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The development of genomic selection (GS) methods has allowed plant

breeding programs to select favorable lines using genomic data before

performing field trials. Improvements in genotyping technology have yielded

high-dimensional genomic marker data which can be difficult to incorporate

into statistical models. In this paper, we investigated the utility of applying

dimensionality reduction (DR) methods as a pre-processing step for GS

methods. We compared five DR methods and studied the trend in the

prediction accuracies of each method as a function of the number of

features retained. The effect of DR methods was studied using three models

that involved themain effects of line, environment, marker, and the genotype by

environment interactions. The methods were applied on a real data set

containing 315 lines phenotyped in nine environments with 26,817 markers

each. Regardless of the DR method and prediction model used, only a fraction

of features was sufficient to achieve maximum correlation. Our results

underline the usefulness of DR methods as a key pre-processing step in GS

models to improve computational efficiency in the face of ever-increasing size

of genomic data.

KEYWORDS

dimensionality reduction, chickpea, genomic selection, randomized algorithms,
genomic prediction

1 Introduction

Plant breeding techniques have led to significant gains in crop yields for many

decades. Improvements to crops were made through phenotypic and pedigree data. The

use of molecular markers is a relatively new technique for improving conventional

breeding strategies. Most traits that have economic and agronomic importance are

quantitative in nature and are controlled by multiple genes of small effect. The advent

of high-throughput genotyping and the ever-reducing cost of Single Nucleotide

Polymorphisms (SNP) assays brought forward the possibility of using dense SNP
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arrays for the prediction of phenotypic traits. Genomic selection

(GS) proposed by Meuwissen et al. (2001) is a method where the

entire genome is used to predict the phenotypic traits.

A major challenge of GS lies in estimating the large number

of marker effects (p) using information from only a few number

of individuals n. Many models and algorithms have been

proposed in the literature to overcome this challenge. Some

prominent shrinkage-based models include ridge-regression

BLUP, BayesA and BayesB (Meuwissen et al., 2001), LASSO

(Usai et al., 2009), elastic net (Zou and Hastie, 2005), Bayesian

LASSO (de los Campos et al., 2009), reproducing kernel Hilbert

spaces (Gianola et al., 2006; De los Campos et al., 2010), and

support vector regression (Moser et al., 2009; Long et al., 2011).

While these models deal with the dimensionality issue through

shrinkage methods, they did not incorporate multi-environment

information.

Environment and genotype by environment (G×E)

interactions strongly impact the performance of lines

from one environment to the next, and hence accounting

for these effects could improve the performance of the

prediction models (Jarquín et al., 2017; Roorkiwal et al.,

2018). Burgueño et al. (2012) included the G×E interactions

information through structured genetic correlations and

found that using multi-environment information

improved the prediction accuracy. Jarquín et al. (2014)

proposed the multiplicative reaction-norm model

(MRNM), an extension to the standard G-BLUP model

and an alternative to the models proposed by Burgueño

et al. (2012). The MRNM models allowed the

environmental effect to be included along with the

genomic information and the G × E interaction effect by

modeling the covariance structure. They showed that

introducing interactions between the environmental

covariates and molecular markers can increase the

proportion of variance explained by the model as well as

increase the prediction accuracy. Several other models have

been proposed to take the G × E interactions into account

and improve the prediction accuracies (Crossa et al., 2004,

2006; Burgueño et al., 2008, 2011; Heslot et al., 2012).

Most of these methods deal with the high-dimensional aspect

of genomic selection, also known as genomic prediction, through

modern shrinkage procedures. Shrinkage methods perform

dimensionality reduction as a part of the modeling process.

This paper examines the utility of dimensionality reduction

(DR) methods as a pre-processing step to genomic prediction.

In “small n large d” problems such as genomic prediction, several

markers (aka variables or features) may be insignificant in

explaining the phenotypic response. Thus, it is essential to

eliminate such insignificant features to improve the prediction

process. Eliminating irrelevant features before running

prediction models could also help reduce the resource

requirements for the computations of the models in terms of

memory and time. Furthermore, separating the DR process from

the modeling step could allow for greater flexibility in choosing

models used for the GS.

The primary objective of this work is to study the utility of

implementing dimensionality reduction as a pre-processing step

in GS. We employed five different DR methods and investigated

their ability to improve GS models. Furthermore, we compared

their relative reduction abilities and studied the trends in the

prediction accuracy as a function of the number of markers

retained from the original marker data. To answer these

objectives, we created reduced data sets with an increasing

number of markers using each DR method, performed

genomic prediction for each size, and computed their

respective prediction accuracy values. We hypothesize that the

prediction accuracy values would plateau beyond a certain size.

Any further increase in the number of markers in the input data

set would not significantly improve and potentially even harm

the prediction accuracy.

The rest of the paper is organized as follows. First, we present

the different DR methods in the materials and methods section.

For each method, we also describe their implementation in

creating reduced marker data sets. Next, we describe the

genomic prediction models and cross-validation schemes used,

along with a description of the real data set. Following that, we

present the results of the DR for each method, along with

comparisons. Finally, we conclude with a discussion and

future directions.

2 Materials and methods

Traditional methods and approaches to data analysis prove

unsuitable in the face of massive modern data sets. The need of

the hour dictates the development of new statistical algorithms

that can analyze these large data sets. The objective of these new

algorithms is to work within reasonable constraints on

computational resources and time while providing reliable

solutions to research problems. With ever-increasing access to

storage resources and a reduction in the cost of collecting

additional features on observational units, the dimension of

data sets is constantly increasing. For instance, the advent of

high-throughput phenotyping and genotyping technologies in

life sciences has led to massive data sets that present

unprecedented storage and computational challenges.

High-dimensional data could be classified as “large n, large d”

datasets or “small n, large d” datasets. A primary assumption in

the analysis of such high-dimensional data is the existence of a

lower-dimensional subspace that contains all of the important

information and allows for reliable inference and prediction of

the response variable. Given a matrix A ∈ Rn×d, obtaining a

‘compressed’ matrix that captures the most important and

relevant information present in A has significant practical

importance. The process of obtaining this compressed matrix

is referred to as dimensionality reduction. Dimensionality
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reduction assumes greater importance in the case of

computations involving high-dimensional data sets. Low-rank

approximations for such matrices are commonly used in various

statistical applications such as principal component analysis

(PCA), k-mean clustering, data compression, solving linear

equations, etc.

