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A Statistical Approach to IBNR Reserves 

Bradford S. Gile* 

Abstract 

This paper develops a three dimensional statistical approach to the estima­
tion of the mean and the standard deviation of pure incurred but not reported 
(IBNR) reserves. This means that the time of occurrence, the reporting lag, and 
the claim severity are separately modeled. It is assumed that, beyond any fixed 
time t, the claim number development process is Poisson and that the severity 
of loss depends on the length of the reporting lag. Two key assumptions are 
made to simplify the eS,timation of model parameters: for a given reporting lag, 
(i) the conditional mean of the claim size is a linear function of the reporting 
lag, and (ii) the conditional coefficient of variation of the severity is constant. 

Key words and phrases: stochastic loss development, reporting lag, pure IBNR, 
conditional distributions, loss reserves 

1 Introduction 

The development of losses over time is a key problem for both pric­
ing and loss reserving actuaries. Commensurate with the importance 
of the problem, there is a large body of actuarial literature (primarily 
property/casualty, but also health insurance) devoted to loss develop­
ment. 

* Bradford S. Gile, F.S.A., holds a Master of Arts in mathematics from the University of 
Wisconsin (1968). He is director of actuarial research/services at the American Family 
Insurance Group in Madison, Wisconsin. His primary work is in property/casualty 
coverages that cross major lines of insurance. 
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In a general textbook on loss reserve estimation, Salzmann (1964) 
details eight general methods of estimating loss reserves. Each method 
generally involves relatively simple projections of future loss develop­
ment from aggregate triangulations of historical data. The methods 
described in Salzmann are purely deterministic and do not have an ex­
plicit mathematical model as an underlying framework. In the 30 years 
since the Salzmann text was published, these methods have been re­
fined by actuaries and are still widely used today. A basic discussion 
and documentation of such methods is found in Wiser (1990). 

For many years, however, actuaries have recognized two needs of 
modeling the loss development process: (i) a need to facilitate and im­
prove the estimation process with the application of stochastic mod­
els, and (ii) a need to measure probable variations in future loss devel­
opment. McClenahan (1975), for example, constructs a deterministic 
model of paid loss development for "analysis of the effects upon reserve 
adequacy of changes in various exogenous variables and in the testing 
of the established reserves on a prospective basis." Stanard (1985) sim­
ulates loss development triangles under a hypothetical stochastic fre­
quency /severity model to "measure the expected value and variance of 
prediction errors of four simple methods of estimating loss reserves." 

Guiahi (1986) develops a model for IBNR estimation as a stochastic 
process using the number of claims, severity of claims, and reporting 
lag to develop the mean and variance of IBNR reserves. In his paper, 
however, Guiahi assumes that reporting lag and loss severity are inde­
pendent. This assumption, while convenient, is highly unlikely to be 
valid for most sets of insurance loss data. It is also likely to produce 
inadequate IBNR estimates if loss severity increases significantly with 
reporting lag. Pinto and Gogol (1987) analyze excess loss development 
by layer using Pareto distributions fitted to casualty loss distributions. 
Wright (1992) provides an extensive and highly detailed treatment of 
estimating future paid losses from separate development triangles of 
loss counts and loss amounts using generalized linear models. Wright 
deals with many of the issues addressed in this paper in a similar and 
detailed manner. I recommend Wright's paper to the interested reader. 

It should not be inferred from this short list of papers that there is 
a paucity of literature on the subject. For example, van Eeghen (1981) 
presents a comprehensive review of the earlier literature on loss re­
serving. Taylor (1986) provides a detailed description of the compo­
nent parts of loss development models. More recently, in the 1994 
Spring CAS Forum, for example, there are ten papers devoted to the 
measurement of variability in loss reserves. There is, however, a need 
for practical models that readily can be used by practicing actuaries. 
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For some types of insurance, loss development is sufficiently short­
tailed or stable enough to allow relatively simple projections from paid 
or incurred loss triangles. The development patterns for some cover­
ages, however, are long-tailed and unstable over time. For these cover­
ages, traditional aggregate triangulations or frequency/severity studies 
may not provide development data of sufficient credibility to reveal the 
true nature and magnitude of underlying development patterns. 

Loss reserves include: 

• Case estimates on reported losses; 

• Reserves for additional development on reported losses; and 

• Amounts carried to reflect liability for losses incurred but not yet 
reported (lBNR). 

