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a  b  s  t  r  a  c  t

Photosynthetic  responses  were  quantified  for  two  Zostera  japonica  Aschers.  and  Graebn.  populations
from  the  northern  and  southern  limits  of  distribution  exposed  to  a  range  of salinities  along  the  Pacific
Coast  of North  America.  Plants  were  collected  from  Padilla  Bay,  Washington  (northern)  and  Coos  Bay,
Oregon,  USA  (southern)  and  cultured  together  in  experimental  tanks  at 3  salinities  (5,  20  and  35)  under
saturating  irradiance  for 3 weeks.  Subsequently,  photosynthesis–irradiance  (P vs.  E curves)  relationships
for  leaf  segments  from  the  two populations  were  assessed  using  an  oxygen  electrode  system.  We  found  no
evidence  for  diel  rhythms  in  either  light  saturated  photosynthesis  (Pmax) or dark  respiration  (Rd). For  the
Padilla  Bay  population,  Pmax ranged  from  192  to 390  �mol  O2 g  DW−1 h−1; for the  Coos  Bay  population  Pmax

ranged  from  226  to 774  �mol  O2 g  DW−1 h−1. Photosynthetic  maxima  of  the  Coos  Bay  plants  occurred  at  a
salinity  of  20,  whereas  salinity  had  no effect  on the  photosynthetic  maxima  of  the  Padilla  Bay  plants.  There
were  significant  differences  in  leaf  tissue  Rd among  salinity  treatments  but  the  two  populations  responded
similarly  to salinity.  North  American  populations  of  Z.  japonica  are  best  adapted  to  intermediate  salinities,
displaying  minimum  Rd rates,  lower  compensation  irradiance,  higher  saturation  irradiance,  and  greater
Pmax rates  at  a salinity  of 20.  Additionally,  the  southern  population  may  be  better  adapted  to  southward
expansion  along  the  Pacific  Coast  and  changes  associated  with  global  climate  change.

Published by Elsevier B.V.

1. Introduction

The seagrass Zostera japonica was first reported along the Pacific
Coast of North America in 1957 (Hitchcock et al., 1969), and is
thought to have been introduced along with oyster seed stock
imported from Japan (Harrison and Bigley, 1982). For the last few
decades, distribution of this species has been limited to British
Columbia, Washington, and Oregon. Within this range, dramatic
expansions have occurred in some areas (Posey, 1988; Baldwin
and Lovvorn, 1994; Dumbauld and Wyllie-Echeverria, 2003). How-
ever, the recent discovery of new populations near Humboldt Bay,
California, represents a southward range extension. Harrison and
Bigley (1982) suggested that this species had only colonized a small
fraction of the available suitable habitat, and that changes in the
ecology of the intertidal flats were likely to result from contin-
ued spread of this species throughout its potential range. Concerns
have been expressed regarding the potential for displacement of
the native Zostera marina L. by Z. japonica, and the impacts of this
displacement on native ecosystem structure and function (Bando,

∗ Corresponding author. Tel.: +011 541 867 4026; fax: +011 541 867 4049.
E-mail address: kaldy.jim@epa.gov (J.E. Kaldy).

2006). Management decisions require information regarding the
potential for establishment and spread of introduced species, as
well as their potential impacts to native ecosystem structure and
function. In the case of Z. japonica, these decisions are complicated
by the shortage of ecophysiological data available for this species
either in its native range or on the American West Coast (Green and
Short, 2003).

Although most seagrasses inhabit marine salinity regimes
(Tyerman, 1982), several species are reported to be euryhaline (Den
Hartog, 1970; Biebl and McRoy, 1971; Ralph, 1998). In addition
to the expansion of Z. japonica along the coast, there has been an
increase in the abundance and distribution across the salinity gra-
dient within estuaries as well. Dudoit (2006) reports that in the
South Slough National Estuarine Research Reserve (NERR) in Coos
Bay Oregon, Z. japonica had moved 3.2 km upriver from the point
of first introduction as reported by Posey (1988).  Kaldy (2006) sug-
gested that freshwater seeps may  provide a desiccation refuge for
Z. japonica in the high intertidal. Young et al. (2008) found that
the distribution of Z. japonica in lower Yaquina Bay increased areal
coverage by 400% between 1998 and 2007. In Yaquina Bay there
was  substantial spread of Z. japonica into many of the less saline
slough areas of the lower estuary (Young et al., 2008). Between
2002 and 2009 Shafer and Kaldy (pers. obs.) have noticed that Z.
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japonica appeared to occur further upriver in Yaquina Bay. Taken
together, this suggests that Z. japonica may  be fairly euryhaline and
tolerates a wide range of salinities which could affect its ability to
colonize potential habitat. Although a wide range of factors control
the occurrence and spread of non-native species (including seed
viability and dispersal, germination success, predation pressure,
etc.), an adequate positive carbon balance is critical for establish-
ment and survival of any plant. Consequently, we focus our initial
effort on evaluating how Z. japonica photosynthesis responds to
large, chronic changes in salinity.

