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Advancements in high-throughput DNA sequencing technologies and ambitious

goals for their use are resulting in the generation of a deluge of unannotated

sequenced genomes. This makes computational tools that can aid in annotation

increasingly valuable.

Here, we provide a detailed exploration of the utility as well as the limitations of

average mutual information (AMI) in several steps of genome annotation. For a

genomic sequence, AMI is a measure of the information a base contains about the

base separated by a fixed lag. A profile is constructed by calculating AMI at

multiple lags. In addition to traditional AMI, we employ two AMI variants:

expanded AMI and expanded-adjusted AMI, both of which preserve some granular

detail discarded by AMI.

First, we demonstrate AMI’s capacity to assess evolutionary similarity by

constructing phylogenetic trees similar to those currently accepted. The remainder

of this work focuses on applications involving binary classification. We use support

vector machines trained using the AMI profiles to classify sequences and evaluate

predictive performance. These classification problems include predicting whether

sequences come from protein-coding regions, identifying essential genes, and making

functional predictions about the proteins genes produce. We conclude that AMI is

particularly adept at identifying coding regions, and this behavior is consistent for

species across all of life’s diversity.
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Chapter 1

Introduction

Life is vast, diverse, innumerable, reaching even the most inhospitable edges of

the earth. Recent estimates suggest as many as 10 million eukaryotic species inhabit

this planet [3], of which we have only cataloged a small fraction, on the order of

15%. Nonetheless, this is utterly dwarfed by the scale of microbial diversity, whose

membership may include as many as one trillion species [4]. In other words, there is

a nearly limitless source of biological data all around us to collect, analyze, organize,

annotate, classify, and interpret. Increasingly, data collection is outpacing the other

steps in this process as technologies for doing so improve through cost reduction,

automation, and computational capabilities. Nowhere is this more evident than in

the field of genomics, as the number of species whose genome has been sequenced

has exploded in recent years. For example, the Earth BioGenome Project, formed in

2018, seeks to sequence all 1.5 million currently known eukaryotic species in only 10

years [5].

The applications of this data are broad, and notably include technologies that

improve human health. The consensus amongst reasonable people is that the

pursuit of such improvements is a worthy endeavor. Topically (and obligatorily), the
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swift development of vaccines against SARS-CoV-2 was enabled by the

dissemination of its sequenced genome in January 2020, mere weeks after the first

outbreak of COVID-19 was reported. Another application that depends on

sequencing is CRISPR, the novel gene editing technology. CRISPR is already

opening avenues for therapies treating genetic ailments such as sickle cell disease [6].

While it has been decades since the human genome was first sequenced, identifying

genetic mutations that cause disease remains a highly active area of research.

The present glut of sequence data highlights the appeal of computational

alternatives to work traditionally performed in a wet lab. The focus of this work is

on a narrow class of such computational techniques, utilizing average mutual

information (AMI) and its derivatives to make predictions about the biological role

of genomic sequences at multiple levels. The AMI calculated over a genomic

sequence of interest is known to be biologically significant, and has been used as a

tool in many aspects of bioinformatics. This work investigates several new and

previously demonstrated applications, with particular focus on a performance

comparison between AMI variants. Additionally, we involve k-mers to supplement

the information provided by AMI.

First, we explore AMI’s ability to construct accurate phylogenetic trees for

several species of fungi. Next, we use AMI to predict whether a sequence is drawn

from a protein-coding region of a genome. Using a similar methodology, we predict

whether a gene is essential for survival. Lastly, we attempt to infer various aspects

of protein-coding gene annotations as described by the popular Gene Ontology

(GO) framework. In addition to providing classification performance metrics, we

attempt to identify AMI and k-mer features that contribute significantly to the

discriminative capabilities.
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Chapter 2

Biology Background

As the stated objective of this work is genome annotation, we will first introduce

some background on the relevant genome biology. We will focus on DNA: its

structure, its relationship to proteins, and how it is sequenced. DNA is

fundamentally a vessel for information, and this is what we will subsequently exploit

in making predictions about a particular DNA sequence’s function or relationship to

other sequences.

2.1 Biological Sequences

Heredity is a universal and readily observable feature of life as we know it. The

primary mechanism behind this heredity is by now well understood: information

about an organism passes to its offspring via a subset of its genome. The genome is

a collection of deoxyribonucleic acid (DNA), a macromolecule that encodes a set of

instructions for assembling all the component pieces needed by an organism during

its life. Genes are interspersed through an organism’s genome. While genes have

many functions, this work is primarily interested in protein-coding genes, which are

translated into amino acid sequences to produce proteins.
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2.1.1 Structure

DNA is composed of two strands that intertwine to form a double helix [7]. Each

strand is a chain of nucleotides, a monomer comprised of a nitrogenous nucleobase,

a deoxyribose sugar, and a phosphate group. The nucleotide’s phosphate group is

attached to the 5’ carbon of the ribose. The phosphate group of one nucleotide is

bonded to the 3’ carbon of the adjacent nucleotide’s ribose to form the strand’s

backbone. Each nucleobase is hydrogen bonded to the complementary nucleobase

on the opposite strand, producing a ladder-like structure. This structure is shown in

Figure 2.1.

DNA’s ability to store information is derived from the nucleobases. There are

four possible bases, typically abbreviated to their first letter: cytosine (C), guanine

(G), adenine (A), and thymine (T). Thus, each base contains two bits of

information. Bases pair with only one other base: C with G, and A with T. For this

reason, the sequence of bases on one strand determines the sequence of bases on the

other strand. However, the strands are directional and genes are present on both.

One strand’s 3’ end corresponds to the complementary strand’s 5’ end, and vice

versa.

DNA is organized into chromosomes. Prokaryotes typically have a single circular

chromosome, while eukaryotes have multiple linear chromosomes. The structure of a

chromosome is complex: in addition to protein-coding genes, there are sequence

structures that, for example, facilitate transcription, regulate gene expression, and

protect the genome from degradation during replication.

Proteins are composed of one or more strands of amino acids called polypeptides.

The protein’s amino acid sequence is referred to as primary structure. The manner

in which the protein folds into a three dimensional structure determines its



5

Figure 2.1: Depiction of nucleotides bonded together to form a double-stranded DNA
molecule. Image freely available from the National Human Genome Research Insti-
tute.

secondary and tertiary structure. Quaternary structure describes how multiple

polypeptides can organize into a single protein assembly. The primary structure

dictates how the protein will fold, as bonds form between particular amino acids in

particular positions in the sequence. A protein’s role is determined by the following

biological axiom: form fits function. That is, the shape of the protein dictates how it

will function in the cell. For example, enzymes, a particular type of protein that act

as catalysts in biochemical reactions, are shaped to enable binding their substrate.

http://www.genome.gov
http://www.genome.gov
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2.1.2 Processes

Transcription is the process by which cellular machinery generates a

complementary RNA sequence to a target gene. During transcription, an enzyme

called RNA polymerase traverses the template strand in the 3’ to 5’ direction. As it

proceeds, it produces messenger RNA (mRNA) in the 5’ to 3’ direction. The mRNA

sequence matches the DNA’s coding strand (with thymine nucleotides replaced with

uracil), which is complimentary to the DNA’s template strand. The transcript

includes the coding segment(s), as well as 5’ and 3’ untranslated regions (UTR) that

occur upstream and downstream of the start and stop codons, respectively. Once

transcribed, the mRNA undergoes processing steps, including the addition of a 5’

cap and poly-A tail, and removal of any introns.

Translation is the process by which an mRNA transcript is used to synthesize a

protein. This is performed by a cellular component called a ribosome. It binds the

5’ cap of a transcript and processes the transcript from 5’ to 3’. When the ribosome

reaches the mRNA’s start codon (usually AUG) it begins translating. mRNA

triplets, called codons, are mapped to amino acids by tRNA molecules. Each tRNA

is attached to an amino acid and includes an anticodon that complements a

particular codon. When it encounters a matching codon, it appends its amino acid

to the growing chain. Translation concludes when a stop codon is reached (generally

UAA, UAG, or UGA). The resulting amino acid chain then folds into a protein.

Transcription and translation are depicted in Figure 2.2.

2.1.3 Genome Sequencing

Determining the nucleotide composition of a DNA sequence is not trivial. The

wealth of genomic knowledge accumulated over the last half century was made
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Figure 2.2: Illustration of transcription of DNA to form mRNA, and translation
of that mRNA into an amino acid chain. Image freely available from the National
Human Genome Research Institute.

possible by ever-advancing sequencing technologies. The human genome and its 3

billion base pairs was first sequenced in 2003 after a 13 year global project that cost

$2.7 billion [8]. In contrast, so-called next-generation sequencing technologies are

capable of sequencing hundreds of bases per second. Nanopore sequencing works by

passing a DNA or RNA molecule through a hole in an electro-resistant membrane

and measuring the current passing through each nucleotide in order to identify

it [9]. This is the technology used by the portable, low cost MinION sequencer.

In contrast to next-generation sequencers, the “current” generation only

sequences short segments at a time, which must then be assembled into longer

sequences [10]. Whole Genome Assembly (WGA) involves the construction of longer

http://www.genome.gov
http://www.genome.gov
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contigs by finding a consensus of overlapping reads. These are then placed into

larger structures called scaffolds. Many sequenced genome assemblies are now

available at the contig, scaffold, chromosome, or complete genome level. This work

uses chromosome and genome level assemblies obtained from NCBI’s assembly

database in order to evaluate the effectiveness of the methods proposed. These

genomes are well-studied and extensively annotated, and include model organisms

such as bacteria E. coli and yeast S. cerevisiae. Our ultimate goal is to apply the

proposed methods to the rapidly growing library of unannotated, newly sequenced

genomes.
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Chapter 3

Sequence-Derived Profiles

The composition of a given biological sequence dictates the role of the sequence

in cellular processes, but primary sequences are difficult to work with. Transforming

the sequence into a fixed length numerical profile introduces many options for

analysis and classification. The usefulness of the profile depends on what

information about the sequence it captures, so the manner in which we construct it

is very important. We will next present several types of profiles that can be used

independently or in concert.

3.1 Profile Construction

3.1.1 Average Mutual Information Profile

In any nucleic acid sequence, nucleotide frequency is skewed from uniform due to

the biological constraints acting on it. In particular, small dependencies naturally

arise between base pairs. One notable example of these dependencies occurs because

of the triplet nature of translated portions of the genome. Coding regions consist of

trinucleotides, where each trinucleotide corresponds to a particular amino acid.
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However, there is considerable variation in trinucleotide abundance. This results in

increased dependency between nucleotides that are integer multiples of 3 base pairs

apart. This suggests that a measure of dependency between base pairs is a reflection

of the underlying biological role of the sequence. We use average mutual

information to measure such dependency.

The information learned by knowing the outcome of an event depends on the

uncertainty associated with the event. This is quantified by the Shannon

entropy [11], H(X), which is defined as:

H(X) = −
∑
x∈A

p(x) log p(x) (3.1)

This is easily extended to multiple events. Events which are correlated have

mutual information. This means that knowing the outcome of one event provides

information about the other. That is, the uncertainty concerning the latter event is

reduced. Average mutual information, I(X;Y ), measures the information contained

in event X about event Y, and is defined as:

I(X;Y ) = H(X)−H(X|Y )

=
∑
X∈A

∑
Y ∈A

p(X, Y ) log
p(X, Y )

p(X)p(Y )

(3.2)

Initially, Shannon developed average mutual information (AMI) for studying

communication [12], but it has since been applied to many fields, including

bioinformatics. Specifically, it has been used to study the covariation of residues in

the envelope protein of HIV [13] and other proteins [14]– [15]. It has also been used

to identify coding regions of the genome [16], to aid in sequence assembly [17], and

to generate a species-specific signature [18]. Whole and partial genome AMI profiles
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have been used to classify fungal and mycobacterial samples [19], and study changes

in HIV populations [20].

