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ABSTRACT: Complex oxide thin-film heterostructures often exhibit
magnetic properties different from those known for bulk constituents.
This is due to the altered local structural and electronic environment at
the interfaces, which affects the exchange coupling and magnetic
ordering. The emergent magnetism at oxide interfaces can be controlled
by ferroelectric polarization and has a strong effect on spin-dependent
transport properties of oxide heterostructures, including magnetic and
ferroelectric tunnel junctions. Here, using prototype La2/3Sr1/3MnO3/BaTiO3 heterostructures, we demonstrate that
ferroelectric polarization of BaTiO3 controls the orbital hybridization and magnetism at heterointerfaces. We observe changes
in the enhanced orbital occupancy and significant charge redistribution across the heterointerfaces, affecting the spin and orbital
magnetic moments of the interfacial Mn and Ti atoms. Importantly, we find that the exchange coupling between Mn and Ti
atoms across the interface is tuned by ferroelectric polarization from ferromagnetic to antiferromagnetic. Our findings provide a
viable route to electrically control complex magnetic configurations at artificial multiferroic interfaces, taking a step toward low-
power spintronics.

KEYWORDS: Ferroelectric field effect, orbital anisotropy, charge transfer, orbital hybridization, interfacial magnetic coupling,
artificial multiferroic interface

Multiferroics, compounds with two or more ferroic
orders, have potential applications in electric-field-

controlled spintronic devices with ultralow energy consump-
tion.1−3 Owing to the scarcity of single-phase materials with
strong magnetoelectric coupling, the investigation of artificial
multiferroic heterostructures, consisting of ferromagnetic
(FM) and ferroelectric (FE) layers, has received much
attention.4−9 Extensive studies have focused on the influence
of FE polarization on magnetism via strain coupling,10−12

interfacial-oxidized state,9 exchange coupling,13 interfacial
orbital reconstructions,14 interfacial bond reconfiguration,8

carrier density modulation (charge transfer),6,12,15 or a
combination of these at heterointerfaces. For example, (i)
Cui et al. have demonstrated a FE-polarization control of
interfacial orbital reconstruction and its effect on transport of

contacted films;14 (ii) Molegraaf et al. have proposed charge-
density-driven magnetic ground states;15 (iii) Bingham et al.
have attributed the enhanced magnetocaloric effect to the
strain effect from FE capping layer;12 and (iv) Herklotz et al.
have presented a reversible control of interfacial magnetism
through ionic-liquid-assisted polarization switching.16 Still,
however, there is a limited understanding of the FE field
effect on orbital hybridizations affecting the interfacial
magnetism and the exchange coupling, despite the observation
of interfacial magnetism in FM/FE systems.12,17 Moreover, the
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control of magnetic coupling and electronic structure at
multiferroic interfaces deserves particular attention, since they
may directly influence spin-dependent transport properties18

and the performance of practical oxide devices.6 The insight
into the competition between charge transfer due to valence
imbalance and carrier-density modulation caused by the FE
field as well as the control of the interfacial magnetic coupling,
therefore, is warranted in realizing potential applications of
multiferroic heterostructures.
Furthermore, the extensive studies of the magnetoelectric

coupling in high-quality thick piezoelectric or FE layers (even
substrates) have shown that high electrical voltage is essential
for the magnetoelectric effect,10,15 thus introducing other
undesirable effects, such as strain effect via electrostriction,10

oxygen vacancy migration,19 and carrier modulation.20 The
multidomain state in a thick FE layer also complicates the
effect of FE polarization on interfacial magnetism.21 To obtain
the FE field effect, a series of samples with opposite
spontaneous FE polarization states but with the same strain
state are needed. To avoid this complexity, we have fabricated
the prototypical heterostructures of FM La0.7Sr0.3MnO3
(LSMO) and FE BaTiO3 (BTO), carrying different polar-
izations via interface engineering,22,23 instead of using an
applied electric field. To separate the possible effects of the
interface chemistry, another series of heterostructures,
exhibiting no FE polarization but having the same interface
atomic-plane stacking sequence with that of BTO thicker films,
were fabricated and explored.