It is well known that the Singular Value Decomposition

(SVD) obtains the best rank-k approximation of any matrix

(Eckart and Young, 1936). Although SVD provides the best rank-

k approximation of a matrix, it is increasingly infeasible to

compute it due to the sheer size of modern data sets.

Consider again the matrix A ∈ Rn×d and without loss of

generality, assume that d > n. The computation of the best

rank-k approximation Ak takes O (nd2) time (Golub and Van

Loan, 2013), which can prove prohibitive for modern large data

sets. Recent decades have witnessed substantial progress in

developing several DR methods to obtain accurate low-rank

representations of matrices while overcoming the

computational challenges presented by SVD. These algorithms

compute a low-rank approximation that can replace the original

matrix in computations without loss in precision.

Dimensionality reduction methods can be categorized into

three main approaches (Ghashami et al., 2015): sparsification,

feature extraction, and feature selection. Sparsification refers to

generating a sparse version of the matrix that can be stored

efficiently and lead to faster matrix multiplication (Achlioptas

and Mcsherry, 2007; Drineas and Zouzias, 2011). Linear

combinations of the original features can also generate Low-

rank approximations of a matrix to form new combined features.

These linear combinations are determined through pre-

multiplication of the original features with a coefficients

matrix, and this approach is called feature extraction. Two

popular algorithms for feature extraction, PCA (Pearson,

1901) and LDA (Fisher, 1936), project the data onto a lower-

dimensional representation. The third approach—called feature

selection—refers to a method where we find a small subset of the

original features that approximate the whole set of features.

Forward selection, backward selection, and best subset

selection (James et al., 2013) algorithms are commonly used

feature selection algorithms. Feature selection is equivalent to the

column subset selection problem (CSSP) in numerical linear

algebra, which has been well studied and has seen several

applications in data analysis (Boutsidis et al., 2009; Deshpande

et al., 2006; Drineas et al., 2012, 2006a,b, 2008, 2011; Mahoney

and Drineas, 2009; Papailiopoulos et al., 2014).

The feature extraction method yields a compressed matrix

formed by computing the linear combinations of the original

features. While this method has been shown to provide reliable

approximations to the original data matrix for further

computations, there is a prominent issue in working with a

combination of features. The linear combinations may not be

suitable to make statistical inferences about the original data

scale, and there may be no sensible interpretation of the

combinations themselves in specific applications. Given this

drawback of the feature extraction method, the feature

selection approach to dimensionality reduction presents itself

as a more suitable choice. The feature selection method involves

selecting a small subset of the original features to create a

compressed features matrix and avoids the issues related to

inference and interpretability. For this reason, we examined

the feature selection approach in greater detail by

investigating four feature selection based algorithms. Each of

these methods presents a fundamentally different approach to

feature selection.

Dimensionality reduction methods can also be categorized

as deterministic or randomized based on how the lower-

dimensional representation is derived. In deterministic

methods, features are selected fixedly based on some

property of the data, such as the singular values, as in the

case of PCA. Features are also often selected based on model fit

statistics such as Akaike information criterion (AIC) and

Bayesian information criterion (BIC) as in the case of

forward selection. Randomized algorithms were proposed as

an alternative approach that reduce the computational resource

requirement and provide faster solutions than deterministic

methods (Frieze et al., 2004; Sarlos, 2006; Achlioptas and

Mcsherry, 2007; Liberty et al., 2007; Drineas et al., 2008;

Ailon and Chazelle, 2009; Clarkson and Woodruff, 2017;

Tropp et al., 2017). These methods provide approximations

to the exact solutions in less time by trading accuracy for

efficiency in solving high-dimensional problems (Musco,

2018). In randomized algorithms, features are selected or

extracted randomly based on some probability distribution.

Choosing a well-suited probability distribution ensures that the

approximations are of high quality.

In this paper, we focused only on the feature selection and

feature extraction approaches to DR. We examined the ability of

five methods to reduce the dimensionality of the predictor data

set in GS. Specifically, we compared the random projection

FIGURE 1
Summary of the five dimensionality reduction methods used
in this paper. The methods are categorized as feature selection/
feature extraction and as randomized/deterministic.
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algorithm proposed by Ailon and Chazelle (2009) to four feature

selection algorithms based on random sampling (Boutsidis et al.,

2009), deterministic sampling (Papailiopoulos et al., 2014), ridge

regression (Hoerl and Kennard, 1970), and clustering (Sneath

and Sokal, 1973). Random sampling and random projection

methods are often referred to together as random sketching

methods. Out of these five methods, we used a randomized

approach to three of them - random projection, random

sampling, and a clustering based feature selection algorithm.

We compared these to two deterministic algorithms based on

deterministic sampling and ridge regression. The five methods

are summarized in Figure 1.

2.1 Random sketching

In order to understand the need for a random sketching

algorithm, let us consider the simple example of linear regression.

Suppose we have aX ∈ Rn×d full rank matrix of predictor variables

and a response vector y of length n. The least squares estimates

can be computed as,

β̂ � X′X( )−1X′y.

Thus, we need the Gram matrix X′X and X′y to compute

the solution. The computation of X′X requires O (nd2) time

and X′y requires O (nd) time. When n > d, this solution is easy

to calculate and is very popular in practice. But, when n, d or

both are large—as they tend to be in many modern

data sets—this computational time can be practically

prohibitive.

Random sketching is a popular method to reduce the

computational complexity of this problem. Instead of using

the full data set (X, y), we can use a carefully constructed

sketch (~X, ~y) to solve for the least squares coefficients. We

define ~X � SX and ~y � Sy, where S is a randomly generated

“sketching matrix” of size r × n, r≪ n. The least squares solution

will then be given by,

β̂s � ~X′~X( )
−1 ~X′~y,

where β̂s refers to the sketched solution. The cost of computing

this solution reduces to O (rd2). Our two primary goals for a

sketched solution are to ensure that the approximate solution is

close to the original and that the computational time is

significantly reduced. The careful construction of the

sketching matrix S helps us achieve both these goals. The

Johnson-Lindenstrauss (JL) Lemma (Johnson and

Lindenstrauss, 1984) plays a crucial role in random sketching

algorithms because it states that a set of points in a high-

dimensional space can be embedded into a space of lower

dimension where the distances between the points are nearly

the same. The manner in which S is constructed leads to the two

major classes of sketching algorithms - random projection and

random sampling. We will describe these two algorithms in the

next section.

