materials having resid-

ual stresses, we adopt their form of the constitutive relation

valid for polycrystalline materials with an initial stress33,37

Pij ¼rij þ CijklEkl þ ð�CijklSrrmn þ CijkrSrlmn þCijrlSrkmn

þCirklSrjmn þCrjklSrimn þ CijklrsSrsmnÞrmnEkl; (4)

where P is the second Piola-Kirchoff stress tensor, and r is

the initial (Cauchy) stress tensor. Cijkl and Sijkl define the

second-order elastic modulus and compliance tensors,

respectively. They are related through the identity tensor

CijmnSmnkl ¼ Iijkl ¼ ðdikdjl þ dildjkÞ=2. Cijklmn is a sixth-rank

tensor that defines the third-order elastic constants. In this ar-

ticle, Eq. (4) is used to define the constitutive relation for a

single grain contained in the polycrystal. Each grain in the

polycrystal is assumed to contain the same crystallographic

symmetries as a single-crystal. Thus, Cijkl, Cijklmn, and Sijkl

are defined using the point group symmetries of single

crystals. The governing equation of motion for the wave

displacement, which includes the initial stress r, is

Pij;j ¼ qui;tt; (5)

where q is the density of the grain and ;i implies the partial

spatial derivative. Assuming the displacement is a time-

harmonic plane wave, the equation of motion can be reduced

to the stress-dependent Christoffel equations,

½Kijkln̂jn̂l þ ðrjln̂jn̂l � qV2Þdik�ui ¼ 0: (6)

The tensor K is of fourth-rank and depends on the elastic

constants of the grain and the initial stress,

Kijkl ¼Cijkl þ ð�CijklSrrpq þ CijkrSrlpq þ CijrlSrkpq

þ CirklSrjpq þ CrjklSripq þ CijklmnSmnpqÞrpq: (7)

Equation (7) is the analog to the “load-dependent effective

elastic moduli Gijkl” defined in Eq. (1) of Turner and

Ghoshal.17 These two definitions are not equivalent; the

expression in Eq. (1) of Turner and Ghoshal17 is derived

using a different constitutive relation. Additionally, K is

only part of the effective stress-dependent elastic moduli,

which will be defined in Eq. (9). The three eigenvalue solu-

tions to Eq. (6) represent the phase velocities (V) of one

quasi-longitudinal, one transverse, and one quasi-transverse

wave. The propagation direction is given by n̂ while the

three displacement directions are obtained from the eigen-

vectors ui. The traditional Christoffel equation for wave

propagation in unstressed crystals is

½Cijkln̂jn̂l � qV2dik�ui ¼ 0: (8)

By comparing Eqs. (6) and (8), we define the effective

stress-dependent elastic modulus tensor as

Ceff
ijkl ¼ Kijkl þ dikrjl

¼ Cijkl þ ð�CijklSrrpq þ CijkrSrlpq þ CijrlSrkpq

þCirklSrjpq þ CrjklSripq þ CijklmnSmnpqÞrpq

þ dikrjl: (9)

The definition of Ceff in Eq. (9) is valid for crystals belong-

ing to any of the crystallographic symmetry classes assum-

ing the tensors representing the second- and third-order

elastic constants are available. A procedure to construct

these tensors is given in Appendix A. It is important to note

that a state of stress results in the crystallite having effective
elastic properties while the single-crystal elastic constants

given in Cijkl, Cijklmn, and Sijkl are assumed to be physical

material parameters unchanged by the stress. Furthermore,

the tensor defining the initial stress r is appropriate for either

residual or mechanical stresses. In Sec. II B, Ceff is homoge-

nized in order to define the stress-dependent effective elastic

properties of the polycrystal.

B. Homogenization of Ceff

In Sec. II A, the definition of Ceff represents the effec-

tive stress-dependent elastic modulus tensor of a particular

grain in the polycrystal. The tensors of single-crystal elastic

moduli Cijkl, Cijklmn, and compliance Sijkl, found within the

definition of Ceff , depend on the orientation X of the grain.

The definitions of Cijkl, Cijklmn, and Sijkl for cubic crystallite

J. Acoust. Soc. Am. 138 (4), October 2015 Christopher M. Kube and Joseph A. Turner 2615



symmetry are found in Appendix A where they are written

in an invariant form as functions of orientation dependent

rotation matrices ½aðXÞ�. The continuous distribution of

grains and their random orientations allows the elastic prop-

erties of the individual grains to be treated as stochastic vari-

ables. Thus, statistical measures on these variables are used

to estimate the macroscopic elastic properties of the bulk

polycrystal. This process of merging the properties of the

heterogeneous microscale with the homogeneous macroscale

of the polycrystal is referred to as statistical homogenization.

Voigt was the first to propose that the average elastic moduli

over all possible orientation of a single crystallite could be

used to give the elastic moduli of the macroscopically homo-

geneous polycrystal.42 A large number of more advanced

techniques have been developed over the decades, which are

outside the scope of this article. Readers should consult the

works of Kr€oner,26,27 Watt et al.,43 and Hirsekorn44 for over-

views on the topic.

The present article is concerned with the statistical

quantities related to the stress-dependent elastic properties of

the polycrystal. Using the definition of Ceff , a Voigt-type av-

erage over all possible orientations of Ceff is given by

hCeff
ijklðXÞi ¼

ð
X

wðXÞCeff
ijklðXÞdX; (10)

where X defines the space of possible orientations and

wðXÞ is a probability distribution function that defines the

grain orientation probability. wðXÞ ¼ 1 for the case for

which all orientations of the grains are equally likely.

hCeffðXÞi is defined as the effective stress-dependent elas-

tic moduli of the polycrystal. Equation (10) explicitly indi-

cates the dependence of Ceff on the orientation X of the

grain. The orientation dependence is introduced in the

definitions of Cijkl, Cijklmn, and Sijkl through the rotation

matrices ½aðXÞ� in Eq. (A1) of Appendix A. The orienta-

tion dependence of Ceff
ijkl will be implicitly assumed in the

remainder of the article. Substitution of Eq. (9) into

Eq. (10) gives

hCeff
ijkli ¼ hKijkli þ dikr

0
jl

¼ hCijkli þ ð�hCijklSrrpqi þ hCijkrSrlpqi
þ hCijrlSrkpqiþhCirklSrjpqi þ hCrjklSripqi
þ hCijklmnSmnpqiÞr0

pq þ dikr
0
jl; (11)

where we have assumed that the homogeneous initial stress

present in the polycrystal is equal to the average stress pres-

ent in all of the grains, i.e., r0
ij ¼ hriji. Equation (11) could

be used to solve for the stress-dependent phase velocities

and wave displacements in a stressed polycrystal,

½hCeff
ijklin̂jn̂l � qV2dik�ui ¼ 0: (12)

Equation (12) governs the propagation of bulk waves in

stressed polycrystalline materials with material texture and

grains belonging to any crystallographic symmetry class.