In this work, we demonstrate the FE field-dependent orbital
hybridization affecting magnetism and exchange coupling at
LSMO/BTO heterointerfaces by means of X-ray magnetic
circular dichroism (XMCD). The changes of induced spin and
orbital magnetic moments at Ti and Mn atoms are associated
with the charge redistribution across the heterointerfaces.
Combining the atomic-resolution energy dispersive X-ray
(EDX) elemental maps and electron energy loss spectroscopy
(EELS) data with aberration-corrected scanning transmission
electron microscopy (STEM) results, the charge redistribution
and the valence states at the LSMO/BTO interfaces are
systematically analyzed. The modulation of the interfacial
exchange interaction from FM to antiferromagnetic coupling
originates from the change of orbital occupancy, as shown by
X-ray linear dichroism (XLD) and theoretical calculations.
These discoveries open the way for the electrical modulation of
interfacial properties, especially on spin-dependent phenom-
ena, at the atomic level.

Results. Control of Ferroelectric Polarization via Inter-
face Engineering. We have in situ grown high-quality LSMO/
BTO heterostructures on (001) SrTiO3 (STO) substrates by
pulsed laser deposition. For BTO, a thickness of 45 unit cells
(u.c.) is chosen to keep sufficiently good FE properties with a
single domain and fully strained state. For LSMO, a thickness
of 5 u.c. is selected to ensure the collection of the interfacial
layer signal using the total electron yield (TEY) measure-
ments.24,25 Figure 1A,B shows the morphology of LSMO/BTO
heterostructure terminated by TiO2 and SrO. Clear atomic

Figure 1. Ferroelectricity and structural characterization of LSMO/BTO heterostructures. (A) and (B) The surface morphology of
heterostructures on TiO2- and SrO-terminated STO substrates, respectively. The insets show the schematic illustrations of preferential FE
polarization. The scale bar is 0.5 μm. (C) and (D) Typical out-of-plane PFM phase images of 45 u.c. BTO with downward polarization (Pdn) and
upward polarization (Pup), respectively. The square domains are written using a conductive AFM tip with ∓6 V bias. The scale bar is 1 μm. (E) In
plane asymmetric RSMs around the (013) and (1̅03) Bragg reflections of the heterostructures. (F) Typical atomic-resolution HAADF-STEM
image of the heterostructure terminated by SrO along the [001] zone axis, together with a schematic illustration of the termination transformation
from TiO2 to SrO by predepositing 1 u.c. SrRuO3 (SRO) on STO. The scale bar is 2 nm. The inset in the green rectangle shows the superposition
of the magnified STEM image of the overlying area and Ti displacement vector maps (yellow arrow). The yellow scale bar is 40 pm. (G) and (H) A
magnified image and false-color overlaid EDX elemental maps from an area marked with a cyan rectangle in (F), respectively. The scale bar is 1 nm.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.9b00441
Nano Lett. 2019, 19, 3057−3065

3058

http://dx.doi.org/10.1021/acs.nanolett.9b00441


terrace separated by ∼0.40 ± 0.05 nm high step reveals a two-
dimensional growth of films, which is further supported by in
situ RHEED of various oxide materials (Figure S1). We
obtained the SrO-terminated surface through depositing a 1
u.c.-SrRuO3 (SRO) layer on TiO2-terminated STO substrates
at high temperature and low oxygen pressure (Figure S1),
benefiting from that, a highly volatile RuO2-layer will be
desorbed before the deposition of BTO film.23 The out-of-
plane piezoresponse force microscopy (PFM) images of BTO
written by an electrical bias of ∓6 V at room temperature are
shown in Figure 1C,D. A clear phase contrast of ∼180° shows
high quality and switchability of FE polarization in BTO films,
which is further supported by the butterfly-like amplitude and
hysteresis phase loop (Figure S2A,B). More importantly, we
deduce that the FE polarization of BTO terminated by SrO,
which is switched by a positive electrical bias through
Coulomb interaction between the conductive tip and bound
charges, is upward (Pup), whereas the FE polarization of BTO
terminated by TiO2 which is switched by a negative electrical
bias is downward (Pdn), as shown in Figure S3. Thus, we could
conclude that the preferential FE polarization in the as-grown

