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Recent advances in military technology, such as hypersonic missiles, which can travel

at more than five times the speed of sound and descend quickly into the atmosphere,

give world nuclear superpowers a new edge. These advances up the game for nuclear

superpowers with an extremely rapid, intense burst of military striking capability

to secure upfront gains before encountering potentially overwhelming military con-

frontation. However, this so-called fait accompli has not been systematically studied

by the United States in the perspective of the escalation philosophies of nuclear power

competitors, or the mathematical modeling and visualization of multi-modal escala-

tion dynamics. This gap may hamper any further command and control for nuclear

deployment and decision making for strategic planning in preparation of such scenar-

ios. This thesis aims to bridge the gap by implementing a network approach to model

the escalation dynamics among competing nuclear superpowers.
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Chapter 1

Introduction

To begin modeling the escalation dynamics among several players, the first step is to

create a reasonable scheme that can be used to describe spatial-temporal evolution

and visualization of escalation dynamics. In this project, we target the multiagent

method [3] and algebraic graph theory [12] based on the advisor’s prior research [14].

This is set up as an interconnected, graphical representation by viewing each im-

portant variable in escalation dynamics as an agent, and combining them together

with a networked structure to characterize agents’ interplay. However, this combined

method alone does not specify the microscopic dynamics underlying the graphical

representation, which is crucial for quantitative analysis and visualization of escala-

tion. To solve this issue, game theory and adversarial learning techniques are used to

establish the intrinsic underlying dynamics.

Non-cooperative game theory [19] is a powerful tool to describe the competing

dynamics of multiple agents in the absence of collaboration or communication from

any of the others. In a real-world situation, the arm race among nuclear super-

powers depicts a much more complicated picture than just non-cooperative games.

For instance, it is known that the competing escalation dynamics can be predomi-

nantly described by non-cooperative games. There are certain restrictions in reality

to force nuclear superpowers to compromise at some degree, e.g., availability of en-
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riched uranium, sanctions, and arm treaties. Hence, a hybrid game, which consists

of non-cooperative gaming as the primary dynamic, and cooperative gaming as the

secondary dynamic, would be better suited to capture the multi-modal nature of

escalation dynamics. This leads to a multilayer interconnected complex system. Nev-

ertheless, how to synergistically integrate non-cooperative games with cooperative

ones to accurately model intrinsic dynamics of competing escalation remains an open

research area.

One of the intriguing advancements in artificial intelligence in recent years is

the development of generative adversarial networks (GANs) [13] in which two deep

network models are competing against each other to learn how to improve their pre-

diction. This interesting idea sheds some light on the development of a possible

mathematical tools to connect some hidden, conflicting, and correlated variables of

escalation dynamics that cannot be usually represented by means of the existing

physical, statistical, economic, or sociological theories. It presents a possible frame-

work to model complex micro dynamics with certain degree of confidence. However,

the downside of this method is its heavy reliance on large data training sets. When

modeling competing dynamics of nuclear superpowers, such datasets are not always

available. One way of circumventing this difficulty is to use Bayesian learning to

update network models via sparse data. This Bayesian learning concept will lead to

a separate, parallel task of multi-cue multi-choice (MCMC) decision making [10] to

govern the process of network model adaptation.

With the proposed idea of hybrid games and the concept of Bayesian learning, the

detailed microscopic dynamics underlying the multiagent network may be modeled.

However, the real challenge is to put these ideas into work by having a tractable,

computational way to predict what will happen in escalation dynamics. Moreover,

what matters most for applications is to visualize the outcomes for a decision maker to



3

better understand the context so they may fairly assess the situation. In this project,

a detailed realization of the above ideas under a multilayer multiagent network, cou-

pled with diffusion-based propagation dynamics to model complex interdependency

dynamics of the competing escalation, is presented. Specifically, the upper layer of

the network model represents information gathering, data fusion, and data mining dy-

namics characterized by interplay between the information retrieving network (RN),

information analyzing network (AN), and information formulating network (FN). The

networks are modeled by an input-output cellular network, a Bayesian learning net-

work, and an artificial neural network, respectively.

The top layer includes RN, AN, and FN. The lower layer is comprised of the hybrid

game model associated with factors resulting from the top layer. This two-layer struc-

ture models alternative interdependencies among different agents in the lower layer:

cooperative (pro) interaction and competing (con) interaction. This hybrid game

utilizes a version of the mixed multiagent non-cooperative game and potential-based

cooperative game [5] to decide the likely outcomes. From the multiagent perspective,

this corresponds to two sides of impact from its input: cooperative component and

compromise component. The cooperative component, reflects the steady, coordinated

nuclear deployment strategy in the escalation and is the result of the potential-based

cooperative game modeled by a compartmental network. It is based on the advisor’s

prior work [14, 22]. The compromise component, depicting negative contribution due

to adversarial effects and competitive dynamics in the escalation, is the result of in-

hibitory effect in a network model. Finally, the overall outcome of the hybrid game

will be the results from both games weighted by their priority.
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1.1 Contributions

The work done to create this thesis can be categorized into three different parts:

built upon the advisor’s previous work, new contributions from advisor, and new

contributions from myself. My advisor’s previous work in swarm optimization and

multiagent coordination was the basis of the optimization algorithm that was imple-

mented throughout this project. My advisor began by creating the initial mathemat-

ical framework for each of the networks outlined in the thesis paper. I was able to

assist my advisor in iterating through each of the mathematical frameworks and refac-

toring them to create concise and correct mathematical formulations. This process

allowed me to gain a better of understanding of mathematical modeling and graphi-

cal analysis, while contributing to the thesis. Once the mathematical framework was

completed I created software packages for the networks outlined in this thesis. Taking

the models from the mathematical formulations that can be seen in this paper and

coding them into MATLAB packages was my main contribution to this project. In

addition to these contributions, I also assisted in presenting the model to NSRI.
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Chapter 2

Modeling of the positive correlation between relevant factors

Motivated by the intrinsic connection between cooperative control and potential

games [16], a cooperative game model is developed to represent the positive cor-

relation between relevant factors on internal nuclear deployment within each nuclear

superpower. This cooperative game model then serves as a foundation to describe

the non-conflict dynamics among several nuclear superpowers.

To address the dynamic correlation among relevant variables in nuclear escalation,

a dynamic model is proposed for characterizing the transient correlation and steady-

state correlation between different factors.

Modeling the static correlation within one nuclear superpower is outlined as fol-

lows. Consider the following example of a structural equation model (SEM) to rep-

resent a static relationship between five variables xi with five external inputs ui,
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j = 1, 2, . . . , 5:

x1 = u1, (2.1)

x2 = a · x1 + u2, (2.2)

x3 = b · x2 + u3, (2.3)

x4 = e · x1 + d · x3 + u4, (2.4)

x5 = c · x3 + f · x4 + u5 (2.5)

where a, b, c, d, e, f ∈ R are constant coefficients. Note that the SEM (2.1)–(2.5) can

be rewritten as the following matrix form



x1

x2

x3

x4

x5


=



0 0 0 0 0

a 0 0 0 0

0 b 0 0 0

e 0 d 0 0

0 0 c f 0





x1

x2

x3

x4

x5


+



u1

u2

u3

u4

u5


In general, suppose that the causal graph for our problem is given by a direct graph

(or digraph) G = (V,E), where V = {1, . . . , n} is the index set of nodes or vertexes

representing the relevant variables and E = {(i, j) : i ∈ V, j ∈ V, i ̸= j} is the set of

ordered pairs (i, j) denoting the directional edge from node j to node i in the digraph

G. Then the corresponding SEM can be written as

xi =
∑

(i,j)∈E

aij · xj + ui, i = 1, . . . , n (2.6)

where aij ∈ R, i, j = 1, . . . , n. To specify the detailed structure of the SEM, one

needs to elaborate both the topology G and the value of aij, due to the fact that the
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graph information G is implicitly embedded in the model (2.6) alongside aij. One

way of representing a causal graph G for the SEM is to use the adjacency matrix

C = [cpq]p,q=1,...,n ∈ Rn×n defined by

cpq =

 1, (p, q) ∈ E

0, (p, q) ̸∈ E

It follows from the definition of C that cpq ≡ 0 for p = q, i.e., the adjacency matrix

C is an off-diagonal matrix, where all of its diagonal elements are always zero. Using

the notion of adjacency matrices, one can rewrite (2.6) as

xi =
n∑

j=1

aij · cij · xj + ui, i = 1, . . . , n (2.7)

which turns the implicit embedding of G into the explicit inclusion of G in the model.

The matrix form of (2.7) can be written as



x1

x2

x3
...

xn


=



a11c11 a12c12 a13c13 · · · a1nc1n

a21c21 a22c22 a23c23 · · · a2nc2n

a31c31 a32c32 a33c33 . . . a3nc3n
...

...
...

. . .
...

an1cn1 an2cn2 an3cn3 · · · anncnn





x1

x2

x3
...

xn


+



u1

u2

u3
...

un


or equivalently,

x = (A ◦ C)x+ u (2.8)

where x = [x1, x2, . . . , xn]
T ∈ Rn, “◦” denotes the Hadamard product (also known

as elementwise product or Schur product), A = [aij]i,j=1,...,n ∈ Rn×n, and u =
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[u1, u2, . . . , un]
T ∈ Rn. Note that the diagonal elements of A ◦ C are always zero

due to the fact that cii ≡ 0 for all i = 1, . . . , n.

The problem with the form of (2.8) is that it is unclear which variable is the input

signal and which variable is the output signal, since the left-hand side and right-hand

side both have x. To make it clear from the system-theoretic perspective, we rewrite

(2.8) as the following input-output form

z = Wx+ u (2.9)

x = z (2.10)

y = x (2.11)

where z = [z1, z2, . . . , zn]
T denotes the intermediate signal to calculate the state vector

and y = [y1, y2, . . . , yn]
T denotes the system output signal that the other agents can

observe, W = (A ◦ C) ∈ Rn×n(G) is a graph-structured off-diagonal matrix given by

the form

W =



0 a12c12 a13c13 · · · a1nc1n

a21c21 0 a23c23 · · · a2nc2n

a31c31 a32c32 0 . . . a3nc3n
...

...
...

. . .
...

an1cn1 an2cn2 an3cn3 · · · 0


Rn×n(G) denotes the set of all off-diagonal matrices with the structural topology

described by G. The left-hand side of (2.9)–(2.11) represents the resulted signals

while the right-hand side of (2.9)–(2.11) represents the input signals.

In this task, W is estimated under a given graph topology C by using the in-

formation of N measurements from the output signal y, intermediate signal z, state
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vector x, and input signal u. In this case, W needs to be viewed as the variable

(n2−n unknown coefficients aij) in (2.9). However, the form of (2.9) does not clearly

show this representation for W as x is presented as the variable and W is presented

as the coefficient matrix. To change this formulation, we denote the N measure-

ments for y, z, x, u by y[l] = [yl1, yl2, . . . , yln]
T ∈ Rn, z[l] = [zl1, zl2, . . . , zln]

T ∈ Rn,

x[l] = [xl1, xl2, . . . , xln]
T ∈ Rn, and u[l] = [ul1, ul2, . . . , uln]

T ∈ Rn, respectively,

l = 1, . . . , N . Define the measurement matrices Y, Z,X, U as follows

Y =

[
y[1] y[2] . . . y[N ]

]T
=



y11 y12 · · · y1n

y21 y22 · · · y2n
...

...
. . .

...

yN1 yN2 · · · yNn


∈ RN×n

Z =

[
z[1] z[2] . . . z[N ]

]T
=



z11 z12 · · · z1n

z21 z22 · · · z2n
...

...
. . .

...

zN1 zN2 · · · zNn


∈ RN×n

X =

[
x[1] x[2] . . . x[N ]

]T
=



x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...

xN1 xN2 · · · xNn


∈ RN×n

U =

[
u[1] u[2] . . . u[N ]

]T
=



u11 u12 · · · u1n

u21 u22 · · · u2n
...

...
. . .

...

uN1 uN2 · · · uNn


∈ RN×n
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Under these notations, (2.9) can be written as

z[l] = Wx[l] + u[l], l = 1, . . . , N[
z[1] z[2] . . . z[N ]

]
= W

[
x[1] x[2] . . . x[N ]

]
+

[
u[1] u[2] . . . u[N ]

]
[
z[1] z[2] . . . z[N ]

]T
=

[
x[1] x[2] . . . x[N ]

]T
WT +

[
u[1] u[2] . . . u[N ]

]T

or equivalently,

ZT = WXT + UT (2.12)

Z = XWT + U (2.13)

X = Z (2.14)

Y = X (2.15)

Hence, (2.12) or (2.13) shows a fundamental relationship between the unknown matrix

W and the measurement matrices Z,X, Y, U .

To determine whether (2.12) has a solution W for given Z,X, Y, U , the “vec”

operator is introduced for a matrix A ∈ Rn×m as the vector of dimension nm× 1 by

stacking the columns of A vertically. For example, if

A =

a11 a12 a13

a21 a22 a23


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then

vecA =



a11

a21

a12

a22

a13

a23


Recall that for A ∈ Rn×m, X ∈ Rm×p, and B ∈ Rp×q,

vec (AXB) = (BT ⊗ A)vecX

where ⊗ denotes the Kronecker product. Taking the vec operation on both sides of

(2.12) yields

vecZT = vec(WXT) + vecUT

and hence,

vecZT = (X ⊗ In)vecW + vecUT

or equivalently,

vecZT = (X ⊗ In)vec (C ◦ A) + vecUT (2.16)

Note that some elements in vecW ∈ Rn2×1 are always zero (diagonal ones in W ).

Hence, vecW has n2 − n free variables.
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The following result is a well-known one in linear algebra.

Lemma 1. Let A ∈ Rn×m and b ∈ Rn. Then the following statements are equivalent:

i) The equation Ax = b has at least one solution x ∈ Rm.

ii) rankA = rank

[
A b

]
.

iii) There exists y ∈ Rm such that x = A†b + (Im − A†A)y, where A† denotes the

Penrose-Moore inverse of A.

It follows from the above lemmas that (2.16) has at least one solution S in terms

of vec (C ◦ A) if and only if

rank (X ⊗ In) = rank

[
(X ⊗ In) vecZT − vecUT

]

Moreover, to find the value of A, this solution S should be compatible with the given

graph topology G. Such that the equation

C ◦ A = vec−1 S

should have a solution in terms of A for a given C, where “vec−1” denotes the inverse

operation of “vec”. Hence, in this thesis we assume these conditions hold for (2.12)

or (2.13) under given Z,X, Y, U .



13

Chapter 3

Identifying the SEM: A least squares minimization approach

The key to using (2.9)–(2.11) for correlation modeling is to find the coefficient matrix

W in the model through the input, output, and interlinked data. We assume that the

observation for the output signal y in (2.11) contains some additive uncertainty, that

is, let ỹi denote the observation of the output signal yi, then ỹi = yi+∆yi, where ∆yi

denotes some observation uncertainty due to environmental noise or disturbance for

the ith node in the graph G. Next, it follows from (2.6) that the ith node updates its

value xi based on the received information, xj, from the jth node. However, such xj

may contain some other type of uncertainty existing in its communication channels.

Let x̃j denote the received information from the jth node. Then x̃j = xj + ∆xj,

where ∆xj denotes some information transmission uncertainty from the jth node to

the ith node. We assume that the observation and information transmission among

individual nodes are independent from each other, i.e., ∆yi and ∆yj are independent,

and ∆xi and ∆xj are independent, i ̸= j. In this case, the model (2.9)–(2.11) with
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these external impacts can be written as

z̃ = W (x+∆x) + u (3.1)

x = z̃ (3.2)

y = x (3.3)

ỹ = y +∆y (3.4)

where ∆x = [∆x1, . . . ,∆xn]
T, ∆y = [∆y1, . . . ,∆yn]

T, z̃ = [z̃1, . . . , z̃n]
T, and ỹ =

[ỹ1, . . . , ỹn]
T.

Note that it follows from (2.9) and (3.1)–(3.4) that

x̃ = x+∆x = z̃ +∆x = W (x+∆x) + u+∆x = Wx̃+ u+∆x

ỹ = y +∆y = x+∆y = z̃ +∆y = W (x+∆x) + u+∆y = Wx̃+ u+∆y

Then we have x̃
ỹ

 =

In
In

 z̃ +
In 0

0 In


∆x
∆y

 (3.5)

As we mentioned before, in general ∆x and ∆y are different because ∆x is due

to communication uncertainty while ∆y is due to observation uncertainty. When

∆x = 0 and ∆y = 0, it follows from (3.5) that x̃ = z̃ and ỹ = z̃. Hence, given

N measurements x̃[l] = [x̃l1, x̃l2, . . . , x̃ln]
T ∈ Rn, ỹ[l] = [ỹl1, ỹl2, . . . , ỹln]

T ∈ Rn, and

u[l] = [ul1, ul2, . . . , uln]
T ∈ Rn of x̃, ỹ, a possible choice of estimating aij is to minimize

both ∥x̃− z̃∥ and ∥ỹ− z̃∥ under some norm ∥ · ∥. Depending on the norm there could

be a different cost function for estimating aij. In this project, three most common

choices are considered: 1-norm, 2-norm, and infinity-norm.
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Let the matrices Ỹ , X̃, Z̃, U be

Ỹ =

[
ỹ[1] ỹ[2] . . . ỹ[N ]

]T
=



ỹ11 ỹ12 · · · ỹ1n

ỹ21 ỹ22 · · · ỹ2n
...

...
. . .

...

ỹN1 ỹN2 · · · ỹNn


∈ RN×n

X̃ =

[
x̃[1] x̃[2] . . . x̃[N ]

]T
=



x̃11 x̃12 · · · x̃1n

x̃21 x̃22 · · · x̃2n
...

...
. . .

...

x̃N1 x̃N2 · · · x̃Nn


∈ RN×n

Z̃ =

[
z̃[1] z̃[2] . . . z̃[N ]

]T
=



z̃11 z̃12 · · · z̃1n

z̃21 z̃22 · · · z̃2n
...

...
. . .

...

z̃N1 z̃N2 · · · z̃Nn


∈ RN×n

U =

[
u[1] u[2] . . . u[N ]

]T
=



u11 u12 · · · u1n

u21 u22 · · · u2n
...

...
. . .

