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The landscape of undergraduate biology education has been shaped by decades of 

reform efforts calling for instruction to integrate core concepts and scientific skills as a 

means of helping students become proficient in the discipline. Assessments can be used 

to make inferences about how these reform efforts have translated into changes in 

department curriculum and course practices. Such changes can be measured using student 

scores on researcher-developed programmatic and concept assessments. Scores on these 

assessments are often assumed to be accurate representations of student biology content 

knowledge, but my work indicates that the validity of these interpretations may be 

threatened when students complete the assessments in low-stakes contexts that are more 

likely to elicit low test-taking effort. Score validity is also threatened in high-stakes out-

of-class contexts in which students may be incentivized to leverage external resources to 

increase their score. My findings suggest that departments and instructors using 

programmatic and concept assessments to evaluate the progress of their curriculum and 

courses in meeting the goals of reform effort should carefully interpret scores in light of 

the conditions in which students completed the assessment. The impacts of reform efforts 

may also be detected in the types of skills and content that are assessed on course exams. 

I studied the skills and content of lower-division undergraduate biology exams in the 

context of a three-dimensional framework consisting of scientific practices, 



 
 

interdisciplinary crosscutting concepts, and disciplinary core ideas. I found that very few 

exam items were three-dimensional, primarily due to the low number of items assessing 

scientific practices. Although there were few three-dimensional items, those items were 

more likely to use a constructed-response format and assess higher-order cognitive skills 

compared to items not aligned with all three dimensions. To achieve the goals of reform 

efforts in undergraduate biology education, my research indicates instructors may need 

time, resources, and training for writing and grading three-dimensional assessments. 

Altogether, this dissertation sheds critical insight into the process and content of 

evaluating student learning, thereby refining our understanding of the impact of education 

reforms.
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INTRODUCTION 

The landscape of undergraduate biology education has been shaped by decades of 

reform efforts calling for instruction to integrate core concepts and scientific process 

skills as a means to gain disciplinary proficiency (American Association for the 

Advancement of Science [AAAS], 1989, 1993, 2011; National Academies of Sciences, 

Engineering, and Medicine [NASEM], 2016b, 2021, 2022; National Research Council 

[NRC], 1996, 2003b, 2012a). These calls for reform have identified core concepts within 

biology (NRC, 1996, 2012a; AAAS, 2011) and have focused on different aspects the 

scientific process, including inquiry (NRC, 2000), competencies (AAAS, 2011), and 

scientific practices (NRC, 2012a). While the terminology and focus of these calls for 

reform may differ slightly, a central theme across the calls is the common goal of getting 

students in science courses to be actively involved in deeply understanding and doing 

science. This goal has largely been informed by the anticipated demands and needs of the 

future workforce (NASEM, 2016b; National Center on Education and the Economy, 

2008; NRC, 2007; Olson & Riordan, 2012). Students entering both science and non-

science careers need to be prepared for a data-driven world where information—and 

misinformation—is increasingly accessible. Thus, these calls and reform efforts 

emphasize that science education needs to move away from rote memorization of facts 

and towards providing students knowledge and skills they can use to critically analyze 

and evaluate the vast amount of information they will encounter in many facets of their 

lives. 

Many of the calls to incorporate scientific skills into science education stem from 

the K-12 education system where they were enacted as national-level standards (NRC, 

1996; NGSS Lead States, 2013). Currently, 44 of the of U.S. States have adopted a 
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common vision for K-12 science education by using the Next Generation Science 

Standards or its adaptations (NASEM, 2021; NGSS Lead States, 2013), and the adoption 

of these standards into schools and classrooms was facilitated by accountability policies 

and federal intervention programs (Hardy & Campbell, 2020). Standardized science 

assessments designed to measure students’ conceptual understanding and application of 

scientific skills provide data about the progress of these K-12 reform efforts at both state 

and nationwide levels (e.g., California Department of Education, 2023; Maryland State 

Board of Education, 2022; U.S. Department of Education et al., 2019). Our understanding 

of the progress of these reform efforts at the undergraduate level is less clear as there are 

few analogous policies, programs, and assessments within undergraduate science 

(NASEM, 2016a); thus, it is difficult to determine how these calls have permeated into 

college courses and this is a challenge that warrants additional research.   

To monitor instructional transformation in undergraduate biology, we can rely on 

the information provided by assessments. Assessments, broadly defined in the context of 

biology education, are tools for collecting information that can be used to make 

inferences about student understanding of biology concepts. These inferences are often 

made under the assumption that assessment scores accurately reflect student knowledge, 

so it is important to consider test-taking behaviors to determine whether scores represent  

valid depictions of student understanding. Valid interpretations of assessment scores are 

crucial for accurately determining the impact of reform efforts. In addition to providing 

information about student knowledge, assessments also provide insight into what 

instructors value in their courses as the content and skills that are assessed reflect 

instructors’ prioritized learning outcomes (NRC, 2003a; Scouller, 1998). As such, 
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assessments can frame the picture of how the goals of reform efforts have been translated 

into practice in undergraduate biology classrooms. Accordingly, in this dissertation I 

investigate biology assessments with an eye towards score validity and to characterize the 

content that is being assessed on undergraduate biology course exams.   

I focus my research on three types of assessments that are commonly used in 

undergraduate biology: programmatic assessments, concept assessments, and summative 

assessments in the form of tests or exams. These three types of assessments provide 

snapshots of undergraduate biology ranging from the wide scope of an entire department 

to the detailed portrait of a single course. Programmatic assessments, such as the suite of 

Biology Measuring Achievement and Progression in Science (Bio-MAPS) diagnostic 

assessments (Couch et al., 2019; Couch, Wood, et al., 2015; Semsar et al., 2019; 

Summers et al., 2018), are tools to measure student understanding of foundational core 

concepts across a degree program. Given that programmatic assessments contain content 

that spans a four-year biology degree, these assessments are often administered under low 

stakes conditions where students are given participation credit and are not graded based 

on the correctness of their responses. Concept assessments, such as the Introductory 

Molecular and Cell Biology Concept Assessment (Shi et al., 2010), are similar to 

programmatic assessments in that they measure student conceptual knowledge, but 

concept assessments are more often used in individual courses or units rather than across 

an entire department. As concept assessments may be more closely aligned with course 

learning objectives, biology instructors may use a broader range of administration 

conditions in terms of how they assign credit. Compared to programmatic and concept 

assessments, which are intentionally designed to assess concepts from frameworks such 
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as Vision and Change (AAAS, 2011; Branchaw et al., 2020), there is much more 

variability in the content assessed on course exams. Undergraduate instructors have a 

high degree of autonomy when designing their exams (Couch et al., 2023), and the design 

of these exams can signal the prioritized learning outcomes in instructors’ courses 

(Wiggins & McTighe, 2005). Thus, the content and skills included on course exams can 

be used as a way to determine course curriculum alignment to reform efforts and their 

associated frameworks.  

The following sections of this introduction briefly introduce the rationale, 

research questions, and main findings of the four studies included in this dissertation. 

Chapters 1 and 2 focus on programmatic and concept assessments, respectively. These 

chapters provide evidence of score validity for programmatic and concept assessments. 

Specifically, I examined how administration conditions can affect student engagement on 

assessments in ways that shape score validity interpretations. These chapters highlight 

that although biology content knowledge is what is being tested, biology content 

knowledge is not always what is being measured. I provide recommendations to 

instructors and departments on how to administer assessment instruments and how to 

appropriately interpret assessment scores in light of student test-taking behaviors. 

Chapters 3 and 4 of this dissertation characterize exams from undergraduate biology 

courses. These chapters investigate what content and skills are being assessed in biology 

courses using the lens of a three-dimensional framework. These chapters illustrate how 

instructors may be better supported in aligning their assessments with the goals of 

national calls and reform efforts in science education. Altogether, this dissertation 
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provides a broad-scoping answer to the question: What are we assessing in undergraduate 

biology?  

Chapter 1: GenBio-MAPS as a Case Study to Understand and Address the Effects 
of Test-Taking Motivation in Low-Stakes Program Assessments 

Vision and Change (AAAS, 2011) represents a landmark report calling for the 

reform of undergraduate biology education. The advent of this report created the need for 

tools that biology departments can use to self-assess their progress in meeting curricular 

reform goals (Branchaw et al., 2020; Smith et al., 2019). Thus, discipline-based education 

researchers created a suite of programmatic assessments designed to measure biology 

students’ understanding of Vision and Change core concepts across a major. General 

Biology – Measuring Achievement and Progression in Science (GenBio-MAPS) is one 

such programmatic assessment (Couch et al., 2019).  

GenBio-MAPS is intended to be administered as a low-stakes assessment (i.e., 

students receive participation credit for submitting the assessment). While low-stakes 

assessments have benefits in that they provide flexible testing locations and might 

minimize testing anxiety, the low stakes also have the potential to elicit low test-taking 

effort from students in ways that threaten test score validity (Wise & DeMars, 2005; 

Wise & Kong, 2005). Low test-taking effort is often reflected in short test completion 

times, rapid selection of responses to test items, or self-reports of low effort, and these 

low-effort behaviors may yield scores that underestimate student understanding. Such 

underestimations of student understanding may misinform department-level decisions 

about teaching and curriculum that can have consequences for student learning outcomes. 

Previous research on test-taking effort on low-stakes assessments had only been 

conducted on general education assessments (Cole et al., 2008; Hoyt, 2001; Sundre & 
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Wise, 2003; Swerdzewski et al., 2011; Thelk et al., 2009), but I anticipated that a 

biology-specific assessment may yield different test-taking behaviors from biology 

students. This study addressed five research questions to explore test-taking motivation in 

a disciplinary context:  

1) How are students engaging with the GenBio-MAPS instrument? 
 

2) Does self-reported effort align with observed test-taking behaviors?  
 

3) How do different aspects of test-taking effort relate to GenBio-MAPS score?  
 

4) To what extent do students demonstrate test-taking persistence?  
 

5) How might departments filter student responses to reduce the influence of low 
test-taking effort?  
 
I found that most students were using effortful behavior when completing 

GenBio-MAPS, but there was a small proportion of students who exhibited evidence of 

low test-taking effort in their short test-completion time, rapid selection of responses, 

and/or self-reports of low test-taking effort. Students with these low effort behaviors 

tended to have lower GenBio-MAPS scores, which are likely unrepresentative of their 

actual biology content knowledge. I identified a set of criteria and cutoffs to filter out the 

scores of students with low test-taking effort and proposed a motivation filtering protocol 

to yield datasets that better represents student understanding of biology core concepts. 

Chapter 2: How Administration Stakes and Settings Affect Student Behavior and 
Performance on a Biology Concept Assessment 

Concept assessments in biology are validated assessment instruments developed 

by discipline-based education researchers that instructors can deploy to diagnose student 

understanding of foundational biological concepts (Knight, 2010). As instructors often 

use student scores on concept assessments to inform their instructional choices, it is 

important that the scores provide a valid portrayal of student understanding. Scores may 
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not be valid if students exhibit low test-taking effort (Wise & DeMars, 2005) or if 

students consult external resources when completing the concept assessment (Munoz & 

Mackay, 2019). Certain concept assessment administration conditions may make these 

test-taking behaviors more likely to occur, but there had not yet been an empirical 

comparison across the range of administration stakes and settings. In this study, I 

analyzed data from lower-stakes testing conditions (i.e., participation credit) and higher-

stakes conditions (i.e., grading based on correctness of responses) for in-class and out-of-

class settings. I used concept assessment score, completion time, and the correlation of 

concept assessment scores with previous course exams as indicators of underlying test-

taking behaviors. The research question for this study was:  

1. How do administration stakes and settings affect student test-taking behavior and 
performance and influence interpretation of student scores on a biology concept 
assessment?  
 
Student performance on a biology concept assessment was similar across lower-

stakes in-class, lower-stakes out-of-class, and higher-stakes in-class settings, suggesting a 

degree of equivalence between these administration conditions. Students spent more time, 

had higher scores, and had the lowest correlation with the previous test performance 

when they completed concept assessments in higher-stakes out-of-class conditions. This 

finding suggests that instructors should carefully interpret the scores from higher-stakes 

out-of-class conditions as the scores may be more of a reflection of accessing external 

resources and may not accurately reflect student understanding of biology concepts. 

Chapter 3: Testing Scientific Practices: A Nationwide Analysis of Undergraduate 
Biology Exams 

National calls have emphasized that incorporating scientific practices into 

undergraduate science education is key for addressing the needs of increasingly 
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interdisciplinary science fields and to solve emerging global challenges (NASEM, 2021, 

2022; NRC, 2007). The importance of the scientific practices is underscored by their 

inclusion as one of the dimensions in a three-dimensional framework for science 

education (NRC, 2012a). Yet, despite the importance of the scientific practices, previous 

work suggests that most undergraduate biology students are likely not encountering these 

practices in their course assessments, which mainly test memorized facts aligned to the 

lower-order cognitive skills on Bloom’s Taxonomy (Momsen et al., 2010, 2013). To 

better understand the current state of scientific practices in undergraduate biology, I 

conducted a nationwide study of lower-division biology courses and analyzed how each 

instructor’s exam questions aligned to the three-dimensional framework, with specific 

attention towards scientific practices. This research cast light on what content is being 

assessed in undergraduate biology courses and how instructors incorporate scientific 

practices into their assessments with regards to higher-order cognitive skills. The research 

questions for this study were:  

1. To what extent do exams align to the three-dimensional framework with 
particular reference to the scientific practices?  
 

2. What is the relationship between an exam’s alignment to the three-dimensional 
framework and to Bloom’s Taxonomy of cognitive skills? 
 
Overall, I found that very few exams in a nationwide sample of undergraduate 

biology courses aligned to the three-dimensional framework, which was largely driven by 

a very small number of items meeting the criteria for scientific practices. The exams that 

incorporated a greater number of scientific practices tended to assess higher-order 

cognitive skills on Bloom’s Taxonomy.  
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Chapter 4:  Identifying Factors Associated with Instructor Implementation of 
Three-Dimensional Assessments in Undergraduate Biology Courses 

The three-dimensional framework for science education suggests that students 

develop deep understanding of science when their learning integrates scientific practices 

with foundational disciplinary core ideas and interdisciplinary crosscutting concepts 

(NRC, 2012a). In Chapter 3, I found that the large majority of undergraduate biology 

exams did not assess the scientific practices dimension of this framework, and as such, 

were not three-dimensionally aligned. Previous work at a single institution had similar 

results and found that many assessments in introductory undergraduate science courses 

do not align to the three-dimensional framework, particularly when the courses were 

taught prior to reform efforts at the institution (Matz et al., 2018). Given the low use of 

three-dimensional assessments, Matz and colleagues (2018) raised a question about what 

factors in undergraduate education might be barriers to three-dimensional assessment. 

My work in this chapter builds off my previous findings in Chapter 3 and sought to 

answer the question posed by Matz et al. (2018). Drawing upon the conceptual model of 

coherence as a lens for this study, I used a generalized linear mixed model to identify 

factors across the levels of the undergraduate education system that may be helping or 

hindering biology instructors in using three-dimensional assessments. This work aimed to 

address the overarching research question:  

1. What constraints and challenges are undergraduate biology instructors facing in 
implementing three-dimensional assessments in their courses and where may they 
need additional support? 
 
My work here suggested that instructors may face constraints and challenges 

associated with the time needed to develop and grade three-dimensional assessments, as 

three-dimensional items were more likely to use a constructed-response format.  I also 
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identified that existing professional development opportunities and training may not have 

necessarily yielded measurable benefits to three-dimensional alignment, and this may be 

an area where instructors could use additional support. My work suggests that institutions 

and departments can support their instructors by providing the time, resources, and 

appropriate training needed to implement three-dimensional assessments in 

undergraduate biology courses.  

 

In summary, assessments play a key role in shaping the future of undergraduate 

biology education, as the context and content of assessments signals the prioritized 

learning outcomes in courses and in departments. Across these four chapters, I aimed to 

provide actionable recommendations that instructors and departments can use to carefully 

consider how and what they are assessing in undergraduate biology. These chapters 

illuminate paths for using assessment tools to make data-driven decisions about 

curriculum and instruction and incorporating scientific practices as a means of aligning 

the content of assessments with national calls. 
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CHAPTER 1: GENBIO-MAPS AS A CASE STUDY TO UNDERSTAND AND 
ADDRESS THE EFFECTS OF TEST-TAKING MOTIVATION IN LOW-STAKES 
PROGRAM ASSESSMENTS1 

 

ABSTRACT 

The General Biology–Measuring Achievement and Progression in Science 

(GenBio-MAPS) assessment measures student understanding of the Vision and Change 

core concepts at the beginning, middle, and end of undergraduate biology degree 

programs. Assessment coordinators typically administer this instrument as a low-stakes 

assignment for which students receive participation credit. While these conditions can 

elicit high participation rates, it remains unclear how to best measure and account for 

potential variation in the amount of effort students give to the assessment. To better 

understand student test-taking motivation, we analyzed GenBio-MAPS data from more 

than 8000 students at 20 institutions. While the majority of students give acceptable 

effort, some students exhibited behaviors associated with low motivation, such as low 

self-reported effort, short test completion time, and high levels of rapid-selection 

behavior on test questions. Standard least-squares regression models revealed that 

students’ self-reported effort predicts their observable time-based behaviors and that 

these motivation indices predict students’ GenBio-MAPS scores. Furthermore, we 

observed that test-taking behaviors and performance change as students progress through 

the assessment. We provide recommendations for identifying and filtering out data from 

 
1 This research was first published with minor formatting differences as Uminski C., & Couch B. A. 
(2021). CBE—Life Sciences Education, 20(2), ar20. https://www.lifescied.org/doi/10.1187/cbe.20-10-0243 
  
© 2021 C. Uminski and B. A. Couch. CBE—Life Sciences Education © 2021 The American Society for 
Cell Biology. This article is distributed by The American Society for Cell Biology under license from the 
author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported 
Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0) 
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students with low test-taking motivation so that the filtered data set better represents 

student understanding. 

INTRODUCTION 

Biology departments use program assessments to measure students’ 

understanding of biology topics as they progress through an undergraduate degree 

program. General Biology–Measuring Achievement and Progression in Science (GenBio-

MAPS) is one such assessment that focuses on student understanding of the Vision and 

Change core concepts (American Association for the Advancement of Science [AAAS], 

2011; Couch et al., 2019). GenBio-MAPS is part of the suite of Bio-MAPS program 

assessments that are designed to measure conceptual understanding of biology topics at 

key time points in a degree program (Smith et al., 2019). Specifically, GenBio-MAPS is 

administered at the beginning of the first introductory course, after completion of 

introductory courses, and in advanced courses before graduation. Biology departments 

can use the data gathered from GenBio-MAPS across these time points to monitor 

student learning gains, identify areas of curricular proficiency or deficiency, measure the 

impact of curricular changes, and understand student performance based on demographic 

characteristics (Couch et al., 2019). Biology departments may also use GenBio-MAPS 

data to satisfy departmental requirements for institutional reporting and accreditation. 

GenBio-MAPS is administered to undergraduate students outside class time as an 

online survey. The online out-of-class format does not take time from class instruction 

and allows the instrument to be administered and scored consistently and efficiently 

across different courses and institutions. While the online out-of-class administration may 

be convenient for test administrators, this format necessitates low-stakes testing 

conditions in which students are not graded based on test performance. If GenBio-MAPS 
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had higher stakes, there might be greater incentive for students to access external 

resources, and maintaining test security to prevent academic dishonesty in the out-of-

class context would be difficult for departments to achieve. Under low-stakes testing 

conditions, prior research on a similar instrument (Couch et al., 2015) found that student 

performance in the out-of-class context does not differ significantly from an in-class 

administration, suggesting that students engage with the assignment to roughly the same 

degree as they would for an in-class activity (Couch and Knight, 2015). 

While this finding provides some indication regarding student effort, departments 

using data from low-stakes administrations of GenBio-MAPS should still consider the 

potential effects of test-taking motivation on assessment scores. Researchers have noted 

that, without academic consequences for test performance, students may be less inclined 

to give their best effort on low-stakes assessments (Wise and DeMars, 2005). Students 

with low test-taking effort may exhibit behaviors such as guessing, omitting items, and 

rapid selection of responses (Wise and Kong, 2005). These behaviors present a concern 

for departments, because they can introduce construct-irrelevant variance to assessment 

scores (Swerdzewski et al., 2011; American Educational Research Association et al., 

2014). Construct-irrelevant variance refers to the extent to which test scores are affected 

by processes outside the target the test is intending to measure. When construct-irrelevant 

variance occurs due to low test-taking effort, students’ scores may not represent their 

conceptual understanding but instead reflect their low motivation for the task (Wise and 

DeMars, 2010). 

Researchers studying low-stakes assessments have developed methods of 

“motivation filtering” to address the construct-irrelevant variance associated with low 
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test-taking motivation (Sundre and Wise, 2003; Wise and DeMars, 2005). Motivation 

filtering relies on the assumption that motivation is associated with test performance but 

not associated with ability (Wise et al., 2006b). When these assumptions are met, 

motivation filtering methods can be applied to identify the test responses from students 

exhibiting low motivation and remove these scores from the data set. The motivation 

filtering process is expected to decrease construct-irrelevant variance due to low 

motivation and improve the validity of the inferences that can be drawn from test scores 

(Wise and DeMars, 2005, 2010). Although Wise and colleagues (Wise and DeMars, 

2005, 2010; Wise and Kong, 2005; Wise et al., 2006b) have been proponents of the use 

of motivation filtering, this practice is not widely reported in the literature on low-stakes 

assessments and has not been studied in the context of a biology program assessment. 

Test-taking motivation can influence test performance, so it is important to 

understand how students are engaging with diagnostic assessments under low-stakes 

conditions. Given its use in undergraduate biology programs, we use GenBio-MAPS as a 

case study to compare different metrics for test-taking motivation, including student self-

reported survey perceptions and time-based behaviors. This research will help to reveal 

the relationship between self-reported and behavioral measures of motivation and their 

effect on test performance. Understanding these relationships will inform how data from 

GenBio-MAPS and similar discipline-based low-stakes assessments can be filtered to 

account for the influence of low test-taking motivation. 

Theoretical Framework 

The literature on motivation is vast, and the term “motivation” can have different 

meanings depending on context. For this research, “motivation” is defined as “the process 

whereby goal-directed activity is instigated and sustained” (Schunk et al., 2008, p. 4), and  
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Table 1.1: Behavioral indicators associated with test-taking motivation 

 

we refer to motivation specifically in the context of low-stakes testing. In this work, we 

studied motivation by examining students’ test-taking behaviors related to the intended  

goal of students performing to the best of their abilities on GenBio-MAPS. Motivation 

can be inferred when student behavior aligns with the four indexes of motivation: choice 

of tasks, effort, persistence, and achievement (Lepper et al., 1973; Zimmerman and 

Ringle, 1981; Salomon, 1984; Pintrich and Schrauben, 1992; Schunk, 1995). Specific 

test-taking behaviors align with each index of motivation (Table 1.1). Choice of tasks 

would be evidenced by students initiating the assessment, but we will not study this here, 

as we have no information from students who chose not to complete GenBio-MAPS. In 

the current study, we will focus on test-taking effort (inferred by the three behavioral 

indicators of self-reported effort, solution behavior, and test completion time), persistence 

behavior (determined by the amount of time spent on each question as the test 

Index of Motivation Behavioral indicator of high test-
taking motivation 

Behavioral indicator of low test-
taking motivation 

Choice of tasksa • Voluntary completion of test 
instrument under low-stakes 
conditions 
 

• Student does not choose to 
complete test 

Effort • High self-reported effort 
• Student takes an adequate 

amount of time to read and 
contemplate each test question 
before responding (e.g., solution 
behavior) 

• Adequate test completion time 
 

• Low self-reported effort 
• Student responds in less than the 

amount of time needed to read 
and contemplate the test questions 
(e.g., rapid-selection behavior) 

• Short test completion time  
 

Persistence • Consistent use of solution 
behavior throughout the test 

• Consistent amount of time spent 
on each test question as the test 
progresses  
 

• Increase in rapid-selection 
behaviors as the test progresses  

• Decrease in the amount time 
spent on each test question as the 
test progresses 

Achievement • High score on test that reflects 
student ability 

• Low score in relation to student 
ability 

aChoice of tasks was not considered in this study, since we did not have any information from the 
students who chose not to complete the survey. 
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progresses), and achievement (measured by GenBio-MAPS score). Each of these indexes 

of motivation will be discussed in more detail in the following paragraphs. 

Effort can be measured through self-reported means, often using Likert-type 

survey instruments. In our study, we used the Student Opinion Scale (SOS; Sundre and 

Moore, 2002) to collect self-reported data on student test-taking effort. This instrument is 

easily administered following an assessment and previous research has shown that the 

SOS collects reliable data on undergraduate test-taking motivation in a variety of low-

stakes contexts (Wise and Kong, 2005; Sundre, 2007; Thelk et al., 2009). While the SOS 

reveals aspects of student test-taking effort, there are noted limitations in the use and 

interpretation of this instrument. One such limitation is that self-reported data rely on the 

assumption that students accurately gauge and report their levels of motivation (Wise, 

2006; Swerdzewski et al., 2011), and students’ self-reported motivation may not 

correspond to their behaviors for several reasons. Students may consciously alter and 

increase their self-reported motivation if they feel pressure to give socially acceptable 

answers (Fisher and Katz, 2000). Attribution bias may unconsciously influence self-

reported motivation, because students who believe that they did not do well on a test may 

ascribe their poor test performance to a lack of effort over a lack of ability (Schunk et al., 

2008; Duckworth et al., 2011). Other limitations present themselves in the methods in 

which the SOS instrument is administered to examinees. Collecting self-reported data at 

the end of an assessment does not allow for a more nuanced understanding of changes 

that occur as the test progresses (Wise and Kong, 2005). As a result of these limitations, 

we cannot rely on self-reported data alone to gauge the various dimensions of students’ 

test-taking effort. 
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Effort can also be inferred based on timing data from students as they progress 

through a test, and these data are readily collected by computer-based testing platforms. 

The amount of time spent per question can be processed to determine the proportion of 

questions on which students exceed a minimal threshold time (i.e., solution behavior) or 

to quantify the amount of time students spend on the entire test (i.e., test completion 

time). We refer to solution behavior and test completion time as observable test-taking 

behaviors. Even though solution behavior and test completion time are strongly 

correlated, the two measures are distinct and provide different insights into student effort 

(Wise and Kong, 2005). Solution behavior provides information about whether students 

exceed the minimum time deemed necessary to read and process each test question. 

Traditionally, the literature has equated solution behavior with the active seeking of the 

correct response to a question by reading carefully and fully considering the options 

(Schnipke and Scrams, 1997; Wise and Kong, 2005; Kong et al., 2007; Setzer et al., 

2013). However, there are limitations in this interpretation, and we note that response 

times can be classified as solution behavior, even if the student is disengaged or 

distracted by unrelated activities (Lee and Jia, 2014). Thus, solution behavior is necessary 

for, but not necessarily indicative of, test-taking effort (Kong et al., 2007). Conversely, 

rapid-selection behavior refers to student responses that were submitted in a time shorter 

than necessary to read and process the question stem and options (Wise and Kong, 2005). 

The degree to which students use solution behavior is associated with test completion 

time: students who use more solution behavior are also expected to spend a longer time 

on an assessment. While solution behavior can be used to indicate the presence of effort 

when completing an assessment, test completion time provides a window into how much 
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effort was expended, with longer test completion times generally associated with higher 

effort (Wise and Kong, 2005). 

Persistence behaviors provide another perspective on student motivation. In the 

context of test-taking motivation, persistence involves sustained effort throughout the 

duration of the test. This can be detected using both self-reported and time-based data. 

The effort subscale of the SOS instrument addresses persistence in items 2 and 10 (“I 

engaged in good effort throughout this test”; “While taking this test, I was able to persist 

to completion of the task”; (Sundre and Moore, 2002; Sundre, 2007). Persistence can also 

be identified by analyzing question-by-question changes in the use of solution behavior 

across an assessment. This approach was used in previous research and indicated that 

solution behaviors tend to decrease (i.e., rapid-selection behaviors tend to increase) as 

students move through a test (Wise, 2006; Wise et al., 2009). These changes in effort as 

the test progresses signal low persistence and thus low test-taking motivation. In addition 

to changes in solution behavior, changes in the amount of time spent on each question 

can also reflect test-taking persistence. 

We use GenBio-MAPS score as a measure of achievement. Achievement is an 

indirect index of motivation and is affected by the other three indices. The students who 

choose a specific task, put effort into the task, and consistently engage with the task over 

the appropriate time span are expected to achieve at higher levels (Pintrich and 

Schrauben, 1992; Schunk, 1995). In the context of low-stakes assessments, highly 

motivated students are more likely to achieve higher test scores than unmotivated 

students (Wise and DeMars, 2005). As a result, the scores of students with high test-

taking motivation may be more likely to reflect their true abilities, while the scores of 
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students with low test-taking motivation may underestimate what the students are capable 

of achieving. 

Research Questions 

Previous research on test-taking motivation has largely been conducted using low-

stakes general education assessments (Schiel, 1996; Hoyt, 2001; Sundre and Wise, 2003; 

Wise and Kong, 2005; Wise et al., 2006b; Cole et al., 2008; Thelk et al., 2009; Wise and 

DeMars, 2010; Swerdzewski et al., 2011). GenBio-MAPS is a discipline-specific biology 

assessment that was administered to students enrolled in biology courses, and there 

remains a need to explore test-taking motivation in this disciplinary context. Thus, we 

will pursue several research questions related to student motivation when completing 

GenBio-MAPS: 1) How are students engaging with the GenBio-MAPS instrument? 2) 

Does self-reported effort align with observed test-taking behaviors? 3) How do different 

aspects of test-taking effort relate to GenBio-MAPS score? 4) To what extent do students 

demonstrate test-taking persistence? 5) How might departments filter student responses to 

reduce the influence of low-test taking effort? Answering these questions will help 

biology departments better interpret data from GenBio-MAPS and make informed 

decisions about their degree programs. This work will also provide guidance for 

addressing the effects of low test-taking motivation on diagnostic assessments more 

broadly, including for similar types of instruments and within other science, technology, 

engineering, and math (STEM) disciplines. 

METHODS 

GenBio-MAPS Administration 

GenBio-MAPS consists of 39 question stems with four to five true-false (T/F) 

statements each for a total of 175 accompanying T/F statements that assess Vision and 
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Change core concepts (AAAS, 2011). Each student was administered a random subset of 

15 question stems and their associated T/F statements. The order of the question stems 

and T/F statements within each question stem were randomized for each student. Full 

details regarding the development and administration of the GenBio-MAPS instrument 

can be found in Couch et al. (2019). 

Our analyses used the final data set from the instrument development process 

(Couch et al., 2019). These cross-sectional data were collected during the 2016 calendar 

year from students in 152 biology courses at 20 institutions (Supplemental Table 1.1). 

Each student responded at only a single time point and thus is only represented once in 

this data set. Students completed GenBio-MAPS as part of normal course or program 

requirements and received course credit or extra credit for completing the instrument. 

Credit was determined by course instructors, and there was no additional benefit to 

students based on correctness of responses or the decision to release their responses for 

research purposes. 

GenBio-MAPS was administered using the Qualtrics survey platform (Qualtrics, 

2019). On the first page of the survey, students were introduced to the assessment, asked 

to answer the questions to the best of their abilities in one sitting, and urged to refrain 

from using outside resources (e.g., peers, websites). GenBio-MAPS was designed to take 

approximately 30 minutes to complete, but there was no time limit on the assessment. 

The Qualtrics platform unobtrusively collected data about the amount of time students 

spent on each multiple–true-false (MTF) question, which corresponds to one survey page. 

