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9

Hydrodynamics
(Fluids in Motion)

9-1 Steady Flow of a Liquid

When a liquid flows through a pipe in such a way that it completely fills
the pipe, and as much liquid enters one end of the pipe as leaves the other
end of the pipe in the same time, then the liquid is said to flow at a steady
rate. At any point of the pipe, the flow of the liquid does not change with
time. The path of any particle of liquid as it moves through the pipe is

Ay
Fig. 9-1 Streamlines of a Az
liquid flowing through a pipe
at a steady rate.

called a streamline. We can map the flow of liquid through the pipe by
drawing a series of streamlines following the paths of the particles of liquid,
as shown in Figure 9-1. The instantaneous velocity of a liquid particle is
always tangent to the streamline. The rate of flow may be represented by
the density of streamlines, or the number of streamlines passing through a
surface of unit area perpendicular to the direction of flow. Thus the stream-
lines will be close together where the liquid is moving rapidly and farther
apart in regions of the pipe where the liquid is moving slowly. Similar
conventions were used to represent the direction and magnitude of the
gravitational field intensity.

Since the liquid is incompressible and there are no places in the pipe
where the liquid can be stored, the volume of liquid which flows through
any plane perpendicular to the streamlines in any interval of time must be
the same everywhere in the pipe. Consider two typical planes whose inter-

sections with the pipe have areas A; and A, perpendicular to the stream-
165



166 HYDRODYNAMICS §9-1

lines. The volume of liquid @ passing through area 4; in unit time is
Q = Ay, (9-1)

where v; is the velocity of the liquid at this point. Similarly, the volume of
liquid passing through 4, in unit time is

Q = A22)2.

Since these two quantities must be equal for steady flow, we have

Aﬂ)l = A421)2, (9-2)
o V1 AQ
£ I‘ _ = .
Vo A1

Thus the velocity of the liquid at any point in the pipe is inversely propor-
tional to the cross-sectional area of the pipe. The liquid will be moving

slowly where the area is large and will be moving rapidly where the area
is small,

lustrative Example. Water flows out of a horizontal pipe at the steady
rate of 2 ft%/min. Determine the velocity of the water at a point where the
diameter of the pipe is 1 in.
The area A of the 1-in. portion of the pipe is
T X1

4 = ft? = 0.0055 ft2
4 X 144

When we substitute the values for @ and 4 in Equation (9-1),
2 ft?

we obtain — — = 0.0055 it? X v,
60 sec
. f
rom which v = 6.10 it .
sec

Fig. 9-2 The number of streamlines enter-
ing a volume element is equal to the num-
ber leaving the volume element when
there is steady flow.

In the steady or streamline flow of a liquid, the total quantity of liquid
flowing into any imaginary volume element of the pipe must be equal to the
quantity of liquid leaving that volume element. If we represent the flow
by streamlines, this implies that the streamlines are continuous and do not
pile up anywhere within the liquid. The same number of streamlines enter
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a volume element as the number which leave it, as shown in Figure 9-2.
Another characteristic of streamline flow is that it is layerlike, or lamellar.
There is no circulation of the liquid about any point in the pipe. We might
imagine a small paddle wheel, as shown in Figure 9-3, placed in the pipe.
When the flow is lamellar, no rotation of the paddle wheel is produced by
the flow of liquid.

Fig. 9-3 A small paddle wheel placed in
a flowing liquid will not rotate when the
liquid is in steady or lamellar flow.

9-2 Bernoulli’s Theorem

The fundamental theorem regarding the motion of fluids is due to Daniel
Bernoulli (1700-1782), a Swiss physicist and mathematician. Bernoulli’s
theorem is essentially a formulation of the mechanical concept that the
work done on a body is equal to the change in its mechanical energy, in
the case that mechanical energy is conserved; that is, where there is no loss
of mechanical energy due to friction.