BTO terminated by TiO2 (SrO) has a Pdn (Pup) state.
22,26 We

also confirm that the 5 u.c. LSMO does not influence the
original orientation of the FE polarization in BTO, as shown in
Figure S2B−E. Concerning the effect of temperature on the
ferroelectricity of fully stained films, the remnant polarization
(without electrical bias)27 has an increasing trend with
decreasing temperature, revealing no structural phase tran-
sition. On the other hand, theoretical calculations suggest that
ultrathin BTO films keep the c-axis tetragonal structure, and
FE polarization does not rotate at low temperature due to a
compressive strain of −2.0% imposed by epitaxy with STO
substrate.28 Hence, it is reasonable that BTO films retain a
single FE domain (Pz > Px = Py = 0) from room temperature
to 80 K. Reciprocal space mappings (RSMs) shown in Figure
1E and Figure S4 suggest that both BTO films are coherently
grown on TiO2- and SrO-terminated STO substrates. The as-
grown films have a tetragonal structure under the compressive
strain of −2.22% (Table S1) and possess the almost same
strained state (lattice parameters: a = b = 3.905 Å, c = 4.348 Å,
and tetragonality = 1.11), as indicated by the same L values. In
comparison with the lattice parameters of BTO and STO, the

Figure 2. Normalized X-ray absorption spectroscopy and X-ray magnetic circular dichroism of the LSMO/BTO heterostructures at 80 K. (A)
Schematic illustrations of the LSMO/BTO heterointerfaces and arrangement of magnetic moment dependent on FE polarization. (B) Principle of
XLD and XMCD techniques, where GI and NI represent grazing incidence (polarization E//c) and normal incidence X-ray (polarization E//ab),
respectively. (C) and (D) Mn- and Ti-L2,3 edges XAS under ±1 T in-plane magnetic field and their XMCD of LSMO/BTO with a downward
polarization. (E) and (F) Mn- and Ti-L2,3 edges XAS under ±1 T in-plane magnetic field and their XMCD of LSMO/BTO with an upward
polarization. The arrows in the inset show the direction of the total magnetic moment at Ti and Mn.
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LSMO layers on top of them are under tensile strain (0.6%), as
shown in Figure S4C. Considering almost the same strained
BTO, we deduce that LSMO layers also have the same stress
state except for the interfacial unit cell, being sensitive to the
FE field.
Figure 1F and Figure S5 show typical cross-section scanning

transmission electron microscopy (STEM) images of a
LSMO/BTO heterostructure on a SrO-terminated STO
substrate, directly revealing the quality of film and FE
displacement of Ti ions (DTi). The FE polarization can be
roughly evaluated using the empirical linear relation (Ps =
κ*DTi), where Ps represents the spontaneous polarization, and
κ is a constant of 2.0 μC/cm2/pm used in the estimation of Ps

for BTO, PTO, and BFO systems.29 The FE polarization of
BTO film is calculated to be about 50 μC/cm2, close to the
reported values of BTO film.30 The clear contrast from the
high-angle annular dark-field STEM (HAADF-STEM) images
in Figure 1G shows the predeposited 1 u.c. SRO with Ru

vacancies, further confirmed by EDX map in Figure 1H. Note
that, Sr is brighter than Ru, unlike the perfect SRO crystal
(Figure S13), which is associated with reducing scattering due
to Ru vacancies. The same batch of LSMO/BTO hetero-
structures with TiO2 termination is grown at the same
conditions with that of the SrO terminated heterostructure,
revealing the same strain state through synchrotron XRD
(Figure S4) and STEM images (Figure S6). We, therefore, are
able to manipulate the FE polarization of BTO under the same
strained state only by engineering the interface chemical
environment, without an external electric field.