The SOS (Sundre and Moore, 2002) was administered in the survey after students 

completed the GenBio-MAPS assessment. The SOS contains two subscales designed to 
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measure the perceived importance of doing well on the test and the amount of effort the 

student expended on the test. Each subscale contains five questions. Both subscales were 

administered, but only data from the effort subscale were used for this research, because 

students were not expected to place a high degree of personal importance on the test. The 

SOS items use a Likert-type response system, where 1 = strongly disagree, 2 = disagree, 

3 = neutral, 4 = agree, and 5 = strongly agree. The two items on the effort subscale that 

have negative stems (e.g., “I did not give this test my full attention while completing it”) 

were reverse coded before scores were calculated (Sundre, 2007). We calculated the 

average score that students reported on the SOS, using a range from 1 to 5. Higher scores 

on the SOS represent a greater amount of effort on GenBio-MAPS. 

Data Processing, Participation Rates, and Student Demographics 

We applied initial and minimal data processing to remove responses that were 

incomplete, duplicated, or unusable. Note that, although we used the same data set as 

Couch et al. (2019), we targeted a broader range of students in our study and accordingly 

used less-restrictive data-processing procedures. We first removed submissions from 

individuals who did not reach the end of the survey, reported being under 18 years of age, 

did not consent to release survey data, or had already submitted complete survey data in 

the same course. We also excluded data from individuals who had responded to fewer 

than 60 T/F statements, a cutoff selected because it represents the minimum number of 

statements that students could encounter in an administration of 15 GenBio-MAPS 

question stems. Our final data set contained 8185 responses (Table 1.2). Roughly 3% of 

students who remained in the data set did not complete the SOS instrument; these 

students were only excluded from analyses that involved SOS scores. Response times for 

individual questions that exceeded 15 minutes represented 1% of the response times 
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recorded, and the data for those pages were replaced with the average page time of 1.5 

minutes (Supplemental Table 1.2). 

Table 1.2: Student self-reported demographics 
Student characteristic na % 
Course time point  
• Beginning of introductory series  
• End of introductory series 
• Advanced 

 
3935 
3118 
1132 

 
48 
38 
14 

Gender 

• Female 
• Male 
• Non-binaryb 

 
5223 
2829 
55 

 
65 
34 
<1 

Race/ethnicityc 
• Non-underserved 
• Underserved 

 
6209 
1700 

 
79 
21 

Highest level of parental education 
• Completed bachelor’s degree 
• Did not complete bachelor’s degree 

 
5006 
2967 

 
63 
37 

Language 
• English spoken at home growing up 
• English not spoken at home growing up 

 
6966 
1140 

 
86 
14 

Major 
• Declared or intent to declare a major in biology 
• Non-biology major 

 
5830 
2235 

 
72 
28 

a Numbers do not add to full sample size because some students left the given item blank. 
b Due to low numbers, responses in this group were excluded from analyses. 
c Underserved racial/ethnic groups included students who self-identified as African American/Black, 
Filipino, Hispanic/Latinx, Native American/Alaska Native, Native Hawaiian, and Pacific Islander. This 
grouping is not intended to obscure the unique histories and identities of any group. 

  

Identifying Solution Behavior and Persistence Behaviors 

We set response time thresholds based on the number of characters in the text of 

each GenBio-MAPS MTF question, including spaces. The standardized directions in each 

question and text within figures, graphs, or tables were excluded from the character 

count. We calculated thresholds based on a rate of 100 characters per second 

(Supplemental Table 1.3), which approximates threshold rates used in prior studies (Wise 

and Kong, 2005; Kong et al., 2007). Response times above the threshold (i.e., solution 

behavior) were assigned a value of 1, and response times below the threshold (i.e., rapid-

selection behavior) were assigned a value of 0. We used the methods established by Wise 
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and Kong (2005) and calculated the sum of the values for solution behavior, then divided 

by the number of questions on the assessment. The resulting value represented the 

proportion of test questions for which the student used solution behavior. Consistent with 

previous studies (Wise and Kong, 2005; Kong et al., 2007), we did not consider the 

readability of the text (e.g., Flesch reading ease or Flesch-Kincaid level [Flesch, 1948; 

Kincaid et al., 1975]) when setting the response time thresholds. We determined 

persistence behaviors by examining changes to the proportion of students using solution 

behavior and the length of response times for each page in the survey. 

Statistical Analyses 

For certain analyses, we identified arbitrary effort cutoffs based on the judgment 

that students below these cutoffs could be reasonably considered to be giving insufficient 

effort, a criterion that provides the basis for the filtering or removal of students from the 

data set. For the SOS effort subscale, we selected 2.5 as the cutoff, as students below this 

mark fall in the range of disagreeing or strongly disagreeing with effort statements. We 

used a cutoff of 0.6 for solution behavior, and students below this mark were engaging in 

solution behavior on fewer than 60% of the questions (i.e., students were using rapid-

selection behavior on at least 40% of questions). Finally, based on prior estimates of how 

long it takes to read quickly through the assessment, we used 10 minutes as a cutoff for 

test completion time. We use these cutoffs to distinguish between what we hereafter refer 

to as “motivated” and “unmotivated” students. 

We calculated overall score as the proportion of T/F statements answered 

correctly. Each T/F statement response was scored as 1 = correct or 0 = incorrect, and 

overall score was calculated by summing the number of correct T/F statements for each 

student and dividing by the total number of statements. We used JMP (SAS Institute Inc., 
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2019) to calculate Cronbach’s alpha to determine the estimated reliability of the items on 

the SOS instrument and to estimate standard least squares linear regression models to 

understand how different variables explained student effort, persistence, and overall 

score. Predictor variables were tested based on whether they had previously shown 

significant effects in Couch et al. (2019) or were hypothesized to explain variance in the 

outcome variable. We included self-reported demographic variables as fixed effects and 

institution as a random effect in our models predicting effort and overall score. Reference 

groups were selected based on the group having the larger sample size. We included 

student and question as random effects in our models for test-taking persistence. A 

correlation matrix for variables is provided in Supplemental Table 1.4. Given the 

correlations between predictor variables, we applied a backward stepwise model-

selection procedure to address potential issues with multicollinearity (Akaike, 1973). 

Starting with the highest p-values, nonsignificant variables were individually tested for 

retention in the model and were only retained if the new model had an Akaike 

information criterion (AIC) value more than two units greater than the prior model. 

Institutional Review Board Approval 

This research was approved by the University of Nebraska–Lincoln (protocol 14618). 

RESULTS 

How Are Students Engaging with the GenBio-MAPS Instrument? 

We examined student engagement with GenBio-MAPS based on self-reported 

effort, solution behavior, and test completion time (Figure 1.1). The estimated reliability 

of the SOS effort subscale (using Cronbach’s alpha) was 0.81. Most students (86%) 

reported a score on the effort subscale greater than or equal to 2.5. The mean score on the  
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Figure 1.1: Distribution of (A) self-reported effort, (B) solution behavior, and (C) 
test completion time. The striped portion of each distribution represents the students 
considered to be demonstrating unmotivated test-taking behavior. (A) Self-reported effort 
was determined using the average of students’ responses to the effort subscale of the SOS 
instrument. Higher average scores reflect student perception of using a greater amount of 
effort on GenBio-MAPS. (B) Solution behavior represents the proportion of questions for 
which a student did not use rapid-selection behavior. (C) The intended test completion 
time for GenBio-MAPS was 30 minutes. 
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effort subscale was 3.26, with an SD of 0.72. Most students (90%) used solution behavior 

on greater than 60% of GenBio-MAPS questions, and 64% of students used solution 

behavior on every question. Approximately 90% of students had test completion times 

longer than 10 minutes. The mean test completion time was 27.78 minutes with an SD of 

15.11.  

We found that the different measures of effort generally correlated with each 

other (Supplemental Table 1.4). To understand differences in student motivation 

classifications, we analyzed how commonly students received the same classification of 

either “motivated” or “unmotivated” across measures. There was a 72% agreement 

between self-reported effort and solution behavior. Self-reported effort and test 

completion time agreed 69% of the time. The two time-based indicators of effort, 

solution behavior and test completion time, had the largest agreement at 93%. Agreement 

across all three indicators of effort was 66%. Thus, while there is correspondence across 

these three indicators of test-taking effort, they each capture slightly different subsets of 

student behaviors. 

Most of the demographic variables that we included in our models significantly 

predicted scores on the SOS effort subscale (Supplemental Table 1.5); however, the 

effect size for each variable was small and the adjusted R2 for our model was low (0.033). 

Our results suggest that student demographic characteristics had negligible effects on 

self-reported effort, which provides further evidence that the SOS effort subscale 

consistently measures test-taking effort across diverse student populations. 

Does Self-Reported Effort Align with Observed Time-Based Behaviors? 

We examined the degree to which students’ self-reported effort predicted their 

observed time-based behaviors, using separate models to predict the effects of student 
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demographics and self-reported effort on solution behavior and test completion time 

(Supplemental Table 1.6). We found that most demographic variables had significant (p < 

0.05) but weak effects on solution behavior and test completion time. These findings 

suggest that variation in observed time-based behavior cannot be largely attributed to 

differences in student demographic characteristics. 

Our models indicated that students at different time points in degree programs 

behaved differently when completing GenBio-MAPS. Compared with the beginning of 

the introductory series (first time point), students at the end of the introductory series 

(second time point) had lower solution behavior and shorter test completion times. These 

students at the end of the introductory series (second time point) also had lower time-

based effort than students in advanced courses (third time point). The models further 

indicated that students with a higher score on the SOS effort subscale spend more time on 

GenBio-MAPS and used more solution behavior. Overall, student demographics and self-

reported effort explained a relatively small amount of the variation in observed time-

based behaviors (solution behavior: adjusted R2 = 0.145; test completion time: adjusted 

R2 = 0.091). 

How Do Different Aspects of Test-Taking Effort Relate to GenBio-MAPS Score? 

We hypothesized that self-reported effort and observed time-based behaviors 

affect student performance on GenBio-MAPS. Given the correlations between the three 

indicators of effort, we used regression models to separately test for the effects of self-

reported effort, solution behaviors, and test completion time (Supplemental Table 1.7). In 

each model, each demographic variable significantly (p < 0.0001) predicted score, as we 

have found previously (Couch et al., 2019). We found that self-reported effort, solution 

behavior, and test completion time had positive effects on score, indicating that students 
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who reported higher effort, used more solution behavior, or spent longer amounts of time 

on the test were likely to achieve higher scores. When considered separately, the model 

containing solution behavior explained more of the variance in score (adjusted R2 = 

0.418) compared with self-reported effort (adjusted R2 = 0.343) or test completion time 

(adjusted R2 = 0.350). When we added all three of these variables into one regression 

model to look at the combined effects of test-taking effort on score (Table 1.3), their 

effect sizes decreased, but the adjusted R2 of the model increased to 0.452. 

Table 1.3: Standard least squares linear regression modela on the effects of student 
demographic characteristics and test-taking effort on GenBio-MAPS score 

Parameterb Estimate SE df t p 
Intercept 0.369 0.012 113.9 31.79 <0.0001 
Gender: male 
• (ref: female) 

0.015 0.001 7519 13.96 <0.0001 

Race/ethnicity: underserved 
• (ref: non-underserved) 

-0.012 0.001 7536 -8.80 <0.0001 

Parental education: did not complete 
bachelors’ degree 
• (ref: parent completed bachelor’s 

degree) 

-0.012 0.001 7536 -10.74 <0.0001 

Language: English not spoken at home 
• (ref: English spoken at home) 

-0.013 0.002 7531 -8.37 <0.0001 

Major: not majoring in biology 
• (ref: majoring in biology) 

-0.006 0.001 7534 -5.06 <0.0001 

Time point [2-1]: end of introductory 
series 
• (ref: beginning of introductory 

series) 

0.059 
 

0.003 
 

7429 
 

23.14 
 

<0.0001 
 

Time point [3-2]: advanced series 
• (ref: end of introductory series) 

0.050 0.004 7536 14.06 <0.0001 

Self-reported effort 0.024 0.002 7522 10.94 <0.0001 
Time point [2-1]*self-reported effort -0.001 0.003 7522 -0.45 0.6555 
Time point [3-2]*self-reported effort 0.022 0.005 7519 4.53 <0.0001 
Solution behavior 0.127 0.009 7529 13.42 <0.0001 
Time point [2-1]*solution behavior 0.063 0.013 7526 4.79 <0.0001 
Time point [3-2]*solution behavior 0.067 0.023 7518 2.97 0.0030 
Test completion time 0.001 0.000 7533 6.41 <0.0001 
Time point [2-1]*Test completion time 0.000 0.000 7526 2.65 0.0081 
Time point [3-2]*Test completion time -0.000 0.000 7519 -1.37 0.1694 
a Score ~ institution + gender + race/ethnicity + parental education + language + major + time point + self-
reported effort + time point*self-reported effort + solution behavior + time point*solution behavior + test 
completion time + time point*test completion time 
b Estimates for nominal variables indicate the effect based on being a member of the focal group in 
comparison to the reference (ref) group.  
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Our models indicated that time point in a degree program largely affects GenBio-

MAPS performance. As expected, students at later time points in a degree program were 

predicted to have higher GenBio-MAPS scores than students at earlier points in a degree 

program. We also examined the interactions between test-taking effort and time point in a 

degree program. These interactions allow us to determine how effort affects scores at 

each time point (Figure 1.2). For self-reported effort, advanced students show a 

disproportionate benefit as they report increasing effort. For solution behavior, as 

students reach later time points, their engagement in solution behavior increasingly 

results in higher scores. Both of these results are consistent with the idea that effort has a 

greater impact on the performance of students at later time points. For test completion 

time, students at the end of the introductory series see a disproportionate benefit from 

taking more time than students at the beginning of the introductory series, but advanced 

students do not see any further benefit from taking more time to complete the test. 

To What Extent Do Students Demonstrate Test-Taking Persistence? 

Students used the SOS instrument to report their test-taking effort after 

completing GenBio-MAPS, but this single data point was not sufficient to capture subtle 

changes in test-taking effort that may have occurred as the test progressed. Our results 

indicate that persistence behaviors generally decreased over the course of the test (Figure 

1.3). When comparing the first and last questions on the test, the proportion of students 

using solution behavior decreased from 0.99 to 0.83, the average number of minutes per 

question decreased from 2.1 minutes to 1.3 minutes, and the proportion of students 

answering correctly decreased from 0.67 to 0.62. Regression models, which account for 

the difficulty of each randomly displayed question, confirm that the display order of 

questions had a significant (p < 0.0001) negative effect on solution behavior, the amount 
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of time spent on the question, and the score that students achieved on the question 

(Supplemental Table 1.8). 

 

 

Figure 1.2: Modeled interaction effects between (A) self-reported effort, (B) solution 
behavior, and (C) test completion time and time point in a degree program on 
GenBio-MAPS score. Lines represent students enrolled in courses at the beginning of 
the introductory course series (blue), end of the introductory course series (orange), and 
end of advanced courses (red). 
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Figure 1.3: Effect of question display order on student test-taking behaviors and 
performance. Bars represent (A) the proportion of students using solution behavior, (B) 
the average minutes spent by each student, and (C) the proportion of correct responses for 
questions shown in each position on the test. Each student received a random subset of 15 
GenBio-MAPS questions displayed in a random order, so differences between student 
behavior or performance on each question cannot be attributed to question characteristics. 
The y-axis for each graph was truncated for emphasis. Error bars represent standard 
errors. 
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How Might Departments Filter Student Responses to Reduce the Influence of Low 
Test-Taking Effort? 

Two criteria should be considered before using motivation filtering techniques: 

test motivation and test score should be significantly correlated, and there should be a 

very low correlation between test motivation and student ability (Wise et al., 2006b). Our 

results satisfy the first criterion, because our three indicators of test-taking motivation 

(self-reported effort, solution behaviors, and test completion time) had significant effects 

on student scores. Our data also satisfy the second criterion. Students’ self-reported grade 

point averages (GPAs) were correlated with the three effort indicators (self-reported 

effort: r = 0.0673; solution behavior: r = 0.1109; time: r = 0.0434), but these correlations 

are below the recommended threshold (Ferguson, 2009). Meeting this criterion is 

important to ensure the filtering process does not simply remove students with lower 

academic ability. 

Given that data should not be removed without sufficient cause, we established 

the criterion that data should only be filtered when there is a compelling indication that a 

student expended very little effort. Thus, we explored how various filters affect the data 

set before making recommendations about which filtering strategy is appropriate. First, 

we analyzed the score distributions of students excluded by each of the filters (Figure 

1.4). We found that students who self-reported low effort on the SOS (<2.5) could still 

achieve reasonably high scores (i.e., 60–90% correct), suggesting that some high-

performing students may not perceive or report themselves to be giving high effort. 

Conversely, students with low solution behavior (<0.6) or time (<10 minutes) mostly 

scored below 60% correct, indicating that these filters capture far fewer students with 

high scores. This pattern also remained when using a dual filter that removed students if 
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they had either low solution behavior or low test completion time. The test scores of 

students who were removed by this dual filter mirrored but did not completely align with 

a binomial distribution arising from random responses (Supplemental Figure 1.1). 

 

Figure 1.4: Distribution of student responses removed by each motivation filter. 
Lines represent the percentage of students who were removed by filters for self-reported 
effort (red), solution behavior (blue), and test completion time (yellow). The dashed 
green line represents the number of students removed by our recommended motivation 
filter, which removes students based on either low solution behavior or low test 
completion time. 
 

We next examined test metrics for the students remaining after application of each 

filter (Table 1.4). The filter based on self-reported effort was the most restrictive filter 

(excluding 16% of the data set) but resulted in the smallest change on the mean test score 

for the remaining sample. The separate filters based on solution behavior or test 

completion time performed similarly, which can be attributed to the high agreement 
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between the filters. However, these filters were not synonymous, as the dual filter 

removed a higher percentage of the sample and resulted in a slightly higher mean test  

score. 

Table 1.4: Comparison of filtered scores across methodsa of motivation filtering 

 

Our analysis included the average self-reported GPA for each filtered subset of 

data. We used GPA as an indicator of bias, because GPA does not have a strong 

magnitude of correlation with the measures of test-taking effort. There was no statistical 

difference between the mean GPA in the unfiltered sample and data filtered using self-

reported effort. There was a slight increase in the mean GPA for the remaining filters. 

These increases were statistically significant (p < 0.05); however, the statistical 

significance of the small changes in GPA may be attributed to the large sample size 

(7913 students reported their GPAs for analysis). We conclude that the overall 

distribution of student academic ability in the filtered samples is comparable to that of the 

unfiltered set. 

 

 

  
All 

students 

Self-
reported 
effort ≥ 

2.5 

Solution 
behavior ≥ 

0.6 
Time ≥ 10 

min 

Solution 
behavior ≥ 0.6 
and Time ≥ 10 

N 8185 6871 7385 7318 7068 
Percent of sample 
excluded 

0 16 10 11 14 

Mean GenBio-MAPS 
score 

0.639 0.649 0.653 0.653 0.658 

SD 0.12 0.12 0.11 0.11 0.11 
Standardized mean test 
score changeb 

0.00 0.08 0.10 0.11 0.15 

Mean GPAc 4.23 4.23 4.25 4.25 4.26 
a Filters listed represent the population that is included in the sample. 
b Standardized mean score change = (Meanfiltered - Meanoriginal)/SDoriginal 
c GPA was self-reported on a scale where 5 = A- to A+ (3.70 - 4.00); 4 = B- to B+ (2.70 - 3.69);  3 = 

C- to C+ (1.70 - 2.69); 2 = D- to D+ (0.70 - 1.69); 1 = E or F (0.00 - 0.69)  
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DISCUSSION 

GenBio-MAPS is a biology program assessment that is administered as an online 

survey outside class time under low-stakes conditions (i.e., participation credit for 

completion). This administration format has many practical advantages but introduces 

potential caveats to score interpretation. Under these conditions, student test-taking 

motivation cannot be assumed, and low test-taking motivation threatens valid score 

interpretation. Our research sought to characterize students’ effort on GenBio-MAPS, 

understand how different effort metrics relate to performance, and outline appropriate 

ways to reduce the effects of low test-taking effort. Ultimately, these insights are 

intended to help test administrators process and interpret their data from low-stakes 

assessments in a way that accurately captures student understanding. 

Most Students Used Motivated Behavior on GenBio-MAPS 

While one of the goals of our work was to identify and remove scores from 

students with low test-taking effort, we want to emphasize that this group of students was 

only a small percentage of our data set. We found that the majority of students (>86%) 

reported and used motivated behavior when completing GenBio-MAPS and that there 

was a high degree of consistency across the self-reported and time-based effort measures 

(Figure 1.1). Student use of solution behavior on GenBio-MAPS was comparable to 

student behavior in other low-stake contexts (Wise et al., 2006a, 2009; Wise and DeMars, 

2010); however, we observed a slightly higher percentage of students reporting motivated 

behavior on GenBio-MAPS compared with low-stakes general education tests (Schiel, 

1996; Hoyt, 2001; Swerdzewski et al., 2011). The expectancy-value theory of 

achievement motivation (Eccles et al., 1983; Wigfield and Eccles, 2000) may provide an 

explanation for this result. This theory states that motivation to perform well on a task is 
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influenced by expectancy for success on the task and the perception that the task is 

important or interesting. In our context, the task (GenBio-MAPS) is a discipline-specific 

test that was administered only to students enrolled in biology courses. Thus, the students 

may have had a greater expectancy to do well on a biology test and may have had greater 

interest in its biology content, which could have led them to report greater effort 

compared with a general education test outside the discipline. This interpretation also 

agrees with our finding that biology majors tended to have higher effort metrics than 

nonmajors (Supplemental Tables 1.5 and 1.6). 

The Amount of Time Students Spend on Each Question Decreases across the Test 

Although most students engaged in effortful behavior, we noticed a significant 

effect of question order on student behaviors. We found that test-taking persistence 

tended to decrease as students moved through the test (Figure 1.3; Supplemental Table 

1.8). There was a decreasing proportion of solution behavior with increasing question 

position, which is a trend that has been documented in other low-stakes assessment 

contexts (Wise, 2006; Wise et al., 2009). The amount of time spent on a question as well 

as the percentage of correct responses also decreased as students moved through the test. 

The decrease in time spent on questions may be partially attributed to a growing 

familiarity with the test format. Each GenBio-MAPS question contains the same line of 

text providing instructions on how to respond to T/F statements, which students may have 

ignored later in the test. The decrease in solution behavior and decrease in time spent per 

question are closely related, because students who do not use solution behavior have 

inherently short question-response times. Changes in solution behavior and time spent per 

question both contribute to the decrease in the proportion of correct answers at the overall 
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test level, but our results suggest that solution behavior has a greater influence on 

GenBio-MAPS score than time (Table 1.3; Supplemental Table 1.7). 

While these patterns in persistence may seem discouraging, we note that even at 

the end of the test where we observed the least-persistent behaviors, we saw that the 

majority of students (83%) used solution behavior and that the average question time 

(1.25 minutes) represented a reasonable amount of time for answering GenBio-MAPS 

questions. Using motivation filtering on the data set will help to remove some of the 

effects of low test-taking persistence but may not capture the extent of low-effort 

responses that occur at the end of the test. Thus, we support the continued practice of 

randomizing the question order during GenBio-MAPS administrations, which distributes 

the effect of low-effort behaviors that occur toward the end of the test across the question 

pool. 

Effortful Behavior Predicts Higher GenBio-MAPS Scores 

Our research adds to the body of literature that demonstrates a positive 

relationship between test-taking motivation and student performance on low-stakes tests. 

Historically, most of the work on test-taking motivation has been completed in the 

context of general education assessments (Schiel, 1996; Hoyt, 2001; Sundre and Wise, 

2003; Wise and Kong, 2005; Wise et al., 2006b; Cole et al., 2008; Thelk et al., 2009; 

Wise and DeMars, 2010; Swerdzewski et al., 2011). However, work from the broader 

suite of Bio-MAPS assessments has provided more recent evidence of a positive 

relationship between motivation and test score occurs in the context of discipline-specific 

tests. Higher scores on the effort subscale of the SOS instrument were predictive of 

higher scores on EcoEvo-MAPS (Summers et al., 2018) and Phys-MAPS (Semsar et al., 

2019). Our work on GenBio-MAPS corroborates this finding about the effects of self-
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reported effort on biology program assessment scores, while also providing insights into 

the relationship between time-based behaviors and score on a discipline-specific 

assessment. 

Our models predicted that students who reported and used effortful behavior were 

likely to have higher scores (Table 1.3; Supplemental Table 1.7). This important result is 

consistent with motivation theory (Pintrich and Schrauben, 1992; Schunk, 1995) and 

aligns with previous findings in the literature on low-stakes assessments (Wolf and 

Smith, 1995; Schiel, 1996; Wise and DeMars, 2005; Cole et al., 2008; Thelk et al., 2009). 

Our work bolsters existing theory and matches findings from other low-stakes contexts, 

but we also contributed a new perspective to the field by examining how test-taking 

motivation is affected by students’ time point in a degree program. We found that test-

taking effort has a greater effect on student performance at later time points (Figure 1.2). 

Our findings suggest that, when students in upper-level courses have low test-taking 

effort, there is likely to be a more pronounced discrepancy between their actual 

understanding of biology and the level of biology understanding that their low GenBio-

MAPS score implies. This underestimation of students’ skills and abilities threatens valid 

interpretation of GenBio-MAPS scores and provides support for the practice of 

motivation filtering to remove the scores of students with low test-taking effort. 

Motivation Filtering Should Be Used to Remove Data from Low-Effort Students 

Our findings support the conclusions drawn by Wise and DeMars (2005), which 

suggest that test scores from students with low test-taking motivation may be 

underestimating students’ knowledge, skill, and abilities. For this reason, we encourage 

departments administering GenBio-MAPS to collect data on students’ test-taking effort 

and use these data to inform their interpretation of test scores. We suggest that 
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departments apply motivation filtering to reduce the negative influence of low test-taking 

effort on GenBio-MAPS scores. 

While all the motivation filters addressed the effects of low test-taking effort, the 

filters did not address these effects equally, and they produced subtle differences in 

resulting scores (Table 1.4). Given that it is generally not ideal to remove responses from 

data sets, we sought to identify a filtering strategy that only eliminated data from students 

who clearly gave an insufficient effort. Based on our findings, we recommend using a 

dual filter that removes students who had either low solution behavior or short test 

completion time. While these individual filters largely overlap (93%), using the dual filter 

helps identify students who may have met one criterion, but who still gave an 

unsatisfactory effort. For example, a student may have spent just barely more than the 

threshold time on each question, or a student may have spent less than the threshold time 

on most questions and a considerable time on a few questions. This filter captures a range 

of low-effort behaviors that likely introduce construct-irrelevant variance, but it does not 

remove an excessive number of students from the data set. 

Although the data from the SOS instrument are convenient to collect, we do not 

recommend using the data from the SOS effort subscale as a motivation filter. Compared 

with the time-based filters, we observed that the SOS filter captured a greater number of 

responses from students who achieved high scores (Figure 1.4), which also explains why 

there was a smaller effect on mean score with this filter. Steedle (2014) observed a 

similar trend in that many examinees who reported low effort using the SOS instrument 

actually performed well on the Collegiate Learning Assessment. Steedle proposed several 

explanations for this result and suggested that it may be attributed to students not 
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accurately providing self-reported data, intentionally selecting inaccurate responses, or 

making errors when interpreting SOS item wording. Our recommended motivation filter 

avoids these potential problems with self-reported data and relies only on objective time-

based behaviors. After applying the dual filter, departments may still incorporate SOS or 

time-based variables in their statistical models, although this option may not be viable at 

institutions with small student numbers. 

Previous studies have called attention to the need for additional research on 

motivation filtering (Sundre and Wise, 2003; Wise and DeMars, 2005, 2010; Wise and 

Kong, 2005; Wise et al., 2006b). Only a small number of studies have been conducted 

since these calls to action were issued in the early 2000s (Swerdzewski et al., 2011; 

Waskiewicz, 2011; Steedle, 2014). The scant number of publications on motivation 

filtering is alarming, considering that Wise and DeMars (2010) suggested that 

“measurement practitioners routinely apply motivation filtering whenever the data from 

low-stakes tests are used to support program decisions” (p. 27). Our research with 

GenBio-MAPS contributes to the limited literature in the field by providing evidence that 

motivation filtering is an effective and generalizable technique that can be used to better 

inform decisions made about biology degree programs. 

Recommendations for GenBio-MAPS Administration 

Wise (2006) emphasized that, in addition to developing methods to identify and 

manage data from low-effort students, adopting test administration strategies that 

promote effort for low-stakes tests is important. While this was not the focus of the 

current research, we suggest that departments communicate and emphasize the 

importance and usefulness of GenBio-MAPS data. Students who perceive the importance 

or usefulness of an assessment are more likely to put forth more effort (Cole et al., 2008), 
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and framing assessments as important tools to collect data for the student’s institution has 

been an effective method to increase test-taking motivation in other low-stakes contexts 

(Huffman et al., 2011; Liu et al., 2015). We strongly recommend that instructors assign 

some amount of participation credit for completing the instrument, as we have found 

repeatedly that instructors who fail to provide this incentive obtain very low participation 

rates. We do not recommend that departments assign grades based on answer correctness 

as a way to increase student test-taking effort. Although previous studies (Wolf and 

Smith, 1995; Napoli and Raymond, 2004) have indicated that students who were told that 

test performance would count toward a course grade reported higher test-taking 

motivation and performed better on college-level standardized tests, these studies had the 

benefit of administering their graded versions under secure conditions. Most departments 

lack the resources to proctor program-level tests, and assigning grades to students taking 

the test outside a proctored environment would likely encourage students to seek external 

resources. Departments that can administer under secure conditions (e.g., in-person or 

video proctoring) face the possibility that students being graded may still attempt to 

obtain test materials before the assessment. Furthermore, previous work on a science 

literacy assessment established that assigning a small amount of performance-based 

course credit (i.e., part of a quiz grade) to increase the stakes of the test did not 

significantly affect students’ self-reported effort or performance (Segarra et al., 2018). 

Assigning course grades for GenBio-MAPS may also result in other unintended 

consequences, such as increased test anxiety, which can threaten the interpretation of test 

scores (Cassady and Johnson, 2002). 
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CONCLUSIONS 

Our work demonstrates that test-taking motivation represents an important 

consideration in the interpretation of scores from discipline-specific low-stakes 

assessments. While our study examined test-taking motivation for a biology program 

assessment, our results are likely generalizable to investigations of test-taking motivation 

in other contexts and STEM disciplines where assessment instruments are administered 

in low-stakes settings. Our results are also relevant to low-stakes administrations of other 

diagnostic tests or activities that share characteristics with GenBio-MAPS (e.g., pre–post 

concept inventories). We encourage test administrators to collect and report measures of 

effort (e.g., self-reported effort, solution behavior, test completion time) and to apply 

motivation filtering to address the negative effects of the low test-taking effort that can 

occur during low-stakes administration conditions. Our motivation filtering procedure 

can be adapted for other instruments, adjusting the thresholds for detecting low 

motivation accordingly based on the number or content of items. Taking these steps to 

identify and remove low-effort responses may provide departments with a more accurate 

representation of student understanding of assessed concepts, which can better inform 

decisions made using assessment data. 