...

uN1 uN2 · · · uNn


∈ RN×n

where z̃[l] = [z̃l1, z̃l2, . . . , z̃ln]
T ∈ Rn. Note that it follows from (3.1) that

z̃[l] = Wx̃[l] + u[l]

or componentwise

z̃li =
∑

(i,j)∈E

aijx̃lj + uli, i = 1, . . . , n, l = 1, . . . , N (3.6)
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Equation (3.6) has the following matrix form

Z̃ = X̃WT + U

Z̃T = WX̃T + UT

or

vec Z̃T = (X̃ ⊗ In)vecW + vecUT

vec Z̃T = ((C ◦ X̃)⊗ In)vecA+ vecUT

The 1-norm choice is to consider a cost function with the weighted 1-norm given

by the form

J1(X̃, Ỹ , U,W ) =
N∑
l=1

n∑
i=1

λi|x̃li − z̃li|+
N∑
l=1

n∑
i=1

θi|ỹli − z̃li|

=
N∑
l=1

n∑
i=1

λi

∣∣∣∣x̃li − ( ∑
(i,j)∈E

aijx̃lj + uli

)∣∣∣∣+ N∑
l=1

n∑
i=1

θi

∣∣∣∣ỹli
−

( ∑
(i,j)∈E

aijx̃lj + uli

)∣∣∣∣
where λi, θi > 0 are the given weights. Then the proposed optimization problem can

be written as

min
W∈Rn×n(G)

J1(X̃, Ỹ , U,W )

and its optimal solution can be denoted by

W ∗ = arg min
W∈Rn×n(G)

J1(X̃, Ỹ , U,W )
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where “arg” refers to the argument of a function, i.e., x∗ = argminx f(x) means that

f(x∗) = minx f(x).

Lemma 2. For a square matrix M , let traceM denote the sum of all diagonal entries

for M . Then for any matrix A ∈ Rm×n, trace(ATA) = trace(AAT) = ∥vecA∥22 =

∥A∥2F, where ∥ · ∥F denotes the Frobenius norm.

Proof: Let A = [aij]i=1,...,m,j=1,...,n. We use a fact for the Frobenius Norm ∥ · ∥F that

∥A∥2F = trace(AAT) =
∑m

i=1

∑n
j=1 a

2
ij = (vecA)T(vecA) = ∥vecA∥22, and a fact for

the trace operation that trace(AB) = trace(BA) for compatible A and B. ■

The 2-norm choice is to consider a cost function with the weighted 2-norm given

by the form

J2(X̃, Ỹ , U,W ) =
N∑
l=1

n∑
i=1

λi(x̃li − z̃li)
2 +

N∑
l=1

n∑
i=1

θi(ỹli − z̃li)
2

=
N∑
l=1

(x̃[l]− z̃[l])TΛ(x̃[l]− z̃[l]) +
N∑
l=1

(ỹ[l]− z̃[l])TΘ(ỹ[l]− z̃[l])

= (vec X̃T − vec Z̃T)T(IN ⊗ Λ)(vec X̃T − vec Z̃T)

+ (vec Ỹ T − vec Z̃T)T(IN ⊗Θ)(vec Ỹ T − vec Z̃T)

= (vec (X̃T − Z̃T))T(IN ⊗ Λ1/2)T(IN ⊗ Λ1/2)(vec (X̃T − Z̃T))

+ (vec (Ỹ T − Z̃T))T(IN ⊗Θ1/2)T(IN ⊗Θ1/2)(vec (Ỹ T − Z̃T))

= (vec (Λ1/2(X̃T − Z̃T)))Tvec (Λ1/2(X̃T − Z̃T))

+ (vec (Θ1/2(Ỹ T − Z̃T)))Tvec (Θ1/2(Ỹ T − Z̃T))

= ∥vec (Λ1/2(X̃T − Z̃T))∥22 + ∥vec (Θ1/2(Ỹ T − Z̃T))∥22

= trace((X̃ − Z̃)Λ(X̃ − Z̃)T) + trace((Ỹ − Z̃)Θ(Ỹ − Z̃)T)

where Λ = diag(λ1, λ2, · · · , λn) ∈ Rn×n and Θ = diag(θ1, θ2, · · · , θn) ∈ Rn×n are both



18

diagonal matrices, Λ1/2 = diag(
√
λ1,

√
λ2, · · · ,

√
λn), Θ

1/2 = diag(
√
θ1,

√
θ2, · · · ,

√
θn).

Using Lemma 2 and the fact that (BT ⊗ A)vec(X) = vec(AXB). By (3.6), J2 has

the following equivalent form

J2(X̃, Ỹ , U,W ) = trace((X̃ − Z̃)Λ(X̃ − Z̃)T) + trace((Ỹ − Z̃)Θ(Ỹ − Z̃)T)

= trace((X̃ − X̃WT − U)Λ(X̃ − X̃WT − U)T)

+ trace((Ỹ − X̃WT − U)Θ(Ỹ − X̃WT − U)T)

which shows that J2 is indeed a function of X̃, Ỹ , U , and W .

The proposed optimization problem is then a least squares minimization (LSM)

problem given by

min
W∈Rn×n(G)

J2(X̃, Ỹ , U,W )

and its optimal solution can be denoted by

W ∗ = arg min
W∈Rn×n(G)

J2(X̃, Ỹ , U,W )

The infinity-norm choice is to consider a cost function with the weighted infinity-

norm given by the form

J∞(X̃, Ỹ , U,W ) = max
1≤l≤N

max
1≤i≤n

{
λi|x̃li − z̃li|, θi|ỹli − z̃li|

}
= max

1≤l≤N
max
1≤i≤n

{
λi

∣∣∣∣x̃li − ( ∑
(i,j)∈E

aijx̃lj + uli

)∣∣∣∣, θi∣∣∣∣ỹli
−

( ∑
(i,j)∈E

aijx̃lj + uli

)∣∣∣∣}
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Then the proposed optimization problem can be written as

min
W∈Rn×n(G)

J∞(X̃, Ỹ , U,W )

and its optimal solution can be denoted by

W ∗ = arg min
W∈Rn×n(G)

J∞(X̃, Ỹ , U,W )

The formulation does not consider the case where some data are outliers in X̃,

Ỹ , and U . To prescreen the observation data, one can use some machine learning

approach such as support vector machine for cluster data pattern recognition. This

will serve as the first step for the SEM-based approach by filtering out some possible

outliers in N measurement data before feeding them into the proposed LSM approach.

Lastly, the optimal solutionW ∗ to these optimization problems may not be unique.

In fact, there could exist infinitely many optimal solutions to J1, J2, or J∞. Hence,

to narrow down the search for the optimal solution, one can consider some additional

constraint on W such as ∥W ∗∥F = min or ∥W ∗∥F is a constant.
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Chapter 4

A cooperative game approach to modeling the positive

impact of variable correlation

Although the model in (2.6) gives a fundamental structure for variable correlation,

there are some related open questions.

Q1. The previously proposed LSM approach has a key assumption that the informa-

tion of x̃j is available for conducting the LSM evaluation as shown in the three

proposed cost functions. According to (2.6), the information xi is modeled as

a linear combination of xj, j ∈ Ni, where Ni = {j ∈ V : (i, j) ∈ E}. So is x̃i

in terms of x̃j. In real-world scenarios, the information of xj may not be di-

rectly accessible to node i due to some impact from environmental disturbance,

model uncertainty, data error, data privacy, or data security, and node i can

only use some local sensors to predict xj rather than directly measure xj. In

this case, how can the parameter matrix W be identified in the model (2.6)

with a possibly imprecise prediction on xj?

Q2. In addition, when some measurements are imperfect (e.g., y) and some data

information is not directly accessible at the same time(e.g., xj), how can the

value of the entries for W be estimated?
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To answer these questions, the previously proposed LSM approach is extended

by proposing a coupled optimization problem that includes both the LSM evaluation

and unknown variable prediction. Here the focus is on (2.12) or (2.13) to develop a

prediction algorithm beginning with X. Then this prediction is embedded into the

proposed LSM problem.

Consider (2.13). Define

X = {X∗ ∈ RN×n : X∗ = argmin
X

∥X −XWT − U∥F}

Clearly ∥X−XWT−U∥F ≥ 0 and ∥X−XWT−U∥F = 0 if and only ifX = XWT+U .

If xj contains some uncertainty ∆xj, then the SEMmodel becomes x = W (x+∆x)+u.

In the case of measurement matrices X,U with the uncertainty matrix ∆X,

X = (X +∆X)WT + U

and hence, ∥X − XWT − U∥F = ∥(∆X)WT∥F. Alternatively, if y contains some

uncertainty ∆y, then the SEM model becomes x + ∆y = Wx + u. In the case of

measurement matrices, X,U with the uncertainty matrix ∆Y ,

X +∆Y = XWT + U

In this case, ∥X − XWT − U∥F = ∥∆Y ∥F. Finally, if the both xj and y contain

uncertainties, then x+∆y = W (x+∆x) + u. Similarly,

X +∆Y = (X +∆X)WT + U

Therefore, ∥X −XWT − U∥F = ∥(∆X)WT −∆Y ∥F.
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Lemma 3. X ∈ X if and only if (X −XWT − U)(In −W ) = 0.

Proof: Note that by Lemma 2,

∥X −XWT − U∥F = ∥vec(X(In −WT)− U)∥2 = ∥((In −W )⊗ IN)vecX − vecU∥2

Now consider the LSM problem

min
vecX

∥((In −W )⊗ IN)vecX − vecU∥2

Then vecX is a solution to this LSM problem if and only if

((In −W )⊗ IN)
T[((In −W )⊗ IN)vecX − vecU ] = 0

that is,

(((In −W )T(In −W ))⊗ IN)vecX − ((In −W )T ⊗ IN)vecU = 0

where the fact that (A⊗ B)(C ⊗D) = (AC)⊗ (BD) and (A⊗ B)T = (AT ⊗ BT) is

used.

Next, using the fact that (BT ⊗ A)vecX = vec(AXB), it can be seen

0 = (((In −W )T(In −W ))⊗ IN)vecX − ((In −W )T ⊗ IN)vecU

= vec (X(In −W )T(In −W ))− vec (U(In −W ))

= vec(X(In −W )T(In −W )− U(In −W ))
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which implies that

X(In −W )T(In −W )− U(In −W ) = 0

■

Let V = In −W . Then X ∈ X if and only if XV TV = UV . Define P = V TV

and Q = UV . Then X(In −W )T(In −W )− U(In −W ) = 0 is equivalent to

XP = Q

or

(P ⊗ IN)vecX = vecQ

Note that P ∈ Rn×n is symmetric and positive semidefinite.

Lemma 4. For any x, y ∈ Rn, define the inner product < x, y >= yTx. Let A ∈ Rn×m

and B ∈ Rm×n. Then

trace(AB) = (vecAT)TvecB =< vecAT, vecB >

Next , let

ψ(X,U,W ) =
1

2
< vecX, (P ⊗ IN)vecX > − < vecX, vecQ >
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Then it follows from Lemma 4 that

ψ(X,U,W ) =
1

2
< vecX, vec(XP ) > − < vecX, vecQ > (4.1)

=
1

2
trace(XTXP )− trace(XTQ) (4.2)

=
1

2
trace(XTXV TV )− trace(XTUV ) (4.3)

=
1

2
trace(XTX(In −W )T(In −W ))− trace(XTU(In −W )) (4.4)

=
1

2
trace((In −W )XTX(In −W )T)− trace((In −W )XTU) (4.5)

Lemma 5. XP = Q if and only if X = argminX∈RN×n ψ(X, U,W ).

Lemma 6. X ∈ X if and only if X = argminX∈Rn ψ(X, U,W ).

Hence, the mathematical model of positive impact of variable correlation can be

characterized by a coupled optimization problem for simultaneous prediction and

identification:

X∗ = arg min
X∈RN×n

ψ(X,U,W ∗) (4.6)

W ∗ = arg min
W∈Rn×n(G)

Ja(X
∗, Ỹ , U,W ) (4.7)

where a ∈ {1, 2,∞}.

Next, a cooperative game is proposed based multiagent coordination strategy

to solve the coupled optimization problem (4.6) and (4.7). Motivated by previous

work on bio-inspired consensus [23], a group of M agents representing the candidate

estimates for X and W is considered. Each agent is denoted by X(l) and W(l),

l = 1, . . . ,M . The values of X(l) and W(l) are updated numerically by a cooperative

game based, semi-distributed (i.e., distributed-centralized), two-step algorithm. The

first step is a local update formula according to two descent search directions. The
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second step is a cooperative game based agreement algorithm for synchronizing local

updates.

Definition 4.0.1. The derivative ∂
∂X
f(X) of a scalar-valued function f(X) of a ma-

trix argument X

= [X(i,j)]i=1,...,m,j=1,...,n ∈ Rm×n is the n×m matrix whole (i, j)th element is ∂f(X)
∂X(j,i)

.

In this thesis, two types of such algorithms are considered.

Type I. The first type considers the case where a = 2. In this case, the cost

function J2(·, ·, ·,W ) is differentiable with respect to W . We propose a derivative-

involved semi-distributed algorithm inspired by [23]. The first part of the algorithm

is to update W in two steps:

W
(l)
2k+1 = W

(l)
2k + α

(l)
k

[
arg min

W=W
(m)
2k ,m∈N(l)

c ∪{l}
J2(X

(l)
2k , Ỹ , U,W )−W

(l)
2k

]
◦ C

− β
(l)
k

[
∂

∂W
J2(X

(l)
2k , Ỹ , U,W )

∣∣∣∣
W=W

(l)
2k

]
◦ C (4.8)

W
(l)
2k+2 = argmin

W

[ ∑
m∈N(l)

c ∪{l}

∥W −W
(m)
2k+1∥

2
F

]
(4.9)

where k = 0, 1, 2, . . ., {α(l)
k }, {β(l)

k } ⊂ R are some parameter sequences. The cou-

pling topology between these candidates is described by a graph Gc = (Vc, Ec),

Vc = {1, . . . ,M}, Ec = {(i, j) : i, j ∈ Vc, i ̸= j}, and N (l)
c = {m ∈ Vc : (l,m) ∈ Ec}

denoting the neighboring set of agent l. In this thesis, we always assume that Gc is

undirected and strongly connected.

In this two-step algorithm, the first step consists of two terms. The term

arg min
W=W

(m)
2k ,m∈N(l)

c ∪{l}
J2(X

(l)
2k , Ỹ , U,W )−W

(l)
2k
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uses the difference between the local best solution among the neighboring nodes

and the current value of W to update the search for W . It can be interpreted as the

optimal search along the minimum cost level direction, which is roughly close to the

tangent direction of the cost level curve. The term

− ∂

∂W
J2(X

(l)
2k , Ỹ , U,W )

∣∣
W=W

(l)
2k

uses the opposite gradient direction to update the search for W . It can be viewed

as the optimal search along the normal direction of the cost level curve. Then these

updates among all the neighboring nodes will be aggregated to reach a consensus for

the second step update of W .

The update of X is given by a similar two-step algorithm:

X
(l)
2k+1 = X

(l)
2k + γ

(l)
k

[
arg min

X=X
(m)
2k ,m∈N(l)

c ∪{l}
ψ(X,U,W

(l)
2k+2)−X

(l)
2k

]
− δ

(l)
k

∂

∂XT
ψ(X,U,W

(l)
2k+2)

∣∣∣∣
X=X

(l)
2k

(4.10)

X
(l)
2k+2 = argmin

X

[ ∑
m∈N(l)

c ∪{l}

∥X −X
(m)
2k+1∥

2
F

]
(4.11)

where {γ(l)k }, {δ(l)k } ⊂ R are some parameter sequences.

The first issue of implementing Type I is to derive the explicit expression of (4.9)

and (4.11). The following result solves this issue.
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Lemma 7. For any Xi ∈ Rn×n, i = 1, 2, . . . , N ,

argmin
X

[ N∑
i=1

∥X −Xi∥2F
]
=

1

N

N∑
i=1

Xi

Hence, (4.9) and (4.11) can be alternatively expressed as

W
(l)
2k+2 =

1

1 + |N (l)
c |

∑
m∈N(l)

c ∪{l}

W
(m)
2k+1

X
(l)
2k+2 =

1

1 + |N (l)
c |

∑
m∈N(l)

c ∪{l}

X
(m)
2k+1

The second issue of implementing Type I is to derive the explicit expression for

∂
∂W

J2(X
(l)
2k , Ỹ , U,W ) and ∂

∂XTψ(X,U,W
(l)
2k+2). The following results give explicit ex-

pressions of these gradients.

Lemma 8. ∂
∂XTψ(X,U,W ) = XP −Q = X(In −W )T(In −W )− U(In −W ).