Effect of Polarization on the Orbital Hybridization and
Induced Magnetism at Heterointerface. X-ray absorption
spectroscopy (XAS) and XMCD techniques are used to probe
the element-resolved magnetic moments in the heterostruc-
tures, taking advantage of the elemental specificity and shallow
probing depth of XAS in the total electron yield (TEY) mode
(details in Materials and Methods and Supporting Informa-

Figure 3. STEM, EDX, and EELS across the LSMO/BTO heterointerface. (A−E) under Pdn state. (A) The HAADF image. The white dashed line
represents the position of the interface. The green dot-dashed line denotes the electron beam position for the EELS spectra. The scale bar is 2 nm.
(B) The atomic-resolution overlaid EDX elemental maps. (C) EDX elemental profiles extracted from La-L (Cyan), Ba-M (Red), Mn-K (Pink), and
Ti-K (Green) edges. (D) Layer-resolved EELS spectra of Mn-L2,3 edges (top) and Ti-L2,3 edges (bottom). The gray dashed lines mark the position
of L3 and L2 peaks for Mn-L2,3 edges. The gray lines for Ti-L2,3 edges represent experimental data, while the colored lines are the fitted results by the
fractional contribution of Ti4+ and Ti3+. Reference spectra for Ti3+ (Red line) and Ti4+ (blue line) are shown at the bottom, taken from Ti2O3
powder and stoichiometric SrTiO3 substrate, respectively. (E) The extracted L2,3 ratio from EELS of Mn and the calculated Mn valence state vs the
distance from the surface. The gray dashed line shows the Mn valence state (3.3) in bulk LSMO (top). The component of Ti from EELS of Ti-L
edge vs the distance from the interface (bottom). The numbers in the inset represent the calculated Ti valence state. (F−J) Under the Pup state.
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tion). Figure 2 displays normalized XAS and XMCD of Mn-
and Ti-L2,3 edges in LSMO/BTO heterostructures with Pdn
and Pup states (Figure 2A). The Mn XMCD signals in both
samples with Pdn (Figure 2C) and Pup (Figure 2E) polar-
izations are similar to the typical XMCD spectrum, revealing
robust Mn magnetism. In the BTO layer, the visible Ti XMCD
signals (Figure 2D,F) indicate the presence of Ti magnetism at
the heterointerfaces. Comparing the XMCD spectra of the
samples with Pup and Pdn polarizations, the former seems to
show a stronger signal. To gain a better insight into the
influence of FE polarization on magnetism, we qualitatively
compare the integrals of the XMCD signals (Figure S7). The
result shows that the XMCD integrals for Mn are smaller for
the Pdn state than that under the Pup state. More importantly,
the XMCD integrals for Ti in the heterostructures with
different FE polarizations display the opposite sign, whereas
those for Mn in both samples display the same sign, which
reveals the change of the exchange coupling between Mn and
Ti. Though effective magnetic moments, using the spin and
orbital sum rules31 (details in Supporting Information), are
greatly underestimated due to the strong L2 and L3 edges
overlap for Ti and Mn, we only focus on the relative magnitude
and sign of the spin (sz) and orbital (lz) moments (Table S2).
We find that magnetic moments of Mn and Ti have both spin
and orbital contributions under the Pup state resulting from
strong orbital hybridization, contrary to the common belief
that 3d transition metals should have a suppressed orbital
moment owing to the quenched orbital angular momentum.
The macroscopic magnetic properties of multiferroic

heterostructures (see Figures S8−S10) confirm the smaller
magnetization under the Pdn state than that under the Pup state.
As for the effect of FE polarization on the magnetic moment of
Mn, there are two contributions affecting it. One is the valence
change (Mn3+↔ Mn4+) caused by the FE field through
electrostatic doping.15 Electrostatic doping results in hole
accumulation under the Pdn state (more Mn4+) and hole
depletion under the Pup state (more Mn3+) due to the
screening of FE polarization. The other one is the FE field
effect on the exchange coupling which changes from FM (Pup,
large eg population) to AFM (Pdn, small eg population)
through the change of the eg population.