Accessing Instruments 

GenBio-MAPS is published in its entirety in Couch et al. (2019) and can also be 

accessed through the online portal (http://cperl.lassp.cornell.edu/bio-maps). The SOS 

(Sundre and Moore, 2002), as well as an administration manual for the instrument, can be 

accessed at www.jmu.edu/assessment. 
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SUPPLEMENTAL MATERIAL FOR CHAPTER 1 

Supplemental Table 1.1: Institution and course demographics 
Institution characteristic n % 
Control   
• Public 15 75 
• Private 5 25 
Regionb   
• Mid-Atlantic 2 10 
• Midwest 10 50 
• Northwest 3 15 
• Southwest 5 25 
Carnegie basic classification   
• Associate’s Colleges: Mixed Transfer/Career & Technical-High 

Nontraditional 
2 10 

• Baccalaureate Colleges: Arts & Sciences Focus 3 15 
• Master’s Colleges & Universities: Larger or Medium Programs 7 35 
• Doctoral Universities: Higher or Moderate Research Activity 3 15 
• Doctoral Universities: Highest Research Activity 5 25 
Course time point   
• Beginning of introductory series 58 38 
• End of introductory series 45 30 
• Advanced 49 32 
a Data originally collected and reported in Couch et al. (2019). 
b Region designations are based on PULSE regional boundaries. No institutions 
from the Northeast or Southeast regions are represented in the data set.  
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Supplemental Table 1.2: Number of page times replaced 

Number of pages replaced Percent of students 
0 88.4 

1 - 5 11.5 
6 - 10 0.1 
10 -15 0 

Note: Students saw one multiple-true-false question containing 4-5 T/F statements per 
page. Response times to individual questions exceeding 15 minutes were replaced with 
the average page time of 1.5 minutes  
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Supplemental Table 1.3: Response time thresholds for GenBio-MAPS questions 
GenBio-MAPS question Number of characters in question Response threshold 

BM-01 855 8.55 
BM-02 633 6.33 
BM-03 875 8.75 
BM-04 758 7.58 
BM-07 717 7.17 
BM-08 1299 12.99 
BM-12 1036 10.36 
BM-13 937 9.37 
BM-14 418 4.18 
BM-15 1163 11.63 
BM-16 895 8.95 
BM-18 762 7.62 
BM-19 700 7.00 
BM-20 954 9.54 
BM-21 1172 11.72 
BM-22 1083 10.83 
BM-23 462 4.62 
BM-24 825 8.25 
BM-27 920 9.20 
BM-28 973 9.73 
BM-30 904 9.04 
BM-31 466 4.66 
BM-32 840 8.40 
BM-33 912 9.12 
BM-35 970 9.70 
BM-36 777 7.77 
BM-37 988 9.88 
BM-38 866 8.66 
BM-40 749 7.49 
BM-43 726 7.26 
BM-44 858 8.58 
BM-45 737 7.37 
BM-49 618 6.18 
BM-50 938 9.38 
BM-54 1069 10.69 
BM-55 1480 14.80 
BM-59 1344 13.44 
BM-60 1188 11.88 
BM-61 733 7.33 
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Supplemental Table 1.4: Correlations between demographic variables, test-taking 
effort, and GenBio-MAPS score 
 Gender Race/ 

Ethnicity 
Parental 

education 
Language Major Self-

reported 
effort 

Test time Solution 
behavior 

GenBio-
MAPS 
score 

Gender – -0.01 -0.02 -0.02 0.01 -0.00 0.03** 0.04*** -0.12*** 
Race/ethn
icity 

-0.01 – 0.19*** 0.14*** -0.04*** 0.04*** -0.04*** 0.03** 0.14*** 

Parental 
education 

-0.02 0.19*** – 0.17*** -0.02 -0.00 -0.01 0.04*** 0.18*** 

Language -0.02 0.14*** 0.17*** – -0.02* 0.06*** -0.02* 0.05*** 0.09*** 
Major 0.01 -0.04*** -0.02 -0.02* – 0.05*** 0.07*** 0.07*** 0.12*** 
Self-
reported 
effort 

-0.00 0.04*** -0.00 0.06*** 0.05*** – 0.23*** 0.33*** 0.29*** 

Test time 0.03** -0.04*** -0.01 -0.02* 0.07*** 0.23*** – 0.51*** 0.30*** 
Solution 
behavior 

0.04*** 0.03** 0.04*** 0.05*** 0.07*** 0.33*** 0.51*** – 0.42*** 

GenBio-
MAPS 
score 

-0.12*** 0.14*** 0.18*** 0.09*** 0.12*** 0.29*** 0.30*** 0.42*** – 

*p < 0.05; **p < 0.01; ***p < 0.001 
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Supplemental Table 1.5: Standard least squares linear regression modela of the 
effects of student demographic characteristics on self-reported effort 

 

 

  

Parameterb Estimate SE df t p 
Intercept 3.203 0.033 23.69 96.95 <0.0001 
Gender: male 
• (ref: female) 

0.003 0.009 7536 0.37 0.7086c 

Race/ethnicity: underserved 
• (ref: non-underserved) 

-0.031 0.011 7366 -2.92 0.0035 

Parental education: did not complete 
bachelor’s degree 
• (ref: completed bachelor’s degree) 

0.020 0.009 7483 2.22 0.0263 

Language: English not spoken at home 
• (ref: English spoken at home) 

-0.064 0.012 7534 -5.18 <0.0001 

Major: not majoring in biology 
• (ref: majoring in biology) 

-0.046 0.009 7518 -4.81 <0.0001 

a Self-reported effort ~ institution + gender + race/ethnicity + parental education + language + major + time 
point. Only variables that passed model selection are listed.   

b Estimates for nominal variables indicate the effect based on being a member of the focal group in 
comparison to the reference (ref) group.  

c Removing this non-significant term raised AIC above the threshold for exclusion. 
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Supplemental Table 1.6: Standard least squares linear regression modelsa of the 
effects of student demographic characteristics and self-reported effort on observed 
test-taking behaviors 
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Supplemental Table 1.7: Standard least squares linear regression model of the 
effects of student demographic characteristics and test-taking effort on GenBio-
MAPS score 
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Supplemental Table 1.8: Standard least squares linear regression modelsa on the 
effects of question display order on persistence behaviors and question score 

   

Model outcome variable Question display 
order estimateb 

p R2 

Question solution behavior  -0.0109 <0.0001 0.5072 
Question time (minutes) -0.0588 <0.0001 0.3676 
Question score -0.0034 <0.0001 0.3069 
a Question solution behavior ~ student + GenBio-MAPS question + display order; Question 

time ~ student + GenBio-MAPS question + display order; Question score ~ student + 
GenBio-MAPS question + display order 

b The estimate represents the change in the proportion of students using solution behavior on a 
question, the amount of time per question, or the proportion of correct responses as a student 
moves to each subsequent question. 
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Supplemental Figure 1.1: Distribution of GenBio-MAPS scores from students who 
were removed by our dual motivation filter compared to a binomial distribution 
arising from random responses. The red line represents the scores of students removed 
by the dual motivation filter who had demonstrated unmotivated behavior through low 
solution behavior or short test completion time. The gray dotted line represents a 
binomial distribution based on a 50% chance of correctly responding to 67 T/F 
statements, which represents the average number of statements seen by filtered students.  
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CHAPTER 2: HOW ADMINISTRATION STAKES AND SETTINGS AFFECT 
STUDENT BEHAVIOR AND PERFORMANCE ON A BIOLOGY CONCEPT 
ASSESSMENT2 

 

ABSTRACT 

Biology instructors use concept assessments in their courses to gauge student 

understanding of important disciplinary ideas. Instructors can choose to administer 

concept assessments based on participation (i.e., lower stakes) or the correctness of 

responses (i.e., higher stakes), and students can complete the assessment in an in-class or 

out-of-class setting. Different administration conditions may affect how students engage 

with and perform on concept assessments, thus influencing how instructors should 

interpret the resulting scores. Building on a validity framework, we collected data from 

1578 undergraduate students over 5 years under five different administration conditions. 

We did not find significant differences in scores between lower-stakes in-class, higher-

stakes in-class, and lower-stakes out-of-class conditions, indicating a degree of 

equivalence among these three options. We found that students were likely to spend more 

time and have higher scores in the higher-stakes out-of-class condition. However, we 

suggest that instructors cautiously interpret scores from this condition, as it may be 

associated with an increased use of external resources. Taken together, we highlight the 

lower-stakes out-of-class condition as a widely applicable option that produces outcomes 

 
2This research was first published with minor formatting differences as Uminski, C., Hubbard, J. K., & 
Couch, B. A. (2023). CBE—Life Sciences Education, 22(2), ar27. 
https://www.lifescied.org/doi/10.1187/cbe.22-09-0181 
 
 © 2023 C. Uminski et al. CBE—Life Sciences Education © 2023 The American Society for Cell Biology. 
This article is distributed by The American Society for Cell Biology under license from the author(s). It is 
available to the public under an Attribution–Noncommercial–Share Alike 4.0 Unported Creative Commons 
License (http://creativecommons.org/licenses/by-nc-sa/4.0). 
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similar to in-class conditions, while respecting the common desire to preserve classroom 

instructional time. 

INTRODUCTION 

Instructors and programs commonly use assessments to measure student 

performance and identify ways to improve student learning (National Research Council, 

2003). Instructors can develop their own assessments or use publicly available 

instruments, such as published concept inventories or concept assessments. Concept 

assessments are constructed by a research team and designed to target common student 

misconceptions about important concepts within a topic or discipline (Adams and 

Wieman, 2011). The research that goes into developing a concept assessment allows 

instructors to use data from these instruments to diagnose student understanding of course 

content without requiring a large investment of time for assessment development or 

grading (Knight, 2010). 

In deploying concept assessments, instructors need to identify administration 

conditions that fit within their course context while providing a valid reflection of student 

understanding. Administration conditions refer to how and where students complete a 

concept assessment and include the stakes assigned to student scores (i.e., the impact of 

the assessment on course grades) and the setting in which the testing session occurs, 

which often dictates the degree of associated proctoring. Differences in administration 

conditions can influence how students behave and perform on the assessment (American 

Educational Research Association et al., 2014). For example, lower-stakes grading in 

which students do not receive any course credit or receive participation credit may elicit 

lower test-taking effort, leading to lower scores (Wise and DeMars, 2005; Cole and 

Osterlind, 2008). Higher-stakes grading, such as when students are scored based on the 
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correctness of their answers, may encourage greater test-taking effort and produce higher 

scores (Cole and Osterlind, 2008), but with the caveat that students may attain these 

higher scores by leveraging external resources (Munoz and Mackay, 2019). Disparities in 

scores between proctored and unproctored settings further indicate that students are likely 

using different test-taking behaviors under these different conditions (Carstairs and 

Myors, 2009; Alessio et al., 2017; Steger et al., 2020). 

Concept assessment developers offer a variety of recommended administration 

conditions that they deem appropriate for maximizing student test-taking effort while 

minimizing threats to score validity. Some suggest administering instruments under 

lower-stakes in-class conditions (Kalas et al., 2013) or as in-class formative assessments 

(Bretz and Linenberger, 2012; McFarland et al., 2017). Other concept assessment 

developers recommend higher-stakes in-class conditions (Anderson et al., 2002; Smith et 

al., 2012). Several suggest lower-stakes out-of-class conditions (Bowling et al., 2008; 

Marbach-Ad et al., 2009; Couch et al., 2015), and a few indicate that the instruments 

should be embedded within the final exam (Smith et al., 2008; Shi et al., 2010). Previous 

work in upper-division biology courses compared in-class and out-of-class performance 

under low-stakes conditions (Couch and Knight, 2015); however, this type of comparison 

has not occurred across the entire set of recommended administration conditions or in 

lower-division courses in which there may be less direct connection between course 

content and students’ prospective careers. Given the wide range of recommendations and 

the associated lack of empirical comparisons, there remains a need to determine how 

different administration conditions influence student behaviors and performance on 

concept assessments (AERA et al., 2014). 
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Theoretical Framework 

We use a validity framework (Messick, 1987, 1989) as a basis for evaluating and 

interpreting biology concept assessment scores across different administration conditions. 

In our study, we interpret student behavior and performance to make inferences about 

student understanding of foundational concepts in introductory molecular and cell 

biology. According to Messick (1987), score interpretation should account for the context 

of how the construct is measured (i.e., the assessment instrument), the situational context 

of the assessment (i.e., external environmental influences), and the interplay between 

those two contexts, and it should be aligned to a unified validity theory. 

In our case, the measurement and situational contexts refer to the Introductory 

Molecular and Cell Biology Concept Assessment (IMCA; Shi et al., 2010) and the 

administration conditions for the concept assessment, respectively. We consider 

associated validity evidence with respect to six aspects of unified validity: content 

validity, substantive validity, structural validity, generalizability, external validity, and 

consequential aspects of construct validity (Messick, 1989). Some aspects of this theory, 

such as content validity (i.e., test content is relevant and covers the specified domain), 

substantive validity (i.e., respondents engage with the test items as theorized), and 

structural validity (i.e., scoring structure is aligned to the intended construct), are more 

related to the process of assessment development. In developing the IMCA, the 

researchers provided evidence of content, substantive, and structural validity through 

expert reviews, student interviews, and statistical analysis of student scores (Shi et al., 

2010). 

We focus here on evaluating evidence of generalizability, external validity, and 

consequential aspects of construct validity when the IMCA is administered under 
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different stakes and settings. Generalizability reflects the extent to which measurement 

properties and score interpretations apply across settings. External validity refers to the 

relationship between a test and other methods of measuring the same construct. 

Consequential aspects of construct validity concern the implications of score 

interpretation as a basis for action, with particular attention to the potential for invalidity 

to propagate bias. In our conceptual model (Figure 2.1), we hypothesize that different 

administration conditions elicit different student behaviors, such as their test-taking effort 

and external resource use. We make inferences about how students engaged with the 

assessment based on test completion time, concept assessment score, and the relationship 

of concept assessment score to scores on course unit exams with similar learning goals. 

These behavioral indicators thereby provide evidence for score validity interpretation 

under the various conditions. 

 

Figure 2.1: Conceptual model for score validity evidence and interpretation. This 
study aims to interpret how the situational context of an assessment (i.e., administration 
conditions) affects student behavior, indicated through test completion time, concept 
assessment score, and the correlation of concept assessment score to scores on course unit 
exams that assess similar learning goals. We use these behavioral indicators as evidence 
for interpreting score validity in each administration condition. 
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The administration conditions in this study vary systematically in the stakes and 

setting under which students complete the concept assessment, which we predict will 

elicit certain student behaviors (Figure 2.2). Given the desire for students to achieve high 

grades in their courses, we anticipate that increasing the assessment stakes leads students 

to expend greater effort, potentially reflected in students spending more time on the task 

(Wise and Kong, 2005). Higher stakes may also increase the tendency for students to 

seek external resources (e.g., peers, course materials, Internet resources) as a means to 

boost their scores, but this behavior also depends on the extent to which students perceive 

they will be penalized (Murdock and Anderman, 2006). In this way, the proctored in-

class and unproctored out-of-class settings principally shape whether students can access 

and use external resources.  

In our study, we examined five administration conditions: four “pre-final” 

conditions that took place during the last week of a course and one condition in which the 

concept assessment was embedded in the final exam. The four pre-final conditions (i.e., 

lower-stakes in-class, higher-stakes in-class, lower-stakes out-of-class, and higher-stakes 

out-of-class) differed substantively from the final exam condition, which was 

administered later in the course schedule, was delivered on paper rather than an electronic 

survey, was embedded within an exam, and had a higher point value in the overall course 

grade. For these reasons, we primarily consider the pre-final conditions and use the final 

exam condition as a comparative reference group. In the following sections, we apply our 

validity framework to describe how the pre-final and final exam conditions may influence 

student behavior and concept assessment score interpretation. 
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Figure 2.2: Administration conditions within our theoretical framework. We 
designed concept assessment administration conditions to reflect the various dimensions 
with our underlying theoretical framework. Compared with the lower-stakes 
(participation-graded) conditions, the higher-stakes (correctness-graded) conditions 
provide students with a greater impetus to give effort as well as an increased incentive to 
use external resources. Compared with the proctored in-class setting, the unproctored out-
of-class setting provides students with greater access to external resources. We view 
student behavior as the product of a student’s test-taking effort and associated incentive 
to use and access to use external resources. 
 

Lower-Stakes In-Class: Because students receive credit based on participation, 

the lower stakes generate little extrinsic incentive for students to achieve a high score. 

Although this minimizes the incentive to use external resources, it may also result in low 

test-taking effort (Wise and DeMars, 2005). Low test-taking effort threatens valid score 

interpretation, because it may underestimate student knowledge, and it can be detected in 

assessments by identifying characteristically low completion times (Wise and Kong, 

2005; Uminski and Couch, 2021). Research associating lower stakes with decreased 
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effort has mostly been conducted with general education tests (Schiel, 1996; Hoyt, 2001; 

Sundre and Wise, 2003; Wise and Kong, 2005; Thelk et al., 2009), but this pattern may 

not hold for disciplinary assessments with more relevance or meaning to the test-taker. 

As effort partially arises from the importance an individual assigns to a task (Eccles et al., 

1983; Wigfield and Eccles, 2000), when the content falls within students’ disciplinary 

domain and they perceive completing the assessment to support their learning, students 

may place a higher importance on achieving a high score. Thus, they may not exhibit the 

lower-effort behavior traditionally associated with this condition. 

Higher-Stakes In-Class: The higher stakes created by grading students based on 

answer correctness give students an extrinsic goal that can lead to higher scores (Wolf 

and Smith, 1995; Cole and Osterlind, 2008). While extrinsic goals may elicit greater 

effort and higher scores (Wise and DeMars, 2005; Liu et al., 2012), the increased score in 

this administration condition may also stem from students using external resources as a 

strategy for attaining their extrinsic goals. However, the in-class setting enables proctors 

(e.g., instructors, teaching assistants) to limit this strategy (Cizek, 1999), thus mitigating 

score increases due to external resource use. 

Lower-Stakes Out-of-Class: Because students receive participation credit, their 

effort primarily depends on their intrinsic desire to do well on the assessment. Students 

who place a high intrinsic value on a task may be more cognitively engaged while 

performing the task (Pintrich and de Groot, 1990). The intrinsic value of a lower-stakes 

assessment given outside class time may also depend on whether the instructor 

encourages students to see the task as useful and important to their learning (Cole et al., 

2008). In this lower-stakes out-of-class condition, students are likely to have low 
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extrinsic incentive to use external resources despite having access in this unproctored 

condition. These features mirror the lower-stakes in-class condition, but the out-of-class 

setting may present additional time constraints or other challenges that prevent students 

from giving a full effort. In upper-division courses, we found that concept assessment 

scores under lower stakes were similar across in-class and out-of-class settings (Couch 

and Knight, 2015), but we do not know whether this similarity occurs for introductory 

courses. 

Higher-Stakes Out-of-Class: The increased incentive to use and access 

resources potentially spurs notable differences in student behavior. This condition pairs 

an extrinsic incentive to achieve a high score with a low risk that external resource use 

will be detected, thereby presenting students with a relevant cause and potential means to 

improve their scores. Students using external resources may be spending additional time 

locating relevant information, which may be reflected in longer amounts of time spent on 

the assessment. While using external resources represents an important skill for students 

to develop, instructors often seek to measure unaided student knowledge under conditions 

without access to peers, textbooks, websites, or other information. Student use of external 

resources is of particular concern, because it may artificially inflate scores relative to 

what students would have achieved on their own (Tippins et al., 2006; Carstairs and 

Myors, 2009). These inflated scores threaten score validity, because they cannot be easily 

interpreted for their intended purposes of diagnosing student learning, may mask areas of 

student misunderstanding, and may not provide accurate feedback to instructors about 

their teaching and curricula (Munoz and Mackay, 2019). 
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Final Exam: Instructors may choose to administer concept assessments on the 

final exam to encourage students to take the assessment seriously and maximize 

participation rates (Smith et al., 2012). Concept assessments embedded within final 

exams represent a form of summative assessment. Students view the summative 

assessment as a culminating evaluation of their individual learning, rather than as a 

formative tool to identify knowledge gaps for personal or course improvement. While the 

final exam condition is similar to the higher-stakes in-class condition in that they both 

present an extrinsic incentive for students to achieve a high score in a proctored setting, 

the final exam carries a much higher importance to students in terms of its influence on 

overall course grade. Given the summative role of the final exam and its weight in course 

grades, students will be incentivized to spend time studying, and the scores from concept 

assessments administered in this condition likely reflect that additional test preparation. 

Research Question: To date, there has been little empirical work to determine 

the impact of concept assessment administration conditions in the context of an 

undergraduate science course. Thus, we studied the effects of stakes and settings by 

systematically varying administration conditions over consecutive semesters. By 

comparing across administration conditions, we sought to address one overarching 

research question: How do administration stakes and settings affect student test-taking 

behavior and performance and influence interpretation of student scores on a biology 

concept assessment? 

METHODS 

Experimental Context 

We compared five administration conditions over 5 years in a high-enrollment 

introductory molecular and cell biology course at a large midwestern research university. 
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The course included preclass homework, in-class formative assessments using an 

audience response system (i.e., clickers), and postclass homework quizzes. In addition to 

the final exam, the course had four unit exams that were administered on paper during 

class time and contained a mix of multiple-choice, multiple true-false, and open-ended 

questions. The unit exams demonstrated evidence of acceptable reliability, with 

Cronbach’s alpha values above 0.75. A total of 1799 students were enrolled during the 

study period. After data processing, our sample contained responses from 1578 students 

who consented to share their data for research purposes, representing 88% of the total 

enrollment (see Table 2.1 for demographic information). While demographic information 

is provided to represent the study sample, our study did not seek to explore additional 

 Table 2.1: Demographic characteristics of students in the study 
Demographic categoriesa n %b 
Gender 

• Female 916 61.7 
• Male 568 38.3 

Race/ethnicityc 

• Non-underrepresented 1229 83.5 
• Underrepresented 242 16.5 

Generation statusd 

• Continuing-generation 940 68.7 
• First-generation 429 31.3 

Class rank 
• First-year  858 57.9 
• Sophomore  358 24.1 
• Junior 198 13.4 
• Senior 63 4.2 
• Non-degree seeking 6 0.4 

a Information was obtained from the institution research office. Information was not available for 
every student. 
b Percentages are calculated from the available demographic information. 
c We use the term “underrepresented” to reflect racial/ethnic groups that have faced disproportionate 
challenges within STEM disciplines, including Black/African American, Hispanic/Latinx, American 
Indian/Alaskan Native, and Native Hawaiian/Pacific Islander. This grouping is not intended to 
obscure the unique histories and identities of any group. 
d Students were considered first-generation if neither of their parents received a bachelor’s degree, 
while continuing-generation students had one or both parents with a bachelor’s degree. 
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associations with demographic characteristics. This research was given exempt 

status by the University of Nebraska–Lincoln (protocol 14314).  

Preliminary Item Metrics and Development of Half-Length Instruments 

We first embedded and scored the full-length IMCA instrument as part of the 

final exam in 2014, which students completed on paper in a proctored classroom setting 

(Figure 2.3). The IMCA consists of 24 multiple-choice items aligned with course learning 

objectives and unit exams. We calculated score as the proportion of items answered 

correctly. We calculated item difficulty (i.e., the proportion of students answering the 

question correctly) as the total number of correct responses divided by the total number 

of responses to the item, and item discrimination (i.e., a measure of how well a question  

Figure 2.3: Experimental design and sample size for each administration condition. 
We collected data over the course of 5 years. The first-year (2014) data informed the 
development of half-length instruments. For the next 4 years (2015–2018), we 
administered the instruments in two different conditions per year and collected data about 
student behavior and performance. In a given year, each student saw a different 
instrument version in the two respective conditions. 
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distinguishes the highest-scoring and lowest-scoring students) as the difference in 

difficulty between the upper third of respondents and the lower third of respondents. The  

mean IMCA score was 0.67 ± 0.01 SEM. The difficulty and discrimination values for 

each item on the IMCA are reported in Supplemental Table 2.1. Student IMCA score was 

correlated with their average score on the four unit exams from the course (r = 0.75, p < 

0.001), which provides evidence of convergent external validity for the IMCA regarding 

its ability to assess student knowledge in the given course context. Cronbach’s alpha for 

the full-length IMCA was 0.84, which indicates acceptable reliability (Downing, 2004). 

The 2014 administration informed our development of half-length IMCA 

instruments, henceforth referred to as version A and version B. Based on the original 

item-naming scheme and associated learning goals (Shi et al., 2010), version A contained 

items 1, 3, 9, 11, 13, 15, 17, 19, 20, 21, 23, and 24. Version B contained items 2, 4, 5, 6, 

7, 8, 10, 12, 14, 16, 18, and 22. Both instruments contained items aligned with learning 

goals related to features of microorganisms, properties of water, thermodynamics of 

reactions, solubility, flow of matter and energy, and gene expression. Version A 

additionally assessed concepts related to evolution and information storage, and version 

B had a set of items assessing macromolecular structure. This distribution ensured that 

each instrument assessed content from across the course. Within the 2014 data, scores on 

the two instruments were correlated (r = 0.70, p < 0.001), and the average scores on the 

two instruments were similar (version A mean = 0.66 ± 0.02 SEM, version B mean = 

0.68 ± 0.02 SEM, paired t test p = 0.10). Cronbach’s alpha values were 0.63 and 0.80 for 

versions A and B, respectively. Version B contained items 4, 5, 6, 7, and 8, all sharing a 

common stem, which likely explains the higher internal consistency. 
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Administration of Half-Length Instruments 

For the pre-final administration conditions, students completed the half-length 

instruments via Qualtrics survey during the last week of the course. The instructor 

informed students during class time that the task(s) would serve as practice for the final 

exam, told students that the activity would be credited with up to a 5% bonus on the final 

exam grade, explained how the assessments would be graded (i.e., lower-stakes 

participation grading or higher-stakes grading based on response correctness), and asked 

students not to consult peers or other external resources. This message was reiterated 

accordingly on the first page of the Qualtrics surveys. The lower-stakes conditions 

contained the text: “The following survey contains practice questions for the cumulative 

portion of the final exam. You can earn up to 5% points extra credit for the cumulative 

final by completing the practice questions. You will not be graded based on the 

correctness of your responses. Please use only the information in your own head and do 

not consult your peers or any other external resources.” The higher-stakes administrations 

had identical text, except the second and third sentences were changed to: “You can earn 

up to 5% points extra credit for the cumulative final based on how many questions you 

answer correctly.” 

Students saw the items in a random order and could not return to questions once 

an answer was submitted. For the in-class administrations, the instructor provided 

students with as much time as they needed to complete the concept assessment, and the 

instructor and teaching assistants proctored while students completed the instrument. For 

the out-of-class administrations, students completed the instrument at a time and location 

of their choosing within 3 days after the activity was announced during class time. For 

the final exam condition, the instrument was embedded as the first 12 items on the exam, 
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and students completed the exam on paper in the proctored classroom setting. Students 

could complete the questions on the final exam in any order and return to previous 

questions. The embedded IMCA instrument comprised 40% of the final exam points. 

We implemented two different administration conditions each year (Figure 2.3), 

taking advantage of the course being taught as two separate sections (i.e., two class 

meeting times) during these 4 years. Each year, students in the first section completed 

one half-length instrument (e.g., version A) in the in-class setting and the other half-

length instrument (e.g., version B) in the out-of-class setting or on the final exam, 

depending on the year. Students in the second section completed the reciprocal 

instrument in the same respective settings (e.g., they completed version B in the in-class 

setting and version A in either the out-of-class setting or on the final exam). The grading 

stakes were alternately varied by year to achieve the full range of conditions across the 4 

years. 

Data Processing and Statistical Analysis 

Our data set contained responses from students who consented to release survey 

data, completed at least 80% of the instrument, and submitted during the intended time 

window. We recorded page-level response times for pre-final surveys. All items appeared 

on separate survey pages, except for items 4–8 and 19 and 20, which needed to appear as 

item groups. Approximately 0.07% of page times exceeded 15 minutes and were replaced 

with the mean time for that page. Total test completion time was calculated by summing 

the individual item page times for each student. We could not record time data when the 

instrument was administered on paper in the final exam condition. 

We conducted linear mixed-effects models to analyze concept assessment 

completion time and score with student as a random effect. When tested as main effects, 
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demographic variables (gender, race/ethnicity, and first-generation status) were excluded 

during model selection based on Akaike information criterion (AIC) values or were not 

significant predictors (p > 0.05), so these variables were not retained as covariates. To 

account for student biology proficiency, we included the average of the four unit exam 

scores for each student as a covariate in models predicting score. Full models are 

included in the footnotes of the corresponding results tables (Table 2.2; Supplemental 

Table 2.2). We calculated Pearson correlation coefficients between student IMCA scores 

and average unit exam scores, followed by pairwise Fisher’s z-tests to evaluate the 

statistical significance of differences between correlation values. 

Table 2.2: Linear mixed effects modela on the effects of administration condition on 
concept assessment score 
Parameter Sum Sq Mean Sq df F p 
Administration condition 4.561 1.140 2175.3 42.716 <.001 
Average exam score 41.738 41.738 1 1563.470 <.001 
Post-hoc comparisons      
Contrast Estimate SE df t p 
Final Exam – Higher In 0.085 0.01 2060 9.16 <.001 
Final Exam – Higher Out -0.014 0.01 2542 -1.27 .711 
Final Exam – Lower In 0.069 0.01 2065 7.12 <.001 
Final Exam – Lower Out 0.098 0.01 2541 8.04 <.001 
Higher In – Higher Out -0.099 0.01 1751 -9.12 <.001 
Higher In – Lower In -0.016 0.01 2552 -1.68 .448 
Higher In – Lower Out 0.013 0.01 2553 1.04 .837 
Higher Out – Lower In 0.083 0.01 2553 7.17 <.001 
Higher Out – Lower Out 0.112 0.01 2553 8.24 <.001 
Lower In – Lower Out 0.029 0.01 1756 2.42 .109 
Model R2 = 0.49 
aScore ~ administration condition + average unit exam score + (1 | ID) 
 

Data processing and statistical analysis was completed using R v. 4.1.1 (R Core 

Team, 2021) and several packages: tidyverse (Wickham et al., 2019), rstatix 

(Kassambara, 2021), psych (Revelle, 2021), lmerTest (Kuznetsova et al., 2017), 

performance (Lüdecke et al., 2021), ShinyItemAnalysis (Martinkova and Drabinova, 

2018), emmeans (Lenth, 2022), and diffcor (Blötner, 2022). 
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RESULTS 

The Higher-Stakes Out-of-Class Condition Produced the Longest Completion Times 

We observed a few patterns in the distributions of assessment completion times 

(represented as violin plots in Figure 4) across administration conditions. For the in-class 

settings, the bulk of students (89%) completed the instrument in roughly 3–20 minutes. 

For the out-of-class settings, many students (70%) fell within this same range, but a small 

proportion (9%) took longer than 20 minutes, creating a noticeable skew in the 

distributions. This skew may reflect students who multitasked during the activity, thereby 

conflating their completion time with time dedicated to extraneous tasks. The lower- 

Figure 2.4: Test completion time in each administration condition. Completion times 
represent the sum of time spent on each page of the concept assessment. Completion time 
data were not collected when the concept assessment was administered on paper in the 
final exam condition. Violin plots show the distribution of completion times in each 
administration condition. Boxes represent the 25th, 50th, and 75th percentiles. Whiskers 
represent 5th and 95th percentiles. The dot represents the mean times. Conditions sharing 
the same letters were not significantly different (p ≥ 0.05), as determined by the post hoc 
tests shown in Supplemental Table 2.3. Lower In, lower-stakes in-class; Higher In, 
higher-stakes in-class; Lower Out, lower-stakes out-of-class; Higher Out, higher-stakes 
out-of-class. 
 



80 
 

stakes out-of-class distribution also included 17% of students who completed the 

instrument in less than 3 minutes, likely an inadequate amount of time to read and 

thoughtfully respond to the items. Meanwhile, the higher-stakes out-of-class distribution 

was shifted noticeably upward relative to the other pre-final conditions. 