Proof: Note that ψ(X,U,W ) = 1
2
trace(XTXP )− trace(XTQ). Next, note that the

following identities hold:

trace(AB) = trace(BA) (4.12)

∂

∂X
trace(AX) = A (4.13)

∂

∂X
trace(AXBXT) = BXTA+BTXTAT (4.14)

These lead to

∂

∂XT
trace(AXT) = A

∂

∂XT
trace(BXAXT) = BXA+BTXAT
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Hence, it follows from the above formulas that

∂

∂XT
trace(XTQ) =

∂

∂XT
trace(QXT) = Q

∂

∂XT
trace(XTXP ) =

∂

∂XT
trace(XPXT) = XP +XP = 2XP

Thus,

∂

∂XT
ψ(X,U,W ) =

1

2

∂

∂XT
trace(XTXP )− ∂

∂XT
trace(XTQ) = XP −Q

■

According to Lemma 8,

∂

∂XT
ψ(X,U,W

(l)
2k+2)

∣∣∣∣
X=X

(l)
2k

= X
(l)
2k

(
In −W

(l)
2k+2

)T(
In −W

(l)
2k+2

)
− U

(
In −W

(l)
2k+2

)

and hence, (4.10) becomes

X
(l)
2k+1 = X

(l)
2k + γ

(l)
k

[
arg min

X=X
(m)
2k ,m∈N(l)

c ∪{l}
ψ(X,U,W

(l)
2k+2)−X

(l)
2k

]
− δ

(l)
k X

(l)
2k

(
In −W

(l)
2k+2

)T(
In −W

(l)
2k+2

)
+ δ

(l)
k U

(
In −W

(l)
2k+2

)

Lemma 9. ∂
∂W

J2(X, Y, U,W ) = 2XTXWTΛ − 2XT(X − U)Λ + 2XTXWTΘ −

2XT(Y − U)Θ.
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Proof: Note that

J2(X, Y, U,W ) = trace((X − U −XWT)Λ(X − U −XWT)T) (4.15)

+ trace((Y − U −XWT)Θ(Y − U −XWT)T)

= trace((X − U)Λ(X − U)T) + trace(XWTΛWXT)

− trace((X − U)ΛWXT)− trace(XWTΛ(X − U)T)

+ trace((Y − U)Θ(Y − U)T) + trace(XWTΘWXT)

− trace((Y − U)ΘWXT)− trace(XWTΘ(Y − U)T) (4.16)

Using (4.12)–(4.14) and the fact that traceA = traceAT, we have

∂

∂W
trace(XWTΛWXT) =

∂

∂W
trace(ΛWXTXWT)

= XTXWTΛ +XTXWTΛ

= 2XTXWTΛ

∂

∂W
trace(XWTΘWXT) = 2XTXWTΘ

∂

∂W
trace((X − U)ΛWXT) =

∂

∂W
trace(XT(X − U)ΛW ) = XT(X − U)Λ

∂

∂W
trace(XWTΛ(X − U)T) =

∂

∂W
trace((X − U)ΛWXT) = XT(X − U)Λ

∂

∂W
trace((Y − U)ΘWXT) = XT(Y − U)Θ

∂

∂W
trace(WXTΘ(Y − U)) = XT(Y − U)Θ
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Hence,

∂

∂W
J2(X, Y, U,W ) = 2XTXWTΛ− 2XT(X − U)Λ + 2XTXWTΘ− 2XT(Y − U)Θ

■

According to Lemma 9,

∂

∂W
J2(X

(l)
2k , Ỹ , U,W )

∣∣∣
W=W

(l)
2k

= 2(X
(l)
2k)

TX
(l)
2k(W

(l)
2k)

TΛ− 2(X
(l)
2k)

T(X
(l)
2k − U)Λ

+ 2(X
(l)
2k)

TX
(l)
2k(W

(l)
2k)

TΘ− 2(X
(l)
2k)

T(Ỹ − U)Θ

and hence, (4.8) becomes

W
(l)
2k+1 = W

(l)
2k + α

(l)
k

[
arg min

W=W
(m)
2k ,m∈N(l)

c ∪{l}
J2(X

(l)
2k , Ỹ , U,W )−W

(l)
2k

]
◦ C

− 2β
(l)
k

[
(X

(l)
2k)

TX
(l)
2k(W

(l)
2k)

TΛ− (X
(l)
2k)

T(X
(l)
2k − U)Λ

+ (X
(l)
2k)

TX
(l)
2k(W

(l)
2k)

TΘ− (X
(l)
2k)

T(Ỹ − U)Θ

]
◦ C

The third issue of implementing Type I is to determine {α(l)
k }, {β(l)

k }, {γ(l)k }, and

{δ(l)k }. One way of determining these parameter sequences by using the steepest
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descent idea. First, it follows from (4.15) that for any K,L ∈ Rn×n and any α, β ∈ R,

J2(X, Y, U,W + αK + βL) = trace((X − U)Λ(X − U)T)

+ trace(X(W + αK + βL)TΛ(W + αK + βL)XT)

− trace((X − U)Λ(W + αK + βL)XT)

− trace(X(W + αK + βL)TΛ(X − U)T)

+ trace((Y − U)Θ(Y − U)T)

+ trace(X(W + αK + βL)TΘ(W + αK + βL)XT)

− trace((Y − U)Θ(W + αK + βL)XT)

− trace(X(W + αK + βL)TΘ(Y − U)T)

Lemma 10. For any K,L ∈ Rn×n and any α, β ∈ R,

∂

∂α
J2(X, Y, U,W + αK + βL)

= 2α · trace(XKT(Λ + Θ)KXT) + 2β · trace(XKT(Λ + Θ)LXT)

+ 2trace(XKT(Λ + Θ)WXT)

− 2trace((X − U)ΛKXT)− 2trace((Y − U)ΘKXT)

∂

∂β
J2(X, Y, U,W + αK + βL)

= 2α · trace(XLT(Λ + Θ)KXT) + 2β · trace(XLT(Λ + Θ)LXT)

+ 2trace(XLT(Λ + Θ)WXT)

− 2trace((X − U)ΛLXT)− 2trace((Y − U)ΘLXT)
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Proof: Note that

∂

∂α
trace(X(W + αK + βL)TΛ(W + αK + βL)XT)

= trace
( ∂

∂α

(
X(W + αK + βL)TΛ(W + αK + βL)XT

))
= trace(XKTΛ(W + αK + βL)XT +X(W + αK + βL)TΛKXT)

= 2α · trace(XKTΛKXT) + 2β · trace(XKTΛLXT) + 2trace(XKTΛWXT)

∂

∂α
trace((X − U)Λ(W + αK + βL)XT) = trace((X − U)ΛKXT)

Similarly,

∂

∂α
trace(X(W + αK + βL)TΘ(W + αK + βL)XT)

= 2α · trace(XKTΘKXT) + 2β · trace(XKTΘLXT) + 2trace(XKTΘWXT)

∂

∂α
trace((Y − U)Θ(W + αK + βL)XT) = trace((Y − U)ΘKXT)
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and

∂

∂β
trace(X(W + αK + βL)TΛ(W + αK + βL)XT)

= trace
( ∂

∂β

(
X(W + αK + βL)TΛ(W + αK + βL)XT

))
= trace(XLTΛ(W + αK + βL)XT +X(W + αK + βL)TΛLXT)

= 2α · trace(XLTΛKXT) + 2β · trace(XLTΛLXT) + 2trace(XLTΛWXT)

∂

∂β
trace((X − U)Λ(W + αK + βL)XT) = trace((X − U)ΛLXT)

∂

∂β
trace(X(W + αK + βL)TΘ(W + αK + βL)XT)

= trace
( ∂

∂β

(
X(W + αK + βL)TΘ(W + αK + βL)XT

))
= trace(XLTΘ(W + αK + βL)XT +X(W + αK + βL)TΘLXT)

= 2α · trace(XLTΘKXT) + 2β · trace(XLTΘLXT) + 2trace(XLTΘWXT)

∂

∂β
trace((Y − U)Θ(W + αK + βL)XT) = trace((Y − U)ΘLXT)

Therefore, putting everything together yields

∂

∂α
J2(X, Y, U,W + αK + βL)

= 2α · trace(XKT(Λ + Θ)KXT) + 2β · trace(XKT(Λ + Θ)LXT)

+ 2trace(XKT(Λ + Θ)WXT)

− 2trace((X − U)ΛKXT)− 2trace((Y − U)ΘKXT)

∂

∂β
J2(X, Y, U,W + αK + βL)

= 2α · trace(XLT(Λ + Θ)KXT) + 2β · trace(XLT(Λ + Θ)LXT)

+ 2trace(XLT(Λ + Θ)WXT)

− 2trace((X − U)ΛLXT)− 2trace((Y − U)ΘLXT)
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■

Now Lemma 10 is used to find out {α(l)
k } and {β(l)

k }. To this end, define

K
(l)
2k = arg min

W=W
(m)
2k ,m∈N(l)

c ∪{l}
J2(X

(l)
2k , Ỹ , U,W )−W

(l)
2k

L
(l)
2k = − ∂

∂W
J2(X

(l)
2k , Ỹ , U,W )

∣∣∣
W=W

(l)
2k

= −2(X
(l)
2k)

TX
(l)
2k(W

(l)
2k)

TΛ + 2(X
(l)
2k)

T(X
(l)
2k − U)Λ

− 2(X
(l)
2k)

TX
(l)
2k(W

(l)
2k)

TΘ+ 2(X
(l)
2k)

T(Ỹ − U)Θ

A
(l)
11,2k = trace(X

(l)
2k(K

(l)
2k )

T(Λ + Θ)K
(l)
2k (X

(l)
2k)

T)

A
(l)
12,2k = trace(X

(l)
2k(K

(l)
2k )

T(Λ + Θ)L
(l)
2k(X

(l)
2k)

T)

A
(l)
21,2k = trace(X

(l)
2k(L

(l)
2k)

T(Λ + Θ)K
(l)
2k (X

(l)
2k)

T)

A
(l)
22,2k = trace(X

(l)
2k(L

(l)
2k)

T(Λ + Θ)L
(l)
2k(X

(l)
2k)

T)

B
(l)
1,2k = trace(X

(l)
2k(K

(l)
2k )

T(Λ + Θ)W
(l)
2k(X

(l)
2k)

T)− trace((X
(l)
2k − U)ΛK

(l)
2k (X

(l)
2k)

T)

− trace((Ỹ − U)ΘK
(l)
2k (X

(l)
2k)

T)

B
(l)
2,2k = trace(X

(l)
2k(L

(l)
2k)

T(Λ + Θ)W
(l)
2k(X

(l)
2k)

T)− trace((X
(l)
2k − U)ΛL

(l)
2k(X

(l)
2k)

T)

− trace((Ỹ − U)ΘL
(l)
2k(X

(l)
2k)

T)

Here α
(l)
k and β

(l)
k are chosen so that W

(l)
2k+1 minimizes J2(X

(l)
2k , Ỹ , U,W ) when W is

replaced by W
(l)
2k+1. Then

∂

∂α
(l)
k

J2(X
(l)
2k , Ỹ , U,W

(l)
2k + α

(l)
k K

(l)
2k + β

(l)
k L

(l)
2k) = 0

∂

∂β
(l)
k

J2(X
(l)
2k , Ỹ , U,W

(l)
2k + α

(l)
k K

(l)
2k + β

(l)
k L

(l)
2k) = 0
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namely

A
(l)
11,2kα

(l)
k + A

(l)
12,2kβ

(l)
k +B

(l)
1,2k = 0

A
(l)
21,2kα

(l)
k + A

(l)
22,2kβ

(l)
k +B

(l)
2,2k = 0

Using the Cramer’s rule, these two equations can be solved for α
(l)
k and β

(l)
k :

α
(l)
k =

∣∣∣∣∣∣∣
−B(l)

1,2k A
(l)
12,2k

−B(l)
2,2k A

(l)
22,2k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A

(l)
11,2k A

(l)
12,2k

A
(l)
21,2k A

(l)
22,2k

∣∣∣∣∣∣∣
=

B
(l)
2,2kA

(l)
12,2k −B

(l)
1,2kA

(l)
22,2k

A
(l)
11,2kA

(l)
22,2k − A

(l)
21,2kA

(l)
12,2k

β
(l)
k =

∣∣∣∣∣∣∣
A

(l)
11,2k −B(l)

1,2k

A
(l)
21,2k −B(l)

2,2k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A

(l)
11,2k A

(l)
12,2k

A
(l)
21,2k A

(l)
22,2k

∣∣∣∣∣∣∣
=

B
(l)
1,2kA

(l)
21,2k −B

(l)
2,2kA

(l)
11,2k

A
(l)
11,2kA

(l)
22,2k − A

(l)
21,2kA

(l)
12,2k

where

∣∣∣∣∣∣∣
a b

c d

∣∣∣∣∣∣∣ is a 2 by 2 determinant whose result is ad− bc.

To determine γ
(l)
k and δ

(l)
k , we will take a similar approach to the above method.

First, it follows from (4.1) that for any R, S ∈ RN×n and any α, β ∈ R,

ψ(X + αR + βS, U,W ) =
1

2
trace((X + αR + βS)T(X + αR + βS)P )−

trace((X + αR + βS)TQ)
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Lemma 11. For any R, S ∈ RN×n and any α, β ∈ R,

∂

∂α
ψ(X + αR + βS, U,W ) = α · trace(RTRP ) + β · trace(RTSP )

+trace(RTXP )− trace(RTQ)

∂

∂β
ψ(X + αR + βS, U,W ) = α · trace(STRP ) + β · trace(STSP )

+trace(STXP )− trace(STQ)

Proof: Note that

∂

∂α
ψ(X + αR + βS, U,W ) =

1

2
trace(RT(X + αR + βS)P )

+
1

2
trace((X + αR + βS)TRP )− trace(RTQ)

= trace(RT(X + αR + βS)P )− trace(RTQ)

= α · trace(RTRP ) + β · trace(RTSP ) + trace(RTXP )

− trace(RTQ)

∂

∂α
ψ(X + αR + βS, U,W ) =

1

2
trace(ST(X + αR + βS)P )

+
1

2
trace((X + αR + βS)TSP )− trace(STQ)

= trace(ST(X + αR + βS)P )− trace(STQ)

= α · trace(STRP ) + β · trace(STSP ) + trace(STXP )

− trace(STQ)

■
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Now Lemma 10 is used to find out {γ(l)k } and {δ(l)k }. Define

R
(l)
2k = arg min

X=X
(m)
2k ,m∈N(l)

c ∪{l}
ψ(X,U,W

(l)
2k+2)−X

(l)
2k

S
(l)
2k = − ∂

∂XT
ψ(X,U,W

(l)
2k+2)

∣∣∣∣
X=X

(l)
2k

= −X
(l)
2k

(
In −W

(l)
2k+2

)T(
In −W

(l)
2k+2

)
+ U

(
In −W

(l)
2k+2

)
P

(l)
2k =

(
In −W

(l)
2k+2

)T(
In −W

(l)
2k+2

)
Q

(l)
2k = U

(
In −W

(l)
2k+2

)
E

(l)
11,2k = trace((R

(l)
2k)

TR
(l)
2kP

(l)
2k )

E
(l)
12,2k = trace(R

(l)
2kS

(l)
2kP

(l)
2k )

E
(l)
21,2k = trace((S

(l)
2k )

TR
(l)
2kP

(l)
2k )

E
(l)
22,2k = trace((S

(l)
2k )

TS
(l)
2kP

(l)
2k )

F
(l)
1,2k = trace((R

(l)
2k)

TX
(l)
2kP

(l)
2k )− trace((R

(l)
2k)

TQ
(l)
2k)

F
(l)
2,2k = trace((S

(l)
2k )

TX
(l)
2kP

(l)
2k )− trace((S

(l)
2k )

TQ
(l)
2k)

Here we choose γ
(l)
k and δ

(l)
k so that X

(l)
2k+1 minimizes ψ(X,U,W

(l)
2k+2) when X is

replaced by X
(l)
2k+1. Then we have

∂

∂γ
(l)
k

ψ(X
(l)
2k + γ

(l)
k R

(l)
2k + δ

(l)
k S

(l)
2k , U,W

(l)
2k+2) = 0

∂

∂δ
(l)
k

ψ(X
(l)
2k + γ

(l)
k R

(l)
2k + δ

(l)
k S

(l)
2k , U,W

(l)
2k+2) = 0
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namely

E
(l)
11,2kγ

(l)
k + E

(l)
12,2kδ

(l)
k + F

(l)
1,2k = 0

E
(l)
21,2kγ

(l)
k + E

(l)
22,2kδ

(l)
k + F

(l)
2,2k = 0

Again, using the Cramer’s rule, we can solve these two equations for γ
(l)
k and δ

(l)
k :

γ
(l)
k =

∣∣∣∣∣∣∣
−F (l)

1,2k E
(l)
12,2k

−F (l)
2,2k E

(l)
22,2k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
E

(l)
11,2k E

(l)
12,2k

E
(l)
21,2k E

(l)
22,2k

∣∣∣∣∣∣∣
=

F
(l)
2,2kE

(l)
12,2k − F

(l)
1,2kE

(l)
22,2k

E
(l)
11,2kE

(l)
22,2k − E

(l)
21,2kE

(l)
12,2k

(4.17)

δ
(l)
k =

∣∣∣∣∣∣∣
E

(l)
11,2k −F (l)

1,2k

E
(l)
21,2k −F (l)

2,2k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
E

(l)
11,2k E

(l)
12,2k

E
(l)
21,2k E

(l)
22,2k

∣∣∣∣∣∣∣
=

F
(l)
1,2kE

(l)
21,2k − F

(l)
2,2kE

(l)
11,2k

E
(l)
11,2kE

(l)
22,2k − E

(l)
21,2kE

(l)
12,2k

(4.18)

Type II. The second type considers the case where a = 1 or ∞. In this case, the

cost function Ja(·, ·, ·,W ) is not differentiable with respect to W . We propose a non-

smooth semi-distributed algorithm inspired by [14]. The first part of the algorithm

is to update W in two steps:

W
(l)
2k+1 = W

(l)
2k + α

(l)
k

[
arg min

W=W
(m)
2k ,m∈N(l)

c ∪{l}
Ja(X

(l)
2k , Ỹ , U,W )−W

(l)
2k

]
◦ C

+ β
(l)
k

[
arg min

W=W
(m)
2s ,m∈N(l)

c ∪{l},s=0,1,...,k

Ja(X
(l)
2k , Ỹ , U,W )−W

(l)
2k

]
◦ C

W
(l)
2k+2 = argmin

W

[ ∑
m∈N(l)

c ∪{l}

∥W −W
(m)
2k+1∥

2
F

]



39

Here the term

arg min
W=W

(m)
2k ,m∈N(l)

c ∪{l}
Ja(X

(l)
2k , Ỹ , U,W )−W

(l)
2k

represents the difference between the local best solution among node l’s neighbors at

the moment and the node l’s current state in Gc. The term

arg min
W=W

(m)
2s ,m∈N(l)

c ∪{l},s=0,1,...,k

Ja(X
(l)
2k , Ỹ , U,W )−W

(l)
2k

represents the difference between the global best solution among node l’s neighbors

up to now and the node l’s current state in Gc.

Since Ja(·, ·, ·,W ), a ∈ {1,∞}, is not differentiable with respect to W , one cannot

use Lemma 10 to determine α
(l)
k and β

(l)
k . Instead a heuristic approach is taken by

selecting small positive values for α
(l)
k and β

(l)
k .

Then the update of X is given by a similar two-step algorithm:

X
(l)
2k+1 = X

(l)
2k + γ

(l)
k

[
arg min

X=X
(m)
2k ,m∈N(l)

c ∪{l}
ψ(X,U,W

(l)
2k+2)−X

(l)
2k

]
+ δ

(l)
k

[
arg min

X=X
(m)
2s ,m∈N(l)

c ∪{l},s=0,1,...,k

ψ(X,U,W
(l)
2k+2)−X

(l)
2k

]
X

(l)
2k+2 = argmin

X

[ ∑
m∈N(l)

c ∪{l}

∥X −X
(m)
2k+1∥

2
F

]

The parameters γ
(l)
k and δ

(l)
k can determined by a similar approach which results in

(4.17) and (4.18) with one minor change on S
(l)
2k given by

S
(l)
2k = arg min

X=X
(m)
2s ,m∈N(l)

c ∪{l},s=0,1,...,k

ψ(X,U,W
(l)
2k+2)−X

(l)
2k
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Chapter 5

A non-cooperative game approach to modeling the negative

impact on variable correlation

In the cooperative game, there are two types of uncertainty existing in the model (2.6):

∆yi and ∆xj. More importantly, it is assumed there is no deterministic or stochastic

property or structure for them. They are just part of the information embedded in

the measurement X̃ and Ỹ . Once the relevant data for (2.6) is obtained, uncertainty

may exist in the measurement and the proposed cost function Ja(X̃, Ỹ , U,W ), a ∈

{1, 2,∞} was to minimize its impact on the model (2.6).

To model the non-cooperative game for (2.6), a different setup from the cooper-

ative game is considered. In this setup, when each player sends its information to

another player, they intentionally distort their information by adding extra pertur-

bation [15]. In particular, each player i ∈ {1, . . . , n} sets the output

ỹi = zi + wi

where wi is independent and identically distributed (i.i.d.) with zero mean and vari-

ance σ2
i .