In order to generate an AMI profile based on a DNA sequence, we define X to

represent the nucleotide at arbitrary location n and Y to represent the nucleotide at

location n+ k, for some lag k. The possible outcomes of both X and Y are then the

four nucleotides: A = {A,C,G, T}. We then estimate the marginal probability

distributions p(X) and p(Y ) by counting the occurrences of each nucleotide and

dividing by the length of the sequence. Note that they are the same, since both are

measured across the entire sequence. We call this estimate p̂0(X). Similarly, the

joint probability distribution p(X, Y ) is estimated by counting the occurrences of

each of the 16 possible pairs of nucleotides separated by k base pairs, and dividing

by the total number of pairs in the sequence. We call this estimate p̂k(X, Y ) for lag

k. Using these probability estimates, we generate an AMI profile AMIk for selected

values of k as follows:

AMIk =
∑
X∈A

∑
Y ∈A

p̂k(X, Y ) log
p̂k(X, Y )

p̂0(X)p̂0(Y )
(3.3)

If the nucleotide occurring at position n+ k is independent of the nucleotide at

position n, then the average mutual information between the two events is 0 (i.e.

AMIk = 0). Likewise, if there is a peak in the AMI profile at some lag k, this

indicates inflated correlation between nucleotides k base pairs apart.

3.1.1.1 AMI for Finite Length Sequences

The AMI profile generated from an infinite-length sequence of random

nucleotides will consist of all zeros. The joint and marginal nucleotide probabilities

will be exact, so the independence of nucleotides at each lag will be reflected in the
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profile values. For a finite-length sequence, the probabilities derived from the

sequence are inexact estimates. As sequence length increases, the expected value of

the error between the true marginal and joint probabilities and their estimates

decreases. This results from the law of large numbers. The individual errors for each

probability are random variables, and can be positive or negative. However, because

the correlation between nucleotides is generally small, error in either direction will

imply greater correlation than there really is. This has the effect of artificially

inflating AMI profile magnitudes according to sequence length.

For a sequence of N random independent equiprobable nucleotides, the expected

value for AMI magnitude at lag of 1 (i.e. adjacent nucleotides) is as follows. The

number of instances of nucleotide X and Y in the sequence are denoted by nX and

nY , respectively. The number of instances of the nucleotide pair XY is denoted by

nXY .

E [AMI1] = E

[∑
X∈A

∑
Y ∈A

p̂1(X, Y ) log
p̂1(X, Y )

p̂0(X)p̂0(Y )

]

= E

[∑
X∈A

∑
Y ∈A

nXY
N − 1

log
nXYN

2

nXnY (N − 1)

]

=
∑
X∈A

∑
Y ∈A

E

[
nXY
N − 1

log
nXYN

2

nXnY (N − 1)

]

Because nucleotide probabilities are identical, all possible nucleotide pairs XY

such that X 6= Y produce the same expectation, and all possible nucleotide pairs

XY such that X = Y produce the same expectation. Henceforth, XY denotes the
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case where X 6= Y , and XX denotes the case where X = Y .

E [AMI1] = 12E

[
nXY
N − 1

log
nXYN

2

nXnY (N − 1)

]
+ 4E

[
nXX
N − 1

log
nXXN

2

n2
X(N − 1)

]
= 12

N∑
nX=0

N∑
nY =0

N−1∑
nXY =0

P (nX , nY , nXY )
nXY
N − 1

log
nXYN

2

nXnY (N − 1)
+

4
N∑

nX=0

N−1∑
nXX=0

P (nX , nXX)
nXX
N − 1

log
nXXN

2

n2
X(N − 1)

We now require the joint probabilities PN(nX , nY , nXY ) and PN(nX , nXX) for

sequence length N . If we append another random nucleotide to form a length N + 1

sequence, the probability that the final nucleotide pair is XY or XX depends on

the nucleotide at position N , denoted tN . The (identical) marginal probability of a

each nucleotide occurring at each position is denoted pt. If tN = X, the probability

that the final nucleotide pair is XY or XX is pt, while if tN 6= X, the probability of

both is 0. It is thus helpful to define the joint probabilities PN(nX , nY , nXY ) and

PN(nX , nXX) in terms of tN as follows:

PN(nX , nY , nXY ) = PN(nX , nY , nXY , tN = X) + PN(nX , nY , nXY , tN 6= X)

PN(nX , nXX) = PN(nX , nXX , tN = X) + PN(nX , nXX , tN 6= X)

The joint probabilities for sequence length N are defined recursively as follows:

PN(nX , nY , nXY , tN = X) =PN−1(nX − 1, nY , nXY , tN−1 6= X, tN = X)+

PN−1(nX − 1, nY , nXY , tN−1 = X, tN = X)

=ptPN−1(nX − 1, nY , nXY , tN−1 6= X)+

ptPN−1(nX − 1, nY , nXY , tN−1 = X)



14

PN(nX , nY , nXY , tN 6= X) =PN−1(nX , nY , nXY , tN−1 6= X, tN /∈ {X, Y })+

PN−1(nX , nY , nXY , tN−1 = X, tN /∈ {X, Y })+

PN−1(nX , nY − 1, nXY , tN−1 6= X, tN 6= X)+

PN−1(nX , nY − 1, nXY − 1, tN−1 = X, tN 6= X)

=2ptPN−1(nX , nY , nXY , tN−1 6= X)+

2ptPN−1(nX , nY , nXY , tN−1 = X)+

ptPN−1(nX , nY − 1, nXY , tN−1 6= X)+

ptPN−1(nX , nY − 1, nXY − 1, tN−1 = X)

PN(nX , nXX , tN = X) =PN−1(nX − 1, nXY , tN−1 6= X, tN = X)+

PN−1(nX − 1, nXY − 1, tN−1 = X, tN = X)

=ptPN−1(nX − 1, nXY , tN−1 6= X)+

ptPN−1(nX − 1, nXY − 1, tN−1 = X)

PN(nX , nXX , tN 6= X) =PN−1(nX , nXY , tN−1 6= X, tN 6= X)+

PN−1(nX , nXY , tN−1 = X, tN 6= X)

=3ptPN−1(nX , nXY , tN−1 6= X)+

3ptPN−1(nX , nXY , tN−1 = X)

The joint probabilities for sequence length 2 are initialized on the set of 16

possible nucleotide pairs. Calculated expected AMI magnitudes using the
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recursively defined probabilities are shown in Figure 3.1 for lengths up to 300

nucleotides. As N increases, the expectation converges to the inverse of N . This is

particularly apparent if we normalize the AMI value by multiplying by the sequence

length. This implies, but does not prove, the following for some constant C:

lim
N→∞

(N − 1)E [AMI1] = C

lim
N→∞

∑
X∈A

∑
Y ∈A

E

[
nXY log

nXYN
2

nXnY (N − 1)

]
= C

Figure 3.1: Expected AMI magnitude for lag 1 with and without normalization by
sequence length

Calculating the expected value of AMI using this recursive method is untenable

for sequence lengths more than a few hundred nucleotides. Instead, we estimate the

expected AMI magnitudes using simulated random sequences. In this way, we can

observe how the expected value of AMI profile values vary for different marginal

nucleotide probabilities and lags. As seen in Figure 3.2, there is significant variation

for short sequence lengths, but in all cases, AMI converges to a tight range as length

increases. For our purposes, a sequence of length 200 is likely adequate for

calculating reasonably accurate AMI values at a variety of lags.
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Figure 3.2: Expected normalized AMI magnitude for various marginal nucleotide
probabilities (left) and lags (right)

3.1.1.2 Average Mutual Information Variants

The AMI profile provides a glimpse into how a sequence’s nucleotides bias

surrounding nucleotides at particular lags. A less succinct profile that provides

additional information can be defined by collecting the individual terms that are

summed when calculating AMI. We entitle this profile “expanded-adjusted Average

Mutual Information” (eaAMI). For each value of k, the profile consists of 16

elements, one for each possible pair of nucleotides k bases apart. The frequency of

each nucleotide pair is estimated, and then scaled by the dependence between the

two nucleotides. That is, the profile element for lag k and nucleotide pair X, Y is

defined as:

eaAMIk(X, Y ) = p̂k(X, Y ) log
p̂k(X, Y )

p̂0(X)p̂0(Y )
(3.4)

Thus, the profile consists of 16k values, concatenated into a single vector.

A slightly simpler profile utilizes the unadjusted nucleotide pair frequencies, and

is thus termed the “expanded Average Mutual Information” (eAMI). Formally, each
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profile element is defined as:

eAMIk(X, Y ) = p̂k(X, Y ) (3.5)

As with eaAMI, the eAMI profile consists of 16k values. These AMI variants are

easily extended to use with amino acid sequences, which may provide different (but

overlapping) information about the sequence.

3.1.2 k-mer Profiles

A k-mer is a subsequence of length k that occurs in a biological sequence, such

as DNA or polypeptides. k-mers have many applications, including DNA sequence

assembly [21], predicting genomic regulatory elements [22], and identifying species

in metagenomic samples [23]. A k-mer profile may be constructed for a given

sequence by counting the frequency of occurrence of each possible k-mer. For a

given value of k, there are 4k possible k-mers in a nucleotide sequence, and 20k

possible k-mers in an amino acid sequence. The profile may include k-mer counts

for multiple values of k.

Typically, k-mers are overlapping, but we will also consider special cases where

k-mers do not overlap. For example, non-overlapping 3-mers have special

significance to DNA sequences because they correspond to codon frequencies in

protein-coding regions. For DNA and RNA sequences, 1-mers are synonymous with

nucleotide counts, and for polypeptide sequences, 1-mers are synonymous with

amino acid counts.
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3.1.3 Dimensionality Reduction

The aforementioned profiles are selected because they present information

contained in the sequences from which they are derived in an easily analyzed

format. However, much of they information they provide is redundant. Additionally,

many profile elements provide no discrimination between classes of interest. Lastly,

high dimension data presents some practical obstacles: it is difficult to visualize,

and increases the complexity of any analysis applied to it. For these reasons,

techniques to reduce the data’s dimension are often useful.

There exist many strategies to prune our data to a more manageable dimension.

The simplest solution is to change the parameters used to develop the profiles. For

k-mers, this means reducing the maximum length k considered. For AMI variants,

this means reducing the maximum lag k. In both cases, increasing those parameters

over a certain threshold provides diminishing returns. Nonetheless, if there is a

chance that some component of the higher dimension data has value, we would like

to preserve it. Generally, we can measure the individual contributions of each

component by considering that component in isolation. We can then assemble a low

dimension profile by ranking components and selecting only those with the highest

rank.

A more sophisticated approach is Principal Component Analysis (PCA), a

commonly used technique for dimensionality reduction [24]. The objective of PCA

is to identify the set of vectors along which a dataset has maximum variance. This

is often done using singular value decomposition, including for all uses of PCA in

this work. We can then reduce the dimensionality of our profiles by projecting them

onto these vectors. This preserves the maximum variation in the original data for a

given number of reduced dimensions. Underlying this method is the assumption
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that high variance is indicative of high information content concerning the

classification of interest. This is certainly not guaranteed, and we may ultimately

discard valuable lower variation data in favor of useless high variation data.

On the other hand, PCA requires no prior knowledge of the class to which

training set sequences belong, which may be advantageous in some situations.

Finally, PCA is particularly effective in eliminating the redundant information

provided by variables that are strongly correlated with each other, as is the case

with many of the profile elements.

3.2 Profile Analysis

Now that we have introduced our framework for transforming sequences into

numerical profiles, we will discuss the tools we will use to analyze those profiles.

3.2.1 Clustering

One of the defining features of DNA is that species relatedness is reflected in

their genomes. As species evolve through gradual, undirected genetic changes, they

diverge from each other. Relationships between species are depicted in phylogenetic

trees, which branch to indicate when a group’s ancestors diverged. One method for

developing a tree is to apply a hierarchical clustering algorithm to a distance matrix

populated with the distances between all pairs of species in a set. While the

mechanics of the available clustering algorithms (e.g. UPGMA, WPGMA, and

neighbor-joining) vary, they each attempt to cluster elements with similar elements,

and groups of elements with similar groups of elements. Numeric sequence profiles

provide a natural way to calculate distance between sequences, including Euclidean

distance and correlation distance. Many tools exist to perform clustering on a
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distance matrix. One such popular tool is the PHYLogeny Inference Package

(PHYLIP) [25].