25,32,33 Surprisingly, a
visible exchange bias is observed under the Pdn state, which
experimentally supports the existence of an AFM layer at the
Manganite/FE interface. The Ti magnetic moment is
determined by the amount of transferred charge because of
the interfacial hybridization between the Ti and Mn atoms.
The hybridization of Mn and Ti is weaker in the LSMO/BTO
interface with the Pdn state than that of the interface with the
Pup state suggested by the XAS of O-K edge (Figure S18). The
charge transfer is further confirmed by EELS results in Figure
3. Comparing with other similar systems,16,25 our system has a
larger change in magnetism for 5 u.c. LSMO. A possible reason
is a smaller magnetization and thickness in our system that
could be fully affected by the FE field effect.
To evaluate the effect of the interface chemistry on the

magnetism of heterostructures, we have examined another
group of samples grown under the same conditions, in which
the thickness of BTO was decreased from 45 u.c. (much larger
than the critical thickness, good ferroelectricity) to 3 u.c.
(lower than the critical thickness,34 very weak ferroelectricity
as shown in Figure S11), but retaining the same chemical
interface as for the samples in Figure 2. We found that Ti-L
edge EELS throughout the BTO film (Figure S14) shows the

decreasing concentration of Ti3+ from the LSMO/BTO
interface to the inside of BTO, suggesting that Ti3+ mainly
appears at the interface. The XMCD spectra in Figure S12
display similar signals for Mn and almost negligible signals for
Ti. These results suggest that the effects of the chemical
properties at the interface would be too small to play any
meaningful role on induced interfacial magnetism. Comparing
to bulk BTO, which exhibits structural phase transitions,10 the
ultrathin single crystal films in our work are coherently grown
on STO substrate (strain −2.0%). These fully strained films
maintain the tetragonal structure in the range of 80−300 K due
to the strong clamping effect of substrate.30,35 The effect of
strain on the magnetism of LSMO films is weak, unlike that on
bulk BTO.
Note that a charge modulation mechanism of interfacial FM

magnetic Ti in LaAlO3/SrTiO3
36 results from the polar

discontinuity, and the theoretical calculations of Fe/BTO
bilayers involve the mechanism of FE-induced charge transfer.8

In the structure of Fe/BTO used by Valencia et al., the
magnetic Ti at the interface is resulting from a proximity effect,
and the finite magnetic moment is located at Fe and O atoms.7

However, in LSMO/BTO heterointerfaces, charge redistrib-
ution is determined by the competition of charge transfer due
to valence imbalance and carrier density modulation due to the
FE field. Hence, the present magnetic arrangement is different
from that discussed by Valencia et al.7 and Duan et al.8 where
the alignment of the magnetic moments of Ti and Mn atoms is
independent from the FE polarization and always antiparallel.
The interfacial magnetic coupling in this work is similar to the
one modulated by strain in the LaMnO3/STO superlattice.37

The critical difference is that exchange coupling between Ti
and Mn at the artificial multiferroic interface is controlled by a
FE field effect or electric field.

Ti and Mn Charge Redistribution Across the Interfaces.
To probe the charge redistribution/oxidization state near the
LSMO/BTO heterointerfaces, we conducted atomic-resolution
EDX mapping and EELS characterization atomic layer by
atomic layer, as shown in Figure 3. The HAADF image and
EDX mapping of LSMO/BTO heterostructure under the Pup
state in Figure 3A,B confirm that the LSMO layer was
coherently grown on the BTO layer, retaining the tensile state.
From the bottom to the top across the interface, the EELS
signals gradually change from Ti-L edge to Mn-L edge, as
shown in Figure 3D (top). To quantitatively obtain the
fraction of Mn3+ and Mn4+, the L2,3 peak area ratio (L3/L2) is
evaluated from the EELS of Mn through the Gaussian fitting of
each individual Mn peak L2 and L3, as shown in Figure S15,
following the work of Varela et al.38 It can be seen that the L2,3
ratio decreases within 2 u.c. near the LSMO/BTO interface,
indicating the increase of the Mn valence as shown in Figure
3E (top). This agrees with the peak position shift seen in
Figure 3D (top). For the BTO layer, the Ti-L2,3 edge spectra
shown in Figure 3D (bottom) were decomposed into a linear
combination of the reference data for Ti3+ and Ti4+, as shown
in Figure S16, following the work of Ohtomo et al.39 The
fraction of Ti3+ gradually increases from the inside of the BTO
to the LSMO/BTO interface, indicating the decrease of the Ti
valence from +4 as shown in Figure 3E (bottom).
Quantitatively analyzing the EELS spectra of Mn and Ti, we
argue the existence of charge redistribution, originating from
the competition of valence imbalance (-(BaO)0-(TiO2)