The photosynthetic capability of the seagrass congeners Z.
marina (see review by Touchette and Burkholder, 2000) and Z. noltii
Hornem. (Jiménez et al., 1987; Vermaat and Verhagen, 1996; Plus
et al., 2005) have been well studied relative to Z. japonica. Several
studies have identified diel endogenous rhythms in seagrass pho-
tosynthesis, with high rates during morning hours and depressed
rates in the afternoon (Libes, 1986; Durako and Kunzelman, 2002;
Silva and Santos, 2003). The presence of diel endogenous rhythms
could lead to misinterpretation of data; however, the phenomenon
has not been investigated in Z. japonica. Previous studies have eval-
uated the growth and morphological response of several Zostera
congeners to chronic salinity changes (Kerr and Strother, 1985;
Kamermans et al., 1999; Vermaat et al., 2000; Nejrup and Pedersen,
2008) and short-term photosynthetic responses under hypersaline
(>35) conditions (Biebl and McRoy, 1971), but few have examined
response to low salinity or longer-term (2–3 weeks) effects of high
or low salinity (although see Ralph, 1998). Salinity ranges were on
the order of 0–132 for Z. marina and Z. muelleri, while salinities of
15 and 35 were used for Z. noltii. There are few measurements of Z.
japonica photosynthetic parameters in general and even fewer in
relation to osmotic stress (Ogata and Matsui, 1965).

Huong et al. (2003) suggest that in Vietnam Z. japonica is
stenohaline, occurring within the salinity range of 22–32. Based
on observed expansions, we hypothesize that Z. japonica is more
euryhaline than most seagrass species, withstanding salinity fluc-
tuations from about 1 to 34. We  use photosynthetic characteristics
as metrics to evaluate its salinity tolerance. The goal of this study
is to evaluate the physiological tolerances underlying the observed
patterns of Z. japonica distribution, and predict the potential for
expansion of this species to additional areas within its established
range as well as outside the limits of its current range on the Pacific
Coast of North America. The objectives of this study were to com-
pare and contrast the photosynthetic responses of two Z. japonica
populations located near the northern and southern limits of dis-
tribution for this species, across the range of salinities experienced
within estuaries of the American Pacific Northwest. Experiments
conducted at the boundaries of species’ distribution are critical
to understanding factors limiting the spread of introduced species
(Byers et al., 2002).

2. Description of study areas

2.1. Padilla Bay, Washington

Padilla Bay is a relatively shallow, sheltered embayment located
in northern Puget Sound, along the mainland coast of Washington.
Tides are mixed semidiurnal, with a maximum tidal range of about
4 m (Bulthuis, 1995). Salinity ranges from 21 to 30, depending
on freshwater inflow from the Fraser, Skagit, and Samish Rivers
(Bulthuis, 1995). Padilla Bay has one of the largest seagrass areas
in the Pacific Northwest (Bulthuis, 1995), representing about 16%
of the total within the Puget Sound region (Wyllie-Echeverria
and Ackerman, 2003). In 1989, Padilla Bay contained approxi-
mately 2900 ha of intertidal and subtidal Z. marina beds, 324 ha
of intertidal Z. japonica, and 137 ha of Ruppia maritima (Bulthuis,

1995). Z. japonica occurs within an elevation range of +0.1 m to
+0.8 m, relative to mean lower low water (MLLW) (Thom, 1990). Z.
japonica samples used in this experiment were collected from the
northern portion of Padilla Bay, on the south side of Samish Island
(48.574657N lat., 122.538577W long.).