3.2.2 Classification

Many of the biologically relevant characteristics of a sequence can be framed as a

binary classification problem. Given a novel sequence, we would like to predict if it

possesses that characteristic, thus eliminating the need for expensive wet lab

experiments to make that determination. Myriad tools exist for making binary

predictions, including support vector machines, neural networks, nearest neighbor,

naive Bayes, and classification trees [26]. As a baseline, we will apply a simple

nearest neighbor classifier. Given training data, we calculate the centroid of data

points belonging to each class. We then predict that test sequences belong to the

class whose centroid is closest.

We also make frequent use of support vector machines (SVMs), a well

established supervised learning tool used for binary classification [27]. SVMs

operate by constructing a hyperplane in the N -dimensional space occupied by the

profile data. The objective of training is to identify the hyperplane that maximizes

the margin between the two classes, and an example of data separated by such a

hyperplane is shown in Figure 3.3.

The classes in the example are separable, so there is a hard margin between

them that is maximized by the SVM. The objective function for doing so can be

formulated for optimization using quadratic programming. Importantly, SVMs also

work on inseparable data, where there is overlap between the two classes and the

margin between them is “soft”. This is done by penalizing the objective function for

data that crosses the boundary separating the two classes.

SVMs can also be formulated to generate nonlinear classifiers by performing the



21

Figure 3.3: Data points from binary classes separated by a hyperplane determined
by an SVM, with support vectors shown.

“kernel trick”, in which a nonlinear kernel function is applied to the objective

function. Generally, a linear SVM performs adequately for our purposes, as the data

does not follow any well defined nonlinearities. At various times in the course of

developing this work, we applied other kernels, including polynomial and radial

basis function, but did not observe any noticeable improvement. There are several

other configurable training parameters that can be adjusted to improve

classification and convergence behavior.
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Chapter 4

Phylogenetic Tree Construction

Now that we are familiar with AMI-based profiles, it is time to put them to use.

Our first application is the construction of a phylogenetic tree 1. These trees

represent evolutionary distance, and how species relate to one another. Sequence

profiles provide a natural means of calculating distance between sequences. If these

distances correspond to evolutionary distance, then the tree we construct will

closely match the accepted phylogeny.

4.1 Fungal Phylogeny Introduction

While genetically very similar, species of Candida and Saccharomyces yeasts

differ widely in their net impact on humans. The Candida clade includes many

pathogens, including C. tropicalis, C. parapsilosis, and C. albicans [1]. Together,

Candida species are the most common cause of opportunistic fungal infection. In

contrast, Saccharomyces cerevisiae (colloquially known as brewers yeast) and other

1Phylogeny results were published in 2017 IEEE EIT: G. Newcomb, A. L. Atkin and K. Sayood,
“Use of average mutual information signatures to construct phylogenetic trees for fungi,” 2017 IEEE
International Conference on Electro Information Technology (EIT). Lincoln, NE, USA: IEEE, May
2017, pp. 398-403.
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Saccharomyces species have immense economic utility. Evolutionary relationships

between yeast species are accordingly of great interest. Current accepted phylogeny

was assembled by performing multiple sequence alignment on 706 orthologs across

17 fungal species [1]. This phylogeny is shown in Figure 4.1.

Figure 4.1: Accepted fungal phylogeny focusing on select Candida and Saccharomyces
species [1]. “WGD” refers to a whole genome duplication, while “CTG” refers to the
clade of fungi characterized by the translation of CTG codons as serine rather than
leucine. Reprinted by permission from Macmillan Publishers Ltd: Nature, 472: 657-
662, copyright 2009.

While this method is certainly robust, it is time consuming and requires reliable

genome sequencing and annotations for all included species. Many other methods

for predicting evolutionary relationships exist. The relative complexity measure

(RCM) was designed as an alignment-free method for assessing sequence

similarity [28]. It operates by generating a Lempel-Ziv dictionary from one sequence

and evaluating how many steps are needed to generate a dictionary for the second

sequence when using the first dictionary as a starting point. RCM has been shown

to accurately generate a phylogenetic tree for fungi. While good at assessing

sequence similarity, RCM does not provide information about what makes two

http://www.nature.com
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sequences similar. An alternative alignment-free method for measuring sequence

similarity involves profiles defined by the average mutual information present in the

sequences. These profiles have been used to accurately group subtypes of the

HIV-1 [18], suggesting applications in phylogeny.

Ribosomal DNA (rDNA) is commonly used to evaluate species relatedness. The

rDNA gene complex contains the 18S, 28S, and 5.8S genes, each of which are

ribosomal components once transcribed. The sequences that separate these genes

are called internal transcribed spacer (ITS) 1 and ITS2. The two spacers, along

with the 5.8S sequence between them, are together termed the ITS region. The ITS

region has been proposed as a universal barcode for fungi [29]. This is because the

highly conserved rDNA genes are ideal for designing primers. However, the spacers

are under less pressure to avoid mutations, and accordingly diverge more quickly.

This makes the ITS region ideal for evaluating evolutionary distance between

species. We obtained ITS sequences for 16 of the 18 species evaluated by [1]. ITS

sequences could not be found for C. guilliermondii and K. waltii.

4.2 Phylogenetic Tree Construction

We generated AMI, eAMI, and eaAMI profiles for each of the 16 ITS sequences,

for lag values 1 ≤ k ≤ 32. Thus, the AMI profiles can be interpreted as vectors in

32-dimensional space, and the eAMI and eaAMI profiles as vectors in

512-dimensional space. We then populated 16 by 16 distance matrices D for each

profile type by calculating the distance between profiles for each pair of sequences.

The distance was calculated using two different methods, resulting in two distance

matrices, and thus two phylogenetic trees for each profile type. First, we calculated

a correlation difference based on the angle between each pair of profiles. That is, we
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calculated dij, the distance between the profiles for sequence i (xi) and sequence j

(xj), as follows:

dij = 1− cos θ = 1− xi · xj

‖xi‖‖xj‖
(4.1)

Since all elements of the profile are non-negative, dij must satisfy 0 < dij < 1,

where 0 indicates maximum similarity (but does not require identical sequences).

We also calculated Euclidean distance between profiles, as follows:

dij = ‖xi − xj‖ (4.2)

Phylogenetic trees were generated using PHYLIP (version 3.695) [25]. The

AMI-based distance matrices were used as input, and the program was run using

the neighbor-joining option.

4.3 Phylogenetic Tree Results

4.3.1 Phylogenetic Tree Using Correlation Distances on AMI Profiles

The phylogenetic tree generated using a distance matrix comprised of correlation

distances between AMI profiles is presented in Figure 4.2a. Y. lipolytica is correctly

identified as having diverged from the remaining sequences. All 7 species in the

Candida clade are correctly assigned in a monophyletic group. The tree was less

accurate for the Saccharomyces clade: only 6 of 8 species were clustered in a

monophyletic group. C. glabrata and S. castellii both should have been included in

this clade but were instead shown to have diverged prior to the split between

Saccharomyces and Candida.
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(a) Correlation (b) Euclidean

Figure 4.2: Phylogenetic trees generated by PHYLIP. The distance matrix used to
generate each tree was populated with the distances between each pair of species’
AMI profiles, using the metric specified in each caption. Species in blue belong to the
Saccharomyces clade, while species in orange belong to the Candida clade. Branches
colored green indicate that the list of leaves descending from that branch match those
in the accepted phylogeny.

4.3.2 Phylogenetic Tree Using Euclidean Distances on AMI Profiles

The phylogenetic tree generated using a distance matrix comprised of Euclidean

distances between AMI profiles is presented in Figure 4.2b. Y. lipolytica is correctly

identified as having diverged from the remaining sequences, but the tree erroneously

indicates that S. castellii was first to diverge. All 7 species in the Candida clade are

correctly assigned in a monophyletic group. Additionally, 7 of 8 Saccharomyces

species were clustered in a monophyletic group. C. glabrata was correctly included
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in the group, while it was not in the tree generated using correlation distances.

However, within the Candida clade, the Euclidean distances did not correctly

identify either of the monophyletic pairs of species (C. albicans paired with C.

dubliniensis, and L. elongisporus paired with C. parapsilosis).

4.3.3 AMI Magnitudes and Sequence Length

The ITS sequences are less than 1000 nucleotides, which results in a bias in the

AMI profiles. This is shown in Figure 4.3. The AMI magnitudes are inversely

proportional to the length of the sequence. While inflating these magnitudes would

not affect the correlation distance, which is agnostic to vector magnitude, it would

affect Euclidean distance considerably. This is particularly evident in the case of C.

lusitaniae. At 382 bp long, its ITS region is 137 bp shorter than that of any other

species. This is reflected in the tree, which indicates that the branch length for C.

lusitaniae is significantly longer than any other branch. To reduce this source of

Figure 4.3: Mean AMI magnitude for each ITS sequence, versus sequence length.
The data closely fit the curve y = 5.43

x
.
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bias, we normalized the magnitudes by multiplying each element of the AMI profiles

by the sequence length. A new distance matrix and new tree were generated with

the normalized profiles.

The phylogenetic tree generated by this method is presented in Figure 4.4. It

clearly bears a striking resemblance to the tree generated using correlation distances.

Once length-induced bias was removed, Euclidean distances closely matched the

corresponding correlation distances. Nonetheless, there were slight differences in the

trees. Most importantly, K. lactis and A. gossypii are separated from the other

members of the Saccharomyces clade. Thus, despite similar performance, it appears

that the correlation distance method yielded a slightly more accurate tree.

Figure 4.4: Phylogenetic tree generated by PHYLIP. The AMI profiles were normal-
ized by multiplying each element by the sequence length. Euclidean distances were
then used to populate the distance matrix.
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The mean AMI profiles for Candida and Saccharomyces species after

normalization are presented in Figure 4.5. While fairly similar in form, there are a

few noticeable distinguishing characteristics. There are significant differences in

AMI magnitude at lags 1, 2, 6, and 12 between the two clades. In fact, all Candida

species had a local peak at lag 12, while none of the Saccharomyces species had such

a peak. This may be the result of length 6 repeats in Candida ITS regions (there

are no length 12 repeats in C. albicans). It could also result from differences in the

secondary structures of the ribosomal RNA.

Figure 4.5: Mean normalized AMI profiles for the 7 species in the Candida clade and
8 species in the Saccharomyces clade.

4.3.4 Phylogenetic Trees Using AMI Variants

Phylogenetic trees generated using distance matrices comprised of pairwise

distances between eaAMI profiles are presented in Figure 4.6. Trees using eAMI

profiles are presented in Figure 4.7. For both variants, trees for Euclidean and

correlation distances are included. The eaAMI trees are noticeably better, with only
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(a) Correlation (b) Euclidean

Figure 4.6: Phylogenetic trees generated by PHYLIP using distance matrices derived
from eaAMI profiles.

C. lusitaniae not included in the correct Saccharomyces or Candida clade. eAMI

struggled at all levels of the phylogeny, regardless of the distance matrix used. Next,

we will explore differences in performance for the profile types in more detail.

4.3.5 Tree Summary and Comparison

To aid in the comparison of the trees, we focused on how well they clustered the

species of the Saccharomyces and Candida clades together, and how well they

matched closely related species. This gives a reasonable gauge for how closely each

metric matches evolutionary distance over both the short and long term. We only

considered the 16 species for which ITS sequences could be found. The accepted
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(a) Correlation (b) Euclidean

Figure 4.7: Phylogenetic trees generated by PHYLIP using distance matrices derived
from eAMI profiles.

phylogeny includes 8 species in the Candida clade, 8 species in the Saccharomyces

clade, and 6 species in the “whole genome duplication” (WGD) clade, a subclade of

Saccharomyces. For each distance metric, we counted the number of species in the

accepted clades that were clustered in a monophyletic group in the generated tree.