We used a linear mixed-effects model to analyze completion times across 

administration conditions (Supplemental Table 2.2). We detected an effect of 

administration condition, so we conducted post hoc pairwise comparisons. We found that 

the two in-class conditions had similar completion times (lower-stakes in-class mean = 

7.6 minutes ± 0.1 SEM, higher-stakes in-class mean = 8.2 minutes ± 0.1 SEM, p = 

0.053). The lower-stakes out-of-class condition (mean = 8.6 minutes ± 0.4 SEM) was 

increased relative to the lower-stakes in-class condition (p < 0.01) but not different from 

the higher-stakes in-class condition (p = 0.73). Finally, the higher-stakes out-of-class 

condition (mean = 11.8 minutes ± 0.3 SEM) yielded longer completion times than all the 

other pre-final conditions (p < 0.001). 

The Higher-Stakes Out-of-Class Condition Led to the Highest Scores 

Students displayed a broad distribution of assessment scores (represented as violin 

plots in Figure 2.5) across the administration conditions. The lower-stakes in-class, 

higher-stakes in-class, and lower-stakes out-of-class distributions appeared similar, with 

the bulk of scores (71%) falling between 0.25 and 0.75. Conversely, the higher-stakes 

out-of-class score distribution was shifted upward. The majority of scores in this 

condition (50%) fell between 0.50 and 0.90, with an additional 12% of students achieving 

scores between 0.90 and 1.0. Scores in the final exam condition exhibited a similar 

upward shift, but also presented a noticeable proportion of scores in the 0.25 and 0.50 

range. 
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Figure 2.5. Concept assessment scores in each administration condition. Violin plots 
show the distribution of scores in each administration condition. Boxes represent the 
25th, 50th, and 75th percentiles. Whiskers represent 5th and 95th percentiles. The dot 
represents the mean scores. Conditions sharing the same letters were not significantly 
different (p ≥ 0.05), as determined by the post hoc tests shown in Table 2.2. Lower In, 
lower-stakes in-class; Higher In, higher-stakes in-class; Lower Out, lower-stakes out-of-
class; Higher Out, higher-stakes out-of-class. 
 

We used a linear mixed-effects model to analyze scores across administration 

conditions (Table 2.2). In this case, we included student average score on the other four 

unit exams as a covariate. Thus, the model enabled us to estimate how well students 

performed in a given condition, relative to how they would have been expected to score 

based on their broader exam performance. We detected an effect of administration 

condition and average exam score. Post hoc comparisons revealed no differences between 

the lower-stakes in-class (mean = 0.51 ± 0.01 SEM), higher-stakes in-class (mean = 0.51 

± 0.01 SEM), and lower-stakes out-of-class (mean = 0.48 ± 0.01 SEM) conditions (p > 

0.05). The higher-stakes out-of-class condition (mean = 0.61 ± 0.01 SEM) produced the 

highest scores, with the model estimating that scores in this condition were 8–11% above 



82 
 

the other pre-final conditions (p < 0.001). Meanwhile, the final exam (mean = 0.58 ± 0.01 

SEM) was estimated to produce scores 7–10% above these other pre-final conditions (p < 

0.001) for all but the higher-stakes out-of-class condition (p = 0.71). 

Higher-Stakes Out-of-Class Scores Correlated the Least with Unit Exam 
Performance 

As part of exploring assessment properties, scores on a particular instrument are 

often compared with performance on a separate task or instrument (i.e., convergent 

validity). Stronger correlations between scores serve as an indication that the two 

activities measure similar attributes, whereas weaker correlations suggest that the two 

activities capture different constructs or processes (AERA et al., 2014). Within the 

course, the four unit exams represented additional measures of student biology 

proficiency. Students likely expended considerable effort to prepare for and complete the 

unit exams, which comprised a large proportion of the course grading scheme. 

Furthermore, because the unit exams occurred during class time under proctored 

conditions, the resulting scores should reflect each student’s independent proficiency 

(i.e., students were prohibited from using external resources). 

Thus, we examined correlations between student IMCA scores in the various 

administration conditions and average unit exam scores (Figure 2.6). All four pre-final 

conditions yielded scores that correlated with unit exam scores to a moderate degree, with 

correlation coefficients ranging from 0.54 to 0.71. Fisher’s z-tests revealed nuanced 

differences in the extent to which the various concept assessment administration 

conditions aligned with unit exam performance (Supplemental Table 2.3). We first 

consider the impact of stakes within each setting. The two in-class conditions each 

correlated with unit exam performance to the same degree (lower-stakes in-class r = 0.63, 
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higher-stakes in-class r = 0.64, p = 0.41), and the two out-of-class conditions each 

correlated with unit exam performance to the same degree (lower-stakes out-of-class r = 

0.59, higher-stakes out-of-class r = 0.54, p = 0.16). We next consider the impact of 

setting for the given stakes. Under lower stakes, we did not see a difference in correlation 

with unit exam performance when moving from in-class to out-of-class settings (p = 

0.19). However, under higher stakes, we observed a higher correlation with unit exam 

performance when the concept assessment was administered in the in-class setting than in 

the out-of-class setting (p < 0.01). Finally, we observed the highest correlation between 

concept assessment score and average exam score in the final exam condition (r = 0.71, p 

< 0.01). 

 

Figure 2.6: Correlation between concept assessment score and average course exam 
score for each administration condition. Dots represent correlation coefficients and 
whiskers represent the 95% confidence interval. Conditions sharing the same letters did 
not have significantly different correlation values (p ≥ 0.05), as determined by the 
Fisher’s z transformations shown in Supplemental Table 2.3. Lower In, lower-stakes in-
class; Higher In, higher-stakes in-class; Lower Out, lower-stakes out-of-class; Higher 
Out, higher-stakes out-of-class. 
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Item Difficulty and Discrimination 

Across administration conditions, the IMCA items had adequate values for item 

difficulty and discrimination (Ebel and Frisbie, 1986; Supplemental Figure 2.1). The 

exceptions were items 15 and 20, which were the most difficult for students (0.20–0.31 

and 0.13–0.17, respectively) and had the lowest discrimination values (0.06–0.12 and 

0.12–0.23, respectively). Items 15 and 20 also had low difficulty and discrimination 

values in the initial IMCA publication but were retained because they reflected that 

students struggle with particular concepts (Shi et al., 2010). The greatest variation in item 

difficulty and discrimination across conditions occurred for items 4–8, a set of matching 

items that addressed one learning goal related to recognition of monomer structures. 

These items shared a common question stem and answer options that all appeared on a 

single test page, which can explain why these items tended to vary similarly across the 

administration conditions. 

DISCUSSION 

Biology instructors have options for how they administer concept assessments in 

their courses, and each administration condition has the potential to affect student 

behavior and performance in ways that affect score interpretation. According to our 

theoretical framework, administration stakes and settings have the potential to influence 

test-taking effort and external resource use, behaviors that can shape the extent to which 

assessment scores accurately reflect student understanding of biology concepts. Because 

instructors and researchers use data from concept assessments to make decisions about 

course effectiveness, it is important for them to select optimal administration conditions 

and to account for potential impacts of these conditions. Our study aimed to provide 
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empirical data about student behavior and performance in different conditions to inform 

associated score interpretations. 

The Two In-Class Conditions Produce Similar Student Behaviors and Performance 

The lower-stakes in-class and higher-stakes in-class conditions were equivalent 

with respect to completion time, test score, and correlation with unit exam performance, 

suggesting a certain degree of generalizability across these conditions. For these 

conditions, we note that students were given as much time as they needed at the 

beginning of class to complete the instrument. The resulting completion times and test 

scores thus provide a baseline of how students behave and perform under conditions 

where they have been given time and space for the task. 

Our finding that there was no difference in scores between lower-stakes and 

higher-stakes in-class assessments differs from previous work reporting higher scores for 

higher-stakes proctored assessments (Wolf and Smith, 1995; Wise and DeMars, 2005; 

Cole and Osterlind, 2008). This discrepancy may stem from these earlier studies using 

general education assessments, whereas our study used a discipline-specific instrument. 

Students enrolled in a course intended for life sciences majors may have placed a higher 

value on a discipline-specific concept assessment and may have been incentivized to 

perform well even under the lower-stakes conditions. These ideas resonate with another 

study finding that incentive structure (i.e., regular vs. extra credit) did not affect biology 

student performance on a natural selection instrument (Sbeglia and Nehm, 2022). 

Students in our lower-stakes condition may have derived additional incentive to achieve a 

high score from our framing of the IMCA questions as practice for the final exam. The 

lack of alignment with previous findings may also be linked to the small sample of 

existing studies in higher education that compare student performance on the same 
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assessment instrument administered under both lower and higher stakes (Cole and 

Osterlind, 2008). 

The Lower-Stakes Out-of-Class Condition Represents a Practical Alternative to In-
Class Conditions 

Class time represents a limited resource, and instructors often feel pressure to 

cover a wide breadth of content in biology courses (Wright et al., 2018). Instructors may 

also have legitimate concerns about using class time to administer an instrument that is 

being given for research purposes or that does not completely align with their course 

content, such as a program-level assessment (Couch et al., 2015, 2019; Summers et al., 

2018; Semsar et al., 2019; Smith et al., 2019; Branchaw et al., 2020). As a result of these 

factors, they may choose to administer concept assessments outside class time to 

conserve instructional time. Our results suggest that instructors may see similar results 

outside class time as compared with the in-class setting, so long as they use lower-stakes 

participation grading. Indeed, we found that student scores in the lower-stakes out-of-

class condition did not differ from either of the two in-class conditions. Furthermore, the 

lower-stakes out-of-class condition correlated with unit exam performance to a similar 

degree as the lower-stakes in-class condition. These results agree with our previous work 

in upper-division courses (Couch and Knight, 2015) and suggest that similarity in 

performance occurs across course levels for a low-stakes concept assessment 

administered in-class versus out-of-class. The similar student performance between 

lower-stakes in-class and lower-stakes out-of-class conditions could also stem from 

broader course experiences. Students in our study had extensive experience with other in-

class and out-of-class assignments, which may have led them to develop habits that were 

manifested when they completed the concept assessment in the last week of class. 
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One potential limitation of the lower-stakes out-of-class condition lies in its 

association with low test-taking effort, as students may devote less outside time to this 

task graded based on participation. Despite these concerns, we observed that the 

distribution of lower-stakes out-of-class completion times overlapped considerably with 

the in-class settings, suggesting that many students gave roughly equivalent efforts across 

these conditions. However, we did observe that 17% of students did not take what we 

would consider an adequate time to answer the questions in the lower-stakes out-of-class 

condition, indicating that they likely rushed through the task. This finding adds an 

important caveat that this condition should not be considered completely generalizable 

with or equivalent to the in-class conditions. This behavior may explain the lower-stakes 

out-of-class scores having a slightly lower correlation and external validity with unit 

exam performance than the higher-stakes in-class scores, for which very few students 

took less than 3 minutes. Instructors and researchers may want to apply motivation-

filtering processes to identify and remove scores from low-effort test takers (Wise and 

Kong, 2005; Uminski and Couch, 2021). Another potential challenge associated with out-

of-class conditions comes from students having increased opportunity to leverage 

external resources, which undermines the validity of the assessment as a measure of 

independent proficiency (AERA et al., 2014). The similarity in score distributions 

compared with the in-class settings results suggests that students did not gain significant 

advantage from external resources in the lower-stakes out-of-class condition. While this 

remains an area for further exploration, we anticipate that external resource use is 

minimized when students are not graded based on answer correctness. 
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Higher-Stakes Out-of-Class Conditions May Produce Artificially High Scores 

Students behaved and performed differently in the higher-stakes out-of-class 

condition, for which they had both the incentive to use and access to external resources. 

Indeed, students spent more time and had the highest scores in this condition. While these 

differences could have reflected students operating in a more relaxed environment or 

taking more time to individually think through the assessment questions, we hypothesize 

that the increased times and scores more likely stemmed from students finding and using 

external resources to answer the assessment questions. This hypothesis is supported by 

the comparatively lower completion times and scores in the higher-stakes in-class 

condition, in which students were given as much time as they needed but proctoring 

mitigated the opportunity to use external resources. Compared with the other pre-final 

conditions, the lower correlation and external validity with unit exam scores also 

provided evidence that the higher-stakes out-of-class condition led to the concept 

assessment measuring somewhat different cognitive processes or attributes, such as the 

willingness or ability to extract information from external resources. Our results align 

with previous research finding that students had inflated scores and spent longer amounts 

of time on assessments completed in higher-stakes unproctored conditions (Alessio et al., 

2017) and provide additional support for the argument that proctored and unproctored 

assessments should not be deemed equivalent under higher-stakes conditions (Carstairs 

and Myors, 2009). 

Understanding test-taking behaviors in out-of-class conditions remains an 

important area for investigation. While students may have cause and opportunity to use 

external resources in an unproctored high-stakes setting, the extent of such behaviors is 

not well understood (Tippins et al., 2006; Steger et al., 2020) and detecting the use of 
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external resources is logistically difficult (Fisher and Katz, 2000). Test-takers are likely 

to have higher scores when the tasks on unproctored assessments are easy to find using 

Internet searches (Steger et al., 2020), due to being posted on online answer-sharing 

platforms (e.g., Chegg, Course Hero) or having content amenable to online answer 

discovery (Munoz and Mackay, 2019). While all of the IMCA answers can be readily 

found online, the higher scores for some of the IMCA questions, such as items 4–8 

assessing identification of common monomer structures, suggests that the answers to 

some items might be easier to find online than others. Altogether, we caution against 

administering concept assessments under the higher-stakes out-of-class condition, 

because this condition likely overestimates independent student proficiency and creates 

an unfair advantage for students who use unapproved resources. These consequential 

aspects of construct validity can shape instructional choices and lead to students 

maintaining misunderstandings about foundational biology concepts. We also note that 

this finding calls important attention to the fairness of other homework assignments 

graded based on answer correctness. 

Interpreting Concept Assessment Scores from Final Exam Administrations 

The final exam represents an additional vehicle to administer a course-level 

concept assessment (Smith et al., 2008; Shi et al., 2010), but this option might not be 

appropriate in situations in which the instrument covers a narrow topic or does not align 

fully with the course content (e.g., program assessment). The instructor may also wish to 

use the final exam for other purposes or to give the final exam back to students after the 

semester. In our case, the final exam differed in several ways from the pre-final 

conditions (e.g., summative nature, preparation time, paper administration format, grade 

weight). Given these caveats, we interpret the final exam condition as a reference group 
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providing a comparative basis for student performance, but we consider it to substantially 

differ in its applicability. 

We found that scores from the final exam condition were higher than three of the 

pre-final conditions (i.e., lower-stakes in-class, higher-stakes in-class, lower-stakes out-

of-class) but on par with the higher-stakes out-of-class condition. We speculate that the 

higher scores in the final exam condition likely reflected additional time that students 

spent preparing for the high-stakes summative exam. The IMCA and the course’s final 

exam represent broad cumulative assessments of introductory molecular and cell biology 

concepts, so effective studying for the final exam would likely have increased student 

scores on the IMCA as well. In contrast, students were not expected to spend extensive 

time studying for the pre-final concept assessments. These results echo previous studies 

highlighting the potential effects of incentives and time frames for concepts assessments 

given toward the end of a term, a period when students may engage in particularly 

focused studying (Ding et al., 2008). While not tested in our study, student performance 

may remain stable for at least 2 weeks after the final exam (Sbeglia and Nehm, 2022). 

Student study behaviors and final exam performance may also have been affected by the 

experience of completing a half-length IMCA instrument in-class during the week before 

the final exam. Ideally, this experience of completing a short set of cumulative questions 

helped encourage students to begin studying and gave them a sense of the question types 

they might see on the final, even though no student saw the exact same questions 

(because they had the alternate version on the final). 

Scores from the final exam condition also had the highest correlation with unit 

exam scores. This correspondence likely stemmed from the marked similarity between 
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unit exams and the final exam. Given their high weight in the course grading scheme and 

timing throughout the course calendar, students would have made roughly the same types 

of preparations for each of these exams. These exams were all completed on paper in the 

same proctored setting, thereby standardizing any potential sources of construct-

irrelevant variance, such as technology issues or environmental distractions. Finally, we 

note that the final exam condition and the higher-stakes out-of-class condition had the 

largest discrepancy in their correlations with unit exam performance (r = 0.71 vs. r = 

0.54, p < 0.001), suggesting that their similar score distributions resulted from markedly 

different underlying processes. 

CONCLUSIONS 

Based on our theoretical framework, every concept assessment administration 

condition has the potential to alter student behavior in ways that affect score 

interpretation. We view optimal administration conditions as eliciting sufficient student 

effort while minimizing the incentive to use external resources or the opportunity to use 

external resources. We gathered evidence in the form of assessment time, score, and 

correlation with scores on course exams to inform our interpretations of student behaviors 

and performance in each administration condition. We discovered that the two in-class 

conditions yielded similar results, suggesting that either way represents a roughly 

equivalent approach to collect information about student understanding. The lower-stakes 

out-of-class condition produced scores similar to the in-class administration conditions 

while preserving instructional time and potentially minimizing external resource use. 

However, this condition may prompt lower effort from a small proportion of students, so 

instructors and researchers can decide if this downside outweighs the costs of using class 

time and can apply motivation filtering to remove responses that did not take sufficient 
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time (Wise and Kong, 2005; Uminski and Couch, 2021). Our results suggest that 

instructors should avoid the higher-stakes out-of-class condition, as these scores may 

reflect external resource use. Artificially inflated scores from this condition may 

contribute to overestimates of student understanding with potential consequences for 

instruction and fairness in assessment practices. The final exam condition led to high 

scores and represents a potential option for gauging student understanding after a period 

of focused studying, although instructors need to consider the appropriateness of the 

assessment content and the degree to which it can be kept secure across sections and 

semesters. Instructors and researchers will have different needs and constraints depending 

on their course contexts and intended use of assessment scores, but they should carefully 

consider how their administration conditions might affect student performance and strive 

to keep their approach as similar as possible across course sections, academic years, or 

experimental groups. 

Acknowledgements 

We thank Kati Brazeal for her contributions and thank the students who 

participated in the research. This material is based upon work supported by the National 

Science Foundation (NSF) Graduate Research Fellowship (DGE-1610400) and 

Improving Undergraduate STEM Education Grant (DUE-1610621). Any opinions, 

findings, and conclusions or recommendations expressed in this material are those of the 

authors and do not necessarily reflect the views of the NSF. 

  



93 
 

REFERENCES FOR CHAPTER 2 

Adams, W. K., & Wieman, C. E. (2011). Development and validation of instruments to 
measure learning of expert-like thinking. International Journal of Science 
Education, 33(9, 1289–1312. https://doi.org/10.1080/09500693.2010.512369  

Alessio, H. M., Malay, N., Maurer, K., Bailer, A. J., & Rubin, B. (2017). Examining the 
effect of proctoring on online test scores. Online Learning, 21(1). 
https://doi.org/10.24059/olj.v21i1.885  

American Educational Research Association, American Psychological Association, & 
National Council on Measurement in Education (2014). Standards for educational 
and psychological testing. Washington, DC: AERA.  

Anderson, D. L., Fisher, K. M., & Norman, G. J. (2002). Development and evaluation of 
the Conceptual Inventory of Natural Selection. Journal of Research in Science 
Teaching, 39(10), 952–978. https://doi.org/10.1002/tea.10053  

Blötner, C. (2022). diffcor: Fisher’s z-tests concerning difference of correlations (R 
Package Version 0.7.1). Retrieved May 24, 2022, from https://CRAN.R-
project.org/package=diffcor  

Bowling, B. V., Acra, E. E., Wang, L., Myers, M. F., Dean, G. E., Markle, G. C., ... & 
Huether, C. A. (2008). Development and evaluation of a genetics literacy 
assessment instrument for undergraduates. Genetics, 178(1), 15–22. 
https://doi.org/10.1534/genetics.107.079533  

Branchaw, J. L., Pape-Lindstrom, P. A., Tanner, K. D., Bissonnette, S. A., Cary, T. L., 
Couch, B. A., ... & Brownell, S. E. (2020). Resources for teaching and assessing 
the Vision and Change biology core concepts. CBE—Life Sciences Education, 
19(2), es1. https://doi.org/10.1187/cbe.19-11-0243  

Bretz, S. L., & Linenberger, K. J. (2012). Development of the enzyme–substrate 
interactions concept inventory. Biochemistry and Molecular Biology Education, 
40(4), 229–233. https://doi.org/10.1002/bmb.20622   

Carstairs, J., & Myors, B. (2009). Internet testing: A natural experiment reveals test score 
inflation on a high-stakes, unproctored cognitive test. Computers in Human 
Behavior, 25(3), 738–742. https://doi.org/10.1016/j.chb.2009.01.011  

Cizek, G. J. (1999). Cheating on tests: how to do it, detect it, and prevent it. New York, 
NY: Routledge. https://doi.org/10.4324/9781410601520  

Cole, J. S., Bergin, D. A., & Whittaker, T. A. (2008). Predicting student achievement for 
low stakes tests with effort and task value. Contemporary Educational 
Psychology, 33(4), 609–624. https://doi.org/10.1016/j.cedpsych.2007.10.002  



94 
 

Cole, J. S., & Osterlind, S. J. (2008). Investigating differences between low- and high-
stakes test performance on a general education exam. Journal of General 
Education, 57(2), 119–130.  

Couch, B. A., & Knight, J. K. (2015). A comparison of two low-stakes methods for 
administering a program-level biology concept assessment. Journal of 
Microbiology & Biology Education, 16(2), 178–185. 
https://doi.org/10.1128/jmbe.v16i2.953  

Couch, B. A., Wood, W. B., & Knight, J. K. (2015). The Molecular Biology Capstone 
Assessment: A concept assessment for upper-division molecular biology students. 
CBE—Life Sciences Education, 14(1), ar10. https://doi.org/10.1187/cbe.14-04-
0071 

Couch, B. A., Wright, C. D., Freeman, S., Knight, J. K., Semsar, K., Smith, M. K., ... & 
Brownell, S. E. (2019). GenBio-MAPS: A programmatic assessment to measure 
student understanding of Vision and Change core concepts across general biology 
programs. CBE—Life Sciences Education, 18(1), ar1. 
https://doi.org/10.1187/cbe.18-07-0117 

Ding, L., Reay, N. W., Lee, A., & Bao, L. (2008). Effects of testing conditions on 
conceptual survey results. Physical Review Special Topics—Physics Education 
Research, 4(1), 010112. https://doi.org/10.1103/PhysRevSTPER.4.010112  

Downing, S. M. (2004). Reliability: On the reproducibility of assessment data. Medical 
Education, 38(9), 1006–1012. https://doi.org/10.1111/j.1365-2929.2004.01932.x  

Ebel, R. L., & Frisbie, D. A. (1986). Essentials of educational measurement (4th ed.). 
Englewood Cliffs, NJ: Prentice-Hall.  

Eccles, J. S., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J. L., & 
Midgley, C. (1983). Expectancies, values, and academic behaviors. In 
Achievement and achievement motivation (pp. 75–146). San Francisco, CA: 
Freeman.  

Fisher, R. J., & Katz, J. E. (2000). Social-desirability bias and the validity of self-reported 
values. Psychology & Marketing, 17(2), 105–120. 
https://doi.org/10.1002/(SICI)1520-6793(200002)17:2<105::AID-
MAR3>3.0.CO;2-9  

Hoyt, J. E. (2001). Performance funding in higher education: The effects of student 
motivation on the use of outcomes tests to measure institutional effectiveness. 
Research in Higher Education, 42(1), 71–85. 
https://doi.org/10.1023/A:1018716627932  

Kalas, P., O’Neill, A., Pollock, C., & Birol, G. (2013). Development of a meiosis concept 
inventory. CBE—Life Sciences Education, 12(4), 655–664. 
https://doi.org/10.1187/cbe.12-10-0174  



95 
 

Kassambara, A. (2021). rstatix: Pipe-friendly framework for basic statistical tests (0.7.0). 
Retrieved November 14, 2021, from https://CRAN.R-project.org/package=rstatix  

Knight, J. (2010). Biology concept assessment tools: Design and use. Microbiology 
Australia, 31(1), 5–8. https://doi.org/10.1071/ma10005  

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: 
Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. 
https://doi.org/10.18637/jss.v082.i13  

Lenth, R. V. (2022). emmeans: Estimated marginal means, aka least-squares means (R 
Package Version 1.7.4-1). Retrieved May 24, 2022, from https://CRAN.R-
project.org/package=emmeans  

Liu, O. L., Bridgeman, B., & Adler, R. M. (2012). Measuring learning outcomes in 
higher education: Motivation matters. Educational Researcher, 41(9), ar9. 
https://doi.org/10.3102/0013189X12459679  

Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Makowski, D. (2021). 
performance: An R package for assessment, comparison and testing of statistical 
models. Journal of Open Source Software, 6(60), 3139. 
https://doi.org/10.21105/joss.03139  

Madsen, A., McKagan, S. B., & Sayre, E. C. (2017). Best practices for administering 
concept inventories. Physics Teacher, 55(9), 530–536. 
https://doi.org/10.1119/1.5011826  

Marbach-Ad, G., Briken, V., El-Sayed, N. M., Frauwirth, K., Fredericksen, B., 
Hutcheson, S., ... & Smith, A. C. (2009). Assessing student understanding of host 
pathogen interactions using a concept inventory. Journal of Microbiology & 
Biology Education, 10(1), 43–50.  

Martinkova, P., & Drabinova, A. (2018). ShinyItemAnalysis for teaching psychometrics 
and to enforce routine analysis of educational tests. R Journal, 10(2), 503–515. 
https://doi.org/10.32614/RJ-2018-074  

McFarland, J. L., Price, R. M., Wenderoth, M. P., Martinková, P., Cliff, W., Michael, J., 
... & Wright, A. (2017). Development and validation of the Homeostasis Concept 
Inventory. CBE—Life Sciences Education, 16(2), ar35. 
https://doi.org/10.1187/cbe.16-10-0305 

Messick, S. (1987). Validity. ETS Research Report Series, 1987(2), i–208. 
https://doi.org/10.1002/j.2330-8516.1987.tb00244.x  

Messick, S. (1989). Validity. In Educational measurement (3rd ed., pp. 13–103). New 
York, NY: American Council on Education.  



96 
 

Munoz, A., & Mackay, J. (2019). An online testing design choice typology towards 
cheating threat minimisation. Journal of University Teaching & Learning 
Practice, 16(3). https://doi.org/10.53761/1.16.3.5  

Murdock, T. B., & Anderman, E. M. (2006). Motivational perspectives on student 
cheating: Toward an integrated model of academic dishonesty. Educational 
Psychologist, 41(3), 129–145. https://doi.org/10.1207/s15326985ep4103_1  

National Research Council. (2003). Assessment in support of instruction and learning: 
Bridging the gap between large-scale and classroom assessment—Workshop 
report. Washington, DC: National Academies Press. 
https://doi.org/10.17226/10802  

Pintrich, P. R., & de Groot, E. V. (1990). Motivational and self-regulated learning 
components of classroom academic performance. Journal of Educational 
Psychology, 82(1), 33–40. https://doi.org/10.1037/0022-0663.82.1.33  

R Core Team. (2021). R: A language and environment for statistical computing (4.1.1). 
Vienna: R Foundation for Statistical Computing. Retrieved November 14, 2021, 
from https://www.R-project.org/  

Revelle, W. (2021). psych: Procedures for personality and psychological research (2.1.6). 
Evanston, IL: Northwestern University. Retrieved November 14, 2021, from 
https://CRAN.R-project.org/package=psych  

Sbeglia, G. C., & Nehm, R. H. (2022). Measuring evolution learning: Impacts of student 
participation incentives and test timing. Evolution: Education and Outreach, 
15(1), 9. https://doi.org/10.1186/s12052-022-00166-2  

Schiel, J. (1996). Student effort and performance on a measure of postsecondary 
educational development (96-9) (ACT research report). Retrieved September 2, 
2020, from https://eric.ed.gov/?id=ED405380  

Semsar, K., Brownell, S., Couch, B. A., Crowe, A. J., Smith, M. K., Summers, M. M., ... 
& Knight, J. K. (2019). Phys-MAPS: A programmatic physiology assessment for 
introductory and advanced undergraduates. Advances in Physiology Education, 
43(1), 15–27. https://doi.org/10.1152/advan.00128.2018  

Shi, J., Wood, W. B., Martin, J. M., Guild, N. A., Vicens, Q., & Knight, J. K. (2010). A 
diagnostic assessment for introductory molecular and cell biology. CBE—Life 
Sciences Education,, 9(4), 453–461. https://doi.org/10.1187/cbe.10-04-0055  

Smith, M. K., Brownell, S. E., Crowe, A. J., Holmes, N. G., Knight, J. K., Semsar, K., ... 
& Couch, B. A. (2019). Tools for change: Measuring student conceptual 
understanding across undergraduate biology programs using Bio-MAPS 
assessments. Journal of Microbiology & Biology Education, 20(2). 
https://doi.org/10.1128/jmbe.v20i2.1787 



97 
 

Smith, M. K., Thomas, K., & Dunham, M. (2012). In-class incentives that encourage 
students to take concept assessments seriously. Journal of College Science 
Teaching, 42(2), 57–61.  

Smith, M. K., Wood, W. B., & Knight, J. K. (2008). The genetics concept assessment: A 
new concept inventory for gauging student understanding of genetics. CBE—Life 
Sciences Education, 7(4), 422–430. https://doi.org/10.1187/cbe.08-08-0045 

Steger, D., Schroeders, U., & Gnambs, T. (2020). A meta-analysis of test scores in 
proctored and unproctored ability assessments. European Journal of Psychological 
Assessment, 36(1), 174–184. https://doi.org/10.1027/1015-5759/a000494  

Summers, M. M., Couch, B. A., Knight, J. K., Brownell, S. E., Crowe, A. J., Semsar, K., 
... & Smith, M. K. (2018). EcoEvo-MAPS: An ecology and evolution assessment 
for introductory through advanced undergraduates. CBE—Life Sciences 
Education, 17(2), ar18. https://doi.org/10.1187/cbe.17-02-0037  

Sundre, D. L., & Wise, S. L. (2003). Motivation filtering: An exploration of the impact of 
low examinee motivation on the psychometric quality of tests. Chicago: National 
Council on Measurement in Education.  

Thelk, A. D., Sundre, D. L., Horst, S. J., & Finney, S. J. (2009). Motivation matters: 
Using the Student Opinion Scale to make valid inferences about student 
performance. Journal of General Education, 58(3), 129–151. JSTOR.  