Unlike [15], here zi is not independent of neighboring state uncertainty ∆xj,

(i, j) ∈ E. In fact, since zi =
∑

(i,j)∈E aijx̃j + ui and x̃j = xj + ∆xj, it follows
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that

zi =
∑

(i,j)∈E

aijxj +
∑

(i,j)∈E

aij∆xj + ui

which leads to

ỹi =
∑

(i,j)∈E

aijxj +
∑

(i,j)∈E

aij∆xj + wi + ui

Here xj and ui are both deterministic. The above equation reveals an interesting fact

that ỹi has two types of uncertainty: wi and
∑

(i,j)∈E aij∆xj. The first uncertainty

wi is set up by player i itself while the second one,
∑

(i,j)∈E aij∆xj, is induced by the

neighboring state uncertainty, ∆xj.

In general, a player intends to protect its real information by adding a perturbation

to publicly available data during nuclear escalation. This translates into the language

in the model that the uncertainty level for both wi and ∆xi can be manipulated. Each

player can manipulate the uncertainty level for both wi and ∆xi so that ỹi is distorted

jointly by player i and all the other neighboring players j, (i, j) ∈ E.

To deal with this more involved case, assume ∆xj is i.i.d. with zero mean and

variance χ2
j , wi and ∆xs are independent, and i, s = 1, . . . , n. Furthermore, assume

1) the noise level for wi can be intentionally manipulated so that σ2
i varies in the

interval [σ2
min, σ

2
min + σ2

max], where σ
2
min denotes the inherent minimal noise level

and σ2
max denotes the maximally manipulated noise level;

2) the noise level for χ2
j can be intentionally manipulated so that it varies in the

interval [χ2
min, χ

2
min+χ

2
max], where χ

2
min denotes the inherent minimal noise level

and χ2
max denotes the maximally manipulated noise level. Assume that σ2

min,
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χ2
min, σ

2
max, and χ

2
max are known.

Let E denote the expectation operator. In summary, the new model with stochas-

tic uncertainty for the non-cooperative game becomes

zi =
∑

(i,j)∈E

aijx̃j + ui, i = 1, . . . , n (5.1)

x̃j = xj +∆xj (5.2)

ỹi = zi + wi (5.3)

where wi and ∆xj satisfy

E[wi] = 0, E[w2
i ] = σ2

i , E[wiwj] = 0, i ̸= j (5.4)

E[∆xj] = 0, E[(∆xj)2] = χ2
j , E[∆xj∆xi] = 0, i ̸= j (5.5)

E[wi∆xs] = 0, i, s = 1, . . . , n (5.6)

Next, let µi, κi > 0 be chosen later and consider N repeated measurements for

each x̃i, ỹi, and ui, denoted by x̃li, ỹli, and uli. Similar to the cooperative game case,
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we consider a LSM function given by

Jg(X̃, Ỹ , U,W ) =
N∑
l=1

n∑
i=1

µi

[
ỹli −

( ∑
(i,j)∈E

aijx̃lj + uli

)]2

+
N∑
l=1

n∑
i=1

κi

[
x̃li −

( ∑
(i,j)∈E

aijx̃lj + uli

)]2
= trace((Ỹ − U − X̃WT)Φ(Ỹ − U − X̃WT)T)

+ trace((X̃ − U − X̃WT)Ψ(X̃ − U − X̃WT)T)

= trace((Ỹ − U − X̃WT)T(Ỹ − U − X̃WT)Φ)

+ trace((X̃ − U − X̃WT)T(X̃ − U − X̃WT)Ψ)

where Φ = diag(µ1, . . . , µn) and Ψ = diag(κ1, . . . , κn). Since X̃ and Ỹ now are

stochastic, we are interested in averaging out the stochastic effect and calculating

E[Jg(X̃, Ỹ , U,W )]

Lemma 12.

E[Jg(X̃, Ỹ , U,W )] = trace((Y − U −XWT)Φ(Y − U −XWT)T)

+trace((X − U −XWT)Ψ(X − U −XWT)T) + F (W )

where

F (W ) = N
n∑

i=1

(σ2
i µi + χ2

iκi) +N · trace(diag(χ2
1, · · · , χ2

n)W
T(Φ + Ψ)W )

− 2N · trace(diag(χ2
1, · · · , χ2

n)W
TΨ)
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Proof: Note that

Jg(X̃, Ỹ , U,W ) = trace((Ỹ − U − X̃WT)T(Ỹ − U − X̃WT)Φ)

+ trace((X̃ − U − X̃WT)T(X̃ − U − X̃WT)Ψ)

and

(Ỹ − U − X̃WT)T(Ỹ − U − X̃WT) = (Ỹ − U)T(Ỹ − U) +WX̃TX̃WT

− 2(Ỹ − U)TX̃WT

= Ỹ TỸ + UTU − 2Ỹ TU +WX̃TX̃WT

− 2Ỹ TX̃WT + 2UTX̃WT

(X̃ − U − X̃WT)T(X̃ − U − X̃WT) = (X̃ − U)T(X̃ − U) +WX̃TX̃WT

− 2(X̃ − U)TX̃WT

= X̃TX̃ + UTU − 2X̃TU +WX̃TX̃WT

− 2X̃TX̃WT + 2UTX̃WT

Since X̃ = X +∆X and Ỹ = Y +∆Y , it follows that E[X̃] = X and E[Ỹ ] = Y .

Furthermore,

E[X̃TX̃] = E[XTX + 2XT∆X + (∆X)T∆X] = XTX +N · diag(χ2
1, · · · , χ2

n)

E[Ỹ TỸ ] = E[Y TY + 2Y T∆Y + (∆Y )T∆Y ] = Y TY +N · diag(σ2
1, · · · , σ2

n)

E[Ỹ TX̃] = E[Y TX + (∆Y )TX + Y T∆X + (∆Y )T∆X] = Y TX
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Then we have

E[(Ỹ − U − X̃WT)T(Ỹ − U − X̃WT)Φ] = Y TY Φ +N · diag(σ2
1, · · · , σ2

n)Φ

+ UTUΦ− 2Y TUΦ

+WXTXWTΦ

+N ·Wdiag(χ2
1, · · · , χ2

n)W
TΦ

− 2Y TXWTΦ + 2UTXWTΦ

= trace((Y − U −XWT)

Φ(Y − U −XWT)T)

+N
n∑

i=1

σ2
i µi

+N · trace(diag(χ2
1, · · · , χ2

n)W
TΦW )
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Similarly,

E[(X̃ − U − X̃WT)T(X̃ − U − X̃WT)Ψ] = XTXΨ+N · diag(χ2
1, · · · , χ2

n)Ψ

+ UTUΨ− 2XTUΨ

+WXTXWTΨ

+N ·Wdiag(χ2
1, · · · , χ2

n)W
TΨ

− 2XTXWTΦ

− 2N · diag(χ2
1, · · · , χ2

n)W
TΨ

+ 2UTXWTΨ

= trace((X − U −XWT)

Ψ(X − U −XWT)T)

+N
n∑

i=1

χ2
iκi

+N · trace(diag(χ2
1, · · · , χ2

n)W
TΨW )

− 2N · trace(diag(χ2
1, · · · , χ2

n)W
TΨ)

Hence,

E[Jg(X̃, Ỹ , U,W )] = trace((Y − U −XWT)Φ(Y − U −XWT)T)

+ trace((X − U −XWT)Ψ(X − U −XWT)T)

+N
n∑

i=1

σ2
i µi +N · trace(diag(χ2

1, · · · , χ2
n)W

TΦW )

+N

n∑
i=1

χ2
iκi +N · trace(diag(χ2

1, · · · , χ2
n)W

TΨW )

− 2N · trace(diag(χ2
1, · · · , χ2

n)W
TΨ)
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■

Thus, E[Jg(X̃, Ỹ , U,W )] consists of two parts: the deterministic LSM function

trace((Y − U −XWT)Φ(Y − U −XWT)T)+

trace((X − U −XWT)Ψ(X − U −XWT)T)

and the cost due to the uncertainty impact F (W ). It is clear that the deterministic

LSM is independent of σ2
i and χ2

i . It is more used to describe the cooperative part of

variable correlation as formulated before. On the other hand, F (W ) is related to σ2
i

and χ2
i . Hence, for the proposed non-cooperative game that can intentionally modify

the variance of data, F (W ) is one metric which measures the degree of manipulation.

Motivated by this observation consider the following general optimization problem

min
A
F (A)

where A can choose any element in Rn×n, not restricted to the ones who have the

same topology as G.

Lemma 13. Let A∗ = argminA F (A). Then

F (A∗) = N

n∑
i=1

(σ2
i µi + χ2

iκi)−N

n∑
i=1

χ2
iκ

2
i

µi + κi

Proof: Let X = diag(χ2
1, · · · , χ2

n). Then the solution to the original optimization

problem minA F (A) is the same as the solution to the following optimization problem

min
A

trace
[
XAT(Φ + Ψ)A− 2XATΨ

]
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Note that

∂

∂A
trace[XAT(Φ + Ψ)A] =

∂

∂A
trace[(Φ + Ψ)AXAT] = 2XAT(Φ + Ψ)

∂

∂A
trace[XATΨ] =

∂

∂A
trace[ΨAX] =

∂

∂A
trace[XΨA] = XΨ

Hence,

∂

∂A
trace

[
XAT(Φ + Ψ)A− 2XATΨ

]
= 2XAT(Φ + Ψ)− 2XΨ

Setting this equation to be zero yields

2XAT(Φ + Ψ)− 2XΨ = 0

and hence,

A∗ = (Φ + Ψ)−1Ψ

Substituting this A∗ into F (A) yields

F (A∗) = N

n∑
i=1

(σ2
i µi + χ2

iκi)−N · trace(X(Φ + Ψ)−1Ψ2)

= N

n∑
i=1

(σ2
i µi + χ2

iκi)−N

n∑
i=1

χ2
iκ

2
i

µi + κi

■

Now choose

µi =
1

σ2
i

, κi =
1

χ2
i
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to normalize variance manipulation in the cost E[Jg(X̃, Ỹ , U,W )] so that the first

term in F (A) becomes a constat,

N
n∑

i=1

(σ2
i µi + χ2

iκi) = N

n∑
i=1

(1 + 1) = 2nN

The rest term of F (A) becomes

−N
n∑

i=1

χ2
iκ

2
i

µi + κi
= −N

n∑
i=1

1
χ2
i

1
σ2
i
+ 1

χ2
i

Motivated by the above formulation, we can define a non-cooperative game whose

players can intentionally change σ2
i and χ2

j so that the variance of wi and ∆xj are

manipulated due to data privacy and security concerns.

G = ⟨V, ([1/σ2, 1]n, [1/χ2, 1]n), (Ji)i∈V ⟩

is denoted as the game with a set of players V = {1, . . . , n}, where each player i ∈ V

chooses its action pair (pi, qi) in its action set ([1/(σ2
min + σ2

max), 1/σ
2
min]

n, [1/(χ2
min +

χ2
max), 1/χ

2
min]

n) to minimize the following cost

Ji((pi, qi), (p−i, q−i)) = ci∥(pi, qi)∥ℓℓ +
1

2nN
F (A∗)

where ci > 0, ℓ ≥ 1, and σ2
i ∈ [σ2

min, σ
2
min + σ2

max], χi ∈ [χ2
min, χ

2
min + χ2

max],

pi =1/σ2
i

qi =1/χ2
i

F (A∗) =2nN −N

n∑
i=1

1
χ2
i

1
σ2
i
+ 1

χ2
i
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Standard notation, (p−i, q−i), is used to denote the collection of action pairs for all

players except i.

In summary, the non-cooperative game based approach is to solve a zero-sum

game whose local optimization problem for each agent i is given by

min
(pi,qi)

Ji((pi, qi), (p−i, q−i)) (5.7)

that is, one needs to solve the following n local optimization problems simultaneously

min
(p1,q1)

J1((p1, q1), (p−1, q−1))

min
(p2,q2)

J2((p2, q2), (p−2, q−2))

...

min
(pn,qn)

Jn((pn, qn), (p−n, q−n))

Note that ∥(x, y)∥ℓ = (|x|ℓ + |y|ℓ)1/ℓ for x, y ∈ R. Then ∥(pi, qi)∥ℓℓ = |pi|ℓ + |qi|ℓ. In

this project, we consider ℓ ∈ {1, 2}.

An approach similar to the Type II algorithm is used to develop a numerical

optimization solver for (pi, qi). In particular, the following two-step algorithm (l =
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1, . . . ,M) is proposed:

(p
(l)
i,2k+1, q

(l)
i,2k+1) = (p

(l)
i,2k, q

(l)
i,2k)

+ α
(l)
k

[
arg min

(pi,qi)=(p
(m)
i,2k,q

(m)
i,2k),m∈N(l)

c ∪{l}
Ji((pi, qi), (p

(l)
−i,2k, q

(l)
−i,2k))

− (p
(l)
i,2k, q

(l)
i,2k)

]
+ δ

(l)
k

[
arg min

(pi,qi)=(p
(m)
i,2s ,q

(m)
i,2s ),m∈N(l)

c ∪{l},s=0,1,...,k

Ji((pi, qi), (p
(l)
−i,2k, q

(l)
−i,2k))

− (p
(l)
i,2k, q

(l)
i,2k)

]
(p

(l)
i,2k+2, q

(l)
i,2k+2) = arg min

(pi,qi)

[ ∑
m∈N(l)

c ∪{l}

∥(pi, qi)− (p
(m)
i,2k+1, q

(m)
i,2k+1)∥

2
F

]
,

i = 1, . . . , n, k = 0, 1, 2, . . .

Once the best result for (pi, qi) are obtained, the result will be used to 1) generate

a set of measurements X̃ and Ỹ based on the best σ2
i = 1/pi and χ2

i = 1/qi, and

2) replace the diagonal elements in Φ and Ψ in the LSM function Jg(X̃, Ỹ , U,W ) by

setting µi = pi and κi = qi.

Next, this updated LSM function with new Φ and Ψ will be used to solve the

following optimization problem

min
W∈Rn×n(G)

E[Jg(X̃, Ỹ , U,W )]

to obtain the best W ∗. This can be done by using a similar two-step numerical
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algorithm:

W
(l)
2k+1 = W

(l)
2k + α

(l)
k

[
arg min

W=W
(m)
2k ,m∈N(l)

c ∪{l}
E[Jg(X̃, Ỹ , U,W )]−W

(l)
2k

]
◦ C

+ β
(l)
k

[
arg min

W=W
(m)
2s ,m∈N(l)

c ∪{l},s=0,1,...,k

E[Jg(X̃, Ỹ , U,W )]−W
(l)
2k

]
◦ C

W
(l)
2k+2 = argmin

W

[ ∑
m∈N(l)

c ∪{l}

∥W −W
(m)
2k+1∥

2
F

]

When implementing this algorithm, one needs the information of X and Y due to the

fact that

E[Jg(X̃, Ỹ , U,W )]

contains the deterministic cost

trace((Y − U −XWT)Φ(Y − U −XWT)T)

+trace((X − U −XWT)Ψ(X − U −XWT)T)
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Note that

Ỹ =

[
ỹ[1] ỹ[2] . . . ỹ[N ]

]T
=



ỹ11 ỹ12 · · · ỹ1n

ỹ21 ỹ22 · · · ỹ2n
...

...
. . .

...

ỹN1 ỹN2 · · · ỹNn



X̃ =

[
x̃[1] x̃[2] . . . x̃[N ]

]T
=



x̃11 x̃12 · · · x̃1n

x̃21 x̃22 · · · x̃2n
...

...
. . .

...

x̃N1 x̃N2 · · · x̃Nn


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Then Y and X are given by

Y = E[Ỹ ] =



E[ỹ11] E[ỹ12] · · · E[ỹ1n]

E[ỹ21] E[ỹ22] · · · E[ỹ2n]
...

...
. . .

...

E[ỹN1] E[ỹN2] · · · E[ỹNn]


=



y1 y2 · · · yn

y1 y2 · · · yn
...

...
. . .

...

y1 y2 · · · yn



=



1

1

...

1


⊗
[
y1 y2 · · · yn

]

X = E[X̃] =



E[x̃11] E[x̃12] · · · E[x̃1n]

E[x̃21] E[x̃22] · · · E[x̃2n]
...

...
. . .

...

E[x̃N1] E[x̃N2] · · · E[x̃Nn]


=



x1 x2 · · · xn

x1 x2 · · · xn
...

...
. . .

...

x1 x2 · · · xn



=



1

1

...

1


⊗
[
x1 x2 · · · xn

]

where xi and yi can be approximated by using the measurement data x̃ji and ỹji as
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follows

xi ≈
1

N

N∑
j=1

x̃ji

yi ≈
1

N

N∑
j=1

ỹji

Finally, letW ∗
pro denote the estimated coefficient matrix via the proposed coopera-

tive game approach andW ∗
con denote the estimated coefficient matrix via the proposed

non-cooperative game approach. Then the overall estimate to consider both pro and

con correlation effects between variables is given by the following form

W = (1− d)W ∗
pro + dW ∗

con (5.8)

where d ∈ [0, 1] is an index representing the probabilistic chance of leaning toward the

pro or con effect for W . For example, for the balanced case of 50% of the pro effect

and 50% of the con effect, one can choose d = 0.5. Alternatively, for the case of 30%

of the pro effect and 70% of the con effect, one can choose d = 0.7. One key aspect

of determining such d for nuclear competing modeling is that the value of d may be

dynamically changing due to the escalation process. In this case, d = dt is not fixed

and needs to be adjusted within several possible choices. For example, d could be

varying among 0.2, 0.5, and 0.8, depending on the situation assessment and human

decision maker’s perception. To address this issue, a human-cognition-in-the-loop

decision-making method to dynamically update d will be introduced later..
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Chapter 6

Simulations of Cooperative and Non-cooperative Games

In this section, the preliminary simulation details and results for the proposed multi-

agent hybrid game are outlined. The software, MATLAB R2021b, is used to apply

and test the proposed game approaches by means of randomly generated data.

The cooperative game was simulated as follows. First, an input U = [Uij]i=1,...,N,j=1,...,n

to the model is considered. For this simulation, U ∈ RN×n is a randomly generated

matrix whose entries are randomly chosen in the interval [1, 10]. Here, n is is the num-

ber of escalation factors considered and N is the number of different measurements

for those escalation factors. Continuing on, X, Y , and Z are all matrices that are ini-

tialized prior to the simulation where X, Y , and Z ∈ RN×n. X = [Xij]i=1,...,N,j=1,...,n

is initialized then Z and Y are calculated using Equations (2.12) and (2.15) respec-

tively. The initial values of the parameters outlined in this section are shown in Table

6.1. Next, the topology of C is shown in Figure 6.1 and A = [aij]i,j=1,...,n is initialized,

where C and A ∈ Rn×n. Now, W can be calculated as the Hadamard product of

A and C. Next, the algorithm uses a two-step optimization formulation where each

agent l is in the set of M number of agents. The weights for each optimization,

Λ ∈ Rn×n and Θ ∈ Rn×n, are the given. Here, Λ and Θ are diagonal matrices whose

values on the diagonal are equal to λ and θ as shown in Table 6.1. Next, each of the

parameter sequences, α, β, δ, and γ, was set to a small value. Lastly, the neighboring
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Figure 6.1: Graph topology of C.

set of agent l is Nc, and the number of elements in Nc is 2 for each agent.