Let us consider the motion of an incompressible fluid of density p along
an imaginary tube bounded by streamlines, as shown in Figure 9-4. We
shall call such a tube a streamiube. Since each streamline represents the
direction of motion of a particle of liquid in steady flow, no particle of liquid
may cross a streamtube. At the left-hand end of the tube, the liquid has a
velocity vy, the tube has cross-sectional area A, the pressure is Py, and the
tube is at a height h; above some reference level. At the right-hand end of
the tube, the velocity is vy, the cross-sectional area is Ay, the pressure is Ps,
and the height is A;. When a small quantity of fluid of volume V is moved
into the tube through the action of the external fluid, an equal volume of
fluid must emerge from the streamtube against the force exerted by the
pressure Ps of the fluid outside the tube at the right-hand end of the stream-
tube. Let us imagine that the flow of fluid in the streamtube takes place
as the result of the displacement s; of a piston of area A; which just fits the
streamtube at its left-hand end such that the volume swept out by the
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motion of the piston is A;s; = V, and of a corresponding displacement sy
of a piston of area A, which just fits the streamtube at its right-hand end
such that the volume swept out by the second piston is Ays, = V; that is, a
quantity of fluid of volume V has just passed through the streamtube.
The piston at position 1 has done work on the fluid equal to the product of
the force exerted by the displacement of that force, hence the work done on

DN
N NANNNNAN

Fig. 9-4

the fluid is Py A5y, while the fluid has pushed back the piston at position 2
so that the fluid has done work on the second piston of amount PyAss,.
The net work done on the fluid is therefore equal to

P1A181 — P2A282.
Since we have assumed the fluid to be incompressible,
we have A8y = Assy = V.

From the above equations, we find that the net work done on the fluid
within the streamtube is

PV — PV,

If there was no loss of energy of the fluid due to frictional forces, this work
done on the fluid in the streamtube must have resulted in a change of
mechanical energy of the liquid which flowed into the tube at position 1
and out of the tube at position 2. The sum of the potential and kinetic
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energies of the liquid flowing into the tube at position 1 is pVgh, + 3oV4?,
while the sum of these energies of the liquid flowing out of the tube at
position 2 is pVghy + 3pVv3. Equating the work done on the fluid to the
difference in its energy, we find

PV — P,V = pVghy + %va% — (oVgh; + %va%). (9-3a)

Dividing the equation through by V and transposing all quantities with
subscript 1 to the left-hand side and all quantities with subscript 2 to the
right-hand side of the equation, we find

P1 + pghy + 3007 = Py + pghs + 3p03. (9-3b)

This equation expresses Bernoullt’s theorem, which states that at any two
points along a streamline the sum of the pressure, the potential energy of a
unit volume of fluid, and the kinetic energy of a unit volume of fluid has the
same value. As indicated in the derivation, Bernoulli’s theorem holds
rigorously only for frictionless, incompressible, streamline flow. Bernoulli’s
theorem is a statement of the principle of conservation of energy expressed
in a form suited to the description of fluids in steady frictionless flow.

Although Bernoulli’s theorem holds rigorously only for an incompres-
sible fluid, experience indicates that it is valid for air in streamline flow at
speeds up to about half the speed of sound. (The speed of sound is about
740 mi/hr.) Actual fluids such as water and air have internal fluid friction,
or viscosity, so that, to be strictly true, the equal sign of Equation (9-3a)
should be replaced by a greater than or equal sign (), meaning that the
work done on the fluid in the streamtube is greater than, or at least equal
to, the increase in mechanical energy. Some of the work done will be con-
verted to heat energy through the action of internal friction. In examples
and problems in the application of Bernoulli’s theorem, we shall neglect the
effects of viscosity.