Tippins, N. T., Beaty, J., Drasgow, F., Gibson, W. M., Pearlman, K., Segall, D. O., & 
Shepherd, W. (2006). Unproctored internet testing in employment settings. 
Personnel Psychology, 59(1), 189–225. https://doi.org/10.1111/j.1744-
6570.2006.00909.x  

Uminski, C., & Couch, B. A. (2021). GenBio-MAPS as a case study to understand and 
address the effects of test-taking motivation in low-stakes program assessments. 
CBE—Life Sciences Education, 20(2), ar20. https://doi.org/10.1187/cbe.20-10-
0243  

Wendy, K. A., & Wieman, C. E. (2011). Development and validation of instruments to 
measure learning of expert-like thinking. International Journal of Science 
Education, 33(9), 1289–1312. https://doi.org/10.1080/09500693.2010.512369  

Wickham, H., Averick, M., Bryan, J., Chang, W., D’Agostino McGowan, L., François, 
R., ... & Hiroaki, Y. (2019). Welcome to the tidyverse. Journal of Open Source 
Software, 4(43), 1686. https://doi.org/10.21105/joss.01686  

Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement 
motivation. Contemporary Educational Psychology, 25(1), 68–81. 
https://doi.org/10.1006/ceps.1999.1015  



98 
 

Wise, S. L., & DeMars, C. E. (2005). Low examinee effort in low-stakes assessment: 
Problems and potential solutions. Educational Assessment, 10(1), 1–17. 
https://doi.org/10.1207/s15326977ea1001_1  

Wise, S. L., & Kong, X. (2005). Response time effort: A new measure of examinee 
motivation in computer-based tests. Applied Measurement in Education, 18(2), 
163–183. https://doi.org/10.1207/s15324818ame1802_2  

Wolf, L. F., & Smith, J. K. (1995). The consequence of consequence: Motivation, 
anxiety, and test performance. Applied Measurement in Education. 8(3), 227–242. 
https://doi.org/10.1207/s15324818ame0803_3  

Wright, C. D., Huang, A., Cooper, K., & Brownell, S. (2018). Exploring differences in 
decisions about exams among instructors of the same introductory biology course. 
International Journal for the Scholarship of Teaching and Learning, 12(2). 
https://doi.org/10.20429/ijsotl.2018.120214  

  



99 
 

SUPPLEMENTAL MATERIAL FOR CHAPTER 2 

Supplemental Table 2.1: Item difficulty and discrimination for the full-length IMCA 
instrument administered in 2014 
 

 

  

Item Difficulty Discrimination 
1 0.85 0.28 
2 0.86 0.24 
3 0.62 0.45 
4 0.6 0.81 
5 0.66 0.74 
6 0.69 0.74 
7 0.62 0.80 
8 0.69 0.62 
9 0.89 0.28 
10 0.86 0.27 
11 0.81 0.41 
12 0.62 0.50 
13 0.58 0.36 
14 0.52 0.54 
15 0.34 0.33 
16 0.45 0.46 
17 0.82 0.30 
18 0.72 0.45 
19 0.55 0.54 
20 0.24 0.31 
21 0.52 0.59 
22 0.86 0.30 
23 0.56 0.60 
24 0.69 0.50 
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Supplemental Table 2.2: Linear mixed effects modela on the effects of 
administration stakes and setting on concept assessment completion time 
Parameter Sum Sq Mean Sq df F p 
Administration condition 14807266 4935755 3 76.768 <.001 

 
Post-hoc comparisons 

Contrast Estimate SE df t p 
Higher In: Higher Out -218.4 16.9 1097 -12.88 <.001 
Higher In: Lower In 39.1 15.4 1888 2.55 .053 
Higher In: Lower Out -19.6 19.0 1899 -1.03 .730 
Higher Out: Lower In 257.5 18.1 1900 14.24 <.001 
Higher Out: Lower Out 198.8 21.2 1895 9.36 <.001 
Lower In: Lower Out -58.7 18.6 1101 -3.15 .009 
Model R2 = 0.22 
a Completion time ~ administration condition + (1 | ID) 
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Supplemental Table 2.3: Computations of Fisher’s z-tests concerning differences 
between correlations of concept assessment score and average unit exam score 

 Lower In Higher In Lower Out Higher Out Final 
Lower In - 0.405 0.190 0.017 0.007 
Higher In 0.405 - 0.013 0.009 0.010 
Lower Out 0.190 0.013 - 0.160 0.000 
Higher Out 0.017 0.009 0.160 - 0.000 

Final 0.007 0.010 0.000 0.000 - 
Red text indicates significant differences in correlation values. 
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Supplemental Figure 2.1: Item difficulty and discrimination values for each 
question on the IMCA in the different administration conditions. The item number 
corresponds to the numbering scheme used in Shi et al., (2010). (A) Items with higher 
difficulty values indicate a higher proportion of students responded to the item correctly. 
(B) Items with a high discrimination value indicate that the item differentiated well 
between high- and low-performing students.  
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CHAPTER 3: TESTING SCIENTIFIC PRACTICES: A NATIONWIDE 
ANALYSIS OF UNDERGRADUATE BIOLOGY EXAMS 

 

ABSTRACT 

 Scientific practices are the skills used to develop scientific knowledge and are 

essential across careers in science disciplines. Despite calls from education and 

government agencies to cultivate scientific practices, there remains little evidence of how 

often students are asked to apply them in undergraduate courses. We analyzed exams 

from 111 lower-division biology courses at 100 institutions across the United States and 

found that only 7% of exam questions addressed a scientific practice. Exams that 

incorporated scientific practices tended to have a higher average Bloom’s Taxonomy 

level, indicating that scientific practices elicit higher-order cognitive skills. The low 

occurrence of scientific practices on exams signals that undergraduate courses may not be 

integrating foundational scientific skills throughout their curriculum in the manner 

envisioned by recent national frameworks. However, the close association with higher-

order cognitive skills suggests that scientific practices represent a primary means to help 

students develop critical thinking skills.     

INTRODUCTION 

To address the demands of increasingly interdisciplinary science fields and solve 

emerging global challenges, education and government agencies have called for 

undergraduate science courses to emphasize scientific practices (National Research 

Council [NRC], 2007a; American Association for the Advancement of Science [AAAS], 

2011; National Academies of Sciences, Engineering, and Medicine [NASEM], 2022). 

Scientific practices, such as planning investigations, analyzing data, and evaluating 
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information, represent essential skills for establishing, extending, and refining scientific 

knowledge (NRC, 2007b).  

A robust research synthesis highlighted the importance of scientific practices by 

naming them as one of the dimensions in a three-dimensional framework for science 

education (NRC, 2012). These three dimensions consist of scientific practices (i.e., the 

skills students use to engage in science), crosscutting concepts (i.e., interdisciplinary 

ways of thinking about scientific processes), and disciplinary core ideas (i.e., concepts 

central to each science discipline). While previous frameworks have featured elements of 

scientific practices through their emphasis on inquiry (AAAS, 1993; NRC, 1996), these 

aspects tended to focus on designing investigations and testing hypotheses. The scientific 

practices included within the three-dimensional framework present a more complete 

articulation of inquiry and more fully represent the range of actions scientists take to 

make sense of phenomena (Schwarz et al., 2017). The three-dimensional framework also 

explicitly stresses that students develop deep understanding of science when their 

learning integrates the three-dimensions, rather than approaching them as separate 

entities. 

The scientific practices of the three-dimensional framework address the common 

instructional goal of improving student “critical thinking” abilities (Stowe & Cooper, 

2017; Yuretich, 2003). While definitions of critical thinking vary, researchers agree that 

it represents an essential part of inquiry and involves interpretation, analysis, evaluation, 

making inferences, and constructing explanations based on evidence (Facione, 1990). 

Within undergraduate biology education (Crowe et al. 2008), critical thinking has often 

been identified through Bloom’s Taxonomy (Anderson et al., 2001; Bloom et al., 1956). 



105 
 

While limited in its ability to capture the full spectrum of knowledge types (Blumberg, 

2009), Bloom’s Taxonomy provides a useful tool for classifying cognitive skills that 

students use when working through a task. The taxonomy is commonly divided into 

lower-order skills (remember and understand) and higher-order skills (apply, analyze, 

evaluate, and create). Biology education researchers often equate critical thinking with 

the higher-order skills (Allen & Tanner, 2002; Bissell & Lemons, 2006; Moon et al., 

2021; Zheng et al., 2008), and the higher-order skills have considerable parallels to the 

scientific practices of the three-dimensional framework (Larsen et al., 2022), with some 

of the same verbs (e.g., analyze, evaluate) appearing in both frameworks. While they 

contain considerable overlap, there has not yet been an empirical comparison of scientific 

practices and Bloom’s Taxonomy at the undergraduate level.  

The three-dimensional framework serves as the foundation for K-12 science 

education in the United States, with 44 of the U.S. states currently using the framework 

as the basis for their statewide science standards (NASEM, 2021; NGSS Lead States, 

2013). Despite this widespread adoption at K-12 levels, there is little evidence indicating 

to what degree undergraduate biology courses incorporate the three dimensions, 

particularly with respect to scientific practices. Achieving a smooth transition from high 

school to undergraduate coursework may depend on the degree to which instruction 

maintains continuity in three-dimensional language, terminology, and expectations 

(Clemmons et al., 2020b). Previous efforts have adapted the three-dimensional 

framework for undergraduate courses (Bain et al., 2020; Laverty et al., 2016), marking an 

important step for further curriculum development and associated research at the college 

level.  
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In light of ongoing national calls, there remains a need to determine the extent to 

which students in undergraduate courses apply the scientific practices outlined in the 

three-dimensional framework, particularly within the lower-division courses that serve as 

gateways—and often gatekeepers—to science degree programs (NASEM, 2016). One 

way to gauge the frequency of scientific practices in a course is to examine course 

assessments, such as tests and exams. Instructors in lower-division STEM courses often 

rely heavily on exams as the primary summative method to measure student learning 

(Goubeaud, 2010). Since the content of exams inherently reflects the knowledge and 

skills that instructors value and intend for students to learn (Scouller 1998, NRC 2003), 

an exam including scientific practices signifies that they represent a prioritized learning 

outcome. This approach of using assessments to gauge the extent of three-dimensional 

learning in a course has been applied in previous work (Matz et al. 2018, Stowe et al. 

2021); however, these studies were conducted using courses taught at a single institution 

or within organic chemistry.  

Our study aims to provide the first large-scale, nationwide portrait of how the 

three-dimensional framework is incorporated into undergraduate biology courses. We use 

exams as a window into the skills and knowledge instructors prioritize (NRC, 2003), and 

we analyze exam alignment to the three-dimensional framework, with a particular focus 

on the incorporation of scientific practices. We also analyze exam alignment to Bloom’s 

Taxonomy given its overlap with the science practices of the three-dimensional 

framework (Larsen et al., 2022) and its wide use in biology education (Allen & Tanner, 

2002; Crowe et al., 2008). Our analysis of course exams addresses two research 

questions: (1) To what extent do exams align to the three-dimensional framework with 
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particular reference to the scientific practices? (2) What is the relationship between an 

exam’s alignment to the three-dimensional framework and to Bloom’s Taxonomy of 

cognitive skills?  

METHODS 

Survey Development and Administration  

We developed an online survey through Qualtrics to collect course artifacts (e.g., 

an exam document, the associated exam answer key, and a syllabus) along with 

demographic and institutional information from instructors of undergraduate lower-

division biology courses. We define lower-division courses as 100- and 200-level courses 

and their equivalents. To participate in the survey, instructors had to confirm that they 

were located at a 2- or 4-year institution of higher education in the United States, were 

currently teaching or had taught a lecture-based lower-division biology course within the 

past three years, and had administered graded tests or exams in their course. We provided 

instructors in this study with $75 USD in compensation for the approximately half-hour 

of time spent completing the survey. This research was classified as exempt from human-

subjects review by the University of Nebraska–Lincoln (protocol 21082). 

We distributed the survey between May–August 2021 through listservs for 

professional societies, including the Society for the Advancement of Biology Education 

Research (SABER), Ecological Society of America (ESA) EcoEd, Ecological Research 

as Education Network (EREN), Quantitative Undergraduate Biology Education and 

Synthesis (QUBES), and National Association of Biology Teachers (NABT). Because of 

expected overlap in these email lists, we cannot estimate the total number of biology 

instructors who received a survey invitation. We wanted to sample from instructors who 

may not subscribe to education-related listservs, so we randomly selected institutions 
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from a complete list of United States Associate’s, Baccalaureate, Master’s, and Doctoral 

institutions. We randomly selected five institutions from each institution type and 

distributed the survey to all biology instructors at each institution via the email address 

provided on institution websites. We emailed 384 instructors using this method and had a 

response rate of 2%.  

In this study, we collected one summative exam from each instructor from a 

lecture (i.e., non-lab) course. We focus here on summative assessments, but we 

recognized that instructors may also be utilizing formative assessments and other 

summative assessments (e.g., projects, papers, presentations) within their courses. Given 

the variation in the design, format, and grading of these other assessments, we excluded 

them from this study. 

Data Sources 

The final dataset contained responses from 111 instructors at 100 unique 

institutions across the United States, including broad representation from each 

undergraduate institution type (Table 3.1). Our sample included instructors across career 

stages (Table 3.2) and from different categories of lower-division courses (Table 3.3). 

The majority of the courses (80%) were introductory-level, and the remaining courses 

spanned a variety of lower-division biology topics such as anatomy and physiology, 

environmental science, and microbiology. Class sizes ranged from 4 to 600 students (M = 

83.8 ± 10.6 SEM).  
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Table 3.1: Institutional Carnegie classifications and geographic regions 
Institution region Associate’s Baccalaureate Master’s Doctoral Total 
Northeast 4 4 7 6 21 
Midwest and Great Plains 6 10 6 7 29 
Pacific Northwest 3 2 0 2 7 
Southeast 7 9 4 9 29 
Southwest 6 0 2 6 14 
Total 26 25 19 30 100 
Note: Institutional categories are based on Carnegie classifications (Indiana University Center for 
Postsecondary Research, 2021). Institution regions are based on the PULSE regional network 
classifications (Partnership for Undergraduate Life Sciences Education, 2019). 

 

 

Table 3.2: Self-reported demographic information of undergraduate biology 
instructors 

Characteristic n % 
Gender 

Female 67 60 
Male 42 38 
Preferred not to disclose 2 2 

Race/ethnicitya 

Non-underrepresented 97 87 
Underrepresented 11 10 
Self-described 1 1 
Preferred not to disclose 2 2 

Teaching experience 
0-1 year 5 5 
2-5 years 20 18 
6-10 years 30 27 
11-15 years 29 26 
16-20 years 10 9 
21-25 years 11 10 
> 25 years 6 5 

aWe use the term “underrepresented” here to convey our focus on racial/ethnic groups that have faced 
disproportionate challenges within STEM disciplines, including Black/African American, 
Hispanic/Latinx, American Indian/Alaska Native, and Native Hawaiian/Pacific Islander. This 
grouping is not intended to obscure the unique histories and identities of any group. 
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Table 3.3: Categories of lower-division biology courses included in the sample 
Course categorya n % 
Introductory – Cell/Molecular  32 29 
Introductory – Organismal 31 28 
Introductory – General Biology 26 23 
Ecology/Evolution 6 5 
Genetics 3 3 
Microbiology 3 3 
Anatomy/Physiology 3 3 
Cell/Molecular Biology 2 2 
Environmental Science 2 2 
Plant Biology 2 2 
Zoology 1 < 1 
Lab courses   
Course has an associated lab component 95 86 
Course does not have an associated lab component 16 14 
aIf course category was not evident based on the title of the course, we used the content in 
the course syllabus to designate the categories. We categorized introductory-series courses 
that primarily deal with molecules, cells, and genetics as “Introductory – Cell/Molecular,” 
introductory-level courses that primarily deal with animal systems, biodiversity, ecology, 
and evolution topics as “Introductory – Organismal,” and courses that broadly span both 
cell/molecular biology and ecology/evolution topics as “Introductory – General Biology.”   

 
Codebook Development  

We assembled our modified three-dimensional framework (Table 3.4) and 

associated codebook (Supplemental Table 3.1) from existing protocols and tools for 

characterizing assessments in undergraduate science courses. We used the codebook from 

the Three-Dimensional Learning Assessment Protocol (3D-LAP; Laverty et al., 2016) to 

characterize scientific practices and crosscutting concepts and used the Vision and 

Change core concepts (AAAS, 2011), as delineated in the BioCore Guide (Brownell et 

al., 2014), for core ideas. We note that the 3D-LAP includes a protocol for coding core 

ideas that overlaps considerably with the Vision and Change core concepts of evolution, 

information flow, energy and matter, structure and function, and systems. We chose to 

use the Vision and Change core concepts and associated BioCore Guide because they 

provided a more comprehensive portrait of these topics across biological scales. We used 

the protocol from Bloom’s Dichotomous Key (Semsar and Casagrand, 2017) to assign 

levels of Bloom’s Taxonomy to exam items. Each Bloom’s level was assigned an ordinal  
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Table 3.4: Modified dimensions of the three-dimensional framework 
Scientific Practicesa 

1. Asking Questions 
2. Developing and Using Models 
3. Planning Investigations 
4. Analyzing and Interpreting Data 
5. Using Mathematics and Computational Thinking 
6. Constructing Explanations and Engaging in Argument from Evidence 
7. Evaluating Information 

Crosscutting Conceptsb 

1. Patterns 
2. Cause and Effect: Mechanism and Explanation 
3. Scale 
4. Proportion, and Quantity 
5. Systems and System Models 
6. Energy and Matter: Flows, Cycles, and Conservation 
7. Structure and Function 
8. Stability and Change 

Biology Core Ideasc 
1. Evolution 
2. Information Flow, Exchange, and Storage 
3. Structure and Function 
4. Pathways and Transformations of Energy and Matter 
5. Systems 

Sources: NRC, 2012; Laverty et al., 2016; AAAS, 2011. 
a The Framework for K-12 Science Education includes both scientific and engineering 
practices. For the purposes of this research based in biology courses, we focus exclusively on 
the scientific practices as presented in the Three-Dimensional Learning Assessment Protocol 
(3D-LAP). Note that the 3D-LAP differs from the K-12 practices in that it combines 
“Constructing Explanations” and “Engaging in Argument from Evidence” into a single 
scientific practice and narrows the focus of the practice “Obtaining, Evaluating, and 
Communicating Information” to only evaluating information.  
b The 3D-LAP separates “Scale” and “Proportion and Quantity” into two separate crosscutting 
concepts, where in the K-12 framework, these are combined into a single concept. 
c We use the biology core ideas that are articulated in Vision and Change core concepts but 
note that there are similar biology core ideas outlined in the 3D-LAP and within the K-12 
framework. There are separate sets of core ideas for chemistry and physics disciplines.  

 

numeric value between 1 and 6, where 1 = remember, 2 = understand, 3 = apply, 4 = 

analyze, 5 = evaluate, and 6 = create.  

We note that the mental processes that a student engages in when responding to 

assessment items is context-dependent and may be affected by previous instruction or 

experiences within a course. As such, we coded items based on the potential of the item 
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to elicit specific dimensions or cognitive skills, but as we did not have insight into the 

course content or structure, this coding only captures the apparent cognitive processes 

targeted by a given item.  

Item Coding 

We used the point values and numbering schemes set by the instructor to 

determine the boundaries of individual items (i.e., test questions). Items that shared a 

common stem and/or used a sub-part numbering scheme (e.g., 4a, 4b, 4c) were coded as a 

single clustered item. Our sample of 111 exams contained a total of 4337 items. Exams 

ranged from 1 to 120 items (M = 39.1 ± 2.0 SEM).  

We used instructor-provided answer keys to inform our coding of individual 

items. In certain cases, particularly for constructed-response items, the answer key 

informed us that the instructor expected students to include explanations or reasoning in 

their response, which may not have been evident in exact wording of the item stem or 

prompt. For such items, we defaulted to the student performance expectations contained 

in the answer key.  

The 3D-LAP delineates each scientific practice as consisting of nested criteria 

statements describing different levels within the practice. Similar to previous studies 

(Laverty et al., 2016; Laverty and Caballero, 2018; Matz et al., 2018; Underwood et al., 

2018; Carmel et al., 2019; Stowe et al., 2021), we coded an item as eliciting a scientific 

practice when it satisfied all of the criteria statements for the corresponding constructed-

response or selected-response item type. We coded an item as addressing a crosscutting 

concept or core idea if the item aligned with any of the criteria statements within the 

code. Items may have met multiple scientific practices, crosscutting concepts, or core 
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ideas. We coded only the highest Bloom’s Taxonomy level that the item was capable of 

eliciting.  

Interrater Reliability 

Two members of the research team used the codebook (Supplemental Material 

3.1) to independently code a total of 48 items that were randomly selected from the entire 

item pool. The team members coded the items in iterative sets of 12, and any 

disagreements from a set of items were discussed until consensus before beginning 

coding the next set of items. There was an average of 93% agreement across all codes 

and ≥ 75% agreement for each individual code (Supplemental Table 3.2). We calculated 

percent agreement using the arsenal package [v. 3.6.3] (Heinzen et al., 2021) in R 

statistical software. For the items that the two raters discussed, the consensus values were 

used in the final dataset. The remaining items in the dataset were coded by only one 

member of the research team. 

Item Normalization and Weighting 

Given that exams use different point schemes across courses, for some analyses, 

we calculated a normalized item point value by dividing the individual item point value 

by the total number of points on the exam. For other analyses, we determined the 

percentage of exam points aligned with the three-dimensional framework by multiplying 

each normalized item point value by either 1 or 0 based on whether the item met or did 

not meet a dimension, respectively, and summed the values for each exam. We 

determined the weighted Bloom’s value for each exam by multiplying each normalized 

item point value by the coded Bloom’s level [1, 2, 3, 4, 5, or 6] and summed the values 

for each exam. 
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Correlating Percentage of Exam Points Aligned with Each Dimension and Weighted 
Bloom’s Level  

Considering the ordinal nature of Bloom’s Taxonomy levels, we used Spearman 

rank order correlations to determine the relationship between the percentage of exam 

points aligned with each dimension and the weighted Bloom’s levels of each exam. We 

used Fisher’s z transformations to compare the correlation coefficients with respect to 

each dimension (Supplemental Table 3.3). We calculated Spearman correlations using the 

stats package [v 4.1.1] (R Core Team, 2021) and calculated Fisher’s z transformations 

using the diffcor package [v 0.7.1] (Blötner, 2022) in R statistical software.  

Exam Weighting in Course Grade  

Out of the 111 instructors in the sample, 104 (94%) included a grading scheme 

that revealed the overall weight of exam grades in their course syllabus. For each course, 

we determined the total percentage of the course grade that came from exam grades. We 

included unit, midterm, and final exams in our value for weight of exam grades but did 

not include formative assessments or other summative assessments.  

RESULTS 

Across our sample of 111 exams with a total of 4337 items (i.e., test questions), 

only 5% of items achieved the principal goal of the three-dimensional framework by 

simultaneously incorporating a scientific practice, crosscutting concept, and core idea 

(Figure 3.1). This lack of three-dimensional alignment was driven by the small 

percentage of items that met the criteria for a scientific practice. Only 7% of items 

incorporated a scientific practice, but the majority of those items were three-dimensional 

(Figure 3.2). Despite the abundance of items that included a crosscutting concept (47%) 

or core idea (59%), only a small proportion of those items qualified as three-dimensional. 
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Strikingly, over a third of items on the exams did not align with any of the three 

dimensions. 

Figure 3.1: Percentage of undergraduate biology exam items aligned to each 
dimension of three-dimensional framework. Exam items (n = 4337) are represented 
only once in each bar even if they may align with multiple scientific practices, 
crosscutting concepts, or core ideas within that dimension. Abbreviations: 3D = three-
dimensional; SP = scientific practice; CC = crosscutting concept; CI = core idea. 
 

When items did align to a scientific practice, the practice was most commonly 

“Analyzing Data,” “Engaging in Argument,” or to a lesser extent “Using Models” (Figure 

3.3). While all the scientific practices were represented in the sample, there were notably 

few items meeting the practices of “Evaluating Information,” “Asking Questions,” 

“Planning Investigations,” and “Using Mathematics and Computational Thinking.” Each 

crosscutting concept and core idea was represented across the range of items in the 

sample. In both the crosscutting concepts and core ideas, “Structure and Function” was 

the most common code applied to items. The codes for “Structure and Function” as a 

crosscutting concept and as a core idea can be coded independently but given the 

considerable overlap in the code criteria (Supplemental Table 3.1), these codes were 

often applied together.  
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Figure 3.2: Intersections of the three-dimensional alignment of undergraduate 
biology exam items. The size of the ellipses for scientific practices, crosscutting 
concepts, and core ideas are proportional to the number of items in the sample aligned 
with each dimension(s). Approximately 36% of items in the sample did not align with 
any dimension and are not included within an ellipse. Abbreviations: 3D = three-
dimensional; SP = scientific practice; CC = crosscutting concept; CI = core idea. 
 

While the exams contained few items addressing scientific practices overall, these 

items could have been more involved or taken students more time to complete, thus 

constituting a larger portion of the exam experience. To address this possibility, we 

analyzed exam content based on normalized item point values, since instructors tend to 

assign more points to more substantial items. When accounting for item point value, we 

found that most exams still had fewer than 10% of points aligned with scientific practices 

(Figure 3.4). Thus, items targeting scientific practices had higher point values than other 

exam items, but scientific practices represented a relatively small proportion of the 

overall exam content.  
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Figure 3.3: Alignment of undergraduate biology exam items to each of the scientific 
practices, crosscutting concepts, and core ideas of the three-dimensional framework. 
Individual items may have addressed more than one scientific practice (a), crosscutting 
concept (b), or core idea (c), thus the sum of the bars in each plot may exceed the total 
number of items aligned to the dimension. 
 

We applied Bloom’s Taxonomy to see which cognitive skills predominated in 

undergraduate biology exams. We found that the majority of items (86%) aligned with 

the lower-order skills remember (level 1) or understand (level 2), with just 14% of items 

aligning to the higher-order skills apply, analyze, evaluate, or create (levels 3-6; Figure 

3.5). We also considered Bloom’s at the exam level by computing a weighted average 

accounting for item point values. The mean of the weighted Bloom’s level across exams 

was 2.02 ± 0.09 SEM. Even after accounting for the tendency for instructors to place 

more points on higher-level Bloom’s items, we found that the overall exam tends toward 

lower-order cognitive skills.  
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Figure 3.4: Percentage of exam points aligned to the three-dimensional framework. 
An exam from each course (n = 111) is represented once within each dimension. 
Abbreviations: 3D = three-dimensional; SP = scientific practice; CC = crosscutting 
concept; CI = core idea. 
 

There was a considerable correlation between the percentage of three-dimensional 

points on an exam and its weighted Bloom’s level (ρ = 0.75; Figure 3.6). This strong 

positive relationship was driven by scientific practices, which had the highest correlation 

with Bloom’s Taxonomy of any of the three dimensions (ρ = .83). Crosscutting concepts 

and core ideas were also correlated with the Bloom’s level of exams (ρ = .48; .61), albeit 

to a lesser extent (Supplemental Material 3.3).  
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Figure 3.5: Alignment of undergraduate biology exam items to levels of Bloom’s 
Taxonomy. Of the 4337 exam items in the sample, 86% align to the lower-order 
cognitive skills (remember and understand) and 14% align to the higher-order cognitive 
skills (apply, analyze, evaluate, and create). 
 

Instructors can use other activities to target scientific practices or focus on 

scientific practices in associated lab courses. However, within our sample, exam grades 

comprised half of total course grade (M = 49.7 ± 1.5 SEM), and we observed no 

difference in the extent to which scientific practices (Welch’s ANOVA, F(1, 18.7) = 

0.15, p = 0.71) or Bloom’s levels (Welch’s ANOVA, F(1, 22.4) = 0.09, p = 0.77) were 

assessed in courses with or without associated labs.  

We note that approximately 65% of the exams in our sample (n = 72) were 

administered during the semesters affected by the COVID-19 pandemic. While this 

period of time was marked by changes in instructional modality, with many courses 

shifting into a partially or fully online format, we did not find notable differences in the 

content of the assessments administered during the global pandemic. When comparing 

exams administered to students before and after March 2020, we found no significant 
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differences in the percentage of three-dimensional points (t-test, df = 65.1, p = 0.14) nor 

in the weighted Bloom’s level of the exams (t-test, df = 68.8, p = 0.58).  

 

 

Figure 3.6:  Spearman correlation coefficients and 95% confidence intervals 
representing the relationship between the percentage of exam points in each 
dimension and the weighted Bloom’s level of the exam. Letters represent differences in 
significance between correlation coefficients as determined by Fisher’s z-tests 
(Supplemental Table 3.3). Abbreviations: 3D = three-dimensional; SP = scientific 
practice; CC = crosscutting concept; CI = core idea.  

 

DISCUSSION 

Taken together, our results highlight a disconnect between what educational 

reports propose as optimal science assessment (NRC, 2014) and what undergraduate 

biology courses actually assess. These reports indicate that integrating scientific practices 

with the crosscutting concepts and core ideas is needed for students to reason through 

how scientific ideas form and to view science as a dynamic and ongoing process (NRC, 

2012), but we found that scientific practices are largely missing from biology exams. The 
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low frequency of science practices paired with the high frequency of items only 

addressing lower-order cognitive skills means students are more often assessed on 

conceptual knowledge rather than their ability to apply that information to conduct 

science. This exclusion of scientific practices may unintentionally reinforce the 

perception of science as a collection of discrete facts (NRC, 2012, 2014), which may 

have negative consequences for retention and persistence of students in STEM majors 

(Olson & Riordan, 2012).  

Despite calls for scientific practices to be taught and assessed throughout 

undergraduate course sequences (AAAS, 2011; NASEM, 2022), our analysis of exam 

content suggests that these critical skills remain a minor part of lower-division lecture 

courses. While this study necessarily focused on biology, previous work indicates that 

this phenomenon may be the norm in gateway courses across science disciplines (Matz et 

al., 2018; Stowe & Cooper, 2017). The underrepresentation of scientific practices likely 

reflects constraints placed on instructors who lack the time, resources, and support for 

implementing three-dimensional lessons and assessments (NRC, 2014) and who may feel 

pressured to cover broad ranges of content knowledge (Wright et al., 2018). Another 

possible explanation for the low frequency is that instructors may be reserving instruction 

and assessment of scientific practices for upper-division courses, yet our previous work 

found that the extent to which instruction focuses on scientific practices does not differ 

between course levels (Durham et al., 2017).  

Our current findings highlight a need to shift instruction and assessment toward 

incorporating scientific practices. Many instructors share the goal of teaching and 

assessing critical thinking and higher-order cognitive skills (Yuretich, 2003), but our 
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findings echo previous studies (Momsen et al., 2010, 2013) and indicate that many 

instructors may not be meeting that goal. We found that most exam items were only 

capable of assessing lower-order cognitive skills on Bloom’s Taxonomy. This abundance 

of lower-order skills may be in part attributed to a common interpretations of Bloom’s 

Taxonomy in which a high level of difficulty associated with answering the item is 

conflated with higher-order Bloom’s levels (Lemons & Lemons, 2013; Monrad et al., 

2021; Wright et al., 2018). The scientific practices offer a way to navigate around this 

tendency. We found that the extent to which an exam engages students in higher-order 

cognitive skills associated with critical thinking is closely aligned with the inclusion of 

scientific practices. This provides additional support for the idea that incorporating 

scientific practices may be a more specific way to target the higher-order cognitive skills 

and associated critical thinking intended by instructors (Stowe & Cooper, 2017).  

Although there were few scientific practices in our sample overall, we found that 

scientific practices rarely occurred in isolation and were typically paired with 

crosscutting concepts and/or core ideas. The instructors who did incorporate scientific 

practices into their exams usually situated them within a disciplinary context as intended 

by the three-dimensional framework (NRC, 2014). Instructors wishing to incorporate 

scientific practices into their exams may also find it helpful to consult the Three-

Dimensional Learning Assessment Protocol (Laverty et al., 2016). The 3D-LAP provides 

detailed criteria that can be used to determine if an exam item has the potential to engage 

students in scientific practices, and there are guides for using the 3D-LAP to adapt 

existing exam items (Underwood et al., 2018). Like other calls for greater adoption of 

three-dimensional assessment at the undergraduate level, we are not suggesting that every 
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item on an exam needs to be three-dimensional (Laverty et al., 2016). The transition into 

three-dimensional learning and assessment can be challenging and time-intensive for 

instructors (Furtak, 2017), but it is a task that may lead to more equitable science 

assessments (Bang et al. 2017, Ralph et al. 2022).  

