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Demonstrating entanglement by testing Bell’s theorem in Majorana wires
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We propose an experiment that would establish the entanglement of Majorana zero modes in semiconductor
nanowires by testing the Bell and Clauser-Horne-Shimony-Holt inequalities. Our proposal is viable with realistic
system parameters, simple “keyboard” gating, and projective measurement. Theoretical models and simulation
results indicate entanglement can be demonstrated with moderately accurate gate operations. In addition to
providing further evidence for the existence of the Majorana bound states, our proposal could be used as an
experimental stepping stone to more complicated braiding experiments.

DOI: 10.1103/PhysRevB.90.115404 PACS number(s): 03.67.Bg, 73.21.Hb, 03.65.Ud, 03.67.Ac

I. INTRODUCTION

The experimental observation of a self-conjugate fermionic
particle has been a goal in physics since it was first theorized
by Majorana over 75 years ago [1]. More recently, Majorana
zero-energy modes bound to topological defects in 2D systems
have emerged as candidates for a topologically protected qubit
due to their non-Abelian braiding statistics [2–4], and several
groups have reported evidence suggesting that such Majorana
bound states may exist at the ends of a semiconductor nanowire
in the presence of s-wave superconductivity, a magnetic field,
and strong spin-orbit coupling [5–10]. While this topological
phase is theoretically supported by models and predicted in
such systems [11–13], further evidence is needed to rule out
alternative explanations [14–16].

Perhaps the most definitive signature of Majorana bound
states in these “Majorana wires” would be the demonstration of
their nontrivial braiding statistics. While braiding is ultimately
needed for topological quantum computation, it remains an
ambitious experimental task. With this in mind, simpler
experiments are desired to provide insight and direct further
research before braiding is attempted. Though there have been
feasible tests proposed and performed on several aspects of the
system [9,17–22], such as qubit measurement, there is still no
clear consensus on the presence of Majorana bound states
[23]. Observing entanglement of these states in Majorana
wires would not only be a significant step towards their
verification, but would also demonstrate their potential utility
for topological quantum computation. While tests of quantum
entanglement with Ising anyons (of which Majorana bound
states are one example) have been discussed formally [24,25],
our goal is to devise and analyze a more concrete protocol
motivated by recent experimental developments.

Thus we propose a procedure for demonstrating Bell’s
theorem with three pairs of Majorana bound states in semi-
conductor nanowire systems (see Fig. 1). Specifically, our
procedure can be used to test the Bell [26] and Clauser-
Horne-Shimony-Holt (CHSH) [27] inequalities using only
two operations on maximally entangled states, which can
be prepared using the same operations and a projective
measurement (see Fig. 2). These operations are accomplished
by moving the domain walls along the axis of the wire

using “keyboard” gates also needed for braiding operations
[28]. Hence, our proposal may also serve as a step towards
experiments that perform topological operations.

This paper will proceed as follows: In Sec. II we introduce
a simplified model for the Majorana wire and define a qubit
basis. In Sec. III we summarize the entanglement inequalities
and lay out the procedure for testing them. In Sec. IV we
introduce a more realistic description of the semiconductor
nanowire system, discuss corresponding simulation results,
and introduce a simpler version of the CHSH experiment. In
Sec. V we discuss experimental considerations and conclude
in Sec. VI. We discuss modifications to our procedure for
different measurement outcomes in Appendix A, and then
review Bell’s theorem and the entanglement inequalities in
Appendix B.

II. MAJORANA MODEL HAMILTONIAN

To discuss the salient features of the Majorana wire system,
we begin with a description similar to the toy model analyzed
by Kitaev [11], which is the fermionic representation of the
transverse Ising model [29]. With appropriate parameters,
the wire is driven into a topological phase with an unpaired
Majorana fermion at each end [12,13,28]. If the parameters
vary spatially (e.g., nonuniform chemical potential) there may
be multiple topological regions separated by nontopological
regions, with a Majorana fermion localized at each domain
wall separating the two regions. For our proposal, we will
consider the case with three topological regions separated by
two nontopological regions (see Fig. 1) with the Majorana
Hamiltonian

H = iη1γ̂1,Aγ̂1,B + iη2γ̂2,Aγ̂2,B + iη3γ̂3,Aγ̂3,B

+ i�12γ̂1,B γ̂2,A + i�23γ̂2,B γ̂3,A, (1)

where η describes the coupling between Majorana bound states
at the ends of a single topological region, while � describes
the coupling of neighboring topological regions. We assume
that all couplings decay exponentially as the Majorana bound
states separate from their nearest neighbors. Each topological
region has two types of Majorana operators, denoted by
index A or B, that form a conventional fermion operator
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FIG. 1. (Color online) Gates are used to create three distinct
topological regions (solid lines) in the wire. Majorana bound states,
represented by red ×’s, are localized at the ends of these regions.
Majorana bound states at the ends of the same topological region
are coupled by η, while neighboring topological regions are coupled
by �.

d̂n = 1
2 (γ̂n,A + iγ̂n,B ), and satisfy {γ̂i ,γ̂j } = 2δij , where i,j

specifies both the region and type.
The parity of the occupation number for the conventional

fermions (i.e., the eigenstate of N̂n ≡ d̂
†
nd̂n), will serve as the

degree of freedom for our qubits. We specify a computational
basis with the conventional fermions by defining the state
|000〉 such that d̂n|000〉 = 0 for all n and using the ordering
conventions given by

|000〉, |010〉 = d̂
†
2 |000〉,

|011〉 = d̂
†
2 d̂

†
3 |000〉, |001〉 = d̂

†
3 |000〉,

|110〉 = d̂
†
1 d̂

†
2 |000〉, |100〉 = d̂

†
1 |000〉, (2)

|101〉 = d̂
†
1 d̂

†
3 |000〉, |111〉 = d̂

†
1 d̂

†
2 d̂

†
3 |000〉.