The algorithm ran for k iterations where k ≤10000. In order to obtain a better

estimation of the value forWpro, the process was repeated until there were 20 runs that

reached convergence. The topology of the matrix Wpro is shown in Figure 6.2. This

figure shows that the proposed algorithm will converge and give credible information

for random inputs. The topology shown here is equivalent to the SEM (2.1)–(2.5).

While random values were used for the initial simulation above, nuclear competing

factors can be adapted to fit into the algorithm. Here, five competing factors (n = 5)

are considered: defense budget, number of aircraft, ground vehicles, sea vessels, and

military personnel, for the proposed model. It was assumed that during a nuclear

competing escalation, the proposed SEM has the graph topology given by Figure 6.1,

that is, the additional defense budget for countering nuclear escalation is mainly allo-
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Table 6.1: Parameter Inputs to the Proposed Algorithm

Parameter Name Parameter Value

Uij 1:10
N 1
n 5
Xij 1
aij 1
λ 1
θ 1
α .001
β .001
δ .001
γ .001
M 4
|Nc| 2

cated to aircraft for conducting a lot of surveillance and reconnaissance; the number

of ground vehicles serving as possible reinforcement should correlate and match pro-

portionally with the number of aircraft; the number of sea vessels is strongly related

to both the defense budget and the number of ground vehicles; and the deployable

military personnel are closely related to the number of ground vehicles and sea ves-

sels, while the Air Force crew are hard to be recruited in a short period of time due

to their existing surveillance and reconnaissance duties and the number limitation on

pilots. Each competing factor is a component value in X for a given agent l. Using

this information, the next simulation was run with the nuclear competing factors.

The initial value of X is a random value drawn between the minimum and maximum

parameter values shown in Table 6.2 and U is a zero matrix. In order to obtain a

higher convergence rate for the algorithm, the values of X were normalized to values

between 0 and 1. The scaling factors are also shown in Table 6.2. The topology of the

algorithm was kept constant and the simulation ran until 20 convergence results were
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Figure 6.2: Graph topology of Wpro with the weights on each edge.

output. The average of these 20 runs was re-scaled according to the scaling factors in

Table 6.2. Here, the resulting X in Equation (6.1) gives the convergent outcome of

the players in the cooperative game. Specifically, X, shown in Equation (6.1), gives a

steady-state value of nuclear competing factors for player 1 after gaming, indicating

an equilibrium pattern for military deployment and resource allocation. The result-

ing matrix Wpro for this cooperative game is shown in Equation (6.2). Here, Wpro

gives the weight matrix that optimizes the cooperative game for each player. Thus,

the obtained model (2.6) has the following specific form to quantify the correlation
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between these five factors:

X[2] = 2.4543 ·X[1]

X[3] = 1.2465 ·X[2]

X[4] = 5.8648 ·X[1] + 2.0378 ·X[3]

X[5] = 2.0442 ·X[3] + 0.8173 ·X[4]

where the coefficients represent the degree of correlation between relevant competing

factors.

Table 6.2: Nuclear Competing Factors X

Parameter Label Parameter Name Parameter Value Scaling Factor

min max
Defense Budget X[1] 6.34e8 7.405e11 1e12

Aircraft X[2] 6.7e1 1.323e4 1e5
Ground Vehicles X[3] 1.195e3 5.301e4 1e5

Sea Vessels X[4] 0 4.90e2 1e3
Military Personnel X[5] 2.593e5 2.2455e6 1e7

X =



3.46e10

1.292e4

1.305e4

3.882e2

5.809e6


(6.1)
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Wpro =



0 0 0 0 0

3.3849 0 0 0 0

0 0.94840 0 0

5.6293 0 1.4917 0 0

0 0 1.8239 1.0384 0


(6.2)

Following the cooperative game, the non-cooperative game was simulated as fol-

lows. First each players action pair (pi, qi) was initialized as a random value in the

interval [0, 1], where i = 1, . . . , n. Here, n is the number of players in the non-

cooperative game. Then, the graph topology of C is setup. The topology is equal to

the topology in the cooperative game and can be seen in Figure 6.1. Next the initial

W was calculated, just as in the cooperative game. The initial values for these param-

eters and the remaining parameters that were used are shown in Table 6.3. Next, the

algorithm uses a two-step optimization formulation to solve for the action pair. Here

each agent l is in the set of M number of agents. Then, the algorithm uses another

two-step optimization formulation to solve for Wcon. To solve this optimization, xi

and yi are formulated according to Equations (5.2) and (5.3).

The non-cooperative game ran for k iterations where k ≤10000. In order to obtain

a better estimation of the value for Wcon, the process was repeated until there were

20 runs that reached convergence. The resulting matrixWcon for this non-cooperative

game is shown in Equation (6.3). Here, W gives the weight matrix that optimizes

the non-cooperative game for each player.
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Table 6.3: Parameter Inputs to the Proposed Algorithm

Parameter Name Parameter Value

pi 0:1
qi 0:1
ci 1
N 1
n 5
l 1
aij 1
α .001
β .001
δ .001
M 4
|Nc| 2

Wcon =



0 0 0 0 0

0.4736 0 0 0 0

0 0.53780 0 0

.04973 0 0.5431 0 0

0 0 0.5540 0.4938 0


(6.3)

Finally, withWpro andWcon, Equation (5.8) can be used to find the value ofW for

agents competing in a mixed game consisting of both cooperative and non-cooperative

gaming. Here, d is equal to .5, which weights the cooperative and non-cooperative

game evenly. The value of W is shown in Equation (6.4).
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W =



0 0 0 0 0

1.9292 0 0 0 0

0 0.74310 0 0

3.0633 0 1.0174 0 0

0 0 1.1890 0.7661 0


(6.4)

The above results for Wpro, Wcon, and W outline relationship among competing

agents in a cooperative and non-cooperative gaming scenario. By comparing Wpro

and Wcon, it can be be seen that the values of Wpro are greater than Wcon. This

outcome was expected, as agents that partake in a cooperative game will form a

greater positive correlation among one another. During this simulation, the value of

W is the average of Wpro, Wcon, since d is .5. To play a more dynamic game, the the

value of d can be varied as the game is played. The simulations for Task 2 will explore

this dynamic game by formulating d according to a multi-cue multi-choice model.
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Chapter 7

Modeling the human behavior involved in decision making

dynamics on different factors during escalation

The middle layer model utilizes a decision tree graph, a multirace network, and

diffusion-based integrator dynamics together to mimic multiplayer decision making

behavior with different degrees of adversarial structures among nuclear superpow-

ers. The competing escalation dynamics are captured not only from an informatics

perspective but also from a sociological perspective.

The human decision-making dynamics are modeled via multi-cue multi-choice

tasks. The human decision-making behavior is incorporated into escalation dynamics

by using a decision tree based multi-cue multi-choice task model to weigh in. To start

with, we first introduce the multi-cue multi-choice task model for decision making.

This multi-cue, multi-race model is a combination of a neural network with a multi-

agent, multitask modeling idea. It describes the dynamic evolution of probabilistic

information, quantified by a decision variable similar to Shannon Entropy in infor-

mation theory, for making decision on different choices under difference cues. Before

the model is introduced, some existing decision-making models are reviewed.

First, single-cue two-choice tasks are outlined. Here, mathematical representations

of the human decision-making process analyze the simple two-alternative forced choice
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ACC/OFC

a1 , a2 , ... ,am,..

q1 , q2 , ... ,qm,..

t1 , t2 , ... ,tl,... 

POOL 1

γI

POOL 2 POOL i...

Evidence Sj

LC-NE γE

Cue order and
time schedule

Figure 7.1: Illustration of the MCMC task process. The model is governed by multiple O-U
processes with external evidence Sj in multiple pools. The LE-NE method with ACC/OFC is used to
adjust the cue order qm, selection strategy parameters am, and time schedule tl for multiple pools. γE
and γI are excitatory and inhibitory gains that represent mutual inhibition between different pools.

(2AFC) decision task [2]. Using the optimal sequential probability ratio test [6],

the process on its continuum limit converges to a drift diffusion model if symmetric

threshold is assumed. In this case, the decision variable for a noisy evidence can

be modeled by a one-dimensional Wiener process bounded by positive and negative

thresholds where an integrator accumulates the difference between two choices [2].

In order to reflect the effect of bounded accuracy and forgotten information, the

drift diffusion integrators [2] are considered imperfect and leaky in the form of the

Ornstein-Uhlenbeck (O-U) process. Although these models capture simple human

decision making [2], they are only valid for 2AFC tasks, not for more general MCMC

tasks [20].

Next, multi-cue two-choice tasks will be outlined. Here, real-world decision-

making applications involve several cues [20]. One method of modeling multi-cue
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tasks is to combine and integrate all cues in favor of each choice into a single source

of evidence, ensuring that this source is used throughout the decision process. More

involved treatment includes separate processes for each cue. Two important aspects

of this approach are the order of considering the cues and the process time devoted

to each cue. The time frame of this decision process can be divided into subintervals

with different lengths during which the attention focus is only one cue. This method

can address multiple cue issues. However, it is restricted to two alternative choices

and fails with three or more choices.

Next, single-cue multi-choice tasks are outlined. One method of modeling multi-

choice tasks is to separate leaky competing integrators and represent each choice with

mutual inhibition [21, 7, 8, 17]. Each integrator gathers information in favor of or

against the associated choice based on the value of the cue and the dynamics of each

integrator governed by the O-U process. This method can overcome the drawback of

two-choice modeling. However, it loses the ability to describe multi-cue tasks.

Lastly, multi-cue multi-choice tasks are outlined. In preliminary work [11, 9, 10],

a new leaky integrator race model was proposed to capture the dynamics of strategy

selection in multi-cue multi-choice (MCMC) tasks, continuously changing from com-

prehensive optimization (i.e., weighted-additive (WADD)), to simple heuristics (i.e.,

take-the-best (TTB)). This model, shown in Fig. 7.1, combines the multi-cue model,

multi-choice task, reaction time, and order scheduling concept to evaluate the impact

on the corresponding integrator at different time intervals. This scenario is quite

common when a decision maker faces different situations and prioritizes some tasks

by weighing the associated choices based on different cues. A neuromorphic approach,

the locus coeruleus-norepinephrine (LC-NE) method [9], was used in this model to

influence the decision-making outcome by controlling the excitatory and inhibitory

gains signaled from the orbitofrontal cortex (OFC) and the anterior cingulate cor-
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tex (ACC) in the brain. Although this theoretical model includes physiological and

psychological impacts on human decision making in an innovative way; it remains

unclear whether it traces real human decision making behavior under stress.

A MCMC task based method is proposed to determine d in (5.8) in an intelligent

and adaptive way. That is, the determination of d is through deep reinforcement

learning and the value of d is updated through an adaptive, iterative way to keep

up with the changes of MCMC task conditions and competing escalation situations.

Specifically, d is updated by a discrete MCMC model for mimicking human decision

making. To derive such a model, a fundamental 2AFC task is reviewed.

A review of continuous-time 2AFC Models is as follows. Assume that for a task

there are two choices S1 and S2 and evidence e presented in favor or against each

choice. Conditional probabilities p(e |S1) and p(e |S2) are probabilities (with mean

µ and variance σ2 ) of observing evidence e under the occurrence of S1 or S2. Then

the Bayes law gives

p(S1 | e) = p(e |S1)p(S1)
p(e)

Define the likelihood ratio as

LR(e) =
p(e |S1)
p(e |S2)

Assuming independent evidences we have

LR(e) =
p(S1 | e1 . . . eN)
p(S2 | e1 . . . eN)

=
N∏

n=1

p(en |S1)
p(en |S2)

Taking logarithm on both sides yields

In = I(n−1) + log
p(en |S1)
p(en |S2)
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where

I(n−1) =
n−1∑
n=1

log
p(en |S1)
p(en |S2)

Now let δIr has finite mean µ and variance σ2. Define a family of random func-

tions, indexed by M = 1, 2, . . . of t ∈ [0, T ], where T is large enough, as follows

IM(t) =
1√
M

k∑
r=1

(δIr − µ) +
1

M

k∑
r=1

δIr where k = ⌊Mt/T ⌋

where ⌊·⌋ denotes the floor function. For anyM , IM(t) has the mean value of µ⌊t/T ⌋

and variance σ2⌊t/T ⌋. According to Donsker invariance principle and the law of large

number,

IM −→
f
σW(t) + µt as M → ∞

The above expression means converge in distribution and W is standard Wiener

process. Hence, modeling the 2AFC task is given by the drift diffusion model (DDM)

dx = µdt+ σdW(t)

where x is called decision variable, which can be viewed as a continuum version of

IM .

The general solution to the DDM with the initial condition x(0) = 0 is given by

p(x, t) = N (µt, σ
√
t))

where N (µ, σ2) denotes the normal distribution with mean µ and variance σ2. If
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pi(ei|Si) ∼ N (µi, σ
2), then

p(ei|S1) =
1√
2πσ2

exp{−(ei − µ1)
2/2σ2}

p(ei|S2) =
1√
2πσ2

exp{−(ei − µ2)
2/2σ2}

Assume that the drift term is not constant and depends linearly to the decision

variable in the DDM. Then the O-U process is modeled as

dx = (µ+ λx)dt+ σdW

For λ < 0 the process is stable and the time dependent probability of x converges to

stationary normal distribution with mean of −µ/λ and variance of −σ2/2λ.

The discrete-time version of 2AFC models can be derived based on the following

setup.

• Markov process Xn, is a random variable over time interval [0, t].

• The time is divided into subintervals of length τ .

• Process makes a step change at τ , 2τ , 3τ , . . .

• The size of steps are assumed to be ±∆ =
√
t with probabilities pij.

• The state space of the process is given by S = {−k∆, . . . ,−∆, 0,+∆, . . . ,+k∆}.

• k = ⌊t/τ⌋ is the number of time steps and ±k∆ are the boundaries showing the

decisions S1 and S2 respectively.

Using the above setup, the transition probability matrix of the discrete-time process
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is given by the form

P =

 PI 0

R Q


where the entries of P are described in detail by

1 m = 2k + 1 2 3 . . . m− 2 m− 1
absorbing S1 → 1 1 0 0 0 . . . 0 0
absorbing S2 →m 0 1 0 0 . . . 0 0

2 p21 0 p21 p23 . . . 0 0
3 0 0 p321 p33 . . . 0 0
...

...
...

...
... . . .

...
...

m− 2 0 0 0 0 . . . pm−2,m−2 pm−2,m−1

m− 1 0 pm−1,m 0 0 . . . pm−1,m−2 pm−1,m−1

Assuming the initial condition of Z, the probability and expected time to reach

each decision are given by:

[p(S1), p(S2)] = Z(I −Q)−1R

[E(T/S1),E(T/S2)] = τ [Z(I −Q)−2R] ◦ [p(S1), p(S2)]

The increment of the process from time n to n+ 1 is given by:

Xn+1 −Xn = Zn+1, n = 1, 2, 3, . . .

Xt/τ :=

t/τ∑
i=1

Zi

where Zi are independently and identically distributed. Assume p[Zi = +∆] = p[Zi =

−∆] = 0.5. Then

E(Xt/τ ) = 0, Var(Xt/τ ) = (t/τ)Var(Zi) = t∆2/τ = t



71

Now letting τ → 0, this random walk model converges in distribution to standard

Wiener process W(t) which from central limit theorem has normal distribution with

zero mean and t variance.

Markov processes with continuous-time sets and continuous state space are called

diffusion processes and the standard Wiener process is the simplest diffusion process.

The Wiener process with drift is given by the form

V (t) = µt+ σW(t)

where σ is a positive number. Also

dV (t) = V (t+ τ)− V (t) = µτ + σdW(t)

The DDM can be modeled by Markov chains with transition probabilities

pi,i−1 =
1

2

(
1− µ

σ

√
τ
)

pi,i+1 =
1

2

(
1 +

µ

σ

√
τ
)

with
√
τ = ∆/σ and (−1/

√
τ) ≤ µ/σ ≤ (+1/

√
τ) to keep the p between zero and

one. Note that here it is assumed pii = 0 or the process is not allowed to stay in the

current stage at the next time step. If the process is allowed to stay at the same state

at any time step, the Birth-Death process is characterized in continuous domain by

the Ornstein-Uhlenbeck (O-U) process.

The velocity of information accumulation is assumed to be damped proportional

to the current state while the new random information is added, given by the form

X(t+ τ) = (1− τγ)X(t) + V (t+ τ)
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or in the difference form

dX(t) = −τγX(t) + V (t+ τ)

Let V (t) be a Wiener process with drift δ and diffusion coefficient σ2. Then

dX(t) = (δ − γX(t))τ + σdW(t)

where the transition probabilities are given by

pi,j =



1
2α

(
1− δ−γ(−k∆+(i−1)∆)

σ2

√
τ
)

if j − i = −1

1
2α

(
1 + δ−γ(−k∆+(i−1)∆)

σ2

√
τ
)

if j − i = +1

1− 1
α

if j = i

0 otherwise

∆ = ασ
√
τ , and α > 1 is a free parameter to restrict pi,j in between zero and one.

The discrete-time MCMC race model for descirbing MCMC tasks in nuclear com-

peting dynamics can be derived in the following way. For given S choices, the process

of evidence accumulation for MCMC tasks is governed by the O-U process:

dX(t) = X(t+ τ)−X(t) = −τΓ(t)X(t) +V(t+ τ)

where X and V denote the vector form of X and V , respectively. Each drifted Wiener

process Vi has the mean of δi and variance of σ2
i

dX(t) = (δes − ΓX(t))τ + ΣdW(t)
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where X ∈ RS is column vector, Γ and Σ ∈ RS×S are S by S matrices and es is a

1× s column vector with all elements equal to one.

When discrete MCMC tasks are modeled, a few points that need to be considered

are listed as follows.

• If the approach of discretization is the same as the two-choice model, conven-

tional Sth order Markov chain of m states which has O(mS) state variables and

therefore parameters is obtained.

• The number of transition probabilities (to be estimated) increases exponentially

with respect to the order S (the number of choices) of the model.

• Circumventing this curse of dimensionality is done by autoregressive model

estimation.

