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Two Experiments were conducted at separate times to evaluate the effects of 

sow dietary treatment on piglet growth performance. One experiment solely 

focused on the growth performance of parity 1 piglets from gilt batches 5 through 

13. The other experiment focused on growth performance of piglets from batch 14, 

parity 1, as well as, analysis of growth biomarkers, GLP-2 and Insulin. Milk samples 

from sows of each dietary treatment were collected and analyzed for 

oligosaccharide composition, nutrient composition, and insulin levels. 

The first experiment utilized 733 sows that were fed either a restricted 

(RESTR) of ad libitum (ADLIB) diet during the gilt development stage of days 123-

240. Piglets weaned from gilts that were fed a RESTR diet during the development 

stage had a greater weaning weight compared to those piglets weaned from gilts 

that were on an ADLIB diet during the development stage. Growth performance of 

piglets may be correlated with a sows diet before she is pregnant and body score 

during early gestation. 

 In the second experiment sows were on three dietary treatments during 

their development stage, which consisted of 1) Control diet formulated to NRC 

(2012) specifications (CTL); 2) Restricted (20% energy restriction via addition of 

40% soy hulls; RESTR); and 3) Control diet plus addition of crystalline amino acids 

equivalent to the SID Lys:ME of the RESTR diet (CTL+).  Once again we saw that 



 

 

sows that were on the RESTR diet weaned larger piglets and the trend continued for 

these piglets into the end of grower phase. Furthermore, milk samples were 

obtained from sows on d 0 and 14 post-farrowing for analysis of N, DM, GE and milk 

insulin, and piglet blood samples were obtained on d 1 and 15 for quantification of 

GLP-2 and insulin. In conclusion, different nutritional diets of the developing gilt 

may impact piglet serum biomarkers during lactation and overall growth 

performance of the piglet. 

 

  



 

 

ACKNOWLEDGEMENT 

Thank you everyone who has helped me get to where I am toady; from 

friends, family, and colleagues I could not have done it with out you!  

First, I want to thank Dr. Thomas Burkey and Dr. Phillip Miller for their 

continuous help and teaching through out my Master’s degree. Your guidance and 

encouragement through out my time at the university of Nebraska not only made it 

a wonderful learning experience, but also a fun one. Thank you to Dr. Daniel 

Ciobanu for serving on my committee and helping to analyze my data.  

Furthermore, thank you to all the graduate students in the swine nutrition 

department. You were always there to help me with projects, school, or just talk to 

help the time pass by. I couldn’t have asked for a better group to work with. I will 

miss you all greatly.  

A special thanks to my fiancé for always being there to support me in where 

ever this crazy world takes me. Thank you for your support, patience, and love. 

Lastly, I want to thank my parents for always pushing me to be the best I can 

be and never allowing me to settle with just okay. Thank you for being there for me 

through everything and loving me unconditionally. 

  



 

 

ABBREVIATIONS 
 

AA: Amino Acids 

BF: Back Fat 

BCS: Body Condition Score 

BW: Body Weight 

CAA: Crystalline Amino Acids 

CLA: Conjugate Linoleic Acid 

CP: Crude Protein 

CTL: Control 

CTL+: Control Plus 

DM: Dry Matter 

EFA: Essential Fatty Acids 

GE: Gross Energy 

GIT: Gastrointestinal Tract 

GLP-2: Glucagon-Like Peptide 2 

IGF-1: Insulin-Like Growth Factor 1 

ME: Metabolizable Energy 

N: Nitrogen 

OS: oligosaccharide 

RESTR: Restricted 

SCFA: Short Chain Fatty Acid 

 
 

  



 

 

TABLE OF CONTENTS 

Chapter 1. Literature Review: Effects on Progeny Growth Performance ..……………… 1 

 Introduction …………………………………………………………………….……………………... 2 

 Milk ……………………………………………………………………………….……………………….. 3 

  Effects of the Sow Diet on Milk Composition ………….……………………….. 6 

  Colostrum …………………………………………………………….………………………. 9 

  Oligosaccharides ………………………………………………………………………… 11 

Piglet Intestinal Biomarkers …………………………………………………………………... 17 

  Glucagon-Like Peptide – 2 …………………………………………………………... 17 

  Serum Insulin ……………………………………………………………………………... 20 

 Maternal Effects …………………………………………………………………………………….. 23 

  Energy ……………………………………………………………………………………….. 23 

  Body Condition Score/Back Fat …………………………………………………… 25 

 Sow Intestinal Biomarkers …………………………………………………………………….. 26 

  Insulin ………………………………………………………………………………………... 26 

  Cortisol ………………………………………………………………………………………. 28 

  Insulin-Like Growth Factor – I …………………………………………………….. 29 

 Conclusions ………………………………………………………………………………………….. 30 

 Literature Cited …………………………………………………………………………………….. 31  

 Figures ………………………………………………………………………………………………….. 42 

Chapter 2. Effect of energy restriction on feed efficiency, nutrient digestibility, and 

immune biomarkers of growing/finishing pigs ………………………………………………….. 45 

Abstract …………………………………………………………………………………………………………… 46 



 

 

 Introduction ………………………………………………………………………………………..… 48 

 Materials and Methods …………………………………………………………………………... 49 

 Results ………………………………………………………………………………………………….. 51 

 Discussion ……………………………………………………………………………………..……… 52 

 Literature Cited …………………………………………………………………………………….. 57 

 Tables and Figures ………………………………………………………………………………… 60 

Chapter 3. Effects of Energy Restriction during Gilt Development on Parity 1 and 2 

Progeny Growth Performance …………………………………………………………………………... 68 

 Abstract ………………………………………………………………………………………………… 69 

 Introduction ………………………………………………………………………………………….. 71 

 Materials and Methods …………………………………………………………………………... 72 

 Results ………………………………………………………………………………………………….. 75 

 Discussion …………………………………………………………………………………………….. 77 

 Literature Cited …………………………………………………………………………………….. 81 

 Tables and Figures ………………………………………………………………………………… 83 

Chapter 4. Effects of Energy Restriction during Gilt Development on Milk Nutrient 

Profile and Progeny Biomarkers ……………………………………………………………………….. 95 



 

 

Abstract ………………………………………………………………………………………………… 96 

 Introduction .…………………………………………………………………………………………. 98 

 Materials and Methods …………………………………………………………………...……… 99 

 Results ……………………………………………………………………………………………...… 107 

 Discussion …………………………………………………………………………………………... 108 

 Literature Cited …………………………………………………………………………………… 117 

 Tables and Figures ………………………………………………………………………………. 119 

 



 

 

1 

CHAPTER 1.   

 

 

 

Literature Review: Effects on Progeny Growth Performance 
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INTRODUCTION 

The pre- and postnatal environment can have long lasting effects on piglet 

growth performance.   Pork producers continue to focus on increasing piglet weight 

while keeping the price of production down.   Dietary interventions of the sow have 

effects on milk and immune biomarkers that may contribute to health and weight 

development of offspring post weaning.   

Commercial pigs spend nearly half of their life in utero and during this time 

the sow’s nutrition can greatly influence birth weight and postnatal growth (Amdi et 

al., 2012).  As improvements in sow productivity continue to increase, there has to 

be a greater focus on nutrient requirements for enhanced lactation and piglet 

growth.  Understanding why sows wean larger piglets has been attributed to sow 

diet, genetics, and sow weight.  With genetics aside, research today is looking at how 

to increase piglet weight through diets fed to the sow.  Sow diets have been shown 

to have specific effects on the composition and nutrient availability in milk.  Pigs are 

said to have similar digestive tracts to humans, thus another reason why porcine 

milk has received increased attention in recent years.  Research on milk 

oligosaccharide profiles has evolved and is more thorough today in the animal and 

human environment.  Varying oligosaccharides have a specific niche and have been 

shown to have a great impact on the development of intestinal health.   

Milk composition and nutritive value is reflective of both the diet and body 

score of the sow.  Each component of milk has a direct effect on the piglets’ immune 

system and growth performance.  Specific attributes in a sow diet will have carry 

over affects in its mammary gland, and furthermore, when the neonate suckles from 
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the sow.   Stress that the sow endures during gestation, whether it be from 

environment or poor nutrition will play a large role in offspring development.  

Growth retardation, specifically due to high cortisol levels inhibiting IGF-1 has been 

documented in various studies (Mullan & Williams, 1989; Clemmons, 2007; Amdi et 

al., 2012;).  Furthermore, increased insulin concentrations in a neonate can increase 

muscle protein synthesis and GLP-2 concentration will increase intestinal mass.  The 

availability of colostrum and milk to the neonate is prerequisite for optimal health 

and growth of piglets, and, due to the fact that that piglets largely rely on passive 

immune protection, composition of colostrum and milk is extremely important 

(Alizadeh, 2015).   

In conclusion, nutritional management of gilts may impact the piglet’s serum 

biomarkers and weight during lactation through milk composition.  The goal of this 

review is to focus on the nutritional demand of a sow and how it can have a great 

impact on its offspring. 

 

MILK 

The first study on the composition of porcine milk was over 150 years ago by 

Von Gohren (1865).   Today, as technology becomes more advanced and the 

industry is able to isolate certain components, more precise information is available 

relative to milk nutrient profile.  While milk is thought of as being a great nutritional 

factor for neonates, it does much more than just that.  Milk contains nutrients 

including protein, fat, vitamins, hormones, and carbohydrates and contains other 

components such as antimicrobial peptides, growth factors, and brain-derived 
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neurotrophic factors (Yang et al., 2014). The mammary gland is an excretory gland. 

Thus, most items found in the blood of the dam will also be present in the mammary 

gland (Hurley, 2010).  Sow milk is still being studied today as there are not many 

experiments that have been conducted on all the components of the milk. 

Milk fat greatly increases the neonate’s adipose tissue depots.  While fat is 

primarily in the triglyceride form it can vary among species with respect to 

composition and concentration (Hurley, 2010).  Lactose is a major carbohydrate 

within milk and it is a readily digestible energy source for the neonate.  It is a 

disaccharide made up of glucose and galactose.  Other carbohydrates are also found 

in milk, but at much lower concentrations.  For example, free glucose and free 

galactose are found in cow milk and other mammalian species as well as sugar 

phosphates, amino sugars, nucleotide sugars, and oligosaccharides (Hurley, 2010).   

The composition of sow milk changes through lactation to meet the needs of 

its offspring (Jennes, 1974).  Milk has numerous protein factors that are specific to 

only milk.  The function of some of the milk proteins target development of tissues, 

while others target the immune system and contain growth factors.  Specific 

proteins in milk are several types of whey and casein.  Casein is more for growth 

and development where as whey has antibody and growth factors (Hurley, 2010).  

Sow milk has a high ratio of casein to whey protein throughout lactation.  

Furthermore colostrum has high protein, low fat, and low lactose composition and 

through lactation there will be a rise in fat and lactose concentration (Csapo et al., 

1994).  Protein in colostrum has been found to be around three times higher than 

that in late lactation.  Immunoglobulins are proteins in milk that are found in the 
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whey protein fraction.  Milk globulins are most important in colostrum, where α, β, 

and γ globulins are present (Csapo et al., 1994).   While immunoglobulins are 

present in all stages of lactation to help with the passive immunity of the piglet 

(Csapo et al., 1994), IgG is dominant in colostrum and IgA is highest in milk (Bourne, 

1977).    

Major growth factors present in milk are epidermal growth factor (EGF) and 

insulin-like growth (IGF-I) and are seen to be at much higher concentrations in 

colostrum (Oguchi et al., 1995).  Cytokines also present in milk help the neonate 

through their antimicrobial and anti-inflammatory properties.  Cytokines present in 

human milk are interleukins (IL) -1, -6, -10 and tumor necrosis factor (TNF) 

(Garfalo, 1999).  Each cytokine plays an important role in the development of the 

neonate from immunoglobulins to neonate homeostasis.  Chemokines present in 

human milk are CXC and CC, which play an important role in host anti-bacterial 

defense (Garfalo, 1999).  Water within milk is the only source of water for the 

neonate and plays a key role in the texture of milk.  For example, cow’s milk is up to 

87% water (Hurley, 2010). 

Human milk is similar to that of a sow, yet the concentration of some 

components varies greatly.  The composition of human milk has a fat % of 4.5; 

protein % of 1.1; lactose % of 6.8; ash % of 0.2; and total solids % of 12.6 compared 

to that of a sow which is 8.2, 5.8 4.8, 0.63, and 19.9, respectively (Jensen 1995).  

Sow’s milk, when compared to cow’s milk, contains a much higher concentration of 

unsaturated fatty acids, specifically linoleic acid, also sows milk fat contained no C4:0 

and much fewer C6:0 and C8:0 fatty acids (Elliot et al., 1971).  Also in the ratio of Ca:P, 
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it is slightly higher in sow’s milk compared to that of the cow (Gurr, 1981).   

Minerals present in milk are necessary for cofactors for enzymes; furthermore, 

sow’s milk contains greater ash, calcium, phosphorus, zinc, iron, and copper 

compared to a cow, but less potassium, sodium, and magnesium (Csapo et al., 1994).  

Also, sow’s milk contains almost 3 times as much vitamin A, and 5 times as much 

Vitamin C as a cow’s milk does (Elliot et al., 1971).  When comparing sow milk to 

human milk, human milk has less glutamic acid, methionine, tyrosine, lysine and 

Histidine, yet it has more cysteine and tryptophan (Gurr, 1981).  Some milk 

components will be further discussed in this review relative to their effect on the 

neonate and their variability based on diet of sow. 

Effects of the sow diet on milk composition 

As pork producers continue to focus on longevity and increased litter size, 

nutrition of the sow is becoming more important.  Diet of the sow has been shown to 

greatly impact the nutrient composition of milk.  Throughout lactation there are 

varying nutrients that all have specific effects on the piglet.  The early environment 

(i.e., gestation, lactation, and sanitation) of a piglet has drastic effects on its health 

that can carryover and have long-term effects on both health and growth 

performance.  In a study conducted by Amdi et al.  (2013), it was concluded that 

fatty acid and fat composition change based on dietary interventions during the 

gestation and lactation period.  There have been numerous studies focusing on the 

direct effect of sow diet on milk output and nutrient profile.  In a study conducted 

with decreasing crude protein (CP) and increasing crystalline amino acids (CAA), it 

showed a positive correlation in milk protein composition (Huber et al., 2015).  
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Sows that consumed a diet which was targeting limiting amino acids (AA) and thus 

lower CP showed an increase in mammary milk protein as well as having increased 

nitrogen retention and utilization in the milk protein during peak lactation periods 

(Huber et al., 2015).  Through targeting limiting AA, the nutrition requirements of 

the sow are more closely met and less of the diet is fed to excess.  When limiting AA 

are targeted in the diet, CP can be reduced and there is an increase in feed intake 

(Huber et al., 2015).   Also, a diet with additional CAA and reduced CP will increase 

absorption of limiting AA by the mammary gland, increasing milk protein (Guan et 

al., 2004).  Consuming a diet that more closely matches the AA requirements of the 

gestating and lactating animal allows for a decrease in N excretion due to increased 

utilization. 

With the high interest in increasing weaning weight while simultaneously 

keeping litter size high, nutritionists continue to supplement sow diets based on the 

demands of the progeny.  Feed intake of the sow not only affects the number born 

alive, but also birth weight (Amdi et al., 2013).  Research at the University of 

Nebraska investigating the effects of energy restriction on gilt development 

(including 14 batches with data collected over 4 parities per batch) has led to the 

observation that this approach increases sow longevity.  However, this practice may 

also provide beneficial effects to first parity progeny with respect to health and 

growth.  Specifically, parity one progeny derived from sows that were developed on 

an energy restricted diet may have increased weaning weight compared to progeny 

derived from gilts fed an ad libitum control diet (Barnett et al., 2017)  
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As fat percentage in the milk increases, it supplies more energy to the 

neonate.   Sow diet and body condition score correlate with milk composition 

(Strathe et al., 2016).  Varying ideas come from how a sow restricted in energy 

intake, assimilates fat within the mammary gland.  Some researchers have 

concluded that when a sow is energy restricted, its total body fat is decreased and 

fat reserves are used to add nutrients to the secreted milk (Amdi et al., 2013).  A sow 

lacking in nutrients will pull from endogenous sources, such as tissues, to mobilize 

fats for the mammary gland (Rosero et al., 2015).  Other research shows that fat 

from the diet, an exogenous source, which the sow is receiving, is the primary 

contributor of fat for milk composition (Amdi et al., 2013).  In a study conducted by 

Amdi et al. (2013), it was concluded that gilts with a greater percentage of fat in the 

diet had a greater amount of unsaturated fat when compared to saturated fat in late 

lactation.  In contrast, sows on restricted feed had a higher percentage of saturated 

fat in the milk they produced (Amdi et al., 2013).  Unsaturated fats are considered to 

be healthier fats as they are more readily digestible and in liquid form.   

While lipid supplementation is important for energy of the sow, it is also a 

primary source of linoleic acid and alpha–linolenic acid, or essential fatty acids 

(EFA) that are present in milk (Farmer et al., 2010).  Through increased EFA in milk, 

neonates can greatly benefit.  Essential fatty acids have been shown to increase 

piglet neural development and immune system development, improve protective 

response of intestines and increase bone mass and strength (Rooke et al., 2001).  