Since our model describes a system with superconductivity,
the total number of particles is conserved modulo 2. This
restriction splits the basis into two sub-bases, SE and SO, with
an even and odd number of total particles (i.e., total parity),
which are the left and right columns of Eqs. (2), respectively.
A state from one basis cannot evolve into a state from the other
basis since they differ by a single particle. Strictly speaking, the
two bases can interact if we account for quasiparticle poisoning
[30] in our model, but this occurs on a much longer time scale
than our proposed operations as discussed in Sec. V. We use the
middle occupation number to preserve the total parity rather
than storing unique quantum information. Thus, two logical
qubits are encoded in the left and right topological regions,

(a)

(b)

(c)

FIG. 2. (Color online) Preparation of the maximally entangled
states of even total parity. (a) The occupation of all three topological
regions is measured, represented by rectangles around each region.
(b) The topological regions (solid lines) are expanded to perform π/2
rotations about the x axis for the left and right logical qubits. (c) The
middle qubit is measured, projecting to one of the four maximally
entangled states of even total parity. Different measurement outcomes
are shown; when both middle measurements are 0, the |�−

E 〉 state is
prepared as discussed in Sec. III (solid arrows), while other outcomes
(dashed arrows) are discussed in Appendix A.

while the occupation of the middle region is forfeited as the
“parity qubit.’

By writing the Majorana operators in terms of the conven-
tional fermions with γ̂n,A = d̂n + d̂

†
n and iγ̂n,B = d̂n − d̂

†
n, the

Hamiltonian in our basis is

H = −η1(σ z ⊗ σ 0 ⊗ σ 0) − η2(σ 0 ⊗ σ z ⊗ σ 0)

− η3(σ 0 ⊗ σ 0 ⊗ σ z) − �12(σx ⊗ σx ⊗ σ 0)

−�23(σ 0 ⊗ σx ⊗ σx). (3)

The η terms for each topological region perform the σ z oper-
ation for their corresponding qubits, while the σx operation is
performed on the neighboring qubits involved in the � terms.
Thus rotations of the qubits can be made by adjusting the
parameters of the wire to suppress the couplings of all but one
term in the Hamiltonian. For example, if all the couplings other
than �12 are negligible, the evolution operator after time T is

rx
12(θ ) ≡ exp

[
i
θ

2
(σx ⊗ σx ⊗ σ 0)

]

= cos
θ

2
(σ 0 ⊗ σ 0 ⊗ σ 0) + i sin

θ

2
(σx ⊗ σx ⊗ σ 0),

(4)

where θ = 2�12T/� is the angle of the XX rotation entangling
qubits 1 and 2. By adjusting the parameters appropriately, we
can perform all the necessary operations for our proposal.

III. ENTANGLEMENT INEQUALITIES

Before testing the Bell and CHSH inequalities we discuss
the preparation of one of the four maximally entangled states
of even parity,

|�±
E 〉 = |000〉 ± |101〉√

2
, |
±

E 〉 = |011〉 ± |110〉√
2

(5)

using the operations already discussed and projective measure-
ment. To begin the preparation, the parity of each topological
region is measured, fixing the total parity and projecting to
one of the basis states. Since there are several proposals for
projective measurement (discussed in Sec. V), we do not
commit to a specific method here. The inequalities can be
tested equivalently with any of the maximally entangled states
from either parity, but for conciseness we assume the total
parity is even for the rest of the body of this paper, and we
only discuss the inequalities with |�−

E 〉, assuming the initially
measured state is |000〉. Our proposal can be accomplished
for general initial conditions by altering our procedure slightly
as described in Appendix A. If a π/2 rotation about the x

axis is performed for both logical qubits the resulting state is
rx

12(π/2)rx
23(π/2)|000〉, or

|000〉 − |101〉 + i|011〉 + i|110〉
2

= |�−
E 〉 + i|
+

E 〉√
2

, (6)

which will project to |�−
E 〉 if the middle parity qubit is

measured to be 0. Note that the rx
12 and rx

23 operations commute
since they involve different γ operators, making the operation
order irrelevant (as well as allowing simultaneous operations).
In general, each maximally entangled state can be prepared
by measuring all three qubits to project to a single basis state,

115404-2



DEMONSTRATING ENTANGLEMENT BY TESTING BELL’S . . . PHYSICAL REVIEW B 90, 115404 (2014)

extending the outer topological regions towards the middle
topological region for a small time, returning them to their
original position, then projectively measuring the middle qubit.

Once the state |�−
E 〉 is prepared, we can test the version of

Bell’s inequality given in Appendix B,

P=(a,b) + P=(b,c) + P=(a,c) � 1, (7)

where P=(L,R) is the probability that the left and right qubits
are equal after being rotated by angles L and R, respectively.
The left side of the inequality, which we call the “Bell
quantity,” can be interpreted as the probability that at least
one of the rotation combinations will make the left and right
qubits equal.

According to quantum mechanics the probability that the
qubits are equal after rotations L and R is cos2

(
L−R

2

)
. Only

the relative angles between rotations are physically relevant,
so we can set A ≡ a − c and B ≡ b − c to write the Bell
quantity as

cos2

(
A − B

2

)
+ cos2

(
A

2

)
+ cos2

(
B

2

)
, (8)

which is plotted in Fig. 3. Quantum mechanics predicts the
Bell quantity can be as low as 3/4 (for the relative angles
A = 2π/3 and B = 4π/3, or vice versa) and is inconsistent
with local hidden-variable theories, which require the Bell
quantity to be greater than or equal to 1. In principle, Bell’s
inequality could be experimentally tested in our proposal by
repeatedly preparing maximally entangled states, performing
the three rotation combinations in Eq. (7), and measuring the
qubits to find the probability of each state.