0-(La/
SrO)+0.67-(MnO2)

−0.67-) and FE polarization discontinuity at
the heterointerface. This valence imbalance may induce a
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charge transfer/oxygen vacancy,40 whereas the FE polarization
discontinuity may induce screening charges41 at the interface.
Comparing to the LSMO/BTO heterointerface under Pdn

state, L2, 3 ratio extracted from the EELS of Mn, shown in
Figure 3I (top), gradually decreases from the LSMO/BTO
interface to the surface, indicating the gradual increase of Mn
valence as shown in Figure 3J (top). Also, there is a more
significant fraction of Ti3+ at the heterointerface, therefore,
indicating a lower Ti valence. On one hand, both
heterointerfaces under the Pdn and Pup states have Mn and
Ti valence changes, in turn, leading to induced magnetism at
the heterointerfaces. On the other hand, our EELS analysis
indicates the affected thickness of Mn valence and change of Ti
valence at the LSMO/BTO heterointerface under the Pup state
are more significant than that at the heterointerface under the
Pdn state due to a larger charge redistribution arising from the
stronger Mn−O−Ti hybridization. This enhancement is
caused by the FE field, resulting in a more considerable
interfacial magnetism.

Mn−O Bonds and Orbital Occupancy Tuned by Ferro-
electric Field Effect. The physical properties (such as magnetic
interaction and electrical transport) of 3d transition-metal
oxides are delicately sensitive to the occupation of d orbitals.42

To understand the difference of Mn−Ti exchange coupling at
the LSMO/BTO heterointerfaces, we utilize element-specific
XAS and XLD (Figure 2B) to probe the electronic structure
and orbital occupancy. Figure 4 shows the normalized XAS
and XLD signals of Mn- and Ti-L edges measured at 300 K,
respectively. The preferential orbital of Mn under the Pdn state
is in-plane (dx2−y2 in Figure 4A), verified by a negative XLD
integral in Figure S17. The orbital of Mn under Pup is out-of-
plane (d3z2−r2 in Figure 4C) confirmed by a positive XLD
integral in Figure S17. However, both Ti preferential orbitals
under Pdn (Figure 4B) and Pup (Figure 4D) states are out-of-
plane (dxz/yz), which is consistent with an elongated c axis
under compressive strain from the substrate (tetragonality of
BTO is 1.1). The change of orbital occupation tuned by FE
field effect is further supported by the orbital-resolved density
of states (DOS, Figure 4E,F) based on density functional

Figure 4. Normalized X-ray absorption spectroscopy and X-ray linear dichroism of the LSMO/BTO heterostructures at 300 K. (A) and (B) Mn-
and Ti-L2,3 edge XAS and their XLD for LSMO/BTO under the Pdn state, respectively. The blue line and gray line represent Ti-L edge XAS for the
reference samples of SrTiO3 and Ti2O3, respectively. (C) and (D) Mn- and Ti-L2,3 edge XAS and their XLD for LSMO/BTO under the Pup state,
respectively. The insets show the preferential orbitals of Ti and Mn under different polarization states, respectively. (E) and (F) The orbital-
resolved DOS in the LSMO/BTO heterostructure projected onto the interfacial Mn atoms at the LaO/TiO interface (E) and the BaO/MnO
interface (F).
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theory (DFT) calculations (further details can be found in the
Supporting Information). The structural distortion of inter-
facial MnO6 octahedra under a tensile strain from the BTO
layer (Figure S4C and Table S1) and the alteration of Mn−O
bond from FE field is the primary origin of orbital anisotropy.
This configuration of orbital degeneration as determined by FE
polarization is consistent with the theoretical predictions43 and
experimental observations.14,44