The accepted phylogeny also includes 4 monophyletic pairs of closely related

species. Again, for each distance metric, we counted how many of these pairs also

appeared in the generated tree. Finally, we count how many branches in the output

trees have sets of leaf descendents identical to the corresponding branches in the

accepted tree. The topology is ignored, as a branch counts as a match as long as the

identity of the leaves matches. These results are presented in Table 4.1.
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Table 4.1: Comparison of phylogenetic trees. Accuracy for each distance metric is
presented as the number of matches with the accepted phylogeny for each category.

AMI eAMI eaAMI

Category
Accepted

Phylogeny
Cor. Euc.

Euc.

(Norm.)
Cor. Euc. Cor. Euc.

Candida

Species
7 7 7 7 2 3 6 6

Sacchar.

Species
8 6 6 4 4 4 8 8

WGD

Species
6 4 4 4 4 4 6 6

Monophyl.

Pairs
4 3 1 3 1 1 2 3

Branch

Leaves
14 5 3 5 2 2 7 8

Of the three profiles, eaAMI produced the trees that most closely resembled the

accepted phylogeny. The distance metric used had a minor impact on the resulting

tree, as the tree using Euclidean distances was slightly more accurate. AMI

performed better than eAMI. The dramatic difference between the performance of

eaAMI and eAMI is striking given the similarity in how those profiles are

constructed.

Based on these results, we conclude that correlation between AMI profiles

provides a slightly better measure of evolutionary distance than Euclidean distance.

For Euclidean distances, normalizing AMI magnitudes by sequence length resulted

in better pairing of closely related species. However, this step also appeared to

degrade the ability of the metric to correctly cluster larger clades as monophyletic

groups. This latter effect suggests that divergence in ribosomal sequence lengths

may reflect evolutionary distance. Indeed, the sequence lengths ranged from 382-638
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bp for species in the Candida clade, and 577-878 for species in the Saccharomyces

clade. As the un-normalized Euclidean distances were in part a measure of sequence

length distance, it is unsurprising that this metric successfully grouped the two

clades together.

4.4 AMI as a Measure of Evolutionary Distance

In general, the objective of any professed measure of evolutionary distance is a

deterministic, monotonically increasing function of time. Linearity is also desirable,

as such a measure would provide equivalent differentiation across all time frames. In

order to gain insight into the performance of AMI-based measures of distance, we

simulated the evolution of an ITS sequence in the simplest case. We started with

the ITS sequence for C. albicans (length 536 bp), then generated two diverging

sequences by probabilistically injecting point mutations in each. At each iteration,

the substitution rate for each nucleotide was 0.001, and the insertion and deletion

rates were both 0.00005. Thus, the substitution to indel ratio was 10, which is

typical for noncoding regions in Eukaryotes [30]. The simulation was performed

with only substitutions, only indels, and with both, each time with 1000 trials and

500 iterations. The average correlation and Euclidean distances across all trials at

each iteration were recorded. For ease of comparison, all distances were normalized

by dividing by the maximum average distance for all iterations. These results are

presented in Figure 4.8.

While simple and contrived, a few conclusions can be drawn from these

simulations. First, and most notably, correlation distance consistently converged to

its maximum more slowly than Euclidean distance. That is, correlation distance

more closely resembled a linear increase over a longer time interval. This suggests



34

Figure 4.8: The distance between two sequences diverging via a simple point mutation
evolutionary model. Distance is measured by the Euclidean and correlation distance
between the sequences’ AMI profiles.

that correlation distance would be more robust in correctly ranking sequences

according to time since divergence, which is supported by the results of phylogenetic

tree construction. Second, it suggests that Euclidean distance would perform better

for more closely related species than for more distantly related species, which was

true once AMI magnitudes were normalized by sequence length. Third, both

distance metrics increase more quickly as indels accumulate compared to when

substitutions accumulate when rates of both are the same. However, for a more

realistic ratio of 10 substitutions per indel, both distance metrics increase more

quickly as substitutions accumulate.
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Chapter 5

Coding Region Analysis

The remaining chapters are concerned with binary genomic features that we will

attempt to predict using our sequence profiles. We begin with one of the most

fundamental attributes of DNA: whether or not it is protein-coding 1. Once a

genome has been sequenced, identifying the protein-coding genes strewn throughout

it is one of the first and most important steps in annotation.

5.1 Coding and Noncoding Regions

Genomes are composed of coding and noncoding regions. “Coding” refers to the

correspondence between a DNA sequence and an amino acid sequence that folds

into a protein. The utility of coding regions has long been well understood. Proteins

perform a vast array of cellular functions, and cells respond to environmental

conditions by producing required proteins via transcription and translation of genes.

A gene is a segment of the genome that, when expressed, produces a functional

RNA molecule or protein. A protein-encoding gene consists of one or more coding

1Coding region results were published in Entropy : G. Newcomb and K. Sayood, “Use of Average
Mutual Information and Derived Measures to Find Coding Regions,” Entropy, vol. 23, no. 10, p.
1324, Oct. 2021.
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regions, which directly inform the resulting amino acid sequence, as well as

interspersed noncoding regions. The vast and varied roles of noncoding regions are

the subject of much current research [31]. While they do not affect the content of

the protein, a gene’s noncoding regions play crucial roles in the gene’s expression.

Noncoding regions also exist between protein-coding genes. Some of these

noncoding regions are transcribed into RNA molecules that facilitate and regulate

gene expression. Coding regions are distributed along both strands of the genome in

segments that range from a single codon to many thousands of base pairs.

The discovery of new genes (in particular, protein-encoding genes) is aided by

computational predictions of coding regions. This is possible due to observable

feature differences between the two sets. For example, coding regions tend to

contain higher fractions of the bases guanine (G) and cytosine (C), which is referred

to as GC-content [32]. Also, coding regions exhibit triplet periodicity because they

are composed of triplet codons and codon abundance is not uniform. Another

strategy for identifying protein-coding genes employs interpolated Markov models.

The most popular example of this technique is a tool called Glimmer [33–35], which

we will use as a reference against which to frame our results. Now, we will endeavor

to use sequence-derived profiles to predict whether an unknown sequence is (or

contains) a coding region. Additionally, we will examine aggregate profiles for

sequences belonging to the two sets to identify potential novel features.

5.2 Coding Region Prediction

5.2.1 Prediction Methodology

Numerical profiles provide a mechanism to map a nucleic acid sequence into a

vector space that is readily analyzed and manipulated. Each profile presented here
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defines a different space, but the techniques used to operate on the space are generic.

We use linear SVMs to perform binary classification. As with any classification

problem, data is partitioned into training sets and test sets. In order to objectively

measure the methods’ performance, the data sets are intentionally contrived.

The data sets were generated from a repository of 82 species with well-annotated

genomes, consisting of 70 bacteria, 1 archaea, and 11 eukaryotes. Each species is

identified by its taxonomic ID. We searched NCBI’s assembly database for the most

recent RefSeq assembly for each taxonomic ID. We then downloaded the genomic

FASTA and GTF file for that assembly. For each GTF file, we compiled all

annotated CDSs. We accepted the annotation as-is and did not speculate on the

existence of possible unannotated CDSs. For large eukaryotic genomes, we used only

the first 3 chromosomes. Given the CDS coordinates, we extracted each from the

corresponding genome, taking the reverse complement of each CDS on the negative

strand. All CDSs were then concatenated into a parent coding sequence, such that

there is a single coding sequence for each species. These range in length from 500

thousand base pairs to tens of million base pairs. We then extracted the noncoding

sequences. Any segment of the genome that is not included in any CDS on either

strand was deemed to be noncoding. This includes all noncoding genes. Noncoding

regions from both strands were included, so that noncoding regions surrounding

CDSs on both strands are represented. These were all extracted and concatenated

into a single parent noncoding sequence for each species. These range in length from

60 thousand base pairs to hundreds of million base pairs.

The data sets were then constructed by randomly drawing 2000 nonoverlapping

sequences of constant length from each of the two parent sequences. Each data set

used to train and test an SVM includes sequences of constant length, but multiple

data sets were constructed with a different length for each. If the genome is too
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short to allow for 2000 nonoverlapping sequences at the given length, the number of

sequences in the data set is reduced accordingly. This allows us to evaluate the effect

of sequence length on predictive performance for a range of 25 to 10000 base pairs.

We use k-fold cross-validation, with k = 5. The SVM is trained on the training

folds, and its performance is evaluated by using it to classify the test folds. The

output of the SVM is a classification score assigned to each input profile. The

magnitude of the classification score is the distance from the profile to the SVM

decision boundary, and the sign specifies on which side of the boundary the profile

falls. Positive scores indicate profiles on the side of the boundary corresponding to

the coding region class. A higher score implies a higher probability that the test

sequence was drawn from the coding region parent sequence.

We also evaluate a Euclidean distance classifier. Given a training set of sequence

profiles from coding and noncoding regions, we calculate the centroid for both sets.

For each sequence in the test set, we determine the Euclidean distance to both

centroids, and subtract one from the other to determine classification scores.

Positive values indicate that the test sequence profile is closer to the coding region

centroid. Scores produced by each classifier for each type of profile are used to

evaluate the classification performance. In addition to k-mer and AMI profiles, we

include GC-content as a baseline.

In practice, when predicting coding regions for an unannotated genome, we

would need to use a model trained on some related species. We evaluate this

cross-species scenario by training a model for each species we consider, and using

the model to predict coding regions in all other species.
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5.2.2 Results and Discussion

Receiver Operating Characteristic (ROC) curves are generated by sweeping a

prediction threshold across the entire range of scores for each prediction

methodology. That is, each score that is produced by the SVM is used as a

threshold to generate a point on the ROC curve. For each threshold, sequences that

score higher than the threshold are declared to be coding regions, while those that

score lower are declared to be noncoding regions. We then calculate the true and

false positive rates, which yields a point on the ROC curve. This is repeated for all

scores produced by the SVM. Example curves are shown for S. cerevisiae with eAMI

and k-mer profiles in Figure 5.1. The area under the curve (AUC) is then used as

an objective single-value metric for evaluating prediction performance. Additionally,

the classifier’s sensitivity and specificity are calculated using a threshold of 0. That

is, coding regions assigned a positive score by the SVM are considered true positives,

while noncoding regions assigned a negative score are considered true negatives.

(a) eAMI profiles (b) k-mer profiles

Figure 5.1: ROC curves for coding region prediction using SVMs on the specified
type of profile

For both k-mers and AMI profiles, increasing the information available to the
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classifiers yields AUC improvements. As is to be expected, the improvement tapers

as k continues to increase. For eAMI, there are diminishing returns for k values

greater than 2. For k-mers, AUC starts to converge once k reaches 3. For both

profiles, the ROC curves are reasonably symmetric about the line y=1-x. This

suggests that at the optimal decision threshold (the point on the ROC curve closest

to a 0% false positive rate and 100% true positive rate), the false negative and true

positive rates will be balanced.

The longer a sequence is, the more closely it will tend to resemble the aggregate

profile of the set to which it belongs. Accordingly, we would expect prediction

performance to increase as sequence length increases. To evaluate this effect, we

constructed data sets consisting of sequences of increasing length. This is shown in

Figure 5.2 for AMI profiles, and Figure 5.3 for k-mer profiles. The SVM results vary

widely. For AMI, it does no better than Euclidean distance, but there is a

significant performance premium for eAMI.

Figure 5.2: AUC for coding region prediction using SVMs and Euclidean distance on
AMI profiles derived from S. cerevisiae sequences of increasing length
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Figure 5.3: AUC for coding region prediction using SVMs (solid lines) and Euclidean
distance (dashed lines) on k-mer profiles derived from S. cerevisiae sequences of in-
creasing length

Additionally, the parameters used to construct the profiles impact performance.

This is especially true for k-mers, as larger values of k result in more information

preserved in the profile. This is shown in Figure 5.4. Notably, the performance

improvement gained by the use of SVMs depends on both sequence length and the

value of k. The SVM seems to become saturated with information once k reaches 6.

At this point, the bulk of the information is noise, and the signal becomes lost in it.

The SVM appears to perform optimally for k = 4, when the profile length is 256.