Section II B 1 considers a limiting case of hCeffi, in which

the polycrystal is assumed to have grains of cubic

crystallographic symmetry and is statistically isotropic when

the material is free of stress.

1. hCeffi for polycrystals containing grains of cubic
crystallographic symmetry

Equation (11) defines the effective stress-dependent

elastic modulus tensor for polycrystalline materials. In this

section, hCeffi is evaluated analytically for polycrystals that

have statistically isotropic material symmetry and contain

grains of cubic crystallographic symmetry. The definitions

of Cijkl, Cijklmn, and Sijkl are given by Eqs. (A3), (A4), and

(A6) of Appendix A, respectively. It is convenient to sepa-

rate the parts of Ceff
ijkl that are orientation dependent from the

isotropic parts

Ceff
ijkl ¼ CI

ijkl þ CA
ijkl þ ð �C

I
ijklpq þ �C

A
ijklpqÞrpq þ dikrjl; (13)

where the isotropic parts are

CI
ijkl ¼ c12dijdkl þ 2c44Iijkl; and

�C
I
ijklmn ¼ ½ðc123 � c12Þ�s þ s12ð3c123 þ 4c144 þ 2d2Þ

� c12ð2s44 � s12Þ þ 2c123s44�dijdkldmn

þ 2½�sðc144 � c44Þ þ s12ð3c144 þ 4c456 þ 2d3Þ
� c44ð2s44 � s12Þ þ 2c144s44�dmnIijkl

þ 4s44½ðc12 þ c144ÞðdijIklmn þ dklIijmnÞ
þ ðc44 þ c456ÞðdikIjlmn þ dilIjkmnÞ
þ c456ðdimIjnkl þ dinIjmklÞ
þ c44ðdjlIikmn þ djkIilmnÞ�; (14)

while the orientation dependent parts are

CA
ijkl ¼ �Aijkl; and

�C
A
ijklmn ¼ ½2s44d1 þ 4��s þ �sðd1 þ 8d3Þ�A1

ijklmn

þ ½2c12�s þ 2s44d2 þ �sð2c144 þ d2Þ�A2
ijklmn

þs44ð2d3 þ �ÞA3
ijklmn � ½2�sðc12 þ c144Þ

þ �ðs11 þ 2s12Þ � s12ðd1 þ 3d2 þ 8d3Þ�dmnAijkl

þ½�sð2c456 þ d3 þ 2c44Þ � ��ðdikAmjnl

þ dilAmjkn þ djkAimnl þ djlAimknÞ: (15)

The constants �; �s; d1; d2; d3 are functions of single-

crystal elastic constants and are defined in Appendix A. The

tensors Aijkl, A1
ijklmn; A2

ijklmn, and A3
ijklmn contain products of

rotation matrices, which are also defined in Appendix A.

hCeffi is obtained by finding the orientation averages of the

orientation dependent parts of Ceff ,

hCeff
ijkli ¼ CI

ijkl þ hCA
ijkli þ ð �C

I
ijklpq þ h �C

A
ijklpqiÞr0

pq þ dikr
0
jl:

(16)

The computational burden in carrying out the averages is

removed by using the definitions

2616 J. Acoust. Soc. Am. 138 (4), October 2015 Christopher M. Kube and Joseph A. Turner



hAijkli ¼ haiuajuakualui ¼
1

5
dijdkl þ dikdjl þ dildjk

� �
;

hA1
ijklmni ¼ haiuajuakualuamuanui

¼ 1

7
dijhAklmni þ dikhAjlmni þ dilhAjkmni
�
þ dimhAjklni þ dinhAjklmiÞ; (17)

which arrive from the tensor averaging procedure outlined in

Appendix B.

Now, consider a case of uniaxial stress for which the

only nonzero component of r is r33. From Eq. (11), the ten-

sor hKi is needed to define hCeffi. Let K0 ¼ hKi denote the

orientation average of K. Because of the uniaxial stress, the

tensorial form of K0 exhibits transversely isotropic symme-

try about the symmetry axis in the direction of the stress. It

is important to note that K0 is a statistically defined tensor

representing the macroscopic elastic properties. Thus, mac-

roscopically, the polycrystal exhibits a stress-induced anisot-

ropy. However, the symmetry of the elastic tensors Cijkl,

Cijklmn, and Sijkl remain unchanged when a stress is present.

K0 can be defined using five independent components where

the non-zero components are: K0
11 ¼ K0

22; K0
12; K0

13 ¼ K0
23;

K0
33; K0

44 ¼ K0
55; K0

66 ¼ ðK0
11 � K0

12Þ=2, and K0
IJ ¼ K0

JI.

Using the definitions in Eq. (17), the five independent com-

ponents of K0 are given as

K0
11 ¼ c12 þ 2c44 þ

3�

5
þ 1

35
35c123�s � 14c44�s � 7c12�s þ 98c144�s þ 56c456�s þ 21s12d1ð

þ 133s12d2 þ 308s12d3 þ 6s44d1 þ 70s44d2 þ 56s44d3 þ 21s12� � 42s44� þ 3d1�s

þ 35d2�s þ 52d3�s � 9��s þ 35c12s12 � 70c12s44 þ 70c44s12 � 140c44s44 þ 105c123s12

þ 350c144s12 þ 70c123s44 þ 140c144s44 þ 280c456s12Þr33;

K0
12 ¼ c12 þ

�

5
þ 1

35
35c123�s � 7c12�s þ 28c144�s þ 7s12d1 þ 91s12d2 þ 56s12d3 þ 2s44d1ð

þ 42s44d2 þ 7s12� � 14s44� þ d1�s þ 21d2�s þ 8d3�s � 3��s þ 35c12s12 � 70c12s44

þ 105c123s12 þ 140c144s12 þ 70c123s44Þr33;

K0
13 ¼ c12 þ

�

5
þ 1

35
21c12�s þ 35c123�s þ 56c144�s þ 7s12d1 þ 91s12d2 þ 56s12d3 þ 6s44d1ð

þ 70s44d2 þ 56s44d3 þ 7s12� þ 14s44� þ 3d1�s þ 35d2�s þ 24d3�s þ 5��s þ 35c12s12

þ 70c12s44 þ 105c123s12 þ 140c144s12 þ 70c123s44 þ 140c144s44Þr33;

