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Spin Transfer of Quantum Information between Majorana Modes and a Resonator

Alexey A. Kovalev,1 Amrit De,2 and Kirill Shtengel2
1Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska,

Lincoln, Nebraska 68588, USA
2Department of Physics and Astronomy, University of California, Riverside, California 92521, USA

(Received 10 June 2013; published 10 March 2014)

We show that resonant coupling and entanglement between a mechanical resonator and Majorana bound
states can be achieved via spin currents in a 1D quantum wire with strong spin-orbit interactions. The
bound states induced by vibrating and stationary magnets can hybridize, thus resulting in spin-current
induced 4π-periodic torques, as a function of the relative field angle, acting on the resonator. We study the
feasibility of detecting and manipulating Majorana bound states with the use of magnetic resonance force
microscopy techniques.

DOI: 10.1103/PhysRevLett.112.106402 PACS numbers: 71.10.Pm, 07.10.Cm, 74.78.Na

Introduction.—Majorana zero states bound to domain
walls in 1D and quasi-1D systems such as p-wave super-
conducting wires [1], edges of 2D topological insulators
[2,3], and semiconducting quantum wires with strong spin-
orbit interactions [4,5] can potentially be utilized to form
nonlocal qubits, thus providing a platform for topological
quantum computing [6–8]. Of these systems, spin-orbit-
coupled semiconductor wires with proximity-induced
superconductivity are of particular practical interest, with
a number of recent experiments aiming at establishing the
existence of Majorana bound states (MBS) there [9–12].
While further studies are needed to unambiguously confirm
their existence [13–18], there is also an underlying need to
further develop efficient techniques to manipulate MBS
[19–25]. Several recent proposals suggested controlling
topological qubits by coupling them to more conventional
ones, such as flux qubits via the Aharonov-Casher effect
[26–30].
Proposed experiments to observe MBS quite often rely

on tunneling and transport effects that are indicative of the
zero energy nature of these modes [13–18]. Some recent
proposals are also related to unconventional Josephson
effect in Majorana quantum wires and topological insulator
(TI) edges where the periodicity is equal to 4π [1,4,31,32].
A dual effect whereby a torque between magnets exhibits
4π periodicity in the field orientations has also been
suggested [33–35]. In this Letter, we show that it is
precisely this effect that enables quantum information
transfer between MBS and a mechanical resonator.
The idea of coupling a two-level system to vibrational

modes to form a hybrid quantum system (a mechanical
analog of cavity electrodynamics) has been successfully
used in quantum optics [36] and in the field of nano-
mechanical resonators where a single phonon control has
been demonstrated [37]. State-of-the-art nanomechanical
resonators have high quality factors and can couple to a
wide range of forces (e.g., produced by spin states of

localized atom-like systems); thus, they can serve as
intermediary for coupling of quantum systems [38–40]
and even for realizations of many-body simulators [41].
Quite excitingly, these developments can now make it
possible to observe similar strong coupling effects in the
context of topological qubits. However, how this can be
achieved in the case of MBS is an open question, which we
address in this Letter. In addition, this mechanism can be
used to couple Majorana qubits to nontopological qubits
such as nitrogen-vacancy centers [42]. Conservation of
angular momentum in macrospin molecules can result in
quantum entanglement of a tunneling spin with mechanical
modes [43,44]. A flow of spin current between two
magnets leads to spin-transfer torque effect [45,46] and
mechanical torques [47,48], also by conservation of angu-
lar momentum.
In this Letter, we show that resonant coupling between a

Majorana qubit and a mechanical resonator can be induced
by spin currents flowing over portions (region of length
ln in Fig. 1) of 1D semiconductor wire. The coupling

