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 Deep learning is seldom used in the classification of electroencephalography 

(EEG) signals, despite achieving state of the art classification accuracies in other spatial 

and time series data.  Instead, most research has continued to use manual feature 

extraction followed by a traditional classifier, such as SVMs or logistic regression.  This 

is largely due to the low number of samples per experiment, high-dimensional nature of 

the data, and the difficulty in finding appropriate deep learning architectures for 

classification of EEG signals. In this thesis, several deep learning architectures are 

compared to traditional techniques for the classification of visually evoked EEG signals. 

We found that deep learning architectures using long short-term memory units (LSTMs) 

outperform traditional methods, while small convolutional architectures performed 

comparably to traditional methods. We also explored the use of transfer learning by 

training across multiple subjects and refining on a particular subject. This form of transfer 

learning further improved the classification accuracy of the deep learning models.
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Chapter	1		

Introduction	

1.1 Description	and	Motivation	

Brain research has been highlighted as an area of national interest in recent years. In 

2013, President Obama launched the BRAIN research initiative, seeking to do for 

neuroscience what the human genome project did for genomics (Tripp & Grueber, 2011). 

This research has the potential to impact many important areas, from the detection, 

treatment, and increased understanding of diseases such as Alzheimer's and epilepsy, to 

the neural control of devices to aid the handicapped, to a greater understanding of how 

the human brain functions on a basic level.  

The classification of brain signals recorded by imaging devices using machine 

learning approaches is a very powerful tool in many of these areas of research. For 

example, machine learning techniques show promise in the early detection of 

Alzheimer’s or giving warning before an epileptic seizure. These techniques are already 

being used in devices such as the P300 speller (Guan et al., 2004) to provide a 

communication device for the severely handicapped. 
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In addition, neuroscience problems present a unique set of challenges that require 

innovation in machine learning. The data obtained from brain activity monitoring devices 

are noisy, have high dimensionality, and are costly to collect, which limits the number of 

data samples that can be collected. The combination of these factors leads to exceedingly 

complex data, which are difficult to analyze or classify, even using the most sophisticated 

and modern techniques. 

This thesis presents several novel results in the broad area of brain signal 

classification. First, it provides a comparative evaluation of standard machine learning 

and data preprocessing techniques in brain signal classification. Second, the use of deep 

learning techniques for brain signal classification is explored in detail. While these 

techniques are state of the art in many other applications of machine learning, there are 

relatively few published results of their use in brain signal classification. In particular, 

recurrent neural networks, which have proven to be powerful in time series analysis, and 

convolutional networks, which are remarkably efficient in image and video classification, 

are explored in this thesis (Prasad 2014; Simonyon 2014). Third, to address the relatively 

low number of samples able to be collected in neuroimaging tasks, a novel application of 

transfer learning within the dataset is explored.  
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1.2	Applications	

The classification of brain signals is a growing area of research, with emerging 

applications in both applied and theoretical neuroscience.  These applications can 

generally be divided into a few main areas including device control, brain state detection, 

medical diagnosis, and basic research. 

1.2.1	Basic	Research	

In neuroscience, the use of machine learning techniques to classify brain signals is seen 

as a form of multivariate pattern analysis (MVPA). MVPA is used to examine 

phenomena that are difficult to measure with traditional techniques. For example, support 

vector machines (SVMs) were used to examine to “what extent item-specific information 

about complex natural scenes is represented in several category-selective areas of human 

extrastriate visual cortex during visual perception and visual mental imagery” (Johnson, 

McCarthy, Muller, Brudner, & Johnson, 2015). Other examples of basic research 

involving the classification of brain signals include topics such as affect recognition, 

semantic language representation in bilingual speakers, and exploring individual 

differences in pain tolerance (AlZoubi, Calvo, & Stevens, 2009; Correia, Jansma, 

Hausfeld, Kikkert, & Bonte, 2015; Schulz, Zherdin, Tiemann, Plant, & Ploner, 2012). 
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1.2.2	Brain	State	Detection	

Another application of classification involves the continuous monitoring of brain states 

using imaging devices like the EEG. Rather than looking to control an external device, 

these techniques look to determining the subject’s inner state. These applications tend to 

consider longer periods of data and focus on frequency analysis. 

 These techniques are being researched for use in areas such as seizure detection 

and prevention (Gabor, Leach, & Dowla, 1996; Ramgopal et al., 2014) and truth 

detection (Gao et al., 2013). Brain state detection is also used as part of larger 

applications, such as monitoring mood to allow a larger human computer interface 

system to adapt its display to user’s current mental state (Molina, Nijholt, & Twente, 

2009). There is even interest in the classification of more disparate states such whether 

the subject is resting quietly, remembering events from their day, performing subtraction 

or silently singing lyrics (Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012). 
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1.2.3	Medical	Diagnosis	

Brain signal classification is likely to play an increasing role in the diagnosis of brain 

diseases in the future. While convergent evidence will always be necessary, classification 

could be useful as a screening tool or another point of reference for diagnosis.  

 For example, efforts have been made into using SVM techniques to aid in 

Alzheimer’s disease diagnosis (Trambaiolli et al., 2011). Other applications in diagnosis 

include drug addiction (Zhang, Samaras, Tomasi, Volkow, & Goldstein, 2005) and 

diagnosis of psychiatric disorders, such as schizophrenia (Koutsouleris et al., 2015), 

ADHD (Fair, Bathula, Nikolas, & Nigg, 2012), and bipolar disorder (Fair, Bathula, 

Nikolas, & Nigg, 2012). 

1.2.4	Brain	Computer	Interfaces	

Brain computer interfaces (BCIs) use monitored brain activity and computation to 

achieve an external activity. Classification of mental states and intentions based on 

patterns of brain signals is a common goal in such applications. While early methods of 

BCIs have tended to use manually determined features and relied on the user adapting to 

the machine, more modern techniques generally involve the use of machine learning and 

allow the machine to adapt to the user.  
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	 These	BCIs	have	a	wide	range	of	applications,	from	control	of	robotic	arms	

and	other	prosthetic	devices	(McFarland	&	Wolpow	2008)	to	speech	synthesizers		

(Lotte,	Congedo,	Lécuyer,	Lamarche,	&	Arnaldi	2007)	and	other	communication	

devices	(Guan	et	al.,	2004).		In	general,	most	BCI	applications	are	geared	toward	

providing	capability	to	the	disabled.	

 

1.3 Brain	Imaging	Techniques	

A variety of devices and techniques capable of measuring brain signals are available. 

These techniques either measure primary signals of activity such as the electrical or 

magnetic signal produced by neural activity, or secondary signals such as the blood flow 

to regions of the brain that are active.  

 Functional Magnetic Resonance Imaging (fMRI) measures what is known as the 

blood oxygen level dependent (BOLD) signal. It is capable of high spatial resolution and 

imaging deep brain structures, but requires a room free of electromagnetic interference 

and very expensive equipment. Furthermore, the temporal resolution of the signal is quite 

poor since it relies on measuring blood flow rather than a direct marker of brain activity. 

The output of fMRI, after several statistical methods are applied, is a series of voxel 

based images of the BOLD signal. 
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Magnetoencephalography (MEG) measures the magnetic component created by 

the electricity moving through the brain. It has both a relatively high spatial resolution 

and a very high temporal resolution, since it measures a direct and quickly propagated 

marker of brain activity that is largely unaffected by the scalp. While the spatial 

resolution is fairly good, only outer portions of the brain can be accurately measured due 

to the drop off in strength of magnetic fields with the square of the distance. Additionally, 

it requires a highly magnetically shielded room and a constant supply of liquid helium to 

function, leading to very high costs and a lack of portability. The output of MEG is one 

time series per channel (generally 306 channels) representing the strength of the magnetic 

field at the channel. 

Other brain imaging modalities such as standard magnetic resonance imaging 

(MRI) and positron emission tomography (PET) do not offer the temporal resolution 

necessary to monitor brain activity at time scales useful in most classification 

applications and may have other drawbacks, including exposure to ionizing radiation. 

Thus, due to the disadvantages of other brain imaging modalities, this thesis will 

focus on data collected by electroencephalography (EEG). EEG functions by attaching 

electrodes to a subject’s scalp in order to measure the changes in electrical potential that 

occur as a result of brain activity. Due to the near instantaneous propagation of these 
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voltage changes, information acquired by the EEG can be sampled with high temporal 

precision. However, the human skull and scalp are insulators, which have the effect of 

dispersing the signal, thus limiting the spatial resolution capable of being achieved by the 

EEG. Furthermore, localizing the source of activity involves solving an inverse problem 

with an infinite number of solutions, thus further limiting the spatial resolution. However, 

it is comparatively inexpensive and does not require onerous protections such as 

magnetically shielded rooms. Furthermore, it is, unlike the previously discussed 

modalities, more practical in applications that require mobility, such as BCI. The output 

of EEG is one time series per channel (anywhere from 32 to 256 channels is common) 

that represents the electrical potential on the scalp at the given channel with respect to a 

reference electrode, typically recorded at rates from 250 Hz to 1000 Hz. 