By definition an autoregressive process is a random process that its value in each

time step is linearly dependent on its own previous values plus a stochastic term. The

notion AR(p) indicates an autoregressive process of order p defined as:

X(t) = c+

p∑
i=1

ϕiXt−i +W(t)

in which ϕi are the parameters of the model, c is a constant and W(t) is white noise.

It is easy to see that the O-U process in discrete time can be modeled by AR(1) by

rearranging the equation

X(t+ 1) = µt+ (1− γ)X(t) + σW(t)

Let x(k)(n) ∈ Rm be the state probability distribution vector of the kth sequence

at time n, where m denotes the number of cues. If the kth sequence is in state j with
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probability one, then we say

x(k)(n) = ej = (0, . . . , 0, 1︸︷︷︸
jth

, 0, . . . , 0)T

Moreover, we model the state transition as a compartmental system given by

x(j)(n+ 1) = λjjP
(jj)x(j)(n) +

S∑
k=1,k ̸=j

P (jk)λjkx
(k)(n)

where P (ij) ∈ Rm×m is one step transition matrix of the state from the jth sequence to the

state of the ith sequence,

λjk ≥ 0, 1 ≤ j, k ≤ S,

S∑
k=1

λjk = 1 for j = 1, 2, . . . , S

This model means that the state probability distribution of the jth chain at time (n + 1)

depends only on the weighted average of itself, P (jj)x(j)(n), and other chains, P (jk)x(k)(n),

at time n. Its vector form is given by

X(n+ 1) ≡



x(1)(n+ 1)

x(2)(n+ 1)

...

x(S)(n+ 1)


=



λ11P
(11) λ12P

(12) . . . λ1SP
(1S)

λ21P
(21) λ22P

(22) . . . λ2SP
(21)

...
...

...
...

λS1P
(S1) λS2P

(S1) . . . λSSP
(SS)





x(1)(n)

x(2)(n)

...

x(S)(n)


≡ QX(n)

(7.1)

Since all λij are assumed to be nonnegative, the model only considers positive correlation

among sequences. This means an increase in a state probability in any of the sequences at

time n can only increase the state probabilities at time n+ 1.

Consider the following expression as a term being negatively correlated with x

1

m− 1
(1− x(n+ 1))
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where 1 ∈ Rm is a column vector of all ones, i.e., 1 = [1, . . . , 1]T ∈ Rm, and (m − 1) is

for normalization factor for number of state m ≥ 2. Now the model (7.1) is extended to

consider both negative and positive correlations as follows



x(1)(n+ 1)

x(2)(n+ 1)

...

x(S)(n+ 1)


= Λ+



x(1)(n)

x(2)(n)

...

x(S)(n)


+

1

m− 1
Λ−



1− x(1)(n)

1− x(2)(n)

...

1− x(S)(n)


where

Λ+ =



λ1,1P
(11) λ1,2I . . . λ1,SI

λ2,1I λ2,2P
(22) . . . λ2,SI

...
...

...
...

λS,1I λS,2I . . . λSSP
(SS)


and

Λ− =



λ1,−1P
(11) λ1,−2I . . . λ1,−SI

λ2,−1I λ2,−2P
(22) . . . λ2,−SI

...
...

...
...

λS,−1I λS,−2I . . . λS,−SP
(SS)



for λi,j ≥ 0 for i = 1, 2, . . . , S, j = ±1,±2, . . . ,±S, and
∑S

j=1 λi,j +
∑S

j=1 λi,−j = 1. The

matrix form of this extended model can be written as

X(n+ 1) = H×X(n) +
1

m− 1
J× 1 ≡ MsX(n) + b (7.2)
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where H = block[Hij ] is a block matrix whose (i, j)th block is given by

Hij =


(λi,j − λi,−j

m−1 )P
(ii) if i = j

(λi,j − λi,−j
m−1 )I otherwise

and J = block[Jij ] is also a block matrix whose (i, j)th block is given by

Jij =


λi,−jP

(ii) if i = j

λi,−jI otherwise

Recursively using this model,

X(n+ 1) = M
(n+1)
S X(0) +

n∑
k=0

Mk
Sb

where M0
S = I.

If for certain matrix norm ∥ · ∥, we have ||MS || < 1, then this extended model reaches

a stationary distribution. For instance by considering || · ||∞ norm which is defined as

||M ||∞ = max
i

 n∑
j=1

|Mij |


for some matrix M = [Mij ], we have

lim
n→∞

X(n) = lim
n→∞

n∑
k=0

Mk
Sb = (I −MS)

−1b

Also note that

||MS ||∞ ≤ max
1≤k≤S

m

∣∣∣∣λk,k −
λk,−k

m− 1

∣∣∣∣+∑
k ̸=i

∣∣∣∣λk,i −
λk,−i

m− 1

∣∣∣∣


which helps control the rate of convergence by setting the right hand side less than some
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specific value 0 < c < 1.

To estimate the parameters of this model, the final stationary distribution, namely

x̂ = (x̂(1), . . . , x̂(S)), and state transition probability matrices P (ii), should be given. These

parameters can be calculated from previously recorded data of the sequences by solving the

following constrained optimization problem

min
Λ+,Λ−

S∑
j=1

S∑
k=1

∥bj,k − x̂(j)∥1 (7.3)

where ∥ · ∥1 is the 1-norm,

bj,k =

S∑
k=1

(
(λj,k −

λj,−k

m− 1
)∆j,kx̂

(k) +
1

m− 1
λj,k∆j,k1

)

and

∆jk =


P (jj) if j = k

I if j ̸= k

subject to the following constraints

1−
S∑

k=1

λj,k = 0, ∀j = 1, 2, . . . , S (7.4)

1−
S∑

k=1

λj,−k = 0, ∀j = 1, 2, . . . , S (7.5)

−λj,k ≤ 0, ∀k = ±1, . . . ,±S, j = 1, 2, . . . S (7.6)

m

∣∣∣∣λk,k −
λk,−k

m− 1

∣∣∣∣+∑
k ̸=i

∣∣∣∣λk,i −
λk,−i

m− 1

∣∣∣∣− c ≤ 0 for i, k = 1, 2, . . . , S (7.7)

where c ∈ (0, 1) is given.

The mid-layer update strategy using the discrete MCMC Model is outlined as follows.

Consider a dynamically adjusting, human-intelligence-involved decision-making strategy for
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updating an extended version of (5.8) by using the proposed discrete MCMC model (7.2)

and the optimization problem (7.3). Since m (= n) cues and S choices together for decision

making, it would be more suitable to extend (5.8) to the case where d is a diagonal matrix

instead of a scalar. Specifically, consider the following extension of (5.8):

W = (In − d)W ∗
pro + dW ∗

con (7.8)

where d = diag(d11, · · · , dnn) ∈ Rn×n is a diagonal matrix. Further assume that the

diagonal elements dii of d are dynamically adjusting and their values, can be chosen in the

convex set conv{d(1)i , . . . ,d
(S)
i } at every time instant t = 0, 1, 2, . . ., where d

(j)
i is a scalar

satisfying

S∑
j=1

d
(j)
i = 1, d

(j)
i ∈ [0, 1], i = 1, . . . , n (7.9)

and

conv{d(1)i , . . . ,d
(S)
i } =


S∑

j=1

λjd
(j)
i : λj ∈ [0, 1],

S∑
j=1

λj = 1

 (7.10)

The probability of choosing d
(j)
i for dii at time instant t is denoted by x

(j)
i (t), i.e.,

p(dii = d
(j)
i ) = x

(j)
i (t), i = 1, . . . , n, j = 1, . . . , S, t = 0, 1, 2, . . .

Define

x(j)(t) =



x
(j)
1 (t)

x
(j)
2 (t)

...

x
(j)
n (t)


, X(t) =



x(1)(t)

x(2)(t)

...

x(S)(t)


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and we assume that the evolution of X(t) satisfies (7.2), i.e.,

X(t+ 1) = H×X(t) +
1

m− 1
J× 1 ≡ MSX(t) + b (7.11)

The final stationary distribution for X(t) is assumed to be known and given by



x̂(1)

x̂(2)

...

x̂(S)


= lim

t→∞
X(t)

where x̂(j) = [x̂
(j)
1 , . . . , x̂(j)

n ]T ∈ Rn satisfies

S∑
j=1

x̂
(j)
i = 1, x̂

(j)
i ∈ [0, 1], i = 1, . . . , n (7.12)

That is, the final probabilistic distribution of choosing d
(j)
i to exhibit some fixed pattern is

optimal. For example, if more non-cooperative effect on d is desired, then the corresponding

final probability will be greater than that of the cooperative choice. Now the proposed

update strategy becomes solving the optimization problem (7.3) subject to (7.4)–(7.7).

Let

Λ̃ = (Λ+,Λ−)

and

JM (Λ̃) =
S∑

j=1

S∑
k=1

∥bj,k − x̂(j)∥1
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Then (7.3) can be rewritten as

min
Λ̃

JM (Λ̃)

subject to

g(Λ̃) = 0

h(Λ̃) ≤ 0

where g(·) denotes the left-hand side of (7.4) and (7.5), and h(·) denotes the left-hand side

of (7.6) and (7.7).

To solve this optimization problem, we follow the similar bio-inspired, multiagent coor-

dination idea to propose the following two-step algorithm for solving (7.3):

Λ̃
(l)
i,2k+1 = Λ̃

(l)
i,2k + α

(l)
k

[
arg min

Λ̃i=Λ̃
(m)
i,2k,m∈N(l)

c ∪{l}
JM (Λ̃i)− Λ̃

(l)
i,2k

]
+ δ

(l)
k

[
arg min

Λ̃i=Λ̃
(m)
i,2s ,m∈N(l)

c ∪{l},s=0,1,...,k

JM (Λ̃i)− Λ̃
(l)
i,2k

]
Λ̃
(l)
i,2k+2 = argmin

Λ̃i

[ ∑
m∈N(l)

c ∪{l}

∥Λ̃i − Λ̃
(m)
i,2k+1∥

2
F

]
,

i = 1, . . . , n, l = 1, . . . ,M, k = 0, 1, 2, . . .

When updating Λ̃i using the first step algorithm, one needs to check its compatibility with

the constraints (7.4)–(7.7). Specifically, restrict λj,±k ∈ [0, 1], j, k = 1, . . . , S, k ̸= j, so

that
∑S

k=1,k ̸=j λj,±k < 1 for every j = 1, . . . , S. Then let λj,±j = 1 −
∑S

k=1,k ̸=j λj,±k for

every j = 1, . . . , S. Such choice of λj,±k, j, k = 1, . . . , S, will satisfy (7.4)–(7.6). Next, put

this choice into the left-hand side of (7.7) to see if the inequality is satisfied. If yes, then

continue evaluating the cost function and updating Λ̃. If not, then this selection process is

repeated until a compatible choice for (7.4)–(7.7) is found.
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Once the MCMC model (7.11) is determined by the above optimization problem, dy-

namically update W as follows

W = (In − d)W ∗
pro + dW ∗

con, t = 0, 1, 2, . . . (7.13)

where d = diag(d11, · · · , dnn) is updated by using either the weighted additive (WADD)

strategy

dii =

S∑
j=1

d
(j)
i x

(j)
i (t), i = 1, . . . , n (7.14)

so that dii ∈ conv{d(1)i , . . . ,d
(S)
i }, or the take-the-best (TTB) strategy

dii = d
(s)
i , s ∈

{
m : x

(m)
i (t) = max

1≤j≤S
{x(j)i (t)}

}
(7.15)

so that dii ∈ {d(1)i , . . . ,d
(S)
i } ⊂ conv{d(1)i , . . . ,d

(S)
i }. The WADD strategy mimics the

human decision making under the normal situation while the TTB strategy mimics the

human decision making under the emergency situation. Depending on the extent of nuclear

escalation, d could be updated by the WADD at steady-state times, while the TBB strategy

may take over it when the situation becomes tense.

The SEM in (2.7) is a fixed-structure model whose structural graph topology between

different factors is given. Such a model becomes problematic when the correlation between

these factors is either unclear, a priori, or dynamically changing. One possible scenario for

this situation is that the nuclear deployment needs to be adjusted as the nuclear competing

race intensifies or weakens. Some strongly correlated factors may become less dependent

now, or vice versa. In this case, the graph topology C in (2.7) is not given or the weight

matrix A is not fixed anymore. Previously it was assumed that C was given for (2.7). Now

this assumption is dropped by proposing a method to identify possible topology matrix

C and calculate weight matrix A simultaneously by using the input, the output, and the
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measurement or estimation data for (2.7).

Specifically, consider the model

zi =
n∑

j=1,j ̸=i

dij x̃j + ui, i = 1, . . . , n (7.16)

x̃j = xj +∆xj (7.17)

ỹi = zi +∆yi (7.18)

where there is no topological constraint. Instead, the idea is to identify possible graph

topology for this model by determining dij through the input data ui, the data received

and/or estimated from all other nodes x̃j , and the output data ỹi.

Identifying possible C = [cij ]i,j=1,...,n, cii = 0, is straightforward: If dij ̸= 0, i, j =

1, . . . , n, i ̸= j, then cij = 1. Otherwise, if dij = 0, i, j = 1, . . . , n, i ̸= j, then cij = 0. That

is, if the identified weight between two nodes of a graph is nonzero, then it is highly possible

that there is a link between these two nodes. Otherwise, there may not be a reliable link

between these two nodes. Of course, there is a small chance that while the real topology is

one graph, the generated graph induced by dij may not be the same due to some numerical

errors on dij . Hence, to validate whether this idea would generate a reasonable topology

for (7.16), one needs to define an appropriate validation metric.

We consider how a perturbation in the model (7.16)–(7.18) will affect the generated

C. An important observation is that if the generated graph C is a reliable one, then the

small perturbation for x̃j and ỹi in (7.16)–(7.18) should not lead to a major change of its

topological structure. Let D = [dij ]i,j=1,...,n, dii = 0, be an identified matrix for (7.16)–

(7.18) through x̃j , ỹi, and ui. Moreover, let D̂ = [d̂ij ]i,j=1,...,n, d̂ii = 0, be an identified
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matrix for the perturbed model

zi =
n∑

j=1,j ̸=i

d̂ij x̂j + ui, i = 1, . . . , n (7.19)

x̂j = x̃j + δx̃j (7.20)

ŷi = ỹi + δỹi (7.21)

x̃j = xj +∆xj (7.22)

ỹi = zi +∆yi (7.23)

through x̂j , ŷi, and ui, where δx̃j and δỹi denote the small variation of x̃j and ỹi, respectively.

Finally, let C be the graph topology generated by D and Ĉ be the graph topology generated

by D̂ through the above proposed rule. Then the rigorous definition of the validation metric

Mv is given by

Mv = lim
(δx̃,δỹ)→(0,0)

∥Ĉ − C∥
∥(δx̃, δỹ)∥

(7.24)

where δx̃ = (δx̃1, . . . , δx̃n) and δỹ = (δỹ1, . . . , δỹn). Clearly Mv ≥ 0 and the smaller value

MV can achieve, the better result C can generate. Ideally for Mv = 0, such a generated

C should be a reliable one. Practically if Mv does not exceed some small threshold, i.e.,

Mv ≤ ε << 1, then we think such a generated C is a reasonable estimate. Also in practice,

it is hard to evaluate the limit in this definition, often one can take an approximate form

Mv ≈ ∥Ĉ − C∥
∥(δx̃, δỹ)∥

(7.25)

for some small δx̃ and δỹ.

The method of identifying D and D̂ will be similar to that of identifying W in (2.9)–

(2.11) by using the proposed cooperative game and non-cooperative game approaches.
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Specifically, D is updated by

D = (In − d)D∗
pro + dD∗

con (7.26)

where d is updated by the proposed WADD or TTB strategy, D∗
pro is the result of the

cooperative game approach for the model (7.16)–(7.18), and D∗
con is the result of the non-

cooperative game approach for the model (7.16)–(7.18). Similarly, for D̂ = (In − d)D̂∗
pro +

dD̂∗
con, d is updated by the proposed WADD or TTB strategy, D̂∗

pro is the result of the

cooperative game approach for the model (7.19)–(7.23), and D̂∗
con is the result of the non-

cooperative game approach for the model (7.19)–(7.23). Once we obtain D = [dij ]i,j=1,...,n,

dii = 0, and D̂ = [d̂ij ]i,j=1,...,n, d̂ii = 0, C = [cij ]i,j=1,...,n and Ĉ = [ĉij ]i,j=1,...,n can be

obtained as follows:

cij =

 1, dij ̸= 0

0, dij = 0
, ĉij =

 1, d̂ij ̸= 0

0, d̂ij = 0
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Chapter 8

Simulations of Multi-cue Multi-choice Tasks

In this section, the preliminary simulation details and results for the proposed human de-

cision making dynamics are outlined. The algorithm formulated above, Modeling Human

decision-making dynamics via multi-cue multi-choice tasks is simulated to show its effec-

tiveness. The software MATLAB R2021b is used to apply and test the proposed approaches

by means of randomly generated data.

To dynamically adjust the decision making strategy, simulations were done by imple-

menting the proposed discrete MCMC (7.2) and the optimization problem (7.3). The im-

plementation of this model is as follows. First, input parameters were set for the discrete

time 2AFC model. The Markov process is over the time interval [0, t] and divided into

sub-intervals of length τ . The size each sub-interval is ±∆, and the state space is given by

S. Then, k is number of time steps in the process and m is the size of the state space. These

inputs can be seen in Table 8.1.

Now, the discrete time 2AFC model is applied to the discrete time MCMC model. The

matrix form of this model is outlined in Equation (7.2). Here, H and j are formulated given

a random λ matrix and P , where

P (ij) =


1
m if j = i

0 otherwise
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Table 8.1: Parameter Inputs to the Proposed Algorithm

Parameter Name Parameter Value

t 1
τ 1
k t/τ

∆
√
t

S [−1, 0, 1]
m 2k + 1

Next, the discrete time MCMC model was optimized using the two step bio-inspired,

multiagent coordination algorithm, that is similar to Section 6. The initial parameters for

the optimization can be seen in Table 8.2. Here, M is the number of agents, and α and δ are

the learning rates. Some initial parameters for Equation (7.3) are also outline in Table 8.2.

Here, x(k) and x(j) are the state probability distribution vectors. With this information,

the MCMC model was able to be optimized.

Table 8.2: Parameter Inputs to the Proposed Algorithm

Parameter Name Parameter Value

M 4
α .01
δ .01
x(k) [0, 1, 1]
x(j) [0, 1, 1]

Following the optimization, d is updated using the WADD strategy. Given a d(j) of 1/3,

dii was found and can be seen in Equation (8.1). To achieve a d vector in the set [0, 1], dii

is normalized using the softmax function. The final d can be seen in Equation (8.2).

dii =


1.0909

1.3645

1.0465

 (8.1)
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d =


0.3057

0.4019

0.2924

 (8.2)
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Chapter 9

Modeling the intertwined dynamics of the top network layer,

the middle network layer, and bottom network layer to the

hybrid game model

The hybrid game model or bottom level characterizes the interconnected dynamics that

bring the top layer model, the middle layer model and the bottom layer model together to

function as a unified, coupled spatialtemporal process featuring intrinsic escalation dynamics

by means of AI, acyclic graphs, and a compartmental network approach.

