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Abstract—We survey the existing techniques for calculating
code distances of classical codes and apply these techniques
to generic quantum codes. For classical and quantum LDPC
codes, we also present a new linked-cluster technique. It reduces
complexity exponent of all existing deterministic techniques
designed for codes with small relative distances (which include
all known families of quantum LDPC codes), and also surpasses
the probabilistic technique for sufficiently high code rates.

I. INTRODUCTION

Quantum error correction (QEC) [1]–[3] is a critical part of

quantum computing due to fragility of quantum states. To date,

surface (toric) quantum codes [4], [5] and related topological

color codes [6]–[8] have emerged as prime contenders [9], [10]

in efficient quantum design due to two important advantages.

Firstly, they only require simple local gates for quantum

syndrome measurements, and secondly, they efficiently correct

errors below a threshold of about 1% per gate. Unfortunately,

the locality also limits [11] such codes to an asymptotically

zero rate k/n. This would make a useful quantum computer

prohibitively large. Therefore, there is much interest in design-

ing of feasible quantum codes with no locality restrictions.

A more general class of codes is quantum low-density-

parity-check (LDPC) codes [12], [13]. These codes assume

no locality but only require that stabilizer generators (parity

checks) have low weight. Unlike surface or color codes,

quantum LDPC codes can have a finite rate k/n. Also, long

LDPC codes have a nonzero error probability threshold, both

in the standard setting when a syndrome is measured exactly,

and in a fault-tolerant setting, when syndrome measurements

include errors [14]. This non-zero error threshold is even

more noteworthy given that known quantum LDPC codes have

distances d scaling as a square root of n unlike linear scaling

in the classical LDPC codes [15]–[18]. LDPC codes can have

finite rate and linear distance [19] if weights of stabilizer

generators scale as a square root of n. An important open

problem is to find the bounds on distance d of quantum LDPC

codes with limited-weight stabilizer generators.

This paper addresses numerical algorithms for finding dis-

tances of quantum and classical LDPC codes. To make a

valid comparison, we first survey several existing classical

algorithms that were used before for generic random codes

meeting the Gilbert-Varshamov (GV) bound. Here we re-apply

these techniques to find the distances of quantum codes. Then

we turn to the new techniques that are specific for LDPC

codes. Note that most error patterns for such codes form small

clusters that affect disjoint sets of stabilizer generators [14].

While some errors can have huge weight, they can be always

detected if the size of each cluster is below the code distance

d. We then design an algorithm that verifies code distance by

checking the error patterns that correspond to the connected

error clusters. For any error weight w � n, such clusters form

an exponentially small fraction of generic errors of the same

weight. Therefore, we consider the worst-case scenario that

holds for any LDPC code and can be applied in quantum

setting. This cluster-based algorithm exponentially reduces

the complexity of the known deterministic techniques for

sufficiently small relative distance, which is the case for all

known families of weight-limited quantum LDPC codes. The

new algorithm also outperforms probabilistic techniques for

high-rate codes with small relative distance.

II. BACKGROUND

Let C[n, k]q be a linear q-ary code of length n and dimen-

sion k in the vector space F
n
q over the field Fq . This code

is uniquely specified by the parity check matrix H , namely

C = {c ∈ F
n
q |Hc = 0}. Let d denote the Hamming distance

of code C.

A quantum [[n, k]] (qubit) stabilizer code Q is a 2k-

dimensional subspace of the n-qubit Hilbert space H
⊗n
2 , a

common +1 eigenspace of all operators in an Abelian stabi-
lizer group S ⊂ Pn, −11 �∈ S , where the n-qubit Pauli group

Pn is generated by tensor products of the X and Z single-

qubit Pauli operators. The stabilizer is typically specified in

terms of its generators, S = 〈S1, . . . , Sn−k〉; measuring the

generators Si produces the syndrome vector. The weight of a

Pauli operator is the number of qubits it affects. The distance

d of a quantum code is the minimum weight of an operator

U which commutes with all operators from the stabilizer S ,

but is not a part of the stabilizer, U �∈ S .

A Pauli operator U ≡ imXvZu, where v,u ∈ {0, 1}⊗n

and Xv = Xv1
1 Xv2

2 . . . Xvn
n , Zu = Zu1

1 Zu2
2 . . . Zun

n , can be

mapped, up to a phase, to a quaternary vector, e ≡ u + ωv,

where ω2 ≡ ω ≡ ω + 1. A product of two quantum operators

corresponds to a sum (mod 2) of the corresponding vectors.