 

1.4	Research	Challenges	and	Contributions	

Brain imaging data presents several challenging obstacles to machine learning, all of 

which are current topics of open research: 

• Brain signals are noisy. The information is polluted by a variety of factors including 

muscle movement, measurement error, brain activity that is not of interest, and 

electromagnetic interference from the environment.  
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• Brain signals have high dimensionality. There are frequently hundreds of channels, 

sampled at up to 1000 Hz. The raw data frequently presents up to hundreds of 

thousands of features per trial. 

• The data are a time series and have spatial interactions, potentially requiring 

investigation of temporal and frequency components in conjunction with spatial 

analyses.  

• Data collection is expensive and time consuming. Thus, it can be difficult to collect 

sufficient data for many of the most powerful machine learning techniques. Generally 

thousands or tens of thousands of samples per class are desired in modern deep 

learning applications, but it is often impractical to produce more than a few hundred 

samples per subject in brain imaging tasks, particularly if they need to be derived for 

clinical or medical studies. 

• Brain activity can vary significantly between subjects and even between data 

acquisition sessions within a subject. Thus, classifiers that can address high levels of 

variability are needed. 

The goal of this thesis is to investigate techniques for addressing these challenges. 

In this thesis we have demonstrated the effectiveness of various deep learning 

architectures, particularly convolutional and recurrent, in classifying brain signals. We 
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have shown that certain recurrent architectures outperform traditional techniques. 

Furthermore, transfer learning strengthens the effectiveness of all deep learning 

architectures. 

1.4 Thesis	Outline	

The rest of the thesis is organized as follows: Chapter 2 will review the related works that 

forms the basis for this research. Chapter 3 will define the specific problems and 

approaches used in this thesis. Chapter 4 will include a summary of the datasets used, the 

implementation of the techniques used, and the results of the experiments. 

Chapter 5 will present a summary of the findings and a discussion on future work. 
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Chapter	2	

Related	Works	and	Background	

This chapter is made up of two sections, one covering the basic concepts behind the deep 

learning algorithms used in this paper and the other covering the current state of EEG 

classification. 

2.1	Deep	Learning	

2.1.1	History	of	Neural	Networks	

Deep learning is a subfield of machine learning that has evolved out of the traditional 

approaches to artificial neural networks. Artificial neural networks are computational 

systems originally inspired by the human brain. They consist of many computational 

units, called neurons, which perform a basic operation and pass the information of that 

operation to further neurons. The operation is generally a summation of the information 

received by the neuron followed by the application of a simple, non-linear function. In 

most neural networks, these neurons are then organized into units called layers. The 

processing of neurons in one layer usually feeds into the calculations of the next, though 

certain types of networks will allow for information to pass within layers or even to 

previous layers. The final layer of a neural network outputs a result, which is interpreted 
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for classification or regression. Figure 1 shows a depiction of the structure of a simple 

neural network. 

 
Figure 1 Structure of a basic neural network 

 The basic concepts date back to the McCulloch-Pitts neuron of the 1940s 

(McCulloch & Pitts, 1943). This model was very simple compared to modern neural 

networks—it only allowed for binary outputs from each neuron, summing the input and 

comparing the result to 0. Furthermore, there was no update rule defined. An update rule 

is a mathematical rule that allows for the adaptation of the neural network to new 

information. Without an update rule, all of the values in a neural network must be 

handcrafted. 

In the 1950s, the perceptron algorithm was introduced. It generalized the 

McCulloch-Pitts neuron to have continuous valued weights on the connection and 

introduced a basic update rule to compute the weights at time t + 1 from the weights at 

time t: 
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𝑤! 𝑡 + 1 = 𝑤! 𝑡 + (𝑑! − 𝑦! 𝑡 )𝑥!,!   

where 𝑤!is the weight of the ith neuron,  𝑑! is the expected value of the jth input, 𝑦! 𝑡  is 

the calculated value of the jth input, and  𝑥!,! is the ith value of the jth input. 

 The perceptron learning rule was only capable of training networks with a single 

layer, greatly limiting the power of the model. It was originally conceived as a hardware 

implementation, though it was also the first neural network to be implemented in 

software (Rosenblatt, 1958). 

In the late 1960s, it was mathematically proven that a network with only a single 

layer lacks the representative power to classify many common types of problems, 

including the Exclusive OR (XOR) function (Minsky & Papert, 1969).  Furthermore, 

attempts to use neural networks in speech recognition during this era were largely 

considered failures, capable of only recognizing a very limited vocabulary of words for a 

single user (Pierce, 1969). This combination of theoretical limitations and practical 

failures led to an “AI Winter”. Funding for neural networks and other forms of AI 

research largely dried up over this period. The 1970s saw very little progress in the 

development of neural networks. 

The ability to train a network with multiple layers was crucial for the continued 

development of neural networks. While Minksy and Papert’s book was most famous for 
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showing that a single hidden layer network was lacking in representative power, it also 

showed that a network with even two hidden layers could model almost any function. A 

method known as automatic differentiation was proposed in Seppo Linnainmaa’s 

Master’s thesis in 1970 for calculating the derivative of a differentiable composite 

function represented by a graph (Linnainmaa, 1970). This method would later form the 

basis for backpropagation, a learning rule capable of training neural networks with 

multiple layers (Werbos, 1982). In essence, backpropagation allows multiple layer 

networks to be trained by iteratively using the gradient of a loss function with respect to 

the weights of the network to assign updates to previous neurons in the network, starting 

from the output neurons. It can be described in pseudocode as: 

	

do	

	 prediction	=	networkOutput(training_examples)	

	 actual	=	label(trainin_examples)	

	 error	=	averageErrorFunction(prediction,	actual)	

	 grad	=	gradient(l,	error)	

	 for	layer	l	in	reverse(net)	

	 	 new_l	=	update(l,	grad)	

	 	 grad	=	grad(l,	grad)	

	 	 l	=	new_l	 	

while	!(all	samples	classified	correctly	or	stopping	criteria	reached)	
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With the advent of backpropagation, neural networks began to see renewed 

interest and significant theoretical advancement in the 1980s. New forms of networks 

arose including Hopfield networks, which set the groundwork for modern recurrent 

neural networks (RNN) and the Neurocognitron, which inspired modern convolutional 

neural networks (CNN) (Hopfield, 1982; Fukushima, 1980). However, the lack of raw 

processing power and the lack of techniques to handle the vanishing gradient problem, 

the tendency for the backpropagated error gradient to approach zero causing early layers 

of the network to fail to train, led to disappointing performance from neural networks.  

By the beginning of the 1990s, neural network research had fallen into disfavor again. 

New techniques, including support vector machines, were introduced and proved far 

easier to train at the time (Cortes & Vapnik, 1995).  

In 2006, Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh published a paper 

titled “A Fast Learning Algorithm for Deep Belief Nets” which showed promising results 

in the classification of the Modified National Institute of Standards and Technology 

handwritten dataset (MNIST), a standard dataset in the field. The paper proposed a 

greedy technique to train a neural network built out of statistical units, known as 

Restricted Boltzman Machines, layer by layer. By only training one layer at a time, this 

technique avoided the vanishing gradient problem and allowed for deeper networks than 



 16 

previously viable, and far faster training. Hinton's paper reignited interest in neural 

networks and paved the way for modern deep learning. 

 

2.1.2	Deep	Learning	Overview	

Deep Learning is a set of techniques that are a natural progression of traditional neural 

network techniques. These include: 

Stochastic Gradient Descent (SGD) algorithm and its descendants (e.g., Bottou, 

2010). Gradient descent is a first-order iterative optimization algorithm used for finding 

the minimum of a function. In neural networks, it is used in conjunction with 

backpropagation to update the weights in the network. It is formally defined with the 

update rule: 

𝑥! = 𝑥!!! − 𝜂𝛻𝑓(𝑥!!!), 

where 𝑥! is the current point in the space, 𝑥!!!is the previous point in the space, 𝜂 is 

the learning rate, and 𝛻𝑓(𝑥!!!) is the gradient of the value of the function being 

optimized at the previous point. 

