
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Faculty Publications from Nebraska Center for 
Materials and Nanoscience 

Materials and Nanoscience, Nebraska Center 
for (NCMN) 

2019 

Boundary conditions and Berry phase in magnetic nanostructures Boundary conditions and Berry phase in magnetic nanostructures 

A. Ullah 

B. Balamurugan 

W. Zhang 

D. J. Sellmyer 

R. Skomski 

Follow this and additional works at: https://digitalcommons.unl.edu/cmrafacpub 

 Part of the Atomic, Molecular and Optical Physics Commons, Condensed Matter Physics Commons, 

Engineering Physics Commons, and the Other Physics Commons 

This Article is brought to you for free and open access by the Materials and Nanoscience, Nebraska Center for 
(NCMN) at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty 
Publications from Nebraska Center for Materials and Nanoscience by an authorized administrator of 
DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cmrafacpub
https://digitalcommons.unl.edu/cmrafacpub
https://digitalcommons.unl.edu/materialsresearchanalysis
https://digitalcommons.unl.edu/materialsresearchanalysis
https://digitalcommons.unl.edu/cmrafacpub?utm_source=digitalcommons.unl.edu%2Fcmrafacpub%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/195?utm_source=digitalcommons.unl.edu%2Fcmrafacpub%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/197?utm_source=digitalcommons.unl.edu%2Fcmrafacpub%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/200?utm_source=digitalcommons.unl.edu%2Fcmrafacpub%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=digitalcommons.unl.edu%2Fcmrafacpub%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages


AIP Advances 9, 125049 (2019); https://doi.org/10.1063/1.5130477 9, 125049

© 2019 Author(s).

Boundary conditions and Berry phase in
magnetic nanostructures
Cite as: AIP Advances 9, 125049 (2019); https://doi.org/10.1063/1.5130477
Submitted: 09 October 2019 . Accepted: 12 November 2019 . Published Online: 27 December 2019

A. Ullah, B. Balamurugan, W. Zhang, D. J. Sellmyer, and R. Skomski

COLLECTIONS

Paper published as part of the special topic on 64th Annual Conference on Magnetism and Magnetic Materials

Note: This paper was presented at the 64th Annual Conference on Magnetism and Magnetic Materials.

ARTICLES YOU MAY BE INTERESTED IN

Comparative study of topological Hall effect and skyrmions in NiMnIn and NiMnGa
Applied Physics Letters 115, 172404 (2019); https://doi.org/10.1063/1.5120406

Perspective: Magnetic skyrmions—Overview of recent progress in an active research field
Journal of Applied Physics 124, 240901 (2018); https://doi.org/10.1063/1.5048972

Controlling the magnetocrystalline anisotropy of -Fe2O3
AIP Advances 9, 035231 (2019); https://doi.org/10.1063/1.5080144

https://images.scitation.org/redirect.spark?MID=176720&plid=1088041&setID=378289&channelID=0&CID=358802&banID=519828673&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=8c3152439ccf9853562257878df8f964af11bc63&location=
https://doi.org/10.1063/1.5130477
https://doi.org/10.1063/1.5130477
https://aip.scitation.org/author/Ullah%2C+A
https://aip.scitation.org/author/Balamurugan%2C+B
https://aip.scitation.org/author/Zhang%2C+W
https://aip.scitation.org/author/Sellmyer%2C+D+J
https://aip.scitation.org/author/Skomski%2C+R
/topic/special-collections/mmm2020?SeriesKey=adv
https://doi.org/10.1063/1.5130477
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5130477
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5130477&domain=aip.scitation.org&date_stamp=2019-12-27
https://aip.scitation.org/doi/10.1063/1.5120406
https://doi.org/10.1063/1.5120406
https://aip.scitation.org/doi/10.1063/1.5048972
https://doi.org/10.1063/1.5048972
https://aip.scitation.org/doi/10.1063/1.5080144
https://doi.org/10.1063/1.5080144