Discussion. Combining the microscopic element-specific
XMCD and XLD results and the macroscopic magnetic
properties with EELS analysis, we now turn to construct a
picture of the mutual effects at the FE/FM interface regarding
the charge redistribution, orbital anisotropy, and possible
interfacial magnetic arrangement between Mn and Ti mo-
ments. The charge redistribution originating from the
competition of charge transfer/oxygen vacancy and FE
screening charge at the interfaces leads to transferred electrons
on the Ti d orbitals and thus an induced magnetism on the Ti
atom. It is believed that the tensile stress from the substrate
and the Jahn−Teller effect lead to a smaller Mn−O bond
length (3.81 Å) along the out-of-plane than that along the in-
plane,45 as shown in Figure 5A; thus electron occupation of the
Mn dx2−y2 orbital is energetically preferred. In the FE/FM
heterostructure, the FE polarization effect should be
considered as well. For the Pdn state, the FE field leads to a
further reduction in the out-of-plane Mn−O bond length via
distortion of the oxygen octahedra,43 therefore, electrons still
preferably occupy the Mn dx2−y2 orbital. On the contrary, for
the Pup state, the FE field leads to a substantially elongated
Mn−O bond (4.01 Å) along the out-of-plane (Figure 5B) via
overcoming the tensile stress from STO substrate; thus the Mn
d3z2−r2 orbital is preferentially occupied. The layer-resolved
lattice parameters extracted from the STEM images (Figure
S21) suggest that the out-of-plane lattice parameter (3.99 Å) of

the first unit cell of LSMO close to the interface for the Pup

sample is indeed larger than that (3.80 Å) for the Pdn sample.
Both the XLD and XMCD signals from the O-K edge (Figures
S18 and S19) further confirm that the hybridization of Mn−
O−Ti is stronger for the Pup state than that for the Pdn state.
The hybridization between the Mn occupied dx2−y2 orbital and
the Ti dxz/yz orbital across the interface is very weak due to the
larger Mn−Ti distance (c + δ) in the heterostructure with the
Pdn state, where δ is FE displacement of ions; thus the virtual
hopping of electron is limited. According to the Goodenough−
Kanamori rules,46 the virtual hopping of electron from the
occupied Ti orbital to the empty Mn d3z2−r2 orbital determines
the FM coupling between Mn and Ti, as shown in Figure 5C.
Also, for the Pdn state, the small magnetic moment of Mn atom
and a weak exchange bias (Figure S10) may be possibly due to
the presence of an AFM layer at the interface.33 We therefore
propose that in the Pdn heterostructure, the exchange coupling
between Mn atoms at the interface is AFM, whereas it is FM
between Mn and Ti, as shown in Figure 5E. On the contrary,
in the Pup heterostructure, there is a strong overlap and
hybridization across the interface between the occupied Mn
d3z2−r2 orbitals and Ti dxz/yz orbitals due to the reduced distance
between Mn and Ti (c − δ), as shown in Figure 5D. According
to the Goodenough−Kanamori rules and the interfacial orbital
hybridization,37,47 magnetic moments of Ti t2g electrons and
the half-filled Mn bands should be AFM coupled at the
interface, as shown in Figure 5F. Interfacial AFM magnetic
coupling in LSMO/LSCO48 or LSMO/BFO,49 LCMO/
BFO,50 and LSMO/LFO18 have been previously reported,
where the magnetic moments in Cu or Fe atoms are pre-
existing. However, in our samples, charge redistribution
changes nonmagnetic Ti4+ (d0) in bulk BTO to magnetic
Ti3+ (d1) at heterointerface, and magnetic coupling is tuned by