FIG. 1 (color online). A 1D semiconductor wire with strong
spin-orbit coupling is placed on top of an s-wave superconductor.
Majorana bound states are defined by magnetic fields of two
magnets, one of which is free to vibrate. The gate VG can be used
to control their hybridization.
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is controlled by nondissipative spin currents in a spin-
transistor-type architecture [49]—which effectively allows
or disallows the hybridization of two MBS. A nanomagnet
attached to the resonator then feels the hybridization as a
mechanical torque, which can result in the state transfer
between the Majorana qubit and the mechanical resonator.
A Majorana qubit is formed by four MBS where three of

these MBS are hybridized (Fig. 1). The nontopological
region is formed by magnets with sharp field profiles and/or
by heterojunction nanowires with contrasting g factors. In
the following, we show that MBS are described by the
effective low energy Hamiltonian H ¼ iEnðθÞγ2γ3þ
iEtγ3γ4, where θ is the angle between the magnetic fields,
EtðnÞ describes the hybridization energy, and γi describe
MBS. It is the θ dependence of the hybridization energy
that leads to three interrelated effects: (i) coupling of the
rotation of the magnet to the internal state of Majorana
qubit, (ii) mechanical torque acting on the magnets, and
(iii) spin current jzsðxÞ ¼ Re½Ψ†ðxÞσ̂zυ̂ΨðxÞ� defined in the
nontopological middle section in which the magnetic field
is absent; here, the velocity operator is υ̂ ¼ ∂Ĥ=∂p. We
find that the torque on the magnets [33–35] is generated
solely by the spin current passing through the middle
nontopological region when there is no hybridization over
the topological regions in Fig. 1.
According to our theory, strong coupling between the

Majorana qubit and the mechanical resonator can lead to a
shift in the mechanical resonant frequency, Rabi oscilla-
tions, coherent state transfer, and entanglement. All of these
effects could signify the presence of a Majorana qubit.
Spin currents and edge hybridization.—We consider a

semiconductor wire with strong spin-orbit coupling in the
presence of a Zeeman field (note that a TI edge gives
qualitatively similar results). The wire is proximity coupled
to an s-wave superconductor which induces the pairing
strength Δ in the wire. A topological region is induced by
external magnets (Fig. 1) where one of the magnets is
attached to a mechanical resonator and can mechanically
vibrate at frequency ωr ≪ Δ.
The 1D wire is described by a Bogoliubov–de Gennes

Hamiltonian:

Ĥ ¼ p2

2m� τ̂
z þ αso

ℏ
pτ̂zσ̂z − μτ̂z þ Δðcosϕτ̂x − sinϕτ̂yÞ

− bσ̂z þ Bðcos θσ̂x − sin θσ̂yÞ; (1)

where m� is the effective mass, αso is the strength of the
spin-orbit interaction, μ is the chemical potential, Δeiϕ is
the superconducting pairing, b is the magnetic field along
the z direction, and B is the magnetic field in the xy plane.
Here, we use the Nambu spinor basis ΨT ¼ ðψ↑;ψ↓;
ψ†
↓;−ψ†

↑Þ and the Pauli matrices σ̂i and τ̂i describe the
spin and particle-hole sectors, respectively.
The Hamiltonian (1) supports both gapped and gapless

phases; the transition between them can be driven by the
Zeeman term [50,51]. The phase diagram is more

complicated compared to a similar TI edge system
[33,35] for which the p2τz term is absent. Here we restrict
ourselves to the case Δ2 > b2 so that the Hamiltonian (1)
describes two gapped phases: topological (T) if Δ2 − b2 <
B2 − μ2 and nontopological (N) if Δ2 − b2 > B2 − μ2,
separated by a quantum phase transition at Δ2 − b2 ¼
B2 − μ2.
We analytically study the hybridization of the edge

modes which results in spin currents and torques in N-T-N
and T-N-T setups where a finite topological (T) or
nontopological (N) region is created in an infinite semi-
conductor wire of the opposite kind (see Fig. 2). We assume
that the phase of the superconducting pairing is constant
throughout the wire, the magnetic field is always zero for
N regions, and b ¼ 0 in all regions. Then the gapped regions
are described by parameters fΔ; B; μ; θg for a T region and
by fΔ; μg for an N region (see Fig. 2). We first determine
the bound state at a single T-N boundary by finding a
4-component zero energy solution to the Hamiltonian (1)
in the formΨðxÞ ¼ eκxΨðκÞ. We arrive at four solutions that
decay into the topological region, i.e., with ReðκÞ > 0, and
four solutions that decay into the nontopological region,
i.e., with ReðκÞ < 0. A linear combination of these solutions
on each side has to be continuous and have a continuous
derivative at the boundary between T andN regions leading
to a unique solution for MBS. We denote such normalized
solutions as jψLi for the left Majorana and as jψRi for the
rightMajorana inFig. 2.Weuse the lowest orderperturbation
theory to find the hybridization energy of theMBS provided
that the normalized solutions for the left and right edges
weakly overlap, i.e., EnðtÞ ≈ jhψLjHjψRij, where the index
stands for the hybridization energy over the nontopological
(topological) region. For the T-N-T system in Fig. 2, we
obtain the hybridization energy over the nontopological
region:

En

En
0

≈ e−lnReðκn2Þ cos
�
θ

2
þ Φ0 þ lnImðκn2Þ

�
: (2)

Here, κn2 ¼ m�=ℏ2½iαso − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðiΔþ μÞℏ2=m� þ α2so

p
�, θ ¼

θr − θl, and En
0 and Φ0 depend on parameters of the
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FIG. 2 (color online). Hybridization energies of two Majorana
bound states over topological and nontopological regions in a
semiconductor wire as a function of the hybridization region
length (left) and relative angle of magnetic fields θ ¼ θr − θl
(right), only for T-N-T structures. The circles represent numerical
results.
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T andN regions anddonot dependonln andθ [52]. The spin
current is

jzs ¼
∂EnðθÞ
∂θ ; (3)

which shows that the torque ∂EnðθÞ=∂θ on the magnets in
Fig. 1 is generated by the spin current in the middleN region
[52]. For the N-T-N system in Fig. 2, we obtain the
hybridization energy over the topological region:

Et

Et
0

≈ e−ltκ
t
2 þ jA0je−ltReðκt1Þ cos½argA0 þ ltImðκt1Þ�; (4)

where κt1 and κt2 are solutions of equationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − ½κ2ℏ2=2mþ μ�2

p
¼ Δþ αsoκ satisfying the condi-

tion ReðκÞ > 0, and Et
0 and A0 depend on parameters of

the T and N regions and do not depend on lt and θ [52].
Figure 2 shows the hybridization energies given by Eqs. (2)
and (4) for parameters corresponding to an InSb nanowire.
We observe an exponential decay with separation and a
4π-periodic behavior with the relative angle of magnetic
fields, which is typical for TI edges [33,35]. In addition, we
find oscillatory behavior as a function of separation between
the MBS suggested earlier [53,54]; however, we also obtain
anadditionalexponentiallydecaying termandaphaseshift in
Eq. (4) which might be important for short T regions with
asymmetric parameters. Furthermore, we find that these
oscillations persist over a nontopological region (e.g., in
the regime of a fully depleted electron band the oscillations
are absent [55]). A possibility ofMBShybridization through
virtual quasiparticle states [56] has not been taken into
account as it can be suppressed by geometry and material
engineering [56].
Numerical results for the static regime.—We map the

Bogoliubov–de Gennes Hamiltonian (1) to a tight-binding
model:

H ¼
X
i;σ;σ0

h
c†iþ1σ

�
−t0σ̂0 þ i

αi
2
σ̂z
�
σσ0
ciσ0 þ H.c.

i

þ
X
i;σ

ð2t0 − μiÞc†iσciσ þ
X
i

ð ~Δic
†
i↑c

†
i↓ þ H.c.Þ

þ
X
i

ð ~Bic
†
i↑ci↓ þ H.c.Þ; (5)

where σ̂0 is the identity matrix and we introduce complex
parameters ~Δ ¼ Δeiϕ and ~B ¼ Beiθ. In the long wave-
length limit, the tight-binding model in Eq. (5) can be
reduced to Eq. (1) with t0 ¼ ℏ2=2m�a2, α ¼ αso=a,
where a is the lattice constant. For Fig. 2, we use
parameters consistent with setups based on InSb quantum
wires [9], i.e.,m� ¼ 0.015me, αso ¼ 0.2 eVÅ, a ¼ 15 nm,
Δ ¼ 0.5 meV, and gμB ¼ 1.5 meV=T. We used a total of
500 grid sites for calculations. Results of numerical
diagonalization of Hamiltonian (5) are shown in Fig. 2.