In practice, however, almost every experiment that tests
Bell’s theorem uses the CHSH inequality discussed in
Appendix B,

|〈L1,R1〉 + 〈L2,R1〉 + 〈L1,R2〉 − 〈L2,R2〉| � 2, (9)

where 〈L,R〉 = P=(L,R) − P�=(L,R) is the expectation value
of the combined parity of the left and right qubits after being

0 π/3 2π/3 π 4π/3 5π/3 2π
Angle A

0

π/3

2π/3

π

4π/3

5π/3

2π

A
ng

le
 B

 1

 2

 3

FIG. 3. (Color online) Contour plot for the quantum mechanical
prediction of the Bell quantity for the state |�−

E 〉 defined in Eq. (5).
Local hidden-variable theories require that the Bell quantity be greater
than or equal to 1, but it is predicted to be less than 1 for relative
rotation angles inside the white triangles.

FIG. 4. (Color online) Top: Angles of rotation in CHSH inequal-
ity. The left qubit is rotated by either angle L1 or L2, while the right
qubit is rotated by either angle R1 or R2. Bottom: (a) One of the four
rotation combinations is performed by extending the outer topological
regions, (b) then returned for measurement.

rotated by angles L and R, respectively. The left side of the
inequality, which we call the “CHSH quantity,” must be less
than or equal to 2 in local hidden-variable theories.

According to quantum mechanics, the expectation value
〈L,R〉 = cos(L − R) for general rotation angles L and R

acting on |�−
E 〉. Again, only the relative angles of rotation are

physically significant, so we introduce angles A ≡ L1 − R2,
B ≡ R1 − L1, and C ≡ L2 − R1 (see Fig. 4), making the
CHSH quantity

| cos(A) + cos(B) + cos(C) − cos(A + B + C)|, (10)

which has a maximum of 2
√

2 when A = B = C = π/4, con-
tradicting the local hidden-variable prediction. The inequality
can be tested experimentally by repeatedly preparing the state
|�−

E 〉, extending the topological regions to perform one of the
four rotation combinations involved in Eq. (9), then returning
the topological regions to their original position to measure
the qubits.

IV. SEMICONDUCTOR HAMILTONIAN AND
SIMULATION

We now consider a more realistic model of the semi-
conductor system by introducing a one-dimensional lattice
Hamiltonian

HS = HTB + HSO + HZ + HSC, (11)

where

HTB =
∑
jσ

[(2t0 − μj )ĉ†jσ ĉjσ − t0ĉ
†
j±1,σ ĉjσ ], (12)

HSO =
∑
jσ

[α s(σ )(ĉ†j σ̄ ĉj+1,σ − ĉ
†
j+1,σ̄ ĉjσ )], (13)

HZ =
∑
jσ

[s(σ )V zĉ
†
jσ ĉjσ + V s(σ )ĉ

†
j σ̄ ĉjσ ], (14)

HSC =
∑

j

(�ĉ
†
j↑ĉ

†
j↓ + �∗ĉj↓ĉj↑), (15)

are the tight-binding, spin-orbit, Zeeman, and proximity-effect
superconducting terms, respectively. Here ĉjσ is the electron
annihilation operator for spin σ at site j , t0 = �

2/(2m∗a2)
is the tight-binding coefficient with effective mass m∗ and
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lattice size a, μj is the chemical potential at site j , α is the
Rashba coupling, V = gμBB/2 is the Zeeman coupling with
V ± = V x ± iV y used for the terms perpendicular to the wire
axis, and � is the s-wave pairing potential. The coefficient
s(σ ) stands for + and − when σ is ↑ and ↓, respectively, and
σ̄ denotes the opposite spin.

As shown by others [12,13,28], this system has two
topologically distinct phases. When μ > μT ≡

√
V 2

⊥ − �2,
where V 2

⊥ = (V z)2 + (V x)2 is the Zeeman field perpendicular
to the spin-orbit quantization axis, the wire is a normal
superconductor. In the other case, μ < μT, a topologically
distinct state emerges with Majorana bound states localized at
the ends of the wire. If the chemical potential varies spatially
and crosses the topological limit at multiple locations, then
multiple Majorana bound states will be present and the setup
discussed in Sec. II is possible.

Specifically, our proposal separates the wire into three
topological regions, leading to six Majorana bound states, one
at the end of each region, which are sufficiently separated
to prevent them from fusing together. The Majorana bound
states from each topological region can be paired together
to form conventional fermions [e.g., d̂n = (γ̂A + iγ̂B)/2] that
correspond to three zero-energy (in the limit of an infinite wire)
Bogoliubov excitations, separated from the higher-energy bulk
states by a topological gap �T (see Fig. 5). Alternatively, these
excitations can be thought of as the zero-energy eigenstate
solutions to the Bogoliubov–de Gennes equations for the
system. Just as in the simpler model, the occupation number
of the eigenstates localized to the left and right serves as the
logical qubits, while the occupation number of the middle

0.0
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FIG. 5. (Color online) Bottom right: A spatially varying chemi-
cal potential with three regions below the topological threshold of√

V 2
⊥ − �2, with domain wall lengths of ∼4λ. Top right: This leads

to six Majorana bound states, one at the end of each region, that
form three conventional eigenstates. We plot the simulated spatial
distribution of the Bogoliubov coefficients

∑
σ (|uσ |2 + |vσ |2) along

the length of the wire for the left and right bound states of each region
in solid and dashed, respectively. Left: The energy spectrum of these
eigenstates is plotted in logarithmic scale, as well as the lowest-energy
bulk state separated by a topological gap of 360 μeV. The splitting of
the “zero”-energy states is due to the exponentially small overlap in
peaks, which is larger for the shorter topological region of the middle
segment. The topological region lengths are 13.3% and 9.5% of the
wire length for the outer and middle regions, respectively.

eigenstate does not contain unique quantum information since
the total parity is conserved.

