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Figure 6.1: Values of the VEEG,k(tp), k = 1, ..., 256, over time -15 to 90 ms averaged
after stimulus onset, and spatially smoothed with respect to the standard coordinate
~rk for each electrode.
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Figure 6.2: The averaged VEEG,e(t) for an electrode e included in the set G across
different numbers of epochs. The tactile tap starts at t0 = 0 ms and lasts for T = 1
ms, as defined in (2.1).

where more experimental data was available (particularly in the 100Hz setting). The

results are shown in Fig. 6.8 alongside the related simulation-based data, which is

described in the following section.

To determine precision, we used the 1 Hz and 10 Hz data, trimmed in order to

only contain a single tap in any given sample. Each of these samples was then cut

into segments according to “possible” tap times (more segments for testing smaller

precision values), and then divided into labeled testing and training data. We sorted

the results according to which values of precision were tested and they are reported
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in Fig. 6.9 alongside the related simulation-based data described in the next section.

6.2 Simulation-based Results

Numerical results are obtained from the analytical framework through a MATLAB R©

software implementation of the models presented, and implemented according to the

psuedocode presented in Chapter 4. In addition, to comply with the experimental

data collection detailed in Chapter 3, we estimated the location of the center of the

cortical patch area with respect to the standard EEG electrode locations [25] by

computing the centroid of the magnitude of the voltage signals VEEG,k(t), where ~rk is

the location of the EEG electrode k for k = 1, ..., 256 at the time tp of the maximum

of the SSEP signal, as follows:

~rcent =
1

256

256∑
k=1

VEEG,k(tp)~rk . (6.1)

In Fig. 6.1 we show a space-smoothed (i.e., the magnitude values in between the elec-

trodes are approximated by the EEGLAB software to generate a continuous image)

EEG electrode output over time -15 to 90 ms where 0 ms corresponds to stimulus

onset. In agreement with the literature [39, 42], the time tp of the maximum occurs

at around 60 ms, which is the value we use to compute (2.2). The center of the

aforementioned cortical patch area is set to ~rcent, as shown in Fig. 6.3.

6.2.1 Validation with Experimental Results

In order to validate our analytical model in relation to the experimental data we

developed a MATLAB script using the equations provided in Chapter 4 and the

associated parameters, which are summarized in Table 4.3 [16, 5]. Using this model,
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Figure 6.3: Plot of the location ~rcent of the center of cortical patch area (larger dot)
with respect to the standard EEG electrode locations ~rk, k = 1, ..., 256.

we produced 12,600 seconds of simulated EEG data corresponding to frequencies

between 10 and 100 Hz.

For each test, we produced a pseudo-random sequence of bits, which determined

whether the simulation would simulate a tactile tap (or not) at each time slot. This

simulation produces essentially noiseless data, the only impairment occurring inher-

ently caused by inter-symbol interference (See Fig. 6.2.1). For our study, we are

interested in the somatosensory cortex activity that is localized to a specific part of

the brain (the post-central gyrus), and so even in clinical settings we need only at

most a few electrodes to record the related voltage signals. For this reason, as well

as for computational simplicity, we only considered a single EEG electrode in our

simulations.

In Figure 6.4, we show a comparison between simulated and experimental numer-

ical values of the signal VEEG,k(t) for the electrode e = 78, which is at the closest

location ~r78 to the centroid ~rcent computed through (2.2), after a tap occurring at
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time 0. The experimental data curve is obtained by averaging the signal VEEG,e(t)

across the maximum number of available epochs, which is 74, as shown in Figure 6.2.

To obtain the simulated curve in the figure, we estimated the parameter kv defined in

Section 4.4 of the results from matching values for the positive and negative peaks of

the pattern shown by simulated data with those of the experimental data. In this way,

we were able to obtain a reliable estimate of how membrane cortex activity u(P~r, t)

converts into the electrical potential of the cell membrane that feeds the dipole layer

model of the EEG generator, as explained in Section 4.4. By visually inspecting the

figure, it is evident that the experimental and simulated curve follow a similar pat-

tern of positive and negative peaks, which is also in agreement with the literature

on SSEP analysis [39, 42]. While we record an N25 and P65 for the experimental

curve, the simulated curve shows an N20 and P60. We believe these small differences

in the timing of the SSEP peaks are due to the subject-to-subject variability in the

processes represented by the parameters we defined in the analytical models, which

have been estimated as averages.