The mathematical modeling of the top level consists of the information retrieving net-

work (RN), information analyzing network (AN), and information formulating network

(FN) for processing input data. An input-output cellular neural network (CNN) model is

proposed for RN, a Bayesian belief network (BBN) model is proposed for AN, and a deep

neural network (DNN) model is proposed for FN.

The purpose of RN is to convert non-visual spatial information of data into geometric

maps, which can facilitate the generation of the ultimate visual map for escalation competing

dynamics. This job can be done by utilizing a CNN. In this thesis, first-order cell dynamics

and linear interactions are used. The state equation of a cell in position (i, j) is given by
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the following nonlinear differential equation

dzij(t)

dt
= −zij(t) +

∑
(k,l)∈N(i,j)

A(i, j; k, l) · ykl(t) +
∑

(k,l)∈N(i,j)

B(i, j; k, l) · ukl(t) + v(i, j; k, l)

(9.1)

yij(t) =
1

2

(
|zij(t) + a| − |zij(t)− a|

)
(9.2)

where uij(·), zij(t), and yij(·) are the input, the state, and the output of the cell in position

(i, j), respectively; the indices k and l denote a generic cell belonging to the neighborhood

N(i, j) of the cell in position (i, j), v(i, j; k, l) denotes the bias of CNN for position (i, j)

associated with the neighboring cell (k, l), and a > 0 denotes the value of the state at which

the output hits the (upper) threshold.

In this project, the models (9.1) and (9.2) are used to describe the data processing

dynamics of raw spatial data before feeding it into the SEM (2.6). The output of (9.1) and

(9.2) serves as part of the input data to the SEM (2.6).

The purpose of AN is to predict temporal evolution of data and generate a synthetic

counterpart. The most common approaches for doing this, such as Kalman filtering and

particle filtering, can all be unified under the same framework–BNNs. The standard con-

struction of a BBN assumes prior expert knowledge of the underlying domain. The first

step is to build a directed acyclic graph, followed by the second step to assess the condi-

tional probability distribution in each node. Specifically, let G(X, E) denote an annotated

directed acyclic graph, where the nodes are random variables Xi ∈ X. Furthermore, let

θi = p(Xi |Ancestors(Xi)) be the probabilistic conditional distributions defined for each Xi.

Then a Bayesian belief network uniquely specifies a joint distribution given by

p(X1, X2, . . . , Xn) =

n∏
i=1

p(Xi |Parents(Xi))

The joint probability can be expanded by the Bayes chain rule as follows under the Markov
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assumption (each variable is independent of its non-descendents, given its parents)

p(X1, X2, . . . , Xn) =
n∏

i=1

p(Xi |X1, X2, . . . , Xi−1)

While the probabilistic framework for BBN is intuitive, it is hard to express this for-

mulation into a compact, computational form like (9.1) to unify CNN, BBN, and DNN

together. Reference [4] developed a new approach for inference in BNN by using the idea

of partial differentiation for multivariate polynomial functions. It is motivated by the ana-

logue of chain rules under partial differentiation operation and the Bayes law. Moreover,

it presents a mathematical model for dynamic analysis of the AN layer and 2D/3D map

generation for visualization.

To elaborate this model, variables are denoted by upper-case letters (A) and their values

by lower-case letters (a). Sets of variables are denoted by bold-face upper-case letters

(A) and their instantiations are denoted by bold-face lower-case letters (a). Next, let

F = {X} ∪U be the family of variable X and let f = xu be a corresponding instantiation.

Then use θf and/or θxu to represent the conditional probability p(x |u). Moreover, x ∼ f

will mean that instantiations x and f are consistent.

Definition 9.0.1 ([4]). Let N be a BNN with variables X = X1, . . . , Xn and families

F1, . . . ,Fn. Then

F(λxi , θfi) =
∑
x

∏
fi∼x

θfi
∏
xi∼x

λxi (9.3)

is called the canonical polynomial of BNN N , where λxi are called evidence indicators and

θfi are called network parameters. A quantification Θ of a BNN is a function that assigns

a value Θ(f) to each instantiation f of family F. The value of indicator λx at instantiation

e, denoted e(x), is 1 if x is consistent with e, and is 0 otherwise. The value of polynomial
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F under evidence e and quantification Θ is defined as

F(e,Θ) := F(λxi = e(xi), θfi = Θ(fi))

Let e be an instantiation of evidence, E be a set of evidences, and X be a set of variables.

Then e −X denotes the subset of instantiation e pertaining to variables not appearing in

X. For each instantiation e and quantification Θ, the polynomial (9.3) can be evaluated

to compute the probability of e for given Θ. Often F(e) will be written instead of F(e,Θ)

when no ambiguity is anticipated.

The polynomial framework (9.3) possesses the following key properties for BNNs, which

show some similarity between calculus operation and conditional probability.

Theorem 9.0.1 ([4]). Let N be a BNN representing probability distribution p(·) and having

canonical polynomial F . Then the following statements hold:

1) For every evidence e and quantification Θ,

F(e,Θ) = p(e |Θ) (9.4)

F(e) = p(e) (9.5)

2) For every variable X, family F, and evidence e,

∂F(e,Θ)

∂λx
= p(x, e−X |Θ) (9.6)

∂F(e,Θ)

∂θf
=

p(f , e |Θ)

Θ(f)
(9.7)
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3) For every pair of variables X ̸= Y , pair of families F1 ̸= F2, and evidence e,

∂2F(e,Θ)

∂λx∂λy
= p(x, y, e−XY |Θ) (9.8)

∂2F(e,Θ)

∂λx∂θf1
=

p(x, f1, e−X |Θ)

Θ(f1)
(9.9)

∂2F(e,Θ)

∂θf1∂θf2
=

p(f1, f2, e |Θ)

Θ(f1)Θ(f2)
(9.10)

4) For X ̸∈ E,

p(x | e) =
∂F(e)
∂λx

F(e)
(9.11)

5) For every variable X, family F, and evidence e,

p(e−X) =
∑
x

∂F(e)

∂λx
(9.12)

p(x | e−X) =

∂F(e)
∂λx∑
x

∂F(e)
∂λx

(9.13)

p(f | e,Θ) =

∂F(e,Θ)
∂θf

F(e,Θ)
Θ(f) (9.14)

Next, the model (9.3) is extended to the dynamic case where it involves temporal evo-

lution of variables. Specifically, two kinds of continuous-time Markov processes are cond-

sidered for each variable Xi = Xi(t), i.e., jump processes and diffusion processes. Jump

processes assume that in a small time interval there is an overwhelming probability that the

state will remain unchanged; however, if it changes, the change may be radical. Diffusion

processes are represented by diffusion and by Brownian motion; there it is certain that

some change will occur in any time interval, however small; only, here it is certain that the

changes during small time intervals will be also small.

For Markov jump processes, the state space Ωi for each variable Xi is (finitely or in-

finitely) countable. In this case, the time evolution of variable Xi = Xi(t) ∈ Ωi can be
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described by the Kolmogorov forward and backward equations as follows

∂pxy(s; t)

∂t
=

∑
z∈Ωi

pxz(s; t)Azy(t), x, y ∈ Ωi, t > s ≥ 0, i = 1, . . . , n (9.15)

∂pxy(s; t)

∂s
= −

∑
z∈Ωi

Axz(s)pzy(s; t), x, y ∈ Ωi (9.16)

where pxy(s; t) = p(x, s; y, t) denotes the probability that the system in state x ∈ Ωi at

time s jumps to state y ∈ Ωi at later time t > s, t > s ≥ 0 are the final and initial times,

respectively, and Ai(t) = [Axy(t)]x,y=∈Ωi is the transition rate matrix (also known as the

generator matrix) for variable Xi, which satisfies

Axy(t) =
∂pxy
∂u

(t;u)
∣∣∣
u=t

, Ayz(t) ≥ 0, y ̸= z, y, z ∈ Ωi,
∑
z∈Ωi

Ayz(t) = 0

For diffusion processes, the state space Ωi for each variable Xi is a continuum. In this

case, the time evolution of variable Xi = Xi(t) ∈ Ωi can be described by the Kolmogorov

equations as well. If we assume the variable Xi(t) evolves according to the stochastic

differentiable equation

dXi(t) = µ(Xi(t), t)dt+ σ(Xi(t), t)dW (t), t ≥ s (9.17)

then

∂

∂t
p(x, t) = − ∂

∂x
[µ(x, t)p(x, t)] +

1

2

∂2

∂x2
[σ2(x, t)p(x, t)] (9.18)

for t ≥ s, with the initial condition p(x, s) = ps(x); and

− ∂

∂s
p(x, s) = µ(x, s)

∂

∂x
p(x, s) +

1

2
σ2(x, s)

∂2

∂x2
p(x, s) (9.19)

for s ≤ t, with the final condition p(x, t) = pt(x).
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Informally, the Kolmogorov forward equation addresses the following problem. There

is information about the state x of the system at time s (namely a probability distribution

ps(x)); we want to know the probability distribution of the state at a later time t > s. A

similar remarks holds for the Kolmogorov back equation.

These Markov processes described by the Kolmogorov equations are applied to the

polynomial framework of BNNs. Specifically, it follows from the Bayes law, (9.5), and

(9.11) that

p(x) = p(x | e)p(e) =
∂F(e)
∂λx

F(e)
F(e) =

∂F(e)

∂λx
(9.20)

If p(x) involves a time evolution process, i.e., p(x) = p(x, t), depending on whether it is

a jump process or a diffusion process, either (9.15) or (9.18) is satisfied in forward time,

or, either (9.16) or (9.19) is satisfied in backward time. In this project, two forward time

processes are taken for a case study. Thus, for the jump process in forward time, the

dynamic model for BNNs is given by

∂3F(e, s; t)

∂λx∂λy∂t
=

∑
z∈Ωi

∂2F(e, s; t)

∂λx∂λz
Azy(t), x, y ∈ Ωi, t > s ≥ 0, i = 1, . . . , n (9.21)

For the diffusion process, the dynamic model for BNNs is given by

∂2F(e, t)

∂λx∂t
= − ∂

∂x

[
µ(x, t)

∂F(e, t)

∂λx

]
+

1

2

∂2

∂x2

[
σ2(x, t)

∂F(e, t)

∂λx

]
, t ≥ s (9.22)

with the initial condition p(x, s) = ∂F(e,s)
∂λx

. In the simulation verification, the diffusion

process will be considered and µ(x, t) = µ > 0 and σ(x, t) = σ > 0 will be assumed

for simplicity. Obviously (9.22) is a partial differential equation. One needs to develop

numerical approaches such as finite elements to solve it. The output of this equation gives

numerical values of ∂F(e,t)
∂λx

and F(e, t), which are the same as p(x, t) and p(e, t), respectively.

They are used to calculate the expectation of variables Xi under evidence e. The result
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is a time-series prediction of synthetic data serving as the input dataset for the non-fixed-

structure SEM.

The purpose of FN is to transform data from the existing domain to another domain

to better visualize its hidden feature by conducting discrete convolution and averaging

operation. This can be done through an ℓ-layer, feed-forward DNN, which is given by the

form

w0 = u (9.23)

wi = Φi(Wiwi−1 + bi) (9.24)

y = Wℓ+1wℓ + bℓ+1 (9.25)

where u ∈ Rn0 denotes the input to DNN, wi ∈ Rni denote the outputs from the ith

layer of DNN, i = 1, 2, . . . , ℓ, and y ∈ Rnℓ+1 denotes the final output from DNN. The

operations for each layer of DNN are defined by a weight matrix Wi ∈ Rni×ni−1 , bias vector

bi ∈ Rni , and activation function Φi : Rni → Rni . The activation function Φi(·) is applied

elementwise, that is, Φi(v) = [ϕ(v1), . . . , ϕ(vni)]
T, where ϕ : R → R is a selected scalar

activation function, e.g., ReLU ϕ(v) = max(0, v), sigmoid ϕ(v) = 1/(1 + e−v), hyperbolic

tangent ϕ(v) = tanh(v), etc.

Note that (9.23)–(9.25) is a set of equations implemented at the same time step, that

is, they should be understood as

w0(t) = u(t) (9.26)

wi(t) = Φi(Wiwi−1(t) + bi) (9.27)

y(t) = Wℓ+1wℓ(t) + bℓ+1 (9.28)

where t ≥ 0. Depending on the application, ℓ for a DNN could vary from one to a hundred.

A similar remark holds for ni. In this thesis, we take ℓ = 3 and ni = n = 5 as an example

to simulate the whole process, i = 0, 1, 2, 3, 4. The output of this DNN model serves as part
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of the input data to the SEM (2.6).
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Chapter 10

Implementation of BBN

Bayes Theorem (BT) provides a way to calculate the probability of a hypothesis based on

its prior probability, the probabilities of observing various data given the hypothesis, and

the observed data itself. Here, P (h) is the initial probability of the hypothesis h and P (D)

is the prior probability that data D will be observed. Next, the probability P (h|D) that h

holds given the observed training data D. P (h|D) is called the posterior probability of h,

because it reflects the confidence that h holds seeing the training dataD [18]. Bayes theorem

is the cornerstone of Bayesian learning methods because it provides a way to calculate the

posterior probability, from the prior probability P (h), together with P (D) and P (D|h).

Bayes Theorem is outlined below:

P (h|D) =
P (D|h)P (h)

P (D)
(10.1)

Consider a set of Hypotheses H, where a maximum a posteriori (MAP) is finding the

most probable hypothesis h ∈ H given the observed data, D. Then the MAP can be

determined using Equation 10.1 as follows:

hMAP = argmin
h∈H

P (h|D)

= argmin
h∈H

P (D|h)P (h)

P (D)

= argmin
h∈H

P (D|h)P (h)

(10.2)



98

In this case, it is assumed that every hypothesis in H is an equally probable priori.

For this case, Equation 10.2 can be simplified to find the most probable hypothesis. Here,

P (D|h) is the likelihood of data, D given h. Thus, any hypothesis that maximizes the

likelihood will be the maximum likelihood (ML) as shown below:

hML = argmin
h∈H

P (D|h) (10.3)

BT is then be used to formulate a BBN. A BBN describes the probability distribution

governing a set of variables by specifying a set of conditional independence assumptions

along with a set of conditional probabilities. In general, a Bayesian belief network rep-

resents the joint probability distribution by specifying a set of conditional independence

assumptions (represented by a DAG), together with sets of local conditional probabilities.

Each variable in the joint space is represented by a node in the Bayesian network. For

each variable two types of information are specified. First, the network arcs represent the

assertion that the variable is conditionally independent of its nondescendants in the network

given its immediate predecessors in the network. X is a descendant of, Y , if there is a di-

rected path from Y to X. Second, a conditional probability table is given for each variable,

describing the probability distribution for that variable given the values of its immediate

predecessors [18]. Then a BBN uniquely specifies a joint distribution.

A BBN can also be used for inference given observed values of other variables. Infer-

ence is used to find the probability distribution for a target variable, which specifies the

probability that it will take on each of its possible values given the observed values of the

other variables. However, before this is possible the BBN must be trained.

The EM algorithm is used in training the BBN. The EM algorithm is used to learn in the

presence of unobserved variables. The EM algorithm can be used even for variables whose

value is never directly observed, provided the general form of the probability distribution

governing these variables is known. The maximum likelihood hypothesis minimizes the sum

of squared errors over m training instances. Here, D is a set of instances generated by a
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probability distribution that is a mixture of k distinct normal distributions. One of the

k distributions is selected, and a single random instance xi, the sum of squared error is

minimized by the sample mean [18]. This process is repeated to generate a set of data and

can be seen in the equation below:

µML = argmin
µ

m∑
i=1

(xi − µ)2 (10.4)

Continuing with the EM algorithm, assume xi is the observed variable in the description,

and zi1 and zi2 indicate the normal distribution that was used to generate the value xi. Here,

zij has the value 1 if xi was created by the jth normal distribution. Otherwise, it will have

a value of 0. Here, xi is the observed variable and zi1 and zi2 are hidden variables. If the

values of zil and zi2 were observed, Equation 10.4 could be used to solve for the means µ1

and µ2. However, this is not the case so the EM algorithm is used. The EM algorithm

searches for a maximum likelihood hypothesis by repeatedly re-estimating the expected

values of the hidden variables given its current hypothesis. The ML hypothesis is then

re-calculated using the expected values for the hidden variables. The EM two step process

is outlined next. First the expected value of zij is calculated:

E[zij ] =
P (x = xi|µ = µj)∑2
n=1 P (x = xi|µ = µn

(10.5)

In the next step, E[zij ] is used to derive the ML hypothesis h′ = (µ′
1, µ

′
2). The ML

hypothesis can be seen below:

µj =

∑m
i=1E[zij ]xi∑m
i=1E[zij ]

(10.6)

A Gaussian Mixture Model (GMM) assumes the data to be segregated into clusters in

such a way that each data point in a given cluster follows a particular Multi-variate Gaussian

distribution and the Multi-Variate Gaussian distributions of each cluster is independent of

one another. To cluster data in such a model, the posterior probability of a data-point

belonging to a given cluster given the observed data needs to be calculated. A method to
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perform this is BBNs.

A GMM was implemented using a BBN to generate synthetic data. The purpose of the

GMM model is to classify countries into distinct categories. Once classified, synthetic data

can be created based on these classified countries.

The data used in this problem can be found on World Bank Open’s website [1]. To train

the model, three different training inputs were used:

• Countries Gross Domestic Product (GDP)

• Countries Population (POP)

• Countries Military Expenditures (ME)

Data for these training inputs came from 183 countries spanning 11 years from 2009

to 2020. The data is split into 4 different classes according to the GDP of that country.

Since this model is proof of concept, splitting the countries into classes is arbitrary. When

real world data is implemented using this model, classifying each county will be done by an

expert with extensive knowledge.

The model of the GMM will be outlined next. The structure of the model can be seen

in Figure 10.1. Here, node 1 is class for each country. Nodes 2, 3, and 4 are the discrete

components that can be used to classify nodes 5, 6, and 7. Nodes 5, 6, and 7 are Gaussian

values that correspond to GDP, POP, and ME. This model is referred to as a conditional

Gaussian model because there are directed edges from the discrete nodes (2, 3, 4) to the

continuous nodes (5, 6, 7).

The model then was trained using the EM algorithm outlined earlier in this section.

Once trained, the model is able to generate synthetic data from the conditional probabilities

of each class.