Piglets that ingest milk with a higher content of fat will have increased growth and 

fat (Amdi et al., 2013).   However, when measuring immunoglobulins in the piglets, 
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there was no difference.  Furthermore, supplementation of conjugated linoleic acid 

(CLA) alters milk fatty acids in a negative way.  Conjugated linoleic acid is a 

bioactive fatty acid that reduces milk fat (Krogh et al., 2012).   Currently there isn’t a 

complete understanding of why CLA reduces milk fat, but it is thought to be because 

it causes a decrease in de novo synthesis.  Oleic acid is another type of fatty acid, 

which is produced naturally in animal fats and has been shown to have positive 

effects and was observed to have a greater concentration in milk of fat gilts.  Due to 

it being produced naturally in the animal, higher levels of oleic acid are thought to 

improve the health value of the milk.  Oleic acid has the ability to provide an 

indication when there is an overflow of nutrients to switch energy sources from 

carbohydrates to lipids because lipids are higher in energy (Boyd & Kensinger, 

1998).  Milk is very sensitive to the feeding levels of sows.  Feed levels of sows and 

nutrients available will reflect on the nutritive value of the milk and can have 

positive and negative effects on the neonate.   

Colostrum 

Colostrum is typically the first substance ingested by the neonatal pig.  

However, ingestion of colostrum depends on the piglet’s ability to suckle within 

hours after birth and the sow’s ability to produce enough for the entire litter.  A 

piglet’s gut begins to close approximately 6 hours after birth, and it is important for 

the piglet to ingest the colostrum before this time in order to receive the full effect of 

colostrum, such as antibodies and growth factors that are present in it.   Colostrum 

is high in protein and full of many nutrients and factors to help the newborn fight 
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against pathogens.  Colostrum has been correlated to support neonate metabolic 

needs and is essential for organ growth and development (Burrin et al., 1997).   

 Within colostrum, numerous researchers have observed multiple peptide 

growth factors.  Insulin-like Growth Factor -I (IGF-I) and Epidermal Growth Factor  

(EGF) are said to be more highly concentrated in colostrum when compared to 

mature milk (Simmen et al., 1988).   Insulin-like Growth Factor -I is known to 

stimulate protein synthesis and in piglets consuming colostrum compared to those 

fed mature milk; the neonates with colostrum had 50% more skeletal muscle 

protein synthesis (Burrin et al., 1995).   Colostrum enhances the neonates’ protein 

anabolic rate, which stimulates the body to synthesize proteins for the tissues, 

especially in the liver and gastrointestinal tract (GIT) (Burrin et al., 1992).  In a 

study conducted by Burrin et al. (1992) where piglets were either fed colostrum, 

formula, or mature milk, researchers concluded that colostrum fed piglets had a 

significantly higher rate of protein synthesis in the longissimus and gastrocnemius 

muscle as well as in the jejunum compared to those that did not receive colostrum.  

Greater protein synthesis will increase the weight and health status of the piglet due 

to increased bone mass and increased GIT development.  Protein synthesis rates 

were greater in brain, lung, kidney, and spleen in colostrum fed pigs compared to 

formula and mature milk fed neonates.  As seen in Figure 1, vital organ protein 

synthetic capacity also varied, except for in the brain.   

 Colostrum has also been discovered to have a greater concentration of 

insulin (Burrin et al, 1992).   Insulin, like IGF-I, is considered a growth factor.  Yet 

conflicting results show that insulin may not be the primary cause for muscle 
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growth stimulation.  Due to proteolytic digestion, insulin absorption may be limited 

in the intestine.  When comparing piglets fed colostrum to those fed formula or 

mature milk, piglets consuming colostrum had levels of circulating blood insulin 

that was equal or less than the formula and mature-milk fed piglets; however, 

colostrum fed pigs had significantly higher protein synthesis development in the 

brain and heart (Burrin et al., 1995).  Colostrum is shown to play key roles in piglet 

growth/health far beyond weaning due to high circulating immunoglobulins and 

growth factors present, as well as protein synthesis  initiated in the piglet through 

colostrum intake. 

Oligosaccharides 

Oligosaccharides (OS) are complex carbohydrates said to be a bioactive 

component of milk, which are mostly resistant to digestion (Newsburg et al., 2005; 

Bode, 2006).  A crucial part of developing the gut has been attributed to specific OS 

in the sow’s milk (Mudd et al., 2016).  Oligosaccharides have two important 

functions:  1) to stimulate growth of good bacteria, and 2) to prevent pathogen 

binding to the epithelial wall (Newsburg et al., 2005).  Oligosaccharides have 

prebiotic attributes that enhance the piglet’s immune system.  A prebiotic is known 

as a selectively fermented ingredient that results in specific changes in the 

composition and/or activity of the gastrointestinal microbiota, thus conferring 

benefit upon host health (Newsburg et al., 2005).  Oligosaccharide composition does 

slightly vary with diet, health, stage of lactation and genetics (Bode, 2006).  Milk OS 

are usually comprised of 3 to 10 repeating monosaccharaides including glucose, 

galactose, n-acetyl glucosamine, n-acetyl galactosamine, fucose, and sialic acid 
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(i.e.,NeuAc or NeuGc).  There are numerous benefits to OS; thus, in recent years 

there has been a drive to characterize and understand the function of these 

prebiotic milk oligosaccharides. 

Oligosaccharides are gaining attention in the human world, and much of the 

research is from porcine milk.  Infant formula companies are beginning to add 

specific OS to their formulations for their prebiotic and growth stimulation effects it 

has on the neonates.  Through mass spectrometry, researchers today are able to 

characterize the OS in mammalian milk.  Although OS composition varies in 

diversity among mammals, they are shown to have similar functions across different 

species (Mudd et al., 2016).   Porcine milk oligosaccharides, although not well 

researched, have been shown to be less diverse than human and bovine milk.  In a 

study conducted by Salcedo et al. (2016), it was determined that when considering 

OS, bovine milk is more closely related to porcine milk and porcine milk is more 

closely related to human milk when compared to bovine milk, especially when 

looking at the components of fucosylated-oligosaccharides.   Mudd et al. (2016) has 

quantified 60 different milk OS and while 60 different milk OS is much more than 

previously characterized in other studies, over 100 human milk OS have been 

identified to date (Ninonuevo et al., 2008).   

Oligosaccharides promote beneficial bacteria that contribute to increasing 

the innate immune response of neonates.  Depending on structure and function, 

each OS has direct reflection on its ability to decrease infection in the neonate.  

Porcine milk OS are used for preventing pathogens from binding to intestinal walls, 

while also encouraging healthy bacterial growth (Salcedo et al, 2016).  
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Bifidobacteria found in neonatal piglets is shown to reduce the inflammatory 

response while increasing anti-inflammatory cytokines (Chichlowski et al., 2012).  

Oligosaccharides have the ability to decrease enteric infections by decreasing the 

ability of pathogens to attach to epithelial walls.   

Through the stages of lactation, there is a constant shift in abundance of OS.  

Not only do the specific types of OS change, but so does the diversity.   

Oligosaccharides are said to decrease in diversity throughout the lactation period.  

Colostrum has the most abundant levels of OS due to greater needs of the piglet 

when it is first born (Hamer et al., 2008; Mudd et al., 2016).   

The composition of the OS is shown as a set of 5 monomers making up the 

OS. The abbreviations that follow are indicative of know OS species: 1) hex: glucose 

or galactose, 2) HexNAc: N-acetylhexososamine, 3) Fuc: Fucosamine, 4) Neu5Ac: N-

acetylneuramic acid, and 5) Neu5Gc: N-glycolylneuramic acid (Mudd et al., 2016).  

Furthermore, when analyzed by Nano-LC Chip  Quadrupole Time of Flight mass 

spectrometry (QTOF MS) is a program that divides oligosaccharides up to the 5 

monomers that make its structure (e.g., 3_1_0_0_0 or 3 Hex, 1HexNAc) (Mudd et al., 

2016).  In porcine milk, when quantifying and characterizing the OS it was found 

that 6 OS species (2 hex-1 Neu5Ac, 3hex-1 NAc, 3 hex, 4 hex-1 hexNAc, 4 hex-2 

hexNAc, 4 hex-2 hexNAc-1 Neu5Ac4 hex-2 hexNAc) made up 60% of the OS and 4 

hex-2 hexNAc was the most prominent OS at early, peak, and late lactation (Mudd et 

al., 2016).  

There are numerous types of OS that can either be classified as neutral or 

acidic.  Neutral are shown to be most abundant through all stages of lactation (Mudd 
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et al., 2016).  Examples of neutral OS are galacto-oligosaccharides (GOS), Lacto-N-

neotetraose (LnNt), and fucosylated-oligosaccharides (FOS), and non-fucosylated 

oligosaccharides (Ten et al., 2014).  Acidic OS, such as Sialyllactose, have functional 

roles in the milk and are thought to increase learning and memory (Pond et al., 

2000).   

Galacto-oligosaccharides have prebiotic components that play a key role in 

the immune system and growth of intestinal microbiota (Alizadeh et al., 2015).   

Galacto-oligosaccharides stimulate an increase in maltase, which has been 

associated with better adaptation post-weaning.  Galacto-oligosaccharides may 

prevent villi shortening post-weaning and result in less post-weaning diarrhea and 

improved utilization of nutrients (Pluske et al., 1996).   However, GOS is dose-

dependent if added into a diet, and too much can cause diarrhea (Lackeyram et al., 

2013).   In piglets supplemented with GOS, there was a drop in cecal pH and an 

increase in butyrate (Alizadeh et al., 2016).  Butyrate is an energy source for 

colonocytes, which in turn inhibit inflammation and carcinogenesis in the intestine 

(Difilippo et al., 2016).  Also, an increase in butyrate is shown to prevent pathogens, 

especially E.  Coli, and improve the function of the gastrointestinal barrier (Hamer et 

al., 2008). 

Fucosylated-oligosaccharides have been observed to decrease or increase 

during lactation, but either way, they are found at very low levels in porcine milk 

(Salcedo et al., 2016; Tao et al., 2009).   Fucosylated-oligosaccharides make up 1 to 

4% of OS in sow milk; this is extremely low when comparing to humans in which it 

is around 70% (Tao et al., 2009).  Fucosylated-oligosaccharides have prebiotic 
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factors that inhibit diarrhea caused by E.  Coli, Campylobacter Jejune, Calicivirus, and 

other heat stable toxins (Newsburg et al., 2004).   Higher levels correlate with better 

protection (Newsburg et al., 2004).    

Lacto-N-neotetraose (LNnT) is a major human milk oligosaccharide that is 

also abundant in porcine and bovine milk (Tao et al., 2010).  Lacto-N-neotetraose is 

shown to be a prebiotic that stimulates growth of bifidobacterium and is one of the 

few OS that increases with prolonged lactation. 

 Sialylated oligosaccharides (SOS) are the prominent acidic milk OS that 

decrease through late lactation.  Sialylated oligosaccharides are abundant in porcine 

milk, but are highest in colostrum.  Sialic acid is a monosaccharide that is a key 

component in making up SOS.  Sialic acids are found on the non-reducing end of the 

OS and are important in biological functions.  Approximately 31 to 42% of sialic acid 

is conjugated into SOS (Jahan et al., 2016).   

Sialylated oligosaccharides enhance the prebiotic functions of milk because 

they cannot be digested, thus upon reaching the large intestine they can be used by 

beneficial bacteria (Tao et al., 2008).   Sialylated oligosaccharides also play an 

important role in neural development and neural protection and are seen to 

decrease after d 4 post-farrowing, as seen in Figure 2 (Tao et al., 2008).  Through 

competing for the adhesion sites on epithelial surfaces, SOS are able to inhibit 

pathogens.  High concentrations of SOS in sow’s milk protects the neonate from 

health challenges such as Rotavirus (Difilippo et al., 2016).   3’ Sialyllactose is an 

abundant SOS that down regulates sialic acid, fucose, and galactose and inhibits 

pathogen adhesion to the epithelial cell wall (Difilippo et al., 2016).  Most Rotavirus 
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diagnosed in piglets are dependent on sialic acid; therefore, having high SOS helps 

for protection from these diseases (Tao et al., 2010).  Interestingly, Parity 1 sows 

have been found to have higher sialic acid concentration because they tend to 

produce less milk compared to multiparous sows, it is thought that the increase in 

SOS is due to the parity 1 sow compensating for its lower milk yield (Jahan et al., 

2016). 

Oligosaccharides have various attributes pertaining to a neonate’s health and 

neurologic development.  More research is required to characterize and fully 

understand the functions of specific OS.  Research has attained that OS promote 

beneficial bacteria and can reduce the chances of a health challenge for a neonate.  

Oligosaccharides are present in milk, but can also be supplemented in the diet and 

have prebiotic effects on the neonate when consumed. 

 Milk has a direct effect on the growth and health of the neonate pig.  Sow 

milk is full of nutrients to help offspring develop beneficial bacteria for better innate 

immune development as well as increase bone mass and organ development.  While 

there isn’t much research available on porcine milk, there is a growing interest in it 

due to the similarities the pig model has with humans.  Although the nutrient 

composition of porcine milk plays a factor in piglet growth performance and health, 

genetics, diet, sow age, endogenous and exogenous factors also need to be taken into 

consideration. 
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PIGLET INTESTINAL BIOMARKERS 
 
Glucagon-like Peptide 2 
 

Glucagon-Like Peptide 2 (GLP-2) has a large impact on neonate piglets and 

their intestinal growth.   Glucagon-like peptide 2 is a peptide released from post-

translational processing of proglucagon in the enteroendocrine L cells on the small 

and large intestine (Petersen et al., 2001).  As the piglet feeds on items such as 

carbohydrates and fat, there is an increase in circulating GLP-2, stimulating 

intestinal growth (Drucker, 1998).  Additionally, nutrients in the lumen exert 

trophic effects on the intestine due to stimulation of growth factors such as GLP-2 

(Drucker 2002).   

Humans are said to have GLP-2 that is made up of 33 AA, where as porcine 

GLP-2 is a 35 AA peptide with Serine and Leucine at the C-terminal end of the 

peptide (Pedersen et al., 2008).  In the final 20% of gestation, the prenatal piglet has 

a mucosal mass increase of up to 150% and continues to increase following 

parturition.  The immediate postnatal period is an essential time for small intestine 

growth and is maintained by food intake in which directly increases GLP-2 function 

(Sangild et al., 2000).  Furthermore, GLP-2 is also associated with gastric emptying 

and intestinal absorption (Kato et al., 2000).   

The biological effects in the animal’s intestine are mediated via activation of a 

G coupled protein receptor (GLP-2R) expressed mainly in the gastrointestinal tract 

and brain (Munroe et al., 1999).  Receptors for GLP-2, primarily in the jejunum, play 

a specific role in intestinal physiology (Guan et al., 2006).  Growth of mucosal 

epithelial cells stimulated by GLP-2 occurs via activation of GLP-2R.  GLP-2R was 
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recently shown to be present in both enteroendocrine cells and enteric neurons in 

the piglet intestine.  GLP-2R is not in most intestinal epithelial cells, but in a study 

with Caco-2 cells it showed that GLP-2 increases cell proliferation when c-adenylyl 

cyclase (cAMP) has decreased production (Sams et al., 2006).  In a separate study 

conducted by Munroe et al. (2009), a in vitro experiment using cell culture showed 

GLP-2 increases cell survival through cAMP and cAMP protein kinase (PKA) 

dependent upon signaling mechanisms and it rapidly upregulates signaling 

pathways that mediate cell survival and proliferation (Burrin et al., 2006).   

After secretion of GLP-2, it is degraded in the body at a fast rate by the 

enzyme dipeptidyl peptidase IV forming a truncated inactive peptide metabolite 

(Hansen et al 2007).  The truncated form of GLP-2 has a longer half life, where as full 

GLP-2 in circulation has a half life of 7 to 8 min.  Dipeptidyl peptidase IV has a higher 

intestinal activity in neonates than adults, possibly contributing to more mucosal 

growth at a young age; however, more research  needs to be done in this area 

(Burrin et al., 2001).   

GLP-2 stimulates epithelial cell proliferation thus increases SI mucosal mass, 

colon mass, villus height, and crypt death.  Guan et al.  (2006) showed the largest 

increase in small intestine (SI) blood flow happens within 30 min of infusion in 

neonates.  GLP-2 infusion promptly activates SI intestinal blood flow, and increases 

mucosal and villi growth and mass when a piglet is total parenteral nutrient (TPN) 

fed, which is normally shown to cause mucosal atrophy within 48 h when not 

supplemented (Burrin et al., 2007).  Due to GLP-2 stimulation through enteral 

nutrient intake, GLP-2 will decrease if an animal is fed through TPN because the 
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digestive system is surpassed in this process (Burrin et al., 2000).  Understanding 

the beneficial effects of GLP-2, a study conducted by Burrin et al.  in 2000 showed 

that to reverse gut atrophy from TPN feeding it can be done through supplementing 

GLP-2 intravenously.  Supplementing GLP-2 in TPN fed neonates will cause 

increases in intestinal growth and adaption.   Furthermore, exogenous GLP-2 is 

known to stimulate intestinal brush border enzyme expression and decrease 

apoptosis and proteolysis in preterm pigs while also stimulating intestinal blood 

flow in piglets (Burrin et al., 2006, Guan et al., 2006).   

Interestingly, GLP-2 treatment could help reduce weaning associated 

diarrhea for it greatly affects intestinal function and adaptation in the growing pig.  