The spatial distribution of these excitations is contained in
the coefficients u and v from the Bogoliubov transformation

d̂†
n =

∑
jσ

(
un

jσ ĉ
†
jσ + vn

jσ ĉjσ

)
, (16)

which can be used to form the parity operators of the wire
segments, P̂n ≡ 1 − 2d̂

†
nd̂n.

We begin our simulation by finding the coefficients for the
lowest three eigenstates of the Hamiltonian in Eqs. (11)–(15)
with parameters corresponding to m∗ = 0.015me, a = 15 nm
leading to t0 = 11.3 meV, g = 50, B = Bz = 0.625 T leading
to V⊥ = 0.9 meV, Rashba parameter αR = 225 meV Å corre-
sponding to α ≡ αR/a = 1.5 meV, and � = 0.5 meV. Thus
the chemical potential marking the threshold between topolog-
ical phases is μT = 1.06 meV. The wire has 600 sites leading
to length l = 9 μm, with nonperiodic boundary conditions. At
the domain walls the chemical potential smoothly alternates
between 0 and 2μT over a length of approximately 4λ = 0.04l

with the profile function ±μT tanh(x/λ), as shown in Fig. 5.
Each of the lowest three eigenstates has two peaks localized

at the ends of the topological region, indicating the location
of the Majorana bound states. The spatial distribution of the
left and right bound states of each wire segment can be found
numerically by considering the self-conjugate combinations of
the three eigenstates, corresponding to d̂n + d̂

†
n and −i(d̂n −

d̂
†
n), shown as solid and dashed curves in Fig. 5, respectively.

Though the peaks decrease exponentially, their small, but
nonzero overlaps cause the eigenstates to split from zero
energy. Thus the topological regions must be long enough
to prevent these overlaps from splitting the excitations and
coupling them to the bulk states. We set the lengths between
the domain walls as l1 = x1 = 0.133l, l2 = x3 − x2 = 0.095l,
and l3 = l − x4 = 0.133l. We chose these lengths to minimize
the overlaps between the Majorana bound states of the same
region, as well as the overlap between neighboring regions.

Once the chemical potential is tuned as described above, it
can be varied dynamically to perform operations on the qubits.
The only operation needed to test entanglement inequalities
are rx

12 and rx
23, which can be performed simultaneously by

extending the outer topological regions towards the middle
region. Specifically the domain wall positions xi alternate back
and forth according to the function

± �

[
tanh

(
t

τ

)
− tanh

(
t − D

τ

)]
, (17)

which smoothly shifts the domain walls 2� over an approxi-
mate transition time of 4τ for a duration D between the center
of the two transitions as shown in Fig. 6.

We are only concerned with the dynamics of the zero-
energy states, which will not mix with the bulk states above
the topological gap as long as the domain wall trajectories are
adiabatic. This constraint can be treated with the Landau-Zener
condition [31,32]: the rate the chemical potential changes must
satisfy �|dμ/dt |  2π�2

T. To test this in our simulation we
find the probability that the basis states of Eqs. (2) remain in the
zero-energy subspace of the same total parity after evolution
by using the following procedure.
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FIG. 6. (Color online) Top left: Trajectories for the two left
domain walls showing the amplitude, transition time, and duration
for the rx

12(π/4) operation. Top right: Average infidelity of even
states after performing rx

12(π/4), plotted against transition time
for various amplitudes (labeled as percentages of the wire length
l) showing exponential behavior in general agreement with the
Landau-Zener formula until limited by our Runge-Kutta step size.
The � = 0.055l data is fit with a line that scales as exp(−βτ ) with
β = 240 GHz, reasonably close to the predicted value of 214 GHz.
Bottom: Probabilities that the initial state |000〉 remains in |000〉 or
transitions to |110〉 when acted on by rx

12 with various duration times.
The simulated operation agrees well with the expected rotation, with
a minimum probability of ∼0.3% for the |000〉, due to the very small
unintended overlaps of the bound states.

We assume the initial state |φ〉 is in the set of even parity
basis states given in Eqs. (2), SE = {|000〉,|011〉,|110〉,|101〉},
where |000〉 is defined as the state such that d̂n|000〉 = 0 for
all n, including those corresponding to bulk states. The zero-
energy eigenstates are evolved using fourth-order Runge-Kutta
in the eigenstate basis, possibly leaking into the bulk states if
the transition time is too short, then acted on by the zero-energy
eigenstate projector P̂0 to find the submatrix Û0 = P̂0Û P̂0 of
the full evolution matrix Û . Using Û0, we find the time-evolved
occupation operators in the Heisenberg picture,

N̂n(t) = Û
†
0 (t)d̂†

n(0)d̂n(0)Û0(t), (18)

for n = 1,2,3, which are bilinear combinations of the original
d̂n(0), including anomalous terms (e.g., d̂1d̂2) since the
Hamiltonian contains superconductor pairing. The three N̂n(t)
are then used to form the projector for each multiparticle state
in our three-qubit basis, allowing us to calculate the probability
that the corresponding state is occupied. For example, the state
|110〉 has the projector N̂1N̂2(1̂ − N̂3), which yields 0 when
acting on any other basis state. Since the projector’s eigenvalue
for |110〉 is 1, the expectation value is equal to the probability,
and the probability that the initial state will be measured in the
state |110〉 after time t is