AIP Advances ARTICLE scitation.org/journal/adv

Boundary conditions and Berry phase
in magnetic nanostructures

Cite as: AIP Advances 9, 125049 (2019); doi: 10.1063/1.5130477
Presented: 8 November 2019 • Submitted: 9 October 2019 •
Accepted: 12 November 2019 • Published Online: 27 December 2019

A. Ullah, B. Balamurugan, W. Zhang, D. J. Sellmyer, and R. Skomskia)

AFFILIATIONS
Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln,
Nebraska 68588, USA

Note: This paper was presented at the 64th Annual Conference on Magnetism and Magnetic Materials.
a)R. Skomski, rskomski@neb.rr.com

ABSTRACT
The effect of micromagnetic boundary conditions on the Berry curvature and topological Hall effect in granular nanostructures is investi-
gated by model calculations. Both free surfaces and grain boundaries between interacting particles or grains affect the spin structure. The
Dzyaloshinskii-Moriya interactions yield corrections to the Erdmann-Weierstrass boundary conditions, but the Berry curvature remains an
exclusive functional of the local spin structure, which greatly simplifies the treatment of nanostructures. An explicit example is a model
nanostructure with cylindrical symmetry whose spin structure is described by Bessel function and which yields a mean-field-type Hall-effect
contribution that can be related to magnetic-force-microscopy images.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5130477., s

I. INTRODUCTION
The topological Hall effect (THE) reflects the Berry phase accu-

mulated by conduction electrons exchange-interacting with spin
structures Si = S(Ri).3,21 To yield a nonzero emergent magnetic
field (Berry-phase curvature), the local spin structures must be non-
coplanar, Si⋅(Sj × Sk) ≠ 0. Such spin structures are often associated
with Dzyaloshinskii-Moriya (DM) interactions,1–5,13,22 but micro-
magnetic spin structures such as magnetic bubbles are also non-
coplanar.6,7,14 This paper deals with granular magnetic nanostruc-
tures, such as interacting nanoparticles and melt-spun alloys. The
spin structures in these systems are well-known to be noncollinear,
and the question arises whether and how this noncollinearity trans-
lates into a THE. One example is thin films made from ensembles of
MnSi nanoparticle having average sizes between 9.7 and 17.7 nm.12

Ensembles of metallic magnetic nanoparticles can be made conduct-
ing through compaction or embedding in a conductive matrix.

Our emphasis is on grain-boundary effects, which reflect
that the Euler-Lagrange equations for S(r) are of the type ∂E/∂S
– ∇⋅(∂E/∂∇S) = 0, where E is the micromagnetic (free) energy.9

In the absence of DM interactions, the only ∇S-dependent term
in the energy density is A (∇S)2, where A(r) is the local exchange
stiffness. The corresponding term in the Euler-Lagrange equations

is ∇(A∇S), which reduces to A∇2S for chemically homogeneous
systems.18 For boundaries between two phases I and II, the Euler-
Lagrange equations yield the Erdmann-Weierstrass boundary con-
ditions10

AI
∂SI

∂rs
= AII

∂SII

∂rs
(1)

where ∂S/∂rs is the derivative with respect to the spatial coordinate
perpendicular to the surface. Free surfaces (interfaces between mag-
netic materials and vacuum) have AII = 0 and Eq. (1) reduces to
∂S/∂rs = 0 at the surface. The Dzyaloshinskii-Moriya interaction is
linear in ∇S and therefore yields an additional term in the Euler-
Lagrange equations.15,23 This term needs to be specified for each
point group, and there is generally no one-to-one correspondence
between broken inversion symmetry and the existence of DM inter-
actions.20 For example, inverse cubic Heusler coumpounds (point
group Td) have broken inversion symmetry but no DM interactions.