9-3 Torricelli’s Theorem

Let us apply Bernoulli’s theorem to the flow of a liquid out of an orifice
C at the base of a tank, as shown in Figure 9-5. We shall choose as the
reference level for the measurement of potential energy the altitude of the
emergent stream at D, where the cross-sectional area of the stream is 4, and
the velocity of the stream is v. At both positions B at the top of the tank
and D at the emergent stream, the liquid is in free contact with the air and
is therefore at atmospheric pressure Pan,. If the tank is sufficiently large
so that the flow does not appreciably change the level of liquid in the tank,
we may assume that the liquid at B is very nearly at rest; that is, the veloc-
ity of the liquid at B is zero. Applying Bernoulli’s theorem in the form of
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Equation (9-3b) to the flow of the fluid,

Patm+Pgh+0=Patm+0+%Pvzy

from which v? = 2gh,

or v = V2gh. (9-49)

If the orifice at the base of the tank has sharp edges, it may be observed
that the stream narrows as it emerges from the tank at C. The portion of
the stream with parallel sides is called the vena contracta. The narrowing of

Fig. 9-5

the stream is due to the fact that the liquid is being accelerated and has
not yet reached its final velocity. In accordance with Equation (9-2), the
cross-sectional area of the stream must be larger where the velocity of flow
is smaller.

If we wish to calculate the quantity of liquid flowing out of the tank
per second, we may apply Equation (9-1) to the result obtained in Equation
(9-4), obtaining

Q = Ay,

g0 that Q = AV/2gh.

The speed with which a liquid emerges from a tank is the same as
it would have had if it had been dropped over the top of the tank, for, in
dropping through a height 4, a unit volume of liquid would have lost po-
tential energy pgh and gained kinetic energy in equal amount. Thus

pgh = 3p0°,

so that v= 2_9?;

9-4 Venturi Tube

Let us consider a horizontal tube containing a constriction in which a fluid
is flowing, as shown in Figure 9-6. We will refer to the wide section of the
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tube by the subscript 1 and the narrow portion of the tube by the subscript
2. Applying Equation (9-3b) to the fluid flow, we find

Py + pghy + %pl’% = Py + pghsy + %pvg.
Since the tube is horizontal, hy = hs, so that
Py + 3ovf = Py + gpu3. (9-5)

From Equation (9-1) the velocity of the liquid must be greater in the con-
stricted portion of the tube, so that the pressure in the constriction must
be lower than the pressure in the wider portion of the tube.

R, A,

Fig. 9-6 The Venturi tube.

A Venturi tube finds application as a flowmeter. Referring to Kqua-
tions (9-5) and (9-1), we have

12 1.2
Py 4 5001 = Py + 303,
and
Alvl = 4421)2.

If the quantity P; — P, i1s measured by a manometer or other pressure
gauge, the two equations may be solved for v; and vy, and this knowledge
of the speed of flow determined by a pressure measurement, together with
the known areas of the tube and the constriction, suffices to determine the
rate of flow of fluid through the tube.

Although we have derived the relationship between pressure and
velocity for a Venturi tube, the same relationship is true for any case of
streamline flow. Thus, as air is entrained by a passing railroad train, the
air close to the train is moving at considerably higher speed than the air
some distance away. The pressure in the immediate vicinity of the train
is low, and passengers on the station platform are cautioned to stand back
from the edge of the platform when a rapidly moving train passes, lest the
pressure differential created by the motion of the train force the passenger
into the side of the train. Two passing ships or stunting airplanes which
get too close together may be forced to collide through the low-pressure
area between them which is created by their own motion.

There are many applications of the Bernoulli theorem utilizing varia-
tions of the Venturi tube. For example, the aspirator, sketched in Figure
9-7, is used as a vacuum pump. Water from a faucet flows through the
horizontal tube and comes out of the constriction with a high velocity, thus
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reducing the pressure P in this region below atmospheric pressure. The
tube T' may be connected to a chamber to be evacuated, and the pressure
in it may be reduced to about the vapor pressure of water, usually about
2 or 3 cm of mercury. The same type of design is used for a chemical filter
pump. A jet pump used in raising water from a well drives water through a

Fig. 9-7 An aspirator.

restricted orifice similar to that in Figure 9-7, and the pressure of the
outside air forces the well water into the tube T' and into the moving water
stream. A similar design of tube, except that air is blown through the
horizontal tube and constriction of Figure 9-7, is used in pneumatic con-
veyers of sand, grain, and other granular materials.

lustrative Example. Water is flowing through a horizontal Venturi tube
at the rate of 100 ft3/min. The pressure in the wide portion of the tube is 15
Ib/in.2, and its diameter is 6 in. Determine the pressure in the narrow portion
of the tube, called the throat, whose diameter is 3 in.