P110(φ) = 〈φ|N̂1(t)N̂2(t)[1̂ − N̂3(t)]|φ〉, (19)

which can be easily calculated for any |φ〉 ∈ SE. Similarly, the
probabilities that |φ〉 evolves into the other states in SE are
found using their respective multiparticle projectors, which

are summed to give the fidelity from |φ〉 to SE,

FE(φ) = P000(φ) + P011(φ) + P110(φ) + P101(φ). (20)

We calculate this for all |φ〉 ∈ SE after simulating the operation
rx

12(π/4), and plot the average infidelity for even states, 1 −
〈FE〉, versus the transition time for various amplitudes in Fig. 6.
To compare our results with the Landau-Zener formula [31,32]
we use the maximum of the chemical potential rate

dμ

dt
= ∂μ

∂x1

∂x1

∂t
, (21)

which occurs halfway through the transitions when sech2(0) =
1, giving (

dμ

dt

)
max

= μT�

λτ
. (22)

Thus 1 − 〈FE〉 should scale as exp(−βτ ) with

β = 2πλ�2
T

�μT�
, (23)

in general agreement with our data. For example, the fitted
line for � = 0.055l in the logarithmic plot in Fig. 6 has a
slope that corresponds to βfit = 240 GHz, while the value
predicted from Eq. (23), using �T = 0.36 meV found in
our simulation, is β � 214 GHz. All the amplitudes fit the
expected exponential behavior reasonably well until limited
by our Runge-Kutta step size, with the exception of small
plateaus that appear at different transition times for different
amplitudes. This indicates that the coefficient for the average
infidelity contains some amplitude-dependent factors, but
these factors are insignificant compared to the exponential
scaling and unimportant for our proposal. We easily satisfy
the adiabatic constraint by proceeding with our simulation
using � ∼ 0.06l and τ = 100 ps.

In order to ensure the rx
12 operation is performed as

expected, we find the probabilities for the basis states using
the initial state |000〉 after the domain wall trajectory in Fig. 6
is simulated. As anticipated, the probabilities P000(000) and
P110(000) oscillate, with negligible probabilities (on the order
of our step size limit of 10−6) found in the states with incorrect
total parity. However, the operation does not complete a full
bit flip for the duration expected to correspond to a π rotation,
with ∼0.3% of the probability found in the |011〉 and |101〉
instead of |110〉. This is consistent with a 0.3% shift of the
rotation axis away from x̂ due to small, undesired overlaps
between Majorana bound states not involved in the operation.
For example, a small overlap between the bound states of the
middle and right regions would lead to an additional rotation
rx

23 that effectively shifts the axis of rotation very slightly.
Using an amplitude � = 0.06l for rx

12 and rx
23, the simulated

rotations have a period of ∼0.2 ns. Since the operations
are achieved by bringing together exponentially decaying
peaks, the overlap-dependent coupling between topological
regions (e.g., � in the Majorana Hamiltonian) is exponentially
sensitive to the trajectory amplitude. Thus, longer rotation
periods can be achieved by slightly decreasing the amplitude.
On the other hand, greater amplitudes give shorter periods,
but can also risk fusing the adjacent Majorana bound states if
increased too much, which begins to occur in our simulation
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FIG. 7. (Color online) Left: Theoretical contour plot of the quan-
tum mechanical prediction of the CHSH quantity for |�−

E 〉 for the
A = π/4 plane. Local hidden-variable theories are inconsistent with
a CHSH quantity above 2, which occurs inside the white lines.
Right: Simulated contour plot showing agreement with the global
maximum at B = C = π/4 present, violating the CHSH inequality
by approximately 40%.

near � ∼ 0.07l. Thus, the typical operation time (including
adiabatic transitions) for our parameters is on the order of
0.4 ns.

Finally, we test the CHSH inequality in our simulation
by simultaneously performing the rx

12 and rx
23 rotations on

the initial state |�−
E 〉 and finding the probabilities for each

basis state. The CHSH quantity is a function of three relative
angles, making it more difficult to visualize and compare
to our simulation. Instead we look at one plane involving
the maximum violation, namely, when R2 = 0 and L1 =
π/4 [i.e., A = π/4 in Eq. (10)]. The theoretical prediction
and simulation are plotted in Fig. 7, showing very good
agreement with a significant range of angles that violates the
inequality. Thus our simulation indicates that the more realistic
semiconductor Hamiltonian is consistent with the simpler
Majorana model and our proposal is feasible for demonstrating
entanglement in a Majorana wire.

Before discussing experimental considerations, we intro-
duce a simplification to the CHSH experiment that only
requires projective measurement and the repeated use of two
operations, namely, rx

12(L) and rx
23(R) with specific values for

L and R. Ideally L = R = π/4, but we leave them unspecified
with the thought that the experiment could be attempted with
angles that differ slightly from the ideal case.

The experiment begins by tuning the chemical potential
to create three topological regions and measuring all of their
occupation parities to project to one of the eight basis states.
For concreteness, we only consider the states that lead to the
|�−

E 〉 state, so the procedure only continues if the measurement
of the middle parity matches the total parity (see Table I).
Alternatively, the full experiment is carried out regardless of
the measurement outcomes, but the cases when the parities
do not match are disregarded. Then the operations rx

12(L) and
rx

23(R) are simultaneously performed twice before measuring
the middle parity, proceeding only when this parity matches the

TABLE I. Maximally entangled state prepared for various total
parity and middle parity measurements. The even and odd total
parities give the same results if we exchange 0 ↔ 1 for the middle
parity.