K0
33 ¼ c12 þ 2c44 þ

3�

5
þ 1

35
49c12�s þ 98c44�s þ 35c123�s þ 154c144�s þ 168c456�s þ 21s12d1ð

þ 133s12d2 þ 308s12d3 þ 30s44d1 þ 126s44d2 þ 504s44d3 þ 21s12� þ 126s44� þ 15d1�s

þ 63d2�s þ 204d3�s þ 39��s þ 35c12s12 þ 210c12s44 þ 70c44s12 þ 420c44s44

þ 105c123s12 þ 350c144s12 þ 70c123s44 þ 420c144s44 þ 280c456s12 þ 560c456s44Þr33;

K0
44 ¼ c44 þ

�

5
þ 1

35
21c44�s þ 35c144�s þ 56c456�s þ 7s12d1 þ 21s12d2 þ 126s12d3 þ 6s44d1ð

þ 14s44d2 þ 112s44d3 þ 7s12� þ 14s44� þ 3d1�s þ 7d2�s þ 52d3�s þ 5��s þ 35c44s12

þ 70c44s44 þ 105c144s12 þ 70c144s44 þ 140c456s12 þ 140c456s44Þr33: (18)

Finally, using Eq. (18), hCeffi is written in a general form

hCeff
ijkli ¼K0

12dijdkl þ K0
11 � K0

12

� �
Iijkl þ K0

13 � K0
12

� �
dijêkêl þ dklêiêj

� �
� 1

2
K0

11 � K0
12 � 2K0

44

� �

� dikêjêl þ dilêjêk þ djkêiêl þ djlêiêk

� �
þ K0

11 þ K0
33 � 2K0

13 � 4K0
44

� �
êiêjêkêl þ dikr

0
jl; (19)

where the unit vector ê is in the direction of the uniaxial

stress.

C. Stress-dependent covariance tensor, N

The stress-independent covariance tensor was defined in

Eq. (3). In order to construct the stress-dependent covariance

tensor, the deviation of the effective stress-dependent moduli

from the mean elastic moduli of the polycrystal is given as

dCeff
ijkl ¼ Ceff

ijkl � hCeff
ijkli: (20)

For polycrystals with randomly oriented grains, hdCeffi ¼ 0.

Using Eq. (20), the stress-dependent covariance is
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Nabcd
ijkl ¼ hdCeff

ijkldCeff
abcdi � hdCeff

ijklihdCeff
abcdi

¼ hCeff
ijklC

eff
abcdi � hCeff

ijklihCeff
abcdi: (21)

Now, if the initial stress is uniaxial with r33 as the only non-

zero component, Eq. (21) simplifies to the form

Nabcd
ijkl ¼hCA

ijklC
A
abcdi � hCA

ijklihCA
abcdi

þðhCA
abcd

�C
A
ijkl33i � hCA

abcdih �C
A
ijkl33i

þ hCA
ijkl

�C
A
abcd33i � hCA

ijklih �C
A
abcd33iÞr33

þðh �C
A
ijkl33

�C
A
abcd33i � h �C

A
ijkl33ih �C

A
abcd33iÞr2

33: (22)

The orientation averages needed to evaluate the components

of N can be found in Appendix B. Unlike in Turner and

Ghoshal,17 the averaging procedure in Appendix B allows

analytic expressions of the components of N to be given in

closed-form in terms of second- and third-order single-crys-

tal elastic constants. Out of the possible 6561 components of

the eighth-rank N, only 44 of them are independent when

considering a uniaxial stress (r33), i.e., N has transversely

isotropic symmetry. The 44 independent components are

N1111
1111, N1122

1111, N1133
1111, N1212

1111, N1313
1111, N2222

1111, N2233
1111, N2323

1111, N3333
1111,

N1112
1112, N1222

1112, N1233
1112, N1323

1112, N1113
1113, N1223

1113, N1322
1113, N1333

1113, N1122
1122,

N1133
1122, N1212

1122, N1313
1122, N3333

1122, N1123
1123, N1213

1123, N2333
1123, N1133

1133, N1212
1133,

N1313
1133, N2233

1133, N2323
1133, N3333

1133, N1212
1212, N1313

1212, N3333
1212, N1213

1213, N2333
1213,

N1233
1233, N1323

1233, N1313
1313, N2323

1313, N3333
1313, N1323

1323, N1333
1333, and N3333

3333.

Relations between the 44 independent components of N and

the remaining 1597 non-zero terms are listed elsewhere.45

Section III gives quantitative results for these 44 components

for polycrystalline iron and aluminum.

III. RESULTS AND DISCUSSION

The quantitative evaluation of hCeffi and N allows their

importance to be highlighted. In this section, the analysis is

restricted to macroscopically isotropic polycrystals with

grains of cubic crystallographic symmetry and a uniaxial

stress r33, which allows the use of the definitions given in

Sec. I. Each component of hCeffi and N can be written in

terms of coefficients that signify the relative dependence to

the uniaxial stress. A linear form of hCeffi is given by

hCeff
ijkli ¼ L0 þ L1r33; (23)

where L0 ¼ hCijkli and L1 ¼ �C
I
ijklpq þ h �C

A
ijklpqi þ dik. The

stress-dependent covariance can be written in a quadratic form

Nabcd
ijkl ¼ K0 þ K1r33 þ K2r

2
33; (24)

where K0, K1, and K2 are given by

K0 ¼ hCA
ijklC

A
abcdi � hCA

ijklihCA
abcdi;

K1 ¼ hCA
abcd

�C
A
ijkl33i � hCA

abcdih �C
A
ijkl33i þ hCA

ijkl
�C

A
abcd33i

� hCA
ijklih �C

A
abcd33i;

K2 ¼ h �C
A
ijkl33

�C
A
abcd33i � h �C

A
ijkl33ih �C

A
abcd33i: (25)

The coefficients L0, L1, K0, K1, and K2 can be expressed in

closed-form by evaluating the necessary averages. As an exam-

ple, the expressions for the coefficients K0, K1, and K2 are pre-

sented in Appendix C for the component N3333
3333. Explicit

expressions for the other 43 independent components are given

elsewhere.45 Traditionally, the Voigt index notation is used to

represent the components of the elastic moduli Ceff
IJ ¼ Ceff

ijkl (see

Appendix A for the relation between IJ and ijkl). However, it is

customary to present the components of N in full index form,

Nabdc
ijkl . The forthcoming analysis will follow these conventions.