   SGD is a derivative of traditional gradient descent, differing in that the error 

function is calculated using only a subsample of the available data. This is both easier to 

use and more efficient for training datasets that do not fit in memory. Furthermore, 

adding randomness to the optimization can aid in breaking through plateaus and avoiding 
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local minima. The addition of momentum terms, which biases the gradient in the 

direction of recently calculated gradients, greatly improved the ability to train deep 

models by further increasing speed of convergence (Sutskever, Martens, Dahl, & Hinton 

2013). Newer SGD derived algorithms, such as Adaptive Moment Estimation (ADAM), 

calculate per parameter adaptive learning rates, enabling even more efficient training, at 

the cost of memory (Kingma & Ba, 2015). 

New Activation Functions: One of the largest and most persistent problems in the 

development of neural networks is known as the vanishing gradient problem. In essence, 

as the gradient is propagated back along the network, the error is multiplied by values 

between 0 and 1 repeatedly. This causes the error, and thus the update, to trend toward 0 

exponentially, resulting in little to no ability to update the early layers in a multilayer 

network (Hochreiter, 1991). Sigmoid activation functions, which were historically the 

most prominently activation function, are especially susceptible to this problem due to 

having a first derivative that rapidly tends toward zero as a neuron saturates. The sigmoid 

function is defined as: !
!!!!!

. The Rectified Linear Unit (ReLU), which maps the input to 

0 if it below 0, and to itself if the input is above 0, and other modern activation functions 

have larger gradients and saturate less quickly, thus avoiding the vanishing gradient 

problem more effectively (Jarrett, Kavukcuoglu, Ranzato, & LeCun, 2009). 
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New types of layers. Perhaps the biggest difference between traditional neural 

networks and deep learning is the adoption of new types of layers in the network. 

Traditional neural network research focused on fully connected layers, in which every 

neuron in one layer is connected to every neuron in the next. While many of these layer 

types existed in the past, they usually were not able to used to significant effect due to 

various issues in training. 

 Convolutional neural networks learn filter banks that are convolved with the 

original data. The filters can also be represented as a fully connected layer where the 

weights of the edges are tied together in way that replicates the convolution operation. 

This weight sharing structure allows for fewer parameters than having each weight be 

unique, and directly accounts for structure in the data. As shown in Figure 2, each filter 

creates a new, processed version of the image. 

 

 

Figure 2 Depiction of convolutional network. 

(A) is the original data with a convolutional filter being applied. (B) is the transformed data with 

each filter applied, showing where the operation in (A) mapped. (C) shows the data flattened for 

use in MLP or classification layers. 
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 Recurrent Neural Networks (RNN), networks with connections within a layer or 

from a layer to a previous layer, have contributed to the success of deep learning in many 

fields, particularly in time series classification. Training an RNN is a difficult task. 

Backpropagation must be modified to function in RNNs, since there are cycles in the 

graph. This is frequently handled through a technique known as backpropagation through 

time, wherein the network is "unrolled" for a discrete number of steps. This process 

creates a network with only forward connections, allowing backpropagation to work as 

normal, at the cost of limiting the impact of the recurrent connections(Werbos, 1990). 

Because of this, only a few architectures have seen widespread use and success in 

classification tasks.  

 In particular, Long Short-Term Memory (LSTM) networks have proven 

successful in recent years, though they were introduced in the 1990s (Hochreiter & 

Schmidhuber, 1997). It was not viable to train an LSTM network on the hardware 

available in the 1990s due to the large number of computations necessitated by recurrent 

architectures. The specific architecture of an LSTM network is shown in Figure 3. 

LSTMs are made to function specifically with time series or sequential data. Each time 

point in the data is processed by its own LSTM unit, and the results are both passed to the 

next layer and to the processing of the next time point within the same layer. The 
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information passed through to the next layer is passed through an activation function, 

such as the tanh unit in Figure 3; however, the recurrent connection within the layer is 

not subjected to an activation function. The lack of an activation function in the recurrent 

layer is critical in avoiding the vanishing gradient problem, as it allows the gradient to be 

a constant value of one. Each LSTM unit has a number of gates which control the flow of 

information. A gate is a combination of a sigmoidal activation unit and pointwise 

multiplication. These gates control the amount of information that flows from one time 

point to the next, the amount of information that is the output of each unit, and other 

functions of the LSTM unit.  

 

Figure 3 Architecture of an LSTM network 

Proposed by Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) 
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The advent of more powerful graphics cards and more convenient programming for 

those cards (Krizhevsky 2012). In 2007 NVIDIA debuted the Compute Unified Device 

Architecture (CUDA) API to that enables direct and easy programming for their 

graphical processing units (GPUs). GPUs are specialized processors designed particularly 

for graphical display. Since most graphical applications rely on large amounts of 

calculations that can be run in parallel, these processors have a large amount of cores. 

Over the next several years, CUDA gained popularity for use in highly parallelizable 

tasks able to take advantage of the large number of cores in GPUs. Deep learning is 

implemented as large matrix operations, which is one such task. Furthermore, the 

memory capacity and processing capabilities of GPUs increased dramatically from the 

launch of CUDA to 2012.  The hardware and software advances in GPU programming 

were critical for Krizhevsky's 2012 ImageNet. Prior to these developments, training deep 

neural networks was essentially intractable- even early GPU implementations showed a 

70X speed up over standard CPUs (Raina, Madhavan, & Ng, 2009). 

Dropout and other regularizers (Srivastava, Hinton, Krizhevsky, Sutskever, & 

Salakhutdinov, 2014). Overfitting, the phenomenon of learning patterns that happen to be 

present in the training data by random chance and not present in general, is a constant 

threat in deep learning due to the immense numbers of parameters involved. 
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Regularization techniques prevent the model from becoming too complex and specific to 

the training data, thus reducing the tendency to overfit. L2 regularization is a standard 

technique used in many forms of optimization, in which the squared sum of the weights is 

applied as a penalty to the optimization function. In essence, this weighs the benefit of 

increased classification of the training data against model complexity. By preventing the 

model from becoming too complex, memorization of the training data is reduced, and a 

more generalizable model is developed.  

Dropout is a technique in which a random set of neurons from each layer (generally 

between 30% and 60%) is excluded from both classification and updating during a 

training pass through the data. This effectively allows a single model to act as an 

ensemble, a group of classifiers that act in union to produce a classification. Furthermore, 

it prevents the direct memorization of training data, since different sets of neurons will be 

participating from one pass to the next.  

Increasing rate of data collection: More data allows for larger, more expressive 

models to be developed. By having a larger sample size, more variance will exist in the 

data, and can be directly accounted for by the model. Similarly, variance in the training 

data that happens by chance will have less of an effect on the model since each sample 

will contribute less to the overall gradient during backpropagation, leading to better 
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generalization to new data. Deep learning shows its greatest strength in problems of very 

high complexity where traditional learning techniques have struggled.  

2.2	EEG	Classification	

The classification of EEG signals presents several challenges that make it a uniquely 

difficult problem in machine learning. The EEG signal is high dimensional, with both 

spatial and temporal covariance. The high dimensionality is difficult to account for in 

traditional machine learning techniques, leading to a desire to extract features from the 

signal to reduce the dimensionality. However, many time series approaches for feature 

extraction face issues with the non-stationary nature of the EEG signal. A stationary 

signal is one in which the probability distribution does not change over the course of 

time, and, thus, features like mean and variance will not change. While data can be 

transformed to account for non-stationarity, it is an imperfect solution. The signals are 

also very noisy, being susceptible to factors such as physical movement, mood, posture, 

and external noise (Kevric & Subasi, 2017).  

Another issue faced in the field is a lack of comparability between experiments. 

Unlike in image classification, there are no standard datasets used as performance 

benchmarks. Not only is data collected on machines with differing specifications, and 

individuals with differences in physiology, but entirely different tasks are also performed 
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during data collection leading to different target brain activities. Furthermore, some 

approaches use models for individuals, whereas others attempt to make a universal 

model, training and testing with samples from all individuals at one time. In general, the 

focus has been on the use of machine learning as a tool to draw conclusions in 

neuroscience, rather than improving the techniques of classification. Thus, while this 

section will explore techniques used, it will not focus on accuracy of the given 

techniques, since it is nearly impossible to compare them at the present. 

2.2.1	Traditional	Approaches	

The majority of published techniques currently use some form of feature 

extraction followed by classification with a relatively simple model. These techniques 

require less implementation time than deep learning, and are less prone to overfitting. 