The area of the tube 4, is

Ay =Tt
16
while the area of the throat A, is
Ap = 12
64

From Equation (9-2), we have
Q = A1v1 = A21)2.
Substituting numerical values, we get

100 ft3 T T
—_— = —ft? X =—ft2 X
60 sec 16 ! 64 z

from which vy = 8.5it~:
sec



§9-5 LIFT OF AN AIRFOIL 173

ft
and vy = 34—

sec
In applying Equation (9-5), as in every other equation, it is essential that a
consistent set of units be used. Now

1b 1b 1b

P, = 15—-— =15 X 144%t— = 2160“—2;
and water, which weighs 62.4 Ib/ft% has a density of
62.4 slugs
TR

Since the tube is horizontal, h; = hs, and we may write Equation (9-5) as
Py + 30 = Py + 3pv3,
and, substituting numerical values, we get

1 62.4 ft b 1 624 ftlb
P=2160— ~ —~ X (8.5)2 - - — X 2
: mi o g XN G gy XY
=1100Er
fZ
or P2=1100 b =7.64.1—b-
144 in.? in.?

9.5 Lift of an Airfoil

The lift of an airplane wing or the action of a propeller of an airplane or a
ship may be analyzed in terms of Bernoulli’s theorem. The cross section
of such an airfoil generally has a rather blunt nose and thin trailing edge
to permit the fluid medium to flow around it in streamline flow. Ideally,
an element of fluid volume parted by the airfoil will be reconstructed when
the fluid passes the trailing edge of the airfoil, as shown in Figure 9-8. This

), s

Fig. 9-8
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implies that the fluid on top of the airfoil is moving more rapidly than the
fluid at the bottom of the airfoil, so that the pressure at the top surface is
lower than the pressure at the bottom surface, creating an upward force on
the airfoil. It is for this reason that the greatest lift is often associated
with an airfoil of rather marked asymmetry. A perfectly symmetrical
wing had no lift unless it is turned at an angle with respect to the flow of
fluid, termed the angle of attack, so that the fluid moving over the top
surface travels a greater distance than the fluid moving over the bottom
surface of the airfoil. The motion of air past a symmetrical airfoil for
several angles of attack is shown in Figure 9-9.

Surfaces not normally considered to be airfoils may also experience
lift. For example, the lift on a bridge in a high wind may be several times
the drag force tending to blow the bridge off its piers.

Fig. 9-9 Smoke is used in the NACA smoke tunnel at Langley Field, Virginia, to make
the flow of air visible, as illustrated in these photographs. Note the smoothness of the
air flow in the lowest picture. When the angle of attack has been increased to 10°, the
air flow begins to separate from the upper surface of the airfoil (center view); and when
the angle is increased to 30° the flow separates completely from the upper surface.
Turbulence behind the trailing edge of the airfoil may be observed in this picture.
(Reproduced from the Journal of Applied Physics, August, 1943, with permission of the
National Advisory Committee for Aeronautics.)
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9-6 The Siphon

A siphon is a bent tube used for transferring a liquid from one vessel to
another one at a lower level. If the bent tube shown in Figure 9-10 is filled
with liquid so that streamline flow can take place, liquid will emerge from
the orifice with a speed given by Torricelli’s theorem. By applying Ber-
noulli’s theorem, we can determine the maximum height h of the bend

Fig. 9-10 Operation of a siphon.

in the tube above the level of the free liquid in the higher vessel, for a liquid
cannot, support a negative pressure, that is, a state of internal tension,
except for extremely short time intervals. If the pressure of the liquid at
its highest point is zero (or more accurately, if it is below the vapor pressure
of the liquid), the liquid will pull apart, and bubbles will form, destroying
the continuity of the liquid flow, and thus interrupting the siphon. The
limiting height of the siphon may be found by setting P, equal to zero in
Bernoulli’s equation. Thus