Total parity Even Odd

Initial middle parity 0 1 1 0
Final middle parity 0 1 0 1 1 0 1 0
Resulting state �−

E 
+
E �+

E 
−
E �−

O 
+
O �+

O 
−
O

initial result. For the ideal angles L = R = π/4, this procedure
prepares maximally entangled states.

This preparation is followed by one of the four rotation
combinations in Eq. (9), with L1 = L, L2 = 3L, R1 = 0, and
R2 = 2R. For example, the combination with L2 and R1 is
performed by carrying out rx

12(L) three times but leaving
the right domain walls stationary. After one of the rotation
combinations is performed, all three parities are measured
and the results are recorded. This is repeated several times
for each combination to find the corresponding probabilities
and calculate the CHSH quantity in Eq. (9). The quantum
mechanical prediction for the CHSH quantity using the above
procedure is easily calculated (though not particularly illumi-
nating in written form) and is plotted in Fig. 8. As expected,
the CHSH quantity has a maximum at L = R = π/4, with
a wide range of angles spanning from approximately π/8 to
3π/8 confirming Bell’s theorem. Thus this procedure can be
used for a broad range of angles, demonstrating entanglement
in Majorana wires, even with limited accuracy in the tuning
operations.

V. EXPERIMENTAL CONSIDERATIONS

We now discuss some aspects of our proposal that may
be significant for an experimental realization. One of the first
hurdles that must be overcome is the development of reliable
projective measurement of the occupation. Aside from directly

0 π/4 π/2 3π/4 π
Angle R

0

π/4

π/2

3π/4

π

A
ng

le
 L

 0

 1

 2

 3

FIG. 8. (Color online) Contour plot of the quantum mechanical
prediction of the CHSH quantity with L1 = L, L2 = 3L, R1 = 0,
and R2 = 2R. Local hidden-variable theories are inconsistent with
a CHSH quantity above 2, which occurs inside the white lines. The
plot repeats with a period of π for both L and R.
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probing the wire with point contacts, there have been several
proposals for observing the presence of Majorana bound states
such as using the Aharanov-Casher effect [17], transmons
[18], and Shapiro step doubling in the ac-Josephson effect [9].
Without committing to a particular readout scheme, we note
that our proposal requires measurement of a single topological
region during our procedure in order to project to a maximally
entangled state.

Another nontrivial experimental task is the fine-tuning of
the chemical potential to minimize undesired Majorana peak
overlaps. The simplest way to mitigate these overlaps is to
use a longer wire, which exponentially reduces the overlaps.
Our simulation indicates that a wire length on the order of
5–10 μm is sufficient. Alternatively, a setup that links together
several shorter wires may also be possible if longer wires are
experimentally unavailable.

The adiabatic constraint we found using the Landau-Zener
formula is rather lenient, only requiring transition times on the
order of 0.1 ns. This is due to the generous topological gap
of ∼0.35 meV that separated the zero-energy and bulk states,
due to the relatively large proximity effect and g factor. In
addition, the topological phase requires a relatively large spin-
orbit coupling. Our parameters are reasonable when compared
to experiments [5–9], but the need for a robust topological gap
should be considered when selecting materials, and further
advances of the proximity effect and spin-orbit in relevant
materials would be helpful.

The operation time for performing the ideal rotation angles
can be found experimentally by reproducing the probability
plot in Fig. 6. Indeed, calibration is needed to find the effective
coupling that accounts for additional effects such as disorder,
local tunings, and the small coupling between regions via the
s-wave superconductor [33]. For example, the ideal rx

12(π/4)
for the simplified CHSH experiment can be calibrated in the
following way. First, all three parities are measured to project
to a basis state, then gates are gradually tuned to shift the
chemical potential in the left nontopological region for an
operation time ∼0.5 ns, followed by a final measurement
of all three parities. We note that the operations can be
achieved by moving a single domain wall if this is easier
experimentally; we moved both the outer and middle domain
walls to suppress overlaps in the topological regions, but this
may be unnecessary in longer wires. This procedure is repeated
several times with the same operation time, tracking the
percentage of times the state remains in the initially measured
state. This is repeated with several slightly different operation
times, until the percentage is near cos2(π/8) � 0.85. Once
the rotations that correspond to L = R = π/4 are roughly
calibrated, the simplified CHSH experiment can be carried
out.

As noted by Rainis et al. [34], we must also consider
the phenomena of quasiparticle poisoning in any system
that uses superconductors to achieve the topological phase.
While a superconductor at T = 0 (which we assumed in our
simulation) will only form Cooper pairs, at finite temperatures
less than ∼160 mK a small, fixed population of quasiparticles
seems to be present [35]. Quasiparticle poisoning occurs when
a single quasiparticle tunnels between the superconductor
and semiconductor, changing the total parity of the system
and destroying the quantum information. Thus, both the

measurement and operation times must be much shorter than
the average time of quasiparticle tunneling, constraining the
operation time in the opposite limit as the adiabatic condition.
Fortunately, estimates of the average time for quasiparticle
tunneling in Majorana wire systems are 100 ns or greater
in typical experimental systems, depending on the specific
parameters [34]. These calculations depend linearly on the
resistance of the wire; thus longer wires will have shorter
tunneling times. Nevertheless, with the adiabatic constraint
only requiring operation times ∼0.1 ns, there is a wide window
for the few operations needed in our proposal. Thus the
constraint on the operation time of measurements is largely
unaffected by our proposed operations.

Another nontrivial aspect inherent to the entanglement
inequalities is the need to find probabilities rather than single
measurement outcomes, requiring a high level of precision in
the gate tuning. While this may make it difficult to reproduce
the exact predictions of quantum mechanics, the large violation
of the CHSH inequality by >40%, and the wide range of angles
that violate hidden-variable theories may still be sufficient for
demonstrating entanglement.

