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Abstract

Summary: Predictive learning from medical data incurs additional challenge due to concerns over privacy and se-
curity of personal data. Federated learning, intentionally structured to preserve high level of privacy, is emerging to
be an attractive way to generate cross-silo predictions in medical scenarios. However, the impact of severe
population-level heterogeneity on federated learners is not well explored. In this article, we propose a methodology
to detect presence of population heterogeneity in federated settings and propose a solution to handle such hetero-
geneity by developing a federated version of Deep Regression Forests. Additionally, we demonstrate that the recent-
ly conceptualized REpresentation of Features as Images with NEighborhood Dependencies CNN framework can be
combined with the proposed Federated Deep Regression Forests to provide improved performance as compared to
existing approaches.

Availability and implementation: The Python source code for reproducing the main results are available on GitHub:

https://github.com/DanielNolte/FederatedDeepRegressionForests.

Contact: ranadip.pal@ttu.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

With the recent imposition of regulations to safeguard consumer
data (e.g. General Data Protection Regulation), interest in develop-
ing privacy preserving predictive models has increased substantially.
Storage, distribution and utilization of medical data require compli-
ance with regulations (e.g. Health Insurance Portability and
Accountability Act), which often prohibit training effective predict-
ive models on centralized data that pools raw medical data distrib-
uted among multiple hospitals. Recently developed federated
learning (FL) technique allows efficient learning from such distrib-
uted data without centralizing it. Broadly speaking, FL only requires
exchange of model updates among various computing entities allow-
ing for the data to stay with the data owners and thereby preserving
the basic privacy requirement associated with data transmission. In
addition, FL allows the shareable model updates to be secured as
well, thereby providing additional privacy, while also fitting a pre-
dictive model to the distributed data. Due to such in-built privacy
protecting features, FL is being already adopted on real consumer
data (Dayan et al., 2021; Pati et al., 2021, 2022a; Yang et al.,
2018). Dayan et al. (2021), e.g. trained a federated deep and cross
network with a real federation consisting of 20 institutions from
around the world for predicting future oxygen requirements of
symptomatic COVID-19 patients. They showed that the federated
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model improved the AUC 16% on average compared to the client
alternative models that were trained solely on their local data.
Deployment of FL is also gaining traction in medical scenarios
(Rieke et al., 2020; Sheller et al., 2019, 2020; Xu et al., 2021) and
multiple open-source tools have been released to assist researchers
(Katti et al., 2022; Pati et al., 2022b; Reina et al., 2021). For in-
stance, Sheller et al. (2020) trained a federated U-net for brain
tumor detection and showed FL’s ability on privacy-sensitive appli-
cations to perform nearly as well as the case where all the data were
shared to a centralized location for traditional model training. On
the other hand, Roth et al. (2020) created a real-world federation of
seven clinical institutions to train a federated CNN for mammog-
raphy breast density classification. Despite large differences among
the institutions’ local datasets, they showed that the federated
model, on average, performed considerably better as compared to
the client-specific counterparts. For a systematic review of FL in the
medical context, we direct the audience to Pfitzner et al. (2021).

In this article, we consider the generation of a FL framework
with applications in medical environments where the clients can be
different hospitals or research laboratories. We assume that al-
though the clients are not willing to share raw medical data but are
keen on building an effective predictive model that learns from data
managed by each client. For instance, developing a federated drug
efficacy prediction model from genomic data where each client
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(research laboratories, pharmaceutical companies etc.) has tested
the efficacy of a common set of drugs on their in-house, potentially
non-overlapping, cell-line samples could generate more precise pre-
diction as compared to separate predictive models developed by
individual clients. Thus, for a successful FL framework, we need to
demonstrate (i) the predictive performance of the federated learner
is on an average better than individual client models and initial ser-
ver model; (ii) the chosen predictive model that facilitates FL is itself
better (in predictive sense) than other existing predictive models that
are amenable to federated setting; (iii) privacy of the client data is
maintained, in the sense that, there is no leakage of raw data among
clients and between clients and server; and (iv) robust performance
of the federated learner under various scenarios of disjointedness
among client datasets—for instance, imagine that each client has
tested the efficacy of drug compounds on unique cell-lines that each
client has access to thereby yielding a set of non-overlapping obser-
vational units across the client base. However, since cell-line infor-
mation cannot be shared among clients, fitting a global model is
infeasible.