Patm = 0 + Pgh + %pv2;

1.2
Patm — 2oV

g

from which h =

Thus the faster the fluid flows in the siphon, the lower the bend in the tube
must be to maintain siphon flow.
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9-7 Fluid Friction; Viscosity

When a fluid, either a liquid or a gas, is set in motion, different parts of
the fluid move with different velocities. For example, if a jar of water is
tilted so that the water starts flowing out, the top layer of the water moves
over the lower part of the water. Just as there is friction when one surface
of a solid slides over another, so there is friction when one layer of a fluid
slides over another. This friction in fluids is called viscosity. When a fluid
flows through a cylindrical pipe, the part of the fluid in contact with the
pipe adheres to it and remains at rest. 'We may think of the rest of the fluid
as divided into concentric cylindrical layers, the velocity of each succeeding
inner layer increasing as we go to the center. A difference in pressure
between the two ends of the pipe is needed to maintain a steady flow
through it and oppose the force due to the viscosity of the fluid.

7 o N e,

A
JJ >

L~ ; P

Fig. 9-11

The resistance experienced by a solid moving through a fluid is due
essentially to the viscosity of the fluid. A certain amount of fluid adheres
to the surface of the solid and moves with it, and this layer drags along an
adjacent layer and so on, until, at sufficiently large distance from the solid,
the fluid is at rest. Some of the momentum of the solid has been given up
to setting the fluid in motion, and if no external force is applied, the solid
will come to rest. An additional cause of the resistance experienced by
objects moving through fluids is the turbulence set up in the fluid. When
turbulence occurs, the fluid flow is no longer streamline and cannot be
considered as taking place in layers, for the layers are sometimes broken
up into eddies in which rotational motion takes place, and sometimes into
waves. Such eddies are seen in the wake of the oars of a rowboat and occur
in the air about the wingtips or the propeller tips of an airplane. If the
paddle wheel of Figure 9-3 is placed at the center of an eddy, the paddle
wheel will turn.

To formalize the concept of viscosity, we imagine a layer of fluid
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between two flat plates, one of which is at rest and the other moving at
velocity v, as shown in Figure 9-11. The fluid in contact with the stationary
plate is at rest, while the fluid in contact with the moving plate is moving
with velocity v, and the fluid in the space between the two plates is moving
with intermediate velocities. To maintain the moving plate at a constant
speed, it is found experimentally that a force F is required which is directly
proportional to the velocity, inversely proportional to the separation of the
two plates s, and directly proportional to the area of the moving plate 4.
Calling the constant of proportionality n (eta), the coefficient of viscosity, we
find

4
F= n?v- (9-6)

From Equation (9-6) the unit of coefficient of viscosity is force times
distance divided by area times velocity. By replacing the unit of force by
its equivalent from Newton’s second law, we see that the unit of viscosity
is that of mass divided by the product of the unit of length by the unit of
time. Thus in mks units, the coefficient of viscosity is expressed in kilo-
grams per meter seconds, while in British gravitational units it is expressed
in slugs per foot seconds. In the cgs system of units a coefficient of viscosity
of 1 gm/cm-sec is called a pozse.

The coefficient of viscosity varies considerably with temperature. For
liquids the viscosity generally decreases with increasing temperature, while
the viscosity of gases increases with increasing temperature. The viscosity
of gases does not depend upon the pressure.

To achieve an experimental condition in which the coefficient of vis-
cosity can be measured, the relative motion of two plane surfaces is approxi-
mated by two concentric eylinders, one of which is held fixed and the other
is caused to rotate by the application of a constant torque. From a meas-
urement of the angular speed, the dimensions of the apparatus, and the
applied torque, the viscosity of the liquid between the two cylinders can be
determined.