2.2 Random projection

Random projection algorithms form one of the major classes

of random sketching algorithms. Random projection algorithms

“uniformize” the non-uniformity structure present by rotating

the matrix to a basis where the uniform random sampling of

features is nearly optimal. Random projection can be viewed as

the process of dimensionality reduction to preserve the pairwise

distances between observations.

Random projection produces matrices formed by a small

number of linear combinations of all of the original features. The

linear combinations are formed by pre-multiplying the features

with a randomly generated coefficients matrix, hence the name

“random” projection. The resulting compressed matrix can be

used as a substitute in computations, thereby reducing the

computational complexity of the problem at hand. Given

below is a simple random projection algorithm (Figure 2):

• Consider an input matrix A ∈ Rn×d with d≫ n without loss

of generality.

• Construct a d × k random projection matrix S,

where k ≪ n.

• Obtain the sketched matrix B = AS, where B is a n × k

matrix.

Let us consider the example of performing the Singular

Value Decomposition (SVD) of A. Using the original matrix A,

the exact computation of SVD takes O (nd2) time. Instead, if we

settle for an approximate SVD of A, we can compute the SVD of

B in place of A. The SVD computation on the smaller matrix B

takes only O (nk2) time even with the simple algorithm

presented above. This example illustrates the motivation for

FIGURE 2
Schematic for a simple random projection where A is an input
matrix, S is a random projection matrix, and B is the sketched
matrix.
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using random projection to reduce the dimensionality of large

matrices.

Two questions come to mind quite naturally when looking at

the above mentioned approach. How do we choose a suitable S to

obtain good approximations? For what values of r will this

algorithm produce good results? These two questions have

been extensively studied over the last couple of decades and

have led to several candidates for the projection matrix S and

corresponding r values. We summarize some popular sketching

matrices proposed in previous works:

• Gaussian Sketch: One of the first sketches proposed for

random projection by Sarlos (2006). The sketch S was

formed by sampling each element from a Gaussian

distribution Sij ~ N (0, 1/r), where Sij refers to the

element in the ith row and jth column of matrix S.

• Rademacher Matrix: Achlioptas and Mcsherry (2007)

proposed a simpler sketching matrix where each

element of the matrix S is a random variable taking { +

1, −1} with equal probability. Further, they also proved that

a sparse matrix with 2/3 of the entries replaced with

0 satisfies the Johnson-Lindenstrauss property. This

modification was an important development, as the

random matrix S becomes a sparse matrix and leads to

faster computations.

• FJLT: Ailon and Chazelle (2009) came up with the concept

of fast Johnson-Lindenstrauss transforms (FJLT). The

sketching matrix was generated as a product of three

matrices S = PHD, where P is a r × n sub-sampling

matrix, H is a n × n dimension Hadamard matrix, and

D is a n × n random diagonal matrix with entries taking

values { + 1, −1} with equal probability. A Hadamard

matrix is a square matrix with elements either { + 1, −1}

and all the rows are orthogonal.

• CW Sketch: The Clarkson and Woodruff (2017) sketch is

also a sparse matrix formed as a product of two

independent random matrices S = ΓD, where Γ is a r ×

n randommatrix with only one element of each column set

to +1 and D is a n × n random diagonal matrix with entries

taking values { + 1, −1} with equal probability. Thus, S will

be a sparse randommatrix with one non-zero entry in each

of its columns.

If computing the lower-dimension projection was so

computationally expensive that not much performance

improvement was gained on the whole, the whole exercise

becomes futile. Thus, there has been significant research into

building projection mappings that will efficiently implement

the random projection. Sparsification was a popular tool to

reduce the number of computations performed during

projection, as seen with the Rademacher matrix and FJLT

approaches. In this paper, we used the FJLT method, also

known as the subsampled randomized Hadamard transform

(SRHT), to implement the random projection method as it

supports fast computation and requires a modest amount of

storage compared to other methods. Further details about

the FJLT method can be found in the Supplementary

Materials S1.

Like any feature extraction based DR method, the random

projection method is based on the linear combinations of all the

original features. The newly created features may not be

interpretable in the data scale. Even worse, they may have no

practical meaning at all. For this reason, feature selection is an

attractive alternative approach to feature extraction as a means of

dimensionality reduction. A subset of the original features is

picked using various strategies in feature selection. This allows

for a straightforward interpretation of results. In the next

sections, we explore four feature selection algorithms, starting

with the random sampling algorithm, the second approach to

randomized sketching algorithms.

2.3 Random sampling

Random sampling is another randomized approach to

forming lower-dimension approximation matrices. While

random projection addresses the non-uniformity by

“uniformizing” the structure through rotations, random

sampling algorithms build an importance probability to

address the non-uniformity. The random sampling approach

involves sampling a small number of features that represent the

whole set of features. Leverage scores can be interpreted as a

measure of influence the data points have on related

computations and hence can be viewed as a metric to define

the non-uniformity in the original matrix. Given a matrix A ∈
Rn×d, let V′ denote the matrix containing the top right singular

vectors of A. Then, the statistical leverage score of the ith column

of A is defined as li � ‖V(i)′ ‖22 for i = 1, 2, . . . , d, where V(i)′ is the

ith column of the matrix V′. Since, ∑n
i�1li � ‖V′‖2 � d, we can

define a probability distribution over the columns of A given by

pi = li/d. We will refer to this probability distribution as the

importance probability distribution, which measures the relative

importance of columns in the matrix. It provides a probability

distribution based on which the random sampling can be carried

out while accounting for the non-uniformity structure of the

original matrix.

The computational bottleneck for using the importance

probability distribution lies in its dependence on the

computation of the orthogonal basis for the original input

matrix. Drineas et al. (2012) provided an algorithm to

compute the relative-error approximate leverage scores li
instead of computing the exact statistical leverage scores.