Calculations of the coefficients allow for a straightforward

comparison between different polycrystalline materials and

tensor components. For example, by using the experimental

values of the single-crystal elastic constants located in Table I,

the coefficients L0 and L1 are given in Tables II and III for pol-

ycrystalline iron and aluminum, respectively. It is observed, by

comparing the values of L1, that the component hCeff
33 i is more

sensitive than hCeff
11 i to the uniaxial stress for both materials.

The coefficients K0, K1, and K2, which define the 44 in-

dependent components of N, are given in Tables IV and V.

Components of N with indices i ¼ a; j ¼ b; k ¼ c, and l ¼ d
define the variability of Ceff

ijkl throughout the polycrystal.47

When the indices differ, N is a measure of covariance

between Ceff
ijkl and Ceff

abcd. The components Nijkl
ijkl, where no

summation is implied over repeated indices, can be used to

display the normally distributed elastic constants Ceff
ijkl,

f Ceff
ijkl;hCeff

ijkli;N
ijkl
ijkl

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2pNijkl
ijkl

q exp �
ðCeff

ijkl�hCeff
ijkliÞ

2

2Nijkl
ijkl

2
4

3
5

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pNijkl

ijkl

q exp �
dCeff

ijkl

� �2

2Nijkl
ijkl

2
64

3
75: (26)

The function f ðCeff
ijkl; hCeff

ijkli;N
ijkl
ijklÞ defines the probability that

a particular grain has the value Ceff
ijkl. As an example, Fig. 1

TABLE I. Single-crystal elastic constants for iron (Refs. 21 and 46) and alu-

minum (Ref. 46) (GPa).

c11 c12 c44 c111 c112 c123 c144 c166 c456

Fe 219.2 136.8 109.2 �2720 �608 �578 �836 �530 �720

Al 107 61 28 �1080 �315 36 �23 �340 �30

TABLE II. Stress-dependent elastic moduli for iron defined in terms of the

coefficients L0 (GPa) and L1 (dimensionless).

hCeff
11 i hCeff

12 i hCeff
13 i hCeff

33 i hCeff
44 i hCeff

66 i

L0 273.6 109.6 109.6 273.6 82.0 82.0

L1 �0.406 0.8666 �1.8075 �7.6910 �0.2788 �0.4536

TABLE III. Stress-dependent elastic moduli for aluminum defined in terms

of the coefficients L0 (GPa) and L1 (dimensionless).

hCeff
11 i hCeff

12 i hCeff
13 i hCeff

33 i hCeff
44 i hCeff

66 i

L0 111 59.0 59.0 111 26 26

L1 1.6853 0.1949 �1.1390 �9.8597 �0.7241 0.7452
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gives the normal distributions f ðCeff
33 ; hCeff

33 i;N3333
3333Þ for differ-

ent levels of uniaxial stress. For each curve, the most proba-

ble value of Ceff
33 is hCeff

33 i. The quantity

ffiffiffiffiffiffiffiffiffiffiffi
N3333

3333

q
is the

standard deviation of Ceff
33 , which defines the width of each

curve. Figure 1 clearly shows how hCeff
33 i and N3333

3333 change

as a function of uniaxial stress. As the uniaxial stress

changes from �500 MPa compression to 500 MPa tension,

the width of the normal distribution (2

ffiffiffiffiffiffiffiffiffiffiffi
N3333

3333

q
) decreases.

This decrease indicates that the stress causes the values of

Ceff
33 for particular grains to be closer to the mean, hCeff

33 i. As

N3333
3333 ! 0, the stress causes the grains to become effectively

isotropic. Similar distributions can be generated using the

other variance components of N.

A comparison made between hCeffi and N is important

when considering applications in ultrasonic nondestructive

evaluation because both tensors help define experimentally

measurable parameters. The stress-dependence of hCeffi indi-

cates the sensitivity of the phase velocity for a small-amplitude

ultrasonic wave to the material stress state. For example, when

a compressional wave propagates parallel to the uniaxial stress,

r33, the phase velocity is given by VL ¼ ðhCeff
33 i=qÞ

1=2
whereas

a compressional wave propagating perpendicular to the uniaxial

stress is VL ¼ ðhCeff
11 i=qÞ

1=2
. Similarly, the component N3333

3333

dictates the intensity of ultrasonic grain scattering when

TABLE IV. Stress-dependent covariance tensor components for iron (single-crystal elastic constants given in Table I) defined in terms of the coefficients K0

(GPa2), K1 (GPa), and K2 (dimensionless).

N1111
1111 N1122

1111 N1133
1111 N1212

1111 N1313
1111 N2222

1111 N2233
1111 N2323

1111 N3333
1111 N1112

1112 N1222
1112

K0 563.69 �281.84 �281.84 �281.84 �281.84 211.38 70.46 70.46 211.38 352.30 �264.23

K1 �23.27 28.98 �8.16 33.02 �6.82 �28.76 0.40 �4.99 9.61 �29.57 30.95

K2 3.14 �1.10 �2.08 �0.99 �2.11 0.87 0.22 0.14 1.92 1.55 �0.99

N1233
1112 N1323

1112 N1113
1113 N1223

1113 N1322
1113 N1333

1113 N1122
1122 N1133

1122 N1212
1122 N1313

1122 N3333
1122

K0 �88.08 �88.08 352.30 �88.08 �88.08 �264.23 317.07 �35.23 317.07 �35.23 70.46

K1 �2.14 �0.46 2.40 9.84 4.80 �9.50 �31.58 2.30 �30.24 1.62 �3.98

K2 �0.57 �0.56 2.35 �0.95 �0.20 �2.20 1.40 �0.28 1.29 �0.22 0.50

N1123
1123 N1213

1123 N2333
1123 N1133

1133 N1212
1133 N1313

1133 N2233
1133 N2323

1133 N3333
1133 N1212

1212 N1313
1212

K0 176.15 176.15 �88.08 317.07 �35.23 317.07 �35.23 �35.23 �281.84 317.07 �35.23

K1 �6.89 �5.20 1.32 8.63 �3.09 7.96 �3.00 3.06 �8.08 �28.89 �3.76

K2 0.88 0.83 �0.66 2.40 �0.33 2.37 0.05 0.13 �2.47 1.40 �0.38

N3333
1212 N1213

1213 N2333
1213 N1233

1233 N1323
1233 N1313

1313 N2323
1313 N3333

1313 N1323
1323 N1333

1333 N3333
3333

K0 70.46 176.15 �88.08 176.15 176.15 317.07 �35.23 �281.84 �176.15 352.30 563.69

K1 6.79 �3.52 �5.41 5.81 2.45 7.28 9.12 �13.47 �0.92 11.35 21.08

K2 0.71 0.90 �0.77 1.17 1.12 2.45 0.20 �2.57 1.13 2.91 5.02

TABLE V. Stress-dependent covariance tensor components for aluminum (single-crystal elastic constants given in Table I) defined in terms of the coefficients

K0 (GPa2), K1 (GPa), and K2 (dimensionless).