Two Pauli operators commute if and only if the trace inner
product e1 ∗e2 ≡ e1 ·e2+e1 ·e2 of the corresponding vectors

is zero, where e ≡ u + ωv. With this map, generators of

a stabilizer group are mapped to the rows of a parity check
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matrix H of an additive code over F4, with the condition that

any two rows yield a nil trace inner product [20]. The vectors

generated by rows of H correspond to stabilizer generators

that act trivially on the code; these vectors form the degeneracy
group and are omitted from the distance calculation.

An LDPC code, quantum or classical, is a code with a sparse

parity check matrix. For a regular (j, �) LDPC code, every

column and every row of H have weights j and � respectively,

while for a (j, �)-limited LDPC code these weights are limited

from above by j and �. A huge advantage of classical LDPC

codes is that they can be decoded in linear time using belief

propagation (BP) and the related iterative methods [21], [22].

Unfortunately, this is not necessarily the case for quantum

LDPC codes, which have many short loops of length 4 in

their Tanner graphs. In turn, these loops cause a drastic

deterioration in the convergence of the BP algorithm [23].

This problem can be circumvented with specially designed

quantum codes [18], [24], but a general solution is not known.

One alternative that has polynomial complexity in n and

approaches linear complexity for very low error rates is the

cluster-based decoding of [14].

III. GENERIC TECHNIQUES FOR DISTANCE CALCULATION

The problem of verifying the distance of a linear code (find-

ing a minimum-weight codeword) is related to the decoding

problem: find an error of minimum weight that gives the same

syndrome as the received codeword. The number of required

operations N usually scales as an exponent N ∝ qFn in

blocklength n, and we characterize the complexity by the

exponent F = lim (logq N)/n as n → ∞. For example,

for a linear q-ary code with k information qubits, inspection

of all qk distinct codewords has (time) complexity exponent

F = R, where R = k/n is the code rate. Given substantially

large memory, one can instead consider the syndrome table

that stores the list of all qn−k syndromes and coset leaders.

This setting gives (space) complexity F = 1−R.

A. Sliding window (SW) technique

This technique has been proposed in Ref. [25] for correc-

tion of binary errors and generalized in Ref. [26] for soft-

decision decoding (where more reliable positions have higher

error costs). A related technique has also been considered

in Refs. [27], [28]. The following proposition addresses this

technique for quantum codes. Let Hq(x) = x logq(q − 1) −
x logq x− (1− x) logq(1− x) be the q-ary entropy function.

Below we consider both generic stabilizer codes and those that

meet the quantum GV bound

R = 1− 2H4(δ) (1)

Proposition 1. Code distance δn of a random quantum sta-
bilizer code [[n,Rn]] can be found with complexity exponent

FAq = (1 +R)H4(δ) (2)

For random stabilizer codes that meet the GV bound (1),

F ∗
Aq = (1−R2)/2 (3)

Proof. SW technique uses only k+o(n) consecutive positions

to recover a codeword of a q-ary linear [n, k] code. For

example, any k consecutive positions suffice in a cyclic code.

It is also easy to verify that in most (random) k×n generator

matrices G any s = k+2
⌊
logq n

⌋
consecutive columns form

a submatrix Gs of a maximum rank k. Thus, in most random

[n, k] codes, a codeword can be recovered by encoding its s
(error free) consecutive bits. To find a codeword c of any given

weight w, we choose a sliding window I(i, s) of length s that

begins in position i = 0, . . . , n−1. Note that a sliding window

can change its weight only by one when it moves from any

position i to i+1; thus at least one of the n windows will have

the average Hamming weight v ≡ 
ds/n�. Our algorithm takes

all possible positions i and weights w = 1, 2, . . .. We assume

that the current window I(i, s) is corrupted in v positions and

encode all

L = (q − 1)v
(
s
v

)
(4)

vectors of length s and weight v. Procedure stops for some w
once we find an encoded codeword c of weight w. Finally, such

vector c is tested on linear dependence with the rows of the

parity check matrix H . This gives the overall SW-complexity

of order Ln2 with complexity exponent FA = RHq(δ).
To apply SW procedure to a (degenerate) quantum code,

note that an [[n, k]] stabilizer code is related to some additive

quaternary code that is defined in a space of 4n vectors and has

only 2n−k = 4r/2 distinct syndromes, where r ≡ n− k is the

redundancy of the quantum code. Thus, the effective rate is1

R′ = (n−r/2)/n = (1+R)/2, which gives binary complexity

exponent (2). Finally, estimate (3) follows from (1).