In this paper, we investigate how Berry-phase curvature and
topological Hall effect depend on the physical nature and geometry
of the grain boundaries. We review DM interactions in cylindrical
nanoparticles of crystals belonging to the point groups Cnv and show
that these nanoparticles yield a simple micromagnetic mean-field
description of skyrmions in granular nanostructures.
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II. CYLINDRICAL NANOPARTICLES WITH FREE
SURFACES

The starting point for the discussion of DM boundary condi-
tions is the micromagnetic free energy8

E = ∫ [A(∇s)2 − Ksz
2 − μoMsHzsz + εDM]dV (2)

where s = S(r)/|S| is the normalized magnetization. The second
and third terms in this equation are the anisotropy and Zeemann
energies, respectively,18,19,25 whereas the last term describes the DM
interactions. Note that the approach in this section follows the
treatment by Rohart and Thiaville,15 which ignores magnetostatic
self-interactions. Mathematically, this neglect makes sense, because
boundary conditions refer to quasi-local short-range interactions of
the gradient type. By contrast, magnetostatic interactions are long-
range and correspond to magnetic charges at surfaces, and the effect
of these charges is macroscopic. Magnetostatic interactions can be
ignored on very small length scales, where the interatomic exchange
(A) dominates.18 While a comprehensive description of magneto-
static effects in systems with DM interactions is a challenge to future
research, Sect. III solves the problem on an approximate level.

The last term in Eq. (2), which describes the Dzyaloshinskii-
Moriya interactions, is often expressed in terms of Lifshitz invari-
ants1,2,16

Lkij = Si
∂sj
∂xk
− Sj ∂si

∂xk
(3)

The exact form of DM interaction is determined by the point-
group symmetry of the compound.20 Inversion symmetry, polarity,
and chirality the a canonical division into centrosymmetric crys-
tals, noncentrosymmetric crystals without DM interactions, non-
centrosymmetric crystals with DM interactions but no spin spirals,
and noncentrosymmetric crystals supporting both DM interactions
and helical spin structures.20

For the polar point groups Cnv, which describe a number of
bulk and thin-film structures, εDM = D(Lxxz + Lyyz). Explicitly,

εDM = D(sz∇ ⋅ s − s ⋅ ∇sz) (4)

B20-ordered materials such as MnSi belong to the point group T,
where εDM = D s⋅(∇ × s).

The steady-state spin structure is obtained as

δE/δs = −μB ∫
V
s(r) × BeffdV+∫

S
ΓsdS (5)

where the effective field

Beff = 2A∇2s + 2Kszez + μoHez + 2D(ez∇ ⋅ s −∇(s ⋅ ez)) (6)

For the point groups Cnv, the surface term is

Γs = 2As × ∂s
∂rs
−D(szs × n − s ⋅ n(s × ez)) (7)

The emergent field includes both radial and angular contributions,
both depending on the real-structure morphology. We consider a
particle with cylindrical symmetry around ez and a z-independent
magnetization. The magnetization is therefore

s(r) = sinθ(ρ)cosϕex + sinθ(ρ)sinϕey + cosθ(ρ)ez (8)

where θ is the magnetization angle with respect to the z-axis, ρ and ϕ
are cylindrical real-space coordinates, and ∂s/∂rs = ∂s/∂ρ. The cross
product in Eq. (7) ensures the conservation of the normalization
(s2 = 1).

The equilibrium (steady-state) condition, s(r) × Beff = 0, is
complemented by the boundary condition15

∂s
∂rs
= D

2A
s × (n × ez) (9)

which follows from Eq. (7). In these coordinates, the Euler-Lagrange
equation

2A(∂
2θ

∂ρ2 +
∂θ
ρ∂ρ
− 1
ρ2 sinθcosθ) − 2Ksinθcosθ − μoHMssinθ

− 2D
ρ

sin2θ = 0 (10)

and the boundary condition is ∂θ/∂ρ = D/2A at ρ = R. For D = 0,
Eq. (9) reduces to the Erdmann-Weierstrass boundary conditions,
∂s/∂ρ = 0 in cylindrical coordinates. For D ≠ 0, the boundary con-
dition yields a rotation (tilting) of the magnetization s in the plane
between ez and the cylindrical surface normal.