This paper addresses the third component, IBNR, of the total loss re­
serve. The view of IBNR taken here is that of Bornhuetter-Ferguson1 

type methods, which postulate that IBNR is independent of prior loss 
activity and may be expressed as a function of expected losses and time. 

The expected losses are a function of expected loss counts and ex­
pected severity of loss. Thus, it makes sense to look at the development 
of both frequency and severity over time. The key variables in the emer­
gence of reported loss counts are the occurrence date and the report 
date, each represented on a time line with the beginning of the accident 
year set equal to time zero and all subsequent dates represented as the 
time elapsed from the beginning of the accident year to the respective 
date. The time, Z, elapsed between the occurrence date and report date 
will be referred to throughout this paper as the continuous reporting 
lag. 

The first task is to identify a reasonable representation of the under­
lying severity of loss distribution for the losses in general. [See Hogg 
and Klugman (1984) for a thorough discussion of choosing loss distri­
butions.] The size of loss, however, may be a function of the reporting 
lag Z defined above. For each value of Z there may be separate loss 
distributions referred to as conditional distributions to distinguish them 
from the marginal loss distribution. 

The final component of IBNR development is the manner in which 
claim occurrences arise over an exposure period. The most common as­
sumption is that occurrence dates are uniformly distributed throughout 
the accident year; this assumption is adopted in this paper. It should 

I Bornhuetter-Ferguson type methods are loss reserving methods that are based on 
the work of Bornhuetter and Ferguson (1972). 
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be noted, however, that the results of this paper easily can be extended 
to include a more general claim occurrence distribution. 

This three dimensional approach to modeling the loss development 
process (occurrence of loss, loss count development, and loss severity) 
is the framework for the model developed in this paper. Note that the 
primary data to be used in the model development need not be lim­
ited to loss triangulations. When such triangulations are highly volatile 
and involve a limited number of claims, a compilation of each individ­
ual claim by accident date and reporting date may facilitate the actual 
modeling process. 

2 The Mathematical Model 

Following Guiahi (1986), IBNR will be modeled as a three dimen­
sional stochastic process based on the number of claims, severity of 
claims, and reporting lag. The assumption of independence between 
reporting lag and loss severity, however, will be discarded and replaced 
with a model describing the dependence structure between these two 
variables using conditional mean severities. 

The time interval (0,1) is assigned to the accident year. There are 
three basic random variables: occurrence date X, reporting date R, and 
size of loss S. A fourth random variable, denoted by Z, is the continu­
ous reporting lag and is defined as Z = R - X. Table 1 summarizes the 
notation that will be used in connection with the variables X, Z, and S. 

Table 1 
Definition of Random Variables 

Variable Space PDF Mean Variance 
X = Time of Occurrence (0,1) u(·) 1/2 
Z = Continuous Lag (0, ex:» 9 (.) m 
S = Loss Size (0, ex:» f(·) J1 

Note: Space = Sample Space; and PDF = Probability Density Function. 

In the most general model, the three random variables (S, Z, X) 
would be interdependent. It does seem likely, however, that the length 
of the reporting lag should not depend on the occurrence date. That 
is, Z and X should be independent in the statistical sense. It is not 
clear, however, that Sand Z or S and X need be independent pairs. 
If there is a significant underlying loss trend by accident date, then S 
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and X should be dependent. It is well-known that loss size tends to in­
crease with settlement lag, and it may be true that loss size also tends 
to increase with reporting lag.2 If so, then Sand Z also will be depen­
dent. Put another way, trend may have a two dimensional effect on loss 
size. The first dimension is the effect of trend on loss size by accident 
date, and the second is trend over time elapsed since accident date. 
In some cases, however, underlying trend in either dimension may be 
either nonexistent or extremely difficult to establish or quantify. This 
may be true, for example, in some liability coverages where large losses 
playa significant role. 

In this paper, the assumption is made that there is no trend on loss 
size by accident date within an accident year. For any given accident 
year, loss size and accident date are assumed to be independent. More­
over, as has been previously stated, the uniform distribution of occur­
rences assumption often will be appropriate. It follows that S is depen­
dent only upon the continuous lag Z. 

Let J.1k (z) be the kth conditional mean of [S I Z = z], Le., 

J.1k(Z) = E[Sk I Z = z], for k = 1,2, ... , (1) 

and let the coefficient of variation of [S I Z = z] be denoted by cp(z). 
Assuming that g(z) ~ 0, it follows that 

J.1I (z) 

J.12 (z) - (J.1(z))2 

u(z) 
J.1(z) . 