GLP-2 significantly reduces paracellular transport of ions and small molecules while 

inhibiting the endocytic uptake of macromolecules (Benjamin et al., 2000).  It also 

rapidly activates divergent intracellular signaling involved in intestinal cell survival 

and proliferation in neonatal pigs (Burrin et al., 2007).  Supplementation of GLP-2 

helps the weaned piglet with intestinal adaption after weaning due to sudden 

change in diet.  A study showed acylate GLP-2 supplementation, known to have a 

much longer half-life, improved intestinal function and score of colon luminal 

content in weanlings with bad sanitation.  Also in that study, native GLP-2 has less 

effects, but showed increased density of goblet cells and reduced concentration of 

SCFA demonstrating that GLP-2 has beneficial effects on mucosal protection and 

nutrient absorption in TPN fed piglets (Thyman et al., 2014).  GLP-2 has a large role 

in intestinal health and growth and is greatly affected by nutrient intake during the 

neonate period. 
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Serum Insulin 

 Insulin circulating in a neonate’s blood plays a drastic role on muscle protein 

synthesis.  Insulin is a hormone that is stimulated through feed intake and its 

sensitivity decreases as the mammal ages.   Insulin regulates stimulation of protein 

synthesis in peripheral tissues, as well as whole body AA disposal, but it does not in 

visceral tissue, with the heart as an exception (Davis et al., 2001).   Also, insulin 

plays a key role in regulating the absorption of nutrients.   The rate of growth of a 

mammal is greatest at its neonate stage (Young, 1970) for the insulin receptor 

protein is two-fold higher in a newborn piglet than that of a weanling (Suryawan et 

al., 2001).   

 Insulin and the efficiency of it in its signaling pathways are essential 

determinants of efficient growth during development periods and will decrease 

with age.   Intracellular signaling proteins are activated in a rise in insulin and have 

been correlated to increased muscle mass.   Insulin signaling pathways lead to the 

regulation of protein synthesis as shown in Figure 3.   Enhanced activation of 

intracellular signaling components of insulin in the neonate muscle contributes to 

the rapid rate of muscle protein synthesis and rapid gain in skeletal muscle mass of 

neonatal pigs (Davis et al., 2010).   

 There have been numerous studies on the effects of insulin on protein 

synthesis and which muscles insulin has the greatest effect on.  A study by Davis et 

al. (2001) in which piglets were infused with insulin on d 7 and 26 of age, first 
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demonstrated that insulin lowered protein synthesis in the liver, intestine, pancreas, 

and kidney, but stimulated skeletal muscle, cardiac muscle, and skin.  However, 

when the study was repeated again in 2001 they saw no decrease or stimulation in 

the organs that were previously reported as showing a decline (Davis et al., 2001).  

Furthermore, raising insulin in the neonate pig to those of a typical fed state and 

keeping AA (even EAA) and glucose at a fasted state increases the rate of skeletal 

muscle protein synthesis to that normal of a fed state.   

 Feed induced stimulation of protein synthesis occurs in most all tissues, but 

it is most prominent in skeletal muscle, particularly fast twitch glycolytic muscles 

(Davis et al., 2001).  Insulin mediates the feeding induced stimulation of myofibrillar 

and sarcoplasmic protein synthesis, concluding that muscles of different fiber types 

in the neonate are effected by insulin and insulin increases the efficiency of 

translation in “wanted” muscle (Davis et al., 2001).  Through the ingestion of 

colostrum, which is said to have the highest amount of insulin of all lactating 

periods, it further stimulates myofibrillar proteins and reinstates the importance of 

the neonate to suckle within few hours of being born (Fiorotto et al., 2000).  In a 

study where the experimenter was able to maintain glucose and amino acid levels at 

a fasting state in weanling pigs, when infused with insulin, it increased the uptake 

and utilization of AA in the body and there were maximal results with minimal 

supplement (30ng*kg-66*min-1)(Wray-Cahen et al., 1997).  When a neonate pig was 

infused with insulin during a fasting state, muscle protein synthesis was similar to 

that of pigs in a fed state (Wray-Cahen et al., 1998); thus, this is dose dependent and 

must be in the physiological range.  Liechty et al.  (1992) demonstrated that if a 
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weaned rat is fasted over night and infused with insulin, their body would show 

muscle protein synthesis; however; in studies conducted with insulin in grown 

animals and people there was little to no muscle synthesis with varying amount of 

insulin (Geflfand and Barrett, 1987; Bailie and Garlick, 1992).   It was also shown 

that muscle protein synthesis through feeding can be blocked by an anti-insulin 

serum, emphasizing the impact insulin has on the developing mammal (Preedy and 

Garlick, 1986). 

 Insulin’s response of causing muscle protein stimulation has to do with an 

increase in translational efficiency, not ribosomal number, which coincidentally also 

decreases with age and why it was originally thought to play a role.  Insulin 

increases PKB activation and phosphorylation of mammalian Target of Rapamycin 

(mTOR) and decreases TSC2 activation in neonate muscle (Suryawan et al., 2007).  

Postprandial increase in efficiency of the translation process in a neonate is due to a 

noted increase in the activation of translation initiation factors involved in binding 

mRNA to the 43S preinitiation complex and relies on stimulation of a protein kinase 

mTOR (Kimball et al., 2000).  Postprandial changes in protein synthesis in neonate 

pigs are correlated with changes in concentrations of circulating insulin (Davis et al., 

1998).  A postprandial rise in insulin, but not AA mediates the stimulation of protein 

synthesis through feeding in the cardiac, skin, and spleen.  Insulin does not stimulate 

liver protein synthesis, but it will not decrease it either if the animal is infused with 

insulin (Ahlman et al., 2001).    
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MATERNAL EFFECTS 

Energy 

Optimal feeding strategies to maximize nutrient intake and supply feed that 

allows the sow to replenish body reserves while lactating are essential to offspring 

growth performance (Noblet et al., 1997).  Altering specific nutrients and nutrition 

factors during different time points of a sow’s reproductive cycle plays a role in 

embryonic development and survival (McNamara et al., 2011).  Increased nutrition 

in sows during gestation can have a positive effect on offspring due to the fact that it 

influences the ratio of secondary to primary muscle fibers.  In a study by Dwyer et 

al. (1994), it was observed that when a sow’s feed was doubled during the d 25-50 

of gestation, the offspring had an 8% increase in secondary muscles fibers, which 

are factors that can increase lifetime growth potential.  Under nutrition of a sow can 

also cause a delay in estrus or even the possibility of not being able to get rebred.  

Interestingly, during the developmental period of gilts, d 123-230, when restricted 

in energy by 25% and no other nutrients based off NRC requirements it was found 

that they would have greater longevity (Miller et al., 2011).    

Although sows are able to compensate their milk production with an 

inadequate diet and mobilize more tissues to meet lactation requirements, they 

cannot completely compensate for all the nutrients they are lacking and piglet litter 

performance will be lower in weight (O’Grady et al., 1973).   When a lactating sow is 

restricted on energy it the body, for milk production, pulls from AA, resulting in 
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deamination and urea synthesis in the liver.  Pulling from AA for energy can in turn 

cause a protein deficiency in the sow and negatively affect litter performance 

(Holden et al., 1968).  Malnourished sows will produce offspring with lower weight 

due to a limited supply of essential nutrients and most likely reduced organ mass 

(Dwyer et al., 1995; Kind et al., 2005).  There are varying results out there about the 

effect of energy levels in a sow and its affects on litter performance.  In a study 

where low, medium, and high levels of lysine were tested in a sow’s diet during 

lactation, low lysine intake tended to decrease litter growth performance and 

increase weight loss in the sow (Yang et al., 2008).  The mobilized body reserves 

were most likely protein, as backfat in the sows did not decrease significantly, but 

there was greater protein degradation in the low lysine fed sows (Yang et al., 2008).  

These results agree with what was previously stated, that when a sow is low on 

nutrients it will move body reserves to uphold milk production (Tokach et al., 

1992).  In contrast to previous studies stated, Brendenmuhl et al.  (1987), found that 

energy intake did not affect litter size and that varying protein levels can 

compensate for inadequate energy amounts.   

Most energy retained in the uterus corresponds to protein.  Energy that is 

retained in the uterine tissues depends on stage of pregnancy and litter size.  

Approximately 4.8 MJ of energy for each kg of neonate BW at birth is deposited in 

the sow uterus.  Of that 4.8 MJ, 72% of the energy goes directly to the fetus while the 

other 28% goes to the placenta, fluids, and empty uterus (Noblet et al., 1995).  

Altering dietary energy could alter the metabolism of the pregnant sow and have an 

impact on fetal development during early gestation.  The average piglet weight has 
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been shown to be correlated with sow energy intake, where as when the sow energy 

intake was greater, so was piglet BW. 

Body Condition Score/Back Fat 

 Poor nutrition of the sow will have carry over affects on offspring due to the 

sow receiving a reduced nutrient supply.  Feed level and maternal body condition 

score (BCS) can affect offspring growth and development.  Opposite of what was 

stated on energy, it was shown that maternal BCS at time of gestation has a greater 

effect on offspring growth performance than maternal feed intake does.  For 

example, lambs that are born to normal weight ewes have less adiposity compared 

to lambs born to obese ewes (Long et al., 2010).  In a study by Amdi et al. (2012)  it 

was shown that gestation feeding level affects the number of offspring born alive 

per litter and offspring birth weight, where as sow BCS affects weaning weight and 

growth of offspring.   Piglets born to fat gilts had greater ADG between birth and 

weaning and were heavier at weaning than those born to lean gilts.  In contrast to 

the importance of BCS, Howie et al. (2009), found that when a rat was switched to a 

high fat diet during pregnancy, offspring had greater fat adiposity compared to the 

control group; thus, stating maternal diet has a greater effect on offspring than BCS 

and the fetus will respond to dietary treatments.  There is a positive correlation 

between sow body weight and piglet birth weight (Lewis & Bunter, 2011), but 

varying results on what plays the biggest nutritional part on piglet weight is still to 

be determined.   

Developing fat reserves during gestation is a must for sows in order to have 

positive reproductive performance; however, excessive fat can have a negative 
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effect on the sow’s reproductive performance (Dourmad et al., 1996).  There is an 

optimal range for a sow’s body fat in order to support positive reproductive 

performance.   In a study where piglets were born from sows that had a backfat 

depth of around 19 mm at gestation those piglets had greater backfat fat depths, less 

lean tissue yield, and were heavier at slaughter than piglets born to sows with a 

backfat depth of about 12 mm at gestation (Amdi et al., 2013).  Backfat is said to 

have three layers in the sow.  It was concluded that these layers mobilize fat 

independently of each other due to weight loss from lactation.  During lactation, the 

middle layer of backfat was shown to increase in thickness, the outer layer 

decreased, and lastly, the inner layer remained unchanged (Eggert et al., 1998).   

Sows will lose less weight and backfat when they are on a higher energy diet, yet all 

sows will catabolize tissue during early lactation even if fed ad libitum . 

 

SOW INTESTINAL BIOMARKERS 

Insulin 

Insulin is an anabolic hormone that plays a large part in a lactating sow’s 

mammary metabolism (Schrams et al., 1994).  Insulin has been shown to increase 

cell division in vitro in the mammary tissue from lactating sows  (Buttle and Lin, 

1991).  Insulin acts as an intermediary between nutrition and reproduction in the 

sow (Lucy, 2008) and it may play a key part in the restoration of reproduction 

during and after lactation (Tokach et al., 1992).   

Energy source in feed also has an effect on insulin secretion.  Insulin in sows 

regulates energy metabolism and milk production.   Higher plasma insulin in sows 
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equals lower catabolic status and lower milk yield; supporting the fact that less 

nursing results in higher insulin levels, possibly to compensate nutrients to the 

neonates.   Parity 1 sows commonly lose excessive body weight to meet energy 

maintenance and milk production needs during lactation.  Furthermore, sows that 

have lost little weight during lactation vs.  sows that have lost a lot of weight during 

lactation have higher insulin concentration.  Due to the stress on the sow from a 

negative energy balance post-weaning reproductive performance can be a challenge 

(Chen et al., 2016) and other studies have shown that insulin concentration can be 

altered by feeding amount and dietary energy source during lactation.  (Kemp et al., 

1995; Koetsu etal., 1996).   

Insulin concentration in a lactating sow can directly impact the neonate; 

ironically, the neonate can also directly effect the concentrations of insulin in a sow.  

In a study conducted by Spinka et al.  (1988), sows that were nursed every 35 min 

vs.  every 70 min had lower basal and maximal insulin concentrations.  Nursing 

frequency of piglets and time suckling on the teat may be mediated by varying 

insulin concentrations, which a support catabolic or anabolic states of metabolism 

during lactation.  The reason for this outcome may be due to the sow’s body altering 

its nutrient content to keep up with the more frequent nursing   (Rojkittikhun et al., 

1992).  In agreement with what was stated previously, the more the sow allows 

nursing the lower the insulin concentration is.  Spink et al.  (1999) stated a sow will 

have high insulin when avoiding udder massage or nursing and through this 

behavior prolactin concentration becomes low and insulin receptors begin to 
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decline in the mammary gland.  Because of a decline in insulin receptors there is a 

higher insulin concentration in the blood.   

Dietary treatments of varying proteins levels of lactating sows fed 7.8, 13, 

18.2, and 23.5% CP had no effect on insulin; however, the studied showed that AA 

utilization in the sow’s mammary gland seemed to be regulated by circulating 

insulin concentrations in the porcine mammary cells (Farmer et al., 2008).  Some 

studies have shown that milk yield of a sow increased in correlation to insulin 

injections and that insulin concentrations were positively related to the major milk 

constituents.  Mullan and Close (1991) reported the lactating sows on a restricted 

diet have restricted insulin production. In conclusion, insulin may control the 

transport of nutrients to the mammary gland and play a key role in progeny weight. 

Cortisol 

Maternal endocrine status can have an impact on the fetus and its 

development.  Cortisol is a stress hormone that has the capability of crossing the 

placental barrier and excess exposure to it can cause a fetus to have reduced birth 

weight (Sekl, 2004; Kranedonk et al., 2006).   Energy restricted gilts had the highest 

level of salivary cortisol.  This is most likely attributed to being underfed and the 

stress of being pregnant.  These high levels of cortisol may have been the reasons 

that lead to in utero growth restriction and a smaller birth weight.  Pregnant sows 

that were administered hydrocortisone-acetate gave birth to piglets with a lower 

birth weight than sows that were used as a control (Kranedonk et al., 2006).   

Moreover, Kranedonk et al. (2006), showed in that same study in which 
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hydrocortisone-acetate was used, it caused lower birth weights, yet greater number 

born alive piglets with more mature organs.   

11 beta-hydroxy steroid dehydrogenase type 2 enzyme is what converts 

cortisol to its inert form cortisone.  Low Placental 11 beta-hydroxy steroid 

dehydrogenase type 2 enzyme is linked to lower birth weight.  Also, an increase in 

placental 11 beta-hydroxy steroid dehydrogenase type 2 enzyme increases 

glucocorticoid steroid receptor mRNA expression of the amygdala and increases in 

the offspring all caused by under nutrition of the sow and causing her body the 

stress of not having the proper nutrients for pregnancy (Welberg et al., 2000).  

Mullan and Williams (1989) also found that restricted sows had offspring with 

lower birth weight, he suggests that this is because of low placental 11 beta-hydroxy 

steroid dehydrogenase type 2 enzyme which causes an increase in transplacental 

passage of active maternal glucocorticoids.  Furthermore, cortisol inhibits IGF-I, 

which is a growth factor and in return causes growth retardation (Clemmons 2007).  

Cortisol may be a large factor in why under nourished sows give birth to lower 

weight piglets when compared to sows fed a proper diet. 

Insulin-like Growth Factor – I 

IGF-I is a growth regulator that can be reduced in utero in the neonate when 

the sow is malnourished during gestation and result in smaller birth weights.  IGF-I 

can induce nitric oxide production in endothelial cells which results in greater blood 

flow to the placenta.  With greater blood flow to the placenta this allows for higher 

nutrient availability to the fetus (Tsukahara et al., 1994; Reynolds et al., 2010).   Pigs 

born from sows with greater fat grew faster until slaughter and had greater IGF-I 
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concentrations than pigs born from thin gilts.  Once again it was shown that sow’s 

BCS has a greater impact on offspring than feeding level during gestation (Amdi et 

al., 2012). 

 

CONCLUSIONS 

The growth performance of a piglet is dependent on many factors, both pre- 

and postatal.  While genetics does play a part in the size of the piglet, nutrition also 

plays a key role.  Adjusting diets that are ideal for a lactating sow have been shown 

to have a positive correlation with piglet growth performance and health.  

Furthermore, energy intake and body condition score of the sow mediate offspring 

weaning weight.  When the diet of the sow is altered it affects the proteins and 

biomarkers transported to the mammary gland and later ingested by the neonate.  

There are numerous nutrients in a sow’s milk, especially in colostrum, that enhance 

the growth of a neonate, as well as helping boost the immune system.  It is vital to 

continue research on sows in gestation, and pre- and postnatal piglets to fully 

understand the key factors that effect neonate growth. 
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Figure 1. Adapted by Burrin et al., 1997.  Graphs represent vital organ protein 
synthetic capacities and are measured in microgram RNAmg protein-1. All bars not 
connected by the same letter are significantly different 
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Figure 2.  Adapted from Tao et al., (2010).  Percent changes in abundance of 
siallylated oligosaccharides in colostrum and milk samples from day 4 and day 24. 
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Figure 3. Insulin and amino acid signaling pathways that lead to the stimulation of 
protein translation initiation (Davis et al., 2010) 
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ABSTRACT: There are many factors that affect control of feed intake and regulation of 

energy balance in animals including external (e.g., environment, nutrients) and internal 

(e.g., hormones, metabolites) factors.  The objective of this work was to evaluate the effects 

of energy restriction on feed efficiency, apparent total tract digestibility (ATTD), and an 

immune biomarker in growing-finishing pigs.  Crossbred barrows and gilts (n = 36; initial 

BW = 52.3 kg) were randomly allotted to 36 individual pens with 2 dietary treatments in an 

8 wk experiment. Treatments included a control (ADLIB; n = 18 pigs) diet formulated to 

meet or exceed 2012 NRC requirements and an energy restricted (RESTR; n = 18) diet.  