Each of the scientific practices was represented in our sample, indicating that 

exams are capable of assessing each practice, but not all the practices were represented 

equally. The practices “Asking Questions,” “Evaluating Information,” “Planning 

Investigations,” and “Using Mathematics and Computational Thinking” occurred least 

frequently on exams. These practices associated with traditional definitions of inquiry 

and the scientific method may see more prominent implementation in the curriculum of 

lab courses (Carmel et al., 2019). This raises the possibility that instructors are carrying 

out instruction and assessment of these and other scientific practices within the associated 

lab course. However, courses without associated labs did not assess more science 

practices, suggesting that the assessment content of the lecture portion of a course may be 

fairly independent from the presence or absence of associated lab sections. Instructors 

may also have targeted scientific practices through other course activities, such as 

formative assessments or other summative assessments (e.g., projects, papers, 

presentations). Even if this is the case, the three-dimension framework contends that 

scientific practices should be incorporated throughout lecture courses because they help 

students to develop a robust understanding of disciplinary knowledge as the dynamic 

product of a scientific process.  

The majority of items in our sample met the criteria for a core idea or crosscutting 

concept; however, most of these items did not elicit a scientific practice. Furthermore, 
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although not true for every case, many of these one- or two-dimensional items tended to 

ask students to recall only definitions or discrete pieces of memorized information (i.e., 

lower-order cognitive skills). While it is important for students to remember and 

understand these foundational ideas, the goal of the three-dimensional framework is to 

have students apply their knowledge and understanding using the scientific practices 

(Cooper et al., 2015). Our work highlights that many exams tend to lend credence to the 

longstanding criticism that lower-division STEM courses, particularly in biology, 

overemphasize the memorization of factual information (Momsen et al., 2010, 2013; 

Sundberg et al., 1994). Such a finding has consequences for student learning, as 

memorization-based exams may not be as effective at promoting long-term retention of 

course content compared to exams that encourage deeper understanding and application 

of the material (Jensen et al., 2014). 

We applied the three-dimensional framework because of our focus on lower-

division courses. The three-dimensional framework is used extensively in K-12 science 

education and adopting this framework in lower-division courses can help provide a 

familiar scaffold for students to aid their learning of skills and concepts expected at the 

undergraduate level. While we use the three-dimensional framework here, we 

acknowledge that other frameworks can be used similarly to characterize important skills 

and concepts in undergraduate science courses. The Advanced Placement (AP) Biology 

Course Framework (College Board, 2020) provides a guide for skills and concepts, but its 

application may be limited to introductory biology courses. The Vision and Change 

framework (AAAS, 2011) provides a wider lens for program-level learning outcomes that 

can be applied across all levels of undergraduate biology and are intended to be 
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completed by the end of a four-year degree. Although there are slight differences in 

terminology, there is substantial overlap between the scientific practices in the three-

dimensional framework and the Vision and Change core competencies and their 

articulation within the more delineated BioSkills Guide (Clemmons et al., 2020a, 2020b). 

For biology courses focused on ecological concepts, instructors may choose to use the 4-

Dimensional Ecology Education framework (4DEE; Berkowitz et al., 2018, Prevost et al., 

2019), which in addition to practices, core concepts, and crosscutting themes features an 

additional dimension examining human-environment interactions. While we use the 

three-dimensional framework for this study, each of these aforementioned frameworks 

may be used to help center curriculum, instruction, and assessments around foundational 

ideas and skills that are important for scientific literacy, understanding, and participation. 

CONCLUSION 

The three-dimensional framework represents a major educational advancement 

because it presents science proficiency as integrating science practices, crosscutting 

concepts, and core ideas (NRC, 2012). Indeed, scientific knowledge arises from research 

investigations, so curriculum reform efforts should seek to engage students with 

conceptual models as evolving products of the science process, rather than invariant 

truths (Matz et al., 2018; Passmore et al., 2009; Zagallo et al., 2016). Our research 

suggests that a more direct incorporation of scientific practices represents a key avenue to 

helping students develop the envisioned integrative proficiency. By focusing on scientific 

practices within instruction and assessment, we can help cultivate the types of critical 

thinking needed by scientifically literate citizens and science professionals to tackle 

global challenges that require both knowledge and action.   
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SUPPLEMENTAL MATERIAL FOR CHAPTER 3 

Supplemental Table 3.1: Codebook adapted from the Three-Dimensional Learning 
Assessment Protocol, BioCore Guide, and Bloom’s Dichotomous Key 

Code name Code criteria 
Scientific Practice Indicates that the item does (1) or does not (0) assess a Science Practice (as 

defined by the 3D-LAP protocol). To code a 1, the item must meet the highest 
criteria for at least one of the following, “Asking Questions,” “Developing 
and Using Models,” “Planning Investigations,” “Analyzing and Interpreting 
Data,” “Using Mathematics and Computational Thinking,” “Constructing 
Explanations and Engaging in Argument from Evidence” or “Evaluating 
Information.” 

Science Practice: 
Asking Questions 

This code only applies to constructed response items.   
Student is asked to generate a scientific question about a real world event, 
observation, phenomenon, data, scenario, or model. 

1. Question gives an event, observation, phenomenon, data, scenario, or 
model. 

2. Question asks student to generate an empirically testable question 
about the given event, observation, phenomenon, data, scenario, or 
model. 

Science Practice: 
Developing and 
Using Models 

Constructed Response:  
Student is given or asked to construct a mathematical, graphical, 
computational, symbolic, or pictorial representation and use it to explain or 
predict an event, observation, or phenomenon. 

1. Question gives an event, observation, or phenomenon for the student 
to explain or make a prediction about. 

2. Question gives a representation or asks student to construct a 
representation. 

3. Question asks student to explain or make a prediction about the 
event, observation, or phenomenon. 

4. Question asks student to provide the reasoning that links the 
representation to their explanation or prediction. 

 
Selected Response:  
Student is given or asked to select a mathematical, graphical, computational, 
symbolic, or pictorial representation and select an appropriate explanation or 
prediction about an event, observation, or phenomenon based on the 
representation. 

1. Question gives an event, observation, or phenomenon for the student 
to explain or make a prediction about. 

2. Question gives a representation or asks student to select a 
representation. 

3. Question asks student to select an explanation for or prediction about 
the event, observation, or phenomenon. 

4.  Question asks student to select the reasoning that links the 
representation to their explanation or prediction. 
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Science Practice: 
Planning 
Investigations 

Constructed Response:  
Student is asked to design an experimental method or identify a set of 
observations that can be used to answer a scientific question or test a claim or 
hypothesis. 

1. Question poses a scientific question, claim, or hypothesis to be 
investigated. 

2. Question asks student to describe or design an investigation, or identify 
the observations required to answer the question or test the claim or 
hypothesis. 

3. Question asks student to justify how their description, design, or 
observations can be used to answer the question or test the claim or 
hypothesis. 

 
Selected Response:  
Student is asked to select an appropriate design of an experimental method or 
an observation that can be used to answer a scientific question or test a claim or 
hypothesis. 

1. Question poses a scientific question, claim, or hypothesis to be 
investigated.  

2. Question asks student to select a description of or a design for an 
investigation or select the observations that could be used to answer the 
question or test the hypothesis. 

3. Question asks student to select a justification of how the description, 
design, or observations can be used to answer the question or test the 
claim or hypothesis. 

Science Practice: 
Analyzing and 
Interpreting Data 

Constructed Response:  
Student is given a question, claim, or hypothesis and data collected from an 
experiment or observation and is asked to analyze the resulting data and 
interpret their meaning. 

1. Question gives a scientific question, claim, or hypothesis to be 
investigated. 

2. Question gives a representation of the data (e.g., table or graph, or list 
of observations) provided to answer the question or test the claim or 
hypothesis. 

3. Question gives an analysis of the data or asks student to analyze the 
data. 

4. Question asks student to interpret the results or assess the validity of 
the conclusions in the context of the scientific question, claim, or 
hypothesis. 

 
Selected Response:  
Student is given a question, claim, or hypothesis and data collected from an 
experiment or observation and is asked to select an interpretation of its 
meaning. 

1. Question gives a scientific question, claim, or a hypothesis to be 
investigated. 

2. Question gives a representation of data (table, graph, list of 
observations, etc.) provided to answer the question or test the claim or 
hypothesis.  

3. Question asks student to select an interpretation of the results or an 
assessment of the validity of the conclusions in the context of the 
scientific question, claim, or hypothesis.  
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Science Practice: 
Using Mathematics 
and Computational 
Thinking 

Constructed Response:  
Student is asked to use mathematical reasoning or a calculation and interpret 
the results within the context of the given event, observation, or phenomenon. 

1. Question gives an event, observation, or phenomenon.  
2. Question asks student to perform a calculation or statistical test, 

generate a mathematical representation, or demonstrate a relationship 
between parameters. 

3. Question asks student to give a consequence or an interpretation (not a 
restatement) in words, diagrams, symbols, or graphs of their results in 
the context of the given event, observation, or phenomenon. 

 
Selected Response:  
Student is expected to perform a mathematical manipulation and asked to 
select an interpretation of the results within the context of a given event, 
observation, or phenomenon. 

1. Question gives an event, observation, or phenomenon.  
2. Question asks student to perform a calculation or statistical test, use a 

mathematical representation, or derive a relationship between 
parameters in order to obtain the correct answer.  

3. Question asks student to select a consequence or an interpretation (not 
a restatement) in words, diagrams, symbols, or graphs of their results 
in the context of the given event, observation, or phenomenon. 

Science Practice: 
Constructing 
Explanations and 
Engaging in 
Argument from 
Evidence 

Constructed Response:  
Student is asked to provide reasoning based on evidence to support a claim. 

1. Question gives an event, observation, or phenomenon. 
2. Question gives or asks student to make a claim based on the given 

event, observation, or phenomenon. 
3. Question asks student to provide scientific principles or evidence in 

the form of data or observations to support the claim. 
4. Question asks student to provide reasoning about why the scientific 

principles or evidence support the claim. 
 
Selected Response:  
Student is asked to select reasoning and evidence to support a claim. 

1. Question gives an event, observation, or phenomenon. 
2. Question gives or asks student to select a claim based on the given 

event, observation, or phenomenon. 
3. Question asks student to select scientific principles or evidence in the 

form of data or observations to support the claim.  
4. Question asks student to select the reasoning about why the scientific 

principles or evidence support the claim. 
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Science Practice: 
Evaluating 
Information 

Constructed Response:  
Student is asked to make sense of information or ideas presented to them. 

1. Question gives an excerpt from a conversation, article, student 
solution, or video (or similar form of communication) that makes one 
or more assertions. 

2. Question gives a conclusion about the validity of the assertion(s) made 
or asks student to make a conclusion about the validity of the 
assertion(s) or reconcile multiple assertions with each other. 

3. Question asks student to provide reasoning to support their 
conclusion(s) about the validity of the assertion(s) or reconciliation 
with data, observations, or scientific principles. 

 
Selected Response:  
Student is asked to make sense of information or ideas presented to them. 

1. Question gives an excerpt from a conversation, article, student 
solution, or video (or similar form of communication) that makes one 
or more assertions. 

2. Question gives a conclusion about the validity of the assertion(s) or 
asks student to select a conclusion about the validity of the assertion(s) 
or reconciliation of multiple assertions.  

3. Question asks student to select reasoning to support their 
conclusion(s) about the validity of the assertion(s) or reconciliation 
with data, observations, or scientific principles. 

Crosscutting 
Concept 

Indicates that the item does (1) or does not (0) assess a Crosscutting Concept 
(as defined by the 3D-LAP protocol). To code a 1, the item must meet the 
criteria for at least one of the following, “Patterns,” “Cause and Effect: 
Mechanism and Explanation,” “Scale,” “Proportion and Quantity,” “Systems 
and System Models,” “Energy and Matter: Flows, Cycles, and Conservation,” 
“Structure and Function,” and “Stability and Change.” 

Crosscutting 
Concept: Patterns 

To code an assessment task with Patterns, the question asks the student to 
identify patterns or trends emerging from three or more events, observations, or 
data. 

Crosscutting 
Concept: Cause and 
Effect: Mechanism 
and Explanation 

To code an assessment task with Cause and Effect: Mechanism and 
Explanation, the question provides at most two of the following: 1) a cause, 2) 
an effect, and 3) the mechanism that links the cause and effect, and the student 
is asked to provide the other(s). 

Crosscutting 
Concept: Scale 

To code an assessment task with Scale, the question asks the student 1) to 
compare objects, processes, or properties across size, time, or energy scales, or 
to dimensions of familiar objects, timescales, or energies or 2) to identify non-
negligible/relevant interactions at various scales. 

Crosscutting 
Concept: Proportion 
and Quantity 

To code an assessment task with Proportion and Quantity, the question asks the 
student to predict the response of one variable to changes in another or identify 
the relationship between two or more variables from data. 

Crosscutting 
Concept: Systems 
and System Models 

To code an assessment task with Systems and System Models, the question 
asks the student to identify a system (by defining its components or 
boundaries), any assumptions made, and the surroundings (if necessary), and 
how the system and surroundings interact with each other. 
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Crosscutting 
Concept: Energy 
and Matter: Flows, 
Cycles, and 
Conservation 

To code an assessment task with Energy and Matter: Flows, Cycles, and 
Conservation, the question asks the student to describe the transfer or 
transformation of energy or matter within or across systems, or between a 
system and its surroundings, with explicit recognition that energy and/or matter 
are conserved. 
 
The phrase “with explicit recognition that energy and/or matter are 
conserved” is restrictive, and as a result, few items meet this crosscutting 
concept. We removed this phrase from our operational definition of the 
crosscutting concept “Energy and Matter: Flows, Cycles, and Conservation.”  

Crosscutting 
Concept: Structure 
and Function 

To code an assessment task with Structure and Function, the question asks the 
student to predict or explain a function or property based on a structure, or to 
describe what structure could lead to a given function or property. 
 
To meet this crosscutting concept, the item needs to clearly address both 
structure and function. The function does not have to be immediate and may be 
either proximal or distal. Items that only ask to identify a structure do not meet 
this crosscutting concept. 

Crosscutting 
Concept: Stability 
and Change 

To code an assessment task with Stability and Change, the question asks the 
student to determine 1) if a system is stable and provide the evidence for this, 
or 2) what forces, rates, or processes make a system stable (static, dynamic, or 
steady state), or 3) under what conditions a system remains stable, or 4) under 
what conditions a system is destabilized and the resulting state. 

Core Idea Indicates the that the item does (1) or does not (0) assess a Core Idea (as 
defined by the BioCore Guide). To code a 1, the item must meet the criteria for 
at least one of the following, “Evolution,” “Information Flow,” “Structure 
Function,” “Transformations of Energy and Matter,” and “Systems.” 
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Core Idea: 
Evolution 

To meet the Core Idea, the exam item must align with at least one of the 
following criteria:  

• Overarching Principle: All living organisms share a common ancestor. 
• Overarching Principle: Species evolve over time, and new species can 

arise, when allele frequencies change due to mutation, natural 
selection, gene flow, and genetic drift. 

• Molecular: Multiple molecular mechanisms, including DNA damage 
and errors in replication, lead to the generation of random mutations. 
These mutations create new alleles that can be inherited via mitosis, 
meiosis, or cell division. 

• Molecular: Mutations and epigenetic modifications can impact the 
regulation of gene expression and/or the structure and function of the 
gene product. If mutations affect phenotype and lead to increased 
reproductive success, the frequency of those alleles will tend to 
increase in the population.  

• Physiology: Mutations that change protein structure and/or regulation 
can impact anatomy and physiological function at all levels of 
organization.  

• Physiology: Most organisms have anatomical and physiological traits 
that tend to increase their fitness for a particular environment.  

• Physiology: Physiological systems are constrained by ancestral 
structures, physical limits, and the requirements of other physiological 
systems, leading to trade-offs that affect fitness.  

• Ecology/Evolutionary Biology: The characteristics of populations 
change over time due to changes in allele frequencies. Changes in 
allele frequencies are caused by random and nonrandom processes – 
specifically mutation, natural selection, gene flow, and genetic drift. 
Not all of these changes are adaptive.  

• Ecology/Evolutionary Biology: All species alive today are derived 
from the same common ancestor. New species arise when populations 
become genetically isolated and diverge due to mutation, natural 
selection, and genetic drift. Phylogenetic trees depict relationships 
among ancestral and descendant species, and are estimated based on 
data.   

• Ecology/Evolutionary Biology: Fitness is an individual’s ability to 
survive and reproduce. It is environment-specific and depends on both 
abiotic and biotic factors. Evolution of optimal fitness is constrained 
by existing variation, trade-offs and other factors.  
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Core Idea: 
Information Flow 

To meet the Core Idea, the exam item must align with at least one of the 
following criteria: 

• Overarching Principle: Organisms inherit genetic and epigenetic 
information that influences the location, timing, and intensity of gene 
expression. 

• Overarching Principle: Cells/organs/organisms have multiple 
mechanisms to perceive and respond to changing environmental 
conditions.  

• Molecular: In most cases, genetic information flows from DNA to 
mRNA to protein, but there are important exceptions.  

• Molecular: Gene expression and protein activity are regulated by 
intracellular and extracellular signaling molecules. Signal transduction 
pathways are crucial in relaying these signals.  

• Molecular: The signals that a cell receives depend on its location, and 
may change through time. As a result, different types of cells express 
different genes, even though they contain the same DNA.  

• Physiology: Information stored in DNA is expressed as RNA and 
proteins. These gene products impact anatomical structures and 
physiological function.  

• Physiology: Organisms have sophisticated mechanisms for sensing 
changes in the internal or external environment. They use chemical, 
electrical, or other forms of signaling to coordinate responses at the 
cellular, tissue, organ, and/or system level.  

• Ecology/Evolutionary Biology: Individuals transmit genetic 
information to their offspring; some alleles confer higher fitness than 
others in a particular environment.  

• Ecology/Evolutionary Biology: A genotype influences the range of 
possible phenotypes in an individual; the actual phenotype results 
from interactions between alleles and the environment.  
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Core Idea: Structure 
Function 

To meet the Core Idea, the exam item must align with at least one of the 
following criteria: 

• Overarching Principle: Biological structures exist at all levels of 
organization, from molecules to ecosystems. A structure’s physical 
and chemical characteristics influence its interactions with other 
structures, and therefore its function.  

• Overarching Principle: Natural selection leads to evolution of 
structures that tend to increase fitness within the context of 
evolutionary, developmental, and environmental constraints.  

• Molecular: The structure of a cell – its shape, membrane, organelles, 
cytoskeleton, and polarity – impacts its function.  

• Molecular: The three dimensional structure of a molecule and its 
subcellular localization impact its function, including the ability to 
catalyze reactions or interact with other molecules. Function can be 
regulated through reversible alterations of structure e.g. 
phosphorylation.  

• Molecular: The structure of molecules or organisms may be similar 
due to common ancestry or selection for similar function.  

• Physiology: Physiological functions are often compartmentalized into 
different cells, tissues, organs, and systems, which have structures that 
support specialized activities.  

• Physiology: The size, shape, and physical properties of organs and 
organisms all affect function. The ratio of surface area to volume is 
particularly critical for structures that function in transport or 
exchange of materials and heat.  

• Physiology: Structure constrains function in physiology; 
specialization for one function may limit a structure’s ability to 
perform another function.  

• Ecology/Evolutionary Biology: Natural selection has favored 
structures whose shape and composition contribute to their ecological 
function.  

• Ecology/Evolutionary Biology: Competition, mutualism, and other 
interactions are mediated by each species’ morphological, 
physiological, and behavioral traits.  
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Core Idea: 
Transformations of 
Energy and Matter 

To meet the Core Idea, the exam item must align with at least one of the 
following criteria: 

• Overarching Principle: Energy and matter cannot be created or 
destroyed, but can be changed from one form to another.  

• Overarching Principle: Energy captured by primary producers is 
necessary to support the maintenance, growth and reproduction of all 
organisms.  

• Overarching Principle: Natural selection leads to the evolution of 
efficient use of resources within constraints.  

• Molecular: Energy captured by primary producers is stored as 
chemical energy. This stored energy can be converted through a series 
of biochemical reactions into ATP for immediate use in the cell.  

• Molecular: In cells, the synthesis and breakdown of molecules is 
highly regulated. Biochemical pathways usually involve multiple 
reactions catalyzed by enzymes that lower activation energies. 
Energetically unfavorable reactions are driven by coupling to 
energetically favorable reactions such as ATP hydrolysis.  

• Molecular: Intracellular and intercellular movement of molecules 
occurs via 1) energy-demanding transport processes and 2) random 
motion. A molecule’s movement is affected by its thermal energy, 
size, electrochemical gradient, and biochemical properties.  

• Physiology: Energy captured by primary producers is stored as 
chemical energy. This stored energy can be converted into ATP, 
which is required for energetically demanding activities necessary for 
life, including synthesis, transport, and movement.  

• Physiology: Due to the inefficiency of biochemical reactions and 
other constraints, physiological processes are never 100% efficient.  

• Physiology: Organisms have limited energetic and material resources 
which must be distributed across competing functional demands. 
These include movement of material across gradients, growth, 
maintenance, and reproduction, inevitably leading to trade-offs.  

• Ecology/Evolutionary Biology: Energy captured by primary producers 
is stored as chemical energy. At each trophic level, most of this 
energy is used for maintenance, with a relatively small fraction 
available for growth and reproduction. As a consequence, each trophic 
level in an ecosystem has less energy available than the preceding 
level.  

• Ecology/Evolutionary Biology: Chemical elements are transferred 
among the abiotic and biotic components of an ecosystem; changes in 
the amount and distribution of chemical elements can impact the 
ecosystem.  
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Core Idea: Systems To meet the Core Idea, the exam item must align with at least one of the 
following criteria: 

• Overarching Principle: Biological molecules, genes, cells, tissues, 
organs, individuals, and ecosystems interact to form complex 
networks. A change in one component of the network can affect many 
other components.  

• Overarching Principle: Organisms have complex systems that 
integrate internal and external information, incorporate feedback 
control, and allow them to respond to changes in the environment.  

• Molecular: Cells receive a complex array of chemical and physical 
signals that vary in time, location, and intensity over the lifespan of 
the organism; a cell’s response depends on integration and 
coordination of these various signals.  

• Molecular: During development the signals a cell receives depend on 
its spatial orientation within the embryo and its intercellular 
interactions. As a consequence, cells adopt different cell fates 
depending on their local environment and/or cell lineage.  

• Molecular: Alteration of a single gene or molecule in a signaling 
network may have complex impacts at the cell, tissue or whole-
organism level.  

• Physiology: Organ systems are not isolated but interact with each 
other through chemical and physical signals at the level of cells, 
tissues, and organs.  

• Physiology: An individual’s physiological traits affect its interactions 
with other organisms and with its physical environment.  

• Physiology: In the face of environmental changes, organisms may 
maintain homeostasis through control mechanisms that often use 
negative feedback; others have adaptations that allow them to 
acclimate to environmental variation.  

• Ecology/Evolutionary Biology: The size and structure of a population 
is dynamic. A species’ abundance and distribution are limited by 
available resources and by interactions between biotic and abiotic 
factors.  

• Ecology/Evolutionary Biology: Ecosystems are not isolated and static 
– they respond to change, both as a result of intrinsic changes to 
networks of species and as a result of extrinsic environmental drivers. 
Within an ecosystem, interactions among individuals form networks; 
changes in one node of a network can cause changes in other nodes – 
directly or indirectly.  

• Ecology/Evolutionary Biology: Biodiversity impacts many aspects of 
ecosystems.  
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Bloom’s Taxonomy Only apply the code for the highest level of Bloom’s Taxonomy that the item is 
capable of assessing.  
 
1 = Remember 

• To code for Remember, students could memorize the answer to the 
question and students are repeating nearly exactly what they have 
heard or seen in class materials (including lecture, textbook, 
laboratory, homework, clicker, etc.).  

2 = Understand/Comprehend 
• To code for Understand/Comprehend, students demonstrate a 

conceptual understanding by putting the answer in their own words, 
matching examples to concepts, representing a concept in a new form 
(words to graph, etc.), etc., or demonstrate that they understand a 
concept by putting it into a different form (new example, analogy, 
comparison, etc.) than they have seen in class.  

3 = Apply 
• To code for Apply, students are using data to calculate the value of a 

variable or are predicting the outcome of a trend of a fairly simple 
change to a scenario. 

4 = Analyze 
• To code for Analyze, students are asked to compare/contrast 

information, or have to interpret data (graph, table, figure, story 
problem, etc.) and come to a conclusion about the data mean (they 
may or may not be required to explain the conclusion) and/or have to 
decide what data are important to solve the problem (i.e., picking out 
relevant from irrelevant information).  

5 = Evaluate 
•  To code for Evaluate, students have to interpret data (graph, table, 

figure, story, problem, etc.) then determine whether the data are 
consistent with a given scenario or whether conclusions are consistent 
with the data, critique validity, quality, or experimental data/methods, 
or make a judgment and/or justifying their answer. 

6 = Create/Synthesize 
• To code for Create/Synthesize, students must be synthesizing 

information into a bigger picture (coherent whole) or creating 
something they haven’t seen before (a novel hypothesis, a novel 
model, etc.), building up a model or novel hypothesis from data, or 
putting information from several areas together to create a new 
pattern/structure/model/etc. 

Sources: NRC, 2012; Laverty et al., 2016; AAAS, 2011; Brownell et al., 2014; Semsar & Casagrand, 
2017 
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Supplemental Table 3.2: Percent agreement between two raters 

  

Code name Percent 
agreement 

Scientific Practice  98 
Scientific Practice: Asking Questions 100 
Scientific Practice: Developing and Using Models 98 
Scientific Practice: Planning Investigations 100 
Scientific Practice: Analyzing and Interpreting Data 96 
Scientific Practice: Using Mathematics and Computational Thinking 100 
Scientific Practice: Constructing Explanations and Engaging in Argument from Evidence 98 
Scientific Practice: Evaluating Information 100 
Crosscutting Concept  75 
Crosscutting Concept: Patterns 98 
Crosscutting Concept: Cause and Effect 92 
Crosscutting Concept: Scale 100 
Crosscutting Concept: Proportion 100 
Crosscutting Concept: Systems and System Models 85 
Crosscutting Concept: Energy and Matter 92 
Crosscutting Concept: Structure and Function 88 
Crosscutting Concept: Stability and Change 100 
Biology Core Idea  79 
Biology Core Idea: Evolution 98 
Biology Core Idea: Information Flow 90 
Biology Core Idea: Structure Function 88 
Biology Core Idea: Transformations of Energy and Matter 94 
Biology Core Idea: Systems 83 
Bloom’s Taxonomy Level 79 
Note: Percent agreement was calculated based on two rater’s coding of 48 randomly selected exam items. 
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Supplemental Table 3.3: Computations of Fisher’s z-tests concerning differences 
between correlations of weighted Bloom’s Taxonomy level and the percentage of 
exam points in each dimension 

 3D Scientific practices Crosscutting concepts Core ideas 
3D - 1.52 -3.31 -1.93 

Scientific 
practices 

1.52 - 4.83 3.45 

Crosscutting 
concepts 

-3.31 4.83 - -1.38 

Core ideas -1.93 3.45 -1.38 - 
Note: Red text indicates significant differences (p < 0.05) between correlation coefficients. 
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CHAPTER 4: IDENTIFYING FACTORS ASSOCIATED WITH INSTRUCTOR 
IMPLEMENTATION OF THREE-DIMENSIONAL ASSESSMENTS IN 
UNDERGRADUATE BIOLOGY COURSES 

 

ABSTRACT 

Recent national calls to reform undergraduate science education have centered on 

engaging students in scientific practices as a means of helping them develop deeper and 

more robust understandings of foundational disciplinary concepts. A three-dimensional 

framework encapsulates the goals of these national calls, and we used alignment of 

course exams to this framework as a way to measure the progress of reform efforts in 

undergraduate biology. As very few biology exams were three-dimensionally aligned, we 

hypothesized that there are likely to be barriers or challenges that biology instructors face 

in meeting the goals of national calls. We sought to better understand these challenges 

and we used a generalized linear mixed model to predict what factors may be associated 

with three-dimensional alignment of course exams. Our model indicated that instructors 

who used three-dimensional items on their exams were more likely to write the items 

using a constructed-response format and were more likely to use Bloom’s Taxonomy as a 

tool when designing their exams. We also found that professional development 

opportunities did not necessarily change the likelihood an instructor would have three-

dimensional assessments.  Based on these results, we suggest that institutions and 

departments consider supporting instructors with the time and resources needed to grade 

constructed-response assessments and that further refining of professional development 

offerings may be an important step in meeting the goals of national calls. 
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INTRODUCTION  

For the past several decades, the landscape of science education has been defined 

by national calls for rich and contextualized teaching that engages in students in scientific 

processes to help them better understand foundational disciplinary concepts (American 

Association for the Advancement of Science [AAAS], 1989, 1990, 1993, 2011; National 

Academies of Sciences, Engineering, and Medicine [NASEM], 2016b, 2021, 2022; 

National Commission on Excellence in Education [NCEE], 1983; National Research 

Council [NRC], 1996, 2003, 2007, 2012a). Over the years, the focus of these calls has 

centered around different aspects of science education, such as scientific literacy (AAAS, 

1989), inquiry (NRC, 1996, 2000), career preparation (NASEM, 2016b; NCEE, 1983; 

NRC, 2007), and integrating scientific concepts and competencies (AAAS, 2011; NRC, 

2012a). Within the K-12 education system, public school districts are often held 

accountable for achieving the goals outlined in these calls through standardized 

assessments, accountability-based policies, and federal intervention programs (Hardy & 

Campbell, 2020; U.S. Department of Education et al., 2019); however, there are few 

analogous assessments, policies, and programs in postsecondary education to measure 

progress in meeting these national calls (NASEM, 2016a). Thus, the extent to which 

national calls have percolated through the undergraduate biology education system 

remains an area of active research. Recent research in this area tends to examine the 

impact of national calls on discrete levels of the education system, focusing on national-

level discourse (Vasaly et al., 2014), department-level initiatives (Clark & Hsu, 2023; 

Peteroy-Kelly et al., 2019), and classroom-level implementation (Matz et al., 2018; 
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Uminski & Couch, in revision)3. Yet there still remain unanswered questions about how 

well these levels interact to support learning aligned with national priorities (NASEM, 

2016a) and what factors in this system may help or hinder the implementation of national 

calls (Matz et al., 2018). 

The undergraduate biology education system is composed of many levels, 

spanning from federal agencies, policymakers, and professional organizations to 

undergraduate institutions, science departments, and biology instructors. The conceptual 

model of coherence can help to shape our thinking about how national calls get translated 

across these levels of the education system. Coherence refers to a congruous alignment of 

the levels of the education system in ways that promote a common vision and reinforce 

norms for teaching and learning (Fuhrman, 1993; NRC, 2006, 2015; Webb, 1997). When 

biology education is coherent with the priorities outlined in national calls, learning 

outcomes that integrate scientific content and scientific practices are emphasized by 

institutions, supported by departments, and enacted within biology classrooms.  

Coherence can be difficult to achieve, however, as there are often conflicting 

priorities at different levels within education systems (Cherbow et al., 2020) which may 

be reflected in the resources and types of supports that are provided to instructors to 

improve their classroom practice (Bradforth et al., 2015). Such resources and supports 

may be in the forms of providing professional development opportunities (Smith et al., 

2014; Sunal et al., 2001), incorporating Learning Assistants or Teaching Assistants in 

high-enrollment courses (Biswas et al., 2022; Matz et al., 2018), and having faculty with 

discipline-based education research experience within the department (NRC, 2012b; 

 
3 The citation Uminski & Couch (in revision) refers to the text within Chapter 3, which was submitted as a 
manuscript and is currently under revision. 
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Wieman et al., 2010). The decisions they make about their classroom may be linked to 

the degree to which their institutions and departments provide such resources and 

supports that enhance their capacity to implement instruction in line with that envisioned 

in national calls (Austin, 2011; Stepans et al., 2001). Thus, when local practice does not 

reflect national calls, we can use the concept of coherence as a lens for identifying 

potential constraints or barriers in the education system to determine where instructors 

may need additional support.  