One way to circumvent the precision requirement is to
perform the test proposed by Greenberger, Horne, Zeilinger
[36], and Mermin [37] (GHZM). The GHZM experiment
requires three logical qubits (thus four topological regions),
but tests hidden-variable theories with a single measurement,
rather than involving probabilities and inequalities. Indeed,
there are many interesting experiments that demonstrate
entanglement, such as quantum teleportation, that are possible
with one additional qubit.

This and other relevant systems are still a new and emerging
area of research for theorists and experimentalists alike. With
that said, there are many recent developments which are
not reflected in our Hamiltonians. For example, it seems
that the experiments on the Majorana wire systems are not
strictly one dimensional, and must be analyzed as multichannel
wires to explain some of the experimental findings [38].
Others note that phenomena such as Andreev reflection,
disorder, finite temperature, and the Kondo effect may need
to be further understood in these systems [14,30,38]. Despite
these complications, we stress that almost any convincing
manifestation of Majorana bound states must demonstrate
entanglement, which will likely be easier than full braiding.
While we discussed the specific setup of Majorana wires,
the general idea of using nontopological, proximity-induced
operations to test the entanglement inequalities as a stepping
stone to braiding operations, as well as other aspects such as
separating logical qubits with a parity qubit, may be applied to
many systems that potentially support Majorana bound states,
such as topological insulators [39–41].

VI. CONCLUSION

We have analyzed the motion of domain walls in a Majorana
wire system with three separate topological regions using a
simple Hamiltonian analogous to Kitaev’s toy model [11].
Using the occupation number parity of the Majorana bound
states in each region, we defined a three qubit basis with two
logical qubits and one qubit forfeited to total parity conserva-
tion. In this basis, x-axis rotations are performed by extending
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the outer topological regions to isolate a single coupling
between different topological regions. While these rotations
are not topologically protected from local perturbations, they
can demonstrate entanglement by testing the Bell and CHSH
inequalities.

With the simpler model as a guide, we simulated the
domain wall motion using a more realistic semiconductor
Hamiltonian. Our results indicate that the topological re-
gions can be well separated in wires of length ∼5–10 μm
with reasonable parameters compared to recent experiments.
Adiabatic changes in the chemical potential were simulated
with operation times on the order of 0.5 ns, consistent with
the Landau-Zener condition applied to excitations from zero
energy to the bulk. Extending the topological regions results
in the rotations predicted by the simpler model. Finally, we
simulated the CHSH experiment and found the expected
inconsistency with hidden-variable theories predicted by Bell’s
theorem, indicating that the simpler Majorana Hamiltonian
approximates the Majorana wire system well.

We introduced a simplified version of the CHSH experiment
that only requires projective measurement and repeated use of
two π/4 rotations. We found that a wide range of operation
angles from π/8 to 3π/8 violate the entanglement inequalities.
Thus a keyboard gating setup needs to be relatively precise,
but moderate inaccuracy is tolerable. We provided methods
for calibrating the rotations and discussed potential hurdles
for an experimental realization. Our analysis and simulation
indicate that there is a large window of operation times,
spanning three orders of magnitude, that satisfy the adiabatic
and quasiparticle poisoning constraints. Hence our proposal is
viable for demonstrating entanglement in Majorana wires if
methods for projective measurement and precise gate tuning
are available.

While there have been proposals to test entanglement
[42–46], observing entanglement by directly testing Bell’s
theorem would be a novel opportunity in solid state systems in
general, and an important advance for Majorana wire systems
specifically. In addition to being a crucial ingredient for
quantum information, entanglement may rule out alternative
explanations inconsistent with nonlocal effects, providing a
useful tool beyond local measurements. More so, experimental
work on gate tuning is already required for braiding operations,
and our proposal could serve as a useful benchmark towards
that goal. Thus, the observation of entanglement would support
current models of Majorana wires and provide a significant
piece of evidence supporting the presence of Majorana bound
states.
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APPENDIX A: GENERAL PREPARATION PROCEDURE

In Sec. III we discussed the Bell and CHSH inequalities
with the state |�−

E 〉. Here we consider more general procedures
for preparing any maximally entangled state and testing
the inequalities. Entanglement can be demonstrated for any
initial condition with very simple alterations to our proposal,
rather than discarding data for the incorrect initial state or
measurement outcome.

The procedure shown in Fig. 2 prepares one of the eight
maximally entangled states,

|�±
E 〉 = |000〉 ± |101〉√

2
, |
±

E 〉 = |011〉 ± |110〉√
2

, (A1)

|�±
O〉 = |010〉 ± |111〉√

2
, |
±

O 〉 = |001〉 ± |100〉√
2

, (A2)

by measuring all three parities to project to one basis state from
Eqs. (2), performing the operations rx

12(π/2) and rx
23(π/2),

then measuring the middle parity. The state that is prepared
depends on the overall parity and middle parity measurements,
as shown in Table I. Note that the results for the even and odd
total parity are equivalent upon the exchange 0 ↔ 1 for the
middle parity qubit.

Any of the maximally entangled states can be used to
demonstrate the violation of the Bell and CHSH inequalities,
but with different rotation angles. For example, quantum
mechanics predicts that 〈L,R〉, the expectation value of the
combined parity of the left and right qubits after being rotated
by angles L and R, respectively, for �+

E is cos(L + R) rather
than cos(L − R) for �−

E . Clearly the CHSH quantity in Eq. (9)
is the same except with R → −R, which can be returned
to the case in Sec. III by substituting {L1,L2,R1,R2} →
{L1,L2, − R1, − R2}. The relevant probabilities and angle
transformations for the Bell and CHSH inequalities are
listed in Table II for each maximally entangled state. These
changes can be accounted for by designing the experiment
to perform different rotations depending on the middle parity
measurement outcomes found during the preparation of the
maximally entangled states.