Support Vector Machines are one such model. They function by projecting the training 

data to a very high dimensional space, and then finding a hyperplane in that space that 

best separates the classes of data. Linear Discriminant Analysis (LDA) is another 

commonly used classifier which uses probabilistic modeling with assumptions of 

normality and homoscedasticity (both classes have the same variance) to create a linear 

decision surface. Further common classifiers include Naive Bayes, a simple probabilistic 

classifier which uses the concept of maximum likelihood to make decisions, and K-
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Nearest Neighbors, which queries the training data using a distance metric to find the K 

samples closest to the one being classified to determine the label. 

The most common feature extraction methods include: Fourier transforms and 

related methods, wavelet transforms, principal component analysis (PCA), independent 

component analysis (ICA), autoregressive methods, or combinations of those techniques. 

 The Fourier transform is likely the most common feature extraction method. It 

provides information on the frequency spectrum of the data, at the cost of losing temporal 

information. To combat this, short time Fourier transforms are more common in practice.  

The Fourier transform is used to calculate features, such as power spectra, which match 

nicely with EEG literature on brain activities that occur within different frequency bands 

(Wang, Nie, & Lu, 2014, Li & Lu, 2009). Al Zoubi, Calvo and Stevens (2009) used 

power spectral density values in 1 Hz bins from 2 Hz to 40 Hz to classify affect data from 

self-elicited emotions. There were 10 emotions used, with 180 trials each for 1800 

samples per subject across three subjects. The study compared KNN, SVM, and Naïve 

Bayes. KNN was found to be the most effective, with up to a 66% classification rate 

compared to SVM at 54%, Naïve Bayes at 43%, and a baseline of 10% accuracy. The 

accuracies varied greatly among the subjects, however. 
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 The wavelet transform is another common signal processing tool used in feature 

extraction. Wavelet transform methods also decompose the signal into frequency based 

information, but, unlike the Fourier transform, time and frequency trade-offs are built 

into the model (Unser & Aldroubi, 1996). 

 Another, less commonly applied transformation is the Hilbert-Huang Transform 

(HHT). Much like the wavelet transform, HHT is inherently a time frequency method. 

Unlike both the wavelet transform and FFT, HHT derives an adaptive basis rather than 

relying on an a priori basis. Additionally, the basis of the HHT is empirically determined, 

and thus not guaranteed to be complete (N.E. Huang & Wu, 2008). The benefits of this 

approach are that it does not assume stationarity or linearity of the signal – both of which 

are known to be false of EEG, but assumed in other frequency and time frequency 

methods. In a comparison with the wavelet transformation, HHT was found to produce 

more accurate results in the analysis of higher frequency brain signal information in 

certain BCI settings (M. Huang, Wu, Liu, Bi, & Chen, 2008). 

2.2.4	Deep	Learning	Approaches	

Presently, very few attempts have been made to apply deep learning to EEG 

classification. Bashivan et al. (2015) used a mixture of convolutional and recurrent 

networks on EEG “movies” wherein the channels of the EEG were projected onto a two 
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dimensional plane. After the projection, the Fourier analysis was applied across several 

time bins to reduce the data to 7 “frames”. The preprocessed data was then classified with 

a hybrid neural network containing a convolutional layer fed into a mixed long short-term 

memory (LSTM) and 1-D convolutional layer, which was fed into a fully connected layer 

for classification. This method obtained impressive results, lowering the error rates they 

had achieved with SVMs and random forests by up to 50%. 

The use of fully convolutional neural networks (i.e., no fully connected layers) 

was explored by Lawhern et al. (2016). They applied 2D convolutions across data 

arranged in a channel by timepoint fashion. Fully convolutional networks have the 

advantage of having very few parameters (less than 2,200 parameters across 4 layers of 

convolutions in this case), thus requiring significantly less data to properly train. They 

achieved state-of-the-art performance in several paradigms, including: P300 event-related 

potential in an oddball task, error-related negativity in BCI, movement-related cortical 

potential in a finger movement task, and sensory motor rhythm in imagined movement. 

Work by Stober, Sternin, Owen, & Grahn (2015) explored the use of 

convolutional autoencoders to “capture invariance between trials within and across 

subjects”. An autoencoder is a neural network where the input is also used as the label for 

the output. By having hidden layers with less parameters than the input (and thus output), 
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these neural networks learn a compressed version of the data. They also developed an 

architecture dubbed Hydra-nets, which featured multiple versions of certain layers of the 

network, allowing for custom tailoring the network based on features of the trial 

metadeta, such as which subject was being classified. They claimed the models had 

sufficient simplicity to allow for interpretation of learned features by domain experts, 

though no specific interpretations were provided. 

2.3	Research	Challenges	

Currently, there is a lack of comparability in EEG classification literature. Most studies 

focus on using machine learning to answer a neuroscience question, rather than on 

improving the machine learning techniques themselves. 

 Generally only a single technique is applied to the classification of a dataset, so it 

is difficult to draw conclusions on the effectiveness classification system as compared to 

another. Individual datasets have highly varying characteristics, and some are simply 

harder to classify than others. Thus, there is a need for comparative studies. 

 Deep learning has largely been explored in a similar manner, with only a single 

type of architecture applied to a unique dataset in each study. There is a lack of 

comparative information between different architectures. Furthermore, training a deep 

learning classifier on EEG data is a difficult task. There are many ways to go about 
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training an individual architecture. Whether to consider subjects individually or as a 

group is important to explore. Other training techniques, such as transfer learning, have 

also remained largely unexplored, and have the potential to help with the issues of low 

data availability in EEG classification. 
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Chapter	3	

Problem	Definition	and	Approach	

3.1	Problem	Definition	

Simply stated, the problem explored in this thesis is the classification of EEG data using 

deep learning techniques. While the classification of EEG signals can be useful in many 

areas, such as the detection of disease state or brain computer interfaces, this thesis 

focuses on the classification of which of three classes of visual stimuli a subject is 

viewing or thinking about based on the evoked brain activity. These sorts of stimuli 

paradigms are common in psychology and neuroscience for both basic research on 

perception and memory, and also as datasets for technique validation. The problem of 

EEG classification in these types of experiments has a number of challenges that must be 

considered, including:  

1. There is high variability between subjects and within subjects, 

2.  There is limited availability of data, and 

3. The data is composed of multiple channels of time series information 

This thesis will address these challenges by exploring several variations of architecture 

selection, model search, regularization, and training paradigms within a deep learning 
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context, with the aim of harnessing the expressive power of deep learning while avoiding 

overfitting. 

 To state the problem formally: Given a training set of EEG signals, E = {𝑠!… 𝑠!}, 

where each signal 𝑠! is composed of channels 𝑐!… 𝑐!, with each 𝑐! is a time series 

𝑡!,! … 𝑡!,!. Let L be a true label function that maps each 𝑠! ∈ E to a set of classes C = 

{𝑐!… 𝑐!}. Let 𝐸 by a novel set of EEG signals. The goal is to create a classifier K, with 

parameters 𝜃 and hyperparameters Ψ, such that K optimizes the expected value of the 

function Φ((Γ 𝐾, 𝐿,𝜃,𝐸 ,Ψ,𝐸, 𝐿), where Φ and Γ may be any valuation metric, for 

example accuracy or categorical cross-entropy. In other words, we are searching for a 

classifier with high accuracy for the training set, the role of function Γ, which also 

generalizes well for the unknown test set, the role of function Φ. 

3.1.1	High	Variability	

The highly variable nature of EEG data leads to difficulty in classification. Samples in 

the same class may be very different in nature from one another. There are multiple 

sources of variability both within subjects and between subjects. 

Sources of within subject variability are briefly summarized below: 
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 Level of attention. If the subject is not focused on the task, the patterns of activity 

produced by their brain will be quite different. This not only impacts data quality, but 

also reduces the amount of data that can be collected.  

 Multiple Sessions. Many experiments call for the subject to attend multiple 

sessions of data collection. The subject can be more or less focused, and may be in a 

different mood, both of which affect the data. Another common source of variability is 

the physical placement of the EEG electrodes. It can be very difficult to insure they are in 

the exact same location. Thus, channels may be collecting data from a slightly different 

source from one trial to the next. 

 Muscle movements. A constant issue in EEG data analysis is that the electrical 

activity created from muscle movement has a far higher magnitude than that produced by 

brain activity. This is particularly noticeable and problematic when the subject blinks. 

There are methods to reduce the impact of certain types of movements, including eye 

blinks, such as using independent component analysis to regress out the artifact. 

However, these methods are imperfect. 

 Machine noise. There is a certain amount of uncertainty inherent from the 

machine itself. Slow drifts in the data are common and are caused by either slight 

movements of the electrode or sweat interfering with the sensor. Movement in wires 
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connecting the electrodes can cause similar issues. These issues can often be mitigated 

through the use of band pass filters, however. 