9-8 Reynolds’ Number

To discuss problems in fluid flow, it is convenient to group the variables
determining the motion into dimensionless parameters. One such param-
eter, called Reynolds’ number,is especially useful in distinguishing between
streamline or lamellar flow and turbulent flow. Reynolds’ number R is
given by the formula
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where p is the density of the fluid, v is its speed relative to a pipe or to some
obstacle to the flow, d is some dimension characteristic of the flow, and
7 is the coefficient of viscosity. In the flow of a fluid through a pipe, d

-~ /////’f" P A A

(c) (d)

Fig. 9-12 Transition from lamellar to turbulent flow for water in a glass tube, with
increasing value of Reynolds’ number. Velocity lowest for (a), which shows lamellar
flow, and highest for (e), which shows turbulent flow. (Reproduced by permission
from Fluid Mechanics, 3rd ed., by R. C. Binder, p. 108. Copyright, 1943, 1949, 1955,
by Prentice-Hall, Inc., Englewood Cliffs, N.J.)

represents the diameter of the pipe, while in the flow of a fluid past a cyl-
inder, d is the diameter of the cylinder.

Experiments have shown that the stable flow of a fluid through a pipe
is normally streamline or lamellar for values of R less than 2,000, whatever
the density or viscosity of the fluid. The flow is generally turbulent if R
is greater than 3,000, and the type of flow obtained in the transition region
between these two values of R depends on such factors as surface roughness,
the way the flow was started, and so on. The flow of water through a glass
tube at increasing speeds, that is, at increasing values of R, is shown in
Figure 9-12. The flow has been made visible by immersing a source of
dye in the water stream.

The resisting force opposing the motion of an immersed body, such as
an airfoil, a sphere, a cylinder, or a bridge, is also related to Reynolds’
number. For example, eddies break off alternately on either side of a
cylinder in a periodic manner, as shown in Figure 9-13, when R is greater
than 20. Below this value of R, the flow is lamellar. The release of eddies
from alternate sides of a cylinder exerts a periodic force on the cylinder.
This is responsible for the generation of the vibrations of chimneys in a
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high wind, the vibrations of the periscopes of submarines, the vibrations
of towlines, the singing of telephone wires, and so on. Similar phenomena,
are responsible for the flutter of the wings and propellers of an airplane, and

Fig. 9-13

for the failure of the Tacoma Narrows bridge in November, 1940. When
the frequency of eddy formation approaches the natural frequency of vibra-
tion of the structure, excessively large vibrations may be excited, with
resulting destructive failure,

Problems

9-1. Water flows through a horizontal pipe of varying cross section at the
rate of 4 ft3/min. Determine the velocity of the water at a point where the
diameter of the pipe is (a) 1.5 in. and (b) 2 in.

9-2. Oil flows through a 12-in.-diameter pipeline with a speed of 3 mi/hr.
How many gallons of oil are delivered each day by this pipeline? (One gallon
= 231 in.%)

9-3. At a place in a pipeline where the diameter is 6 in., the speed of a steady
stream of water is 12 ft/sec. (a) What will be the speed of the water in that por-
tion of the pipeline where the diameter is 4 in.? (b) At what rate, in cubic feet per
minute, is water being delivered by this pipeline?

9-4. A water storage tank is filled to a height of 16 ft. (a) With what speed
will water come out of a valve at the bottom of the tank if friction is negligible?
(b) To what height will this water rise if the opening is directed upward?
(¢) What quantity of water will emerge from the tank in each second? The area
of the valve is 1 in.2.

9-5. A cylindrieal water storage tank of diameter 10 ft is filled to a height
of 16 ft. At the bottom of the tank, there is an opening 1 in. in diameter. How
long will it take for the tank to drain itself empty? [Hint: Use the methods of
the calculus].