Pigs maintained on RESTR were provided an amount of feed representing a 50% (wk 1) or 

25% (wk 2-8) reduction in the amount of feed relative to the ADLIB pigs. All diets were 

corn-soybean meal based, fed in 2 phases (wk 1 to 4 and 5 to 8) and contained 0.5% TiO2 as 

an exogenous digestibility marker.  Feed disappearance and individual BW were measured 

weekly for determination of ADG, ADFI, and G:F.  At the end of each phase, fecal samples of 

each pig were collected twice daily for 3 consecutive days and pooled together by phase.  

Feces were analyzed for DM, TiO2, and GE for both phases.  Blood samples were collected 

from each pig (wk 0, 1, 2, 4, 6, and 8) and serum was analyzed for C-reactive protein (CRP) 

concentration.  As expected, there were no differences in BW (P = 0.785) on d 0 and RESTR 

pigs had lower (P < 0.001) BW compared to ADLIB at all subsequent time points.  Final 

mean BW was 100.53 and 112.01 kg, respectively for RESTR and ADLIB pigs.  Overall, ADG 

(0.86 vs. 1.05 kg/d) and ADFI (2.65 vs. 3.44 kg/d) was decreased (P < 0.001) and G:F (0.37 

vs. 0.34 kg/kg) was increased in RESTR compared to ADLIB pigs, respectively. With respect 

to ATTD, no differences were detected in phase 1; however, in phase 2, DM digestibility 

(83.45 vs. 81.62%) and GE digestibility (82.88 vs. 80.87%) was increased  (P < 0.008) in 
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RESTR compared to ADLIB pigs, respectively. With respect to CRP, no overall differences 

were observed; however, CRP tended to decrease (P = 0.06) in RESTR compared to ADLIB 

pigs in wk 1. In conclusion, pigs raised under conditions where energy intake is restricted 

leads to greater feed efficiency and nutrient digestibility and severe energy restriction may 

compromise the pigs ability to synthesize acute phase proteins. 

 

Key Words: digestibility, energy restriction, feed efficiency, grow-finish pigs
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Introduction 

There are many factors that affect control of feed intake and regulation of energy 

balance in animals including external (e.g., environment, nutrients) and internal (e.g., 

hormones, metabolites) factors.  Taking these factors into consideration, energy restriction 

may play a role on feed efficiency, nutrient digestibility, and immune biomarkers in 

growing/finishing pigs.  Feed efficiency and immune response of market pigs can have a 

profound effect on the profitability of pork producers. These studies could result in new 

management practices as well as novel pharmacological agents to enhance feed efficiency 

in growing/finishing swine, increasing profitability of pork producers in Nebraska and the 

U.S.  As of March 1, 2014, Nebraska had approximately 2.65 million market hogs on 

inventory, 1.8 million of which were in the growing/finishing phases (NASS, 2014).  

Based on an average daily gain of 0.82 kg/d, each market pig will consume 

approximately 276.7 kg of feed during the growing/finishing phases. Even a 5% increase in 

feed efficiency, would decrease the amount of feed required to attain market weight by 

13.83 kg or approximately $5/pig. This result would be substantial, saving pork producers 

in Nebraska about $9 million; however, reduction in feed intake is often associated with 

changes in immune stress biomarkers.  

CRP is an acute phase protein and can be assessed as a biomarker of the immune 

response. It has been found that immune stimulation in the rearing environment results in 

the production of cytokines, which may antagonize anabolic growth factors that suppress 

growth (Spurlock, 1997; Johnson, 1997; Broussard et al., 2003). Collectively, the associated 

growth depression and diversion of nutrients away from tissue accretion ensures adequate 

energy and nutrients are available for high priority immunological and homeostatic 
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pathways.  

 

Materials and Methods 

The experimental protocol was reviewed and approved by the Institutional Animal 

Care and Use Committee of the University of Nebraska, Lincoln. 

 

Animals, Experimental Design, and Dietary Treatments 

In this experiment, growing/finishing pigs were provided either a feed-restricted 

(RESTR) or ad libitum (ADLIB)diet. Barrows and gilts derived from maternal white 

crossbred sows bred to terminal cross sires were transported from the UNL Agriculture 

Research and Development Center (ARDC) Swine Unit (Mead, NE) to the UNL Animal 

Science Building just prior to the growing phase with an initial BW of 52.3 kg. Pigs (n = 36) 

were individually housed, randomly selected for each treatment (n = 18), and provided ad 

libitum access to water. Based on an average daily gain of 0.82 kg/d, estimates for feed 

usage in ad libitum fed growing to finishing swine were: 0.6 kg/d for Grower 1 (20 - 36 kg); 

2.30 kg/d for Grower 2 (36 – 61 kg); 2.9 kg/d for Finisher 1 (61 – 86 kg); and 3.40 kg/d for 

Finisher 2 (86 – 113 kg).  Therefore, feed-restricted pigs (50% of ad libitum for wk 1 and 

25% for wk 2-8) were fed 0.66 kg/d  for Grower 1,  1.13 kg/day for Grower 2, 1.45 kg/d  for 

Finisher 1, and 1.70 kg/d  for Finisher 2.  

Serum Analyses 

Blood samples (n = 5) were collected at the beginning and end of each 
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grower/finisher phase and stored at 4°C overnight, centrifuged (12,000 × g) for 20 min and 

serum was isolated for storage at -20°C. Blood samples were collected from each pig (wk 0, 

1, 2, 4, 6, and 8) and serum was analyzed via a porcine specific ELISA for C-reactive protein 

(CRP; R&D Systems, Minneapolis, MN)) concentration. Serum was diluted (1:50,000) prior 

to analysis. The intra- assay CV was 6.2 mg/L and inter-assay CV was 11.94 mg/L. 

Digestibility and Growth Performance 

Feed disappearance and individual BW were observed weekly for determination of 

ADG, ADFI, and G:F.    Finally, these approaches were coupled with the assessment of 

apparent total tract digestibility (ATTD). Pigs were fed a standard multi-phase corn-soy 

based diet containing 0.5% titanium dioxide as an exogenous digestibility marker to 

estimate the ability of pigs to digest feed.  At the start and end of each feeding phase, 3 fecal 

grab samples were collected from each pig and pooled within each pen. Chemical 

composition of the pooled homogenized feces was analyzed for DM, TiO2, and GE in both 

phases. Titanium dioxide analysis was conducted using the protocol previously described 

by Kerr et al., (2010). Dry matter was recorded after fecal samples were dried in an oven 

for 48 h at 70° C. Next for gross energy (GE) analysis, the dried fecal matter was ground 

through a 1 mm screen. Fecal matter was weighed out to 0.50 g and compressed into a 

pellet and placed in metal crucibles for analysis in the bomb calorimeter (Parr 1281 Bomb 

Calorimeter). All samples were run in duplicates.  

Statistics 

The experiment was a completely randomized design. The model included 



 

 

51 

treatment as a fixed effect. Pen was the experimental unit and random effect.  Data were 

analyzed using the MIXED procedure  (SAS Inst. Inc., Cary, NC).  The model for growth 

performance and digestibility was analyzed based on the two treatments. 

Results 

The effects of RESTR vs. ADLIB diets on growth performance are shown in Figure 1 

and Table 1a.  Final mean BW was 100.53 kg for RESTR and 112.01 kg for ADLIB pigs. 

Average daily gain (0.86 vs. 1.05 kg/d; Table 1a) and ADFI (2.65 vs. 3.44 kg/d) was 

decreased (P < 0.001) when comparing RESTR to ADLIB pigs as seen in Table 1b. G:F (0.37 

vs. 0.34 kg/kg) was increased (P < 0.001)in RESTR compared to ADLIB pigs (Table 1b). In 

phase 1 and 2 of the experiment both G:F and ADFI had a significant difference (P<0.001; 

Table 1b). The G:F was greater in the RESTR pigs when comparing the ADLIB pigs in phase 

1 (P < 0.0001), but this was reversed for phase 2 (Figure 1).  The ADFI was greater in the 

ADLIB pigs in both phases 1 and 2 (Table 1b, Figure 1). Furthermore, in phase 1 the ADG 

was greater in phase 1, yet there was no significant difference in TRTs in phase 2 (FIgure 

1).   

Digestibility of the pigs in each treatment is presented by phases 1 and 2 in FIgure 2.  

In phase 1 there was no significant difference in ATTD. However, In Phase 2, DM 

digestibility (83.45 vs. 81.62 %) and GE digestibility (82.88 vs. 80.87 %) was increased  (P 

< 0.008) in RESTR compared to ADLIB pigs (Table 1c, Figure 2). Figure 3 shows a 

significant difference in GE in phase 1, whereby GE was increased (P = 0.042) in RESTR 

compared to ADLIB pigs; however, there is no difference in GE in phase 2 as seen in Table 

1c. 
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Concentrations of CRP at d 0, 7, 14, 28, and 42 are presented in Table 2. No overall 

differences were observed in CRP when comparing treatments except on d7 when ADLIB 

pigs tended to have greater (P = 0.061) CRP concentrations compared to RESTR pigs.  

 

Discussion 

The goal of the restricting feed intake in pigs during their growing and finishing 

stages is to positively impact pork producers and money spent on feeding pigs. Diet of a pig 

is a major factor that affects pork quality, as it can influence intramuscular fat content 

(Wiecek et al, 2010). Feed restriction of pigs will have a greater impact on BW during and 

after restriction when compared to pigs on an energy-restricted diet (Skiba et al., 2012). 

Through the feed restricted diet we saw less feed waste and greater nutrient utilization 

from the pigs. It has been widely studied that reducing crude protein (CP) and using 

crystalline amino acids (CAA) can more closely meet diet requirements, and thus increase 

gut health and nitrogen utilization with out adverse affects as long as AA requirements are 

met (Gloaguen et al., 2014). In a study by Stolzenbach et al., (2009) it was showed that a 

feeding regimen that incorporated compensatory gain can lead to meat tenderness and 

increased shear force.   

A feeding strategy that includes compensatory growth will also influence the 

amount of fat deposited by the pig’s body (Skiba et al., 2005) and fatty acid profile (Wieck 

et al., 2011). Furthermore, It has been documented in other studies that pigs in a growing 

stage have a great G:F as well as digestibility (Le Floc’h et al., 2014). Results of studies have 

varied however, due to genetics and external factors (i. e. diet composition, experimental 

design, length of restriction). In an experiment focusing on compensatory gain, Skiba et al., 
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(2012) grouped his animals by age rather than weight due to age playing a crucial role in 

growth performance. While the pigs in our study were very similar in weight, they too were 

also in the same age group. Skiba et al., (2012) noted that pig’s 30% feed restricted had the 

greatest compensatory gain and backfat thickness when put on ad libitum feed and 

compared to the control pigs; however the restricted still had an overall lower BW. The 

pigs in the current study were only 25% restricted and data past the restriction phase 

would need to be collected to see if our results line up with previous studies (Skiba et al., 

2005, Skiba et al., 2012).  Also, Pigs that are energy restricted continue to have a lower 

mass of the musculus longissimus dorsi after compensatory gain, possibly due to the quick 

growth of the animal focusing more on internal organs and less on muscle tissue (Skiba et 

al., 2005).  

In a study done by Wiecek et al., (2011), a four phase restrictive study was 

constructed, the study showed that the ad libitum pigs had no significant difference in 

carcass lean contents when compared to those on the restrictive diet and that the 

restrictive pigs will have compensatory gain when fed the same ad lib diet as the control 

pigs. Furthermore, it has been demonstrated that feed restricted pigs (Iberian x Duroc) 

when fed a restricted diet during a certain growing stage (d 152 to 263) will have a greater 

primal cut without having any negative effects elsewhere (Serrano et al., 2009).  This study 

agreed with Wiecek (2011), that when the feed restricted pigs were switched over to the ad 

libitum diet, the ADFI, ADG, and G:F increased when compared to the control pigs (Serrano 

et al., 2009). This agrees with our findings on the feed restricted pigs where, although we 

did not measure compensatory gain, we did see an increase in ADG and G:F when 

compared to the ADLIB however it is contrary to what was found by Le Floc’h in 2014. Le 
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Floc’h et al., (2014) concluded that RESTR pigs had lower feed efficiency and a higher 

protein deposition. The higher protein deposition correlates with decreased feed efficiency, 

as it is less energetically efficient compared to fat (Lovatto et al., 2006).  

C- reactive protein (CRP) is a main acute phase protein in porcine. Acute phase 

proteins are part of the innate immune response and their concentration is altered when 

the animal is faced with an infection or health challenge (Murata et al., 2004).  C-reactive 

protein is produced in the liver and is known to rise when there is inflammation through 

out the body. Furthermore, CRP plays a key role in clearing infectious agents and damaged 

cells through binding to phosphocholine (Black et al., 2004).  As we saw in our results, CRP 

in the RESTR pigs were numerically lower when compared to the ADLIB pigs and on d 7 

there was a tendency of RESTR having lower CRP concentration then ADLIB. The greater 

difference on d 7 between RESTR and ADLIB could be a result of the pig’s body adapting to 

the new diet and the sudden change in caloric restriction from d 0 to 7 and due to the feed 

restriction being 50% during this time. Rats that were 40% feed restricted in their growing 

stage had clear decrease in CRP concentration when compared to control rats (Kalani et al., 

2006). Furthermore, our results agreed with a study that tested pigs on a low fat/high fiber 

diet and a high fat/low fiber diet (Heinritz et al., 2016). The pigs on the low fat diet had a 

decreased CRP over time, as did our restricted pigs. Due to CRP being lower in the 

restricted pigs this follows the understanding of some studies that feeding pigs less during 

a time a sickness such as a restricted diet can deprive the immune system from 

overreacting and causing an inflammatory response (Le Floc’h et al., 2014). Similar to 

Kalani (2006), in a study conducted on rats, the results showed that with a short term 

caloric restriction there was a significant decrease in the CRP levels when compared to the 
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control group.  

Through a focal point of light feed restriction a pork producer can increase a pigs 

ADG, ATTD, and G:F while possibly preparing pigs to recover from sicknesses quicker 

through reducing the impact of the disease on the animal. While optimizing feed intake and 

enhancing growth performance is a major focus in swine, ad libitum feed in growing 

animals can cause over consumption and digestive issues (Kil and Stein, 2010).  Transient 

feed restriction has shown positive effects on the pig’s ability to cope with inflammatory 

challenges (Le Floc’h et al., 2014). Feed costs represent about 60% of pig productive costs, 

by limiting feed costs and allowing animals a faster recovery time, the pork producer will 

be saving money in both areas. When an animal is sick it tends to display signs of anorexia 

and there are many changes in energy and nutrient metabolism (Gabler, 2017). For 

example, amino acids are redistributed from the muscle and go to the cells and tissues 

involved in the immune system, also a greater energy intake is usually required when an 

animal has a fever. There is an increasing need of around 13% more caloric energy per 

degree C increase in body temperature (Del Bene, 1990). Interestingly, data from 

Matsuzaki et al., (2001) show that feed restriction is beneficial for the digestive tract and 

may lessen the effects of systemic inflammatory response in growing animals, these results 

agreed with our results, for we saw a decrease in CRP in the RESTR pigs. In growing pigs on 

a short-term feed restricted diet, it was recorded that genes involved in the immune 

response were altered, suggesting a possible modification in the immune system 

(Lkhagvadori et al., 2010). However, feed restriction is mostly applied to diseases affecting 

the digestive tract (Rantzer et al., 1996).  Furthermore, when the immune system in 

activated acute phase proteins will increase (Reeds et al., 1994) but this will not occur 
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when an animal is restricted as previously shown in the current experiment with CRP and 

by Matsuzaki et al., (2001) and Le Floc’h et al., (2014).    