Sources of between subject variability are briefly described below: 

 Differing physiologies. Differences in skull shape can lead to electrodes 

monitoring different relative portions of the brain. Thus, the brain activity collected by an 

electrode on one subject may be from a slightly different region than the activity 

collected by the same sensor on a different subject. 

 Differing cognitive patterns. There are individual variations in how information is 

processed, and thus, the same stimulus may illicit differing responses in different 

subjects.  

 Differing behavior. Some subjects will be more focused on the task than others.  

Some will perform better than others on the experimental task. Differing behavior is 

associated with differences in brain activity patterns. 

3.1.2	Limitations	of	Dataset	

As previously discussed, deep learning requires a large amount of training samples to 

prevent over-fitting due to the immense number of parameters in the model. Most 

successful applications have tens of thousands to millions of samples. However, 
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collecting this amount of data for EEG tasks is at best difficult, and, frequently, 

intractable. 

First and foremost, there is no way to automate the data collection. Proper EEG 

recording requires trained experts and takes considerable setup time. The electrodes most 

be properly connected and the subject most be observed to make sure they are 

participating in the experiment correctly. Thus, it places significant time demands on the 

expert during data collection, limiting the number of subjects for a study. 

In addition, individual subject can only be expected to focus on a task for limited 

periods of time. As mentioned in the previous section, as attention wanes, brain activity 

changes significantly. Thus, data collection sessions are strongly constrained in their 

durations. Scheduling individual subjects for multiple sessions poses additional 

challenges. It may be difficult for some subjects to participate multiple times due to time 

constraints; it may be impossible for many subjects due to health reasons. It is also time 

consuming to set up the sensors multiple times. Finally, as mentioned previously, brain 

activity in a subject can differ from session to session, so collecting samples over 

multiple samples is at best an imperfect compromise. 
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3.1.3	Multiple	Channels	and	Time	Series	

EEG data is recorded as a time series of floating point numbers at 250-1000 Hz, generally 

using 32 to 256 channels.  Each sample is usually between half a second and five seconds 

long. These factors lead to several important implications that make classification task 

harder. 

First and foremost is that the data is very high dimensional. In the case of an EEG 

with a small number of electrodes (e.g. 32) recorded for only a second, there are still 

30,000 or more features in a single sample. Given that only a small number of overall 

samples that can be collected (hundreds per class per subject, generally), the curse of 

dimensionality is a real challenge.  

Secondly, the data is a time series in nature. This means that the value at a 

specific point in the signal isn’t as important as the pattern of values, in general. 

Furthermore, there can be small variations in the onset of the pattern. So, what happens at 

time point 10 in one sample may not occur until time point 15 in another sample. Many 

models have difficulty classifying data of this nature. 

Finally, the information is distributed over multiple channels. The important 

information to distinguish between two classes may not only lie in the patterns over one 
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channel, but rather, the joint patterns of activity over multiple channels. This is again, 

very difficult for many types of models to efficiently incorporate. 

 

3.2	Approach	

In order to address the challenges presented in classifying EEG data, we take a three-part 

approach. First, we establish a baseline using traditional methods. Second, we perform a 

model search and hyper-parameter search among deep learning architectures. Finally, we 

look into the use of transfer learning, a technique of pre-training a network on one set of 

data and then fine-tuning on another. 

3.2.1	Traditional	Machine	Learning	Baseline	

Given the highly diverse nature of EEG datasets, it is important to establish a baseline 

using traditional methods on the particular data we are classifying. A strong classification 

performance on one dataset, may only be a mediocre performance on another.  

We establish this baseline using two common techniques in EEG classification, 

SVM and SMLR. SVM represents the most commonly used classifier in EEG research, 

while SMLR has been shown to be more successful on many datasets (e.g. Gu, Poesio, & 

Murphy 2014; Johnson, McCarthy, Muller, Brudner, & Johnson, 2015; Rebsamen, 

Kwok, & Penney, 2011). 
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We also explore the use of feature extraction in establishing a baseline. While 

wavelets and Fourier techniques are very common in literature, we consistently found 

them to underperform in similar datasets. In the initial publication of this data, the authors 

found no advantages in the use of Fourier transform (Johnson, 2017, personal 

communication). Average time-binning was used as the feature extraction method in the 

original paper, though the data without feature extraction was not explored. Average time 

binning is the process of reducing the dimensionality of a time series by taking the 

average over a time window. That is, given a time series T = {𝑡!… 𝑡!}, window k, and 

stride s, create a new time series, 𝑇 = {𝑡!} 1 ≤ 𝑙 ≤ 𝑛/𝑠, where 𝑡! = average(𝑡!" … 𝑡!!!"). 

For example, for a time series with n = 1000 and s = 10 and k= 10, after time binning, the 

time series would have a length of 100. In order to maintain comparability, we use time 

binning as the method of feature extraction. As deep learning is considered a form of 

representation learning, learning its own features in the lower layers of the network to 

classified in the terminal layers, we also explore not using any explicit method of feature 

extraction for comparability (LeCun, Bengio, & Hinton, 2015). 

Finally, we examine two training paradigms: single-subject and universal. Much 

of the literature focuses on models trained on data from single subjects. While this allows 

the model to account for individual differences, it also reinforces the issues with the 



 38 

dimensionality and low number of samples available per subject. Thus, universal models 

potentially have an advantage if the greater number of samples improves the models 

ability to generalize more than it is hurt by having to train on differing patterns between 

individuals. 

3.2.2	Deep	Learning	Model	Search	

An immense number of diverse deep learning architectures exist. In particular, we 

examine four general classes of models. These models include the multi-layer perceptron 

(MLP), convolutional neural network (CNN), long short-term memory network (LSTM), 

and a hybrid CNN-LSTM. The MLP was chosen to provide a baseline, while the 

remaining architectures were chosen due to their high performance in other signal 

classification tasks. 

Multi-Layer Perceptron: The first class of model is the multi-layer perceptron. 

This class of model is composed of entirely fully connected, feed-forward layers. This 

type of architecture does not account well for the spatial and temporal variance inherent 

in EEG data. Since each weight is directly associated with an individual time point in an 

individual channel, if the signal occurs slightly later or in a slightly different region of the 

brain, the model will have difficulty adapting. Thus, the MLP model is only considered 

as a baseline for the other deep learning models. 
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Convolutional Neural Network: The second type of model considered is the 

convolutional neural network (CNN). In particular, we focus on 2-dimensional 

convolutions, with one dimension over channels and the other over time. While flattening 

the channels to a single dimension loses some spatial information, this methodology is 

consistent with published work (Lawhern et. al., 2016) and allows the model to inherently 

account for spatial and temporal structures.  Furthermore, since the model learns filters 

that are learned across the data, rather than weights on individual data points, it far more 

robust to spatial and temporal variance. 

Convolutional Neural Network: While many convolutional architectures exist, we 

focus on fully convolutional networks, as presented in Lawhern et. al. 2016. These 

networks do not contain fully connected layers at the end of the model like those 

discussed in the background chapter. Rather, they contain only the convolutional layers, 

potentially max pooling layers, and the soft max classification layer. This reduces the 

number of parameters in the model to a few thousand, as compared to the hundreds-of-

thousands or even millions of parameters in other deep learning architectures.  This both 

aids in convergence for the model and acts as regularization. With fewer parameters, less 

data is needed for convergence and low data availability is one of the primary issues of 
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EEG classification. Furthermore, fewer parameters also helps to prevent overfitting, thus 

acting as a regularizer. 

Long Short-Term Memory: The third type of model we explore are recurrent 

models, in particular LSTMs. LSTM layers are recurrent layers that allow the activation 

at one time point in a layer to directly affect the next time point. This allows the model to 

directly account for temporal structure in the data. Each LSTM layer takes input from 

multiple channels, allowing them to directly account for spatial effects. However, since 

there is only a single weight per channel per time point connecting to the LSTM layer, 

this is not likely to offer the same spatial invariance garnered from the convolutional 

models. Further, LSTM models are highly prone to overfitting (Zaremba, Sutskever, & 

Vinyals, 2014), which is generally the greatest difficulty in classifying EEG data 

successfully. 

LSTM + CNN: Finally, we explore combination LSTM and convolutional 

networks. These models will first do the temporal processing with LSTM layers and then 

apply convolutional layers to allow for increased temporal and spatial invariance in the 

model. However, the combination of layers can lead to a very high model complexity. 

Each of these basic architectures represents an infinite family of potential models. 