Their contribution was a key development in the area of

random sampling algorithms. We used their algorithm as the

basis for implementing the random sampling algorithm in the

genomic prediction problem.
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We now describe the random sampling algorithm presented

in Drineas et al. (2012) along with drawing the attention of the

reader to the salient properties and contributions. Consider a

matrix A ∈ Rn×d with d≫ n and let V′ be the corresponding right
singular matrix of A. Principally, we are interested in

approximating the statistical leverage scores li of the columns

ofA, which are then used to construct the importance probability

distribution.

li � V i( )′
����

����22 � ei′ V′
����

����22 (1)

where ei is the ith standard basis vector. The computation of the

orthogonal matrix V′ takes O (n2d) time, which is the bottleneck.

Since V′ can also be seen as any orthogonal basis for the column

space of A, it follows that V′V = AA+ where + is the Moore-

Penrose inverse. From this, we can redefine the statistical leverage

scores as,

li � ei′ V′
����

����22 � ei′ V′V
����

����22 � ei′ AA+����
����22. (2)

The computational complexity of calculating the leverage

scores according to Eq. 2 involves computing the pseudo-inverse

A+ and performing the matrix multiplication of A and A+. We

apply random projection to overcome both these complexities by

performing the computations and finally obtaining the

approximate leverage scores ~li.

Instead of computing A+, we find a smaller matrix that

approximates A and find the corresponding Moore-Pensore

inverse of the smaller matrix. Subsampled Randomized

Hadamard Transform (SRHT) is used to derive the smaller

matrix as it preserves the structure A by rotating A to a

random basis where all the rows have an equal influence and

uniformly samples rows from that basis. IfΠ1 ∈ Rr1×n is a ϵ-FJLT
matrix for V′, then Π1A is the approximation of A. Then Eq. 2

becomes,

l̂i � ei′ A Π1A( )+����
����22. (3)

While computing the product AA+ takes O (nd2), the

computation of A(Π1A)+ takes O (ndr1) time. This is not

efficient since r1 > d. Since only the Euclidean norms of the

rows of A(Π1A)+ are required, the dimensionality of this matrix

can be reduced by using a ϵ-JLT for the rows of A(Π1A)+.
Suppose Π2 ∈ Rr1×r2 is an ϵ-JLT, then A(Π1A)+Π2 is a

randomized sketching of AA+. Then we can compute the

approximate statistical leverage scores as

~li � ei′ A Π1A( )+Π2

����
����22. (4)

Drineas et al. (2012) showed that for any error parameter ϵ ∈
(0, 0.5] and any arbitrary matrix A of size n × d with n ≫ d, the

expression

|li − ~li|≤ ϵli (5)

holds for all i = 1, 2, . . . , n.

This result can be extended without loss of generality for

d ≫ n case as well. Ma et al. (2015) investigated the

approximation quality for several combinations of r1 and r2
through simulation studies. They found that r1 does not

significantly impact the correlation between approximate

and exact leverage scores but running time increases

linearly with r1. On the other hand, the correlations

between approximate and exact leverage scores increase

rapidly with increasing r2, but r2 does not impact running

time. Thus, they concluded that a combination of small r1 and

large r2 would result in high-quality approximations with a

short run time.

2.4 Deterministic sampling

Feature selection is also known as the column subset selection

problem (CSSP) in matrix theory and linear algebra. Jolliffe

(1972) proposed one of the first column subset selection

algorithms. The algorithm involved deterministic sampling of

the columns of the matrix based on ordered leverage scores.

While the algorithm led to favorable dimensionality reduction in

many practical applications, they did not provide theoretical

guarantees on the quality of the approximation and hence it was

not widely used for a long time. Drineas et al. (2008) developed

the randomized counterpart to the deterministic sampling

algorithm that employs a sampling probability distribution

based on the leverage scores. They proved that their algorithm

produces a matrix C that satisfies ‖A − CC+A‖≤ (1 + ϵ)‖A − Ak‖
with constant probability and hence guaranteed the

approximation quality of their algorithm. Here, Ak is the best

rank-k approximation obtained from SVD and c = O (k log k/ϵ2)
is the number of columns in C.

The randomized algorithm gives a ‘near-optimal’

approximation of the matrix, but may not be

computationally as efficient as the deterministic

algorithm. Papailiopoulos et al. (2014) developed

theoretical derivations for the approximation errors of the

deterministic sampling algorithm provided by Jolliffe

(1972). They proved that if the ordered leverage scores li
follow a steep enough power-law decay, the deterministic

algorithm performs equally or better than the randomized

algorithm. Furthermore, suppose the leverage scores follow a

steep power-law decay. In that case, the number of columns

chosen by the deterministic algorithm is similar to or fewer

than the randomized counterpart as proposed by Drineas

et al. (2008). They showed the utility of the power-law decay

assumption by providing several examples of real data sets

where the leverage scores followed a power-law decay.

Papailiopoulos et al. (2014) also emphasized that while

their theoretical analysis was performed for the power-law

decay model, other models for the leverage scores could be

developed.
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We now summarize the deterministic algorithm presented in

Papailiopoulos et al. (2014). The deterministic algorithm can be

described in three steps:

1. Compute the top-k right singular vectors Vk of A using

SVD of A.

2. Calculate the leverage scores l(k)i , where the superscript refers

to the choice of k in the SVD. Reorder the leverage scores in a

decreasing order.

3. Select c columns of A that correspond to the top c leverage

scores such that their sum is greater than some stopping

threshold θ,∑c
i�1l

(k)
i > θ. The choice of θ controls the quality of

the approximation.

The deterministic sampling algorithm requires the

implementation of SVD to compute the leverage scores.

Hence, the time complexity of the algorithm is given by O

(ndmin (n, d)). The resulting matrix from the deterministic

sampling algorithm guarantees a bound on the approximation

error with regard to the CSSP. Implementing the deterministic

algorithm for the genomic prediction can be seen as a pre-

processing step. Given a large genomic information matrix,

we use the deterministic algorithm to create a compressed

matrix that represents the whole matrix well.

The deterministic sampling algorithm implementation

mimics the random sampling implementation with an ordered

sampling approach instead of a randomized sampling, based on

the leverage scores. In this work, we also evaluated clustering and

penalized regression approaches for DR. Since these methods are

well established and widely popular, we do not present them in

great detail.