The objective of this study was to understand the effects of feed-restriction on 

growth, health, and digestibility of pigs. More research needs to be done on other immune 

biomarkers, such as IL-6, which is known to be a modulator of CRP; as well as the 

compensatory gain of the pigs to see how long it takes them to catch up to those on the 

control diet. An overall economic analysis would be needed to solidify the findings of how 

to save pork producers money. 
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Figure 1. Growth performance of phase 1 (wk 1to 4) and phase 2 (wk 5 to 8). Restricted 
pigs (n=18) and ADLIB pigs (n=18) were evaluated in phase 1 (wk1-4) and phase 2 (wk 5-
8). Each bar represents the least-square mean (±SEM) of 36 pigs for phase 1 and phase 2. 
Bars with corresponding letters (a,b) showed a significant difference (P < 0.05). 
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Figure 2: Digestibility of phase 1 (wk1-4) and phase 2 (wk 5-8). Restricted pigs (n=18) and 
ADLIB pigs (n=18) were evaluated in phase 1 and phase 2. Each bar represents the least-
square mean (±SEM) of 36 pigs for phase 1 and phase 2. Bars with corresponding letters 
(a,b) showed a significant difference (P < 0.05). 
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Figure 3. Gross energy  is compared in ADLIB vs RESTR  as well as divide up between phase 
1 (wk1-4) and phase 2 (wk5-8). Restricted pigs (n=18) and ADLIB pigs (n=18) were 
evaluated in phase 1 (wk1-4) and phase 2 (wk 5-8). Each bar represents the least-square 
mean (±SEM) of 36 pigs for phase 1 and phase 2. Bars with corresponding letters (a,b) 
showed a significant difference (P  < 0.05). 
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Table 1a. Effects of ADLIB vs RESTR diet on growth performance of grower-finisher 
pigs 
 

Item 
Treatment 

SEM P-value 
ADLIB RESTR 

BW, kg     

d 0 52.5588 52.1737 0.8974 0.7571 

d 7 59.3235 53.0263 0.8506 <0.0001 

d 14 65.8 58.7737 0.8815 <0.0001 

d 21 73.9471 64.5444 0.9518 <0.0001 

d 28 82.9471 71.8611 1.0713 <0.0001 

d 35 90.8353 78.8056 1.2373 <0.0001 

d 42 98.147 87.6333 1.4563 <0.0001 

d 49 105.64 95.022 1.666 <0.0001 

d 56 112.52 100.68 1.65 <0.0001 
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Table 1b. Effects of ADLIB vs RESTR diet on growth performance of grower-finisher 
pigs 

 
Item 

Treatment 
SEM P-value 

ADLIB RESTR 

Phase 1 
    

d 0 to 7 
    

ADG, kg 0.98 0.07 0.03 <0.0001 
ADFI, g 2.55 1.3 0.02 <0.0001 
G:F, g/kg 0.38 0.06 0.02 <0.0001 
d 7 to 14 

    
ADG, kg 0.91 0.82 0.04 0.1121 
ADFI, g 2.78 1.91 0.01 <0.0001 
G:F, g/kg 0.33 0.43 0.02 <0.0001 
d 14 to 21 

    
ADG, kg 1.17 0.83 0.05 <0.0001 
ADFI, g 2.78 1.91 0.01 <0.0001 
G:F, g/kg 0.42 0.43 0.02 0.5983 
d 21 to 28 

    ADG, kg 1.28 1.04 0.03 <0.0001 
ADFI, g 3.25 2.24 0.02 <0.0001 
G:F, g/kg 0.39 0.46 0.01 <0.0001 
Phase 1 
(Wk 1 to 4) 

    ADG, kg 1.09 0.69 0.02 <0.0001 
ADFI, g 2.84 1.84 0.01 <0.0001 
G:F, g/kg 0.38 0.35 0.01 <0.0001 

_____________________________________________________________ 
Phase 2 

    d 28 to 35 
    ADG, kg 1.13 0.98 0.05 0.0301 

ADFI, g 3.39 2.45 0.06 <0.0001 
G:F, g/kg 0.33 0.4 0.01 <0.0001 
d 35 to 42 

    ADG, kg 1.04 1.28 0.06 0.0032 
ADFI, g 3.5 2.92 0.1 <0.0001 
G:F, g/kg 0.29 0.44 0.01 <0.0001 
d 42 to 49 

    ADG, kg 1.05 1.04 0.08 0.8995 
ADFI, g 3.38 2.91 0.08 <0.0001 
G:F, g/kg 0.31 0.36 0.02 0.1876 
d 49 to 56 

    ADG, kg 0.99 0.84 0.08 0.1738 
ADFI, g 3.47 2.92 0.07 <0.0001 
G:F, g/kg 0.28 0.29 0.02 0.9578 
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Phase 2 
(wk 5 to 8) 
ADG, kg 1.05 1.04 0.03 0.7205 
ADFI, g 3.44 2.8 0.07 <0.0001 
G:F, g/kg 0.31 0.37 0.01 <0.0001 

_____________________________________________________________ 
Wk 1 to 8  

    ADG, kg 1.07 0.86 0.02 <0.0001 
ADFI, g 3.14 2.32 0.04 <0.0001 
G:F, g/kg 0.34 0.37 0 <0.0001 
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Table 1c. Effects of ADLIB vs RESTR diet on digestibility of grower-finisher pigs  

Item 
Treatment 

SEM P-value 
ADLIB RESTR 

Phase 1 
    

DM% 95.82 96.37 0.46 0.394 

DM Digestibility % 85.07 85.85 0.34 0.107 

GE cal/g 4336.3 4401.7 22.17 0.042 

GE Digestibility % 84.64 85.31 0.36 0.19 

Phase 2 
    

DM% 96.24 96.18 0.37 0.904 

DM Digestibility % 81.62 83.45 0.46 0.007 

GE cal/g 4418.63 4398.47 14.07 0.312 

GE Digestibility % 80.87 82.88 0.51 0.008 
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Table 2. Concentrations of C-reactive protein (CRP) mg/L (Ad lib vs RESTR) on d 0 
to 42 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

CRP 
Treatment 

      SEM P-value 
ADLIB RESTR 

d 0 322.96 293.16 42.02 0.609 

d 7 256.43 172.21 31.16 0.061 

d 14 163.51 151.34 19.83 0.667 

d 28 299.88 262.84 43.93 0.353 

d 42 121.51 122.95 9.19 0.911 
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ABSTRACT:  There are many factors (pre- and postnatal) that affect piglet health 

and growth performance including environmental, nutritional, and genetic effects. 

Ongoing sow reproductive longevity research at the University of Nebraska has 

generated data over 14 batches monitoring females up to parity 4. Gilts included in 

this work have been developed under different nutritional management strategies, 

including energy restriction, and it has been determined that energy restriction 

increases sow longevity. The objective of this work was to determine if nutritional 

management (i.e., energy restriction) during gilt development (123 to 240 d of age) 

effects parity 1 and 2 progeny growth performance (Batches 5 through 13; n = 733 

gilts). Gilts included in the analysis were fed either a control diet (balanced 

according to the NRC, 1998; n = 333) or energy restricted diet (20% energy 

restricted accomplished via the addition of soy hulls; n = 400).  At 240 d of age gilts 

were bred and fed a common ad libitum diet based on the 2012 NRC Requirements. 

At d 109 of gestation, sows were transferred to farrowing crates and pre-backfat 

(Pre-BF) and pre-BW were recorded. After farrowing, individual piglet birth weights 

and d 21 piglet weaning weights were recorded. In parity 1, gilts fed an energy-

restricted diet tended (P < 0.09) to farrow piglets with greater birth weight (1.26 vs. 

1.28 kg for control and restricted, respectively); however, in parity 2, treatment had 

no effect on birth weight (P = 0.30). Furthermore, in parity 1 energy-restricted sows 

weaned heavier pigs (P < 0.05; 5.20 vs. 5.34 kg for control and restricted, 

respectively) compared to control sows, but once again, in parity 2 there was no 

difference (P = 0.65\). This preliminary research indicates that energy restriction 

during gilt development may have a positive effect on parity 1 progeny growth 
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performance resulting in greater birth weights and weaning weights; however, 

effects of developmental diet on subsequent progeny growth performance may 

begin to disappear with increasing parity due to compensatory gain between 

parities.     

KEY WORDS: Energy Restriction, Sow, Weaning  
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INTRODUCTION 

Developing gilts that breed early and continue to be able to reproduce are 

major goals of pork producers. There is a substantial amount of work at the 

University of Nebraska that has been focused on improving sow longevity; however, 

until recently, performance of progeny resulting from different gilt development 

strategies has not been a focal point. Litter performance and subsequent growth 

performance has been attributed to sow diet, genetics, and sow weight. Given the 

fact that pigs spend nearly half of their life in utero, the nutritional management of 

the sow can greatly influence birth weight and postnatal growth (Amdi et al., 2013). 

The early environment (i.e., gestation, lactation, and sanitation) of a piglet has 

drastic effects on its health that can carryover and have long-term effects on both 

health and growth performance. A study conducted by Klindt et al. (2001) found 

that energy restricted gilts restricted during developmental period, consumed more 

feed than the control gilts when all sows were fed a common ad libitum diet during 

gestation. Due to the fact of greater intake during gestation, the restricted gilts had 

compensatory gain and nearly erased the negative BCS from the energy-restricted 

diet. Furthermore, increased feed intake after a restricted diet may result in 

increased metabolic rate and organ growth (Klindt et al., 2001). Body composition 

during time of breeding and gestation may play a key role in the weight of offspring 

(Amdi et al., 2013). Under-nutrition of a sow can cause a reduced supply of nutrients 

available to the progeny, but a low body condition score can cause greater 

catabolism in a sow. Sows will lose less weight and backfat when they are on a 

higher energy diet, yet all sows will catabolize tissue during early lactation even if 
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fed ad libitum. Maternal backfat depths also have been shown to play a role in fetal 

development from birth to slaughter (Amdi et al., 2013).  There are conflicting ideas 

of what has a greater impact on offspring performance: maternal body condition 

score or maternal feed level intake; thus, both were analyzed in this experiment. The 

objective of this data analysis was to determine if energy restriction during gilt 

development confers advantages with respect to growth performance of their 

progeny. 

 

 

MATERIALS AND METHODS 

Animals and experimental design 

The experimental protocol was reviewed and approved by the institutional 

Animal Care and Use Committee of the University of Nebraska, Lincoln. The analysis 

described below included seven hundred and thirty three gilts over the course of 9 

batches with each batch consisting of data collected over two parities.  Treatments 

were allotted randomly to gilts at d 123 of age (3 treatments; 8 gilts/pen). Dietary 

treatments (Table 1a) included 2 types of an energy restricted diet (P1, n=400; and 

P2, n=314; one energy restricted diet was 20% restricted in energy with increased 

fiber, the other energy restricted diet was 20% restricted energy with the same 

Lys:ME as the CTL diet) and a control diet (P1, n=333; and P2, n= 272).  For the 

purpose of this analysis, data from the two restricted treatments were pooled and 

compared to the control treatment.  All gilts were maintained on their respective 

dietary treatments for the duration of the gilt developmental period (d 123 to 240). 
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The number of sows in each parity varied due to normal culling of gilts from parity 1 

to parity 2. During the entire experiment the pigs were given ad libitum access to 

water and feed.  After breeding on d 240, sows were moved to gestation crates. At d 

109 of gestation the sows were moved to farrowing crates and backfat (pre-BF) was 

measured. All sows were limit-fed during gestation (Table 1b) and given ad libitum 

access to feed during lactation (Table 1b). The study consisted of a feeding 

experiment during the developmental period of gilts that then followed the sow’s 

progeny performance to weaning. Once piglets were weaned, sows were put back on 

the gestation diet until the farrowing of parity 2 progeny, where they were then put 

on the lactation diet. 

Dietary Treatments 

Diet ingredients and nutrient composition are presented in Table 1 and 2, 

respectively. Diets were all fed ad libitum, but 2 were restricted in energy. Dietary 

treatments included the following: 1) Control (CTL; formulated to 1998 NRC 

requirements) and 2) Restricted (RESTR; 2 restricted diets were used in batches 5-

13, but all restricted diets were analyzed as 1). Each diet was fed as a 3 phase 

feeding regimens. For phase 1, 2, and 3 the control diet contained 3406, 3408, and 

3410 kcal/kg, respectively. The two restricted diets contained 2706-2713 kcal/kg 

for phase 1, 2707-2715 kcal/kg for phase 2, and 2708-2717 kcal/kg for phase 3. 

Furthermore, both restricted diets contained higher amounts of fiber and lower 

crude protein than the control diet. 

Data and Sample Collection 

When the gilts were moved to farrowing crates (d 109 of gestation), pre-BF 
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was recorded using Aloka 500V real-time ultrasound instrument equipped with a 

3.5-MHz, 17-cm linear transducer (Corometrics Medical System, Inc.) and pre-BW 

was recorded.  On the day that pigs were weaned, backfat (post-BW) and BW (post-

BW)  measurements were recorded for all sows by the same methods used 

previously. Piglets were weaned at d 21 post-farrowing. Number born alive, total 

number born, and number weaned were also recorded for each sow. Piglet birth 

weight and piglet weaning weight were recorded to measure progeny performance 

based on sow diet. 

Statistical Analysis 

Data was analyzed in JMP 12 (SAS, Cary, NC). P < 0.05 was considered 

significant, non-significant factors were dropped and the model was run again. For 

birth weight (BiW): sow pre-weight (pre-BW) , sow pre-backfat (pre-BF), treatment 

(TRT), total number born (TNB)  and batch number (REP) were included in the 

model as fixed effects, sire and litter nested in sire were random effects contrast 

statements were analyzed through LSM Tukey-HSD .  When analyzing weaning 

weight (WW), sow pre-BF, sow post-back fat (post-BF), number nursed (NN), 

number weaned (NW), average BiW of litter, TRT, and REP were included in the 

model as fixed effects, sire and litter nested in sire were random effects contrast 

statements were analyzed through LSM Tukey-HSD. Average sow pre-BW, was 

analyzed with TRT, REP and TRT by REP as a fixed effect contrast statements were 

analyzed through tukey HSD and LSM Dunnett. Average Pre-BF was analyzed with 

trt and rep. Contrast statements were analyzed through LSM Dunnett. Continuing 

on, to analyze Avg post-BF, TRT, pre-BW, pre-BF, NW, post-BW, REP by TRT and 
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REP were included in the model as fixed effects contrast statements were analyzed 

through tukey HSD and LSM Dunnett. For the analysis of Avg post-BW; TRT, pre-BW, 

NW, TRT by REP and REP were included in the model as fixed effects contrast 

statements were analyzed through Tukey HSD and LSM Dunnett. ADFI was analyzed 

with TRT and REP as a fixed and contrast statements were analyzed through LSM 

Dunnett. All means are presented as least-squares means (SEM). 

 

RESULTS 

Parity 1 Sow performance 

 Sows allotted to an energy-restricted diet had a significantly lower pre-BF 

depth when compared to CTL sows (2.00 vs 2.31 mm respectively; P < 0.0001, Fig. 

1). However, when backfat was measured at day of weaning, RESTR sows had lost 

the same amount of backfat as the CTL sows (-0.34 cm). Irrespective of dietary 

treatment, all sows had less (P < 0.0001) backfat at weaning (post-BF) compared to 

pre-BF. Interestingly, sows on both dietary treatments lost a significant amount of 

backfat during lactation (P < 0.0001). Interestingly, RESTR sows at had similar post-

BF depth as CTL sows pre-BF depth (P = 0.7292).  Furthermore, as shown in Figure 

3, RESTR sows had lower (P < 0.0001) pre-BW (212.49 kg) compared to CTL sows  

(223.42 kg).  Sow post-BW was not  affected by developmental dietary treatment on 

the day of weaning (P = 0.7469). Lastly, sows were limit fed during gestation so 

there was no significant difference in ADFI, but during lactation sows were fed ad 

libitum and RESTR gilts consumed more (P < 0.0001) feed compared to  CTL sows 

(4.17 vs. 3.90 kg/d, respectively;, Figure 4). 
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Parity 1 Progeny performance 

 Progeny derived from RESTR sows tended  (1.26 Kg vs 1.29 Kg, respectively; 

P = 0.09, Fig. 2) to have greater BiW when compared to progeny derived from CTL 

sows. Piglets derived from RESTR sows had greater (5.2 kg vs 5.34 kg respectively; 

P = 0.018, Fig. 2) WW than those from CTL sows. 

Parity 2 Sow performance 

 Sows that were included in the experiment and analysis of parity 1 data were 

followed through in subsequent parities.  Here we describe results from Parity 2. 

Some sows were culled due to lameness or not returning to estrus. Sows allotted to 

an energy-restricted diet continued to have a significantly lower pre-BF depth in 

parity 2 when compared to control sows (1.83cm vs 1.99 cm respectively; P < 

0.0001, Fig. 6). However, similar to parity 1, when post-bf was measured there was 

no difference in bf depth (1.71cm, P = 0.9990, Fig. 6). Overall CTL sows had lost 

more BF than RESTR (-0.28  vs -0.12 cm, respectively). Sows on an energy-restricted 

diet had an average pre BW of 237.57 kg while control diet sows had a weight of 

242.49 (P < 0.0006, Fig. 7).  Sows post BW was not significantly different among 

diets (P = 0.4623, Fig. 7). Lastly, in the analysis of ADFI for parity 2 sows, it was 

shown that energy-restricted sows ate more than CTL sows, as was also seen in 

parity 1 (P = .0539, Fig 8). 

Parity 2 Progeny performance 

 Piglets farrowed from sows on a restricted diet did not have a large 

difference in BiW ( 1.46 kg vs 1.45 kg respectively; P = 0.3047) or WW (6.29 kg vs 

6.31 kg respectively; P = .6525) from piglets farrowed from CTL sows.  
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DISCUSSION 

While data on these sows was analyzed for breeding longevity in previous 

experiments (Miller et al., 2010), and it was discovered that RESTR gilts have longer 

breeding longevity, little was known on how or if the diets affected progeny 

performance. Furthermore, we wanted to see if RESTR diets had a positive effect not 

only on the sows breeding ability, but also its progeny. The aim of this analysis was 

to investigate the effect of energy-restricted diets on developing gilts and if there is 

carry over effects to their offspring’s growth performance. Parity 1 progeny derived 

from energy-restricted gilts had a tendency to weigh more at birth and they had a 

significantly greater weaning weight when compared to piglets farrowed from CTL 

sows. These birth weight results suggest that the gilts body condition may have had 

an effect on offspring growth, due to the fact that all gilts were limit-fed during 

gestation and on a common diet. However, our results vary from Lewis and Bunter 

(2011) where it was observed that sows with greater BW farrow piglets with 

greater BW.  Other studies have stated that maternal diet is more important than 

maternal body condition and the fetal response responds more to dietary changes 

(Howie et al., 2009).  