Previous studies help to inform our understanding of how national calls to 

improve science education have permeated into undergraduate biology (Bain et al., 2020; 

Clark & Hsu, 2023; Clemmons et al., 2022; Crowe et al., 2008; Durham et al., 2017, 

2018; Ebert-May et al., 2011; Matz et al., 2018; Momsen et al., 2010, 2013; Peteroy-

Kelly et al., 2019; Vasaly et al., 2014). These studies often rely on validated instruments 

and protocols that can be used as tools for examining the current state of biology 

departments and classrooms through the lens of pedagogical frameworks including 

Bloom’s Taxonomy (Anderson et al., 2001; Bloom et al., 1956), Scientific Teaching 

(Couch, Brown, et al., 2015; Handelsman et al., 2004, 2007), Vision and Change (AAAS, 

2011; Brownell et al., 2014; Clemmons et al., 2020), and Three-Dimensional Learning 

(NRC, 2012b; NGSS Lead States, 2013). While the frameworks in these studies may 

center on different facets of undergraduate biology education, each framework 

encapsulates the main goals of the national calls by emphasizing student engagement in 

science through evidence-based instructional practices. Across these studies, a common 

finding was that the current biology education system may not be consistently or 

effectively meeting the main goals of the national calls. From national-level discourse to 
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department-level learning objectives to classroom-level instruction and assessment, these 

studies indicate that there remain gaps between what is envisioned for undergraduate 

biology education and what is actually enacted.  

We aim to better understand this gap between envisioned and enacted educational 

goals through the lens of a three-dimensional framework (NRC, 2012a) which developed 

from a robust synthesis of educational research in response to national calls (e.g., NCEE, 

2008; NRC, 2007; Schmidt et al., 1997). This framework suggests that students develop 

deep understanding of science when their learning integrates scientific practices (e.g., 

skills and processes used by scientists) with both crosscutting concepts (i.e., 

interdisciplinary approaches to thinking about scientific phenomena) and disciplinary 

core ideas (i.e., foundational concepts central to each science discipline). While the three-

dimensional framework was intended for K-12 science education and is widely used in 

statewide science education standards (NASEM, 2021; NGSS Lead States, 2013), this 

framework is easily translated to the undergraduate level and is particularly relevant for 

gateway introductory-level courses that bridge many students’ high school science 

experiences (Bain et al., 2020; Cooper et al., 2015; Laverty et al., 2016; Matz et al., 2018; 

Radloff et al., 2022). 

The three-dimensional framework scaffolds science curriculum, instruction, and 

assessment to align with national priorities, but in this work here, we narrow the focus of 

our study to only assessment. Guided by principles of backward design (Wiggins & 

McTighe, 2005), we can use the content and skills on assessments to make inferences 

about the learning objectives that were included in curriculum and incorporated into 

instruction. Our study of assessments specifically looked at three-dimensional alignment 
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in course exams. Exams are types of summative assessments that tend to carry a 

significant weight in course grades and are a common assessment strategy in 

undergraduate science courses (Gibbons et al., 2022; Goubeaud, 2010; Hurtado et al., 

2012; Stanger-Hall, 2012; Wright et al., 2018). Since what is included on exams reflects 

what instructors intend for students to learn, the content and skills targeted on exams can 

be used to gauge the extent that these same content and skills have also been taught to 

students during instruction (Scouller, 1998; NRC, 2003). Hence, if an exam is three-

dimensional, we can assume that students have encountered the associated scientific 

practice, crosscutting concept, and core idea in their biology class.  

The approach of using assessments as a proxy for course alignment to the three-

dimensional framework has been used in several studies (Matz et al., 2018; Stowe et al., 

2020, 2021; Stowe & Cooper, 2017; Uminski & Couch, in revision). These studies used 

the Three-Dimensional Learning Assessment Protocol (Laverty et al., 2016) as a tool for 

characterizing the three-dimensional alignment of assessment items (i.e., exam 

questions). A common finding across these studies was that the majority of items in 

undergraduate science courses were not three-dimensionally aligned. Given the low 

frequency of three-dimensional assessment items, Matz et al. (2018) raised a question 

about which supports and barriers help or hinder the use of the three-dimensional 

framework in undergraduate science. To date, this question remains unanswered, and we 

still know very little about what factors affect how undergraduate science instructors 

implement the three-dimensional framework in their courses. 

Our work here seeks to answer the question posed by Matz et al. (2018) in the 

context of undergraduate biology courses and builds off of our past work looking at 



151 
 

three-dimensional alignment of biology exams. We previously found that only 5% of the 

items in our nationwide sample of undergraduate biology exams were three-

dimensional—a finding that was largely driven by the small number of scientific 

practices we observed (Uminski & Couch, in revision). Scientific practices occurred in 

less than 10% of biology exam items, as compared to crosscutting concepts and core 

ideas, which were present in approximately half and two-thirds of items, respectively. 

Based on the infrequency of three-dimensional items we observed, our past work 

suggests that lower-division biology instructors likely encounter barriers to implementing 

the goals of national calls in their courses. We infer that such barriers to three-

dimensional assessment were most likely related to the challenges of assessing scientific 

practices in an exam format, particularly when the exams mainly use a closed-ended or 

selected-response format like multiple choice. We also hypothesize that three-

dimensional alignment can be challenging because eliciting explicit evidence that 

students have engaged in a scientific practice can be a daunting task for instructors, 

especially when there is a lack of training, a lack of resources, or a lack of support for 

implementing three-dimensional assessments (Furtak, 2017; Laverty et al., 2016; 

National Research Council, 2014; Siebert & McIntosh, 2001). The purpose of our current 

research is to contextualize our previous findings about the low frequency of scientific 

practices in biology exams and to better understand what barriers may exist to three-

dimensional assessment in undergraduate science education. We aim to answer the 

following research question: What constraints and challenges are undergraduate biology 

instructors facing in implementing three-dimensional assessments in their courses and 

where may they need additional support? 
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METHODS 

Survey Development and Administration 

Our methods in this study expand upon the methods and data collection reported 

in Uminski & Couch (in revision). Briefly, we developed an online survey through 

Qualtrics intended to collect course artifacts (e.g., a course syllabus, a summative exam, 

the exam answer key) along with demographic and institutional information from 

instructors of lower-division undergraduate biology courses. We define lower-division 

courses as 100- and 200-level courses and their equivalents. Our final dataset contained 

responses from 111 lower-division biology instructors at 100 unique undergraduate 

institutions across the United States. Our sample includes broad representation from each 

undergraduate institution type as defined by Carnegie classifications (see Table 3.1) and 

from instructors across career stages (see Table 3.2). The majority of the courses in this 

study were introductory-level (80%), and the remaining courses spanned a variety of 

lower-division biology topics including anatomy and physiology, environmental science, 

and microbiology (see Table 3.3). 

In our survey, we asked instructors to self-report on a series of factors we 

anticipated might be related to the structure and design of their assessments. These 

factors ranged from instructional practices (e.g., Scientific Teaching methods) to 

department-level policies (e.g., providing support for professional development). Brief 

descriptions of these factors and how they were measured are outlined in Table 4.1. The 

survey items and additional descriptions of how these factors were measured are in 

Supplemental Material 4.1.  

This research was classified as exempt from human-subjects review by the 

University of Nebraska–Lincoln (protocol 21082). 
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Item Coding 

Our dataset contained 111 exams consisting of 4337 items (i.e., questions). We 

used the point values and numbering schemes specified by the instructor to determine the 

boundaries of individual items. In line with recommendations from (Laverty et al., 2016), 

we coded items that shared a common stem and/or used a sub-part numbering scheme 

(e.g., 2a, 2b, 2c) as a single clustered item. As exams use different grading point schemes 

across courses, we calculated a normalized item point value by dividing individual item 

point value by the total number of points on the exam and multiplying it by 100.  

We coded individual exam items for three-dimensional alignment using existing 

protocols and tools for characterizing assessments in undergraduate science courses. 

Briefly, we coded scientific practices and crosscutting concepts based on the Three-

Dimensional Learning Assessment Protocol (Laverty et al., 2016). We coded core ideas 

from the Vision and Change core concepts (AAAS, 2011), as delineated in the BioCore 

Guide (Brownell et al., 2014). We coded for Bloom’s Taxonomy levels using the 

Bloom’s Dichotomous Key (Semsar & Casagrand, 2017). We assigned Bloom’s levels 

ordinal numeric values between 1 and 6, where 1 = remember, 2 = understand, 3 = apply, 

4 = analyze, 5 = evaluate, and 6 = create, and only coded the highest Bloom’s value the 

item was capable of eliciting. There was 93% agreement between two raters across this 

set of codes and ≥ 75% agreement for each individual code. For full details on coding 

procedures and calculation of interrater reliability, please see Uminski & Couch (in 

revision).  
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Table 4.1: Factors we anticipated might be related to how undergraduate biology 
instructors design their course exams 

Factor Measurement 
Authorship Self-reported data about whether the instructor wrote original exam items, sourced 

the exam items from other materials, or had a combination of both original and 
sourced items. 

Course audience Self-reported data about whether the course was intended for students with STEM 
majors, non-STEM majors, or both STEM and non-STEM majors.  

Course lab Self-reported data about whether the course had an associated lab component.  
Course setting Self-reported data about whether the course was taught in-person, online, online 

(because of the COVID-19 pandemic but had previously been taught in-person), or 
hybrid (both in-person and online). 

Department 
DBER faculty 

Self-reported data about whether the instructor’s department contains any faculty 
who identify as discipline-based education researchers (including the instructor 
themselves, if applicable).  

Department 
professional 
development 

Self-reported data about whether the instructor’s department has allocated resources 
(e.g., time or money) for faculty professional development. 

Exam weight  The percentage of the final course grade that was attributed to summative exams 
(including midterm and final exams if applicable). Data was collected from course 
syllabus documents.  

Institution type Institutions were classified as Associate’s, Baccalaureate, Master’s or Doctoral 
based on the 2018 Carnegie classifications (Indiana University Center for 
Postsecondary Research, 2021).  

Instructor 
professional 
development 

Self-reported data about the extent to which the instructor completed professional 
development about assessment (reported in 4-hour time increments). 

Item point value The point value of individual exam items was collected from either the exam 
document, the associated answer key, or instructor-provided text description of their 
exam. Item point values were normalized across each instructor’s exam by dividing 
the point value of the item by the total number of points on the exam and 
multiplying by 100.  

Item response 
format 

Individual exam items were classified as selected-response or constructed-response 
based on whether students were provided a list of options to pick from or had to 
generate a response to the item. See Supplemental Table 4.1 for additional details.  

Scientific 
Teaching 

Self-reported data about the degree to which instructional practices aligned with 
Scientific Teaching principles related to active learning, data analysis and 
interpretation, and experimental design. Data was collected using subscales of the 
Measurement Instrument for Scientific Teaching (MIST; Durham et al., 2017).  

Teaching years Self-reported data about the number of years of teaching experience (reported in 5-
year time increments).  

Use of 3D-LAP Self-reported data about the degree to which instructors used the Three-Dimensional 
Learning Assessment Protocol (3D-LAP; Laverty et al., 2016) when writing their 
exams. Reported using a Likert scale ranging from Never to Almost Always.  

Use of Bloom’s 
Taxonomy 

Self-reported data about the degree to which instructors used Bloom’s Taxonomy 
(Bloom et al., 1956) when writing their exams. Reported using a Likert scale 
ranging from Never to Almost Always.  

Use of Vision 
and Change 

Self-reported data about the degree to which instructors used Vision and Change 
(AAAS, 2011) when writing their exams. Reported using a Likert scale ranging 
from Never to Almost Always. 
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Coding for Item Format 

Using the coding protocols described in Uminski & Couch (in revision), we coded 

13 different item formats that were classified into either the constructed-response or 

selected-response item type and there was 98% agreement between the two authors. We 

consider constructed-response items (i.e., open-ended) items those that required students 

to generate an original response and selected-response (i.e., closed-ended) items those 

that asked students to select from a predetermined or provided set of responses. 

Constructed-response item types included fill-in-the-blank, short answer, and essay, 

which were determined by the relative length of the expected student response (a single 

word or phrase, up to a paragraph, or multiple paragraphs, respectively). Constructed-

response items also included clusters (a series of constructed-response items that shared a 

common stimulus or prompt), math manipulation (involving an algorithmic calculation), 

modeling (test taker creates or modifies a model), and discipline-specific items 

(procedures, algorithms, or processes specific to biological sciences, such as 

complementary base pairing, completing Punnett squares). Selected-response items 

included multiple-choice, multiple select (a multiple-choice item in which more than one 

option is selected), true-false, multiple-true-false, matching, and reorder. Full descriptions 

of the item types coded are in Supplemental Table 4.1.  

Recoding for Partial Alignment to Scientific Practices  

The 3D-LAP coding protocol (Laverty et al., 2016) provides a set of 2-4 criteria 

statements for each scientific practice. Strictly following the protocol recommended by 

the 3D-LAP, scientific practices are coded in a binary manner based on whether or not 

the item meets all the criteria statements for a given scientific practice. There is value in 

using the binary approach to scientific practices, but we found that few instructors were 
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meeting the standards for full alignment to the practices. To better represent the variation 

underlying this binary coding, we recoded our data into consistent ordinal scale based on 

the number of scientific practice criteria statements to which each item aligned. This 

scale included the categories: not aligned, partially aligned, mostly aligned, or fully 

aligned to a scientific practice. Briefly, items that were not aligned did not meet any of 

the criteria statements for a scientific practice. Items that were partially aligned met 

surface-level criteria, such as including a real-world biological phenomenon described in 

text or presented as a visual model. Items that were mostly aligned met the majority of 

the scientific practice criteria but lacked a prompt for students to explicitly engage in the 

scientific practice by providing reasoning or justification of their thought processes. Items 

that were fully aligned met each criteria statement for the scientific practice. When items 

met criteria for multiple scientific practices, we coded the item at the highest level of 

alignment. For further details on the translation of the 3D-LAP protocol into the partial 

alignment coding scheme, see Supplemental Material 4.2.  

MIST Instrument 

Our survey contained an abbreviated version of the Measurement Instrument for 

Scientific Teaching (MIST; Durham et al., 2017, 2018), consisting of the items within the 

subcategories of Active Learning Strategies, Data Analysis and Interpretation, and 

Experimental Design and Communication. We applied the methods outlined in Durham 

et al. (2017) for normalizing the three MIST subcategories into a single MIST scale in 

which the responses from the MIST items were summed and divided by the number of 

contributing questions and multiplying by 100. The resulting MIST scores were on a 0-

100 scale with higher MIST scores indicate the instructor reported using a greater amount 

of Scientific Teaching practices in their classroom instruction.  
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Statistical Analysis 

We categorized three-dimensional alignment of items as a binary variable (i.e., 

items were either three-dimensional or not three-dimensional); thus, when three-

dimensional alignment was the response variable, we used a generalized linear mixed 

model (GLMM) with a logit link. As we had multiple items per instructor in the sample, 

we included instructor as a random effect in the GLMM. We used forward stepwise 

model selection procedures that based on Akaike Information Criterion (AIC) to 

determine the subset of variables that explain variability in three-dimensional alignment 

while avoiding overfitting. Variables were individually tested for retention in the model 

and were only retained if the new model had an AIC value more than two units lower 

than the prior model. We conducted statistical analysis with R statistical software [v 

4.2.3] (R Core Team, 2023) using tidyverse (Wickham et al., 2019) for data processing 

and figure generation and lme4 (Bates et al., 2015) for our GLMM.  

RESULTS  

Identifying Three-Dimensional Items 

Three-dimensional items were those that elicited evidence of student engagement 

with a scientific practice, crosscutting concept, and core idea. Three-dimensional items 

may have met the criteria for multiple scientific practices, crosscutting concepts, or core 

ideas within the same item. As there are few examples of three-dimensional exam items 

in the literature for undergraduate biology education, we provide a few examples of 

three-dimensional items in Figure 4.1. These examples are adapted from items in our 

sample and we pair each adaptation of a three-dimensional item with an adaptation of  

zero-dimensional item that was administered on the same exam. Zero-dimensional items 

did not meet the criteria for any of the scientific practices, crosscutting concepts,  
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Figure 4.1: Example three-dimensional and zero-dimensional items. Items (a) and (a) 
were adapted from one instructor, and items (c) and (d) were adapted from a second 
instructor in the sample.  The three-dimensional item (a) is aligned to the scientific 
practice “Analyzing and Interpreting Data,” the crosscutting concepts “Cause and Effect” 
and “Structure and Function” and the Core Idea “Structure Function.” The three-
dimensional item (c) is aligned to the scientific practice “Developing and Using Models,” 
the crosscutting concepts “Patterns” and “Transformations of Energy and Matter,” and 
the Core Idea “Energy Flow.” The zero-dimensional items (b) and (d) are not aligned 
with any scientific practices, crosscutting concepts, or core ideas. 

  

Which method would be most suitable
for observing cilia on a bacterium's
surface in great detail ?
A) Electron microscopy
B) Light microscopy
C) Scanning probe microscopy
D) Fluorescence microscopy
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Bacteria 1 Bacteria 2
A student compared the enzyme activity of two different
bacteria across a range of temperatures and created a
graph of their results (pictured at the left). Which
conclusion is supported by the student’s data?

A) The enzyme activity of both bacteria increased as the
temperature increased because higher temperatures
generally enhance enzymatic activity.

B) Bacteria 1 showed higher enzyme activity at all tested
temperatures because it possesses a more thermally
stable enzyme.

C) The enzyme activity of both bacteria decreased as the
temperature increased because excessive heat can
disrupt molecular structure of proteins leading to a loss
of enzyme activity.

D) The two bacteria exhibited similar enzyme activity
across all tested temperatures because the bacteria
species are likely adapted to similar environmental
conditions.

(b)

(a)
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or core ideas. We note a few features of these sets of items are reflective of other items in 

our sample. The zero-dimensional items tend to focus on singular pieces of discrete 

factual information that are important in biology but fall outside the purview of the core 

ideas. In contrast, the three-dimensional items ask students to draw upon a more robust 

understanding of biological phenomena and often incorporate small datasets, graphs, or 

models into the item stimulus. 

Identifying Challenges and Constraints in Implementing Three-Dimensional Items 

We used a generalized linear mixed-effects model with a logit link function to 

identify the most salient factors affecting the likelihood that an item fully aligns to the 

three-dimensional framework. After model selection, our model retained the following 

predictors: institution type, use of Bloom’s Taxonomy, item point value, and item 

response format. While it is important to consider the factors that are associated with 

three-dimensional items, it is also important to consider which predictors were excluded 

from the model. All factors related to course format (e.g., course setting, courses 

audience, courses labs) were excluded during model selection. We similarly saw little 

effect of instructor teaching methods and experience, and our best-fit model excluded 

factors such as years of teaching experience, amount of professional development related 

to assessment, instructional practices related to Scientific Teaching, and instructor use of 

educational frameworks and tools such as Vision and Change and the 3D-LAP. Our best-

fit model also excluded factors at the department level, and we saw no effect of 

department support for professional development or departments that contain faculty with 

discipline-based education research expertise on the likelihood of three-dimensional 

alignment. 
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Our model indicated that odds of an item being three-dimensional increased when 

the item had a higher point value, when the item used a constructed-response format, or 

when the item was written by an instructor who more frequently used Bloom’s 

Taxonomy (Table 4.2). When holding all other factors constant, our model predicted that 

item response format would have the greatest effect on the likelihood of an item being 

three-dimensional. Constructed-response items were 11.75 times more likely to be three-

dimensional compared to selected-response items. Our model also indicated that, when 

controlling for other factors, each one percent increase in the normalized item point value  

Table 4.2: Generalized linear mixed modela with binomial logit link predicting 
whether an item was likely to be three-dimensionally aligned 

Term Estimate Standard 
Error 

Odds 
Ratio 

Confidence 
Interval 

Item point value 0.05 0.02 1.06 [1.01, 1.10] 
Item response format: 
Constructed response 

2.46 0.23 11.75 [7.55, 18.30] 

Institution type: Baccalaureate -0.80 0.51 0.45 [0.17, 1.21] 
Institution type: Master’s -0.22 0.53 0.80 [0.28, 2.29] 
Institution type: Doctoral 0.68 0.47 1.97 [0.78, 4.95] 
Use of Bloom’s Taxonomy 0.38 0.17 1.46 [1.05, 2.03] 
R2 = 0.496     
aModel: Three-dimensional alignment ~  item point value + item response format + institution type + use 
of Bloom’s Taxonomy + (1|instructor), family = binomial(link = logit) 

 

increased the likelihood of an item being three-dimensional by 6%. In addition to how 

instructors wrote and assigned point values to individual items, we found an effect from 

instructors who reported using Bloom’s Taxonomy more frequently when they were 

constructing their exam. We used a five-point Likert scale to measure the frequency of 

using Bloom’s Taxonomy and instructors’ items were 1.46 times more likely to be three 

dimensional for each additional one-unit increase they reported on this scale. Institution 

type was retained in the best-fit model.  
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Identifying Generalizable Characteristics of Three-Dimensional Items 

We used the factors identified in our best-fit model as a lens for examining the 

generalizable characteristics of three-dimensional items; thus, we narrowed our analysis 

to the response format, point value, and Bloom’s Taxonomy levels of the items in our 

sample. We found that over half of three-dimensional items (55%, n = 130) used a 

constructed-response format compared to only 10% (n = 436) that were not three-

dimensional (Figure 4.2). Among the three-dimensional items, short answer and clusters 

were the most commonly used constructed-response item type (Table 4.3). Of the three-

dimensional items, nearly all of the selected response items were multiple choice, but this 

was a trend common to both three-dimensional and non-three-dimensional items.  

 

Figure 4.2: Proportion of three-dimensional and non-three-dimensional items using 
selected-response and constructed-response item types. Out of the entire sample of 
items (n = 4337), there were 236 items that were three-dimensional and 4101 items that 
were not three-dimensional. 
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Table 4.3: Item types of three-dimensional and non-three-dimensional items 
Item typea Non-three-

dimensional items 
Percentb Three-dimensional 

items 
Percentb 

Multiple choice 3145 72.52 95 2.19 
Matching 240 5.53 10 0.23 
Short answer 216 4.98 71 1.64 
True-False 173 3.99 0 0.00 
Fill-in-the-blank 100 2.31 1 0.02 
Multiple select 64 1.48 1 0.02 
Cluster 41 0.95 35 0.81 
Multiple-True-False 30 0.69 0 0.00 
Model 29 0.67 6 0.14 
Essay 20 0.46 16 0.37 
Discipline-specific 15 0.35 1 0.02 
Math manipulation 15 0.35 0 0.00 
Reorder 13 0.30 0 0.00 
aMultiple choice, matching, True-False, Multiple True-False, and reorder items use a selected-response 
format. Short answer, fill-in-the-blank, cluster, model, essay, discipline-specific, and math manipulation 
items use a constructed-response format. See Supplemental Table 4.1 for additional details about the 
classification of these item types.  
bPercentage was calculated based on the total item pool (n = 4337 items) 

 

Multiple choice was the most common item type, representing almost three-quarters of 

the items within our entire sample. There were no three-dimensional items that used the 

selected-response true-false, multiple-true-false, or reorder item types. There were also 

no three-dimensional items that used the constructed-response math manipulation item 

type, which is characterized by students writing out their mathematical computations. 

Across our sample, three-dimensional items were worth more points on exams 

(Welch ANOVA, F(1, 238.2) = 65.7, p < .001). On average, three-dimensional items 

were assigned 5.70 ± 0.41 SE points compared to 2.35 ± 0.034 points for non-three-

dimensional items. We found that the higher item point value of three-dimensional items 

was associated with the response format of the item (Figure 4.3) and that there was a 

significant interaction between response format and three-dimensional alignment 

(Supplemental Table 4.2). On average, constructed-response items tended to be 
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Figure 4.3: Normalized item point value by item response format and three-
dimensional alignment. Boxes represent the interquartile range and whiskers represent 
the fifth and ninety-fifth percentile. Dots represent the mean value. Letters indicate a 
statistically significant difference (p < 0.05) between groups. 
 

 

 

 

Figure 4.4: Bloom’s Taxonomy level by item response format and three-dimensional 
alignment. Smaller points represent individual exam items and are jittered to better 
illustrate overlapping points. Larger black dots represent the mean value for each group.  
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worth more points than selected-response items (M = 5.93 ± 0.25 SE; M = 2.03 ± 0.017 

SE, respectively), and the average point value tended to be even higher when we examine 

the subset of constructed-response items that are three-dimensional (M = 8.56 ± 0.64 SE). 

  Our best-fit model suggested that instructors who use Bloom’s Taxonomy more 

frequently had a greater likelihood of having three-dimensional items, so we investigated 

the relationship between the Bloom’s Taxonomy levels and the three-dimensional 

alignment of items. We found that the average Bloom’s level of three-dimensional items 

(M = 3.80 ± 0.073 SE) was greater than that of items that are not three-dimensional (M = 

1.54 ± 0.013 SE) and we observed an interacting effect with response format (Figure 4.4; 

Supplemental Table 4.3). Constructed-response items tended to have a higher average 

Bloom’s level than selected response items (M = 2.42 ± 0.062 SE; M = 1.55 ± 0.014 SE, 

respectively) and when accounting for variation between instructors, three-dimensional 

constructed response items had a higher average Bloom’s level than three-dimensional 

selected-response items, although this difference is small and marginally significant (p = 

0.044). 

Reevaluating Alignment to Scientific Practices 

We previously found that the low three-dimensional alignment was driven by the 

small number of items fully meeting the 3D-LAP criteria for scientific practices (Uminski 

& Couch, in revision). To fully meet the 3D-LAP criteria for scientific practices, the item 

had to explicitly ask students to indicate their reasoning or to justify their thinking about 

a scientific phenomenon. We hypothesized that the low number of three-dimensional 

items could be in-part attributed to the stringent coding scheme of the 3D-LAP for 

scientific practices rather than a lack of scientific practices being incorporated into 

undergraduate biology education. To test this hypothesis, we analyzed our data to 
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illustrate degrees of alignment to the 3D-LAP scientific practice criteria statements 

(Figure 4.5). We found that even when accounting for partial alignment, most items 

(61%, n = 2666) still did not meet any of the criteria for scientific practices (Figure 4.5a). 

Approximately 19% of items were partially aligned to a scientific practice because they 

met surface-level criteria by including a biological phenomenon. About 12% of items 

were mostly aligned to a scientific practice but failed to meet full alignment because they 

did not ask students to explicitly engage in the practice using reasoning or justification. 

Together, these partially- and mostly-aligned items suggest that about a third of the items 

in our sample have the potential to be transformed into three-dimensional items.  

 

Figure 4.5: Partial alignment of biology exam items to 3D-LAP criteria for scientific 
practices. a) The highest level of alignment to scientific practices out of the entire item 
pool (n = 4337). One or more scientific practices may have been present within the item, 
but only the highest level of alignment to any of the scientific practices was recorded. b) 
Alignment of items to each scientific practice. Percent of items is calculated out of the 
entire item pool. Items may have aligned to different scientific practices and may be 
represented in multiple columns.  
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Looking at this subset of items that were aligned to scientific practices criteria 

statements, we found that the occurrence of partial alignment was not evenly distributed 

across the scientific practices (Figure 4.5b). “Constructing Explanations and Engaging in 

Argument” and “Developing and Using Models” were represented most frequently, likely 

reflecting the low bar for partial alignment which could be reached by including a real-

world phenomenon in text or in model, respectively. Our partial alignment coding also 

allows us to see that instructors were incorporating elements of the practices “Using 

Mathematics and Computational Thinking” and “Planning Investigations,” but were 

missing the criteria for assessing reasoning that is required for full alignment to these 

scientific practices. Interestingly, we did not see many items partially aligned to the 

practice “Analyzing and Interpreting Data.” When instructors had exam items that  

involved data analysis, they were often fully meeting the associated scientific practice. 

There were no instances of partial alignment for the practice “Asking Questions,” but this 

Figure 4.6: Alignment of each instructor’s exam to scientific practices. Each 
instructor is represented as a bar in this graph. The instructors are sorted by increasing 
percentage of exam points that were mostly aligned to scientific practices. 
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is an artifact of the coding scheme for this scientific practice which only contained two 

criteria statements (as compared to the other scientific practices which all had either three 

or four criteria statements).  

When we look at the characteristics of instructors’ exams as a whole, it becomes 

clear that the majority of instructors had items that incorporated important components of 

scientific practices (Figure 4.6). Excluding the four instructors who had all of their exam 

points fully aligned to scientific practices, 98% of instructors (n = 105) had at least one 

item that was partially or mostly aligned to a scientific practice and had the potential to 

be transformed into a three-dimensional item. Within this set of instructors that had room 

to incorporate more fully-aligned scientific practices into their exams, there was on 

average about 15% of points mostly aligned and 18% of points partially aligned to a 

scientific practice, but as Figure 4.6 indicates, there is a large amount of variation that 

underlies these averages. The percentages of instructor’s exam points that were mostly 

aligned and partially aligned to scientific practices ranged from 0–83% and 0–48%, 

respectively.  

DISCUSSION 

Undergraduate biology education is a complex and interconnected system that 

spans from instructors to their institutions to the national landscape of STEM education 

and we sought to examine which factors in this system might help or hinder the use of 

assessments that reflect the educational priorities outlined in national calls. Using the 

conceptual model of coherence, we anticipated that national-level and institutional-level 

factors may provide support or place constraints on biology instructors in ways that affect 

their implementation of assessments that incorporate scientific practices, crosscutting 

concepts, and core ideas. While our work sought to identify these supports and 
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constraints, we found very few significant relationships between these national- and 

institutional-level factors in terms of how they are related to three-dimensional alignment 

of instructor’s exams. Thus, we conclude that these factors in the undergraduate biology 

education system are not necessarily hindering three-dimensional assessment, but they 

are not necessarily helping instructors implement the three-dimensional framework in 

their courses either. We found that challenges and constraints of three-dimensional 

assessment may be occurring mostly at the instructor level, with the most notable barriers 

likely being the time and resources required to grade constructed-response items that 

assess higher-order cognitive skills. Our research highlights the need for future work to 

better understand how instructors are meeting these national-level goals in their courses 

and what additional resources may be important for instructors to fully align their 

assessments, instruction, and curriculum to the three-dimensional framework.  

Not Necessarily Barriers to Three-Dimensional Assessment at the Institutional and 
Department Levels 

We sought to answer the question posed by Matz et al. (2018) to determine the 

supports and barriers to adopting the three-dimensional framework in undergraduate 

science courses. We narrowed our analysis to just the supports and barriers to assessment, 

with the assumption that the supports and barriers to three-dimensional assessment would 

reflect supports and barriers to integrating the three-dimensional framework throughout 

course instruction and curriculum. Based on the results from our generalized linear mixed 

model (Table 4.2), we did not necessarily find any specific barriers at the institutional and 

department levels. While our model did not indicate barriers to three-dimensional 

assessment, we did not necessarily find institutional- or department-level supports either.  

Our best fit model excluded all department-level variables as they did not provide any 
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additional explanatory power. These excluded variables did not significantly increase or 

decrease the likelihood of three-dimensional alignment, and for categorical variables, 

such as course setting, this may signal a degree of equivalence across categories. Our 

model retained institution type as a predictor, but overlapping confidence intervals 

between the institutional categories indicate no statistical difference between Associate’s, 

Baccalaureate, Master’s, and Doctoral institutions. Hence, we can interpret our results to 

mean that three-dimensional assessments can be used in biology courses with small class 

sizes, such as those typical of Associate’s and Baccalaureate colleges, as well as in high-

enrollment courses, like those commonly seen in Master’s and Doctoral universities. This 

finding supports previous work which indicates that three-dimensional assessments can 

be effectively administered even in high-enrollment courses (Matz et al., 2018; Stowe et 

al., 2021). Similarly, the lack of a significant difference between course settings suggests 

that three-dimensional assessments may be used with a degree of equivalency in courses 

with in-person, online, and hybrid instructional modalities, which corroborates past work 

suggesting that three-dimensional learning and assessment can be implemented online 

without adding an appreciable burden on instructors (Stowe et al., 2020). Our finding that 

there were not necessarily barriers to three-dimensional assessment is encouraging and 

emphasizes the wide applicability of this framework across diverse educational contexts 

in undergraduate biology education.  