2.5 Clustering

Clustering is the process of grouping a set of objects in such a

way that objects in the same group are more similar to each other

than to objects in different groups, called clusters. Grouping

objects when the data are labeled is a trivial task and is often

referred to as supervised classification (Jain et al., 1999). But,

often we are presented with data with no labeling available.

Clustering was developed as a tool to deal with problems where

the objective was to group unlabeled objects into meaningful

collections. Because of the absence of labels, clustering is also

called as unsupervised classification.

The general scheme of clustering is to start with n objects and

sort them into K groups based on some similarity measure such

that the intra-group similarity is high and the inter-group

similarity is low. Several categorizations of the clustering

algorithms are available, such as partitional and hierarchical

algorithms.

Partitional clustering divides the set into non-overlapping

subsets (clusters) such that each object is present only in one

cluster. Typically, partitioning clusters produce clusters by

optimizing some criterion function to produce optimal

solutions (Hartigan, 1975). K-means, the most popular

partitional algorithm, is an algorithm where the objective is to

minimize the sum of the squares of the distances from the objects

to the centroid of the cluster. K-means algorithm ensures that

there are always exactly k clusters at the end of the process, with

each cluster containing at least one item. While the algorithm is

efficient and easy to implement, it is prone to issues such as the

need for globular clusters and the need for uniform cluster sizes.

The K-means algorithm and its shortcomings are presented in

greater detail in the Supplementary Materials S1. Some of these

drawbacks can be overcome by using a hierarchical clustering

approach instead.

2.5.1 Hierarchical clustering algorithm
Hierarchical clustering is the process of creating a set of

nested clusters arranged into a tree or dendrogram structure.

Hierarchical clustering does not require a determination of the

number of clusters k prior to the clustering process, as opposed to

the k-means clustering. The nested structure provides flexibility

of choosing the number of clusters based on the dendrogram as

well as domain expertise (Jain et al., 1999). There are two possible

directions of clustering under hierarchical clustering:

agglomerative (bottom-up) and divisive (top-down). In this

paper, we focus only on the agglomerative hierarchical

clustering approach. The merging of clusters to form the

hierarchy is determined by clustering metrics which define the

similarity among the clusters. There are several clustering metrics

available in the literature such as single-linkage, complete-

linkage, average-linkage, and Ward’s method. We presented

details about each of these clustering metrics in the

Supplementary Materials S1.

Single-linkage is not the preferred metric due to its

susceptibility to produce elongated clusters. Complete-linkage

is avoided because of its inability to retain large clusters. Between

average-linkage and Ward’s minimum variance method, there is

no real distinguishing factor. Since Ward’s method can be

compared easily to the objective function in k-means, we

picked the Ward’s method as our metric of choice for the

hierarchical clustering approach.

Hierarchical clustering creates a nested clustering structure,

often represented by a dendrogram, which allows the user to

create any number of clusters by choosing the appropriate height

to cut the dendrogram. One of our objectives was to study the

trend in prediction accuracy as a function of the input data sizes.

Thus, we are interested in creating reduced data sets of different

sizes. To obtain t data sets of different sizes, the K-means

algorithm needs to be run t times. On the other hand,

hierarchical clustering needs to be performed only once to

determine the hierarchy. The t different sized marker data sets

can then be created by cutting the dendrogram t times at

appropriate heights.
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2.6 Shrinkage methods

Variable selection is the process of choosing a subset of the

explanatory variables to explain a response variable. Variable

selection helps in making models easier to interpret, reducing

noise introduced by redundant variables, and reducing the size of

the data set for faster computations. When the number of

variables is very large, traditional subset selection methods

such as “best” subset selection are computationally infeasible.

Step-wise selection methods were proposed as an alternative to

reduce the computational load. A major drawback of the

traditional and step-wise subset selection methods is the

discrete nature of the variable selection, i.e., the variables are

either retained or discarded. This leads to unstable variable

selection, where a small change in data can lead to large

change in the subset selected (Breiman, 1996).

Shrinkage methods were developed to address the

shortcomings of the subset selection methods. These

methods are also known as regularization or penalized

methods. They work on the principle of imposing a

constraint term that penalizes for model complexity.

Shrinkage methods help in variable selection as well as

improving the model’s prediction performance through the

bias-variance trade-off. In other words, shrinkage methods

may provide solutions that have lower variance and higher

bias, but ultimately leading to better prediction accuracy

according to the mean squared error (MSE).

In this paper, we investigate the shrinkage methods as a tool

for variable selection. We use the coefficients of the predictors,

obtained from the shrinkage methods, as a form of ranking of the

variables for selection purposes.

Ridge regression uses all the d predictors in the final model.

The algorithm shrinks all coefficients towards 0 through the L2
penalty, but does not set any of them exactly equal to zero. Hence,

none of the predictors are removed from the final model. On the

other hand, LASSO is a shrinkage method that applies an L1
penalty on the regression coefficients. Due to the nature of the L1
penalty, LASSO performs both shrinkage and automatic variable

selection (Tibshirani, 1996). In other words, the penalty term not

only shrinks the coefficients towards 0, it sets some of the

coefficients to 0. When d > n, LASSO selects at most n

variables (Zou and Hastie, 2005). Further, LASSO selects only

one variable at random from a group of high correlated variables,

often the case with genomic data. This can be a significant

drawback in situations where selecting one of the variables

from the group implies that all other variables are important

as well because LASSO selects only one and discards the rest of

the variables in the group.

Zou and Hastie (2005) proposed a new shrinkage method

called the elastic net to overcome the problems presented by

LASSO while retaining the advantages of LASSO. Elastic net can

be viewed as a combination method involving both ridge

regression and LASSO (Zou and Hastie, 2005). Elastic

net allows for variable selection and also allows for group

selection of variables, acting as an ideal combination of ridge

regression and LASSO. It is appropriate for scenarios where d >
n. We describe these three shrinkage methods - LASSO, ridge

regression, and elastic net - along with their respective

advantages and drawbacks in the supplementary section.

Further details about the shrinkage methods can also be

found in James et al. (2013).

The disadvantages presented by the LASSO algorithm,

especially in context of genomic data makes it unsuitable

for this study. Elastic net would be the ideal shrinkage

algorithm for dimensionality reduction in practice.