In order to ensure that the full value of the deep architectures is realized, hyperparameter 
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search is necessary. A hyperparameter is a value set before the learning algorithm begins. 

These include everything from the activation function chosen for a given neuron to the 

number of neurons in a layer to the learning rate and choice of optimization function.  

The weight of an edge between two neurons is not a hyperparameter, since that value is 

learned. Since the number of network configurations grows with the product of the 

choices per hyperparameter, the space is combinatorially large.  

Grid search has been used in similar problems historically, however has proven to 

be ineffective in deep learning due to the size of the hyperparameter space and time 

required to evaluate a single configuration. Random search has proven to be more 

effective (Bergstra & Bengio, 2012), but is unappealing due to the loss of interpretability 

and the requirement to set bounds for the hyperparameters a priori. Thus, we use a 

manual hyperparameter search using several heuristics. 

Figure 4 provides a flow chart of the basic logic used in the heuristic model 

search. After training the model with a given set hyperparameters, the training accuracy 

is examined first. If the training accuracy is low, then the number of parameters in the 

model was increased. Since classification performance is potentially limited by both the 

dataset itself and the basic type of model being explored (e.g., an MLP), the definition of 

low must be relative and determined separately for each type of model. Generally, to 
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increase the number of parameters in the model, either more neurons are added to layers 

or more layers are added to the model. Other actions are also explored at this step, 

including changing activation functions and adjusting the learning algorithm, including 

changing the learning rate or the algorithm used. Those actions are rare compared to 

simply increasing parameters, however. 

 If training accuracy is high, then the validation accuracy and test accuracies are 

considered. If the validation and test accuracies are also high, then the selection of 

hyperparameters can be accepted, or more tweaks can be made to the hyperparameters to 

determine if the working definition of high accuracy is sufficient. If the test and 

validation accuracies are low when the training accuracy is high, the model is most likely 

overfitting. There are two main ways of handling overfitting: increasing the amount of 

regularization in the model and decreasing the number of parameters in the model. 

Increasing the amount of regularization includes changes such as adding or increasing L2 

penalties on weights, adding or increasing dropout, or adding batch normalization to 

layers. Reducing the number of parameters is achieved by either reducing the number of 

neurons in the layers or reducing the number of layers. Generally, reducing the 

parameters of the model is reserved for when increasing regularization fails to improve 

validation accuracy to avoid unnecessarily reducing the expressive power of the model. 
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However, if the model performs nearly perfectly on the training data while performing 

very poorly on the validation data, reducing the number of parameters can be the most 

effective change to the hyperparameters. 

  

Figure 4 Flow chart of the heuristic hyperparameter search 
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3.2.3	Transfer	Learning	

Transfer learning is a technique in which a model trained on one dataset is used as the 

initialization for a model trained on another dataset. This technique is popular in other 

domains of deep learning, such as image classification. A common practice, for example, 

is to take a network trained on ImageNet, a dataset of over 14 million images, replace the 

classification layer, and retrain the network for a more specific task, such as plant leaf 

discrimination. This allows the early layers of the network to learn highly generalizable 

features from the larger dataset, and the later layers of the network to learn the specifics 

of the smaller dataset the model is being adapted for. While this technique is quite 

popular in image recognition, its use remains largely unexplored in EEG classification 

(Zhu et al., 2011; Oquab, Bottou, Laptev, & Sivic, 2014). 

In our task, we will use the concept of transfer learning to take a model trained 

universally across all subjects and fine-tune it for use in the classification of an individual 

subject’s data. More specifically we will run training in two phases. First, a universal 

model will be trained on all but one subject. Then, the weights obtained by the first phase 

will be used as an initialization for a second phase of training on the remaining subject. 

This provides many benefits. We have found that randomly initialized deep learning 

models do not reliably converge on an individual’s EEG data when only a couple 
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hundred samples are available. Deep learning models can, however, successfully 

converge on several thousand samples split across multiple subjects. By first training a 

model over multiple subjects, we obtain an initialization that is then used for training on a 

single subject. This process is hypothesized to make convergence on an individual’s data 

more likely. It should also provide stronger general filters in the early layers of the neural 

network. Figure 5 shows a conceptual depiction of transfer learning. 

  

Figure 5 Transfer learning paradigm 
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Chapter	4	

Dataset,	Implementation,	and	Results	

In this chapter we describe the dataset, the specific implementation details, and the results 

of the model search and transfer learning tasks.  

4.1	Visual	Presentation	and	Refresh	Dataset	

The dataset is composed of two parts. Initially, the subject is presented with a pair of 

stimuli for 1500ms: two written words, two images of faces, or two images of scenes. 

This stimulus period is referred to as the initial presentation. After a 500ms delay, the 

subject is then presented with a stimuli for 1500ms representing a refresh condition, a no 

act condition or an act condition. In the refresh condition, the subject is presented with an 

arrow pointing either up or down, to where one of the initial cues was located and the 

subject was instructed to think about the cue that was in that location. Both the initial 

presentation of the stimuli and the refresh condition are used for classification in this 

research. 

The data was acquired on a 32 channel EEG at a 250 Hz sample rate. Signals 

were recorded with a bandpass filter of .01-100 Hz and a precision of 14 bits. 1.5 seconds 
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of seconds of recording during the viewing of the stimulus was used for classification. 

There were a total of 37 subjects with approximately 200 trials per subject, after artifact 

rejection for a total of slightly under 7000 trials. The data was labeled with three classes 

corresponding to whether the subject was viewing face, scene, or word data. 

Figure 6 shows the response on channel 26 for a single trial of the task, 

corresponding the viewing of a face. Figure 7 shows the average response to the task 

across all trials on channel 26. This channel was chosen as it demonstrates a response 

consistent with the literature. While the pattern of activity in response to a visual stimulus 

is difficult to see in a single trial, it becomes visible after averaging many trials.  

 

Figure 6 Graph of single trial response on Channel 26 
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4.2	Implementation	Details	

Experiments were run on servers with an Intel Xeon processor, 64 GB of RAM, and 

either an Nvidia 1070 or Nvidia Titan X GPU.  

The primary language used was Python. In particular, the distribution used was the 

Anaconda scientific distribution of Python 3.5. Numpy and Scipy were used for the vast 

majority of numerical computations. Scikit learn was used for the machine learning 

algorithms, other than those related to deep learning.  All deep learning related code was 

written using Keras, with a backend of Theano using CUDNN to allow for efficient GPU 

training.  
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4.3	Results	

The data was split in multiple ways to determine what is optimal for training. Training 

was performed either by training a single model per subject or training one model across 

all subject, corresponding to the single and universal subject training paradigms discussed 

in section 3.2.1. Separate models were developed for two different points in the 

experiments: during the initial presentation or during the refresh period. Finally, we 

compared no feature extraction to feature extraction with time binning using averages of 

40 ms windows, which reduces the number of features by 90%. Time binning details 

Figure 7 Average response across all trials for Channel 26 

EEG
 response (m

V
)  

Time (4ms per sample) 



 50 

discussed in section 3.2.1. All experiments are three class classification, with chance 

being 33.33%. 

4.3.1	Traditional	Techniques	

Table 1 summarizes the results of the traditional learning experiments. All values are the 

result of 500 rounds of random cross validation with an 80/20 train/test split. 

SMLR and SVM performed very similarly across different breakdowns of the 

data. SMLR achieved the overall highest classification accuracy on both the initial 

presentation and refresh data, though only by a small margin. The highest overall initial 

presentation results were achieved by SMLR at 62.83%, with SVM achieving 62.02%. 

Similarly, the highest refresh result achieved was achieved by SMLR at 37.96%, with 

SVM achieving 37.59%. Thus, while SMLR comes out slightly ahead, the two methods 

are largely interchangeable for this data. 

We found that universally trained classifiers perform significantly better for 

classification of the initial presentation period, but training separate classifiers for each 

individual led to higher performance in classifying the refresh period. This could be 

explained by the idea that basic physiological responses tend to generate much more 

similar brain activity between individuals than higher order processing. That is to say, the 

brain activity resulting from the initial presentation is more uniform between subjects 
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than the brain activity resulting from the refresh period. Thus, the increased amount of 

data available when training universal classifiers is able to outweigh the difficulty in 

classification occurred due to variance between subjects during classification of the initial 

presentation, but not the classification of the refresh period. 