2.2. Coos Bay, Oregon

Coos Bay is a tidally dominated, deep draft, drowned river val-
ley estuary located along the central Oregon coast. The system has
mixed semidiurnal tides and a maximum tidal range of about 2 m
(Lee and Brown, 2009). Salinity ranges between about 20 and 30
depending on freshwater inflow and site within the estuary (Lee
and Brown, 2009). As of 2003, Coos Bay contained about 500 ha of Z.
marina (Thom et al., 2003), Z. japonica is known to be present (Posey,
1988; Shafer, 2007) but its areal extent has not been summarized.
Z. japonica specimens for this experiment were collected from a
bed near Day Creek inlet, a tidal creek in the South Slough National
Estuarine Research Reserve (NERR) at Coos Bay (43.316181N lat.,
124.311290W long.). At the time of collection at low tide, salinity
in the creek was  measured at 0 using a refractometer. Thus, we
expect that this population is subject to rapid daily fluctuations in
salinity associated with tidal cycles.

3. Methods

3.1. Plant collections and experimental treatments

The effects of salinity on the photosynthesis–irradiance (P vs. E)
relationships of these two populations of Z. japonica were assessed
in the laboratory using a Hansatech liquid-phase oxygen elec-
trode system (Oxylab controller with DW3  chamber, Hansatech
Instruments Ltd., Norfolk, England) across a range of salinities
that may  be experienced by plants along the estuarine salinity
gradient. Using a hand trowel, 10 cm sediment plugs contain-
ing intact plants with root material were harvested at low tide
from intertidal beds of Z. japonica. Thirty plugs were harvested
from Padilla Bay, Washington, transported to the laboratory facil-
ity at Newport, Oregon, and placed in white polycarbonate tanks
(60 cm × 60 cm × 90 cm)  within 8 h of collection. Each tank was  sup-
plied with >400 �mol  photons m−2 s−1 from 1000 W metal halide
lamps on a 14:10 L:D cycle. All three tanks were maintained at a
temperature of 25 ± 2 ◦C using submersible aquarium heaters. Sim-
ilarly, 30 plugs were collected near Day Creek Inlet in Coos Bay,
Oregon and randomly assigned to treatment tanks within 4 h of col-
lection. Each sample plug contained between 10 and 30 Z. japonica
shoots. Samples were collected during the summer (June) when
biomass was expected to be near its seasonal maximum (Thom,
1990; Kaldy, 2006). The photosynthetic temperature optimum for
North American populations of Z. japonica is between 20 and 30 ◦C
(Shafer et al., 2008) and a similar range of 18–23 ◦C was reported
by Lee et al. (2005) in Korea. Plants were allowed to acclimate at
room temperature (25 ◦C) for 24–48 h at a salinity of 32 before being
adjusted to test salinities (5, 20, and 35). Culture media consisted of
ambient seawater from Yaquina Bay; salinities were reduced using
reverse osmosis water or increased using Red Sea Salts (Red Sea
Fish Pharm Inc., Eliat, Israel). Reverse osmosis removes many of
the impurities associated with tap water (ions, chlorine, etc.) but
retains some nutrients. Initial nutrient concentrations were not
measured; however, after 4 days media nitrogen concentrations
ranged between <1 and 11 �M NO2 + NO3 and 1–11 �M NH4. After
10 days all nutrient concentrations in all tanks were <2 �M.  After
holding plants at test salinities for 18–19 days, three sub-samples
from each population were collected from each of the salinity treat-
ments for P vs. E curves (details below). In order to account for
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any diel variability, curves were run over the course of several days
and sampled in a random sequence during the day (between the
hours of 08:00 and 16:00). All treatments were continuously bub-
bled with air to maintain non-limiting CO2 supplies in the culture
media.

3.2. Photosynthetic measurements

Since photosynthetic rates within each leaf are known to vary
from leaf tip to sheath (Enríquez et al., 2002), an effort was made to
minimize this potential source of variance by selecting leaf sections
from the mid-point of the second youngest leaf on each shoot. These
leaf sections were in the range of 1.5–2.0 cm in length. Each sample
was a composite of four to six leaf sections (from the same plant);
care was taken to avoid visibly damaged tissue when selecting sam-
ples. Length and width measurements were taken for each piece of
tissue using digital calipers. Leaf segments were placed in filtered
water at the same treatment salinity and temperature (25 ◦C) and
held in the dark for 30 min. Small sections (<3 cm2) of 400 �m clear
plastic mesh were used to hold multiple pieces of plant tissue in
place side by side in order to avoid shading. We  verified that the
clear plastic mesh had no detectable impact on photon flux density
reaching the leaf surface.