We observe near perfect agreement with the analytical
Eqs. (2) and (4) when T regions are formed by uniform
magnetic fields.
Next, in Figs. 3(a) and 3(b) we study the hybridization of

MBS due to the modulation of the g factors (by a factor of
∼30) in a GaSb-GaAs-GaSb nanowire heterostructures
[57–59]. Such systems can partially or completely (when
no coupling to the resonator is needed) relax the require-
ment for the sharpness of field profiles. Because of the
conduction band mismatch, in this type-II quantum well, a
finite gate voltage is necessary in order to hybridize MBS.
The effects of nonuniform magnetic fields are closely
examined in Fig. 3(c) where the wire is subjected to a
constant magnetic field on one half and a field of magnetic
dipole. The dipole is oriented as shown in Fig. 1 and is
placed 1 μm from the center of the wire along x and at a
height of h along the y axis. Somewhat sharper MBS are
formed in Fig. 3(d) when instead of a dipole we consider a
perpendicularly magnetized thin disk, which we approxi-
mate as a current loop of radius R ¼ 100 nm with its center
coinciding with the position of a dipole. The disk is placed
at a height of h from the wire and its off-axis magnetic field
decay implies that ln ≳ h for coupling between magnets
to occur.
Dissipative dynamics.—We suppose that the section of

the wire separating MBS γ1 and γ2 is sufficiently long (see
Fig. 1). As follows from the previous discussion, the
effective low energy theory for coupled dynamics of
MBS and a mechanical resonator can be described to
the lowest order by the Hamiltonian:
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FIG. 3 (color online). (a) We plot edge modes as a function of
position and heterojunction bias voltage VG, and (b) the corre-
sponding energies as a function of VG. We see hybridization at
VG ¼ 30 meV. (c) The wire is subjected to a constant magnetic
field on one half and a field of magnetic dipole at distance
h on the other half. (d) The same as (c) but for a magnetic disk of
radius R ¼ 100 nm instead of dipole. In this figure we have used
300 grid sites with a ¼ 10 nm.
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H ¼ ℏωra†aþ iEnðθÞγ2γ3 þ iEtγ3γ4; (6)

where a is the annihilation operator of the resonant torsional
mode of the cantilever so that θ¼θ0þθzpfða†þaÞ with
θzpf ¼ ðℏ2=KIÞ1=4 being the angle of zero point fluctuations
of the cantilever,K is the spring constant, I is the moment of
inertia, EnðtÞ describes the hybridization energy in Eqs. (2)
and (4), and γi describesMBS.Without loss of generality,we
assume an odd electron parity in the wire, which defines the
available Hilbert space of two fermions b1 ¼ ðγ1 þ iγ2Þ=2
andb2 ¼ ðγ3 þ iγ4Þ=2, i.e.,αj1; 0i þ βj0; 1i [60].By rewrit-
ing Eq. (6) through fermionic operators b1 and b2, and
expanding energies around θ0, we arrive at the matrix
Hamiltonian:

H ¼ ℏωra†aþ
�
Enðθ0Þ þ

∂En

∂θ θzpfða† þ aÞ
�
σ̂x þ Etσ̂z;

(7)

where the Pauli operators act in the j1; 0i and j0; 1i basis. By
tuning either Enðθ0Þ or Et to coincide with ℏωr=2 (see
Fig. 2),we can achieve different regimes ofRabi oscillations.
Note that when hψLjHjψRi is not pure imaginarywe recover
additional terms proportional to σy in Eq. (7). Here, we
analyze the case in which ℏωr ¼ 2Et andEnðθ0Þ ¼ 0. From
Eq. (2), the coupling strength (Rabi oscillations frequency) is

g ¼ 1

2
θzpfEn

0e
−lnReðκn2Þ: (8)

By taking smaller ln we can increase the coupling strength.
The strong coupling regime is realized when ωr=Q < g,
where Q is the quality factor of the cantilever. A pendulum
based on single-walled carbon nanotube with an attached
magnet of the size 60 × 40 × 20 nm3 can have K ¼ 3 ×
10−18 Nm per radian and I ¼ 4 × 10−34 kgm2 [61]. If we
take the corresponding θzpf ¼ 5 × 10−5, ωr ¼ 5 MHz,
En
0 ¼ 0.2 meV, and ln ¼ 300 nm (see Fig. 2), we obtain

g ¼ 400 kHz, which is a strong coupling; e.g., a resonator
withωr ¼ 5 MHzwill have to haveQ > 12.5 in order to be
in the strong coupling regime. In order to switch off
interactions between the Majorana qubit and the resonator,
one can use special lt points at which the hybridization
energy is close to zero (see Fig. 2). In principle, lt can be
controlled by electrostatic gates [19] or supercurrents [25].
Note that the Majorana qubit is not topologically protected
when controlled in this manner. This is, however, expected
since for the realization of a universal set of quantum gates,
some removal of topological protection would be necessary.
The time-dependent dissipative dynamics of the