Since typical aggregation methods rely on an iterative learning
scheme (McMabhan et al., 2017; Li et al., 2020; Wang et al., 2020),
such as SGD, where after each iteration the models can be aggre-
gated using gradient updates, not all models can be deployed in the
federated setting. Convolutional neural networks and similar
gradient-based deep networks, on the other hand, are more amen-
able to FL frameworks (Dayan et al., 2021; Feki et al., 2021; Roth
et al., 2020). However, biological datasets often come with non-
image inputs, such as transcriptomic features, which precludes
deployment of vanilla CNN because a naive lexicographic 2D map-
ping of transcriptomic features will fail to maintain neighborhood
structures that are important for CNN type models to perform.
Thus, in this article, we demonstrate how to integrate recently pro-
posed REpresentation of Features as Images using NEighborhood
Dependencies (REFINED) CNN framework (Bazgir et al., 2020)
that arranges high-dimensional vectors in a compact image form
thereby making them conducive for CNN-based deep learning in the
federated setting. To further bolster the regression performance, we
arm the prediction head of foregoing REFINED-CNN with Deep
Regression Forest (DRF) (Shen et al., 2018). DRFs connect a neural
network model with a forest of probabilistic trees by using the pre-
ceding model’s outputs as the routing probabilities of the decision
nodes for each of the samples thus combining the benefits of neural
network feature extraction with the robustness of prediction
obtained from the ensemble of trees.

More specifically, inspired by federated deep neural decision for-
est of Sjoberg et al. (2019), we demonstrate the use of REFINED
with federated DRFs on non-image medical data for improved ac-
curacy in the cross-silo horizontal FL scenarios. The proposed
method first maps high-dimensional feature vectors into images then
uses these images to train a federated DRF. In doing so, we make
methodological contributions in demonstrating that (i) CNN can be
brought to bear in federated setting even when the federation is deal-
ing with non-image data and (ii) Sjoberg et al. (2019) can be
extended to federated DRFs as well. Our framework’s effectiveness
on improving prediction accuracy is demonstrated on two biological
datasets. Results show that the REFINED federated DRF improves
federated predictive performance on both datasets under different
choices of the size of federation. We also illustrate that federated
models outperform the separately trained local client models by a
considerable margin. We further illustrate the robust performance
of REFINED federated DRF in the presence of heterogeneous client
datasets.

2 Methods

2.1 Federated learning

FL is a relatively new learning paradigm introduced in 2016
(McMahan et al., 2017). FL has gained considerable attention since
it allows distributed learning without sharing raw, potentially

confidential, data thereby offering an additional layer of protection
toward data privacy.

Figure 1 depicts the typical FL process where a federation of a
server and 7 clients is formed with each client trying to protect the
confidentiality of its own raw data, but is willing to participate in a
distributed learning process with the expectation that an aggregated
model—developed by sharing non-confidential information across
the federation—will have better performance than individual client
models. In each training round, clients are selected for a model up-
date where they each initialize their model from the global model
received from the server, then train their model on their private
data. Once each selected client finishes training, they send their
updated model parameters or model gradients back to the server
who aggregates the updates from the selected clients into the new
global model using Federated Averaging (McMahan et al., 2017).
This process repeats itself until suitable model performance is
achieved or a valid stopping criterion is reached. To jump start the
training process, it can be assumed that the server has some data to
estimate the initial model, either through publicly available datasets
or through client data that is not privacy sensitive (Ding et al., 2022;
Li and Wang, 2019; Tzinis et al., 2021). Such pre-training of an ini-
tial model on proxy data has been shown to increase the predictive
accuracy of the federated learner and reduce the number of aggrega-
tions required to reach a target error (Chen ef al., 2022; Nguyen
etal.,2022; Zhao et al., 2018). In FL, the data can be partitioned in
multiple ways, the most popular being horizontal FL and vertical
FL. In horizontal FL, the clients share the same features space but
have different samples. Whereas with vertical FL the clients have the
same sample space, but differing features for each client. In this art-
icle, we are exclusively working in the horizontal setting, where cli-
ents have different samples sharing the same features.