42

Figure 5.4: AUC for coding region prediction using SVMs (solid lines) and Euclidean
distance (dashed lines) on k-mer profiles derived using increasing k values

5.3 S. cerevisiae Profile Analysis

For all profiles considered here, we can effectively distinguish between coding

regions and noncoding regions provided we have a sequence of sufficient length.

This suggests that profiles for members of both classes converge to some

characteristic profile. To best represent these characteristic profiles, we calculate the

centroid of profiles drawn from the longest sequences considered in this analysis

(12800 base pairs). These centroids provide a visual representation of the differences

between coding and noncoding regions, from which we can glean features about the

class from which they were drawn.

5.3.1 AMI Profiles

Centroid AMI profiles for S. cerevisiae are presented in Figure 5.5. The most

obvious feature is the presence of distinct peaks at multiples of three in coding
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regions, resulting from the triplet periodicity conferred by codon abundance biases.

The notable exception to this periodicity is the inflated values for lags 1-2,

suggesting biases in the occurrences of certain nucleotide pairs and triplets. For lags

greater than 4, magnitude decreases only slightly over the window considered here.

The noncoding centroid also has noticeable, if less pronounced features. It too is

marked by significant magnitudes for small lags, but with more gradual degredation

thereafter. Curiously, there appear to be small but significant peaks at even lags

from 6-14.

Figure 5.5: Centroid AMI profiles for coding and noncoding regions from S. cerevisiae

Centroid eAMI profiles are presented in Figure 5.6 for lags 1-4. Subsequent lags

are omitted for brevity, but they bear resemblance to those presented. The presence

of strings of thymine is most indicative of a noncoding region. This would occur in

the opposite strand of a poly(A) tail downstream of a coding region. Noncoding

regions are more symmetric, in the sense that complementary nucleotide pairs have

similar abundance. This is due to the relatively higher likelihood of the opposing
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strand of a noncoding region also being noncoding.

Figure 5.6: Centroid eAMI profiles for coding and noncoding regions from S. cere-
visiae

Figure 5.7: Centroid eaAMI profiles for coding and noncoding regions from S. cere-
visiae
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Centroid eaAMI profiles are presented in Figure 5.7 for lags 1-4. Again,

subsequent lags are omitted for brevity.

5.3.2 k-mer Profiles

Centroid k-mer profiles for coding and noncoding regions of length 12800 are

presented in Figure 5.8 for k = 1− 3. Subsequent values of k are omitted for

brevity. Similar themes are demonstrated in both the k-mer profiles and the eAMI

magnitudes. In particular, 2-mer profiles are inherently identical to eAMI profiles

for k = 1. k-mers consisting of consecutive thymine nucleotides are enriched in

noncoding regions, as are k-mers of alternating AT. GC content is higher in coding

regions, as expected, and this is captured in the 1-mer profile. It should be noted

that 3-mers are not a direct measure of codon abundance. The k-mer profiles

include the occurrence of each overlapping k-mer in a sequence. Codons in a coding

sequence are thus included, but so are k-mers comprised of part of two adjacent

codons. Several of the 3-mers that occur at higher rates in coding regions consist of

adenosine and guanine, particularly AGA and GAA.
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Figure 5.8: Centroid k-mer profiles for coding and noncoding regions

5.4 AMI Convergence Behavior

As noted earlier, mean AMI is approximately inversely proportional to length for

randomly-generated sequences. This presents difficulties in comparing the profiles of

short sequences that vary in length. One strategy for remedying the inconsistent

magnitudes is to multiply AMI values by sequence length in order to normalize

them. However, the utility of this normalization depends on how closely the subject

sequence resembles a random sequence. A random sequence’s AMI will converge to

zero, while a structured sequence’s AMI will converge to some value greater than

zero. This is true of both coding and noncoding regions, as seen in Figure 5.9.

Interestingly, the two categories have very similar AMI magnitudes, though the

profiles themselves are markedly different. Sequences of roughly 1000 or more base

pairs diverge from the random baseline.
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Figure 5.9: Mean AMI values (normalized by sequence length) for coding and noncod-
ing regions from S. cerevisiae, with values for random sequences shown for reference

5.5 All Species Predictions

In order to evaluate the robustness of this method, we applied it to 82 genomes,

consisting of 70 bacteria, 1 archaea, and 11 eukaryotes. For length 100 base pair

sequences, eAMI produced the highest AUC in 78 of the 82 species considered.

AUC results for all profile types and species are summarized in the histograms in

Fig. 5.10. The eAMI SVM performed best for the lone archaea, M. maripaludis

(0.971 AUC, 92.7% sensitivity, and 89.6% specificity), and worst for A. nidulans

(0.826 AUC, 80.5% sensitivity, and 68.7% specificity).
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Figure 5.10: AUC distribution for all three profiles across all 82 species.

For length 1000 base pair sequences, eaAMI outperforms eAMI in 70 of the 82

species. This suggests that for shorter sequences, eAMI provides better

discrimination, while for longer sequences, eaAMI is preferred. The length threshold

at which eaAMI begins to outperform eAMI is about 250 base pairs, as shown in

Figure 5.11. Figure 5.11 also shows the impact of using an SVM trained on a set of

1000 base pair sequences, rather than an SVM trained on a set of sequences the

same length as the test sequences. There is virtually no degradation in performance

for eAMI profiles, and only a significant impact on very short sequences for eaAMI

profiles. This is practically beneficial, as it implies there is no need to train models

for many different lengths in order to make optimal predictions on sequences that

vary in length. Generally, we would only need to train two models: an eAMI model

trained on 250 bp sequences, and an eaAMI model trained on 1000 bp sequences.
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Figure 5.11: Median AUC across all 82 species for SVMs on each type of profile given
sequences of increasing length. Solid lines are results when the SVM was trained on
a set of 1000 bp sequences. Dashed lines are results when the SVM was trained on a
set of sequences the same length as the test sequences.

5.6 Cross-Species Predictions

Many of the structural constraints imposed on coding (and noncoding) regions

are common to all known life. The cellular machinery used to produce proteins is

fundamentally identical irrespective of species; the chemistry dictating the protein’s

behavior is inescapable; the protein functions required for survival and reproduction

have considerable overlap across all of life’s diversity. These similarities imply the

existence of universal sequence features that the profiles should be able to extract.

We can evaluate this by training an SVM on one species and using that model to

predict whether sequences from a different species are coding. For closely related

species, there are likely to be coding region features specific to their evolutionary

lineage. For disparate species, any success achieved by the model is likely to reflect

universal features common to all coding regions.
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(a) eAMI and eaAMI profile SVMs (b) Glimmer

Figure 5.12: AUC distributions across all pairwise cross-species predictions

AUC results for all profile types and species are summarized in the histograms in

Fig. 5.12 for length 1000 base pair sequences. Analogous results obtained using

Glimmer are shown for reference. Median AUC, sensitivity, and specificity for each

profile are shown in Table 5.1. Sensitivity is consistently higher than specificity

when applying the SVM to different species, indicating that SVM scores for both

coding and noncoding sequences are shifted higher on aggregate compared to the

sequences used for training. To remedy this, one may wish to increase the decision

threshold. This would improve sensitivity with only limited impact on specificity.

As with single-species results for this sequence length, eaAMI produces better

results on average than eAMI, and is also considerably more consistent. 95.4% of

cross-species predictions made using eaAMI profiles resulted in AUC greater than

0.9, compared with 76.6% of predictions using eAMI profiles.
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Table 5.1: Median cross-species results for all profiles using length 100 and 1000 base
pair sequences

100 bp Sequences 1000 bp Sequences

AUC Sensitivity Specificity AUC Sensitivity Specificity

eaAMI 0.788 0.606 0.837 0.991 0.904 0.985

eAMI 0.847 0.672 0.840 0.970 0.703 0.983

AMI 0.515 0.494 0.540 0.737 0.678 0.727

Glimmer 0.694 0.253 0.884 0.832 0.122 0.996

Cross-species results for several members of the Aspergillus genus are presented

in Table 5.2. All predictions had AUC scores of at least 0.97. Results for several

members of the Gammaproteobacteria class are presented in Table 5.3. All are well

known human pathogens. Despite being less closely related (i.e. belonging to the

same class instead of the same genus), there seem to be more identifiable similarities

in their coding region sequences. Most cross-species SVM scores have near-perfect

separation between coding and noncoding sequences, with no AUC scores less than

0.98.

Table 5.2: Cross-species coding region prediction results for selected Aspergillus
species using eaAMI profiles. SVMs were trained on length 1000 sequences from the
species denoted in the row headers, and used to classify sequences from the species
denoted in the column headers.

A. nidulans A. fumigatus A. niger A. oryzae

Train AUC SN SP AUC SN SP AUC SN SP AUC SN SP

A. nid 0.98 0.94 0.93 0.99 0.96 0.93 0.99 0.96 0.93 0.97 0.92 0.91

A. fum 0.98 0.93 0.94 0.99 0.94 0.95 0.99 0.94 0.94 0.97 0.89 0.93

A. nig 0.98 0.95 0.92 0.99 0.96 0.92 0.99 0.96 0.93 0.97 0.92 0.90

A. ory 0.98 0.97 0.90 0.99 0.97 0.89 0.99 0.97 0.91 0.98 0.94 0.91
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Table 5.3: Cross-species coding region prediction results for selected species of the
Gammaproteobacteria class using eaAMI profiles.

A. baumannii S. pneumoniae S. enterica V. cholerae

Train AUC SN SP AUC SN SP AUC SN SP AUC SN SP

A. bau 1.00 0.97 0.99 1.00 0.88 0.99 1.00 0.96 0.99 1.00 0.96 0.99

S. pne 1.00 0.97 0.98 1.00 0.98 0.99 0.99 0.87 0.98 0.99 0.94 0.94

S. ent 0.99 0.88 0.99 0.99 0.86 0.99 1.00 0.97 1.00 1.00 0.94 1.00

V. cho 0.99 0.95 0.97 0.99 0.88 0.99 1.00 0.97 0.98 1.00 0.98 0.99

Results for a broad range of organisms are presented in Table 5.4. All three

domains of life are represented, along with two Eukaryotic kingdoms. Perhaps most

striking is that models trained on all four species could nearly perfectly predict

coding regions in the Archaea M. maripaludis. The mold A. nidulans was most

difficult to predict, with an AUC as low as 0.92. Still, considering the vast time

scale over which these species have been diverging, eaAMI appears to be highly

robust in differentiating coding and noncoding regions across all life.

Table 5.4: Cross-species coding region prediction results for selected highly divergent
species using eaAMI profiles.

H. sapiens A. nidulans M. maripaludis S. pneumoniae

Train AUC SN SP AUC SN SP AUC SN SP AUC SN SP

H. sap 0.99 0.94 0.97 0.93 0.69 0.94 0.99 0.74 1.00 0.99 0.83 1.00

A. nid 0.93 0.66 0.97 0.98 0.94 0.93 1.00 0.98 0.99 0.99 0.92 0.96

M. mar 0.89 0.59 0.98 0.93 0.66 0.94 1.00 1.00 1.00 0.99 0.84 1.00

S. pne 0.94 0.86 0.89 0.92 0.93 0.70 1.00 0.98 0.99 1.00 0.98 0.99

Table 5.5: Cross-species coding region prediction results for selected species of the
Gammaproteobacteria class using Glimmer.

A. baumannii S. pneumoniae S. enterica V. cholerae

Train AUC SN SP AUC SN SP AUC SN SP AUC SN SP

A. bau 0.92 0.94 0.44 0.79 0.69 0.83 0.30 0.12 0.65 0.64 0.62 0.57

S. pne 0.80 0.73 0.80 0.96 0.98 0.44 0.21 0.03 0.87 0.41 0.24 0.78

S. ent 0.91 0.32 0.99 0.85 0.07 1.00 0.98 0.99 0.43 0.94 0.66 0.99

V. cho 0.96 0.77 0.97 0.93 0.54 0.98 0.91 0.88 0.76 0.98 0.98 0.59
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5.6.1 Genome Scanning Predictions

While the above results are indicative of this method’s utility in differentiating

coding and noncoding regions, in practice the sequences of interest will not be

purely coding or noncoding. When searching for genes in an unannotated genome,

we may slide a window along the genome and apply the trained model on that

window. If the window includes a gene’s start and/or stop codon, or if it includes

both introns and exons, it will include both coding and noncoding segments. For

the purpose of this binary analysis, we declare the window to be coding if it consists

of at least 50% coding regions.