P vs. E curves were run using a Hansatech OxylabTM liquid-
phase oxygen electrode system with a DW3  chamber (Hansatech
Instruments Ltd., Norfolk, England). This system uses a Clark-
type electrode (Delieu and Walker, 1972) located in the floor
of the water-jacketed DW3  (110 mm × 75 mm  × 100 mm)  reac-
tion chamber. The volume of water in the chamber was 7 ml  for
each curve. Prior to each run (before introducing plant mate-
rial), the oxygen concentration of the chamber media was reduced
to 0.280 ± 0.010 �mol  O2 ml−1 by bubbling with N2 gas. The
water jacket of the DW3  chamber was attached to a circulat-
ing water chiller so that the temperature in the chamber was
maintained at 25 ◦C. An external red LED light source (640 nm �)
was fitted to a chamber window (LH36/2R light array, Hansatech
Instruments Limited, England) and the light levels in the cham-
ber were controlled via the Oxylab software. Light treatments
were verified using a LI-COR 1400 with a cosine corrected sen-
sor (LI-COR, Lincoln Nebraska). The sample was placed in the
chamber using the support loops on the chamber plunger such
that the plant tissue was perpendicular to the light source. The
samples were kept in the darkened chamber for 5 min  to allow
for equilibration, and a 10 min  measurement of dark respira-
tion was made. Following respiration measurements, the samples
were sequentially exposed to 5, 10, 15, 60, 125, 300, 750, and
1000 �mol  photons m−2 s−1. The samples were exposed to each
light level for 8 min  to reach equilibrium rates of oxygen evolution
(�mol  ml−1 min−1).

Once the oxygen evolution measurement was completed, the
sample was removed from the chamber and further processed for
chlorophyll content. Oxygen evolution rates were normalized to
the dry weight (�mol  O2 gDW−1 h−1) and chlorophyll content
(�mol  O2 mg  chl a−1 h−1) of the sample. Photosynthetic parameters
normalized to chlorophyll are not discussed here, but are tabu-
lated for comparison to other studies and regression equations are
provided for approximate conversions. Dry weight was  estimated
from the empirical relationship between dry weight and leaf area.
Chlorophyll concentrations were determined on the same leaf seg-
ments used to determine P vs. E relationships. Leaf segments were
extracted in 10 ml  of 99.5% DMSO and incubated (65 ◦C) in the dark
until pigments were fully leached (approximately 3 h) into the sol-
vent (Andersen et al., 1991). Absorbance of the pigmented solvent
was measured at 663, 649, and 470 nm using a Shimadzu UV-2101
spectrophotometer (Shimadzu, Kyoto, Japan).

3.3. Photosynthetic calculations

Photosynthetic parameters were calculated using the
Smith–Talling function (Lederman and Tett, 1981; Henley, 1993).
Data were fitted to this function using the Sigma Plot (version
11.0) statistical software package.

Production = Pmax

(
˛E√

P2
max + (˛E)2

)
+ Rd

where Pmax is the maximum rate of photosynthesis, Rd is the dark
respiration rate, E is the photon flux density (�mol  photons m−2

s−1) and  ̨ (photosynthetic efficiency) is the initial slope of the pho-
tosynthetic curve with units of �mol  O2 gDW−1 h−1 (�mol photons
m−2 s−1)−1. The compensation irradiance (Ic) represents the light
level at which gross photosynthetic production equals respiration
(net photosynthesis is zero; Bulthuis, 1987) and was determined
by dividing the respiration rate by  ̨ (Henley, 1993). The saturation
irradiance (Ik) was determined by dividing Pmax by  ̨ (Touchette
and Burkholder, 2000).

3.4. Data analysis

Pmax and Rd values were tested for diel patterns (morning val-
ues vs. afternoon values) using a non-parametric, Kruskal–Wallis
one-way ANOVA on ranks (SigmaPlot v. 11) because the data vio-
lated the assumptions of normality and homogeneity of variances
required for parametric statistics. Photosynthetic parameters and
tissue respiration rates were analyzed using a nested Analysis of
Variance (ANOVA), with population nested within salinity (Sokal
and Rohlf, 1995). The nested model does not have an interaction
effect, thus we  were unable to evaluate the potential for interac-
tion between salinity and population. Bonferroni corrected Fisher’s
Least Significant Difference (LSD) tests were used to evaluate dif-
ferences among salinity treatments and populations. For all ANOVA
results, significance is reported as p ≤ 0.05.