(2) 
(3) 

(4) 

The density g(z) describes how loss counts will develop over time. 
Although other forms are possible, it is common to assume that ulti­
mate claim frequency is either Poisson, negative binomial, or binomial; 
see Panjer and Willmot (1992, Chapter 6). In this case, however, I will 
assume that the ultimate number of claims is a Poisson random vari­
able. In addition, given any fixed point in time t ~ 0, the number of 
counts reported after time t is assumed to be Poisson. 

At this point, the basic assumptions used to develop the model are 
listed: 

Assumption 1: The conditional mean J.1(z) is a linear function of z. In 
particular, 

J.1(z) = K(z-m) +J.1. (5) 

2This relationship between loss size and settlement lag dates back at least as far as 
Salzmann (1964, pages 5-6). 
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Note that a linear function is used for convenience, but it is used 
only after it became apparent that more complex models would 
not provide a superior fit. 

Assumption 2: The coefficient of variation of [S I Z = z] is indepen­
dent of z, and hence is a constant c, i.e., 

cp(z) = c. (6) 

Assumption 3: The continuous reporting lag Z has known probability 
density function g(z) and has mean m and variance (. 

Assumption 4: The number of claims and time of reporting are inde­
pendent. 

Assumption 5: Claim occurrences within the accident year are uniformly 
distributed on (0,1). 

Assumption 6: Loss size S and lag Z are independent of the time of 
occurrence X. 

Assumption 7: Given a fixed time t, the number of counts reported 
after time t, N(t), has a Poisson distribution with mean and vari­
ance denoted by A(t). Clearly, the aggregate ultimate loss count 
is Poisson with mean and variance given by A(O). 

One consequence of Assumptions 1 and 2 is the following: 

£[S2] = /1 2 + (52 = (1 + C2)(K2(2 + m 2). 

Equation (7) can be established easily as follows: 

£[£[S2 I Z]] from Bowers et al. (1986, eqn. (2.2.10)) 

£[/12 (Z)] 

£[(/1(Z))2 + (52(Z)] 

(1 + c2 )£[ (/1 (Z)) 2] from Assumption 2 

(1 + C2)£[(K(Z - m) + m)2] from Assumption 1 
(1 + C2 )(K2(2 + m 2 ). 

3 The Main Results 

(7) 

Now fix a time t > 0, and let Si(t) denote the size of the ith claim 
reported after time t. If IBNR(t) denotes total loss dollars reported 



Gile: Statistical IBNR Reserves 

after time t, then 
N(tl 

IBNR(t) = L 5i(t). 
i=l 

263 

(8) 

From Bowers et al. (1986, Chapter 11) or Panjer and Willmot (1992, 
Chapter 6), IBNR(t) is a compound Poisson random variable under the 
assumption that the number of claims and the loss sizes are mutually 
independent random variables. The mean and variance of IBNR(t) are 
thus given by 

E[IBNR(t)] = i\(t)E[5i(t)] 

Var[IBNR(t)] = i\(t)E[5f(t)]. 

(9) 
(10) 

The problem of estimating the mean and variance of the IBNR re­
serve at any given time t thus is reduced to finding the first two mo­
ments of 5i (t). There are two cases to consider: t < 1 and t ;::: 1. The 
first case is needed for incomplete accident years and seems rarely to 
be addressed. Unfortunately, it is this case that usually will generate 
the largest expected values of IBNR and, therefore, cannot be ignored. 

Case I (t < 1): If a loss that occurs at time X is reported after time t, 
it follows that X + Z > t. Thus 5i(t) and [5 I X + Z > t] are 
equivalent random variables, i.e., they have the same probability 
distribution. In other words, 

adt) = E[5i(t)] = E[5 I X + Z > t] 
a2(t) = E[(5i(t))2] = E[52 I X + Z > t]. 

Now as X and 5 are independent, then 

f;=o fz:t-x p(z)g(z)dz u(x)dx 

f;=o f::t-x g(z)dz u(x)dx 

(1 
2) L!=o fz:t-x p(z)g(z)dz u(x)dx 

a2 (t) = + C :=---'Ot--'-"'---"oo---'-'---'------=------

fx=o fz=t-x g(z)dz u(x)dx 

(11) 

(12) 

Next, let Ij (t) denote the indicator random variable for the report­
ing of the jth claim after time t, i.e., 

{
I if the jth claim is reported after time t; 

Ij(t) = 0 otherwise. 