Howie et al. (2009) found that when a rat was switched to a high fat diet 

during pregnancy, offspring had greater fat adiposity compared to the control 

group; thus, maternal diet has a greater effect on offspring. In the current work, 

while RESTR sow were not switched to a high fat diet, they did receive a diet with 

more energy than their development period and consumed more feed during 



 

 

78 

lactation when compared to CTL sows which may indicate that they consumed more 

fat than CTL sows. Furthermore, Vadmand et al. (2015) found that milk production 

in sows is positively correlated with feed intake; this may explain greater weaning 

weights for piglets from RESTR sows due to their increased ADFI during lactation.  

Feeding level and maternal body condition score (BCS) can affect offspring 

growth and development. Average daily gain of piglets is correlated with the ADFI of 

sows as well as BW loss during lactation. Considering our results, specifically where 

RESTR sows had greater ADFI during lactation and had similar BF loss, this may be a 

reason for RESTR sows having piglets with greater WW. Increasing the ADFI by 

100g/day could increase litter weaning weight from 0.5 to 1.0 kg (Strathe et al., 

2016). Our results indicated that RESTR sows had an ADFI of about 270 g/d more 

than CTL sows and weaned significantly heavier piglets, agreeing with the results of 

Strathe et al. (2016). When a sow has increased ADFI more energy and nutrients are 

available for milk production, which is correlated with piglet growth (Eissen et al., 

2003).  

Improving efficiency of a sow’s protein utilization when feed-restricted plays 

a large role in the growth of the fetuses as well as in milk production (Kim et al., 

2008). When a lactating sow is energy-restricted it pulls from AA, resulting in 

deamination and urea synthesis of the liver. Fetal and mammary tissue growth is 

rapid during late gestation, and calls for an even greater demand of AA during late 

gestation (McPherson et al., 2004, Ji et al., 2006). Pulling from AA for energy can 

cause a protein deficiency in the sow and negatively affect litter performance 

(Holden et al., 1971).  Kim et al (2008) stated feed restriction may also limit protein 
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intake, thus directly leading to a protein deficiency, specifically during late gestation 

and lactation and thus why it is important to feed a diet with high efficiency of 

protein utilization. Continuing,  sow  AA requirements change through out gestation 

and phase feeding it as good way to compensate for the changing nutrient 

requirements of a sow, similar to what was done in the current experiment (Moehn 

et al., 2012).  

Due to RESTR sow eating more than CTL sows during lactation the increased 

energy consumption could counteract deamination in the body to a lesser degree of 

the CTL sows. Furthermore, Bettio et al., (2016) found that restricted-fed lactating 

sows are more efficient, thus producing more milk per g of feed intake. While the 

current study did not analyze milk output, our result of heavier pigs from RESTR 

sows could agree with this data due to data on the growth performance of progeny. 

Furthermore, in our study we saw that RESTR sows were able to have 

compensatory gain to improve litter performance or have it be even with CTL sows 

as was shown in both parity 1 and 2 litter performance. These results of greater 

intake and compensatory gain agree with Bikker et al., (1996) where restricted gilts 

gained on average 140 g/d faster. Also, as we saw in our data that RESTR sows had a 

greater ADFI when put an a ADLIB diet during lactation. Similar results were 

recorded when Wiecek (2011) and Serrano et al (2009), that when the feed 

restricted pigs were switched over to the ad libitum diet, the ADFI, ADG, and G:F 

increased when compared to the control pigs.   

In conclusion, parity 1 sows that were energy-restricted during the 

developmental period had increased piglet BiW/WW that was likely caused by 
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increased ADFI, allowing for greater milk production. Parity 2 saw no significant 

differences among diets in post-BW, or post-BF suggesting why there were no 

growth performance differences in the piglets. Future research should try to focus 

on milk out put in correlation to feed intake and nutrient composition of milk. 
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Table 1. Composition and nutrient contents of gestation and lactation diet.  
 

Parity 1 and Parity 2 

Item: Gestation1 Lactation2 

Ingredient, % 
Corn 

 
77.25 

 
65.68 

Soybean Meal 16 27.5 
Tallow 3 3 
Dicalcium 
Phosphate 

1.9 2.33 

Limestone 0.925 0.6 
Salt 0.5 0.5 
Vitamin Premix1 0.25 0.25 
Trace Mineral  0.15 0.15 
Phytase 0.02    - 
Nutrient Content:     
ME (kcal/kg) 2605 2536 
Crude Protein 11.74 15.75 
Lys 0.56 0.85 
Total P % 0.67 0.8 
Ca % 0.87 0.9 

1Gestation diet was fed d 0 of breeding to d 0 post farrowing 
2Lactation diet was fed d 0 post farrowing until d 21 post farrowing, sows were put 
immediately back on gestation diet at d 21 post farrowing  
3Provided per kilogram of diet for phase 3: 6,600 IU of Vitamin A, 600 IU of Vitamin 
D3, 66 IU of Vitamin E, 4.40 IU of Vitamin K, 33.00 mg of Niacin, 22.05 mg of 
Panothenic Acid, 11.00 mg of Riboflavin, and 22.05 g of Vitamin B12, 550 mg of 
Choline Chloride, 1.65 mg of Folic Acid, 0.22 mg of Biotin 
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Table 2.  Composition and nutrient contents of experimental diets fed to developing gilts d 123 – 240*. Phase 1 and 2 
were each 6 weeks long and phase 3 was 4 weeks long.  

  
Phase 1 

  
Phase 2 

  
Phase 3 

 Item CTL1 RESTR 12 RESTR 23 CTL RESTR 1 RESTR 2 CTL RESTR 1 RESTR 2 
Ingredient, %: 

         Corn 72.52 39.95 45.25 76.32 43.73 48.2 80.13 47.5 51.28 
Soybean Meal 21.53 17.43 12.2 17.66 13.57 9.2 13.79 9.71 6.1 
Soybean Hulls - 40 40 - 40 40 - 40 40 
Beef Tallow 3 - - 3 - - 3 - - 
Dicalcium 
phosphate 

1.37 1.72 1.65 1.46 1.8 1.7 1.54 1.89 1.72 

Limestone 0.68 - - 0.66 - - 0.64 - - 
Sodium Chloride 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Vitamin Premix4, 5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
Mineral Premix6 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 
L-Lysine - - - - - - - - - 
Methionine - - - - - - - - - 
Threonine - - - - - - - - - 
Tryptophan - - - - - - - - - 
Nutrient Content: 

         ME (kcal/kg) 3406 2706 2713 3408 2707 2715 3410 2708 2717 
Lys, g/kg 0.7 0.69 0.56 0.61 0.59 0.48 0.51 0.5 0.41 
Crude Protein % 16.25 15.72 13.66 14.72 14.19 12.47 13.18 12.66 11.25 
P % 0.6 0.6 0.56 0.6 0.6 0.56 0.6 0.6 0.55 
Ca % 0.67 0.71 0.68 0.67 0.72 0.68 0.67 0.73 0.67 
Lys/ME* (g/Mcal) 2.059 2.536 2.057 1.78 2.185 1.785 

 
1.5 1.835 1.504 

* Data from RESTR HF and RESTR LOW AA were analyzed together for growth performance and here on out considered 
RESTR   
1 Control diet (CTL) was formulated to meet NRC requirements for developing gilts.  
2Energy restricted diet (RESTR 1) was 20% restricted energy with the same Lys:ME as the CTL diet.  
3Energy restricted diet (RESTR 2) was 20% restricted in energy with increased fiber. 
4 Provided per kilogram of diet for phase 1 and 2: 5,500 IU of Vitamin A, 550 IU of Vitamin D3, 30 IU of Vitamin E, 4.40 
IU of Vitamin K, 33.00 mg of Niacin, 22.05 mg of Panothenic Acid, 11.00 mg of Riboflavin, and 33.00 g of Vitamin B12 
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5Provided per kilogram of diet for phase 3: 6,600 IU of Vitamin A, 600 IU of Vitamin D3, 66 IU of Vitamin E, 4.40 IU of 
Vitamin K, 33.00 mg of Niacin, 22.05 mg of Panothenic Acid, 11.00 mg of Riboflavin, and 22.05 g of Vitamin B12, 550 
mg of Choline Chloride, 1.65 mg of Folic Acid, 0.22 mg of Biotin 
6 Provided per kilogram of diet: 10.50 mg of Copper Sulfate Pentahydrate, 0.26 mg of Calcium Iodate, 127.50 mg of 
Ferrous Sulfate, 30.00 mg of Manganese Oxide, 0.30 mg of Sodium Selenite, 127.50 mg of Zinc Sulfate, 226.03 mg of 
Calcium Carbonate.  
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Table 3. Sow reproductive performance, feed intake, and growth performance across parity 1 and 21 

  Parity 1 Parity 2 

  Treatment 
 

Treatment 
 Item CTL RESTR POOLED SEM CTL RESTR POOLEDSEM 

2PRE-BF, cm 2.33a 2b 0.02 1.99a 1.83b 0.07 
3POST-BF, cm 1.84a 1.78b 0.03 1.71a 1.71a 0.01 
4BiW, Kg 1.26a 1.29a 0.01 1.46a 1.45a 0.01 
5WW, Kg 5.2a 5.34b 0.05 6.29a 6.31a 0.05 
2PRE-BW, Kg 223.42a 212.49b 0.85 242.49 237.57 1.02 
3POST-BW, Kg 184.96a 185.25a 0.64 217.57a 216.89a 0.67 
6ADFI, kg/d 3.89a 4.14b 0.11 5.55 5.69 0.12 

a,b Within row and experiment, rows without a common superscript differ (P < 0.05). Parity 1 and 2 were analyzed 
separately 
1Data are means, parity 1 n=733; parity 2 n= 586. 
2Pre-backfat (Pre-BF) and Pre-body weight are measured at d 109 of gestation 
3Post-backfat (Post-BF) and Post- body weight (Post-BW) are measured at d 21 post farrowing 
4Birth weight (BiW) is measured on d 0 of piglet being born and is the average of the litter  
5Weaning weight (WW) is measured on d 21 of post-farrowing and is the average of the litter 
6Average daily feed intake (ADFI) was measured d 0 to d 21 of lactation 
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Figure 1. Effects of diet on backfat in parity 1 sows. Each bar represents the least-
squares mean of 733 sows before and after farrowing. Bars with different subscript 
differ at P < 0.05. Pre-backfat represents the backfat of sows at d 109 of gestation. 
Post-backfat represents backfat of sows at d 21 post farrowing.  
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Figure 2. Effects of dietary treatments (CTL or RESTR diet) during gilt development 
on Parity 1 piglet growth performance at birth (BiW) and at weaning (WW). Each 
bar represents the least-squares mean of the offspring of gilts that were on a 
restricted or control diet. Bars with different subscript differ at P < 0.05.  
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Figure 3. A. Effects of RESTR vs CTL diet on Parity 1 sow BW across all batches. B. 
Effects of RESTR vs CTL diet on sow BW averaged by diet through out all batches. 
Each bar represents the least-squares mean of gilts BW. Pre-weight represents the 
weight of sows at d 109 of gestation. Post-weight represents weight of sows at d 21 
post farrowing. 
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Figure 4. Effects of RESTR vs CTL diet on parity 1 sow ADFI during lactation 
averaged across all batches. Each bar represents the least-squares mean of sow 
ADFI.   
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Figure 5.  Effects of dietary treatments (CTL or RESTR diet) during gilt development 
on Parity 2 piglet growth performance at birth (BiW) and at weaning (WW). Each 
bar represents the least-squares mean of the offspring of gilts that were on a 
restricted or control diet. Bars with different subscript differ at P < 0.05. 
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Figure 6. Effects of diet on backfat in parity 2 sows. Each bar represents the least-
squares mean of 733 sows before and after farrowing. Bars with different subscript 
differ at P < 0.05. Pre-backfat represents the backfat of sows at d 109 of gestation. 
Post-backfat represents backfat of sows at d 21 post farrowing. 
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Figure 7AB. A. Effects of RESTR vs CTL diet on Parity 2 sow BW across all batches. B. 
Effects of RESTR vs CTL diet on sow BW averaged by diet through out all batches. 
Each bar represents the least-squares mean of gilts BW. Pre-weight represents the 
weight of sows at d 109 of gestation. Post-weight represents weight of sows at d 21 
post farrowing. 
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Figure 8. Effects of RESTR vs CTL diet on parity 2 sow ADFI during lactation 
averaged across all batches. Each bar represents the least-squares mean of sow 
ADFI.  
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ABSTRACT:  Increasing sow longevity has been the focus of many studies to help 

pork producers maximize profits.  An ongoing study at the University of Nebraska- 

Lincoln (which included 14 batches of gilts) has resulted in the observation that 

energy restriction during the developmental period of a gilt will increase longevity, 

but may also have beneficial effects on offspring; particularly, parity 1 progeny.  This 

study focuses on the effects of energy restriction during gilt development on milk 

nutrient profile and post-natal progeny biomarkers.  During the development 

period, gilts (n = 128, 8 gilts/pen) were fed three dietary treatments including: 1) 

Control diet formulated to NRC (2012) specifications (CTL); 2) Restricted (20% 

energy restriction via addition of 40% soy hulls; RESTR); and, 3) CTL diet plus 

addition of crystalline amino acids equivalent to the SID Lys:ME of the RESTR diet 

(CTL+).  All diets were fed ad libitum and applied in a 3 phase feeding regimen 

during gilt development (d 123 to 230 of age).  Average daily feed intake was used 

to estimate daily ME intake (Mcal/d) during each phase (Phase 1: 10.13, 6.97, 9.95; 

Phase 2: 11.25, 8.05, 10.94; and Phase 3: 9.47, 7.95,11.07) for CTL, RESTR, and 

CTL+, respectively.  At 240 d of age gilts were bred and fed a common diet.  For this 

analysis, milk samples were collected from batch 14 gilts (n = 7/treatment) on d 0 

and 14 post-farrowing for analysis of N, CP, DM, GE, oligosaccharide (OS) 

composition and milk insulin.  Piglet blood samples (n = 6 piglets/sow) were 

obtained on d 1 and 15 post-farrowing for quantification of glucagon-like peptide-2 

(GLP-2) and insulin.  No effects of developmental diet were observed for milk N, CP, 

DM, or GE; however, N, CP, DM, and insulin were increased (P < 0.05) on d 1 

compared to d 14.  Milk OS profile was significantly different for neutral and acidic 
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OS (P < 0.05) on d 0 but there were no significant differences on d 14.  For piglet 

GLP-2, a treatment by time interaction was observed (P < 0.009); specifically, GLP 

concentrations were greater (P < 0.001) in CTL+ compared to RESTR (6.73 vs. 1.21 

ng/mL).  For serum insulin, a treatment by time interaction was observed (P < 

0.01); specifically, insulin in RESTR progeny was greater (P < 0.03) than CTL on d 1.  

In conclusion, nutritional management of the developing gilt may impact piglet 

serum biomarkers, milk nutrient composition, and OS profile during lactation and 

growth performance. 

KEY WORDS: Energy Restriction, Insulin, Protein, Sows 
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INTRODUCTION 

Research at the University of Nebraska investigating the effects of energy 

restriction on gilt development (which included 14 batches of gilts, n = 90 

gilts/batch) has lead to the observation that this approach increases sow longevity, 

but may also provide beneficial effects to first parity progeny with respect to health 

and growth.  Specifically, parity 1 progeny may have increased weaning weight 

compared to progeny derived from gilts fed an ad libitum control diet (Miller et al., 

2010; Barnett et al., 2017).  Developing gilts fed an energy-restricted diet that is 

adequate in all other nutrients will cause a restriction in fat deposition, but should 

not have a significant affect on gilt muscle development (Miller et al., 2010).  While 

most studies focus on diet alteration during gestation/lactation rather than prior to 

breeding, there is evidence that backfat and body weight will effect milk nutrient 

profile and offspring development (Chen et al., 2009).  Furthermore, maternal 

backfat depth during gestation has a greater effect on offspring development and 

health than maternal feed intake does (Amdi et al., 2013).  Growth biomarkers such 

as GLP-2 and insulin are maintained through enteral food intake and nutrients 

ingested (Sangild et al., 2000).  Insulin and GLP-2 have been shown to help increase 

protein synthesis of the neonate.  While insulin has its greatest impact on fast-twitch 

muscles, GLP-2 is related to intestinal adaptation (Davis et al., 2001; Burrin et al., 

2007).  Energy from the diet is the primary contributor of fat for milk synthesis in 

the mammary gland (Amdi et al., 2013).  Energy source in feed also has an effect on 

insulin secretion.  Insulin in sows regulates energy metabolism and milk production.  

Sows with insufficient body weight or feed intake will mobilize body tissue to try to 
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maintain adequate milk levels for offspring (Harrell et al., 2000).  Sows with greater 

fat have been observed to have milk with a greater fat content (Amdi et al., 2013).  

The milk nutrient profile will vary based on ingredients in the diet.  Huber et al.  

(2015) showed that the use of crystalline amino acids (CAA) to target limiting amino 

acids and lower CP improved N retention and utilization efficiency in milk protein 

production.  Milk OS vary slightly with diet, but drastically throughout lactation.  

Oligosaccharides have many prebiotic and growth factors and are resistant to 

digestion (Boehm et al, 2005).  Oligosaccharides are generally divided into three 

groups – acidic, neutral, and fucosyl, in which each has a niche to enhance neonate 

health and development.   

Therefore, the objective of this experiment was to evaluate how management 

strategies in gilt development may impact progeny performance and milk nutrient 

profile.  We hypothesized that the growth performance of progeny derived from 

gilts developed on energy-restricted diets may vary dependent on milk composition. 