Hamiltonian (7) can be adequately simulated using the
Lindblad master equation [62]:

ρ
: ðtÞ ¼ − i

ℏ
½HðtÞ; ρ� þ 1

2

X
k

½Lk; ρðtÞL†
k� þ ½LkρðtÞ;L†

k�;

(9)

where we assume that all requirements on the environment
for the validity of this approximation apply. Here, Lk are
the Lindblad operators, L1 ¼

ffiffiffiffiffiffiffiffiffiffi
1=T1

p
σ− and L2 ¼ffiffiffiffiffiffiffiffiffiffiffi

1=Tφ

p
σþσ− correspond to the Majorana qubit coupling

to the environment, and L3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn̄r þ 1Þωr=Q

p
a and L4 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n̄rωr=Q
p

a† correspond to the dissipation of the resonator
where n̄r ¼ ½expðωr=kBTÞ − 1�−1. The qubit’s lifetimes are
given by T1 and 1=T2 ¼ 1=2T1 þ 1=Tφ. The Majorana
qubit can decohere due to tunneling of fermions in the
presence of an external environment such as phonons, two-
level systems, classical noise [63], as well as quasiparticle
poisoning [64] and noisy gates [65]. As T1 and T2 times
can strongly depend on the concrete realization, in
our analysis we choose decoherence times that are con-
sistent with the abovementioned mechanisms T1 ¼ 70 μs,
T2 ¼ 90 μs).
We present numerical solutions of Eq. (9) for different

resonator quality factors, i.e., for Q ¼ 106 in Figs. 4(a) and
4(b) and for Q ¼ 105 in Figs. 4(c) and 4(d). As the initial
state, we assume the product state of the qubit and the
resonator at temperature T ¼ 10 mK corresponding to the
occupation number n̄r ¼ 0.26, e.g., as a result of sideband
cooling [66]. Dotted lines represent the Rabi oscillations
while the bold lines represent the process in which the
Majorana qubit is repeatedly tuned in and out of resonance
with the resonator. In such a process the qubit state is
transferred from the qubit to the resonator, then stored in

O u t[9 ]=

(d)(b)
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FIG. 4 (color online). (a) Rabi oscillations of a Majorana qubit
coupled to a mechanical resonator. The qubit’s initial state is
j0; 1i in Eq. (7). (b) The quantum process tomography of a
process in which qubit state is transferred to the resonator, then
stored in the resonator while the systems are detuned, and finally
transferred back to the qubit. (c),(d) Same as (a) and (b) but for
a resonator with smaller quality factor.
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the resonator while the systems are detuned, and finally
transferred back to the qubit. We can completely describe
the storage process by quantum process tomography in
which the final density matrix of the qubit ρ̂out is described
by the 4 × 4 process matrix χ̂, such that ρ̂out ¼P

χi;jσ̂
iρ̂inσ̂

j; here, ρ̂in is the initial density matrix of the
qubit. In Figs. 4(b) and 4(d) we plot the matrix χ̂ where the
two plots correspond to fidelities F ¼ χ1;1 ¼ 78% and
F ¼ χ1;1 ¼ 60%, respectively.
Conclusions.—We demonstrated spin-current mediated

resonant coupling between a Majorana qubit and a
mechanical resonator. The coupling can manifest itself in
a shift of the mechanical resonant frequency, Rabi
oscillations, coherent state transfer, and Majorana qubit-
resonator entanglement. In addition, the spin-current medi-
ated coupling can facilitate both control of Majorana zero
modes in a quantum wire and transfer of quantum infor-
mation between topological and conventional qubits. The
possibility to control the coupling and nondissipative spin
currents in the spin-transistor-type architecture paves the
way for applications in novel electronic devices. Our
predictions can be tested by employing the magnetic
resonance force microscopy techniques.
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