Table 1 Traditional MVPA results 

Model Subjects Interval Time 
Binned Results 

SMLR Single Presentation Yes 58.69% 

SMLR Single Presentation No 59.02% 

SMLR Single Refresh Yes 37.96% 

SMLR Single Refresh No 36.36% 

SMLR Universal Presentation Yes 62.83% 

SMLR Universal Presentation No 57.54% 

SMLR Universal Refresh Yes 35.53% 

SMLR Universal Refresh No 34.5% 

SVM Single Presentation Yes 59.09% 

SVM Single Presentation No 57.45% 

SVM Single Refresh Yes 37.59% 

SVM Single Refresh No 37.04% 

SVM Universal Presentation Yes 62.02% 

SVM Universal Presentation No 59.51% 

SVM Universal Refresh Yes 35.66% 

SVM Universal Refresh No 35.63% 

 

Time binning also increased accuracy across the board, with the only exception 

being SMLR trained per subject on the initial presentation data. This is an unsurprising 
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result, as SMLR and SVM methods both tend to struggle with high dimensionality, 

especially when the data is limited. 

The initial presentation data was far easier to classify than the refresh data. There 

are several potential explanations. First, the brain activity caused when viewing an 

stimulus is more consistent than that when thinking back to a stimulus.  

4.3.2	Deep	Learning	Model	Search	

In this section we first present the models determined by the model search and then the 

final classification results of these models in each task. The only preprocessing step was 

to scale the data by the 90th percentile value across all values in the training set. This 

scales the majority of the data to the -1 to 1 range at which deep learning methods 

function best, while preventing outliers from dominating the results. 

The current go-to architectures in other domains, such as Inception-Net (Szegedy, 

Ioffe, & Vanhoucke, 2016), were quickly found to either over fit or simply not converge 

when used with our EEG dataset. The models were simply too complex given the small 

amount of data available.  

There are several features that are consistent across the architectures that were 

found to be successful. First, the number of parameters is comparatively small compared 

to those used in other domains, such as image classification. The largest model used 
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consisted of approximately 300,000 parameters, as compared to the tens of millions that 

are common in published image classification architectures. Second, strong regularization 

is generally leads to better results. Applying L2 regularization of model weights with a 

large coefficient (0.1 as compared to the default coefficient in Keras of 0.01) was 

frequently used in the best performing models. Dropout applied to fully connected layers 

universally lead to an improvement in generalization.  

The model search focused on performance in universal classification. The dataset 

only contained about 200 samples per subject, but had 27 subjects. Given the small 

sample size and the amount of noise in the data, even relatively small neural networks 

were unable to reliably converge when trained on a single subject. 

The following sections will detail the final version of each class of model 

discussed in Section 3.2.2. The hyperparameter search heuristics detailed in Section 3.2.2 

were followed for all models. 

4.3.2.1	Multi-Layer	Perceptron	

A simple multilayer perceptron model was explored in order to set a baseline for other 

deep learning models. The final architecture is shown in Table 2. This model was trained 

using the ADAM optimizer with categorical cross-entropy as the loss function. 
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Variations on the architecture reported in Table 2 were explored. Increasing the 

number of neurons per layer to 64 or 128 resulted in very little difference in the test 

accuracy (<1%). Further increases in the neurons per layer led to overfitting. Similarly, 

increasing the number of fully connected layers showed little benefit or led to overfitting. 

 
Table 2 Final MLP architecture 

Layer Activation Function Parameters 

Fully Connected  Leaky ReLU (.3) 32 neurons, Batch 
Normalization, Dropout (0.6) 

Fully Connected Leaky ReLU(.3) 32 neurons, Batch 
Normalization, Dropout (0.6) 

Fully Connected Leaky ReLU(.3) 32 neurons, Batch 
Normalization, Dropout (0.6) 

Classification Softmax N/A 

 

4.3.2.2	Convolutional	Neural	Network	

Table 3 contains the final architecture chosen for the CNN based model. The 

convolutions were performed over the data organized as Channels by Time. A fully 

convolutional architecture with no fully connected layers was chosen to maintain 

comparability with Lawhern et al., 2016. Due to the extremely small number of 

parameters in a fully convolutional architecture, training is fast and overfitting is less 

likely. 
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 Several features were found to lead to increased performance in the model search. 

Dropout is generally the most effective form of regularization in fully connected layers 

and recurrent layers, but was found to actually decrease accuracy when applied to 

convolutional layers. Since dropout was not viable for regularization in these 

architectuers, strong L2 regularization of the weights was found to be particularly 

beneficial. The model performed best with rectangular filters in which the dimension 

over channels was smaller than the dimension of time. Max pooling led to underfitting 

and was avoided for the final model. 

 
Table 3 Final convolutional architecture 

Layer Activation Function Parameters 

2D Convolution  Leaky ReLU (.3) 12 Filters, 3x6 filter size, L2 
Regularization (.1) 

2D Convolution Leaky ReLU(.3) 12 filters, 3x6 filter size, L2 
Regularization (.1) 

2D Convolution Leaky ReLU(.3) 12 filters, 3x6 filter size, L2 
Regularization (.1) 

Classification Softmax  

 

4.3.2.3	Long	Short-Term	Memory	

Table 4 contains the final architecture for the LSTM model. 

The final LSTM model had the greatest number of parameters of all the 

architectures selected for full testing at just under one million. Three layers with a 
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descending number of LSTM units followed by two fully connected layers was found to 

be the most effective model architecture. Reducing the number of features prior to the 

first fully connected layer was crucial to avoid having too many parameters and 

overfitting on the training data. While dropout was still beneficial in the LSTM layers, a 

smaller rate of 0.3 was found to be more effective, with higher values leading to poor 

convergence.  Using the softsign activation in the LSTM layers provided better results 

than Leaky ReLU or tanh layers. 

Table 4 Final LSTM architecture 

Layer Activation Function Parameters 

LSTM  Softsign 128 units, Dropout (0.3) 

LSTM Softsign 64 units, Dropout (0.3) 

LSTM Softsign 32 units, Dropout (0.3) 

Fully Connected Leaky ReLU(.3) 64 neurons, Dropout (0.6) 

Fully Connected Leaky ReLU(.3) 32 neurons, Dropout (0.6) 

Classification Softmax  

 

4.3.2.4	Integrated	LSTM	+	CNN		

Table 5 contains the final architecture for the LSTM + CNN model. 

While the LSTM + CNN architecture has the most layers of any of the final 

model architectures, it has less parameters than the LSTM architecture. The model 

performed best with only a single LSTM layer, rather than using three layers as in the 

pure LSTM model. The structure of the convolutional and max pooling layers serves to 
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reduce the dimensionality of the network prior to the fully connected layer, thus leading 

to a drastic reduction in overall number of parameters. 

The convolutional architecture is partially based on Szegedy, Ioffe, & Vanhoucke, 

(2016) wherein 2 dimensional convolutions were split into pairs of one dimensional 

convolutions. This leads to a lower number of parameters in the convolutional layers 

while simultaneously increasing the depth of the model. A 1x1 convolutional layer was 

used to separate the two convolutional passes. This is believed to provide benefits similar 

to a fully connected layer with a far lower increase in parameters, and led to an increase 

in performance over omitting the layer. 
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Table 5 Final LSTM + CNN architecture 

Layer Activation Function Parameters 

LSTM  Softsign 128 units, Dropout (0.3) 

Convolutional Leaky ReLU (0.3) 12 filters, 6×1 filter size, L2 
Regularization (0.1) 

Convolutional Leaky ReLU (0.3) 12 filters, 1×4 filter size, L2 
Regularization (0.1) 

Max Pooling N/A 3×2 window 

Convolutional Leaky ReLU(0.3) 6 filters, 1×1 filter size, L2 
Regularization (0.1) 

Convolutional Leaky ReLU (0.3) 6 filters, 6×1 filter size, L2 
Regularization (0.1) 

Convolutional Leaky ReLU (0.3) 6 filters, 1×4 filter size, L2 
Regularization (0.1) 

Max Pooling N/A 3×2 window 

Fully Connected Leaky ReLU (0.3) 64 neurons, Dropout (0.6) 

Classification Softmax  

 
 

4.3.3	Deep	Learning	Classification	Results	

Table 6 summarizes the performance of the deep learning models selected during 

model search. Since none of the models were able to converge reliably on single subject 

data, those results are omitted.  All results are calculated through 10 fold cross-validation 

with a 60/20/20 training/validation/test split. 

• Time binning significantly decreased the performance of all deep learning models. In 

the most extreme case, the LSTM + CNN model, time binning lowered the accuracy 

from 64.36% to 46.89%. Only the LSTM model was able to perform above chance 

and on-par with the traditional methods on the refresh dataset.  
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• The MLP model performed poorly in all tasks – significantly lower than the 

traditional methods. As discussed in Chapter 3, MLP models are not invariant to 

temporal or spatial shifts in the data, and thus poor performance was expected when 

training across subjects. 