The behavior of small particles is dominated by the interatomic
exchange, so that θ(ρ) is small. Linearization of Eq. (10) the causes
the bulk DM contribution to vanish and a reverse field causes θ(ρ)
to become unstable. The corresponding magnetization mode θ(ρ) is
described by the Bessel equation

ξ2 d2θ
dξ2 + ξ

dθ
dξ

+ ξ2θ − θ = 0 (11)

where ξ = ρ/ρo and ρo = [A/(μo|H|Ms – K)]1/2. Equation (11)
corresponds to the boundary condition dθ/dξ = D/2γo, where
γo = [A (μo|H|Ms – K)]1/2. Note that ρo and γo may be considered
as wall-width and wall-energy parameters for the present problem.

The solutions of Eq. (11) are Bessel functions J1(ξ). In the
absence of DM interactions, dJ1/dξ = 0, which corresponds to the
first maximum of J1(ξ), which is at ξ = R/ρo = 1.841 (dashed curve

FIG. 1. Magnetization angle θ(ρ) ∼ J1(ρ/ρo) in a model nanoparticle with cylindrical
symmetry.
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in Fig. 1). The length ρo depends on the magnetic field, so that
R = 1.841 ρo is an implicit condition for skyrmion formation. The
field scales as H ∼ A/R2, that is, small nanoparticles require high
reversed fields to exhibit the skyrmionic instability shown in Fig. 1.

The inclusion of the DM interaction means that J1(ξ) is no
longer a maximum at R. Depending on the sign of D, the curve
contracts or expands until the boundary condition is satisfied (solid
curves in Fig. 1). The relative strength of the boundary effect is given
by the dimensionless but field-dependent ratio D/γo. Figure 1 high-
lights an important aspect of nanoscale skyrmionics, namely that
spins structures need to be geometrically accommodated subject to
the appropriate boundary conditions. For example, spin spirals in
B20 materials have a certain intrinsic wavelength, and when the
nanostructural feature size is smaller than this wavelength, then the
spirals are suppressed or change their micromagnetic characteristics.
This has been observed in Ref. 12.

III. SKYRMION DENSITY IN EMBEDDED
NANOPARTICLES

Conduction electrons traveling through magnetic nanostruc-
tures and adiabatically interacting with localized spins Si acquire a
Berry phase whose curvature corresponds to an emergent magnetic
field and to a corresponding contribution to the Hall effect.17 This
contribution is known as the topological Hall effect (THE), although
it is not quantized. The Berry curvature is proportional to Si⋅(Sj × Sk)
and, in a continuum approximation, given by the skyrmion density
which is3,11,21

Φ = 1
4π

s ⋅ ( ∂s
∂x
× ∂s
∂y
) (12)

The corresponding contribution to the anomalous Hall effect,
known as the topological Hall effect, is obtained by integration over
Eq. (12). For fully developed skyrmions, this integral is quantized,
Q = ± 1, depending on the magnetization in the core of the
skyrmions.

Figure 2 shows some spin structures of interest in the present
context. A detailed analysis reveals that the configurations (a) and
(b) yield exactly the same Berry curvature,3 so that we can empoley
Eq. (8) for this calculation.