Results of this procedure for a pair of Aspergillus species and a pair of

Gammaproteobacteria species appear in Figure 5.13. For 1000 base pair sequences,

there is about a 0.1 AUC deterioration compared to the pure coding/noncoding

region predictions. Interestingly, eAMI appears to outperform eAMI, particularly

for the Aspergillus pair. This is likely due to eAMI’s superior performance for

shorter pure sequences, as this suggests eAMI requires less information in order to

provide some level of differentiation. While this measure of AUC improves with an

increasing window length (up to about 1000 base pairs), this is achieved by

sacrificing resolution. Shorter window lengths may better facilitate identifying

where a gene begins and ends, while longer window lengths are better at

determining if a gene is present. The presence of introns would certainly complicate

such gene-finding endeavors.

For species whose protein-coding genes have few introns, locating coding regions

is much simpler. We can first identify open reading frames (ORFs) along the

genome, then apply the prediction methodology to this list of ORFs. Because we

observed that the models are largely agnostic to length, ORFs of virtually any
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(a) Results for V. cholerae using models trained on S. enterica

(b) Results for A. fumigatus using models trained on A. niger

Figure 5.13: Prediction results for genomes partitioned into variable-length sequences.
For each window length (in base pairs), an SVM is trained on the genome of a species
closely related to the species of interest.

length can be tested with the same model. Since longer sequences have better

predictive performance, we would have more confidence in a prediction made about

a long ORF than one made about a short ORF.
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Chapter 6

Essential Genes

Supposing we have now successfully identified all of the protein-coding genes on

a newly sequenced genome, there are still many questions that remain. One such

question is how critical is each gene to the organism’s survival. Not all genes are

expressed at all times, so there are many genes that a given organism could live

without under normal conditions. Identifying which genes are needed and which are

not has important ramifications in fighting infections diseases.

6.1 Essential Gene Background

Organisms live and reproduce in a variety of environmental conditions. These

various conditions expose the genome to evolutionary pressures that produce genes

functionally suitable to the environment. Accordingly, there are genes whose

products increase fitness in some environments, but are not necessary (or even

expressed) in others. Conversely, each genome includes a set of genes fundamental

to the organism’s continued existence in all environments. These are aptly termed

“essential genes”.

The vital nature of essential genes makes them a topic of research interest. For
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example, consider the case of developing therapies to combat an infectious bacteria.

If the bacteria’s set of essential genes is known, such a therapy could be designed to

target the product of one of those genes.

While essential genes themselves have many functions, their importance subjects

them to unique evolutionary pressures. Mutations in essential genes that produce

functional differences may result in a nonviable organism. This may explain why

essential genes tend to be better conserved than nonessential genes, at least in

bacteria [36]. Similarly, genes of younger phyletic age are less likely to be essential,

as are duplicate genes [37].

6.2 Essential Gene Prediction

Many studies have endeavored to identify essential genes in various species.

Given the rigor required to conduct these experiments, it would be helpful if we

could predict whether a particular gene is essential. Experimental results provide a

robust training set for use in developing computational predictors. Further, several

groups have compiled databases of essential genes identified in these studies. The

Database of Essential Genes (DEG) has been used to train classifiers on

information-theoretic measures such as mutual information [38]. Our investigation

focuses on the Online Gene Essentiality Database (OGEE), which includes a larger

swath of experimental datasets than DEG [39]. In particular, the OGEE set contains

more experimentally-confirmed nonessential genes. This is important because our

prediction methodology requires a training set consisting of both classes. As with

DEG, OGEE has been used to train effective computational predictors [40].
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6.2.1 Prediction Methodology

OGEE provides a list of genes along with their essentiality status. In order to

use a binary classifier, we included only those genes classified as essential (E) or

nonessential (NE). For each taxonomic ID represented, we retrieved the GTF and

CDS files from the current RefSeq assembly. We then searched the GTF file with

the OGEE gene entries and populated sets of essential and nonessential gene

sequences with hits. We consider all taxonomic IDs with at least five annotated

essential and nonessential genes. This leaves 25 bacteria, 1 archaea, and 9

eukaryotes. As with the other binary prediction methodologies documented here, we

train an SVM on profiles derived from the sequences. We use k-fold cross-validation,

with k = 5. In order to ensure a balanced dataset, we exclude all excess members of

whichever class is larger.

6.2.2 Results

A list of species along with their respective AUCs is provided for prokaryotes in

Table 6.1 and for eukaryotes in Table 6.2. The median AUC was 0.719 for

eukaryotes and 0.741 for prokaryotes, indicating marginally better performance for

species belonging to the latter kingdom. In both kingdoms, the range over which

AUC varies is quite wide.

Even among strains of the same species, performance is not entirely consistent.

For example, Salmonella enterica subsp. enterica serovar Typhi str. Ty2

(Taxonomic ID 209261) has an AUC of 0.817, while Salmonella enterica subsp.

enterica serovar Typhimurium str. SL1344 (Taxonomic ID 216597) has an AUC of

0.700. However, this performance difference may be exaggerated by the underlying

data. The former strain has 2309 documented essential genes, while the latter strain
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Table 6.1: AUC for essential gene prediction for prokaryotes included in the OGEE
database

Taxonomic ID Species Name Essential Nonessential AUC

1140 Synechococcus elongatus 691 1699 0.742

62977 Acinetobacter baylyi 251 2493 0.733

83332 Mycobacterium tuberculosis 693 3132 0.64

83333 Escherichia coli 296 3994 0.816

93061 Staphylococcus aureus 347 2420 0.774

176299 Agrobacterium fabrum 5 90 1

192222 Campylobacter jejuni 267 1224 0.62

205921 Streptococcus agalactiae 290 1614 0.818

208963 Pseudomonas aeruginosa 444 5348 0.741

208964 Pseudomonas aeruginosa 336 5179 0.779

209261 Salmonella enterica 2309 2065 0.817

216591 Burkholderia cenocepacia 162 3218 0.666

216597 Salmonella enterica 896 2782 0.7

220341 Salmonella enterica 421 3686 0.74

224308 Bacillus subtilis 228 3945 0.81

243273 Mycoplasma genitalium 381 94 0.645

267377 Methanococcus maripaludis 415 1066 0.736

272635 Mycoplasma pulmonis 407 272 0.704

293653 Streptococcus pyogenes 85 131 0.715

373153 Streptococcus pneumoniae 110 166 0.648

388919 Streptococcus sanguinis 217 1979 0.803

471876 Streptococcus pyogenes 240 1132 0.67

528354 Neisseria gonorrhoeae 695 1154 0.691

565050 Caulobacter vibrioides 543 3105 0.758

633149 Brevundimonas subvibrioides 414 2760 0.743

941322 Escherichia coli 294 4088 0.781

has 896. This suggests that different methods may have been used to determine

essential genes in each strain, and those differing methods have produced gene sets

with somewhat dissimilar feature profiles. In effect, the annotations provide a lower
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bounds on the performance of a computational predictor. Annotations that are

inaccurate or incomplete will necessarily be detrimental to such efforts.

Table 6.2: AUC for essential gene prediction for eukaryotes included in the OGEE
database

Taxonomic ID Species Name Essential Nonessential AUC

3702 Arabidopsis thaliana 484 115 0.559

5823 Plasmodium berghei 1191 905 0.675

6239 Caenorhabditis elegans 503 7255 0.903

7227 Drosophila melanogaster 399 7028 0.719

36329 Plasmodium falciparum 3284 1989 0.653

185431 Trypanosoma brucei 82 132 0.747

330879 Aspergillus fumigatus 100 156 0.777

425011 Aspergillus niger 7 75 0.776

580240 Saccharomyces cerevisiae 919 3616 0.651

6.2.3 Profile Analysis

This method produced the most accurate predictions for C. elegans and S

agalactiae. This excludes A. fabrum, which has only 5 annotated essential genes.

The majority of the elements included in the profiles used to train the SVMs

contribute little. We can evaluate the merits of each by sweeping a prediction

threshold across the range of magnitudes and calculating the AUC. The distribution

of AUC values for all features considered is shown in Figure 6.1. The bulk of these

values are near 0.5, indicating that the feature magnitude is similar in essential and

nonessential genes. Such features are not good candidates for distinguishing

between the two sets.

Despite the evolutionary distance between them, there is still considerable

overlap in high-AUC features between the two species considered here. C. elegans

has 104 features with an AUC above 0.65, while S. agalactiae has 23. Of those, 17
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Figure 6.1: Distribution of AUCs for each individual feature included in the profiles
considered

are in common. The average magnitudes of those selected features in essential and

nonessential genes are shown in Figure 6.2. It is clear that many of those features

will be highly correlated with each other. For example, since AT is a substring of

ATA, the abundance of each will be linked. Likewise, AT is a significant nucleotide

pair in the eAMI profiles for both k = 1 and k = 2. This partially explains why the

SVM performs only slightly better than the most discriminating individual feature.

6.2.3.1 Effect of Dimensionality Reduction

In order for the SVM to discriminate between classes, there must be separation

between the training data for members belonging to those classes. This is true of

any classifier utilizing a supervised machine learning model. This separation can be

present in any dimension(s). As long as one such dimension exists, the other

dimensions in the data will have negligible effects on the classifier’s accuracy even if

they have no predictive value. For this reason, it is tempting to be liberal in the
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Figure 6.2: Comparison of selected features from profiles for essential and nonessential
genes in a prokaryote and a eukaryote. Labels of the form “k = n−N1N2” indicate
an element of the eAMI profile with lag n and nucleotide pair N1N2. The remaining
labels represent k-mers.

quantity of information included in the training data. However, there is a practical

reason to be judicious. Given higher dimension data, the SVM will require more

time to converge. Thus, we would prefer to avoid saturating the model with

information for no other reason than blind hope. As noted in Figure 6.1, the vast

majority of the elements in the profile have virtually identical compositions in both

classes. This is not a guarantee that the element will not assist the classifier, but it

is strongly indicative.

As mentioned earlier, we can measure the individual contributions of each
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component by calculating the AUC derived by considering that component in

isolation. We can then assemble a low dimension profile by ranking components

according to their AUC and selecting only those with the highest rank. As long as

we include a sufficient subset of the original profile, we can achieve the same

predictive performance while significantly reducing the time required. In order to

determine how many components we need to keep, we repeat the essential gene

prediction methodology while increasing the cardinality of the profiles. At each

step, we calculate the average relative AUC across all species. “Relative AUC”

refers to the ratio of AUC for low dimension data to the AUC for full dimension

data. The results of this are presented in Figure 6.3 (plot labeled “High-AUC

Features”). They suggest that our profile needs to include at least 20 of the features

with the highest AUC.

Figure 6.3: Effect of dimensionality reduction on predictive performance, as measured
by AUC (relative to AUC without dimensionality reduction applied)

We also examine the impact of applying PCA to the data. Average relative AUC

given dimensionality-reduced data via PCA is shown in Figure 6.3. While AUC



63

degrades significantly if only a few principle components are included, it increases

quickly as more are added. AUC continues to increase slowly for more than 6

components.

6.2.4 Leave-One-Out Predictions

Training and testing a different SVM for each species provides a proof of concept

and yields insights into what distinguishes essential and nonessential genes for that

species. However, a more practically useful application would be to train the SVM

on some composite set of annotated genomes and to use this model to predict

essential genes for a novel genome. We can test this case by assigning one genome

as “novel” and training the model on the remaining annotated genomes. This

approach is called leave-one-out cross-validation. Repeating this for each genome

gives us a general idea of the accuracy of such real-world predictions. These results

are provided in Table 6.3. For reference, analagous results reported in [2] are also

provided.