N1111
1111 N1122

1111 N1133
1111 N1212

1111 N1313
1111 N2222

1111 N2233
1111 N2323

1111 N3333
1111 N1112

1112 N1222
1112

K0 3.048 �1.524 �1.524 �1.524 �1.524 1.143 0.381 0.381 1.143 1.905 �1.429

K1 1.161 �0.798 0.038 �0.714 0.065 0.597 0.10 �0.011 �0.438 0.847 �0.706

K2 0.907 �0.197 �0.655 �0.187 �0.650 0.103 0.075 0.059 0.544 0.370 �0.169

N1233
1112 N1323

1112 N1113
1113 N1223

1113 N1322
1113 N1333

1113 N1122
1122 N1133

1122 N1212
1122 N1313

1122 N3333
1122

K0 �0.476 �0.476 1.905 �0.476 �0.476 �1.429 1.714 �0.190 1.714 �0.190 0.381

K1 �0.016 0.019 �0.016 �0.032 �0.137 0.528 0.751 0.098 0.779 0.084 �0.295

K2 �0.183 �0.178 0.753 �0.037 �0.034 �0.729 0.298 �0.115 0.291 �0.111 0.256

N1123
1123 N1213

1123 N2333
1123 N1133

1133 N1212
1133 N1313

1133 N2233
1133 N2323

1133 N3333
1133 N1212

1212 N1313
1212

K0 0.952 0.952 �0.476 1.714 �0.190 1.714 �0.190 �0.190 �1.524 1.714 �0.190

K1 �0.007 0.027 0.269 �0.585 �0.014 �0.599 �0.148 �0.023 1.133 0.806 �0.028

K2 0.281 0.273 �0.275 0.847 �0.088 0.841 0.059 0.037 �1.002 0.300 �0.092

N3333
1212 N1213

1213 N2333
1213 N1233

1233 N1323
1233 N1313

1313 N2323
1313 N3333

1313 N1323
1323 N1333

1333 N3333
3333

K0 0.381 0.952 �0.476 0.952 0.952 1.714 �0.190 �1.524 0.952 1.905 3.048

K1 �0.072 0.062 0.129 �0.218 �0.288 �0.613 0.103 1.022 �0.358 �1.297 �3.066

K2 0.144 0.275 �0.227 0.394 0.402 0.845 0.015 �0.946 0.415 1.174 2.406
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considering an incident wave parallel to the uniaxial stress that

scatters backwards in the opposite direction.1,2 The influence of

uniaxial stress on backscatter, which was perpendicular to the

uniaxial stress, was considered experimentally by Kube et al.18

In this case, the change in the backscatter amplitude was caused

by the sensitivity of the component N1111
1111 to the uniaxial stress.

Other scattering configurations where the incident wave is scat-

tered into an arbitrary direction are dependent on other compo-

nents of Nabcd
ijkl .48–50 Additionally, other scattering related

phenomenon such as ultrasonic attenuation21–25,51 and radiative

transfer of ultrasound48,52–54 depend on inner products with N.

The stress-dependence of each of these models is included by

using the definition of N defined in this article.

The stress-dependence of hCeff
ijkli and Nijkl

ijkl is illustrated in

Figs. 2 and 3 for iron and aluminum, respectively. Figures 2

and 3 illustrate that N has a much greater sensitivity to the

uniaxial stress than hCeffi. This result indicates that many

measurable quantities related to ultrasonic scattering have

the potential to have much greater measurement resolution

than previous acoustoelastic techniques based on phase

velocity measurements. For aluminum, the sensitivity of N is

greater than iron partly because of the strong quadratic de-

pendence, which depends on the second-order coefficient K2.

The underlying cause of the increased sensitivity of alumi-

num compared with iron arises from the magnitudes of the

single-crystal elastic anisotropy constants �, d1, d2, and d3.

The relation between the stresses in a polycrystalline ma-

terial and scattering based measurements has a strong potential

for development into techniques for stress evaluation.

Alternatively, neglecting the possible stresses when applying

scattering based techniques to measure other variables could

introduce severe errors into the measurement. For example,

several researchers1–4,6–10 use ultrasonic grain noise as a mea-

surement tool of the microstructural grain dimensions. If the

measurements were done on samples with large residual stress

levels, their resultant grain dimension measurements are likely

incorrect estimates. An error in other measurement parameters,

such as macroscopic texture,12,13 could also be considerable.

IV. CONCLUSION

In this article, the stress-dependence of the covariance ten-

sor N was derived. This tensor is a measure of the variability of

the elastic constants throughout the polycrystal. To arrive at N,

the stress-dependent effective elastic modulus for a single crys-

tallite was defined as Ceff , which is homogenized in order to

define the analogous tensor hCeffi. hCeffi is the stress-dependent

effective elastic modulus tensor for a stressed polycrystal. The

definition of N differs from the previous definition in Turner

and Ghoshal17 by making use of the constitutive stress/strain

relation developed by Man and co-workers and Huang et
al.31–37 This constitutive relation introduces the initial stress r,

which is valid for residual or mechanically induced stresses.

An evaluation of the components of N demonstrates the

strong dependence on the stresses in the material. This

stress-dependency can cause the elastic moduli of individual

grains to deviate or converge toward the mean value, hCeffi.
The stressed-induced variations of Ceff , which is governed

by N, amongst the grains strongly influences ultrasonic scat-

tering based phenomenon. The stronger stress sensitivity of

N compared to hCeffi indicates that scattering based methods

could be preferred over phase velocity techniques for non-

destructive stress analysis.

The influence of stresses on N also impacts model-

assisted scattering measurements where the material stresses

have been neglected previously. Common parameters

FIG. 1. (Color online) The probability distribution function defining the

likelihood that ceff
33 for a single-grain obtains one of the distribution of val-

ues. Each curve is normally distributed about the peak value of hceff
33 i. The

different curves represent the influence of the uniaxial stress on the alumi-

num polycrystal. Moving from values of compression to large values of ten-

sion, the variance tensor N3333
3333 (or the square of the standard deviation)

becomes smaller. Thus, for this example, the uniaxial stress causes a

decrease in variability of ceff
33 amongst the ensemble of grains.

FIG. 2. The effective stress-dependent

elastic moduli hCeff
ijkli and stress-

dependent covariance tensor Nabcd
ijkl for

iron normalized to their stress-free val-

ues plotted against values of uniaxial

stress. The curves were generated

using the data from Tables II and IV

and single-crystal elastic constants

from Table I.
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measured by ultrasonic scattering such as grain dimensions

or material texture could contain large errors if the experi-

mental samples contained residual stresses.