Note that classical codes that meet the GV bound R =
1 − Hq(δ) have complexity exponent F ∗

A = R(1 − R) that

achieves its maximum 1/4 at R = 1/2. By contrast, quantum

codes achieve maximum complexity F ∗
Aq(R) at the rate R = 0.

Note also that quantum codes of low rate R and small relative

distance δ have complexity exponent logarithmic in δ.

B. Random window (RW) technique [30]–[32]

Proposition 2. Code distance δn of a random quantum sta-
bilizer code [[n,Rn]] can be found with complexity exponent

FBq = H2(δ)−
(
1−R
2

)
H2

(
2δ

1−R

)
(5)

Proof. Given a random q-ary linear [n, k] code, we randomly

choose s = k + τ positions, where τ = o(k) is some small

positive number, e.g., τ ∼ log2 k. We wish to find an s-set of

weight t = 1 in some unknown codeword of weight w. Let

M(n, s, w) denote the number of random trials needed to find

such a set with a high probability 1−e−n. Also, let T (n, s, w)
be the minimum number of (n− s)-sets needed to necessarily

cover any (unknown) w-set. It is easy to check [33] that
(
n
w

)
/
(
n−s
w

) ≤ T (n, s, w) ≤ (
n
w

)
/
(
n−s
w

)
(1 + ln

(
n−s
w

)
) (6)

and that M(n, s, w) ≤ T (n, s, w)n lnn. Below w = 1, 2, . . ..

1This construction is analogous to pseudogenerators introduced in Ref. [29].
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Fig. 1. Comparison of the binary complexity exponents for the four classical
decoding techniques applied to quantum codes at the quantum GV bound,
see Sec. III. Note that for high-rate codes, R → 1, the curves for the sliding
window and the random window techniques have logarithmically-divergent
slopes, while the slopes for the two other techniques remain finite. In this limit
of R → 1 the punctured bipartition technique gives the best performance.

RW-algorithm performs nT (n, s, w) trials of choosing s
random positions. Each trial gives a random k × s submatrix

Gs of a (random) generator matrix G. It is easy to verify that

Gs has full rank k with a high probability 1−q−τ (also, most

matrices G have all possible submatrices Gk of rank k−n1/2

or more). Thus, a typical s-set has a subset of k information

bits. If the current s-set includes such a subset, we consider s
vectors (0 . . . 010 . . . 0) of weight t = 1 and re-encode them

into the codewords of length n. Otherwise, we discard the

s-set and proceed further. Algorithm stops once we obtain a

codeword of weight w. The overall complexity has the order

of n4T (n, s, w) with the binary complexity exponent

FB = H2(δ)− (1−R)H2(δ/(1−R)).

For stabilizer codes, we obtain (5) using their effective rate

R′ = (1 +R)/2.

Quantum codes with small distances w ≤ (n − k)1/2 and

s ∼ nR′ meet an exponentially tight bound

log2 T (n, s, w) ∼ log2

(
n

n−s

)w

∼ w − w log2(1−R)

Exponent (5) can be further specified if codes meet the

quantum GV bound (1). The corresponding exponent F ∗
Bq

reaches its maximum Fmax ≈ 0.22 at R = 0 [Fig. 1]. By

contrast, binary linear codes give exponent F ∗
B = (1−R)

[
1−

H2 (δ/(1−R))
]

that achieves its maximum 0.12 at R ≈ 1/2.

C. Bipartition match (BM) technique [34]

Proposition 3. Code distance δn of any quantum stabilizer
code [[n,Rn]] can be found with complexity exponent

FCq = H4(δ). (7)

For random stabilizer codes that meet the GV bound (1),

F ∗
Cq = (1−R)/2. (8)

Proof. We use a sliding (“left”) window of length sl = 
n/2�
starting in any position i. For any unknown vector of weight w,

at least one position i produces a window of the average weight

(down to the closest integer) vl = 
w/2�. The remaining

(right) window of length sr = �n/2� will have the weight

vr = �w/2�. We calculate the syndromes of all vectors el
and er of weights vl and vr on the left and right windows,

respectively, and try to find two vectors {el, er} that give iden-

tical syndromes, and therefore form a codeword. Clearly, each

set {el} and {er} have size of order L = (q − 1)w/2
(
n/2
w/2

)
.

Finding two elements el, er with equal syndromes requires

complexity of order L log2 L, by sorting the elements of the

combined set. Thus, finding a code vector of weight w = δn
in any classical code requires complexity of order qFCn,

where FC = Hq(δ)/2. For binary codes on the GV bound,

F ∗
C = (1−R)/2. The arguments of the previous propositions

then give exponents (7) and (8) for stabilizer codes.