4. Results

4.1. Diel rhythms

Preliminary evaluations were made to test for the presence of
diel rhythms in Pmax and Rd (Fig. 1). One-way ANOVA on ranks indi-
cates that there were no significant differences (H = 1.043, df = 1,
p = 0.307) between median Pmax measurements made in the morn-
ing and those made in the afternoon. Likewise, there were no
significant differences in median Rd values between morning and
afternoon (H = 0.00725, df = 1, p = 0.932). It should be noted that the
morning sample size was smaller than the afternoon.

4.2. Photosynthetic characteristics

Both populations of Z. japonica exhibited typical photosyn-
thesis–irradiance responses across the range of salinities inves-
tigated (Fig. 2). The Smith–Talling function fit the data well
with R2 values ranging between 0.91 and 0.99 (Table 1). The
initial slope of the photosynthesis–irradiance curve (˛) ranged
from 2.2 to 21.4 (Table 1). No significant differences in the
initial slope of the photosynthesis–irradiance curve could be
detected between salinities or among populations within salinities
(Table 2).

Both factors, population and salinity, exerted significant effects
on light-saturated photosynthetic rates (Pmax) (Table 2). For the
northern (Padilla Bay) population, Pmax ranged from 192 to
390 �mol  O2 gDW−1 h−1; for the southern (Coos Bay) population
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Fig. 1. Zostera japonica maximum rate of photosynthesis (Pmax) and dark respiration
rate (Rd) plotted against time of day. Error bars are standard error from curve fitting
and in some cases are smaller than the symbol. Note differences in y-axis scales.

Pmax ranged from 226 to 774 �mol  O2 gDW−1 h−1. For the Coos
Bay population, light-saturated photosynthetic rates at a salinity
of 5 were significantly lower than at 20 or 35, but light saturated
photosynthetic rates at a salinity of 35 were not significantly dif-
ferent from those at a salinity of 20 (Table 3). No differences could
be detected among salinity levels in the Padilla Bay population
(Table 3).

Whereas saturation irradiance was significantly greater for
the southern population than the northern population (Table 2),
no significant differences could be detected due to salinity
(Table 2). Compensation irradiance (Ic) was significantly affected

Fig. 2. The effect of salinity on the photosynthesis versus irradiance responses of
Zostera japonica collected from Padilla Bay, Washington and Coos Bay, Oregon. Error
bars indicate standard error (n = 3). Smith–Talling curves were fit iteratively; fit
statistics are presented in Table 1.

by salinity (Table 2), and was generally lower at a salinity of
20 than at 5 or 35 (Table 3). The results of the Fisher’s LSD
multiple comparisons indicated that compensation irradiance at
a salinity of 20 was significantly lower than at 5 (Table 3). No
differences between populations within salinity could be detected
(Table 2).

Table 1
Summary of photosynthetic parameters (±SE) generated by non-linear curve fitting using the Smith–Talling function for two populations of Zostera japonica measured at
25 ◦C and various salinities. Units of Pmax and Rd for dry weight normalized samples are �mols O2 gd w−1 h−1, while units for � are �mols O2 gd w−1 h−1 (�mol  photons m−2

s−1)−1. Photosynthetic parameters normalized to chlorophyll units are presented for comparison to other studies but are not discussed. Units of Pmax and Rd for chlorophyll
normalized samples are �mols O2 mg  Chl a + b−1 h−1, while units for � are �mols O2 mg Chl a + b−1 h−1 (�mol photons m−2 s−1)−1.

Population Plant # Salinity Dry weight normalized Chlorophyll a + b normalized

Pmax Rd  ̨ Pmax Rd  ̨ R2

Padilla A048 5 192 (7) −53 (7) 11 (1) 18 (1) −5 (1) 1.0 (0) 0.9925
Padilla A088 5 216 (22) −76 (20) 17 (5) 15 (2) −5 (1) 1.2 (0) 0.9487
Padilla A080 5 390 (18) −224 (16) 21 (3) 30 (1) −17 (1) 1.7 (0) 0.9897
Padilla A069 20 214 (17) −50 (15) 8 (2) 36 (3) −8 (3) 1.3 (0) 0.9707
Padilla A050 20 302 (19) 8 (13) 2 (0) 34 (2) 1 (1) 0.2 (0) 0.9786
Padilla A056 20 309 (24) −91 (22) 17 (4) 37 (3) −11 (3) 2.1 (0) 0.9696
Padilla D066 35 291 (20) −77 (17) 6 (1) 17 (1) −5 (1) 0.3 (0) 0.9744
Padilla A095 35 299 (30) −65 (27) 8 (3) 19 (2) −4 (2) 0.5 (0) 0.9492
Padilla A083 35 237 (18) −126 (16) 8 (2) 18 (1) −10 (1) 0.6 (0) 0.9725