 

MATERIALS AND METHODS 

The University of Nebraska, Lincoln Animal Care and Use Committee 

approved all animal care and handling procedures used in this experiment.  The 

Experiment was carried out at the University of Nebraska Swine Research Center. 

Animals and Experimental Design 

Batch 14, parity 1 gilts (n = 128) were randomly allotted to a dietary 

treatment (3 treatments 8 gilts/pen) during their developmental period (d 123 to 



 

 

100 

230 of age).  Gilts were housed in a temperature-controlled room and were given ad 

libitum access to water.  Gilts were fed in a 3 phase feeding regimen in which phase 

1 and 2 were 42 days, and phase 3 was 28 days.  At 230 d of age gilts were bred and 

moved to individual gestation crates where they were all fed a common diet to meet 

the requirements of a gestating sow (NRC 2010).  At d 109 of gestation the sows 

were moved to farrowing crates.   

Dietary Treatments 

Diet ingredients and nutrient composition are presented in table 1 and 2.  

Diets were fed ad libitum and varied based on energy content.  Dietary treatments 

included the following: 1) Control (CTL, formulated to 2010 NRC requirements) 2) 

restricted (RESTR, containing 40% soy hulls and 20% energy restricted) and 3) 

Control Plus (CTL+, containing an addition of crystalline amino acids equivalent to 

the SID Lys:ME of the RESTR diet).   

Data and Sample Collection 

Feed disappearance was measured every 2 wks from d 123 to 240 during the 

gilt development period to calculate ADFI and ME per gilt.  When the gilts were 

moved to farrowing crates (d 109 of gestation), backfat (pre-BF) was measured 

using Aloka 500V real-time ultrasound instrument equipped with a 3.5-MHz, 17-cm 

linear transducer (Corometrics Medical System, Inc.) and BW (pre-BW) weight was 

recorded.  After farrowing at the time progeny were weaned (d 21 post-farrowing), 

sow backfat (post-BF) and BW (post-BW) were observed and recorded as described 

previously.  Piglets were weaned at d 21 post-farrowing.  Piglets that were cross-

fostered were moved to a farrowing crate with a sow on the same treatment as that 
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from which it was derived.  All piglets’ birth weight (BiW) and weaning weight 

(WW) were recorded to measure progeny performance based on developmental 

diet.  Milk samples were collected on d 0 and 14 post farrowing from 21 sows (7 

sows/treatment).  Oxytocin (1 to 2 mL was administered in the neck via IM injection 

to facilitate milk letdown.  Piglets (n = 6/litter) from the sows selected for milk 

sampling were randomly selected and blood samples were collected on d1 and 15 

post-farrowing.  All blood samples were collected via the jugular vein.  Serum was 

harvested following centrifugation (20 min at 2,5000 × g).  Serum and milk samples 

were frozen at -20C for later analyses. 

Serum biomarker measures 

A porcine specific enzyme-linked immunosorbent assay (ELISA) was used to 

quantify circulating insulin (Mercodia; Uppsala, Sweden) using manufacturers 

instructions with an intra-assay and inter- assay CV percent of 3.47 and 3.23, 

respectively.  Glucagon-like peptide 2 (GLP-2) concentrations were measured by 

ELISA (AssayPro, St.  Charles, MO, USA) using manufacturers instructions and an 

intra-assay and inter-assay CV percent of 5.03 and 9.1, respectively.   

Milk Composition Analysis 

 Dry matter content of the milk samples were measured by drying 1 g of 

sample overnight in a 100-degree oven and then calculating the difference.  Dry 

matter was then used in the bomb calorimetry to calculate GE.   1 mL of oil was 

added to each sample before analyzing the content in the bomb calorimeter.  A 

porcine specific ELISA was used to quantify circulating insulin in the milk 

(Mercodia; Uppsala, Sweden).  To analyze milk N% and CP% The LECO TruSpec N- 
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Nitrogen/Protein Analyzer was used.  It is a microprocessor based, software-

controlled instrument that determines the nitrogen content in a variety of materials.  

Samples were ground thoroughly through a 2 mm screen and next into a 1 mm 

screen.  Next the milk sample was weighed to approximately 0.2500 g and analyzed.  

All samples were analyzed in duplicates.  The machine has three phases during an 

analysis cycle and results are shown as % N and % CP where the duplicates were 

than averaged. 

Oligosaccharide Analysis 

Chemicals and reagents 

  Acetonitrile (ACN), chloroform, formic acid (FA), methanol (MeOH), ethanol 

(EtOH), trifluoroacetic acid (TFA) and sodium hydroxide (NaOH) were obtained 

from Thermo Fisher Scientific (Waltham, MA); sodium acetate (NaAc) was from 

Sigma-Aldrich (St Louis, MO).  Oligosaccharide standards Lacto-N-difucohexaose 

(LNDFH), Lacto-N-fucopentaose I (LNFP-I), Lacto-N-tetraose (LNT), Lacto-N-

neotetraose (LNnT), Lacto-N-hexaose (LNH), Lacto-N-neohexaose (LNnH), N-

acetylgalactosaminyllactose, α1-3,β1-4-D-galactotriose (3-Hex), 3’-Sialyllactose 

(3′SL), 6´-Sialyllactose (6′SL), 3´-Sialyl-N-acetyllactosamine (3′SLN) and 6´-Sialyl-N-

acetyllactosamine (6′SLN) were purchased from V-Labs Inc.  (Covington, LA), while 

LNH and LDFT standards were purchased from Prozyme Inc.  (Hayward, Ca).  All 

solvents were MS grade, and the water used was nanopure (18.2 ohms). 

Oligosaccharide Isolation and Purification 

 Milk OS were isolated and purified as previously described, with minor 

modification (Barile et al., 2010).  Briefly, frozen milk samples were completely 
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thawed, and a 0.5-mL aliquot of each sample was mixed with an equal volume of 

nanopure water and centrifuged at 14,000 × g in a microfuge for 30 min at 4°C to 

remove lipids.  The top fat layer was removed, and 4 volumes of 

chloroform/methanol (2:1, vol/vol) were added, vigorously mixed and the resulting 

emulsion was centrifuged at 4,000 × g for 30 min at 4°C.  The upper methanol layer 

containing OS was transferred to a tube, two volumes of cold ethanol were added 

and the solution was frozen for 1 h at –30°C, followed by centrifugation for 30 min 

at 4,000 × g and 4°C to precipitate the denatured protein.  The supernatant (OS-rich 

fraction) was collected and freeze-dried using a speed vacuum centrifuge.   

 For OS characterization by Nano LC Chip QToF-MS (Agilent Technologies, 

Santa Clara, CA), extracts were purified from the mixture by solid-phase extraction 

using nonporous graphitized carbon cartridges (GCC-SPE).  Prior to use, each GCC-

SPE cartridge was activated with 3 column volumes (cv) of 80% acetonitrile, 0.1% 

trifluoroacetic acid (v/v) and equilibrated with 3 CV of nanopure water.  The 

carbohydrate-rich solution was loaded onto the cartridge, and salts and 

mono/disaccharides were removed by washing with 6 CV of nanopure water.  The 

OS were eluted with a solution of 40% ACN with 0.1% TFA (v/v) in water and dried 

in speed vacuum centrifuge at 35°C overnight. 

Characterization by Nano LC Chip QTOF MS 

 Prior to MS analysis, dried OS samples were reconstituted in 100 μL of 

nanopure water.  MS analysis was performed with an Agilent 6520 accurate-mass 

Quadrupole-Time-of-Flight (Q-TOF) liquid chromatography/mass spectroscopy 

(LC/MS) with a micro-fluidic nano-electrospray chip (Agilent Technologies, Santa 
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Clara, CA) as previously described (Wu et al., 2011).  The micro-fluidic chip 

contained one enrichment and one analytical column, both packed with graphitized 

carbon.  Chromatographic elution was performed with a binary gradient of 3% 

ACN/0.1% formic acid in water (solvent A) and 90% ACN/0.1% formic acid in water 

(solvent B).  The column was initially equilibrated with a flow rate of 0.3 μL/min for 

the nanopump and 4 μL/min for the capillary pump.  The 65-min gradient was 

programmed as follows: 0–2.5 min, 0% B; 2.5–20 min, 0–16% B; 20–30 min, 16–

44% B; 30–35 min, 44–100% B; 35–45 min, 100% B; and 45–65 min, 0% B.  Data 

were acquired in the positive ionization mode with a 450–2500 mass/charge (m/z) 

range.  The electrospray capillary voltage was 1700–1900 V.  The acquisition rate 

was 0.63 spectra/s for both MS and MS/MS modes.  Automated precursor selection 

was employed based on ion abundance, performing up to 6 MS/MS spectra per 

individual MS when precursor was above ion abundance threshold.  The precursor 

isolation window was selected to be narrow (1.3 m/z) to improve accuracy.  

Fragmentation energy was set at 1.8 V/100 Da with an offset of –2.4 V.  Internal 

calibration was continuously performed by infusing two reference masses: m/z 

922.009 and 1221.991 (ESI-TOF Tuning Mix G1969–85000, Agilent Technologies). 

QTOF Data Analysis 

  The Molecular Feature Extraction function of Mass Hunter Qualitative 

Analysis Version B.06.00 (Agilent Technologies) was used to generate a list of 

deconvoluted masses selected to be in a range of 450–1500 m/z with a ≥1000 

height count and a typical isotopic distribution of small biological molecules.  Charge 

states allowed were restricted to single and double species.  OS compositions were 
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determined from the deconvoluted mass list with in-house software, and all OS 

compositions were confirmed by tandem MS (MS/MS) analysis.  Following MS/MS 

identity validation and assessment of reproducible retention times (RT), individual 

peaks for each OS were automatically integrated using the Targeted Feature 

Extractor from MassHunter Profinder Version B.06.00 (Agilent Technologies).  The 

RT window allowed for compound matching was restricted to ± 0.5 min and ± 

0.25% of the RT at each time point.  Each sample was analyzed in triplicate, 2-

fucosyllactose (2’-FL) added as internal standard to minimize instrumental 

variation.   

Oligosaccharide quantification by High Performance Anion Exchange 

Chromatography –Pulsed Amperometric Detection (HPAEC-PAD) 

 The quantification of 9 neutral oligosaccharide standards (LNDFH, LDFT, 

LNFP-I, LNT, LNnT, N-acetylgalactosaminyllactose, 3-Hex, LNH, LNnH) and 4 acidic 

oligosaccharide standards (6’-SLN, 3’-SLN, 6’-SL, 3’-SL) was carried out with a high-

performance anion-exchange chromatography with pulsed amperometric detection 

system (Thermo Scientific HPAE-PAD ICS-5000), equipped with a 

detector/chromatography module including a pulsed amperometry electrochemical 

detector, an electrochemical cell with a disposable gold working electrode, a pH-

Ag/AgCl reference electrode, an auto-sampler, and a single pump.  Samples were 

diluted and filtered through a 0.22-µm membrane (Pall, Port Washington, NY) 

before analysis.  A 25-µL sample was injected into the CarboPacPA200 analytical 

column (3 × 250 mm, Dionex, Sunnyvale, CA) and a CarboPacPA200 Guard Column 

(3 × 50 mm, Dionex) for oligosaccharide analysis, eluting with a 0.5 ml/min and a 
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non-isocratic gradient: 0-10 min 50% B, 10-50 min 45% B – 10% C.  The column 

was equilibrated for 5 min with 10% B followed by 10 min with 50% B.  Solvent A 

was deionized water, solvent B 200 mM NaOH and solvent C was 100 mM NaAc in 

100mM NaOH. 

Quantification was assessed by external calibration using a mixture of all 

oligosaccharide standards ranging from 0.0001 to 0.03 g/L (coefficient of 

determination > 0.999). 

Statistical Analyses 

Data was analyzed in JMP 12 and used LSMEANS Differences with Tukey-

HSD Adjustment.  P < 0.05 was considered significant, non-significant factors were 

dropped and the model was run again.  For AVG BiW, sow pre-wt, sow pre-BF, Diet, 

and TNB were included in the model as fixed effects, sire and litter nested in sire 

were random effects.  When analyzing AVG WW, sow pre-BF, sow post-BF, number 

nursed, number weaned, average birth weight of litter, and diet were included in the 

model as fixed effects, sire and litter nested in sire were random effects.  For the 

analysis of Milk: CP, N, DM, GE, and Insulin were analyzed separately as the 

response variables with Diet as a fixed effect.  Serum analysis for GLP-2 and Insulin 

were analyzed separately as the response variable with diet as a fixed effect.  The 

model for milk and biomarker analysis included diet, diet x day, and day 

interactions.  All means are presented as least-squares means (SEM).  For the OS 

analysis the normal distribution of the data was evaluated using the Kolmogorov-

Smirnov test (P < 0.05), while homoscedasticity and was checked using Levene´s 

test.  A two-way analysis of variance (ANOVA) was carried out to evaluate the effect 
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of diet and/or time of lactation on Oligosaccharide abundances and concentrations.  

In all cases, the Tukey test was also used to assess differences between groups.  R 

package "stats" (version 2.15.3) was used for all the analyses. 

RESULTS 

Growth Performance 

 Gilts fed a restricted diet had significantly less ME intake when compared to 

gilts on the other diets (P < 0.0001, Fig.  1).  Gilts on the RESTR diet weighed less at 

day of breeding compared to the other two diets (P < 0.05).  Restricted sows had the 

highest amount of total BF at weaning (1.59 mm) numerically, but there was no 

statistical difference as shown in Figure 2.  Diet of sow had no effect on piglet BiW (P 

= 0.39) or piglet WW (P = 0.84). 

Milk Composition 

 Dry matter of milk was not affected by diet, but had a significant day effect in 

which dry matter decreased over time (P = 0.003).  There were no significant effects 

on the average GE of milk.  Percent nitrogen and percent crude protein had a 

significant day effect in which % N (Fig.  3a) and % CP (Fig.  3b) decreased over time 

(P < 0.0001).  Lastly, when milk insulin was analyzed there was a Diet x Day effect (P 

= 0.035) where the milk from RESTR sows had the highest insulin at d 0, but the 

lowest insulin concentration at d 14. 

Oligosaccharide Profile 

Across the two diets (RESTR and CTL) 63 OS were identified.  Of the OS 

identified, 58.73% were neutral, 15.873% were fucosyl and 25.397% were acidic 

(Table 3).  At d 0, CTL had more neutral OS and less acidic OS (P < 0.05) when 
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compared to RESTR (Fig.  4).  Of the neutral OS quantified, RESTR had more LNnT 

than CTL (P < 0.05).  Also, both RESTR and CTL had a increase in fucosyl OS and 

decrease in acidic OS from d 0 to d 14 (P<0.05; Fig 5).  Of the fucosyl OS quantified, 

samples from CTL had more LNDFH-I than RESTR (P<0.05) at d 0.  Lastly, only the 

RESTR showed an increase in neutral OS over time (Fig.  5).  Total OS quantification 

was lower in the RESTR when compared to CTL (P < 0.05; Fig.  6).  Quantification of 

OS also decreased in both dietary treatments over time (P < 0.0001; Fig.  7). 

Growth Biomarkers 

 For GLP-2, main effects of day (P < 0.0001), day × diet (P = 0.0087; Fig 8b), 

and diet (P = 0.0008) was observed.  Across all treatments, concentrations of GLP-2 

decreased (P=0.0087) with time. Across all time points, CTL+ had the greatest 

concentrations at each time point and RESTR had the lowest concentrations at each 

time point when compared to the other treatments.  Insulin concentration saw a diet 

x day effect (P = 0.0149; Fig.  8a).  Of all insulin concentration RESTR had the highest 

(0.044 mlU/L) and CTL had the lowest (0.019 miU/L; P = 0.032). 

DISCUSSION 

Growth Performance 

Today there is a high drive for increased longevity of a sow, while 

maintaining or improving offspring health and growth performance.  In a study 

conducted by Miller et al. (2010) it was observed that gilts on an energy-restricted 

diet have greater longevity and may result in offspring with a greater WW (Barnett 

et al., 2017).  The idea of restricting energy during gilt development is based on the 

premise that restricting the ME should result in decreased fat deposition, but muscle 
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accumulation should not be affected (Miller et al., 2010) Although, results from the 

batch in the current experiment do not show significant differences in piglet WW, 

there is a numerical difference and with more statistical power a greater weight 

difference may be seen.  Furthermore, it was concluded that restricted energy gilts 

tend to eat more once put on a control diet for gestation, thus their energy intake is 

greater than the gilts that were always on the control diet.  Also, restricted sows lost 

less BF than control sows.  In a study by Amdi et al. (2013) it was shown that 

gestation feeding level affects the number of offspring born alive per litter and 

offspring birth weight, where as sow BCS affects weaning weight and growth of 

offspring.  A sow that loses excessive weight during lactation has higher cortisol 

levels.  Cortisol is known to be a stress hormone that has the capability of crossing 

the placental barrier and excess exposure to it can cause a fetus to have reduced 

birth weight (Sekl, 2004; Kranedonk et al., 2006).   

Milk Composition 

This study showed no difference in milk nutrient composition based on diet.  

However due to sows being fed the different dietary treatments before 

gestation/lactation this was expected.  To our knowledge no previous studies have 

analyzed milk samples based on diets fed during the developmental stage of gilts.  