Note that BM-technique works for any linear code, unlike

two previous techniques provably valid for random codes. It

is also the only technique that can be transferred to quantum

codes without any performance loss. Note also that F ∗
Cq is

always below the SW exponent F ∗
Aq , and is below the RW

exponent F ∗
Bq for very high rates. This is due to the fact that

F ∗
Bq ≈ 1−R for R → 1, and is twice the value of F ∗

Cq .

D. Punctured bipartition technique [35]

Proposition 4. Code distance δn of a random quantum sta-
bilizer code [[n,Rn]] can be found with complexity exponent

FDq = 2(1+R)
3+R H4(δ) (9)

For random stabilizer codes that meet the GV bound (1),

F ∗
Dq = (1−R2)/(3 +R) (10)

Proof. We now combine the SW and BM techniques and

consider a sliding window of length s = �2nR/(1 +R)� that

exceeds k by a factor of 2/(1 + R). It is easy to verify that

most random [n, k] codes include at least one information k-

set on any sliding s-window I(i, s). Thus, any such window

forms a punctured linear [s, k] code with a smaller redundancy

s − k. Also, any codeword of weight w has the average

weight v = 
ws/n� in one or more sliding windows. For

simplicity, let s and v be even. We then use bipartition on

each s-window and consider all vectors el and er of weight

v/2 on each half of length s/2. The corresponding sets {el}
and {er} have size Ls = (q − 1)v/2

(
s/2
v/2

)
. We then seek

all matching pairs {el, er} that have the same syndrome h.

Each such pair {el, er} represents some code vector of the

punctured [s, k] code and is re-encoded to the full length n.

For each w = 1, 2, . . ., we stop the procedure once we find a

re-encoded vector of weight w. Thus, we use [s, k] punctured

codes and lower BM-complexity to the order Ls.

However, it can be verified that some (short) syndrome h of

size s−k can appear in many vectors el and er of length s/2,

unlike the original BM-case. It turns out [35] that our choice

of parameter s limits the number of such combinations el, er
to the above order Ls. Thus, we have to encode all Ls code
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vectors of weight v in a random [s, k] code. The end result is

a smaller complexity of order Ls = qFDn, where

FD = Hq(δ)R/(1 +R).

Transition from classical codes to quantum codes does not

affect BM-complexity. However, our sliding algorithm again

depends on the effective quantum code rate R′ = (1 +R)/2.

This changes exponent FD for classical codes to exponent (9)

for stabilizer codes. Quantum GV bound (1) gives (10).

For random codes of high rate R → 1 that meet the GV

bound, this technique gives the lowest known exponents F ∗
Dq

(for stabilizer codes) and F ∗
D = R(1 − R)/(1 + R) (for

binary codes). However, it cannot be provably applied to any

linear code, unlike a simpler bipartition technique. Finally,

the above propositions can be applied to a narrower class

of the Calderbank-Shor-Steane (CSS) codes. Here a parity

check matrix is a direct sum H = Gx ⊕ ωGz , and the

commutativity condition simplifies to GxG
T
z = 0. A CSS

code with rankGx = rankGz = (n − k)/2 has the same

effective rate R′ = (1 + R)/2 since both codes include

k′ = n− (n−k)/2 = (n+k)/2 information bits. It is readily

verified that CSS codes have binary complexity exponents

F (R, δ) given by expressions similar to Eqs. (2), (5), (7), (9),

where one must substitute H4(x) with H2(x)/2.

IV. LINKED-CLUSTER TECHNIQUE

Let Ψ(s, �) be an ensemble of regular (s, �) LDPC codes,

in which every column and every row of matrix H has weight

s and � respectively. The following technique is designed as

an alternative to the BP technique used in [36] to find code

distance. First, note that with quantum codes, BP can yield

decoding failures [23], while our setting requires error-free

guarantee. The second, more important, reason is that we

consider very specific, self-orthogonal LDPC codes that can be

used in quantum setting. These self-orthogonal codes represent

very atypical elements of Ψ(s, �) and can have drastically

different parameters. In particular, the existing constructions

of such codes have low distance d, where log d ∼ (log n)/2,

whereas a typical (s, �)-code has a linearly growing distance.

Thus, we consider the worst-case scenario in Ψ(s, �), which

can be provably applied to any code.
For an (s, �)-code, we represent all (qu)bits as nodes of a

graph G with vertex set V (G) and connect two nodes iff there

is a parity check that includes both positions. A codeword c
is defined by its support E ⊆ V (G) and induces the subgraph

G(E) that forms one or more clusters and has no edges outside

of G(E). Generally, we will make no distinction between the

set E and the corresponding subgraph. Note that disconnected

clusters affect disjoint sets of the parity checks. This implies

Lemma 1 (Lemma 1 from Ref. [14]). A minimum-weight code
word of a q-ary linear code forms a linked cluster on G.