Identifying Where Institutions and Departments May Provide Additional Support 

Another interpretation of the variables that were excluded from our best-fit model 

is that these may be areas where instructors could benefit from additional targeted 

support to help facilitate three-dimensional alignment of their assessments. We can 

extrapolate that professional development is one such area in need of support. Our 
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finding that neither department-level professional development opportunities nor the 

amount of instructor-level professional development increased the likelihood of three-

dimensional items indicates that the presence of professional development alone may not 

be enough to initiate and sustain adoption of the three-dimensional framework in 

undergraduate biology courses. This finding may be explained by previous qualitative 

research conducted in high school biology classrooms. Heredia (2020) found that 

incoherence between district expectations for student learning, the school’s goals for 

classroom practice, and the information presented in professional development sessions 

created a source of uncertainty and ambiguity among biology teachers that hampered the 

degree to which they leveraged ideas and resources from professional development in 

their teaching. Biology teachers were less likely to use the content from professional 

development if they were unsure if that content was aligned to the metrics that would be 

rewarded in their teacher evaluation rubrics (Heredia, 2020). Such findings from the K-12 

system are likely to generalize to the levels of the undergraduate biology educations 

system, which often operates with similar expectations and evaluations of undergraduate 

teaching. Although professional development is crucial for three-dimensional adoption 

(NRC, 2014), our research may provide additional evidence that just being exposed to 

professional development alone may not be sufficient to create long-lasting and 

sustainable changes in undergraduate biology education (Derting et al., 2016). 

For professional development to be effective and sustained, we recommend that 

the content be coherent with clear department expectations about the educational goals 

(Sunal et al., 2001), and we encourage departments to align their expectations with the 

educational priorities outlined in national calls. Institutions and departments interested in 
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increasing in meeting the goals of national calls may consider gearing their professional 

development offerings toward using frameworks like Vision and Change and using 

pedagogical tools such as the 3D-LAP. These frameworks and tools may be especially 

important areas for professional development as our best-fit model indicated that 

instructors who reported more frequently using Vision and Change or the 3D-LAP when 

writing their exams were no more likely to have three-dimensional items. Instructors may 

be familiar with these frameworks and tools but may face barriers to using them in ways 

that are fully aligned with the goals of the national calls. Interestingly, we did not find the 

same relationship with Bloom’s Taxonomy, and instructors who reported using Bloom’s 

more frequently were more likely to have three-dimensional assessments. Based on this 

result, we hypothesize that professional development related to assessing higher-order 

cognitive skills of Bloom’s Taxonomy may be effective as a means of achieving goals 

related to three-dimensional alignment, but this is an area that will need further study. As 

professional development is an important agent of change in department teaching culture, 

we recommend that departments align their professional development with the metrics 

used for teaching evaluation, as such a congruous alignment between educational goals 

may prevent uncertainty and ambiguity about evaluation that hampers change. Change 

around teaching culture is a slow process, so the long-term effectiveness of professional 

development in terms of its ability to increase three-dimensional alignment in 

undergraduate courses is an area where future research is necessary. 

Another support that institutions and departments can provide to instructors is 

facilitating purposeful and meaningful interactions with DBER faculty. Our best-fit 

model excluded the variable which indicated if there were DBER faculty within the 
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department, but we do not intend this finding to minimize the impact of DBER within the 

field of biology education. Research demonstrates the positive role of DBER faculty in 

creating positive cultures around teaching (NRC, 2012b). Our finding may largely reflect 

the wide array of sub-disciplines within DBER that have wide reach beyond the realm of 

three-dimensional learning. DBER faculty represent a valuable resource within 

departments and we encourage institutions and departments to consider ways to facilitate 

conversations and bridge connections with DBER faculty as such conversations and 

connections are important avenues for promoting evidence-based teaching practices 

(Lane et al., 2022).  

Teaching Practices May Not Reflect Assessment Practices 

We asked instructors to self-report on their instructional practices that aligned 

with the principles of Scientific Teaching (Couch, Brown, et al., 2015; Handelsman et al., 

2004, 2007) using an abbreviated version of the Measurement Instrument for Scientific 

Teaching (MIST; Durham et al., 2017) which included the subcategories Active Learning 

Strategies, Data Analysis and Interpretation, and Experimental Design and 

Communication. These three subcategories reflect many of the components of the three-

dimensional framework. After model selection, MIST score was excluded from the best-

fit model, suggesting that Scientific Teaching methods do not provide any additional 

significant explanatory power in predicting the likelihood of using three-dimensional 

assessments. This null result is surprising, as it indicates a potential misalignment 

between teaching and assessment practices. Instructors who had higher MIST scores and 

reported teaching content relevant to scientific practices did not necessarily have a greater 

number of scientific practices embedded in three-dimensional items on their exams.  
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We propose that this misalignment between teaching and assessment can arise 

within more traditional courses where science content and science practices are often 

taught and assessed separately (Pellegrino, 2013; Pruitt, 2014). For example, in 

traditional courses, scientific practices are often introduced to students as rote procedures, 

such as in the ritualized and singular “scientific method” (NRC, 2012a). Instructors who 

themselves were taught using this traditional pedagogical method may feel unprepared 

for three-dimensional teaching in which scientific practices and scientific content are 

taught in conjunction (Krajcik, 2015). Additional research suggests that many instructors 

across STEM courses still largely rely on instructor-centered teaching practice (Stains et 

al., 2018), and such teaching styles do not facilitate active student engagement in 

scientific practices (Bain et al., 2020). Misalignment at the instructional level can also 

occur if there is confusion or misinterpretation of how students are engaging in learning. 

Instructors can have best intentions to create highly active classrooms with frequent 

formative assessments yet may only facilitate student learning of discrete pieces of 

factual information (Cooper et al., 2015). This potential area of misalignment between 

teaching and assessment of the three-dimensional framework remains an area where 

additional research is necessary. The Three-Dimensional Learning Observation Protocol 

(Bain et al., 2020) may be a useful tool for this type of research, as it does not rely on 

self-reported data and allows a more direct comparison of three-dimensional assessments 

to observable three-dimensional teaching practices.  

Instructors May Need More Time and Resources For Grading Three-Dimensional 
Exams 

There are constraints on the amount of time that instructors have for writing and 

grading exams, which may affect their choices in what types of exams they are 
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administering in their courses (Wright et al., 2018). As constructed-response items 

usually need to be graded manually by the instructor or by a paid assistant, instructors 

may choose not to use these items because of the associated time and/or resources needed 

to grade them. We found that the majority of three-dimensional items in our sample used 

a constructed-response format, from which we can extrapolate that three-dimensional 

assessments are more time- and resource-intensive to use in a classroom context. There 

are efforts to use machine learning to grade student responses to constructed-response 

items, but this approach requires a large sample of student responses that is usually 

beyond the scope of what can be collected in a single classroom setting (Moharreri et al., 

2014; Nehm et al., 2012). While most three-dimensional items were constructed-

response, we want to emphasize that three-dimensional items can certainly be multiple-

choice or use other types of selected-response formats (Laverty et al., 2016; Underwood 

et al., 2018). We encourage instructors who write three-dimensional items in the selected 

response format to carefully consider how students are engaging with the scientific 

practices, particularly when the practice calls for reasoning about a phenomenon (Figure 

4.5). Institutions and departments that want to support their instructors in incorporating 

three-dimensional assessments into their courses may need to provide instructors with 

time (e.g., teaching releases or decreased service apportionment), and with resources for 

grading (e.g., assigning teaching or learning assistants to the course). We issue our 

recommendations here, but we recognize that these recommendations involve financial 

considerations for institutions and departments that may not be feasible under all budgets.  

Scientific Practices as a Target for Three-Dimensional Alignment 

To better understand potential barriers to three-dimensional alignment in 

undergraduate biology courses, we focused on the dimension of the framework that was 
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the least represented in our sample—the scientific practices. One of the reasons we 

hypothesized that there were so few scientific practices was because of the necessary 

stringency of the coding scheme for scientific practices in the 3D-LAP which includes 

the important criteria of including explicit prompts for student reasoning. Such prompts 

encourage students to justify and explain their logic about scientific phenomena and 

provide evidence that they have appropriately engaged in a scientific practice (Cooper & 

Stowe, 2018; Laverty et al., 2016, 2017; Stowe & Cooper, 2017). When these prompts 

are missing and the assessment does not explicitly ask students to provide reasoning, it is 

possible for students to respond without actually engaging in a scientific practice. In these 

cases, instructors run the risk of making assumptions about student thinking processes 

that do not mirror the actual processes students engaged with to answer the item (Stowe 

& Cooper, 2017). The 3D-LAP avoids the risk of making such assumptions by requiring 

items to ask for explicit evidence that students engaged in the scientific practice. While 

we agree with the authors of the 3D-LAP and concur that assessment items targeting 

scientific practices should elicit explicit evidence that students are using appropriate 

reasoning about scientific phenomena (Cooper & Stowe, 2018; Laverty et al., 2016, 

2017; Stowe & Cooper, 2017), our results suggest that this approach of coding 

assessment items may have systematically underestimated instructors’ attempts to 

incorporate scientific practices into their assessments. It is possible that instructors may 

be attempting to include three-dimensional items in their assessments, but these attempts 

may not have been detected with the strict interpretation of the coding protocol. Overall, 

very few biology exam items explicitly met all the 3D-LAP criteria for engaging in 

scientific practices. However, when we account for items that met some, but not all of the 
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criteria, for scientific practices, we see that almost all instructors had some of the basic 

components of scientific practices in their exams (Figure 4.6).  

In our sample, there were a notable number of items that met the majority of the 

scientific practice criteria but were just missing the key final component of student 

reasoning (Figure 4.5). This finding is not unique to biology, and previous work in 

chemistry has suggested that the reasoning component is often missing from typical 

assessment tasks (Laverty et al., 2017; Reed et al., 2017). In our sample, instructors were 

most commonly missing reasoning from the practices “Developing and Using Models,” 

“Using Mathematics and Computational Thinking,” “Constructing Explanations and 

Engaging in Argument,” and “Planning Investigations.” We highlight such items where 

instructors were mostly aligned to scientific practices as starting places to build upon 

existing items and make small modifications that would bring the item into full alignment 

with the 3D-LAP criteria for scientific practices. Our sample also contained many items 

that were partially aligned to the scientific practices “Developing and Using Models” and 

“Constructing Explanations and Engaging in Argument.” These partially aligned items 

met surface-level criteria for the practices, such as introducing a visual or verbal 

representation of a biological phenomenon, but these items will need major revisions to 

engage students in a scientific practice. We encourage instructors to carefully review the 

criteria of the 3D-LAP and to consult publications on adapting assessment tasks to the 

three-dimensional framework (Laverty et al., 2016; Underwood et al., 2018). We present 

our findings here not as a critique of the 3D-LAP, but as a way to showcase the work of 

biology instructors that may have been masked by a stringent coding scheme and to 
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highlight the areas where instructors can build upon their existing assessments to fully 

align with the intent of the three-dimensional framework. 

Limitations 

We acknowledge several limitations of our study that should be considered in the 

interpretation of our findings. Our work took a broad quantitative approach that may not 

have captured individual perspectives about challenges and constraints of three-

dimensional assessment. We suggest future qualitative research to more deeply explore 

how instructors are perceiving and implementing the three-dimensional framework 

within their courses.  

We focused on exams as a summative assessment, as this is a common assessment 

strategy among undergraduate science courses (Gibbons et al., 2022; Goubeaud, 2010; 

Hurtado et al., 2012; Stanger-Hall, 2012; Wright et al., 2016, 2018), but there are other 

types of summative assessments, such as projects, presentations, essays, and reports, that 

instructors may be using to assess scientific practices. Instructors may also be engaging 

students in scientific practices during formative assessments, such as in-class activities 

and homework assignments. Given the anticipated variability in these other types of 

summative and formative assessments, we limited the scope of our study to exams, which 

tend to have a more similar format and structure between instructors. 

We present the levels of Bloom’s Taxonomy as ordinal in our analysis, which is 

in line with previous research and interpretations of Bloom’s Taxonomy in biology 

education research (Freeman et al., 2011; Momsen et al., 2010, 2013; Zheng et al., 2008). 

However, we acknowledge that there are different interpretations of Bloom’s Taxonomy 

within the field of biology education (Arneson & Offerdahl, 2018; Crowe et al., 2008; 

Lemons & Lemons, 2013; Semsar & Casagrand, 2017; Thompson & O’Loughlin, 2015), 
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that Bloom’s Taxonomy does not capture the full spectrum of knowledge types 

(Blumberg, 2009; Larsen et al., 2022), and there is not a consensus on the ordinal nature 

of the levels (Anderson et al., 2001; Furst, 1981; Lo et al., 2016; Lord & Baviskar, 2007). 

We focused this research on lower-division courses, which face a unique set of 

challenges, including high enrollment and the pressure to cover a wide range of topics, 

that may be barriers to evidence-based instructional strategies, such as those aligned with 

the three-dimensional framework  (Ebert-May et al., 2011; Henderson & Dancy, 2007; 

Wright et al., 2018). It is possible that our findings are not generalizable to upper-division 

courses which may not feel these challenges to the same extent.  

Our work is by no means meant to be prescriptive of three-dimensional items or 

how they are used in undergraduate biology assessments. Instead, our work is meant to 

characterize instructor exams using broad strokes to form an abstract portrait of the 

current landscape of three-dimensional assessment in biology. While we found that three-

dimensional assessments tended to use constructed response formats, be worth more 

points, and assess higher levels of Bloom’s Taxonomy, a large amount of variation 

underlies these findings, and we provide these statistics as a way to help instructors 

conceptualize how other instructors have approached three-dimensional assessments in 

their courses. 

CONCLUSION 

For decades, national-level reports (e.g., AAAS, 1989, 2011; NASEM, 2021, 

2022; NRC, 2003) have called for contextualized science education that engages students 

in scientific practices. The three-dimensional framework (NRC, 2012a) encapsulates 

many of the principles of these national calls and provides a lens for studying how 

national priorities are integrated across levels of the undergraduate biology education 
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system. Institutions and departments can work towards meeting the three-dimensional 

alignment by setting clear and coherent expectations for undergraduate education aligned 

with national priorities and by providing supports for instructors in ways that enable and 

encourage them to exceed those expectations. We suggest that institutions and 

departments consider offering professional development on teaching and assessment that 

is aligned to both national priorities and institutional expectations. This professional 

development may be more impactful when instructors have the time, resources, and 

support to enact three-dimensional curriculum, instruction, and assessments in their 

courses. Institutions and departments may want to consider ways to structure courses and 

teaching appointments in ways that provide the time and resources to accommodate 

three-dimensional assessments which may take longer to grade compared to multiple-

choice assessments that mainly test recall of facts. Our work highlights a need for a 

broader qualitative approach to better understand the nuances of how instructors are 

perceiving the existing support structures for three-dimensional education provided by 

institutions and departments and future research is needed to determine what additional 

supports instructors may need to facilitate instruction aligned with national priorities. 
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SUPPLEMENTAL MATERIAL FOR CHAPTER 4 
 

Supplemental Material 4.1: Additional details on how factors were collected, 
measured, and analyzed.  
This supplemental material provides the survey items and additional information 

regarding how the survey data was processed and analyzed. Factors are listed 

alphabetically here, which may not reflect the order that instructors saw the items as they 

were presented in the original survey. Parenthetical numbers at the end of options were 

not seen by instructors and indicate how survey item responses were recorded. Instructor 

responses were retained as-is unless additional data processing is noted.  

4.1.1 Authorship 
Survey item: 

Did you write the majority of exam questions yourself? 

o Yes, all by myself  (1)  

o Yes, by myself and with colleagues teaching the same course (2)  

o No, exam questions were modified from other materials (3)  

o No, exam questions were straight from other materials (4)  

o Other (5) ________________________________________________ 
 

Additional data processing: Instructor responses were recoded into three categories 

representing original authorship (options 1 and 2) and authorship that drew from other 

materials (options 3 and 4) and mixed authorship indicating a combination of both 

original items and items from other sources. Fifteen instructors indicated option 5 (Other) 

and provided a text description of their authorship process, which were reviewed and 

recoded as “mixed authorship” or “original authorship.”  
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4.1.2 Course audience 
Survey item:  

This course was intended for: 

o STEM majors (1)  

o Non-STEM majors (2)  

o Both STEM majors and non-STEM majors (3)  

o Other (4) ________________________________________________ 
 

Additional data processing: Instructor responses to “other” included courses intended for 

pre-health science students, which were recoded to “Both STEM majors and non-STEM 

majors.”  

4.1.3 Course lab 
Survey item: 
 
Was there a required laboratory component to this course? 

o Yes (1)  

o No (2)  
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4.1.4 Course setting  
Survey item:  

At the time the exam was administered, this course was taught: 

o In-person only (1)  

o Online only, but previous semesters of this course were in-person (2)  

o Online only and previous semesters of this course were taught online (3)  

o Hybrid (i.e., contained both in-person and online components) (4)  

o Other (5) ________________________________________________ 
 

Additional data processing: Six instructors selected option 5 and based on their text 
clarifications, these responses were re-assigned to options 1, 3, and 4.  

 

4.1.5 Department DBER faculty 
Survey item:  

Including yourself, does the department contain any faculty who identify as discipline-
based education researchers (i.e., DBER faculty)? 

o Yes (1)  

o No (2)  

o Unsure (3)  

  



192 
 

4.1.6 Department professional development  

Survey item:  

Has the department allocated resources (e.g., time or money) for faculty professional 
development? 

o Yes (1)  

o No (2)  

o Unsure (3) 
 

4.1.7 Instructor professional development 
Survey item:  

Approximately how many hours of professional development sessions (e.g., conference 
presentations, courses, workshops, or other forms of training) on the topic of 
assessments have you attended in the past 10 years? 

o Zero hours (i.e., no professional development specific to assessments) (1)  

o 1-3 hours (e.g., attending a conference presentation on assessment) (2)  

o 4-8 hours (e.g., participating in a half- or full-day assessment-focused workshop) 
(3)  

o 8-12 hours (i.e., several conference presentations, workshops, or trainings) (4)  

o Greater than 12 hours (i.e., many conference presentations, workshops, or 
trainings) (5)  

 

Additional data processing: The options were recoded to an ordinal scale.  

Note: The bolding in this item was also in the original item presented to instructors.  
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4.1.8 Teaching years 

Survey item:  

How many years of teaching experience do you have as an instructor of record?  

o 0-1 yea  (1)  

o 2-5 years (2)  

o 6-10 years (3)  

o 11-15 years (4)  

o 16-20 years (5)  

o 21-25 years (6)  

o Greater than 25 years (7)  
 

Additional data processing: The options were recoded to an ordinal scale.  

 

4.1.9 Uses 3D-LAP 
Survey item:  

To what degree do you refer to, consider, or use the following when you are constructing 
assessments?  

 Never (1) Rarely (2) Sometimes 
(3) Often (4) Almost 

Always (5) 

Three-
Dimensional 

Learning 
Assessment 

Protocol 
(3D-LAP)  

o  o  o  o  o  

 

Additional data processing: The options were recoded to an ordinal scale. 
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4.1.10 Uses Bloom’s Taxonomy 
Survey item:  

To what degree do you refer to, consider, or use the following when you are constructing 
assessments?  

 Never (1) Rarely (2) Sometimes 
(3) Often (4) Almost 

Always (5) 

Bloom’s 
Taxonomy o  o  o  o  o  

 

Additional data processing: The options were recoded to an ordinal scale. 

 

4.1.11 Uses Vision and Change 
Survey item:  

To what degree do you refer to, consider, or use the following when you are constructing 
assessments?  

 Never (1) Rarely (2) Sometimes 
(3) Often (4) Almost 

Always (5) 

Recommendations 
made by the 
Vision and 

Change report  
o  o  o  o  o  

 

Additional data processing: The options were recoded to an ordinal scale. 
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Supplemental Table 4.1: Descriptions of item types 
Item type  Item 

response  
Description 

Cluster Constructed 
response 

Test-takers respond to a series of items that share a common stimulus. 
The series of items are designed as sub-parts or sub-items, which may 
or may not be scored independently. Cluster items often differ from 
essay items in that test-takers are provided a bulleted or numbered list 
of discrete sub-parts to respond to rather than a single paragraph of text 
directions.  

Discipline-
specific 

Constructed 
response 

Test-takers use procedures, algorithms, or other processes that are 
specific to biological sciences but are not easily categorized as strictly 
modeling or mathematical manipulation of information. Examples 
include matching complementary nucleotide base pairs or completing 
Punnett squares. 

Essay Constructed 
response 

Test-taker responses to an essay item typically require more than one 
paragraph. Essay items often use verbs such as “explain” or “justify” to 
elicit longer responses from test-takers.  

Fill-in-the-blank Constructed 
response 

Test-takers fill in a word or a short phrase that is missing from the 
stimulus and there is not a list of responses (i.e., a “word bank”) 
provided. 

Matching Selected 
response 

For each option in one list, the test-taker selects the correct match from 
a second list. Matching options may be presented as a series of items 
where each item in the series has the same set of common options. 

Math 
manipulation 

Constructed 
response 

Test-takers manipulate information to solve mathematical or 
algorithmic problems. 

Model Constructed 
response 

Test-takers respond to the item by creating a model of a biological 
phenomenon or by adding to, contributing to, or otherwise modifying 
an existing model.  

Multiple choice Selected 
response 

The test-taker selects one option from a list of two or more provided 
options.  

Multiple select Selected 
response 

A multiple-choice item where more than one option can be selected as 
correct. 

Multiple True-
False 

Selected 
response 

A form of multiple select where the options consist of binary factual 
statements and are preceded by a prompt or question statement linking 
the options together.  

Reorder Selected 
response 

Test-takers put a series of provided options into a sequence or specified 
order.  

Short answer Constructed 
response 

Test-takers response to the item with a word, phrase, or response that 
does not exceed one paragraph (approximately 3-4 sentences).  

True-False Selected 
response 

The test-taker selects whether a single statement is true or false. Unlike 
multiple-true false, there is no preceding prompt or question linking 
multiple statements together. 
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Supplemental Material 4.2: Coding for partial alignment to scientific practices  
 

Our coding for partial alignment to the 3D-LAP scientific practices criteria accounts for 

the inconsistent number of criteria statements between the different scientific practices. 

When the scientific practice had three criteria statements (e.g., “Planning Investigations,” 

“Using Mathematics and Computational Thinking,” or “Evaluating Information”), we 

coded alignment to each statement, where meeting zero, one, two, or three statements 

was coded as no alignment, partially aligned, mostly aligned, and fully aligned to the 

scientific practice, respectively.  

The 3D-LAP criteria for the scientific practice “Asking Questions” only contained 

two criteria statements, so we coded alignment as either no alignment or fully aligned. 

The first criterion (“Question gives an event, observation, phenomenon, data, scenario, or 

model”) was similar to the first criterion of multiple practices and could not accurately be 

coded at the level of that statement.  

In cases where the 3D-LAP contained four criteria statements for the scientific 

practice (e.g., “Developing and Using Models”, “Analyzing and Interpreting Data”, 

“Constructing Explanations and Engaging in Argument from Evidence”), we similarly 

disregarded the first criterion as we did for “Asking Questions.” In each case when there 

were four criteria statements, the first criterion could be met by providing an event, 

observation, phenomenon, or hypothesis, and as such could not be distinguished between 

scientific practices that shared the same or similar criteria. When there were four criteria 

for the scientific practice, we coded alignment to zero, two, three, or four statements as 

no alignment, partially aligned, mostly aligned, and fully aligned to a scientific practice, 

respectively.   
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Supplemental Table 4.2: Linear mixed modela predicting item point value with an 
interacting effect of item response and three-dimensional alignment 

 

  

Term Estimate Standard error t p 
(Intercept) 4.44 0.93 4.78 < 0.001 
Item response: Constructed response 2.62 0.09 28.65 < 0.001 
Alignment: Three-dimensional -0.02 0.16 -0.11 0.91 
Item response*alignment 0.90 0.23 3.92 < 0.001 
R2 = 0.977     
aModel: item point value ~ item response format*alignment + (1|instructor) 
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Supplemental Table 4.3: Linear mixed modela predicting Bloom’s Taxonomy level 
with interaction effect of item response and three-dimensional alignment 

 

  

Term Estimate Standard Error t p 
(Intercept) 1.48 0.05 32.60 < 0.001 
Item response: Constructed response 0.57 0.05 12.31 < 0.001 
Alignment: Three-dimensional 1.79 0.08 21.98 < 0.001 
Item response*alignment -0.28 0.12 -2.39 0.017 
R2 = 0.423     
aModel: Bloom’s Taxonomy level ~ item response format*alignment + (1|instructor) 
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CONCLUSION  

Reform efforts in undergraduate biology, guided by landmark documents such as 

Vision and Change (American Association for the Advancement of Science, 2011) and A 

Framework for K-12 Science Education (National Research Council [NRC], 2012a), 

encourage educators to eschew a mile-wide and inch-deep approach to teaching and 

instead focus on core concepts and engage students in scientific practices that will help 

them more deeply understand and contribute to the discipline. Assessments can provide 

important information on how instructors and departments are making progress in 

meeting the goals of these reform efforts. In this dissertation, I studied how programmatic 

assessments and concept assessments can provide data about student learning aligned to 

core concepts, and I conducted a nation-wide survey of biology instructors to determine 

how their exams integrate scientific practices and foundational concepts and to 

investigate what additional factors are associated with incorporating three-dimensional 

assessments into their courses. The major findings of these studies are summarized 

below.  

1) Departments and instructors using programmatic and concept assessments 
to determine their progress in meeting reform efforts should carefully 
evaluate student performance in light of assessment administration 
conditions to optimize score validity. 
 
Programmatic assessments, such as GenBio-MAPS (Couch et al., 2019), and 

concept assessments, such as the IMCA (Shi et al., 2010), provide departments and 

instructors a way to measure student learning of foundational concepts in undergraduate 

biology. These measures of student learning can illustrate which concepts students have 

mastered and which parts of the curriculum may need to be reevaluated to improve 

student learning outcomes. In Chapters 1 and 2 (Uminski & Couch, 2021; Uminski et al., 
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2023), I examined student performance on GenBio-MAPS and the IMCA to illustrate that 

departments and instructors should consider the available evidence for score validity 

before using assessment scores to make changes to curriculum and instruction. Self-

reports of test-taking effort, measurements of test-taking behaviors, such as the amount of 

time spent on test questions or the entire test overall, and correlations of assessment score 

with previous scores on course exams testing similar content provide lines of validity 

evidence we can use to interpret programmatic and concept assessment scores.   

Using these lines of validity evidence, I found that content knowledge for some 

students may be underestimated in lower-stakes out-of-class contexts in which students 

are not graded on the correctness of their responses. In lower-stakes conditions, a small 

portion of students may be more likely to demonstrate low test-taking effort, such as 

rapid selection of test answers or short test completion times, and these behaviors may 

yield assessment scores that do not accurately reflect what students know about biology 

concepts. In cases where students demonstrate these behaviors, departments and 

instructors that take the assessment scores at face value may be prompted to make 

unnecessary changes to curriculum and instruction, which can be a costly error in terms 

of time and resources.  

I also found that student scores may be higher compared to performance when the 

assessment is completed in a higher-stakes out-of-class context in which students have 

both access to external resources and the incentive to use them. In these cases where 

scores potentially overestimate student knowledge, departments and instructors may 

unintentionally overlook areas of curriculum or instruction where students are struggling 

to grasp foundational concepts.  
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My research indicates that lower-stakes in-class and higher-stakes in-class 

conditions provide reasonable information about student understanding, and these may be 

appropriate for administering programmatic or concept assessments; however, class time 

is a limited resource and instructors may wish to use out-of-class administrations to 

preserve time for instruction. If departments or instructors choose to use programmatic or 

concept assessments in lower-stakes out-of-class or higher-stakes out-of-class contexts, 

my findings suggest that they should collect evidence of score validity and carefully 

evaluate assessment data in light of the administration conditions.  

2) Course exams indicate that there is still progress to be made to fully align 
undergraduate biology with broader curriculum reform calls.  
 
The majority of undergraduate biology courses use high point-value summative 

exams as a way to measure student learning. What is assessed on these exams provides a 

window into the prioritized learning goals in a course. In Chapters 3 and 4, I analyzed the 

content of exams from a nationwide sample of biology courses for alignment to the 

scientific practices, crosscutting concepts, and core ideas of the three-dimensional 

framework (NRC, 2012a). I found that the overwhelming majority of exam items were 

not testing scientific practices, and as such, these items were not three-dimensionally 

aligned and were not fully meeting the goals of reform efforts in biology education.  

Although instructors were often assessing biology core ideas, which is an 

important component of the aligning to national calls for reform, most of these items 

were only capable of engaging students in lower-order cognitive skills associated with 

recall of memorized facts. This overrepresentation of lower-order cognitive skills mirrors 

findings from over a decade ago (Momsen et al., 2010, 2013), indicating that there is still 
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much to be done in undergraduate biology courses to fully meet the national calls to 

integrate conceptual knowledge and scientific practices.  

My work here suggests that the format of exam items may be a potential barrier to 

this integration of scientific practices. Three-quarters of the items in our sample used a 

selected-response multiple-choice format, but three-dimensional items were 

disproportionately constructed-response items. These constructed-response items can be 

difficult to implement because they are typically time consuming or resource-intensive to 

grade. Institutions and departments seeking to better align with the goals of reform efforts 

by increasing the number of three-dimensional assessments may want to consider ways of 

providing adequate time and resources for grading constructed-response exams. My work 

also indicates that existing professional development opportunities may not necessarily 

be helping instructors in meeting the goals of three-dimensional alignment. Departments 

may consider offering professional development opportunities specifically targeting the 

three-dimensional framework. My work highlights paths for institutions, departments, 

and instructors to more closely align their undergraduate biology education with reform 

efforts.  

Future directions 

Programmatic and concept assessments have an important role in measuring 

progress in reform efforts, yet there are currently no programmatic or concept 

assessments for undergraduate biology that are specifically aligned to the three-

dimensional framework. There is a need for a validated three-dimensional assessment 

instrument. As there are few published examples of three-dimensional exam items in 

undergraduate biology, a three-dimensional instrument can be a useful reference or serve 

as inspiration for course instructors aiming to incorporate more scientific practices into 
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their exams. As programmatic and concept assessments often take many months to years 

of development, a more immediate solution to the lack of three-dimensional exam items 

would be the creation of a publicly-accessible database or repository to which instructors 

can submit their own three-dimensional exam items.  

My work in Chapter 3 and 4 was mostly quantitative, and there remains a need for 

a qualitative investigation to explore instructor decision making about three-dimensional 

assessments as well as instructors’ perceived challenges and barriers to three-dimensional 

alignment in their courses. In addition to instructor perspectives, there is also a gap in the 

literature about undergraduate students’ engagement with three-dimensional assessment 

items. Student interviews and think-aloud protocols can better uncover whether items that 

have the potential to elicit scientific practices are actually engaging students in those 

practices. Future work is also needed to create professional development opportunities 

related to the three-dimensional framework and to study the short- and long-term 

effectiveness of this professional development in terms of advancing the goals of reform 

efforts. 
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