For single genome predictions, the results using the combined AMI and k-mer

profiles are very similar or even slightly better. The median AUC for our method

was 0.741, compared to 0.735 for Liu et al. In contrast, our method performed

markedly worse in making leave-one-out predictions (0.685 median AUC, compared

to 0.771). This is somewhat surprising given that there was substantial similarity in

the high-AUC elements of the profiles for even distantly related species. It is

possible that better results could be achieved if the test were repeated using profiles

consisting of only the high-AUC elements. Alternatively, cross-species training could

be used rather than leave-one-out, which would still work for predicting essential

genes for a newly sequenced genome. A single species used for training may provide

a better template for the SVM than the potentially noisier leave-one-out framework.
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Table 6.3: Comparison of results with those obtained by Liu et al. [2] for both sin-
gle genome predictions (denoted “AUC-S”) and leave-one-out predictions (denoted
“AUC-LOO”)

Taxonomic ID Species Name AUC-S AUC-LOO AUC-S AUC-LOO

Liu et al. Our Method

62977 A. baylyi 0.775 0.753 0.733 0.687

83332 M. tuberculosis 0.674 0.699 0.640 0.547

83333 E. coli 0.735 0.833 0.816 0.762

93061 S. aureus 0.789 0.802 0.774 0.685

192222 C. jejuni 0.557 0.552 0.620 0.502

208963 P. aeruginosa 0.658 0.648 0.741 0.658

208964 P. aeruginosa 0.670 0.657 0.779 0.692

209261 S. enterica 0.721 0.845 0.817 0.585

216597 S. enterica 0.738 0.788 0.700 0.482

224308 B. subtilis 0.803 0.771 0.810 0.792

272635 M. pulmonis 0.768 0.642 0.704 0.645

293653 S. pyogenes 0.724 0.832 0.715 0.692

388919 S. sanguinis 0.751 0.813 0.803 0.740



65

Chapter 7

Gene Function and Location

Perhaps the most interesting (and most difficult) question about a

protein-coding gene concerns the function of that protein. While this is not

necessarily a question with a binary answer, we can formulate it as a binary

classification problem by asking whether a gene belongs to a particular functional

category or not. This allows us to continue with our prediction methodology from

the previous chapters unabated. To supplement this, we also apply enrichment

analysis to lists of genes sorted by profile distance to demonstrate the statistical link

between function and profiles.

7.1 Gene Ontology Background

A protein’s function is determined by its underlying amino acid sequence and

the environment in which it exists. While environment varies widely and is difficult

to characterize computationally, its sequence is reasonably fixed, and increasingly

accessible. Thus, the protein’s primary amino acid sequence (and the DNA sequence

of its corresponding gene) can be used to predict functional information about the

protein. The accuracy of such predictions can be measured by comparing them to
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the protein’s experimentally-determined gene ontology (GO) annotations. The GO

Consortium has developed a systematic, hierarchical vocabulary of terms for

describing the characteristics of proteins under three domains: molecular function,

biological process, and cellular component [41,42]. The annotation for each protein

consists of a list of GO terms, and, implicitly, all of those terms’ ancestors. Thus,

functional predictions are made by selecting a set of GO terms that are believed to

apply to a given protein.

7.2 GO Term Enrichment Analysis

Prior to attempting GO term predictions, we will attempt to demonstrate that

these profiles contain information about the GO term annotations generally.

Evaluation of the various profiles is done using GO term enrichment analysis. This

is performed by the ermineJ gene set analysis tool, which identifies enriched terms

in ranked lists of genes [43]. A simple method of generating such lists is to sort all

genes’ profiles according to their distance to some target gene of interest. For each

distance metric, the same subset of 1000 randomly selected target ORFs are

analyzed. All other ORFs are ranked with respect to each of these target ORFs,

and the 1000 ranked lists are used as input to ermineJ. We use ermineJ’s ROC

method of determining GO term significance. GO terms that cluster towards the

beginning of the ranked lists will produce an ROC curve with higher AUC, and this

indicates that the term is significant. If the profiles have no correlation to the GO

terms, these lists will be random and no enriched GO terms will be identified.

Instead, we find that the lists provided to ermineJ each produce many

purportedly enriched GO terms. This is shown in Figure 7.1. This is evidence that

the GO terms are related to the profiles in some way. The nature of that

http://erminej.chibi.ubc.ca/
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Figure 7.1: Median GO term enrichment (as measured by log10[Corrected p-value])
for the 60 most enriched terms output for each of the 1000 target genes.

relationship is murky, however. It is tempting to suppose that a statistically

enriched term is likely to belong to the target gene’s GO annotation. This turns out

to not be the case. In fact, there is significant overlap in the sets of enriched terms

identified for each target. These common terms may still have some relation to the

type of profile used to produce them, but it is clear they do not provide information

about the gene in which we are interested.

Thus, we discard enriched terms if ermineJ indicates they are enriched in at

least 10% of the target genes analyzed. We are left with much more realistic

p-values, as shown in Figure 7.2. The average number of enriched terms identified

using each profile is presented in Figure 7.3. Interestingly, 6-mers produced terms

with the lowest p values, but the fewest enriched GO terms after pruning common

terms. This illustrates the misleading nature of the unpruned term lists. The

pruned lists likely give a more accurate picture of the various profiles’ capacity to

predict GO terms.
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Figure 7.2: Median GO term enrichment (as measured by log10[Corrected p-value])
for the 60 most enriched terms output for each of the 1000 target genes. Commonly
enriched terms are removed.

Figure 7.3: Average number of enriched terms (p<0.05) identified using each profile
across all target genes

The terms that remain following pruning are both statistically significant and
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specific, insofar as each gene is assigned a predominately unique set of terms. These

terms are likely to be in some way related to the target gene, but this is difficult to

verify, as few of them match any of the gene’s experimentally-assigned terms. We

can reasonably conclude that such enrichment analysis is not effective in making

binary GO term predictions, though it may have utility in some contexts. We will

next explore more effective prediction methodologies.

7.3 GO Term Prediction

Ultimately, we would like to select an unannotated gene of interest and

determine to which GO terms it belongs. For several years, this has been the

objective of the Critical Assessment of Functional Annotation (CAFA) project [44].

Researchers submit computational methods for predicting protein function, and

CAFA evaluates them on a test set of GO terms. There have now been 3 published

iterations of this assessment, with another currently in progress. CAFA provides a

useful framework for evaluating predictions on both term-centric and gene-centric

bases, and we will use that framework to evaluate an AMI-based classifier.

7.3.1 Prediction Methodology

We predict GO terms using SVMs trained on the gene’s profile vectors. An SVM

is trained and tested for each GO term annotated to at least 2 S. cerevisiae genes.

Genes belonging to the term comprise one class, and all other genes comprise a

second class, resulting in a simple binary classification problem. K-Fold

cross-validation is used to evaluate the models generated from the training sets,

with K = 5. Once each of the 5 models is trained, they are used to score the genes

in the corresponding test set. Raw SVM scores are converted to an estimate of the
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probability that each gene belongs to the term given its profile, resulting in scores

between 0 and 1. This mapping is done using a sigmoid function modeled on the

training data. These scores are used to evaluate the performance of the predictor

using two methods: the term-centric average AUC, and the gene-centric Fmax

measure.

7.3.2 Performance Metrics

Receiver operator characteristic (ROC) curves are generated by incrementing a

threshold over the range of scores and “predicting” that all genes whose SVM scores

are higher than the threshold belong to the term in question. Based on these

predictions, we calculate the true positive rate (correctly predicting a gene

belonging to the term) and false positive rate (incorrectly predicting a gene

belonging to the term) at each threshold value. True positive rate (TPR) and false

positive rate (FPR) for a given threshold τ are defined for each term f as:

TPR(τ) =

∑
i 1(f ∈ Pi(τ) ∧ f ∈ Ti)∑

i 1(f ∈ Ti)

FPR(τ) =

∑
i 1(f ∈ Pi(τ) ∧ f /∈ Ti)∑

i 1(f /∈ Ti)

where Pi(t) is the set of terms that have a score greater than or equal to t for

gene i, and Ti is the set of terms annotated to the gene. 1() is the standard indicator

function. The area under the curve (AUC) is used to evaluate the effectiveness of

the predictor for individual GO terms. It is calculated using the trapezoid rule.

AUC is a good performance metric in part because of its intuitive interpretation.

Given one randomly-selected gene belonging to a term and one randomly-selected

gene not belonging to the term, AUC is the probability that the former will have a
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higher score than the latter. Thus, an AUC of 0.5 indicates that the predictor has

no value in predicting which genes belong to terms. An AUC of 1.0 indicates that

all genes belonging to the term are assigned scores higher than any of the genes that

do not belong to the term (i.e. the two sets are perfectly separated).

In order to assess the overall effectiveness of the predictor, the AUCs for all GO

terms are averaged. Additionally, GO terms are grouped according to their domain,

and the average AUC for each domain is calculated. This is used to gauge how

predictor performance varies depending on what broad category of descriptor is

subject to prediction.

Precision-recall curves are also generated by incrementing a threshold over the

range of SVM scores. For each threshold, each gene is individually predicted to

belong to all GO terms for which its SVM score was above the threshold. The

precision for a particular gene i and threshold τ is defined as the number of correct

predictions over the total number of predictions:

pri(τ) =

∑
f 1(f ∈ Pi(τ) ∧ f ∈ Ti)∑

f 1(f ∈ Pi(τ))

Recall is defined as the number of correct predictions over the total number of

terms annotated to the gene:

rci(τ) =

∑
f 1(f ∈ Pi(τ) ∧ f ∈ Ti)∑

i 1(f ∈ Tf )

Both precision and recall are averaged over all genes to obtain curves that vary

with threshold. Then, Fmeasure is determined by calculating the harmonic mean of

precision and recall at each threshold as such:

Fmeasure(τ) =
2 · pr(τ) · rc(τ)

pr(τ) + rc(τ)
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Fmax is, appropriately, the maximum value of Fmeasure over all thresholds:

Fmax = max
τ

Fmeasure(τ)

7.3.3 Profile Generation

First, profile vectors are generated for each gene by calculating the frequency of

occurrence of each of the 64 possible codons. That is, each gene is assigned a vector

in R64 space, and the SVM is trained on this space.

Second, profile vectors are generated for each gene by calculating the eAMI.

Lags k of 1-6 (inclusive) are used. Since eAMI produces 16 values for each selected

lag, the resulting profile vectors are in R96 space.

7.3.4 Baseline Method

In following the performance evaluation used by CAFA, we use the “naive”

baseline method to compare our results against. The naive method is so-called

because it does not use any gene/protein information to form its predictions. It

simply calculates the frequency of each GO term and applies this value as the

prediction score to all genes for that term. Because all genes receive the same score,

this method inherently produces AUC values of 0.5. That is, the method is not

useful in determining which genes belong to a particular term, but only which terms

apply to a particular gene. As such, it does produce Fmax values greater than 0.

This method demonstrates the importance of centering ones prediction scores

around the term frequency. If this is not done, Fmax will be “bad” regardless of how

well the method predicts individual terms (as measured by AUC), because the

predicted term frequencies will deviate from the actual frequencies, resulting in

either inflated false positives or negatives.
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Table 7.1: Comparison of different methods by the Fmax they produce for each GO
domain across all S. cerevisiae genes

Method Biological
Process

Cellular
Component

Molecular
Function

All

Naive 0.337 0.582 0.218 0.399
eAMI 0.370 0.600 0.275 0.432
k-mer 0.379 0.606 0.287 0.441
eAMI and k-mer 0.382 0.608 0.292 0.443

7.3.5 Results

Both profiles produced results that indicate some degree of utility in

discriminating genes according to function. The results for Fmax are summarized in

Table 7.1. Precision, recall, and F curves are presented for eAMI and k-mer profiles

in Figure 7.4. eAMI profiles yielded slightly better Fmax values than the naive

method in all domains. Codon frequencies performed better still, albeit not to a

significant degree. Overall, they provided about 10% improvement over the naive

method. The predictions yielded significantly better Fmax values for the cellular

component domain than the other two GO domains.