Coos  D094 5 226 (12) −61 (11) 13 (2) 20 (1) −5 (1) 1.2 (0) 0.9846
Coos  D088 5 492 (30) −147 (27) 17 (4) 121 (7) −36 (7) 4.2 (1) 0.9817
Coos  D096 5 312 (42) −118 (38) 21 (7) 43 (6) −16 (5) 2.8 (1) 0.9144
Coos  E096 20 774 (35) −18 (24) 5 (1) 85 (4) −2 (3) 0.6 (0) 0.9880
Coos  D069 20 538 (38) −16 (27) 5 (1) 51 (4) −2 (3) 0.5 (0) 0.9711
Coos D085 20 732 (29) −33 (19) 4 (1) 80 (3) −4 (2) 0.4 (0) 0.9910
Coos  C097 35 370 (23) −28 (17) 3 (1) 20 (1) −2 (1) 0.2 (0) 0.9772
Coos  C092 35 578 (34) −96 (21) 3 (1) 62 (4) −10 (2) 0.3 (0) 0.9810
Coos  D067 35 514 (29) −314 (26) 13 (3) 48 (3) −29 (2) 1.2 (0) 0.9835

Biomass normalized parameters can be converted to chl normalized values using the following equations: Pm = 0.125 × −6.694, n = 18, r = 0.766, p � 0.0001.
Rd = 0.100 × −0.601, n = 18, r = 0.814, p < 0.0001.
˛  = 0.130 × −0.187, n = 18, r = 0.790, p < 0.0001.
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Table 2
Results of nested ANOVAs evaluating the effects of salinity and population nested
within salinity on the initial slope of the photosynthesis–irradiance curve (˛), com-
pensation irradiance (Ic), light-saturated photosynthetic rates (Pmax), saturation
irradiance (Ik), and dark respiration rates (Rd). Bold values are significant at p < 0.05.

Dependent Factor DF SS F Prob > F

Pmax Salinity 2 131,394 3.87 0.047
Pop  (Sal) 3 400,500 7.88 0.003

Rd Salinity 2 17,587 3.86 0.048
Pop  (Sal) 3 2637 0.386 0.726

˛  Salinity 2 29.872 2.07 0.164
Pop (Sal) 3 5.00 0.232 0.872

Ic Salinity 2 216.55 4.026 0.043
Pop  (Sal) 3 21.73 0.269 0.846

Ik Salinity 2 875.63 1.638 0.232
Pop (Sal) 3 4449.4 5.549 0.011

4.3. Respiration rates

Differences in leaf tissue respiration rates among salinity treat-
ments were significant (Table 2). The lowest rates of leaf tissue

Table 3
Summary of Bonferroni corrected Fisher’s Least Significant Difference post hoc tests
conducted for the nested ANOVA on photosynthetic parameters. Contrasts were
performed for each population (salinity) nested combination; separate contrasts
were performed for the main salinity effect. For each dependent variable, levels not
connected by the same letter are significantly different at p < 0.05.

Dependent Source Level LS mean ± SE

Pmax Salinity 5 286 ± 50 b
20  478 ± 53 a
35  433 ± 53 ab

Pop (Sal) Padilla (5) 266 ± 75 c
Coos (5) 307 ± 65 c
Padilla (20) 275 ± 75 c
Coos (20) 681 ± 75 d
Padilla (35) 275 ± 75 c
Coos (35) 592 ± 75 d

Rd Salinity 5 −110 ± 18 b
20 −36 ± 19 a
35  −75 ± 19 ab

Pop (Sal) Padilla (5) −117 ± 27 c
Coos (5) −102 ± 23 c
Padilla (20) −49 ± 27 cd
Coos (20) −22 ± 27 d
Padilla (35) −89 ± 27 cd
Coos (35) −61 ± 27 cd