Unfortunately, it does not provide control on the number

of variables selected in the final model. To answer all the

objectives of the study, we needed fine control on the number

of variables selected by each reduction method to help us

compare the DR approaches to one another. Ridge regression

performs shrinkage on the coefficients associated with the

variables, but does not perform variable selection of any kind.

Thus, we picked ridge regression as the shrinkage method of

choice for this study.

In ridge regression, the penalty parameter has to be estimated

separately. There are several methods for estimating the most

appropriate penalty parameter λ. The most popular and reliable

method is cross-validation. We can choose a range of λ values,

compute the cross-validated error for each value of λ and pick the

λ corresponding to the smallest cross-validation error (James

et al., 2013).

3 Implementation of methods

In this paper, we used five different DR methods as pre-

processing step to genomic prediction models. We

implemented the methods to reduce the dimensionality of

the genomic data to help reduce the computational resource

requirements such as memory, storage, and time. In this

section, we present details about the implementation of

each of the five DR methods on the genomic data to create

data sets of differing sizes to evaluate the trends in prediction

as the function of the dimensionality.

3.1 Implementation of the random
projection algorithm

We used the RaProR package (Geppert et al., 2019) in R (R

Core Team, 2020) to compute the random projection. The

package was built based on theorems and results in Geppert

et al. (2017), which provides details about the algorithms

implemented to compute the projection. We used the SRHT

projection for our random projection implementation in this

study. The implementation of the random projection algorithm
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for dimensionality reduction of the genomic marker data set can

be visualized in Figure 3 and can be summarized as follows:

1. Compute projection matrices with a predefined number of

columns k.

2. Multiply the projection matrix with original marker data to

obtain the reduced matrix X of size n × k.

3. Use the reduced matrix to compute the genetic relationship

matrix as G = XX′/d, where G denotes the genetic relationship

matrix, as the input for genomic prediction models and obtain

predictions in different cross-validation schemes (described in

Sections 4.1 and 4.2). The genetic relationship matrix

describes the relationship between individuals, and captures

the population structure.

4. Repeat steps 2–4 100 times to remove bias in the prediction

results.

3.2 Implementation of the random
sampling algorithm

We used the statistical leverage scores to calculate the

importance probability distribution required for the

random sampling algorithm. We followed the two-stage

algorithm presented by Boutsidis et al. (2009) to implement the

random sampling algorithm. The implementation of the random

sampling algorithm for dimensionality reduction of the marker data

set for genomic prediction is as follows:

1. Compute the approximate leverage scores as defined in

Drineas et al. (2012).

2. Use the approximate leverage scores to define the importance

sampling distribution for the columns of the input marker

matrix X.

3. Randomly sample a predefined number of columns k

according to the importance sampling distribution to form

reduced matrices of different sizes.

4. Use the reduced matrix X to compute the genetic relationship

matrix G = XX′/d as the input for the prediction models and

obtain predictions in different cross-validation schemes

(described in Sections 4.1 and 4.2).

5. Repeat steps 3–4 100 times to remove sampling bias from the

prediction accuracy results.

The advantage of this random sampling algorithm is the

computation of the approximate leverage scores instead of the

exact scores, effectively reducing computation time.

3.3 Implementation of clustering for
dimensionality reduction

This section describes our approach to applying

dimensionality reduction to genomic data sets using

clustering. The R package “fastcluster” (Müllner, 2013) was

used for fast implementation of the hierarchical clustering

algorithm. Once the dendrogram was created, the cuts were

made to form the k clusters. The cut height is determined by

the R package to ensure that the user-defined k number of

clusters are created. The implementation of the clustering

algorithm for dimensionality reduction of the genomic data

set can be summarized as follows:

FIGURE 3
Implementation of the random projection algorithm for dimensionality reduction of the genomic data set in the genomic prediction problem.
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1. Perform agglomerative hierarchical clustering using

“fastcluster” to determine the hierarchy.

2. Form k clusters from the hierarchy by cutting appropriately.

3. Sample one feature randomly from each of the k clusters as the

representative of that cluster.

4. The sampled features form the reduced data set of size k and

will be used for the genomic prediction models.

5. Repeat the sampling from the clusters and the following

model implementation 100 times to remove sampling bias

in the prediction accuracy results.

3.4 Implementation of the deterministic
sampling algorithm

The deterministic sampling algorithm implementation

mimics the random sampling implementation without the

randomized sampling based on the leverage scores. The

deterministic sampling algorithm can be summarized as follows:

1. Compute the approximate leverage scores as defined in

Drineas et al. (2012).

2. Arrange the leverage scores in decreasing order.

3. Pick the top k leverage scored columns to form the reduced

matrices.

4. Use these reduced matrices as the input for the genomic

prediction models.

3.5 Implementation of ridge regression for
dimensionality reduction

We used the “glmnet” (Simon et al., 2011) package in R to

implement ridge regression. Given below is the implementation

of the ridge regression algorithm for dimensionality reduction of

the genomic data set for genomic prediction:

1. Implement a ridge regression model with the standardized

features corresponding to the marker information.

2. Use the coefficients estimated from the ridge regression as a

measure of importance of the features.

3. Order the features by their respective regression coefficients.

4. Pick the top k features to form the reduced data set for the

genomic prediction models.

4 Data and genomic prediction
models

All the methods were applied to a chickpea data set collected

by the International Chickpea Screening Nursery (ICSN) of

ICRISAT (Roorkiwal et al., 2016). The lines were phenotyped

for three seasons (2012–13, 2013–14, and 2014–15) at two

locations (ICRISAT, Patancheru and IARI, New Delhi) under

different water regimes (normal-rainfed, irrigated, or late-sown),

which resulted in nine environments (unique season-location-

water combinations). Phenotypic data on eight traits were

collected: 100 Seed Weight (100-SDW measured in grams),

Biomass (BM measured in grams), Days to 50% Flowering

(DF measured number of days), Days to Maturity (DM

measured in number of days), Harvest Index (HI measured in

%), Plant Height (PHmeasured in centimeters), Number of Plant

Stand (PS measured in number of plants) and Seed Yield (SY

measured in grams). Since one of the most important trait for

plant breeders is yield, in this paper, we evaluated the DR

methods with the seed yield (SY) as the phenotype of interest.