Clearly, N(t) = L~~~l Ij(t), and 

Pr[Ij(t) = 1] = {=o t~t-x g(z)dzu(x)dx. 
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Hence, from Assumption 4, the lj(t)s are independent, so 

,\(t) E[N(O)]E[lj(t)] 

'\(0) (=0 L~t-x g(z)dz u(x)dx. (13) 

Case II (t ;::: 1): Here the maximum value that x can take is one so, 

a2(t) 

Again, 

f;=o fz':t-x j.1(z)g(z)dz u(x)dx 

f;=o fz':t-x g(z)dz u(x)dx 

(1 + c2) f;=o fz':t_x(j.1(Z))2 g (z)dz u(x)dx 

f;=o fz':t-x g(z)dz u(x)dx 

(14) 

(15) 

,\(t) = '\(0) (=0 L~t-x g(z)dz u(x)dx. (16) 

Note that in these equations, j.1(z) is given by equation (5) and u(x) = 1 
for 0 ~ x ~ 1. Thus in order to estimate the mean and variance of IBNR 
at any time t for a given accident year, one needs to know the density 
g(z), overall mean severity j.1, conditional mean severities j.1(z), and 
conditional coefficient of variation c. 

If there is no trend across accident years and the conditional means 
and severities apply to all accident years, then the aggregate expected 
value of IBNR simply will be the sum of the IBNR, as calculated in this 
paper, for each of the accident years. If there is trend across accident 
years, but all other aspects of the model (e.g., parameters for 9 (z) and 
c) are assumed to hold across accident years, one only need adjust 
the value of j.1 for each accident year, calculate the model's expected 
IBNR, and sum the results over the accident years. Although the model 
assumes no trend by accident date within the accident year, the effect 
of any trend on the calculated IBNR results is probably minimal and 
safely can be ignored. 

Finally, it may be necessary to have parameters that vary by acci­
dent year to reflect changes in the reporting lag distribution and/or the 
conditional coefficient of variation to calculate expected IBNR in each 
accident year and sum the results. 

In all cases, the expected value of total IBNR is the sum of the ex­
pected values of the individual accident year expected values. More­
over, if one can assume independence of losses by accident year, the 
variance of the aggregate IBNR will be the sum of the individual accident 
year IBNR variances. 
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4 An Application of the Model 

An example using an actual data set will illustrate practical use of 
this model. The data are loss counts and incurred losses by accident 
year and report year for a group errors and omissions (E&O) program. 
This program is selected because it is long-tailed and extremely volatile. 
The basic data in Table 2 and Table 3 show the exposures, reported loss 
counts, and reported losses for report years 1990-1993 on accident 
years 1980-1993. 

Table 2 
Loss Counts by Report Year 

Loss Counts 
AY Exposed 1990 1991 1992 1993 1990-93 
1980 2,599.9 0 0 0 0 0 
1981 2,473.3 0 0 0 0 0 
1982 2,597.6 1 0 0 0 1 
1983 2,646.7 0 0 0 0 0 
1984 2,537.0 0 0 0 0 0 
1985 2,673.4 0 0 0 0 0 
1986 2,911.6 0 0 1 0 1 
1987 3,055.2 1 0 1 0 2 
1988 2,810.8 2 4 2 0 8 
1989 2,887.2 25 6 3 1 35 
1990 2,907.6 47 46 9 2 104 
1991 2,922.6 64 40 3 107 
1992 3,018.1 50 26 76 
1993 3,034.2 41 41 
Totals 39,075.2 76 120 106 73 375 
Note: AY = Accident Year. 
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The first step is to determine the ultimate frequency and the density 
function 9 (z) from the loss counts and exposures. There are many pos­
sible choices of the form of the density, and several are tried. Because 
there are some claims with extremely long reporting lags, the two pa­
rameter Pareto is selected, truncated somewhat arbitrarily at 15 years. 
Thus for 0 ::; z ::; 15, 

01./3 IX (/3 + Z)IX-l 
g(z) = ..-L for 01.,/3>0. (17) 

1-({3+1S)1X 

Table 3 
Loss Amounts (in $s) by Report Year 

AY 1990 1991 1992 1993 1989-93 
1980 0 0 0 0 0 
1981 0 0 0 0 0 
1982 5,000 0 0 0 5,000 
1983 0 0 0 0 0 
1984 0 0 0 0 0 
1985 0 0 0 0 0 
1986 0 0 500 0 500 
1987 26,207 0 599 0 26,806 
1988 8,453 72,329 905 0 81,687 
1989 81,196 169,133 9,935 16,136 276,400 
1990 282,473 151,367 98,812 20,271 552,923 
1991 748,559 319,906 78,260 1,146,725 
1992 245,260 122,702 367,962 
1993 318,316 318,316 
Totals $405,319 $1,143,379 $677,909 $557,678 $2,776,319 
Note: AY = Accident Year. 