2.2 REFINED

Conventional CNN is an effective tool when the predictors come in
the form of images because, architecturally, CNN exploits the spa-
tial correlation among neighbors in images during the convolution
operation which reduce the number of free model parameters as
compared to a fully connected network. However, both 1D and 2D
CNN:s are not conducive for datasets consisting of high-dimensional
vectors that do not display any natural ordering. Medical datasets
often have such non-image features (e.g. transcriptomics informa-
tion) where a naive lexicographic 2D mapping will fail to maintain
spatial correlations among features thereby precluding deployment
of wvanilla CNN type models. Recently we developed the
REpresentation of Features as Images with NEighborhood
Dependencies (REFINED) CNN framework that arranges high-
dimensional vectors into a compact image form that can be subse-
quently processed via CNN-based deep learning protocols (Bazgir
et al., 2020). REFINED starts by obtaining the pairwise distance be-
tween features from the data and then applies multi-dimensional
scaling (MDS) to initialize a feature map that is fed into Bayesian
MDS, which iteratively estimates the feature locations with a con-
straint that no two features can share the same location. REFINED
CNN and its robustified version were shown to perform better than
competing approaches in multiple biological prediction scenarios
(Bazgir et al., 2020, 2021).

In this article, we use the foregoing REFINED technique to
map high-dimensional vectors, encoding biological and chemical
information, into images before model training. An a-priori
REFINED map is generated based on the dataset available with
the server and shared with all clients before the federated training
kicks in.

2.3 Federated DRFs

DRFs connect deep neural networks to a forest of trees with prob-
abilistic routing of samples. The deep networks, typically CNNs, are
used to extract rich representational features, which are then trans-
formed into probabilities through a sigmoid function, and used for
the routing of a sample through the tree. Each leaf node has a prob-
ability density function, typically specified via Gaussian distribution,
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Fig. 2. Example DRF with six feature outputs and two trees each with a depth of 3

over the target space. The predictions of the trees are the sum of the
expected values of the leaf node distributions of the trees weighted
by the probabilities of the sample reaching that leaf. Figure 2 shows
an example DRF with a CNN network, six feature outputs and two
trees each with a depth of 3. For an ensemble of trees, the forest pre-

dictions are simply the average of the predictions from each tree.

For training a DRF, both the model parameters and leaf node
distribution parameters are learned from the data. The model
parameters are randomly initialized and the leaf node distributions
are initialized with a Normal(1, I) distribution, where I is an identity
matrix of appropriate dimension. Then, holding the leaf node

distribution parameters fixed, the network parameters are updated
through typical backpropagation. After the network parameters are
updated, they are held constant and the leaf node distribution
parameters are iteratively updated through variational bounding.
Shen et al. showed that the soft split loss function associated with
tree nodes are differentiable with respect to the network model
parameters and the gradient of the loss can be used in typical back-
propagation to update the model parameters (Kontschieder et al.,
2015). This alternating optimization scheme allows DRFs to learn
both the model parameters and leaf node distributions via a coher-
ent training pipeline.
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In this article, we make DRFs amenable to federated setting by
aggregating all the model parameters and leaf node parameters using
typical federated averaging aggregation (McMahan et al., 2017).
More precisely, we allow each client to perform one epoch of net-
work parameter updates using their local data, followed by the leaf
node parameter update, again on their local data, before sending the
updates back to the server. The server then aggregates the model
parameters by taking appropriate data weighted average of each of
the model parameters from each of the clients. These updated
parameters are then sent back to the clients.

3 Results

Let D= {D,'}f-\i] denote the available information on N samples.
The dataset was partitioned into training set (D), validation set
(Dy) and test set (Dy). One server and 7 clients were available to de-
ploy the federated framework. Only the server had access to Dy and
an initial training dataset D(T’) to the initialize federated learner. The
clients had access to portions of D(Tfl) =Dr — D(T*I) for their own
training purposes. First, the data was randomly split between the cli-
ents, then a robustness analysis was performed to show the perform-
ance of our method in different realistic scenarios where drug—target
metadata were brought into play to split the data among clients in a
more cognizant fashion. Dy was held outside the federated loop to
test the predictive performances of the competing models.