The calculations can be performed the same way for the other

traits.

The original data set contained 315 lines phenotyped in nine

environments, giving a total of 2,835 phenotypic yield

observations. All of the 315 lines had corresponding genomic

data with 26,817 markers each. After cleaning the data as

described in the Supplementary Materials S1, the genomic

data had 306 observations and 14,928 features, which could

be viewed as a matrix of size 306 × 14,928. In the following

section, we describe the models used for genomic prediction as

well as the techniques used to evaluate the accuracy of the

models.

4.1 Prediction models

In this work, we used the models proposed by Jarquín et al.

(2014) to evaluate the predictive ability of reduced datasets.

Specifically, we considered three models based on the input

information in each model: either environmental and line

information (E + L) only, or genomic information along with

environment information (G + E), or genomic information with

environmental information as well as their interactions (G + E +

G×E) as the predictors.

Let the phenotypic trait be represented by yijk for the kth

replicate for the jth line in the ith environment. Let the

environmental effect be represented by Ei (i = 1, 2, . . . , I),

the line effect be defined by Lj (j = 1, 2, . . ., J), the genetic effect be

denoted by gj (j = 1, 2, . . ., J), the interaction be denoted by gEij
and the error term be represented as ϵijk (k = 1, 2, . . ., rij). The

three models corresponding to the three scenarios mentioned

above are given by:

yijk � μ + Ei + Lj + ϵijk, (6)
yijk � μ + Ei + gj + ϵijk, (7)

yijk � μ + Ei + gj + gEij + ϵijk, (8)

where μ is the overall mean, Ei ~ N(0, σ2E), Lj ~ N(0, σ2L),
g ~ N(0,Gσ2g), gE ~ N(0, [ZgGZg′ ]◦[ZeZe′]σ2gE) and

ϵijk ~ N(0, σ2ϵ); σ2E, σ2g, and σ2ϵ are environment, genetic and
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residual variances, respectively. The variance component of the

gE interaction is represented by σ2gE. The incidence matrices for

the effect of the genomic values and environment are Zg and Ze,

respectively. The genetic relationship matrix is G, computed as

G = XX′/d where X is the centered and scaled molecular markers

matrix and d is the number of SNPs. Finally, ◦ denotes the Schur

product (element by element product) between two matrices.

Using the dimensionality reduction methods, we reduce the

size of the marker matrix (X) and thus the dimensionality

reduction methods affect only the G + E (Eq. 7) and G + E +

G × E (Eq. 8) models but not the baseline E + L model (Eq. 6).

4.2 Model assessment using cross-
validation schemes

Three different cross-validation schemes were implemented

to assess the predictive ability of themodels in different scenarios.

These are scenarios that breeders might be interested in since

these mimic the situations they face in their breeding programs.

The performance of the prediction models was assessed by

measuring the Pearson correlations (Waldmann, 2019)

between the observed phenotypic values and the predicted

genomic estimated breeding values within environments. The

three different cross-validations can be summarized as the

prediction of lines in a new unobserved environment (CV0),

the prediction of new untested lines in environments (CV1), and

the prediction of lines that were observed in some environments

but not observed in other environments (CV2).

CV0 refers to the cross-validation that evaluates the ability of

the models to predict the performance of lines in a new

unobserved environment. In effect, we performed a k-fold

cross-validation in which we left out the observations from

the observed target environment in each fold and used the

other observations from the other (k − 1) environments as the

training set. We computed the correlations between the observed

and predicted values within each environment. This correlation

quantified a model’s ability to predict the performance of all the

lines in a new environment.

CV1 refers to the cross-validation that evaluates the ability

of the models to predict the performance of untested lines in

all environments. For CV1 a five-fold cross-validation scheme

was used where we randomly selected 20% of the lines as the

testing group and left out all the observations corresponding to

these lines from all environments. We used the observations

from the other 80% of the lines as the training set to build the

prediction models. Then, we predicted the trait values for the

lines left out across all environments. This process of creating

folds randomly and performing predictions was repeated

20 times. Finally, we computed the correlations between the

observed and predicted values within each environment and

averaged them across the 20 runs to obtain the average

correlations.

CV2 refers to the cross-validation that evaluates the ability of

the models to predict the performance of lines that were tested in

some environments but not tested in other environments. For

CV2, the phenotypic observations were randomly partitioned

into five subsets without regard for the lines or environment.

Four subsets were combined and used for training the models,

and the remaining subset was used as a test set. The process was

repeated 20 times, just as described in CV1, to obtain average

correlations.

5 Dimensionality reduction in
genomic prediction

We investigated five DR methods in this paper. We

performed feature selection or feature extraction for each

method to create reduced dimensional marker data sets of

26 different sizes based on the number of markers present.

The number of markers ranged from 200 to 14,928 (the full

marker data set). We set the number of markers as fixed across all

methods to compare the dimensionality reduction methods and

their prediction ability at each size. For the three randomized

dimensionality reduction methods, 100 data sets were generated

at each size, and prediction results from the 100 data sets were

averaged and set as the prediction accuracy of that size. This was

done to overcome any bias that the random selection process

may have introduced. For each reduced data set, we implemented

the three predictions models (Eqs 6–8) and evaluated each model

using the three cross-validation schemes described in the

previous section. CV1 and CV2 cross-validation schemes were

run 20 times on each set due to the randomization introduced

during the fold creation. Taking into consideration all the

different methods, sizes, randomization, prediction models,

and cross-validation schemes, we ran over

965,000 combinations in this study.

6 Results

This study focused on two objectives. The primary objective

was to evaluate the merit of using dimensionality reduction

methods as a pre-processing step in genomic prediction. We

used five dimensionality reduction methods to present

dimensionality reduction as an effective pre-processing step in

genomic prediction. We compared their reduction capabilities to

find which methods work better for genomic prediction across

different prediction models and cross-validation schemes.

Second, we studied the trends in prediction accuracy of

reduced data sets as a function of their size.

The results from these models are summarized in the plots in

Figures 4, 5. For each model and cross-validation combination,

the correlation results for the full unreduced SNP data are

referenced using a grey horizontal line.
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FIGURE 4
Prediction accuracy for the seed yield trait of a chickpea population consisting of 306 genotypes tested in nine environments for the G + E
model under the three cross-validation schemes (CV0, CV1, CV2) across 26 different genomic information sizes. Standard errors are depicted at each
size.