This theory forms the starting point of an acoustoelastic

description of wave propagation and scattering in polycrys-

talline materials. Future work will focus on using the stress-

dependent elastic properties Ceff ; hCeffi, and N to arrive at

explicit stress-dependent models for scattering related

phenomenon.
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APPENDIX A: TENSOR DEFINITIONS FOR THE
SECOND- AND THIRD-ORDER ELASTIC CONSTANTS
OF CRYSTALS

The elastic fourth- and sixth-rank tensors defining the

elastic moduli are Cijkl and Cijklmn, respectively. Both tensors

exhibit the minor (Cijkl¼Cjikl¼Cijlk, Cijklmn¼Cjiklmn

¼Cijlkmn¼Cijklnm) and major (Cijkl¼Cklij, Cijklmn¼Cklijmn

¼Cmnklij) symmetries, which reduces the number of inde-

pendent second- and third-order elastic constants to 21 and

56, respectively. The fourth-rank tensor defining the elastic

compliance is Sijkl and exhibits the same symmetries as Cijkl.

These tensors can be written with respect to a rotated

Cartesian coordinate system using the transformations55

C0ijkl ¼ aipajqakralsCpqrs; S0ijkl ¼ aipajqakralsSpqrs; and

C0ijklmn ¼ aipajqakralsamtanuCpqrstu; (A1)

where aij are components of the transformation matrix and the

primed notation is used to describe the tensors in the rotated

system. Expansion of the tensors in Eq. (A1) and application

of the major and minor elastic symmetry relations gives gen-

eral forms of the tensors for any rotated coordinate system.

Such forms are appropriate to describe the elastic properties

of grains with various orientations. The general forms of Eq.

(A1) can be simplified using the symmetry relations for spe-

cific crystallographic point groups.56 For example, the expan-

sion of Cijkl in Eq. (A1) for cubic crystals is

Cijkl ¼ c11ðai1aj1ak1al1 þ ai2aj2ak2al2 þ ai3aj3ak3al3Þ þ c12ðai1aj1ak2al2 þ ai2aj2ak1al1

þ ai1aj1ak3al3 þ ai3aj3ak1al1 þ ai2aj2ak3al3 þ ai3aj3ak2al2Þ
þ c44ðai1aj2ak1al2 þ ai1aj2ak2al1 þ ai2aj1ak1al2 þ ai2aj1ak2al1 þ ai1aj3ak1al3

þ ai1aj3ak3al1 þ ai3aj1ak1al3 þ ai3aj1ak3al1 þ ai2aj3ak2al3 þ ai2aj3ak3al2

þ ai3aj2ak2al3 þ ai3aj2ak3al2Þ; (A2)

where the Voigt index notation has been utilized (index pairs

11! 1; 22! 2; 33! 3; 23! 4; 13! 5; 12! 6) along

with the symmetry relations c11¼ c22¼ c33, c12¼ c13¼ c23,

c44¼ c55¼ c66. Making use of the identity aiuaju ¼ dij, Eq.

(A2) can be simplified to

Cijkl ¼ c12dijdkl þ 2c44Iijkl þ �Aijkl; (A3)

where Aijkl ¼ aiuajuakualu and � ¼ c11 � c12 � 2c44 is the an-

isotropy coefficient for the second-order elastic constants of

cubic crystals. Equation (A3) was first derived by Thomas

who sought an invariant form of Hooke’s law for crystals of

cubic symmetry.57 The fourth-rank elastic compliance tensor

for cubic crystals can be written immediately as

Sijkl ¼ s12dijdkl þ 2s44Iijkl þ �sAijkl; (A4)

where �s ¼ s11 � s12 � 2s44. Equations (A3) and (A4) can be

shown to satisfy the relation CijmnSmnkl ¼ Iijkl, from which

the relations between elastic constants and compliances can

be obtained for any crystallographic symmetry. For crystals

of cubic symmetry

FIG. 3. The effective stress-dependent

elastic moduli hCeff
ijkli and stress-

dependent covariance tensor Nabcd
ijkl for

aluminum normalized to their stress-

free values plotted against values of

uniaxial stress. The curves were gener-

ated using the data from Tables III and

V and single-crystal elastic constants

from Table I.
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s11 ¼
c11 þ c12

c11 � c12ð Þ c11 þ 2c12ð Þ ;

s12 ¼ �
c12

c11 � c12ð Þ c11 þ 2c12ð Þ ; s44 ¼
1

4c44

: (A5)

An incorrect stiffness/compliance relation, s44 ¼ 1=c44, was

used in the previous work of Turner and Ghoshal.17 Equation

(A5) gives the correction to this error. An analogous proce-

dure is used to obtain a simplified general form of the sixth-

rank tensor Cijklmn for cubic crystals, which is given as

Cijklmn ¼ c123d
1
ijklmn þ 2c144d

2
ijklmn þ 2c456d

3
ijklmn

þ d1A1
ijklmn þ d2A2

ijklmn þ d3A3
ijklmn; (A6)

where d1 ¼ c111 � 3c112 þ 2c123 þ 12c144 � 12c155 þ16c456;
d2 ¼ c112 � c123 � 2c144, and d3 ¼ c155 � c144 � 2c456 are

the three anisotropy constants of the third-order elastic con-

stants. The first three terms of Cijklmn are given as a linear

combination of the three sixth-rank isotropic tensors,

d1
ijklmn ¼ dijdkldmn; d2

ijklmn ¼ dijIklmn þ dklIijmn þ dmnIijkl;

d3
ijklmn ¼ dikIjlmn þ dilIjkmn þ dimIjnkl þ dinIjklm; (A7)

while the last three terms are given as

A1
ijklmn ¼ aiuajuakualuamuanu;

A2
ijklmn ¼ dijAklmn þ dklAijmn þ dmnAijkl; and

A3
ijklmn ¼ dikAjlmn þ dilAklmn þ dimAjkln þ dinAjklm

þ djkAilmn þ djlAikmn þ djmAikln þ djnAiklm

þ dkmAijln þ dknAijlm þ dlmAijkn þ dlnAijkm:

(A8)

Equation (A6) agrees with the expressions given by Barsch58

and Ballabh et al.59 The construction of invariant tensors of

higher rank can proceed in the same manner.