Occurrences are assumed to be uniformly distributed, with no trend 
in loss size. The parameters (01. and /3) and frequency i\ are determined 
using discrete unweighted least squares with loss counts tabulated by 
discrete lag n. If Ez is the exposure that underlies the counts observed 
for lag n, the problem is to find the parameters i\, 01., and /3 that mini­
mize the sum of squares L: 

minL(i\, 01., /3) = IJi\Ezp(n) - N n )2 (18) 
n 
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where 

A A(O) is the ultimate annual claim frequency; 

n Report year - Accident year = the discrete lag; 

N n Number of reported loss counts for lag n; 

En Associated exposure; and 
p(n) Portion of ultimate loss counts reported for iag n. 

Note that p(n) is given by the equation: 

( ) _ { L~=o f;~+nl~,; g(z)dz u (x)dx 
p n - I I-x 

fx=O fz=o g(z)dz u(x)dx 

The least squares estimated values are 

if n *- 0; 
if n = 0; 

267 

A = 0.0315, &. = 9.4274, and S = 4.8475. (19) 

From equation (17), the estimated density 9 gives mean and variance 
of Z as 

m = 0.5752 and (= 0.4195. (20) 

The next step is to model severity of loss S, both globally and condi­
tionally. A study of all reported mature losses results in the following 
selected global mean and standard deviation: 

p = 8,807 and if = 28,637. (21) 

The severity by discrete lag is volatile due to a paucity of data. Most 
counts are at discrete lag zero, however, so that value of J( is selected 
for which the observed discrete lag zero severity would be reproduced, 
Le., so that 

7 894 = L~=o f;':; (R(z - Fit) + {i)g(z)dz u(x)dx 
, fl I-x x=o fz=o g(z)dz u (x)dx 

This gives 
R = 2,707. (22) 

Once R is known, the conditional coefficient of variation, C, is calculated 
using equation (7). The model is now complete, and all of the quantities 
of interest mentioned in this paper can be determined. For the sake 
of brevity, however, only the development of the year end 1993 IBNR 
expected value and standard deviation is shown as Table 4. 
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Table 4 
Year End 1993 IBNR Reserve Estimates 

AY Mean Std. Dev. 
1993 $429,898 $222,206 
1992 107,018 126,463 
1991 31,453 76,055 
1990 10,997 48,984 
1989 4,303 32,941 
1988 1,808 22,730 
1987 912 17,054 
1986 428 12,255 
1985 202 8,791 
1984 102 6,481 
1983 58 5,027 
1982 30 3,755 
1981 15 2,691 
1980 7 1,887 
1980-1993 $587,231 $275,253 
Note: AY = Accident Year, and Std. Dev = Standard Deviation. 

The importance of the value of K, which determines the slope of loss 
sizes by lag, in the reserve estimates is illustrated by two alternative 
calculations. If K = 0, the total IBNR reserve decreases from $ 587,231 to 
$480,489. At the other extreme, fJ(O) = 0, and K = 15313.59 increases 
the reserve to $1,084,335. 

The actual fit of the model to the observed data, especially in the 
case of loss size, is not of great importance, given the strong variation 
in the observations. Moreover, the value of this example lies not in the 
discovery of the true underlying forces operating on the development 
of losses but in the illustration of the model concepts when applied to 
the data. Table 5 does, however, give an indication of goodness of fit. 