Normalized root mean square error (NRMSE) and Pearson cor-
relation coefficient (PCC) were used to compare predictive perform-
ances of each of the models considered herein. The NRMSE is
defined as:

1/]j € Du| Z/’EDH (= )7,’)2
1/lj € Dul > iep,, (9 — 7,‘)27

NRMSE = J (1)

where y is the target data, y is the predicted values and ¥ is the sam-
ple mean of the target variable. The NRMSE is used as it allows
comparison of all models with the baseline average value prediction
model.

The PCC is a measure of collinearity between the predicted and
true target values and is often used to measure the goodness of fit of
a model up to a linear bias. However, since PCC is scale and offset
invariant, we use NRMSE to provide further insight into the models
goodness of fit. Consequently, higher PCC coupled with low
NRMSE will imply that predicted values are not only collinear with
the target values, but also the former are, on average, tightly spread
around their targets. Evidently, models with uniformly high PCC
and low NRMSE will be preferred. Since our considered scenario
deals with medical data distributed among research labs or hospi-
tals, i.e. cross-silo, we assume the federation will contain a server
and a small set of clients who have reliable connection and the
required computational resources to train local models independent-
ly. Additionally, we will assume that the entire set of clients partici-
pate in each training round thereby alleviating an additional layer of
complexity induced when millions of low-powered devices (e.g. cell
phones) partake in the federation that requires a randomly selected
subset of clients to participate in each training round. To ascertain
the impact of federation size on prediction performance, for each
model, hyper parameters, and optimizers, we varied the number of
clients in the federation by assigning 7 € {3,5,10,15,20}. Further
information on the simulation setup, datasets, preprocessing and
candidate models can be found in the Supplementary Material.

3.1 CCLE

The cancer cell line encyclopedia (CCLE) dataset consists of
responses elicited by 24 anticancer drugs screened on 504 different
cancer cell-lines with known genomic information. Further details
on the datasets are provided in the Supplementary Material. Results
pertaining to centralized, initial and federated setting are all
reported as the average performance across the three different ran-
dom data splits. The NRMSEs and PCCs for each model for the

CCLE dataset are shown in Figure 3 (more detailed results, in
tabular format, are offered in Supplementary Table S2). Figure 3
demonstrates that REFINED-DRF consistently achieved better per-
formance in CCLE under all federation sizes and in the centralized
setting as well. The only case where the REFINED-DRF was outper-
formed was on the initial 5% model where the ANN had a margin-
ally better performance. REFINED-CNN also outperformed the
ANN in all centralized and federated cases except the 5% initial
model. However, given the predictive discrepancy between initial
model and the centralized benchmark, the former cannot be claimed
as an ‘adequate’ model in the first place.

On all federated models, as the number of clients increased, the
predictive performance decreased, with the three-client case being
almost as good as the centralized benchmark. However, interesting-
ly, the performance gap between REFINED-DRF and ANN
increased noticeably as the number of clients increased. As shown in
Figure 3, the ANN with 3(20) clients achieved an NRMSE of 0.40
(0.45) and a PCC of 0.916 (0.894), whereas the REFINED-DRF
with 3(20) clients achieved an NRMSE of 0.37 (0.39) and a PCC of
0.929 (0.921) PCC. Thus, for three-client case, REFINED-DRF
improved NRMSE by 8% as compared to ANN. But, for 20-client
case, REFINED-DRF improved NRMSE by 15% as compared to
ANN. Similar calculation for PCC revealed REFINED-DRF
improved PCC by 1.5% (3%) in 3 (20)-client case as compared to
ANN. Evidently, as the number of clients increased, the perform-
ance of ANN appeared to deteriorate at a faster rate as compared to
the predictive degradation of REFINED-DRF.