Ic Salinity 5 11 ± 2 a
20  2.7 ± 2.1 b
35 7.6 ± 2.1 ab

Pop (Sal) Padilla (5) 11 ± 3 d
Coos (5) 10 ± 2 cd
Padilla (20) 3.3 ± 3 cd
Coos (20) 2 ± 3 c
Padilla (35) 9.3 ± 3 cd
Coos (35) 6 ± 3 cd

Ik Salinity 5 28.9 ± 6.2 a
20  43.7 ± 6.7 b
35 42.3 ±  6.7 b

Pop (Sal) Padilla (5) 26.4 ± 9.4 d
Coos (5) 31.3 ± 8.2 cd
Padilla (20) 21.4 ± 9.4 d
Coos (20) 66.1 ± 9.4 e
Padilla (35) 26.9 ± 9.4 d
Coos (35) 57.6 ± 9.4 ce

respiration were observed at a salinity of 20 (Table 3). Respira-
tion rates at a salinity of 5 were significantly more negative than at
higher salinity (Table 3). Whereas significant differences between
populations, within each salinity, could not be detected (Table 2),
leaf respiration rates in the Padilla Bay population were generally
more negative than those in the Coos Bay population (Table 3).

5. Discussion

We  examined long-term photosynthetic responses to chronic
lowering of salinity, such as might be encountered in estuaries or
lagoons subject to extreme flooding conditions or altered hydrol-
ogy. The Coos Bay (southern) Z. japonica population, collected in a
tidal creek with freshwater inflows, was exposed to rapidly chang-
ing salinities (including zero) on a daily basis, whereas the Padilla
Bay (northern) population was exposed to more stable salinity con-
ditions ranging from 22 to 30. We expected that the stenohaline
Padilla Bay population would be more sensitive to osmotic stress
than the more euryhaline Coos Bay population.

Our data indicate that North American populations of Z.
japonica photosynthetic characteristics are best adapted to inter-
mediate salinities, displaying minimum respiration rates, lower
compensation irradiance, higher saturation irradiance, and greater
light-saturated photosynthetic rates at a salinity of 20. Thus, Z.
japonica can also be considered a euryhaline species, tolerating
long-term exposure to estuarine salinities in the range of 5–35.
Some populations are also capable of tolerating short-term in situ
exposure to zero salinity (e.g. Day Creek Inlet, Coos Bay, and Winant
Slough, Yaquina Bay, Oregon). The lack of significant differences
in photosynthetic efficiency, compensation irradiance, and dark
respiration rates between the Padilla and Coos Bay populations sug-
gests that these parameters are unaffected by latitudinal gradients
or previous exposure to fluctuating salinity.

Seagrasses have been shown to exhibit a variety of mechanisms
for acclimating to salinity fluctuations that range from changes in
the cellular ion concentrations (organic osmolytes) to the elastic-
ity of the cell wall (reviewed by Touchette, 2007). Cellular osmotic
adjustments of ion concentrations occur in both vacuoles and the
cytoplasm via a variety of mechanisms on time scales ranging
from hours to days or weeks (Murphy et al., 2003; Touchette,
2007). In a time series experiment, Z. marina tended toward an
osmotic equilibrium within 4 days in response to sustained salinity
changes (Van Diggelen et al., 1987). Over the short-term, salin-
ity response involves osmotic adjustments of inorganic ions and
organic osmolytes such as proline, carbohydrates, and organic acids
(Touchette, 2007). Most experiments on seagrass photosynthetic
response to salinity tend to be short-term on the scale of hours
to days. R. maritima exhibits decreased quantum yields indicating
photosynthetic stress in response to short term salinity changes,
but it can physiologically adjust after several days of chronic expo-
sure (Murphy et al., 2003). Chronic salinity reduction over the
course of several weeks should allow the Z. japonica plants to adapt
to low salinity and reach a physiological equilibrium with respect
to photosynthetic characteristics. We  suggest that the Padilla Bay
and Coos Bay populations may  not have developed different tol-
erances to salinity variations despite inhabiting systems with
very different salinity characteristics (stenohaline versus euryha-
line). Thus, salinity may  not be a strong selective force for this
species.