5 Some Closing Comments 

The central loss development model described in this paper is de­
signed to provide a logically consistent statistical approach to pure 
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Table 5 
Goodness of Fit 

Discrete Total Actual Model Actual Model 
Lag Exposed County Counts Dollars Dollars 
0 11,882.5 202 202.36 $1,594,608 $1,597,632 
1 11,735.5 137 136.01 675,171 1,246,532 
2 11,528.2 20 23.75 354,658 284,644 
3 11,660.8 10 5.51 128,742 81,421 
4 11,664.8 3 1.52 17,041 26,678 
5 11,451.0 1 0.48 599 9,749 
6 11,177.2 1 0.17 500 3,920 
7 10,768.7 0 0.06 0 1,548 
8 10,454.7 1 0.03 5,000 856 
9 10,254.6 0 0.01 0 313 
10 10,317.5 0 0.01 0 340 
11 7,670.8 0 0 0 0 
12 5,073.2 0 0 0 0 
13 2,599.9 0 0 0 0 
ALL 375 369.91 $2,776,319 $3,253,633 

IBNR estimation. There are strong advantages to this approach, how­
ever, beyond logical consistency: 

• The model allows for reserve valuation at any time t > O. 

• The model can be used to estimate unreported future losses that 
can be checked against actual future emergence of such losses 
within a statistical framework. This is because the model not only 
forecasts expected values but also the expected variation in such 
losses. 

• The model allows for the valuation of incomplete accident years. 
Incomplete accident years pose a serious problem for traditional 
claim run-off triangle methods. 

There are still many basic unanswered questions about this model, 
some of which lie primarily in the apparent arbitrariness of the assump­
tions that have been made. For example, 
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• Do loss sizes increase by reporting lag? If so, is a linear model 
appropriate? With modern hardware and software, the simplifi­
cation of a linear model may not be necessary. 

• Is it realistic to assume that the developments of loss counts and 
loss sizes over time arising from a fixed accident period are mu­
tually independent? 

• How robust is the model? The whole question of model parameter 
errors, which are critical pricing and reserving considerations for 
estimating needed security margins, is ignored. I believe that the 
model is sufficiently robust to be used when loss development is 
highly volatile and the process variance3 is expected to be large 
enough to playa significant part in estimation of the reliability 
of the expected value estimates of IBNR. The example given in 
Section 4 illustrates this point. 

It may be tempting to try to apply the concepts in this paper to the 
claims-made environment, which is especially suited to the develop­
ment of reported losses, for the estimation of claims-made pure pre­
mium components. This temptation may be particularly strong because 
Marker and Mohl (1980) show that an occurrence basis pure premium 
can be decomposed into a sum of claims-made components, with ad­
justment for differences in reporting patterns that arise from the two 
coverage types. Moreover, McClenahan (1988) includes the cost of ex­
tended reporting tails as a component of the occurrence basis pure pre­
mium. This temptation, however, must be dampened severely by two 
major considerations. First, claims-made coverages have arisen largely 
out of concern for strong and unpredictable loss trends. Second, the 
model is based on accident years, while the claims-made environment 
is defined in terms of policy years. For these reasons, I somewhat re­
luctantly have overcome this temptation to produce nice formulations 

3 As used by Herzog (1985), the term process variance refers to "the variance of the 
frequency, severity, or aggregate claim amount of an individual combination of risk 
characteristics," and is, therefore, a conditional variance. The context in Herzog is one 
of a population consisting of a collection of different individual combinations of risk 
characteristics, so that the total variance is the sum of (i) the expected value of process 
variance, and (ii) the variance of the hypothetical means. Here, the context used for 
the term process variance is somewhat different in that it refers to the total variance 
arising from the model, but is also conditional upon the parameters employed in the 
model. In this sense, the term process variance is employed analogously to the term 
process risk. Variance arising from error in the selection of parameters (which is not 
estimated in this paper) is analogous to parameter risk. (See McClenahan (1990, p. 61) 
for definitions of process risk and parameter risk.) 
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from the model using assumptions that will be unrealistic in most real 
world situations. 

I do suggest, however, that if one can devise a more general model 
that incorporates trend, shifts in reporting patterns, and distributions 
of policy inception dates, then Monte Carlo simulations may be used 
to estimate both the expected values and the process variances needed 
to determine IBNR reserves for occurrence basis coverages and claims­
made pure premiums without having to deal with extremely complex 
mathematical formulae. With the powerful desktop computers and 
commercial software readily available today, I believe firmly that prac­
tical results could be obtained at minimal cost. 

SpeCific technical questions as to forms of distributions or func­
tional ways in which loss sizes vary are wide open. This paper makes 
no attempt to answer such questions. Rather, this paper is designed to 
build a practical framework or approach for the practicing actuary to 
develop his or her own model to produce IBNR estimates that can be 
tested scientifically from emerging experience. 
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