Figure 5. Mn orbital occupation and interfacial magnetic couplings across the Titanite/Manganite interfaces. (A) and (B) Real-space charge
density calculated in the energy window from EF-0.94 eV to EF (EF is the Fermi energy) at the LaO/TiO interface (A) and the BaO/MnO interface
(B) in the LSMO/BTO heterostructure. The Mn−O bond lengths are indicated. (C) and (D) The sketches of the orbital hybridization between
Mn and Ti via O. The black arrows represent the spin alignment based on the Goodenough rules. (E) and (F) Proposed interfacial spin
configuration and magnetic coupling mechanism at the LSMO/BTO heterointerfaces. The center shows the charge redistribution at the interfaces.
The black ± symbols represent the screening charges induced by the FE bond charges.
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the FE polarization, which is fundamentally different from the
other studies.
Conclusion. In summary, we have explored the FE field

effect on the orbital hybridization and induced magnetism at
the Titanite-Manganite heterointerfaces and showed that
charge redistribution and changes in orbital occupancy play
an important role. The element-specific XMCD spectra
indicated that FE polarization controls the spin and orbital
moments of the interfacial Mn and Ti atoms and affects the
interfacial exchange interaction. The combination of atomic-
resolution STEM and EDX mapping with EELS character-
ization provided a detailed picture of charge redistribution and
changes in the valence states across oxide heterointerfaces.
Both XLD characterization and the calculated orbital-resolved
DOS confirmed the polarization-dependent orbital occupancy,
activating the FE control of the interfacial exchange coupling.
Our findings demonstrate a route to the electrical control of
magnetic states and interactions at the oxide FM/FE
heterointerfaces, which in turn tunes the spin-dependent
transport properties in magnetic and FE tunnel junctions.
Materials and Methods. Sample Preparation. All

LSMO/BTO heterostructures were epitaxially grown on
atomically smooth (001) STO single-crystal substrates
(CrysTec GmbH) by pulsed laser deposition (PLD). One
u.c.-SRO layer were predeposited on TiO2-terminated STO
substrates, resulting in a SrO-terminated surface. After film
growth, pure oxygen (typically 200 Torr annealing for 1 h) was
introduced to the PLD chamber, and the samples were cooled
down to room temperature at a cooling rate of 10 °C min−1 to
reduce oxygen vacancy.
Sample Characterization. The surface morphology and

ferroelectricity of these as-grown heterostructures were
characterized by AFM and PFM on a commercial scanning
probe microscope (Asylum Research MFP-3D) instrument at
room temperature. The crystal structures and strain state were
characterized by synchrotron-based X-ray diffraction at room
temperature. Microstructure, interfacial structure, element
mappings, and EELS were conducted by aberration-corrected
STEM (FEI Titan G2 80-200 microscope equipped with a
Super-X EDX detector) at room temperature. The magnet-
ization measurements at different temperatures were con-
ducted by a superconducting quantum interference device
(SQUID). XAS signals were recorded from the total electron
yield (TEY) current, which takes into account the surface
sensitivity (with a 30° grazing angle) and element selectivity of
the TEY mode. X-ray absorption spectroscopy (XAS) was
conducted at room temperature and 80 K at beamline Surface,
Interface, and Nanostructure Science of SSLS. The exper-
imental configurations of X-ray linear dichroism (XLD) and X-
ray magnetic circular dichroism (XMCD) are shown in Figure
2B. The XLD signal is obtained by subtracting the intensities
of the linear-polarized X-ray with vertical (Ic) polarization from
horizontal (Iab) polarization without magnetic field, that is,
XLD = (Iab − Ic). The XMCD signal is the difference of the
circularized X-ray absorption spectra taken in plus and minus 1
T in-plane magnetic field, that is, XMCD = (I+ − I‑).
Others. The detailed information on the film growth,

characterization, and DFT calculations are listed in Supporting
Information.
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