It is often convenient to write Cijkl and Cijklmn in terms

of isotropic and orientation dependent parts

Cijkl ¼ CI
ijkl þ CA

ijkl; Cijklmn ¼ CI
ijklmn þ CA

ijklmn; (A9)

where

CI
ijkl ¼ c12dijdkl þ 2c44Iijkl; CA

ijkl ¼ �Aijkl;

CI
ijklmn ¼ c123d

1
ijklmn þ 2c144d

2
ijklmn þ 2c456d

3
ijklmn; and

CA
ijklmn ¼ d1A1

ijklmn þ d2A2
ijklmn þ d3A3

ijklmn: (A10)

These definitions help simplify the expressions and compu-

tational burden when calculating the covariance tensors in

Eq. (24).

APPENDIX B: TENSOR AVERAGES

The computational demands of the orientation averages

are greatly reduced by the physical assumption of randomly

oriented grains. For such a case, all averages of the orienta-

tion dependent tensors can be written as isotropic tensors.

Even-rank isotropic tensors up to Nth-rank can be obtained

using an iteration procedure given by60,61

I
ðNÞ
i1:::iN
¼ di1i2 I

ðN�2Þ
i3i4i5i6:::iN

þ di1i3 I
ðN�2Þ
i2i4i5i6:::iN

þ di1i4 I
ðN�2Þ
i2i3i5i6:::iN

þ � � � þ ðN � 1 termsÞ; (B1)

for N ¼ 2 to 12;

I
ð2Þ
ij ¼ dij;

I
ð4Þ
ijkl ¼ dijI

ð2Þ
kl þ dikI

ð2Þ
jl þ dilI

ð2Þ
jk ;

I
ð6Þ
ijklmn ¼ dijI

ð4Þ
klmn þ dikI

ð4Þ
jlmn þ dilI

ð4Þ
jkmn þ dimI

ð4Þ
jkln þ dinI

ð4Þ
jklm;

I
ð8Þ
ijklkmnpq ¼ dijI

ð6Þ
klmnpq þ dikI

ð6Þ
jlmnpq þ dilI

ð6Þ
jkmnpq þ dimI

ð6Þ
jklnpq

þ dinI
ð6Þ
jklmpq þ dipI

ð6Þ
jklmnq þ diqI

ð6Þ
jklmnp;

I
ð10Þ
ijklmnpqrs ¼ dijI

ð8Þ
klmnpqrs þ dikI

ð8Þ
jlmnpqrs þ dilI

ð8Þ
jkmnpqrs

þ dimI
ð8Þ
jklnpqrs þ dinI

ð8Þ
jklmpqrs þ dipI

ð8Þ
jklmnqrs

þ diqI
ð8Þ
jklmnprs þ dirI

ð8Þ
jklmnpqs þ disI

ð8Þ
jklmnpqr;

I
ð12Þ
ijklmnpqrstw ¼ dijI

ð10Þ
klmnpqrstw þ dikI

ð10Þ
jlmnpqrstw þ dilI

ð10Þ
jkmnpqrstw

þ dimI
ð10Þ
jklnpqrstw þ dinI

ð10Þ
jklmpqrstw þ dipI

ð10Þ
jklmnqrstw

þ diqI
ð10Þ
jklmnprstw þ dirI

ð10Þ
jklmnpqstw þ disI

ð10Þ
jklmnpqrtw

þ ditI
ð10Þ
jklmnpqrsw þ diwI

ð10Þ
jklmnpqrst; (B2)

where the number of summed terms in the Nth-rank tensor is

1� 3� 5� � � � � ðN � 1Þ. As an example, the averages

needed to calculate hCijkli and hCijklmni are

haiuajuakualui ¼
1

5
I 4ð Þ
ijkl;

haiuajuakualuamuanui ¼
1

35
I 6ð Þ
ijklmn: (B3)

Higher-rank averages are more complex but can also be writ-

ten in terms of the isotropic tensors

haiuajuakualuaavabvacvadvi

¼ 4

105
ILLLLGGGG þ

1

420
ILGLGLGLG þ

13

35
ILLGGLGLG;

haiuajuakualuaavabvacvadva�vafvi

¼ 1

165
ILLLLGGGGGG �

1

3465
ILLGGGGLGLG

þ 1

1980
IGGLGLGLGLG;

haiuajuakualuamuanuaavabvacvadvi

¼ 1

165
ILLLLLLGGGG �

1

3465
ILLLLGGLGLG

þ 1

1980
ILLLGLGLGLG;

haiuajuakualuamuanuaavabvacvadva�vafvi

¼ 41

45045
ILLLLLLGGGGGG �

1

19305
ILLLLGGGGLGLG

þ 2

45045
ILLGGLGLGLGLG þ

1

120120
ILGLGLGLGLGLG;

(B4)

where
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ILLLLGGGG ¼ I
ð4Þ
ijklI
ð4Þ
abcd

¼ dijdkldabdcd þ all permutations of two pairs of Latin and

Latin indices; and two pairs of Greek and Greek indices ð9 termsÞ;
ILGLGLGLG ¼ diadjbdkcdld þ all permutations of four pairs of Latin and Greek indices ð24 termsÞ;
ILLGGLGLG ¼ dijdabdkcdld þ all permutations of two pairs of Latin and Greek indices;

one pair of Latin and Latin indices; and one pair of Greek and Greek indices ð72 termsÞ;

ILLLLGGGGGG ¼ I
ð4Þ
ijklI
ð6Þ
abcd�f

¼ dijdkldabdcdd�f þ all permutations of two pairs of Latin and

Latin indices; and three pairs of Greek and Greek indices ð45 termsÞ;
ILLGGGGLGLG ¼ dijdabdcddk�dlf þ all permutations of one pair of Latin and

Latin indices; two pairs of Greek and Greek indices; and two pairs of

Latin and Greek indices ð540 termsÞ;
ILLLGLGLGLG ¼ dijdkadlbdmcdnd þ all permutations of one pair of Latin and

Latin indices; and four pairs of Latin and Greek indices ð360 termsÞ;

ILLLLLLGGGG ¼ I
ð6Þ
ijklmnI

ð4Þ
abcd

¼ dijdkldmndabdcd þ all permutations of three pairs of Latin and

Latin indices; and two pairs of Greek and Greek indices ð45 termsÞ;
ILLLLGGLGLG ¼ dijdkldabdmcdnd þ all permutations of two pairs of Latin and

Latin indices; one pair of Greek and Greek indices; and two pairs of

Latin and Greek indices ð540 termsÞ;
IGGLGLGLGLG ¼ dabdicdjddk�dlf þ all permutations of one pair of Greek and

Greek indices; and four pairs of Latin and Greek indices ð360 termsÞ;