Proof. Let a minimum-weight support E include disconnected

parts, say E1 and E2. These parts satisfy different parity checks.

Then vectors generated by E1 and E2 belong to our code and

have smaller weights. Contradiction.

Linked-cluster algorithm. The following breadth-first al-

gorithm inspects all fully-linked clusters of a given weight

w = δn. Let us assume that j = 0, 1, . . . , n− 1 is the starting

position in the support E of an unknown codeword of weight

w. Position j belongs to some s parity checks which form

the list η = {h1, . . . , hs}. To satisfy the parity-check h1,

we arbitrarily select some (odd) number v1 of the remaining

�−1 parity-check positions of h1. These v1 positions are now

included in the current support E . Any time a new position

is selected, we also append the list η with the new parity

checks which include this position. We then proceed with the

subsequent parity-checks h2, h3, . . . as follows. Let a check

hi overlap with some of the parity checks h1, . . . , hi−1 in

ai ≤ �− 1 positions, and let bi be the number of 1s selected

in these ai positions. Then hi can use only the remaining

�− ai positions to pick up some vi ≡ bi(mod 2) positions. If

bi is odd, the algorithm adds some vi ∈ {1, 3, . . .} positions

from hi, but (temporarily) skips this check if bi is even. This

parity check hi can be re-processed in some later step p as a

parity check hp if the corresponding number bp is odd. The

process is stopped once we add v = w − 1 positions. The

result is a binary codeword with support E if all processed

odd-type checks are satisfied and all unprocessed checks have

even overlap with E . At this point, adding some vi = 2, 4, ..
symbols in any even-type check can only increase the weight

of a codeword. For a q-ary code, we perform summation over

vi = 1, 2, . . ., and need to check the rank of a matrix formed

by the corresponding w columns of the check matrix. For

a quantum stabilizer code, we also need to verify that any

obtained codeword is linearly independent from rows of H .

At step i, there are
(
�−ai

vi

)
ways to select vi positions. Thus,

the total number of choices Nv to select v positions is

Nv ≤
∑
m≥1

∑
vi∈{1,3,...}

δv,v1+...+vm

m∏
i=1

(
�−ai

vi

)

which in turn is bounded by

Sv(�) ≡
∑
m≥1

∑
vi∈{1,3,...}

δv,v1+...+vm

m∏
i=1

(
�−1
vi

)

Here δa,b is the Kronecker symbol, and m is the number of

terms in the decomposition v = v1 + . . .+ vm.

To estimate Sv(�), introduce the generating function

g�(z) =
∑

v Sv(�)z
v . Easy summation gives for q = 2:

g�(z) = (1− f�(z))
−1

, f�(z) ≡ (1+z)�−1−(1−z)�−1

2 (11)

Finally, we use the contour integration of g�(z) to find the

coefficients Sv(�). Let γ = sinh−1(1) ≈ 1.135 in the case of

a binary code, and γ = 1/ ln 2 ≈ 1.443 in the case of a q-ary

code. We have:

Proposition 5. A codeword of weight δn in a (s, �)-code can
be found with complexity exponent FLC = δ log2(γ�(� − 1)),
where γ� ∈ (1, γ) grows monotonically with �.

More precise estimates of Sv(�) also give specific numbers

γ�, which can be important for small values of �. Finally
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note that while the cluster technique has high complexity

for large � and δ, its exponent FLC is linear in the relative

distance δ. In comparison, deterministic techniques of Sec. III

give the higher exponents F ∝ δ log(1/δ) in this limit. All

known quantum LDPC codes with limited-weight stabilizer

generators have δ ∝ n−1/2, and the linked-cluster technique

gives the lowest complexity for these codes. Note that the RW

technique also gives a linear in δ exponent FBq that is bounded

by δ − δ log2(1 − R). Our cluster technique still lowers this

exponent FBq for high code rates R ≥ 1− 2[γ (�− 1)]−1.

V. CONCLUSION

In this paper, we considered different techniques of finding

code distances of stabilizer quantum codes. For sparse quan-

tum LDPC codes, we proposed a new cluster-based technique.

This technique reduces complexity exponents of the existing

non-probabilistic algorithms for codes with sufficiently small

relative distances. In particular, this is the case for all known

families of quantum LDPC codes that have distances of

order n1/2 or less. Cluster-based technique also beats the

probabilistic random-window technique for high-rate codes.
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