Several studies have concluded that some seagrass species do
exhibit diel patterns with high photosynthetic rates (or efficien-
cies) during the morning and lower rates during the afternoon
(Libes, 1986; Durako and Kunzelman, 2002; Silva and Santos,
2003), we found no evidence of this in the two Z. japonica popula-
tions examined. The unrecognized presence of diel rhythms could
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confound interpretation of seagrass photosynthetic parameters;
testing for diel rhythms should be a routine part of photosynthetic
investigations.

Although direct comparisons are sometimes difficult due to the
variety of methods and metrics used, there appear to be no con-
sistent patterns in seagrass photosynthetic responses across the
salinity gradient. Touchette (2007) suggests that although both
photosynthesis and respiration are often inhibited by extreme hypo
or hyperosmotic conditions, the degree of inhibition is depen-
dent on the acclimation period. We  found that photosynthetic
efficiency was relatively unaffected by long-term exposure to
salinities ranging from 5 to 35. In contrast, photosynthetic effi-
ciency of the seagrass Halophila johnsonii Eiseman was reported
to increase linearly with increasing salinity, within the range of
0–40 (Torquemada et al., 2005). However, their study was  designed
to assess short-term salinity responses (1–20 h), whereas in our
experimental design the plants were exposed to constant salinity
treatments over a period of weeks. Likewise, saturation irradiance
also appeared to be unaffected by differences in salinity.

The range of values for compensation irradiance (Ic) (3–33 �mol
photons m−2 s−1) and saturating irradiance (Ik) (13–199 �mol  pho-
tons m−2 s−1) observed for Z. japonica in this study were generally
lower than those reported for other Zostera species (Touchette
and Burkholder, 2000). This may  be related to examination of tis-
sue segments as opposed to whole plant incubations. Z. japonica
compensation irradiance varied significantly within the range of
salinities tested, with a minimum at a salinity of 20, and higher
values at 5 and 35. In H. johnsonii, compensation irradiance was
highest at zero salinity, and decreased with increasing salinity in
the range of 0–50 (Torquemada et al., 2005).

Maximum light saturated photosynthetic rates for the southern
Z. japonica population occurred at a salinity of 20. Similar results
were reported for a Japanese population of Z. japonica; highest
photosynthetic rates occurred at 3/4 strength and full-strength
seawater, with markedly lower rates at both higher and lower
salinities (Ogata and Matsui, 1965). Z. marina also exhibits maxi-
mum  light saturated photosynthetic rates at a salinity of 20, with
lower rates at both higher (25–35) and lower (5–10) salinities
(Nejrup and Pedersen, 2008; Kaldy, unpublished data). Addition-
ally, Kamermans et al. (1999) found that Z. marina production and
PSII quantum efficiency were higher at a salinity of 22 than at 32.
Some seagrass species (e.g. Zostera muelleri Irmisch ex Aschers. and
H. johnsonii) exhibit photosynthetic maxima at higher salinities
typical of oceanic seawater (Kerr and Strother, 1985; Torquemada
et al., 2005). Other studies reported no relationship between Halo-
dule wrightii Aschers. light saturated photosynthetic rates and
salinity along an estuarine gradient (Dunton and Tomasko, 1994;
Dunton, 1996).

The lowest respiration rates in Z. japonica were observed at a
salinity of 20, with increased respiration rates at low (5) and high
(35) salinities. Respiration rates of Z. muelleri, another intertidal
species, were lowest at full-strength seawater, and approximately
twice as great at 50% seawater salinity than at 100% seawater salin-
ity (Kerr and Strother, 1985). In contrast, Z. marina respiration rates
are reported to be relatively insensitive to changes in salinity rang-
ing from zero (distilled water) to 2× and 3× seawater solutions
(Biebl and McRoy, 1971; Hellblom and Björk, 1999; Kaldy, unpub-
lished data).

Stands of Z. japonica located along the central and southern Ore-
gon coast (Yaquina and Coos Bay) appear to be capable of more
rapid growth and photosynthesis rates than northern populations
(Padilla Bay, Washington; Shafer et al., 2008; this study). South-
ern stands are also more tolerant of warmer temperatures and
become light-saturated at higher irradiances than the northern
stand (Shafer et al., 2008; this study). Whether these differ-
ences results from variations in acclimation to local environmental

conditions or have an underlying genetic basis is unknown. How-
ever, this body of evidence does suggest that southern stands may
possess greater photosynthetic physiological tolerance, which may
increase the potential for further expansion southward along the
Pacific Coast and changes associated with global climate change.
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