For the assumed cylindrical symmetry, 4πρΦ(ρ) = sinθdθ/dρ
and the skyrmion number Q = ∫ Φdxdy becomes

Q = 1
2
(1 − cosθo) (13)

where θo = θ(R). This equation is remarkable, because it depends on
the magnetization angle θ at ρ = R but not on the derivative ∂θ/∂ρ, in
spite of ∂θ/∂ρ = D/2A. In other words, the DM interaction affects θ
in Eq. (11) but does not explicitly appear in the expressions for Berry
phase, emergent field, and topological Hall effect. Note that Q in
Eq. (11) is generally noninteger, so that the Hall-effect should better
be called 'fractional' or 'partial' topological Hall effect. This includes
merons,24 Fig. 2(d), where Q = ± 1/2. Realistic spin structures in
polycrystalline materials, schematically shown in Fig. 2(d), tend to
exhibit noninteger values –1 < Q < +1, depending on the magne-
tization history. Furthermore, strong magnetization gradients near
the particle's surface violate Berry's adiabacity condition, a consid-
eration more important in nanoparticulate systems than in ordinary
skyrmionic thin films.

FIG. 2. Nanogranular spin structures: (a) Néel-type skyrmion, (b) Bloch-type
skyrmion, (c) fully developed bubble or chiral skyrmion, θo = 180○, (d) meron,
θo = 90○, (e) polycrystalline magnet or ‘bubble soup’, and (f) micromagnetic
mean-field approximation. Spins structures of the type (e) frequently occur in
nanoparticular magnets, produced for example by melt spinning.

The exact determination of spin structures such as that in
Fig. 2(d) and the evaluation of the corresponding skyrmion den-
sity Φ are demanding, even in the absence of DM interactions.
A highly simplified model is to embed a single grain of radius R
in a mean-field environment, as in Fig. 2(f). Equation (13) shows
that the topological number Q is given by the magnetization angle
θo = θ(R) near the grain boundary, symbolized by the two vertical
bars in (f). In contrast to the free surfaces of Sect. II, where the spin
structure is determined by ∂θ/∂ρ = D/2A at ρ = R, the present angle
θo reflect grain misalignment and grain-boundary interactions, as
discussed for example in Ref. 18 (Sect. 4.5). The angle is system-
specific and reflects a number of structural and magnetic parameters,
such as grain size, grain misalignment, magnetic anisotropy, bulk
and grain-boundary exchange, and DM interactions. Since Eq. (12)
is quadratic in the spatial derivatives, the THE per grain scales very
roughly as 1/R2, which consistent with available experiments.12

The angle θo has a relatively simple experimental interpre-
tation in terms of magnetic-force microscopy (MFM). Assuming
that the magnetization in the grains is perpendicular to the sur-
face, θo corresponds to the MFM contrast: the more pronounced the
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contrast, the larger θo. Note that θo is actually the z-component
of the magnetization, further substantiating the connection to the
MFM contrast.

It is important to keep in mind that completely random spin
structures do not yield a net Hall-effect contribution, because they
create emergent magnetic fields that average to zero. Such random
spin structures can be created, for example, by thermal demagne-
tization. To yield a nonzero net contribution, the magnetic regions
of one spin direction must be embedded in a background of oppo-
site (or different) magnetization. Such spin structures can be created
through the application of an external magnetic field, as exempli-
fied by bubble skyrmion in perfect thin films. The model of Fig. 2(f)
includes this key feature in a semiquantitative manner. Note that fea-
tures sizes in granular nanostructures can be very small, down to a
very few nanometers, although such small skyrmions tend to have
very low mobilities.

IV. CONCLUSIONS
Depending on the magnetization history, granular nanostruc-

tures accumulate a Berry phase that translates into an emergent mag-
netic field and yields a topological Hall effect. The effect depends
on the crystal structure, particle size, grain orientation, and grain-
boundary morphology and is, in general, noninteger. Much of the
involved physics is included by considering a mean-field model
with cylindrical symmetry. Dzyaloshinskii-Moriya interaction terms
yields corrections to the Erdmann-Weierstrass boundary conditions
that govern the grain-boundary behavior of particulate nanostruc-
tures made from inversion-symmetric crystals. However, these cor-
rections affect the topological Hall effect only indirectly, by modify-
ing the local spin structure.
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