However, many studies show that diet does affect maternal milk when fed during 

late gestation and lactation.  In a study conducted by Amdi et al.  (2013), it was 

concluded that fatty acid and fat composition change based on dietary interventions 

during the gestation and lactation period.  While the sows in this study were not 

restricted during gestation/lactation they did weigh significantly less than CTL sows 
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at this time.  According to Amdi et al. (2013), restricted sows pull from fat reserves 

and use these components to add nutrients to the secreted milk.  Sows are able to 

produce adequate quality and quantity of milk in spite of the nutrient deficit that 

may be associated with an inadequate diet.  However, in order to compensate they 

must mobilize more tissues to meet lactation requirements resulting in lower litter 

weight (O’Grady et al., 1973).  Additionally, energy from the diet is the primary 

contributor of fat for milk composition (Amdi et al., 2013).  After the developmental 

phase, when sows are switched from their respective treatment diets to a common 

diet, RESTR sows have greater feed intake; thus, a greater intake of energy.  A diet 

which targets limiting amino acids (AA) showed an increase in mammary milk 

protein through increased AA absorption to the mammary gland, as well as having 

increased nitrogen retention and utilization in the milk protein during peak 

lactation periods (Huber et al., 2015).  The current experiment was not in 

agreement with the study by Huber et al.  (2015).  The CLT+ diet which has added 

CAA showed no differences in milk N when compared to the other dietary 

treatments; however, a main cause of these varying results are most likely due to 

the time period difference of when the treatment diets were fed.   

Insulin regulates energy metabolism and milk production.  Furthermore, the 

energy source in feed will have an effect on insulin secretion.  In this experiment we 

saw Insulin concentration in sows milk had a day by diet interaction (P < 0.0349).  

Interestingly, milk from sows developed on the RESTR diet had the highest insulin 

concentration in early lactation (d 1) but the lowest concentration during mid to 

late lactation (d 14).  Sows that have greater weight loss during lactation tend to 
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have lower insulin levels (Spinka et al., 1999).  Due to the fact that CTL sows lost 

significantly more BF than RESTR sows, this could explain the higher d 0 insulin 

concentrations in RESTR sow milk.  Additionally, the more a neonate suckles, the 

lower the insulin levels become according to Spinka et al. (1999).  Due to the fact 

that restricted sows may wean heavier piglets, lower insulin levels could correlate 

with RESTR piglets suckling more.   

Milk Oligosaccharides 

Milk oligosaccharide profiles have shown to vary depending on diet 

(Difilippo et al., (2016).  Oligosaccharides are usually classified into 3 groups: 

Neutral, Acidic or Fucosyl in which each group has specific beneficial factors.  

Previous studies by Mudd et al. (2016) resulted in the characterization of 60 OS 

species; however, in the current study, 63 types of OS were quantified.  Today there 

are over 100 human milk OS quantified (Ninonuevo et al., 2008).  Oligosaccharide 

(OS) composition analyzed for this study showed a slight difference based on diet 

(CLT or RESTR).  Total OS abundance decreased over time, which is also seen in 

human milk OS.  Restricted gilts produced milk with significantly less neutral OS and 

significantly more acidic OS on d 0.  Of the three subgroups of neutral OS identified, 

2 Hex-1 HexNAc, Lacto-N-neotetraose, and Lacto-neotetraose – colostrum of RESTR 

gilts had greater amounts of Lacto-N-neotetraose (LNnt).  LNnt is shown to be a 

prebiotic that stimulates growth of bifidobacterium (LoCasio et al., 2007).  

According to Tao et al. (2010), LNnt is one of the few OS that increases in mammals 

throughout lactation; however, our results showed the opposite effect.  In general 

total neutral OS had a slight increase in abundance through lactation, unlike Acidic 
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and Fucosyl, agreeing with the results by Mudd et al. (2016).  Additionally, there 

were no over significant differences in Fucosyl OS, but LNDFH-I (a type of Fucosyl 

OS) was significantly lower in RESTR sows on d 0.  Currently there are not standards 

for all Fucosyl OS that have been quantified.  Fucosyl OS normally remain the same 

or lower over the period of lactation, however this was not seen in our results.  

While Fucosyl OS can deflect pathogens through its prebiotic effects, it has been 

shown to cross feed pathogens such as Bifidobacterium adolescentis and Firmicute 

bacteria through the end products of Fucosylated-OS fermentation and from 

products during the partial breakdown of substrates (Belenguer et al., 2006).  

Bacterias such as these reduce the populations of non-utilizing bacteria through 

competition and promote gut health (Belenguer et al., 2006).  Simple fucosyl OS are 

beginning to make their way into infant formula and are said to make formula more 

closely related to human breast milk and The microbial profile of infant fecal 

samples more similar to fecal samples obtained from infants that consumed breast 

milk (Steenhout et al., 2016).  However, more complex fucosyl OS are said to have 

more beneficial effects.  Fucosylated-oligosaccharides can inhibit diarrhea caused by 

E.  Coli, Campylobacter, Jejune Calicivirus, and higher levels correlate with better 

protection (Newburg et al., 2004).  Fucosylated-OS are found at very low levels in 

porcine milk (Tao et al., 2009; Salcedo et al., 2016) as were they in this experiment.  

Tao et al. (2010) found fucosylated-OS make up 1 to 4% of OS in sow milk; however, 

in humans, concentrations of fucosylated-OS can reach levels as high as 70%.  In the 

current experiment Fucosyl OS were ranged between 0.76% and 2.8%; thus, even 

lower than previous studies reported.   
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Lastly, There was a significant difference in overall acidic OS abundance 

among diet on d 0, but no particular acidic OS was significantly higher among diets.  

A type of an acidic OS is Sialylated oligosaccharides (SOS), which plays an important 

role in neural development and neural protection (Tao et al., 2008).  Through 

competing for the adhesion sites on epithelial surfaces, SOS are able to inhibit 

certain pathogens and possibly even help with post-weaning diarrhea.  High levels 

of SOS in sow’s milk protect the neonate from health challenges such as Rotavirus 

(Difilippo et al, 2016).  3’ Sialyllactose is an abundant SOS that down regulates sialic 

acid, fucose, and galactose and inhibits pathogen adhesion to the epithelial cell wall 

(Difilippo et al., 2016).  3’SL was the most prominent Acidic OS in the milk analyzed, 

but was considerably less abundant on d 14 compared to d 0.   

Growth Biomarkers 

 Both insulin and GLP-2 concentration were measured in piglets for insight on 

growth biomarkers.  While both play a role in protein synthesis, insulin plays a key 

role in the development of fast-twitch muscles and GLP-2 stimulates intestinal 

growth (Drucker 1998, Davis et al., 2001).  In this experiment, a main effect of diet 

and a day by diet interaction was observed in blood samples obtained from progeny 

for both insulin and GLP-2.  Progeny from RESTR sows had the lowest GLP-2 

concentrations at both time-points, but was only significantly different from CTL+ at 

d 0.  Interestingly, RESTR was the only treatment that didn’t have a great decrease 

in GLP-2 concentration from d 1 to d 15  Increased GLP-2 can help reduce weaning 

diarrhea and stimulate intestinal adaptation to new diets (Thyman et al., 2014).  

GLP-2 is stimulated by enteral intake of nutrients and piglets total parenteral 
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nutrition (TPN) fed will have significant decreases in GLP-2 circulation (Petersen et 

al., 2001).    

GLP-2 has growth related effects on a neonate through epithelial cell 

proliferation resulting in increased intestine mucosal mass, colon mass, villus height 

and crypt death.  However, low levels of GLP-2 do not correlate with increased 

weight.  Our results did agree with Petersen et al. (2010) where there was a 

decrease in plasma GLP-2 through the postnatal period.  Furthermore, Petersen et 

al. (2010) reported no difference in body weight based on a control group of 

neonate pigs compared to pigs infused with GLP-2 same as our results, however, 

Petersen et al, (2010) studied the piglet’s intestines were there was a difference in 

small intestine and colon weight.   

Insulin concentrations were significantly higher in progeny from RESTR 

sows when compared to CTL on d 0.  The circulating insulin concentration coincided 

with milk insulin of RESTR because, as previously stated, RESTR numerically had 

the highest milk insulin concentration at d 0.  The growth rate of a mammal is 

greatest at its neonate stage (Young, 1970) and the insulin receptor protein is two-

fold higher in a newborn piglet than that of a weanling (Suryawan et al., 2001).  The 

results of this current experiment agreed and disagreed with those of Suryawan et 

al.  (2001).  While the insulin concentration decreased with age in RESTR progeny, 

there was an increase in insulin concentration for both CTL+ and CTL.  The results of 

varying insulin concentration may relate back to nursing frequency and maternal 

stress.  Insulin and the efficiency of it in its signaling pathways are essential 

determinants of efficient growth during development periods and will decrease 
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with age as seen in RESTR piglets (Davis et al., 2010).  Furthermore, insulin 

regulates stimulation of protein synthesis in peripheral tissues, as well as whole 

body AA disposal (Davis et al., 2001).  Increased insulin may play a role in the 

increased BiW and WW of piglets from RESTR sows. 

In Conclusion GLP-2 had a treatment effect in which progeny from RESTR 

sows had the lowest concentrations and progeny from CTL + sows had 

concentrations that were highest at both time points when compared across all 

treatments. Interestingly, insulin concentrations were increased in progeny from 

RESTR sows and much lower in progeny from CTL sows. Furthermore, progeny of 

RESTR sows saw a decrease in insulin over time where as progeny from CTL and 

CTL+ sows showed an increase. Similar to Petersen et al. (2010) our results did not 

show progeny body weight differences; however, future research looking at the 

structure of tissues would need to be conducted to see if the differences in GLP-2 

concentrations affected the small intestine and colon. Lastly, recording nursing 

frequency could help determine why insulin concentrations varied among 

treatments. These growth factors are likely to play a key role in growth performance 

not only in the nursery, but through out the lifetime of the pig.
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Table 1.  Diet Composition of experimental diets (As-Fed Basis, Kg) Composition and nutrient contents of experimental 
diets fed to developing gilts d 123 – 240*. Phase 1 and 2 were each 6 weeks long and phase 3 was 4 weeks long.  

  
Phase 1 

  
Phase 2 

  
Phase 3 

 Item CTL1 RESTR2 CTL+3 CTL RESTR CTL+ CTL RESTR CTL+ 
Ingredient, %: 

         Corn 72.52 39.95 70.38 76.32 43.73 74.66 80.13 47.5 78.6 
Soybean Meal 21.53 17.43 23.35 17.66 13.57 19 13.79 9.71 15 
Soybean Hulls - 40 - 

 
40 - 

 
40 - 

Beef Tallow 3 
 

3 3 
 

3 3 
 

3 
Dicalcium 
phosphate 

1.37 1.72 1.37 1.46 1.8 1.46 1.54 1.89 1.54 

Limestone 0.68 
 

.68 0.66 
 

0.66 0.64 
 

0.64 
Sodium Chloride 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Vitamin Premix4, 5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
Mineral Premix6 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 
L-Lysine - - .15 - - 0.15 - - 78.6 
Methionine - - .05 - - 0.05 - - 15 
Threonine - - .09 - - 0.09 - - - 
Tryptophan - - .03 - - 0.03 - - 3 
Nutrient Content: 

         ME (kcal/kg) 3406 2706 3408 - 3408 2707 3410 - 3410 
Lys, g/kg 0.7 0.69 0.86 - 0.61 0.59 0.76 - 0.51 
Crude Protein % 16.25 15.72 17.21 - 14.72 14.19 15.48 - 13.18 
P % 0.6 0.6 0.61 - 0.6 0.6 0.6 - 0.6 
Ca % 0.67 0.71 0.67 - 0.67 0.72 0.68 - 0.67 

Lys/ME* (g/Mcal) 2.059 2.536 2.057 1.78 2.185 1.785 
 

1.5 1.835 1.504 



 

 

1
2
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* Data from RESTR 1 and RESTR 2 were analyzed together for growth performance and here on out considered RESTR   
1 Control diet (CTL) was formulated to meet 2010 NRC requirements for developing gilts.  
2Energy restricted diet (RESTR) was 20% restricted in energy with increased fiber.  
3Control Plus (CTL+) contained an addition of crystalline amino acids equivalent to the SID Lys:ME of the RESTR diet 
4 Provided per kilogram of diet for phase 1 and 2: 5,500 IU of Vitamin A, 550 IU of Vitamin D3, 30 IU of Vitamin E, 4.40 
IU of Vitamin K, 33.00 mg of Niacin, 22.05 mg of Panothenic Acid, 11.00 mg of Riboflavin, and 33.00 g of Vitamin B12 

5Provided per kilogram of diet for phase 3: 6,600 IU of Vitamin A, 600 IU of Vitamin D3, 66 IU of Vitamin E, 4.40 IU of 
Vitamin K, 33.00 mg of Niacin, 22.05 mg of Panothenic Acid, 11.00 mg of Riboflavin, and 22.05 g of Vitamin B12, 550 
mg of Choline Chloride, 1.65 mg of Folic Acid, 0.22 mg of Biotin 
6 Provided per kilogram of diet: 10.50 mg of Copper Sulfate Pentahydrate, 0.26 mg of Calcium Iodate, 127.50 mg of 
Ferrous Sulfate, 30.00 mg of Manganese Oxide, 0.30 mg of Sodium Selenite, 127.50 mg of Zinc Sulfate, 226.03 mg of 
Calcium Carbonate.  
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Table 2. Composition and nutrient contents of gestation and lactation diet.  
 

Parity 1 and Parity 2 

Item: Gestation1 Lactation2 

Ingredient, % 
Corn 

 
77.25 

 
65.68 

Soybean Meal 16 27.5 
Tallow 3 3 
Dicalcium 
Phosphate 

1.9 2.33 

Limestone 0.925 0.6 
Salt 0.5 0.5 
Vitamin Premix1 0.25 0.25 
Trace Mineral  0.15 0.15 
Phytase 0.02    - 
Nutrient Content:     
ME (kcal/kg) 2605 2536 
Crude Protein 11.74 15.75 
Lys 0.56 0.85 
Total P % 0.67 0.8 
Ca % 0.87 0.9 

1Gestation diet was fed d 0 of breeding to d 0 post farrowing 
2Lactation diet was fed d 0 post farrowing until d 21 post farrowing, sows were put immediately back on gestation diet 
at d 21 post farrowing  
3Provided per kilogram of diet for phase 3: 6,600 IU of Vitamin A, 600 IU of Vitamin D3, 66 IU of Vitamin E, 4.40 IU of 
Vitamin K, 33.00 mg of Niacin, 22.05 mg of Panothenic Acid, 11.00 mg of Riboflavin, and 22.05 g of Vitamin B12, 550 
mg of Choline Chloride, 1.65 mg of Folic Acid, 0.22 mg of Biotin 
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Table 3.  Oligosaccharide Composition organized by mass.  The composition of the OS 

is shown as a set of 5 monomers. The following order is as stated with their abbreviations 

hex: glucose or galactose; HexNAc: N-acetylhexososamine; Fuc: Fucosamine; Neu5Ac: 

N-acetylneuramic acid; and Neu5Gc: N-glycolylneuramic acid (i.e 3_1_0_0_0; or 3 Hex, 

1HexNAc; Mudd et al., 2016.  RT stands for retention time in which it is the time when 

the injection is made and elution occurs 
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Figure 1.  Metabolizable Energy intake during gilt developmental period organized 
by phase.  Means in the same phase with different letters differ (P < 0.05) 
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Figure 2.  Effects of feeding gilts a RESTR, CTL, or CTL+ diet on Backfat depth at d 
109 of gestation (Pre-BF) and d 21 post farrowing (Post-BF) using Aloka 500V real-
time ultrasound instrument.  Bars at same time point with different letters differ 
based on diet (P < 0.05) 
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Figure 3.  Effects of feeding gilts a RESTR, CTL, or CTL+ diet on milk composition.  
Each bar represents the LSM for %N of 7 sows/diet on d 0 and d 14.  Bars of the 
same diet group with * differ based on day.  * represents a significant difference of P 
< 0.05 
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Figure 4.  Effects of feeding gilts a RESTR or CTL diet on Oligosaccharide Profile. 
Each bar represents the LSM for OS abundance of 7 sows/diet on d 0 (a) and d 14 
(b).  Bars of the same OS group with * differ based on abundance.  * represents a 
significant difference of P < 0.05 
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Figure 5.  Effects of feeding gilts a RESTR or CTL diet on neutral (a) Fucosyl (b) or 
Acidic (c) OS based on time.  Each bar represents the LSM for OS abundance of 7 
sows/diet on d 0 and d 14.  Bars of the same diet group with * differ based on 
abundance.  * represents a significant difference of P < 0.05 
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Figure 6.  Effects of feeding gilts a RESTR or CTL diet on Oligosaccharide abundance.  
Each bar represents the LSM for OS abundance of 7 sows/diet on d 0 (a) and d 14 
(b).  Bars of the same diet group with * differ based on abundance.  * represents a 
significant difference of P < 0.05.  Oligosaccharide abundance decreased significantly 
over time (P < 0.0001) 
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Figure 7.  Effects of feeding gilts a RESTR or CTL diet on Oligosaccharide abundance.  
Each bar represents the LSM for OS abundance of 7 sows/diet on d 0 (a) and d 14 
(b).  Bars of the same time group with * differ based on abundance.  * represents a 
significant difference of P < 0.05.  Oligosaccharide abundance decreased significantly 
over time (P < 0.0001) 
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Figure 8.  Effects of feeding gilts a RESTR, CTL, or CTL+ diet on growth biomarkers, 
insulin (a) and GLP-2 (B), in piglets on d 1 and d 15.  Bars at same time point with 
different letters differ based on diet of the mother (P < 0.05) 
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