• The CNN model performed on par with the most successful traditional methods, with 

an initial presentation accuracy of 62.09%. Of the deep learning methods, it was by 

far the quickest to train at around 45 minutes to converge due to the small parameter 

amount.  

• The LSTM model performed slightly better than the traditional methods on the initial 

presentation data, with an accuracy of 63.61%. It was the slowest model to train, 

taking 4 to 5 hours. 

• The LSTM + CNN model performed the best of any traditional or deep learning 

model, with an accuracy of 64.36%. 
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Table 6 Deep learning classification accuracy 

Model Subjects Interval Time 
Binned Results 

MLP Universal Presentation Yes 54.29% 

MLP Universal Presentation No 55.69% 

MLP Universal Refresh Yes 34.33% 

MLP Universal Refresh No 35.06% 

CNN Universal Presentation Yes 60.04% 

CNN Universal Presentation No 62.09% 

CNN Universal Refresh Yes 34.75% 

CNN Universal Refresh No 35.63% 

LSTM Universal Presentation Yes 58.44% 

LSTM Universal Presentation No 63.61% 

LSTM Universal Refresh Yes 35.91% 

LSTM Universal Refresh No 37.72% 

LSTM + CNN Universal Presentation Yes 46.89% 

LSTM + CNN Universal Presentation No 64.36% 

LSTM + CNN Universal Refresh Yes 32.65% 

LSTM + CNN Universal Refresh No 34.30% 

 

 

4.3.4	Transfer	Learning	
 

Table 7 summarizes the effects of transfer learning on classification of initial presentation 

data. The procedure for transfer learning was as follows: 

1. Select all but one subject. 
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2. Train a model with the same procedure described in Section 4.3.3, with 

the alteration of using only training and validation datasets in an 80/20 

split. 

3. Use the learned weights to initialize a new model. 

4. Train the new model on the subject originally held out, with a 60/20/20 

training/validation/testing split. 

5. Repeat 3 times per subject for cross-validation. 

While transfer learning showed some promise in the classification of refresh data, 

it was highly volatile and requires further investigation before reporting. The number of 

folds was limited to 3 due to the large time required to train per transfer learned model. 

The fine-tuning approach to transfer learning explored here led to an increase in 

accuracy of all deep learning models. After fine-tuning, even the MLP model performed 

slightly better than the traditional methods, with an increase in accuracy of 6.6%. The 

CNN model showed only a small increase of 3.3%, but that was enough to lead to clearly 

stronger performance than traditional methods. The LSTM model’s accuracy increased 

by 5.8% to 69.4% with the application of fine-tuning. This is the highest accuracy of all 

models explored in this experiment. The LSTM+CNN model gained only 2.8% accuracy 

from the use of fine-tuning. 
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The models with convolutional layers showed only a small increase in accuracy 

from the use of fine-tuning. This is potentially because the convolutional layers are 

already highly regularized due to weight-sharing, so the benefit from training universally 

before moving to a single subject is minimized. Furthermore, they tended to have less 

parameters, and thus potentially less representative power.  

A final important note is that all models showed a high within-subject variance 

across the three folds. This suggests that the fine-tuning phase may have led to over-

fitting. 

Table 7 Transfer learning results 

Model Universal 
Accuracy 

Transfer 
Accuracy Increase 

MLP 55.7% 62.3% 6.6% 

CNN 62.1% 64.4% 3.3% 

LSTM 63.6% 69.4% 5.8% 

LSTM + CNN 64.4% 67.2% 2.8% 
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Chapter	5	

Summary	and	Future	Work	

5.1	Summary	

Traditional methods perform best after the application of dimensionality reduction, and, 

at least during visual perception tasks, when trained across subjects. LSTM based deep 

learning models are able to out perform traditional methods. With the application of 

transfer learning, all deep learning models tested were superior to traditional techniques, 

and the gap between LSTM methods and traditional techniques widened considerably.  

It is currently difficult to exceed the performance of traditional machine learning 

techniques with deep learning techniques. It took many iterations of model architectures 

and hyperparameters, along with weeks of computing time to find architectures that 

outperformed the traditional results initially. However, with the continued exploration of 

deep learning in the classification of EEG and better guidelines, this time could be 

drastically reduced. Furthermore, the benefits provided by transfer learning may be 

significant enough to allow classification of problems traditional techniques fail on. 

5.2	Future	Work	

There are three main avenues for the extension of this research: application to more 

datasets, expanded model search, and other forms of transfer learning. 
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5.2.1	More	Datasets	

Currently, these techniques were only applied to a single dataset. In order to show 

generalizability, it is desirable to replicate this research on further datasets with different 

properties. 

The dataset in this thesis involved the classification of visual stimuli. While this is 

a fairly common task in EEG classification (e.g., Stewart, Nuthmann, & Sanguinetti, 

2014; M. Johnson & Johnson, 2010), there are several other common tasks that should 

also be explored. Motor imagery is perhaps the most common task in EEG classification, 

and is used in several forms of brain computer interface (e.g., Tabar & Halici, 2017; 

Battapady, Lin, Fei, Huang, & Bai, 2009; Miranda et al., 2015). Due to the ease of 

classification and potential upside in this task, it is a valuable extension. Similarly, 

experiments where the subject thinks about words from a set vocabulary have immediate 

potential use in communication based BCIs, and would also show a valuable extension of 

this research. Finally, extending this work to datasets of any sort of stimuli that have been 

difficult to classify using traditional techniques is important in establishing the benefit of 

these techniques. 

The dataset explored in this thesis was collected on a 32-channel EEG. Many 

modern EEGS have 128 or even 256 channels, leading to several times the number of 
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features. The negative impact of feature reduction on deep learning found in our results 

suggests that having a higher number of recorded features may improve the classifiability 

of the signal, despite the issues with the curse of dimensionality. Thus, it is important to 

examine the performance of these techniques on data collected with different hardware. 

5.2.2	Expanded	Model	Search	

While the work presented in this thesis covered many permutations of four basic types of 

models, there are other architectures that are promising. 

The first category of models that show promise are those based on a different 

representation of the data. While strictly recurrent architectures showed the highest 

classification accuracy of the models currently explored, this may be due to the 

information lost by compressing the channels to a single dimension. By using a 3D 

projection of the data in X by Y by time format, that spatial information may be largely 

retained. Many architectures used in the classification of video may be valuable in these 

situations. This includes 3D convolutional models, which aggregate information of a 

localized area over time. 2D convolutional models over space fed into recurrent 

architectures over time are also promising(Karpathy et al., 2014). Furthermore, 

representing the data in this format may allow for the use of data augmentation 
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techniques used in image classification and audio classification, such as shearing and 

stretching (Schlüter & Grill, 2015). 

There are also other layer types that should be considered. For example, Gated 

Recurrent Units (GRUs) have been gaining favor over LSTM models in other time series 

data, such as natural language processing (Cho et al., 2014). 

5.2.3	Transfer	Learning	Techniques	

Transfer learning is a family of techniques involving the use of one set of data to create 

an initialization for the classification of another set of data. Currently, we have only 

explored the training across all subjects in an experiment, then fine-tuning the entire 

network on an individual in the network. There are many other transfer learning 

paradigms that may show strong performance. 

The most straightforward change that could be made in the transfer learning 

paradigm is simply freezing the bottom layers of the network during fine-tuning. That is 

to say, only allow the classification layer and perhaps the last fully connected layer to 

update during the fine-tuning phase. The benefit of this approach is that it may reduce 

overfitting during the fine-tuning phase, which is likely a problem with our current 

approach given the high variance of the classification accuracies within subjects. 
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Another approach to transfer learning that is worth exploring is transferring 

between datasets with similar stimuli. There are numerous known common features in 

EEG data, such as the P300 response in visual stimuli(Polich, 2007). Thus, it is 

reasonable to believe that applying transfer learning over several datasets to learn 

universal basic features for the early filters in the network could be beneficial. It may also 

allow networks with more parameters, and thus greater representative power to be trained 

than could be achieved with a single dataset. There are some barriers that would need to 

be considered, however, especially if the data is collected on different machines or has a 

different time span. 

5.3	Conclusion	

The use of deep learning in EEG classification is still in its early stages. Currently, it is 

difficult to find architectures and training paradigms that result in improvements over 

traditional methods. However, as research continues into the use of deep learning for 

classification of EEG signals, best practices will become well known. The results of our 

experiments show a strong case for the heavy use of regularization through both direct L2 

methods and dropout, the strength of recurrent models, and the powerful benefits of 

universal to single subject transfer learning. 
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