TABLE II. Probabilities and expectation values predicted by
quantum mechanics for the various maximally entangled states. The
set of angles that corresponds to the case in the body of the paper
for the CHSH violation is given as well. The results are the same for
even and odd parity, so we suppress the corresponding subscript.

State P=(L,R) 〈L,R〉 CHSH angles

�− cos2
(

L−R

2

)
cos(L − R) L1,L2,R1,R2

�+ cos2
(

L+R

2

)
cos(L + R) L1,L2, − R1, − R2


− sin2
(

L−R

2

) − cos(L − R) L1,L2,R1,R2


+ sin2
(

L+R

2

) − cos(L + R) L1,L2, − R1, − R2
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APPENDIX B: ENTANGLEMENT INEQUALITIES REVIEW

In this appendix we briefly review Bell’s theorem and the
entanglement inequalities. We only cover the basic aspects
needed for our proposal; we refer the interested reader to
the numerous works [37,47,48] on the topic for a more
comprehensive review.

According to quantum mechanics, some multiparticle
systems can only be described as a single entangled state. For
example, the maximally entangled two-qubit systems cannot
be written as separable states; measuring one of the qubits
automatically determines the outcome of the other. We derive
a simplified version of Bell’s inequality by considering an
experiment that separately measures each qubit of the state
|�−〉 = (|00〉 − |11〉)/√2 with one of three different methods,
denoted a, b, and c. When both qubits are measured using
the same method, the results are always the same. However,
when the two qubits are measured using different methods, the
results are completely uncorrelated. Thus the possible results
for one qubit measurement depend on what method is used
for the other qubit, even if the measurement events are well
separated spatially (i.e., spacelike).

Einstein, Podolsky, and Rosen famously objected to this
type of nonlocal behavior [49], citing it as motivation for a
more complete theory that removes the probabilistic nature
of quantum mechanics by introducing “hidden variables.”
Hidden-variable theories predict, with full certainty, the
outcomes of different measurement methods on a single qubit,
even though only one measurement at a time is possible. Bell’s
theorem states that any local hidden-variable theory makes
predictions that are inconsistent with quantum mechanics [26].
Thus any experiment that agrees with quantum mechanics
rather than hidden-variable theories, implies that the qubits in
the system are entangled.

To see where the two theories are inconsistent, we discuss
the interpretation of |�−〉 in hidden-variable theories. Instead
of a pure state, it is viewed as a classical ensemble of states,
prepared with different hidden variables. If an experimentalist
could measure a single preparation with all three methods at
once, the two qubits’ results would match for each method. In
this view the two qubits only seem uncorrelated when using
different methods, but are actually correlated regardless of
the method chosen. Thus the possible results of one qubit
measurement do not depend on the method chosen for the
other.

While this interpretation avoids nonlocal behavior, it
replaces a superposition of states with a classical ensemble.
Thus any single preparation in the ensemble must be either 0
or 1. Since there are three measurement methods, but only two
possible outcomes, the pigeonhole principle states that at least
two of the methods must give matching results. By defining
P=(a,b) as the probability that the results match when one

qubit is measured with a and the other is measured with b, this
statement can be written

P=(a,b) + P=(b,c) + P=(a,c) � 1, (B1)

which is one version of Bell’s inequality. Meanwhile, quantum
mechanics predicts that this inequality is invalid for certain
measurement methods, which demonstrates Bell’s theorem.

While this inequality can be tested experimentally in
principle, it requires method b to be tested for both qubits,
which would be difficult to accomplish exactly in our proposal.
Instead, we look at the case where the left qubit of |�−〉
is measured with either method L1 or L2, while the right
qubit is measured using either method R1 or R2. Without
superposition, each hidden-variable preparation of the left
qubit must have either L1 = 0 or L1 = 1, by which we mean
that measuring the left qubit with method L1 would yield 0
or 1, respectively. It is simpler to derive the inequality by
considering the parity of these quantities so we use 1 and
−1 for even and odd parity, respectively, for the remainder
of this appendix. Thus, each preparation must have L1, L2,
R1, and R2 as either 1 or −1 according to the hidden-variable
interpretation.

Consider the quantities L1 + L2 and L1 − L2; either L1 +
L2 = ±2 and L1 − L2 = 0, or L1 + L2 = 0 and L1 − L2 =
±2. This implies that the quantity

|(L1 + L2)R1 + (L1 − L2)R2| = 2 (B2)

for each preparation since one of the terms vanishes in either
case.

If an experimentalist could measure the qubits with more
than one method at a time, this prediction could be tested
directly. Instead, we must extract a statistical prediction that
only requires a single measurement of each qubit for any given
preparation. With that in mind, we note that the expectation
value of any constant is simply that constant, and any variable
X satisfies |〈X〉| � 〈|X|〉 for any probability distribution.
Applying these arguments to Eq. (B2), we get the eponymous
inequality first derived by Clauser, Horne, Shimony, and Holt
[27]

|〈L1,R1〉 + 〈L2,R1〉 + 〈L1,R2〉 − 〈L2,R2〉| � 2, (B3)

where 〈L,R〉 = P=(L,R) − P�=(L,R) is the expectation value
for the combined parity of the left and right qubits when
measured with methods L and R, respectively. Since each term
only involves one measurement per qubit, it is possible to pre-
dict the left side of the inequality with quantum mechanics. For
several measurement method combinations, the predictions
are inconsistent with the local hidden-variable theories. Thus
any experiment that violates the CHSH inequality negates the
local hidden-variable theories, demonstrating entanglement in
the system.
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