The results from the GMM model are outlined below. Figure 10.2 has 2 plots. The top

plot shows the scaled training data that was used to train the model. The bottom plot show
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Figure 10.1: DAG of Model

the synthetic data from the model that was output when the training data was sampled

using the trained GMM.

Figure 10.3 shows the the model when the testing data set was run through it. The top

plot is the test data that was fed into the GMM and the bottom plot shows the synthetic

data that was output from the GMM.

Figure 10.4 gives the probability distribution of each class from the test data,

P (class|evidence)

This probability distribution gives the probability that each country will be in a certain

class given the test data as evidence.

Figure 10.5 show the synthetic from the GMM. The top plot shows synthetic data with-

out any Gaussian noise added to it. The bottom plot shows synthetic data with Gaussian

noise added to it. In this way, synthetic data can be generated to create synthetic coun-

tries. These synthetic countries can then be fed into the bottom layer and used to verify

the escalation dynamics model.
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Figure 10.2: Training Dataset
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Figure 10.3: Testing Dataset
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Figure 10.4: Probability Distribution of the Classes
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Figure 10.5: Testing Data with and without Gaussian Noise
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Chapter 11

Dynamics for Relevant Variables in SEM

The SEM (2.6) gives a stationary correlation relationship between relevant factors in esca-

lation dynamics. However, it does not demonstrate any dynamic effects that these factors

may exhibit during the nuclear race escalation process. In this thesis, the focus is on the

linearized, first-order approximation of nuclear competing dynamics at the bottom layer.

To characterize dynamic evolution of these factors in the first order, first view (2.6) as a

limiting equation for certain time-varying process, that is,

lim sup
t→∞

fi(xi(t)) = 0 = − lim sup
t→∞

xi(t) (11.1)

+
∑

(i,j)∈E

aij lim sup
t→∞

xj(t) + lim sup
t→∞

ui(t), i = 1, . . . , n (11.2)

for some function fi : R → R, under the assumption that −∞ < lim supt→∞ xi(t) < +∞

and lim supt→∞ ui(t) = ui.

Focusing on first-order dynamics, fi(·) can be chosen as

fi(x) =
dx

dt
+Aix (11.3)

where Ai ≥ 0 is a parameter to be determined later. In this case, dropping off the limit
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operation on both sides of (11.2) yields

dxi(t)

dt
+Aixi(t) = −xi(t) +

∑
(i,j)∈E

aijxj(t) + ui(t), t ≥ 0, i = 1, . . . , n (11.4)

Rearranging (11.4) yields

dxi(t)

dt
= −

(
Ai + 1−

∑
(i,j)∈E

aij

)
xi(t) +

∑
(i,j)∈E

[aijxj(t)− aijxi(t)] + ui(t), (11.5)

t ≥ 0, i = 1, . . . , n (11.6)

Letting σii := Ai + 1−
∑

(i,j)∈E aij . Then

dxi(t)

dt
= −σiixi(t) +

∑
(i,j)∈E

aij [xj(t)− xi(t)] + ui(t), t ≥ 0, i = 1, . . . , n (11.7)

which has the form of compartmental models. Now choose Ai to satisfy

Ai ≥
∣∣∣1− ∑

(i,j)∈E

aij

∣∣∣, i = 1, . . . , n (11.8)

so that σii ≥ 0. This implies that the rate of change for xi always has a dissipation term

−σiixi to counter its growth and to ensure the finiteness of lim supt→∞ xi(t). Moreover, the

term
∑

(i,j)∈E aij [xj(t) − xi(t)] is the cooperative component, which can be rewritten as a

potential-based cooperative game as follows

∑
(i,j)∈E

aij [xj(t)− xi(t)] =
∂

∂xi(t)

1

2

∑
(i,j)∈E

aij [xj(t)− xi(t)]
2

 (11.9)

The term −σiixi(t) has an inhibitory effect [9] in the network, which can be viewed as

the compromise component. In this thesis, the model (11.7) is used to depict intertwined

dynamics among relevant variables at the bottom level.



108

Chapter 12

Developing a topological energy level method to draw the

energy-like level contour of interested variables for

visualization

The proposed multiagent multilayer model has a capability of projecting interested con-

tributors and related variables onto some topological planes for visual illustration of such

intertwined dynamics. The first method is to map relevant variables onto some topological

planes at the existing model framework. This job can be done through a straightforward

way since the proposed model has a linear matrix structure. The second method is a dy-

namical system and control theory inspired approach by finding multi-level energy cost

curves. In this approach, we view the proposed model as a dynamical system governed by

differential and/or difference equations. According to the Hamilton’s principle in dynamical

system theory and Nash equilibria in non-cooperative game theory, the possible propagating

dynamics for the proposed model is the one that minimizes the energy cost associated with

the Hamiltonian or energy Casimir function. Hence, by plotting the different energy-like

levels, one can visualize how the escalation dynamics evolves over time and space.

The matrix decomposition method for visualization of static multiagent network models

is as follows. Consider the matrix form of the SEM (2.6). Then

x = Wx+ u
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It is known in matrix analysis that the QR decomposition of W can lead to

W = QHQT

where Q ∈ Rn×n is an orthogonal matrix and H ∈ Rn×n is an upper Hessenberg matrix,

i.e., H has the following specific form:

H =



h11 h12 h13 · · · · · · h1n

h21 h22
. . .

. . .
. . . h2n

0 h32
. . .

. . .
. . . h3n

0 0 h43
. . .

. . . h4n
...

...
. . .

. . .
. . .

...

0 0 · · · 0 hn,n−1 hnn


Hence,

Q(In −H)QTx = u

(In −H)QTx = QTu

Now let the coordinate transformation be

x̄ = QTx, ū = QTu

Then

(In −H)x̄ = ū (12.1)
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that is,



1− h11 −h12 −h13 · · · · · · −h1n

−h21 1− h22
. . .

. . .
. . . −h2n

0 −h32
. . .

. . .
. . . −h3n

0 0 −h43
. . .

. . . −h4n
...

...
. . .

. . .
. . .

...

0 0 · · · 0 −hn,n−1 1− hnn





x̄1

x̄2

x̄3
...

...

x̄n−1

x̄n



=



ū1

ū2

ū3
...

...

ūn−1

ūn



(12.2)

Expanding this equation componentwise yields

(1− h11)x̄1 − h12x̄2 − h13x̄3 − · · · − h1,n−1x̄n−1 − h1nx̄n = ū1 (12.3)

−h21x̄1 + (1− h22)x̄2 − h23x̄3 − · · · − h2,n−1x̄n−1 − h2nx̄n = ū2 (12.4)

−h32x̄2 + (1− h33)x̄3 − · · · − h3,n−1x̄n−1 − h3nx̄n = ū3 (12.5)

...

−hn−1,n−2x̄n−2 + (1− hn−1,n−1)x̄n−1 − hn−1,nx̄n = ūn−1 (12.6)

−hn,n−1x̄n−1 + (1− hnn)x̄n = ūn (12.7)

Thus, for fixed ūi, these equations generate multiple hyperplanes that can be used for

visualization. This process is recursively going backward based on these equations. More

specifically, it starts with the bottom equation

−hn,n−1x̄n−1 + (1− hnn)x̄n = ūn

This equation gives a straight line for 2D visualization of (x̄n−1, x̄n) under fixed ūn. Moving
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up, the next equation is

−hn−1,n−2x̄n−2 + (1− hn−1,n−1)x̄n−1 − hn−1,nx̄n = ūn−1

which gives a plane for 3D visualization of (x̄n−2, x̄n−1, x̄n) under fixed ūn−1. Following

this procedure with some variable elimination, one can obtain a 2D or 3D visualization for

any pair (x̄i, x̄j) or triple (x̄i, x̄j , x̄k) in the transformed space, i ̸= j ̸= k, i, j, k = 1, . . . , n.

However, this method still does not solve the problem of visualizing (xi, xj) or (xi, xj , xk)

in the original space, i ̸= j ̸= k, i, j, k = 1, . . . , n.

If In −H is nonsingular, then we have

x = Qx̄ = Q(In −H)−1QTu

which means that for given u, such x is uniquely determined. Let ei ∈ Rn denotes the

column vector whose ith element is 1 and the rest are zero. Then it follows that

xi = eTi x = eTi Q(In −H)−1QTu

Therefore, visualizing (xi, xj) or (xi, xj , xk) becomes plotting

(
eTi Q(In −H)−1QTu, eTj Q(In −H)−1QTu

)
or

(
eTi Q(In −H)−1QTu, eTj Q(In −H)−1QTu, eTkQ(In −H)−1QTu

)
as u =

∑n
i=1 eiui varies in the space span {e1, . . . , en}. The invertibility check of In − H

would be easier due to the upper Hessenberg form of H.

If In −H is singular, then we have to use the above derived equations to visualize the
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original SEM model. This is due to the fact that the solution to (In −H)x̄ = ū in terms

of x̄ is not unique for given ū. In this case, start with (12.7) by fixing ū and x̄n to solve

x̄n−1. Then moving up to (12.6) to obtain x̄n−2. Bottoming up this process will lead to

x̄ for given ū and x̄n. Next, incrementally change the value of x̄n, and repeat this process

to obtain another x̄. After several rounds of computation, a series of x̄ denoted by x̄[l],

l = 1, . . . , N is obtained. Then plotting (eTi Qx̄[l], eTj Qx̄[l]) or (eTi Qx̄[l], eTj Qx̄[l], eTkQx̄[l])

sequentially for l = 1, . . . , N will generate the 2D or 3D map for visualization of (xi, xj) or

(xi, xj , xk).

The energy-level method for visualization of dynamic multiagent network models is

as follows. The proposed energy-level method for visualization targets various dynamic

models as first-order differential equations in different layers. It uses the concept of energy-

like functions such as Casimir or Hamiltonian functions in dynamical systems and optimal

control theory, and maps the differential dynamics onto a manifold defined by contours of

Casimir or Hamiltonian functions. This can help easily visualize the change of competing

dynamics along the gradient direction of Casimir or Hamiltonian functions in the simulation.

In this project, focus is on the first-order dynamics (11.7). The key here is to find such an

appropriate Casimir or Hamiltonian function. To this end, a new notion of energy-Casimir

functions to facilitate such a searching process.

Definition 12.0.1. A continuously differentiable function C : Rn → R is an energy-Casimir

function of (11.7) if it is nonincreasing along the flow of (11.7) for some fixed u ≡ u0 ∈ Rn,

that is,

C ′(x)f(x, u)
∣∣∣
u≡u0

≤ 0

where C ′(x) = ∂C(x)
∂x , x = [x1, . . . , xn]

T ∈ Rn denotes the state vector for (11.7), u =

[u1, . . . , un]
T ∈ Rn denotes the input vector for (11.7), f(x, u) = [f1(x, u1), . . . , fn(x, un)]

T,
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and

fi(x, ui) = −σiixi +
∑

(i,j)∈E

aij(xj − xi) + ui

The following result gives a way to find appropriate energy-Casimir functions.

Theorem 12.0.1. If there exist an n× n symmetric matrix P = PT and an n× n positive

semidefinite matrix Q = QT ≥ 0 such that for every x ∈ Rn,

∂f(x, u0)

∂x
P + P

(
∂f(x, u0)

∂x

)T

≤ −Q (12.8)

holds for some fixed u0 ∈ Rn, then C(x) = fT(x, u0)Pf(x, u0) is an energy-Casimir func-

tion.

Proof: Note that the time derivative of C(x) = fT(x, u0)Pf(x, u0) along the trajectories

of (11.7) with u ≡ u0 is given by

Ċ(x) = C ′(x)f(x, u0)

= 2fT(x, u0)P
∂f(x, u0)

∂x
f(x, u0)

= fT(x, u0)

[
∂f(x, u0)

∂x
P + P

(
∂f(x, u0)

∂x

)T
]
f(x, u0)

≤ −fT(x, u0)Qf(x, u0)

≤ 0

Hence, by definition, C(x) = fT(x, u0)Pf(x, u0) is an energy-Casimir function for (11.7).

■

Note that C(x) = fT(x, u0)Pf(x, u0) can be written as C(x) = ẋTPẋ for (11.7) with u ≡

u0. Since P is symmetric, it has the diagonal decomposition form P = STdiag(λ1, . . . , λn)S.

Hence, C(x) =
∑n

i=1 λiκ̇
2
i , where [κ̇1, . . . , κ̇n]

T = Sẋ. Therefore, the physical meaning of

this energy-Casimir function is the “kinetic energy” of the system (11.7).
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Since f(x, u0) can be written as

f(x, u0) = −Ax− x+Wx+ u0

where A = diag(A1, . . . , An). Then

∂f(x, u0)

∂x
= −A− In +WT

Hence, (12.8) becomes

(−A− In +WT)P + P (−A− In +W ) +Q ≤ 0 (12.9)

which is a linear matrix inequality (LMI). This inequality can be solved by using the MAT-

LAB LMI toolbox. The following result gives a sufficient condition for this LMI to have a

unique solution.

Theorem 12.0.2. Let C ∈ Rl×n. If the pair (−A− In +W,C) is observable, then

(−A− In +WT)P + P (−A− In +W ) +Q = 0 (12.10)

has a unique solution P = PT > 0, where Q = CTC.

Proof: This is a standard result for the Lyapunov equation in control theory. Hence, the

proof is omitted. ■

The observability of (−A − In + W,C) can be checked via the rank condition or the

PBH test in control theory as follows.

Theorem 12.0.3. The following statements are equivalent:

1) The pair (−A− In +W,C) is observable.

2) For any λ ∈ C, the rank of

sIn +A+ In −W

C

 is n.
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3) the rank of



C

C(−A− In +W )

...

C(−A− In +W )n−1


is n.

Proof: This is a standard result in control theory. Hence, the proof is omitted. ■

Since there is freedom to choose A, it is possible to satisfy the observability condition

for given C. For example, C = In always satisfies the observability of (−A− In +W, In).

The energy-Casimir method describes the dynamic evolution of “kinetic energy” of the

system. However, it does not include any indication on the system state performance. Next,

another energy-like function is presented, Hamiltonian function. As an enhanced version of

energy-Casimir functions to embed the information of system state performance. The idea

of this method comes from optimal control theory where a Hamiltonian function is used to

find out optimal control laws via the Hamilton-Jacobi-Bellman equation.

To find a Hamiltonian function, the first step is to define a performance cost function

for (11.7), which is given by an integral form

J =

∫ ∞

t0

L(x(t), u(t))dt (12.11)

where t0 is the initial time, x(t) ∈ Rn denotes the state vector for (11.7), and u(t) ∈

Rn denotes the input vector for (11.7). The choice of L(x, u) could be quadratic, e.g.,

L(x, u) = xTR1x + uTR2u for R1 = RT
1 ≥ 0 and R2 = RT

2 ≥ 0, or non-quadratic, e.g.,

L(x, u) = P1x+ P2u, or the mixture of the quadratic and non-quadratic terms.

Definition 12.0.2. Let p ∈ Rn. Then H(x, u, p) = L(x, u) + pTf(x, u) is called a Hamil-

tonian function for (11.7).

This definition is quite general since p is arbitrary. To narrow down the search for

a useful Hamiltonian function, let C : Rn → R be an energy-Casimir function. Then

H(x, u) = L(x, u) + C ′(x)f(x, u) is an energy-Hamiltonian function for (11.7) associated
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with the energy-Casimir function C(x). It embeds both C(x) and L(x, u) into a single

expression for visualization.

Let H(x) := H(x, u)|u≡u0 . Then the pair (xi, xj) can be visualized in 2D space or the

triple (xi, xj , xk) in 3D space by plotting the energy-Casimir level set

{
(xi, xj) ∈ R2 : C(x1, . . . , xi, . . . , xj , . . . , xn)

∣∣∣
xl=cl∈R,l ̸=i,j,l=1,...,n

= c ∈ R
}

(12.12){
(xi, xj , xk) ∈ R3 : C(x1, . . . , xi, . . . , xj , . . . , xk, . . . , xn)

∣∣∣
xl=cl∈R,l ̸=i,j,k,l=1,...,n

= c ∈ R
}

(12.13)

or the energy-Hamiltonian level set

{
(xi, xj) ∈ R2 : H(x1, . . . , xi, . . . , xj , . . . , xn)

∣∣∣
xl=cl∈R,l ̸=i,j,l=1,...,n

= c ∈ R
}

(12.14){
(xi, xj , xk) ∈ R3 : H(x1, . . . , xi, . . . , xj , . . . , xk, . . . , xn)

∣∣∣
xl=cl∈R,l ̸=i,j,k,l=1,...,n

= c ∈ R
}

(12.15)
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Chapter 13

Conclusion

This thesis outlined a way to describe the spatial-temporal evolution and visualization of

escalation dynamics with multiple players. In this project, multiagent coordination and

algebraic graph theory based on the advisor’s prior research [14] was implemented to set up

an interconnected, graphical representation of multiple agents interacting within a hybrid

game. The hybrid game, which consists of non-cooperative gaming as the primary dynamic,

and cooperative gaming as the secondary dynamic, was used to capture the multi-modal

nature of escalation dynamics. This led to a multilayer interconnected complex system to

model intrinsic dynamics of competing escalation.

In addition to the hybrid game, a three layer approach to prepare data before being

input into the model was constructed. The three layers included a retrieving network, an

analyzing network, and a formulating network. The hybrid game model associated with

these factors resulting from the three layer network provided alternative interdependencies

among different agents in the hybrid game: cooperative (pro) interaction and competing

(con) interaction. This hybrid game provided the perspective of the two sides of impact

from their input: cooperative component and non-cooperative component. The cooperative

component, reflected the steady, coordinated nuclear deployment strategy in the escalation

and was the result of the potential-based cooperative game. The non-cooperative compo-

nent, depicted the negative contribution due to adversarial effects and competitive dynamics

in escalation, was the result of inhibitory effects in the network model. Finally, the overall
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outcome of the hybrid game was the results from both games weighted by their priority.

The weight of this priority is determined by the multi-cue multi-choice (MCMC) decision

making [10]. This allowed the network to govern the process of network model adaptation

by mimicking how a human makes decisions in these same scenarios. Finally, a topological

energy level method was developed to draw the energy-like level contour of the network

model for visualization by the user of the system.

Simulations provided in this thesis were used to verify the mathematical models were

implemented correctly and performed as expected. The hybrid game was simulated to

verify the cooperative and non-cooperative aspects of each game gave convergent and ex-

pected results. The MCMC model and analzing network were also simulated to verify their

effectiveness. At the time of writing the retrieving network, formulating network, and visu-

alizations were not yet simulated. However, from the simulations completed it was verified

that the hybrid gaming, MCMC model, and analyzing networks performed as expected.

Upon the completion of the remaining simulations, a software package that encompasses

each of these aspects will be formulated. The software package can be used to describe the

escalation dynamics among different nation in escalation scenarios.
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