9-6. Water flows steadily through a Venturi tube at the rate of 40 ft®/min.
At a place where the diameter of the tube is 4 in., the gauge pressure is 15 1b/in.2
Determine the gauge pressure in the throat of the tube where the diameter is 2 in.
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9-7. Gauges attached to a vertical tube in which water is flowing steadily
show an absolute pressure of 25 1b/in.? where the diameter of the tube is 4 in.
and a pressure of 15 1b/in.? where the diameter of the tube is 3 in., at a point 1 ft
below the first gauge. Determine (a) the velocity of the liquid in the wider por-
tion of the tube and (b) the quantity of water per second flowing through the tube.

9-8. Oil of density 0.9 gm/em?® flows through a horizontal tube 3 cm in
diameter at a pressure of 1.5 X 10°% dynes/cm? At one portion the tube narrows
down to 2 em in diameter, and the pressure drops to 10% dynes/cm?2. (a) Deter-
mine the velocity of the oil in the wider portion of the tube. (b) Determine the
rate at which oil flows through this tube.

9-9. In a wind-tunnel experiment the pressure on the upper surface of a
wing was 13.05 Ib/in.?, while the pressure on the lower surface was 13.15 1b/in.2
Determine the lifting force of a wing of this design if it has a spread of 40 ft
and a width of 9 ft.

9-10. A monoplane weighing 14,000 1b has a wing area of 600 ft2. (a) What
difference in pressure on the two sides of the wing surface is required to maintain
this plane in level flight? (b) If the plane is flying at a level of 13,000 ft and the
pressure on the lower wing surface is 9.0 1b/in.2, determine the pressure on the
upper wing surface.

9-11. The lower end of a siphon is 8 ft below the level of the water surface
in the tank. (a) Determine the speed with which the water flows out of the open
end of the siphon. (b) If the cross-sectional area of the siphon tube is 3.0 in.?
determine the rate at which water is siphoned out. (c) If the bend in the siphon
is 3 ft above the surface of the water in the tank, determine the pressure of the
water in the bend of the siphon.

9-12. The pressure in the cylinder of a water pump is 45 1b/in.2. Determine
the height to which water may be lifted by this pump.

9-13. The level of water in a tank is 15 m above the ground. Water flows out
of this tank in a horizontal direction through a valve located 5 m below the sur-
face. Determine (a) the velocity with which the water escapes, neglecting friction,
(b) the distance from the valve where the water strikes the ground, and (c) the
velocity of the water when it reaches the ground.

9-14. Water falls from a height of 60 ft and drives a water turbine. If the
rate of flow of water is 480 ft3/min, determine the maximum power that can be
developed by this turbine.

9-15. Ina viscosimeter constructed of two concentric eylinders with an annu-
lar space between them, the outer eylinder is fixed, and the inner cylinder is made
to rotate by the application of a torque. The length of the cylinders is 5 in., their
mean radius is 3 in., and the space between them is 0.05 in. It is found that the
inner cylinder will rotate with an angular speed of 50 rpm when a torque of 0.10
ft 1b is applied. Using British gravitational units, determine the viscosity of the
oil in the annular space between the two cylinders.

9-16. Find the conversion factor by which the poise may be converted from
cgs to British gravitational units of viscosity.

9-17. Sea water, which weighs 64 1b/ft? is stored in an open tank. The water
is piped to ground level by a vertical pipe of diameter 1 in., and emerges through
a bend in the pipe in a stream of 1 in. diameter. The surface of the water in the
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tank is 100 ft above the opening in the pipe. (a) Find the quantity of water
which flows from the tank per second. (b) Find the pressure of the water in the
pipe 10 ft above the ground.

9-18. An open tank is filled with sea water, which weighs 64 1b/ft®, The
water flows through a siphon tube of cross-sectional area 0.02 ft? which has a
nozzle of area 0.01 ft? at its end. The open end of the nozzle is 5 ft below the
free surface of the water in the tank. (a) What is the speed with which water
flows from the nozzle? (b) What is the volume of flow from the nozzle, in
ft3/sec? (c) What is the speed of flow in the siphon tube at a point 3 ft above
the nozzle? (d) What is the gauge pressure in the siphon tube at a point 3 ft
above the nozzle?
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