To assess the utility of federation, we considered the baseline
models where all three competing federated models were independ-
ently trained and tested on each of the local client datasets separate-
ly. All client sizes were trained and tested on the same sets as the
federated simulations. The client models used the same initial 5%
REFINED mapping as the federated simulations for fair compari-
son. The models also used the same early stopping and learning rate
scheduling, but on a 10% validation subset of their data.
Additionally, since the training datasets are much smaller, the model
complexities were reduced by removing layers and decreasing the
batch size to 12, allowing for better individual client model perform-
ance. For the CNN and DRF, the last CNN layers for both of the
drug and cell arms were removed. Furthermore, each CNN and
DRF model had only one hidden dense layer. For the ANN, the first
two hidden layers were removed. The average test results across the
three data partitions for each client size are shown in Supplementary
Table S3. We observe that the individual client models perform sig-
nificantly worse than their federated counterparts. ANN outper-
formed its competitors under all client size scenarios considered
herein. However, on average, the federated ANN showed ~13%
(4%) improvement in NRMSE (PCC) as compared to the baseline
ANN. Federated REFINED-DREF, on the other hand, showed ~24%
(7%) improvement in NRMSE (PCC) as compared to its baseline
counterpart and was able to greatly decrease the generalization error
of the models utilizing FL. The average generalization error im-
provement for the ANN, CNN and DRF NRMSEs, respectively, are
13.6%, 20.6% and 24.4% for the federated models compared to
the individual client models.

3.2NCI-60

The National Cancer Institute (NCI) dataset consists of responses of
over 55 000 chemicals screened on over 100 cancerous cell-lines.
Details on the NCI dataset are included in the Supplementary
Material. Out of 60 cell-lines available in NCI-60, we used 3 cell-
lines that were exposed to most number of drugs. Each of these three
selected cell-lines was evaluated with three different random realiza-
tions of {Dr, Dy, Dy }. Average predictive performance on these 3 x
3 cell-line-partition combination is reported in Figure 4 and
Supplementary Table S4. Results on NCI-60 follow similar pattern
as was observed on CCLE, with REFINED-DRF outperforming the
ANN and REFINED-CNN in all of the centralized and federated
settings, barring the initial 5% server model. The REFINED-DRF
slightly outperformed the REFINED-CNN on the centralized model,
but the performance improvement amplified as the number of clients
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increased. The REFINED-CNN and REFINED-DRF significantly
outperformed the ANN, with REFINED-DRF achieving on average
0.089 lower NRMSE and 0.127 higher PCC. For all models, the per-
formance degraded as the number of clients increased similar to the
CCLE scenario.

Client-specific baseline models for NCI-60 were also run accord-
ing to the procedure described for baseline CCLE models, with the
exception that only A549 cell-line was tested since it had the highest
sample size. We used the same model architectures and parameters
as the federated models. We tested the performance of models with
lower complexities, but such models did not contribute toward im-
provement in average predictive performance. The performance of
the baseline model for cell-line A549 is shown in Supplementary
Table S5. Clearly, the federated set up showed considerable im-
provement in predictive performance from the baseline individual
client models. On an average, the NRMSE in federated setting were
6.3%, 11.6% and 15.8% lower than that of the baseline model for
the ANN, REFINED-CNN and REFINED-DREF, respectively. The
PCC under federated setting improved by 23.43%, 30.78% and
34.81% as compared to the baseline model, for the ANN,
REFINED-CNN and REFINED-DREF, respectively. Again, we
observed that REFINED-DREF offered highest improvement in feder-
ated setting as compared to its baseline counterpart.

3.3 Robustness analysis of federated setting

Customarily, robustness of federated setting is studied under various
versions of adversarial attacks (Bagdasaryan et al., 2020; Melis
et al., 2019; Nasr et al., 2019). In this study, we analyze the robust-
ness of our federated setting under non-malicious data swaps and
quasi-random allocation of samples among clients. Studying robust-
ness under data swaps was inspired by FDA’s Multi-omics Enabled
Sample Mislabeling and Correction Challenge (Boja et al., 2018)
that solicited methodological developments to detect and correct
mislabeled samples. We conjecture that in a federated setting, where

clients are observing a homogeneous population, the totality of in-
formation collected by all clients would provide a comprehensive
view of the population, which could help us accurately identify and
resolve accidental data swaps and data mislabeling. In the demon-
strative scenario below, we assume that the data swaps are com-
pletely random and no systematic effort was made by the clients to
fabricate data.

In the second scenario, we investigate how well the federated set-
ting—that we have designed here—can handle heterogeneity across
the clients’ databases. A quasi-random allocation was designed to
mimic situations where client’s database consists of population clus-
ters and thus violates the assumption that each client is taking meas-
urement on a homogeneously distributed population. This scenario
also corresponds to splitting the data in a cognizant manner by tak-
ing into account the drug-target metadata.