FIGURE 5
Prediction accuracy for the seed yield trait of a chickpea population consisting of 306 genotypes tested in nine environments for the G + E +
GxEmodel under the three cross-validation schemes (CV0, CV1, CV2) across 26 different genomic information sizes. Standard errors are depicted at
each size.
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Irrespective of the model and CV scheme, all dimensionality

reduction methods required only a fraction of the total input

markers to obtain maximum correlation. In addition, we

observed a plateauing of correlation values as the number of

markers selected increased for all methods. Thus, the number of

markers required to achieve maximum correlation may be an

inappropriate measure to evaluate the reduction capability of

the method. Instead, we considered a 95% of the maximum

correlation as our metric to evaluate the reduction methods. For

instance, for the CV1 scheme in the G × E model, the random

projection algorithm achieved the maximum correlation of

0.195 with all 14,928 input markers. However, the method

achieved a 95% maximum correlation of 0.185 with just

3,000 input markers. This significantly reduces the number

of input markers for similar correlation values. In fact, for all the

dimensionality reduction methods, fewer than 40% of the input

markers were required to achieve a 95% max correlation value.

These results are summarized in Table 1. Furthermore, for the

deterministic sampling and ridge regression based reduction,

the highest correlation was achieved by a reduced data set rather

than using the whole data set in all three models, indicating the

presence of noise in the data.

Second, no one reduction method had the best reduction

capability across all prediction models and CV combinations. For

instance, for the CV2 scheme of the G × E model, deterministic

sampling required only 1,200 markers in the input data to

achieve 95% of the maximum correlation compared to the

4,500 required by clustering. On the other hand, for the

CV2 scheme of the G + E model, clustering required only

200 input markers to attain 95% of the maximum correlation

compared to the 1,000 required by deterministic sampling.

Random projection and random sampling methods were very

similar in terms of prediction accuracy values across all matrix

sizes by model by cross-validation combinations. All the

reduction methods had similar prediction accuracies within

the model and CV combination, which reiterates the utility of

dimensionality reduction regardless of the DR method used.

7 Discussion

Modern plant breeding programs combine genomic

information with phenotypic performance data to select

favorable lines. Early genomic selection models included the

line, environment, phenotypic and genomic information to

predict the performance of lines. Genetic information,

environmental factors, and their interactions affect complex

traits such as yield. Hence, the development of models that

allowed for this genotype by environment interactions

improved the genomic prediction accuracy. The

improvements in genotyping technology combined with the

reducing cost have led to the generation of genomic data of

enormous sizes that are often high-dimensional. While

current genomic selection models can handle these high-

dimensional data, there are questions about their efficiency.

Further, including information on hundreds of thousands of

potentially unrelated markers in the genomic prediction

models could negatively impact the prediction accuracy of

the trait of interest. Lastly, there is a computational resource

cost that must be taken into account. Prediction models with

larger input sizes require much greater computational

resources to run, both in terms of hardware and time. We

proposed dimensionality reduction as a mechanism to address

all of these concerns.

TABLE 1 Number of markers selected by each dimensionality
reduction (DR) method to obtain 95% of the highest correlation
for the three prediction models (G + E + GxE, G + E, E + L) under the
three cross-validation schemes (CV0, CV1, CV2).

Pred. Model CV DR Method # Cols Correlation

G + E + GxE CV0 Clustering 200 0.105

DetSampling 800 0.132

RanProj 400 0.104

RanSampling 400 0.104

Ridge 200 0.127

CV1 Clustering 4,500 0.185

DetSampling 1,200 0.199

RanProj 3,000 0.185

RanSampling 4,000 0.189

Ridge 3,000 0.202

CV2 Clustering 4,500 0.188

DetSampling 1,200 0.205

RanProj 3,000 0.189

RanSampling 3,000 0.191

Ridge 2,500 0.197

G + E CV0 Clustering 200 0.113

DetSampling 600 0.131

RanProj 400 0.112

RanSampling 800 0.114

Ridge 200 0.126

CV1 Clustering 6,000 0.101

DetSampling 800 0.123

RanProj 1,600 0.098

RanSampling 5,000 0.103

Ridge 1,600 0.124

CV2 Clustering 200 0.155

DetSampling 1,000 0.134

RanProj 2000 0.109

RanSampling 1800 0.108

Ridge 1,600 0.124

E + L CV0 14,928 0.089

CV1 14,928 -0.098

CV2 14,928 0.045
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In this study, we used a chickpea data set. Chickpea is the

second largest produced food legume crop in the world (Roorkiwal

et al., 2016). Its high protein content makes it a valuable source of

protein in several cultures worldwide, especially in vegetarian diets.

Implementation of GS methods helps breeding programs reduce

breeding cycle time and improve the rate of genetic gains

(Roorkiwal et al., 2018) by allowing breeders to select lines using

genomic marker data before performing field trials. With the recent

improvements in the high-throughput genotyping technologies,

millions of markers are available for several hundred chickpea

lines. GS has been adept at accessing these large data sets to

predict the performance of lines. However, further advances in

this area will yield larger marker data sets, which could overwhelm

the current GS methods and the available computational resources.

In addition, other high-dimensional data such as high-dimensional

weather covariates and high-throughput phenotyping information

are increasingly more available in breeding programs. While we did

not consider such data in this study, the inclusion of such data could

create computational bottlenecks. These reasons present a need to

develop methods that effectively handle large data sets and use the

additional data available to improve prediction accuracy.

The key contribution of this work was to propose using

dimensionality reduction in genomic prediction analyses and

show its utility using a hand-picked subset of all available

methods. For example, we explored the possibility of using

randomized algorithms for dimensionality reduction with the

help of primitive implementations. Several more sophisticated

randomized algorithms could improve dimensionality reduction,

which can be explored in future works. Our results act as a proof

of concept that future researchers can use to explore various

dimensionality reduction methods and identify the best method

for their breeding data. Our results clearly indicate the need to

integrate dimensionality reduction methods into genomic

selection to reduce computational resource requirements,

improve the prediction process, and select the best performing

lines in any breeding program.
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