In Fig. 6.5, we show a similar comparison between simulated and experimental

numerical values as above, this time when no tap occurs, for the same electrode

e = 78. To obtain the experimental data curve, epochs have been collected from the

EEG recorded data from 100 ms before the occurrence of a tap, with a tap repetition

frequency ft = 1Hz, defined in Sec. 3.3. As a consequence, the recorded cortex activity

had at least a time interval of 800 ms without receiving a tap-related somatosensory

signal from the index finger pad. The simulated curve shows a constant value equal

to 0 that is given by mechanoreceptor responses si(t) = 0 (Sec. 4.1) at any time

t, somatosensory signal I(~xn, t) = 0 (Sec. 4.2) at every location ~xn of the receptive

field, and at any time t, cortex activity u(~x, t) = 0 at every location ~x (Sec. 4.3)

of the cortex patch at any time t, and finally EEG voltage signals VEEG,78(t) = 0
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Figure 6.4: Plot of the simulated and experimental numerical values of the signal
VEEG,e(t) for the electrode e = 78, occurring after a tap at time 0.
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Figure 6.5: Plot of the simulated and experimental numerical values of the signal
VEEG,e(t) for the electrode e = 78 when no tap occurs for at least 800 ms.
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Figure 6.6: Example of simulated data. From upper to lower, we show a pseudo-
random sequence of bits to be transmitted, each bit with the corresponding slot
sequence number, the resulting EEG signal output from the haptic information trans-
mission system in the case without noise, and with noise, and the decomposition of
individual contributions, one for each bit, that make up the signal.

(Sec. 4.4). From Fig. 6.5, we notice that the experimental curve show values different

from 0, but at the same time these voltage oscillations do not follow the common

SSEP pattern [39, 42], and have attenuated maxima and minima with respect to the

peaks shown in Fig. 6.4.
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6.2.2 Noise Modeling

In order to probe the capacity of our system in the presence of noise, we utilized one

of the most simple and commonly used noise models, the Additive White Gaussian

Noise (AWGN) model. Through this model, we consider the noise to be uncorrelated

and parameterized by diagonal elements made up of the EEG sensor variances [24].

In order to determine a baseline for the Signal-to-Noise Ratio (SNR) in our signal,

we used the built-in MATLAB SNR function [33] to compare the experimental data

in pre-stimulus and post-stimulus periods. The SNR value evaluated from this was

0.56, which was then used to determine the power-level of additive noise used in the

following sections.

6.2.3 Parameters for DPPM

In order to test modulation parameters with our data, we developed a data analysis

pipeline which is provided in Figure 6.7. The data pipeline consists of three primary

blocks: data generation, training, and testing. Bits inputted to the data generation

block are modulated, and then real or simulated EEG data is generated. The resulting

labels and data are accumulated and then distributed into training and testing sets.

The training data is then used to train an SVM classifier, which is used in the testing

block to determine labels for the testing data and determine accuracy scores.

Using our analytical model, we generated simulation-based results by running

our code that implements the analytical models detailed in Chapter 4. To match

the experimental data, we captured a series of taps at constant frequencies of 1Hz,

10Hz, and 100Hz. We utilized the same procedure described in Section 6.1. We

show the results for the RP and Precision values in Figures 6.8 and 6.9, respectively,

and present a quantitative comparison of the data in terms of mean and standard
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Figure 6.7: Flow chart of data collection and analysis.

deviation in Table 6.1. One issue that comes with the experimental data is a limited

training set. In order to manage this issue, we similarly restricted the training set

size of the analytically generated data. This is quite possibly the reason that there

is little variation in the accuracy when considering different conditions in both the

experimental and analytical data. That said, seeing agreement in the analytical and

experimental results serves as further validation that our model is effectively modeling

the experimental conditions.

Table 6.1: Mean and standard deviation of resting period and precision Results

Mean Standard Dev.

An. RP 0.7578 0.0424
Ex. RP 0.7366 0.0441

An. Prec. 0.7712 0.0476
Ex. Prec. 0.7870 0.0176
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Figure 6.9: Comparison of the analytically modeled and experimentally collected
results for Precision.

The value of comparing the experimental and analytical results is two-fold. On

one hand, it is necessary to validate our analytical model by comparing similarities
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between the experimental results and our analytical results. On the other hand,

with a validated model we can effectively propose parameters for implementing these

systems in-vivo, thus saving time and resources for conducting further experiments.

6.2.4 Analytical Comparison of OOK and DPPM

To evaluate the performance of the system through the analytical model described

in Chapter 4, we separated the simulated EEG data into 39,100 epochs. The epoch

length corresponds to the length of each OOK time slot, and its inverse is the bit

rate (e.g. for a transmission frequency of 10 bits per second, the continuous EEG

signal is chopped into lengths of 100 ms each), and each epoch contains either a tap

stimulus or a silence period. After this preprocessing, we utilize the obtained epochs

in combination with an SVM classifier (as explained in Section 5.3). The results are

summarized in Figure 6.10. In order to get a reliable accuracy score, we averaged

the results of 10 SVM classification scenarios for each bit rate, where each scenario

included using different collections of training and testing data. We used a constant

training data set of 5000 samples for each test (e.g. for 10 Hz data we would have a

training set consisting of 5000 epochs of 100 ms long each).