ILLLLLLGGGGGG ¼ I
ð6Þ
ijklmnI

ð6Þ
abcd�f

¼ dijdkldmndabdcdd�f þ all permutations of three pairs of Latin and

Latin indices; and three pairs of Greek and Greek indices ð225 termsÞ;
ILLLLGGGGLGLG ¼ dijdkldabdcddm�dnf þ all permutations of two pairs of Latin and

Latin indices; two pairs of Greek and Greek indices; and two pairs of

Latin and Greek indices ð4050 termsÞ;
ILLGGLGLGLGLG ¼ dijdabdkcdlddm�dnf þ all permutations of one pair of Latin and

Latin indices; one pair of Greek and Greek indices; and four pairs of

Latin and Greek indices ð5400 termsÞ;
ILGLGLGLGLGLG ¼ diadjbdkcdlddm�dnf þ all permutations of six pairs of Latin and Greek indices ð720 termsÞ: (B5)

The 105 terms containing products of 8 Kronecker delta functions are the individual terms found in I
ð8Þ
ijklmnpq, while the 945

terms containing products of 10 delta functions are the individual terms found in I
ð10Þ
ijklmnpqrs, and the 10 395 terms containing

products of 12 delta functions are the individual terms found in I
ð12Þ
ijklmnpqrstw.

APPENDIX C: EXAMPLE EXPRESSION FOR THE COMPONENT N3333
3333

The individual components of N may be written in terms of the coefficients K0, K1, and K2. Thus, as an example, the ana-

lytical form of the component N3333
3333 ¼ K0 þ K1r33 þ K2r2

33, where

K0 ¼
16�2

525
;

K1 ¼
32s12�

2

525
þ 64s44�

2

175
þ 224�2�s

825
þ 128c12��s

525
þ 256c44��s

525
þ 128c144��s

525
þ 256c456��s

525
þ 32s12d1�

525
þ 32s12d2�

175

þ 256s12d3�

525
þ 64s44d1�

385
þ 64s44d2�

175
þ 256s44d3�

175
þ 32d1��s

385
þ 32d2��s

175
þ 5248d3��s

5775
; and
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K2 ¼
256c2

12�
2
s

525
þ 1024c2

44�
2
s

525
þ 256c2

144�
2
s

525
þ 1024c2

456�
2
s

525
þ 16s2

12d2
1

525
þ 48s2

12d2
2

175
þ 1024s2

12d2
3

525
þ 1600s2

44d2
1

7007
þ 192s2

44d2
2

175

þ 3072s2
44d2

3

175
þ 16s2

12�
2

525
þ 192s2

44�
2

175
þ 400d2

1�
2
s

7007
þ 48d2

2�
2
s

175
þ 3574016d2

3�
2
s

525525
þ 321296�2�2

s

525525
þ 1024c12c44�

2
s

525

þ 512c12c144�
2
s

525
þ 1024c44c144�

2
s

525
þ 1024c12c456�

2
s

525
þ 2048c44c456�

2
s

525
þ 1024c144c456�

2
s

525
þ 64s12s44d2

1

385
þ 192s12s44d2

2

175

þ 2048s12s44d2
3

175
þ 64s12s44�

2

175
þ 128c12d1�

2
s

385
þ 128c12d2�

2
s

175
þ 20992c12d3�

2
s

5775
þ 256c44d1�

2
s

385
þ 256c44d2�

2
s

175

þ 41984c44d3�
2
s

5775
þ 128c144d1�

2
s

385
þ 128c144d2�

2
s

175
þ 20992c144d3�

2
s

5775
þ 256c456d1�

2
s

385
þ 256c456d2�

2
s

175
þ 41984c456d3�

2
s

5775

þ 32s2
12d1d2

175
þ 256s2

12d1d3

525
þ 256s2

12d2d3

175
þ 384s2

44d1d2

385
þ 1536s2

44d1d3

385
þ 1536s2

44d2d3

175
þ 896c12��

2
s

825
þ 1792c44��

2
s

825

þ 896c144��
2
s

825
þ 1792c456��

2
s

825
þ 32s2

12d1�

525
þ 32s2

12d2�

175
þ 256s2

12d3�

525
þ 384s2

44d1�

385
þ 384s2

44d2�

175
þ 1536s2

44d3�

175

þ 32s12d2
1�s

385
þ 96s12d2

2�s

175
þ 41984s12d2

3�s

5775
þ 1600s44d2

1�s

7007
þ 192s44d2

2�s

175
þ 41984s44d2

3�s

1925
þ 224s12�

2�s

825
þ 448s44�

2�s

275

þ 96d1d2�
2
s

385
þ 3968d1d3�

2
s

3185
þ 5248d2d3�

2
s

1925
þ 13088d1��

2
s

35035
þ 224d2��

2
s

275
þ 2141312d3��

2
s

525525
þ 128c12s12d1�s

525

þ 128c12s12d2�s

175
þ 1024c12s12d3�s

525
þ 256c12s44d1�s

385
þ 256c44s12d1�s

525
þ 256c12s44d2�s

175
þ 256c44s12d2�s

175

þ 1024c12s44d3�s

175
þ 2048c44s12d3�s

525
þ 512c44s44d1�s

385
þ 512c44s44d2�s

175
þ 2048c44s44d3�s

175
þ 128c144s12d1�s

525

þ 128c144s12d2�s

175
þ 1024c144s12d3�s

525
þ 256c144s44d1�s

385
þ 256c144s44d2�s

175
þ 1024c144s44d3�s

175
þ 256c456s12d1�s

525

þ 256c456s12d2�s

175
þ 2048c456s12d3�s

525
þ 512c456s44d1�s

385
þ 512c456s44d2�s

175
þ 2048c456s44d3�s

175
þ 1664s12s44d1d2

1925

þ 768s12s44d1d3

275
þ 256s12s44d2d3

35
þ 128c12s12��s

525
þ 256c12s44��s

175
þ 256c44s12��s

525
þ 512c44s44��s

175

þ 128c144s12��s

525
þ 256c144s44��s

175
þ 256c456s12��s

525
þ 512c456s44��s

175
þ 1024s12s44d1�

1925
þ 256s12s44d2�

175

þ 768s12s44d3�

175
þ 832s12d1d2�s

1925
þ 9088s12d1d3�s

5775
þ 1152s12d2d3�s

275
þ 384s44d1d2�s

385
þ 157184s44d1d3�s

35035

þ 18944s44d2d3�s

1925
þ 2048s12d1��s

5775
þ 384s12d2��s

385
þ 17792s12d3��s

5775
þ 3968s44d1��s

3185
þ 5248s44d2��s

1925
þ 4608s44d3��s

385
:
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