The results for AUC are summarized in Table 7.2. Terms are separated into a

“low abundance” set, consisting of those terms annotated to fewer than 10 genes,

Table 7.2: Comparison of different methods by the average AUC they produce across
all terms annotated to fewer than 10 S. cerevisiae genes.

Method Biological
Process

Cellular
Component

Molecular
Function

All

Naive 0.5 0.5 0.5 0.5
eAMI 0.736 0.737 0.777 0.747
k-mer 0.750 0.764 0.782 0.760
eAMI and k-mer 0.756 0.765 0.796 0.768
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(a) Molecular Function (b) Cellular Component

(c) Biological Process (d) All Domains

Figure 7.4: Precision, Recall, and F measure curves generated by predicting terms in
all three domains using eAMI (k = 1 − 6) and k-mers (k = 1 − 3) for gene profiles.
The same curves are also presented for the “naive” baseline method.

and a “high abundance” set, consisting of those terms annotated to more than 10

genes. The average AUCs and the standard error for all the AUCs obtained for each

gene set are presented in Figure 7.5. Again, the codon frequencies did noticeably

better than the eAMI profiles. Additionally, for both types of profiles, predictions

were more accurate (though also more variable) for low abundance terms.

Interestingly, performance was best for the molecular function domain, which is the

inverse of the analogous Fmax results. This likely results from how the distribution

of term frequencies varies between the three domains.
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(a) “High abundance” GO terms using
codon frequency for gene profiles

(b) “Low abundance” GO terms using
codon frequency for gene profiles

(c) “High abundance” GO terms using
eAMI (k = 1− 6)

(d) “Low abundance” GO terms using
eAMI (k = 1− 6)

(e) “High abundance” GO terms using
eAMI (k = 1− 6) and k-mers (k = 1− 3)

(f) “Low abundance” GO terms using
eAMI (k = 1− 6) and k-mers (k = 1− 3)

Figure 7.5: Average AUC in each of the three domains (BP - Biological Process, CC
- Cellular Component, MF - Molecular Function), as well as the set of all GO terms.
“Low abundance” terms are those annotated to fewer than 10 S. cerevisiae genes.
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As with any naturally-derived data set, not all elements of the profile vectors

provide the same information about the genes’ function (or, for that matter, the

same quantity of information). In order to gauge the relative importance of each

codon, we used the individual codon frequency as the prediction score for each gene

and calculated the resulting AUC. For individual terms, this indicates which codons

are inflated or deflated relative to those genes not belonging to the term. When

averaged over all terms, the AUCs for each codon provide a rough measure for how

important the occurrence of that codon is in determining what a gene does and

where it is located.

To normalize results across all terms, the relative AUC is used. This is the AUC

obtained using a single codon divided by the AUC obtained for that term using an

SVM trained using all codons. To filter out noise, only terms with an SVM-derived

AUC over 0.8 were included. The average relative AUCs are presented in Figure 7.6

for each GO domain. Relative AUC ranges from about 0.7 to 0.8. While all three

domains follow the same general trend, there are a few notable exceptions. In

particular, ATA has a higher contribution for molecular function terms than the

Figure 7.6: Average AUC each codon yields across all GO terms relative to the AUCs
obtained using a linear SVM trained using codon frequency profiles.
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Figure 7.7: The relationship between the frequency of occurrence for a codon across
all S. cerevisiae genes and the influence of the codon in determining the function
of the gene, as measured by the average AUC the codon yields across all GO terms
relative to the AUCs obtained using a linear SVM trained using codon frequency
profiles.

other domains, while ATC and ATT have lower contributions. All three of these

code for the amino acid isoleucine.

Interestingly, this measure of functional importance is correlated with the

frequency of occurrence for each codon in all S. cerevisiae genes. This is shown in

Figure 7.7. While the positive correlation is relatively weak, there appears to be a

reliable lower bound on relative AUC that is dictated by codon frequency. An

evolutionary interpretation of this is that codons do not achieve high abundance

unless they play particularly important roles in determining what genes do.

7.3.6 Performance Discussion

It is clear that for at least some GO terms, belonging to a particular term exerts

some observable influence on a gene’s profile. This influence is sufficient to produce
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strong statistical enrichment in gene lists ranked by profile distance to some target

gene. For most terms, it is also sufficient to allow a trained classifier to make

predictions that are more accurate than a naive classifier. Realistically, the utility of

this is limited. If given a particular GO term, this method would generally not be

able to identify unannotated genes that belong to it. Likewise, if given a particular

gene, this method would generally not be able to identify the terms annotated to it.

At best, it could provide a list of genes of interest for investigation. The likelihood

that members of such a list are “hits” would vary widely depending on the term.

There are several reasons why predicting GO terms is difficult in general, as well

as for this method specifically. First, most genes are assigned to multiple terms for

each namespace, while some have no annotations at all. This lack of exclusivity

results in significant overlap in the sets used to train and test different SVMs. It

also means that there is not a particularly meaningful negative set. Consider a term

that has a child term. If training a classifier for the parent term, all those genes

belonging to that term will be in the positive set, while all others will be in the

negative set. If training a classifier for the child term, the positive set will be a

subset of the parent term’s positive set. The other genes from the parent term’s

positive set will move to the negative set for the child term. One can contrive cases

in which classifiers for both parent and child terms can effectively identify genes in

the positive set. In practice, however, success for one of the two classifiers is likely

to come at the expense of the other. Of course, we can mitigate this by limiting the

set of GO terms we consider. By only considering level 1 terms, we eliminate the

problems introduced by the hierarchy. This does nothing to make this classification

methodology more useful, however. Further, prediction metrics for level 1 terms do

not outperform those for all terms, suggesting that many of the level 1 terms are too

general to imbue their member genes with some unifying sequence theme. This is
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Figure 7.8: Distribution of GO term AUC according to the term’s level in the hier-
archy, for profiles consisting of k-mers and eAMI vectors

shown in Figure 7.8. Level 1 terms are considerably less likely to be well predicted

than those terms deeper in the hierarchy. However, this trend plateaus at level 2,

after which there is not a significant change in the shape of the AUC distribution.

Second, while term frequency across genes varies widely, most terms are not

annotated to a significant number of genes. This is especially true when considering

the full set of GO terms. Even when limiting to level 1 terms, term frequency still

varies from 10−3 to 1. The SVMs output probability estimates for each gene/term

pair. The estimates are centered around the term frequency. This is intuitive,

because if the average estimate was higher or lower than the term frequency, the

classifier would predict too many or too few genes, respectively. The problem is that

this results in estimates that are unimpressive. If a term occurs in 5% of genes

(highly abundant, even for level 1 terms), then probability estimates will likely be

on the order of 0-10%. This means that even those genes with the highest scores

still have only a 10% chance of being a hit. Low abundance terms are generally
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deeper in the hierarchy, and thus more specific. Specific terms are more likely to

have some unifying characteristic that can be exploited by a classifier. Yet, low

abundance terms also present the classifier with less information with which to

exploit those characteristics.

Lastly, and most importantly, there is simply a limited amount of information

captured in the profiles. The information that is preserved has practical relevance to

several aspects of genome biology, including gene function and location. It is

sufficient to statistically discriminate between populations of genes belonging to

different functional classes, but not sufficient to identify genes belonging to those

classes. This is not surprising. S. cerevisiae genes range from hundreds to a few

thousand nucleotides. This is on the low end of the required length for AMI-based

profiles to capture trends in the sequence. Further, many of the GO terms are

inherently difficult to characterize using a generalized sequence-based profile. For

example, enzymes have an active site where the substrate binds [7]. The amino acid

sequence that composes the active site will have an inflated influence on the

enzyme’s molecular function, which will be reflected in the GO terms.

7.3.6.1 Analysis of Well-Predicted Terms

While they are the exception, there are a few GO terms that we can accurately

predict using sequence profiles. If we consider only level one terms, two terms

exceed an AUC of 0.9: “Cell Aggregation” (AUC = 0.994) and “Extracellular

Region” (AUC = 0.939). “Cell Aggregation” is a member of the Biological Process

namespace and there are 9 genes with annotations for the term. “Extracellular

Region” is a member of the Cellular Location namespace and there are 27 genes

with annotations for the term. Centroid profiles for the terms and their respective

negative sets are shown in Figure 7.9.
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(a) Cell Aggregation

(b) Extracellular Region

Figure 7.9: Centroid profile for genes annotated to the specified GO term, along
with centroid profile for genes without such an annotation. Only the features with
maximum difference between the two profiles are shown, with difference descending
from left to right.

Abundance of the codons ACT, ACC, ACA, and TCT is elevated in genes

annotated with “Cell Aggregation”. ACT, ACC, and ACA correspond to the amino

acid Threonine, and TCT codes for Serine. Both amino acids appear to be required

for the GO term. “Extracellular Region” does not appear to have such a strong

relationship to one or more amino acids. Instead, the nucleotide pair CT occurs

frequently, generally occupying the last two slots in a codon.
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Chapter 8

Conclusion

We have demonstrated the utility of average mutual information (AMI) and its

derivatives in providing insight on the behavior of genomic sequences. Without

overstating their significance, in each of the proposed applications, all evaluated

profiles produced results better than random chance. This is a low bar, but suggests

that each tested feature is somehow embedded in the genome sequence, and each

profile preserves some of this information. A consistent theme in the results was

that eAMI and eaAMI outperformed AMI. From this we infer that the averaging

stage of computing AMI is indeed discarding useful information.

AMI profiles provide useful insight into the divergence of evolving species.

Because they do not require sequence alignment, distances based on AMI profiles

offer a major advantage over most alternative methods of measuring distance.

Phylogenetic trees generated by measuring pairwise distances between species’ AMI

profiles resemble the accepted phylogeny. Distance between the AMI profiles of

different species reflects, to an extent, the time since the species diverged. In

general, correlation distance between AMI profiles appears to be a more robust

measure of evolutionary distance.
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Ostensibly, the most impressive results presented in this work were those for

coding region prediction. This in itself is not surprising, as it was undoubtedly the

simplest classification problem posed. Still, the demonstrated robustness of our

methodology to accurately predict coding regions for species across the entire

spectrum of life is very promising. Given the rapid pace of novel genome

sequencing, projected demand for computational gene-finding tools is high. A

marker that is indicative of coding regions and can be applied universally to any

species is an important step towards that goal.

8.1 Future Work

8.1.1 Phylogenetic Tree Construction

Future work will focus on identifying what classes of sequences work best for

constructing phylogenies using AMI profiles. Surprisingly, when we attempted to

use whole genomes, the trees were not as accurate as when using only the ITS

sequences, so we do need to be selective. We will further investigate how evolution

(when occurring under real biological constraints) of different sequences affects the

AMI profiles. We are also interested in pursuing why eAMI performed so poorly

when it did well in other applications. Finally, we would like to more thoroughly

characterize how features of the AMI profile arise from the underlying biology of the

sequence.

8.1.2 Classifier Optimization

The classifications described in this work were performed almost exclusively

using linear Support Vector Machines. This was deliberate, as SVMs offer many

appealing attributes, including speed, convergence behavior, and performance in the
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presence of noise. Our limited digressions into alternative classifiers (or SVMs using

different parameters, including kernels) were largely fruitless. Still, for each

classification problem we consider, there is unquestionably some methodology that

would provide better discrimination than the SVM.

8.1.3 Genome Annotation

Ideally, the classification techniques presented in this could be included in an

annotation pipeline for newly sequenced genomes. While we focused on proof of

concept for coding region prediction, we believe that this could be adapted to

effectively identify protein-coding genes, certainly in prokaryotes and perhaps in

eukaryotes as well. In the case of prokaryotes, it is likely sufficient to identify all

open reading frames in a genome and evaluating each to determine the likelihood it

is a gene. For eukaryotic genes, we would need to devise a strategy for determining

boundaries between introns and exons. Once a potential gene is identified, we could

further make predictions about its function, location, and essentiality, according to

the methods described in this work. Another potential application is in assessing

the translational efficiency of a gene. This refers to how readily the organism

expresses the gene, and is determined by the gene sequence, as well as features

upstream and downstream of the gene. While these predictions may not have a high

degree of accuracy, they could be used to provide direction for future research.
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