We generated similar data using DPPM with our analytical model. In particular

we generated 200,000 seconds of EEG data testing different DPPM values for Precision

(varying from 8 ms to 34 ms) and values for the number of symbols used (between 2

and 32). To determine the bitrate for any of these settings we used the average bit

rate as provided in Chapter 2, since with DPPM the bitrate is always variable.

For both OOK and DPPM we see a decrease in accuracy as the bitrate increases,

and in both cases the highest accuracy occurs in the range of 30-40 bps. In addition,

we see that the scores for demodulation with DPPM are less than those for OOK. This
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Figure 6.10: Comparison of accuracy by bit rate of analytically generated data for
OOK and DPPM.

is likely due to the fact that DPPM is inherently more complex than OOK. In addition,

situations in DPPM such as the number of possible symbols dramatically increase the

possibility of incorrect symbol determination. For this reason it is highly beneficial

to explore further techniques of effective noise reduction in EEG signals, as well as

enhanced error-reduction modulation techniques such as bit redundancy. Although

these bit rates are much lower than those normally required for the interconnection

of wearable devices, we believe this work can serve as a proof-of-concept for further

research and more advanced implementations.
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Chapter 7

Conclusion

In this thesis, we proposed a communication system based on the propagation of tac-

tile stimuli through the nervous system and its components. This system is motivated

by the ever increasing number of wearable and implantable devices that demand novel

sustainable solutions to realize their connectivity. We have laid the ground work for

exploring the human somatosensory system as a medium to realize IBC for BANs.

In particular, this system is based on an information-transmitting tactile stimula-

tion, realized at the index finger pad, its propagation along the nerves of somatosen-

sory system, and the reception of the resulting somatosensory cortex activity through

an EEG device. The non-invasive nature and the availability of well-established

techniques for EEG signal acquisition and analysis, as well as previous neuroscience

literature on the modeling of somatosensory system processes, makes this an ideal

system to study for the secure and noninvasive interconnection of wearable devices.

We detailed an analytical modeling framework that captures the main physio-

logical processes at the basis of the proposed communication system by coupling

computational models of somatosensory receptive fields with mathematical expres-

sions of the brain cortical dynamics. At the same time, we investigated the feasibility
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of the proposed system through an ad-hoc experimental testbed, which also serves

to validate the ability of the proposed analytical models to serve as fundamental

tools for the design of systems based on haptic information transmission. We demon-

strated simulation-based bitrates of around 30-40 bps, a value that may be improved

with more advanced EEG noise removal as well optimization of the machine learning

techniques used in demodulation.

Future work will be focused further investigation on the noise sources affecting the

received signal as well as more complex noise modeling. In addition, it is necessary

to explore factors such as brain plasticity and issues associated with desensitization

of cutaneous receptors due to constant stimulus, which may present an issue for

consumer implementations of this system.
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Appendix A

List of Definitions

Accuracy The ratio of correctly classified instances to all instances classified. Math-

ematically equivalent to one minus the bit error rate.

Differential Pulse Position Modulation (DPPM) A type of digital modulation

where the encoding of M bits is determined by a single pulse being sent at 2M

possible times.

Dorsal Column Medial Lemniscal (DCML) Pathway The DCML is a key path-

way in the nervous system which transmits information related to touch from

the skin and joints to postcentral gyrus of the brain.

ElectroEncephaloGram (EEG) A method of monitoring electrophysiological data

in the brain.

Epoching A process through which continuous signal data is cut into numerous

constant length segments.

Evoked Poential (EP) An electric response in the nervous system following the

presentation of a stimulus.
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N or P and a number (e.g. N20,P60) A standard in the neuroscience commu-

nity for describing features on plots of EPs. N or P refers to whether the

feature is a local minima or maxima respectively, and the number represents

the location in time (following the related stimulus).

Neural Field Theory Uses tissue-levels models to describe the spatiotemporal char-

acteristics of variables such as the synapse firing rate and membrane potentials.

On Off Keying (OOK) A type of digital modulation characterized by distinguish-

ing between two states (e.g., the presence or absence of a stimulus) in order to

transmit binary data.

Precision The minimum time-domain spacing that can occur between potential

stimulus locations such that the original stimulus time can be effectively de-

termined.

Resting Period (RP) The minimum time-domain spacing between two consecutive

taps such that both taps are clearly distinguishable.

Somatosensory Evoked Potential (SSEP) An SSEP is an EP caused by a phys-

ical stimulus which can be detected through EEG readings. SSEP tests are

often used clinically for detection of the speed of information travel across the

spinal cord.

Support Vector Machine (SVM) A type of binary data classifier which develops

a hyperplane from training data in order to classify testing data into one of two

categories.
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