3.4 Robustness under data swaps

To test the robustness against erroneous data entries, each client per-
muted 20% of their target values before training. In other words,
the row indices of 20% of responses in D(T_).I ) were randomly per-
muted for each j=1,2,..,mn € {5,10,15}. The experiment was
run with the same parameters and model architectures as the feder-
ated experiments. Given a particular split of D = {Dr, Dy, Dy}, we
deployed both the permuted and unpermuted versions of the feder-
ated model so that we can have a like-for-like comparison of the pre-
dictive performance. We present the average (over three splits)
predictive performance of the permuted version of the federated
learner on CCLE dataset in Figure 5. A comparison of Figure 5 with
Figure 3 reveals, quite obviously, that the performance of all the
competing models suffered under permutation. However, it was also
apparent that the REFINED-DRF incurred least loss due to the per-
mutation of target values. Robustness of conventional random forest
against mislabeling of target classes was reported in Knights ez al.
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(2011). It appears that DRF also inherits that robustness in feder-
ated setting as well.

3.5 Robustness under quasi-random allocation of

samples

In this section, we consider the performance of the models in the
federated setting where D(T*I) was allocated to each client in a
quasi-random fashion. Observe that, a CRD-based allocation of
DE’)J =1,2,..,n essentially implies that the observation units are
homogeneously distributed and each client is equally likely to ob-
serve any observation unit. However, in several realistic situations,
certain clients are more likely to observe certain clusters of observa-
tion units (e.g. conceptualize a hospital located in a disease hot spot
and therefore only certain kinds of inhibitors dominate the set of
drugs prescribed by that client). To mimic this real-world clustering
behavior of observation units, we created scenarios where certain
clients can observe certain drugs only, i.e. keeping the number of
clients constant, we varied the number of unique drugs each client
had access to. We tested the federated learner under several scen-
arios of this setting. On one end of the spectrum, we had a situation
where clients’ drug sets were completely disjoint, while at the other
end, we had all the clients containing observations on all the drugs.
We deployed this scenario only on CCLE, because it had observa-
tions on 24 distinct drugs, in the following way:

First, we fixed the number of clients 7 = 12 and introduced an
overlapping parameter k that controlled the number of unique drugs
per client. We allowed the following values of k € {2,8,16,24}.
When k =2, each client data corresponds to two unique drugs.
Thus, k =2 was a no-overlap case, where clients’ drug sets were
completely disjoint. In this situation, the drug—target metadata is a
natural choice to split the data in a cognizant fashion. In our syn-
thetic case, the drug set allocated to Client 0 (over three replicates)
was dominated by the compound Nultin-3, which is a small mol-
ecule inhibitor of MDM2 (Arya et al., 2010). On the other hand, the
drug set allocated to Client 2 (over three replicates) was dominated
by the compound PHA-665752, which is a ¢-MET inhibitor (Zhi
et al., 2018) and the drug set allocated to Client 10 (over three repli-
cates) was dominated by the compound TKI-258, which is an
FGFR, VEGFR inhibitor (Dubbelman et al., 2012). For
2 < k < 24, each client was allocated a random sample of k drugs
out of 24 available drugs. Since #n = 12, for k > 2 clients’ drug sets
were no longer disjoint. When more than one client had the same
drug in their drug sets, the cell-line data was split evenly among the
corresponding clients. Finally, when k = 24, clients’ drug set com-
pletely overlapped with each other with each client having data
from all the drugs.

The predictive performance of the competing models is shown in
Figure 6. Observe that the performance pattern of all the competing
models remain fairly stable for k € {8,16,24}. However, all the
models performed poorly for k = 2. As a matter of fact, REFINED-

CNN struggled to converge in this extreme case even with a lower
learning rate.

Given the observed sensitivity of the federated learner to clus-
tered population (k = 2), we proceed to further investigate whether
it is possible to identify the existence of clusters from the informa-
tion received from the clients. Recall, in our FL architecture, the ser-
ver broadcasted the initial model to clients and received locally
updated parameters from each client. The server also had access to
Dy, which was randomly selected from the population. We conjec-
ture that if D(T{) and Dy are both representative samples from the
population, the server can track the validation loss to identify poten-
tial existence of clustered population among clients. To illustrate
our point, we ask the server to calculate the validation loss for each
client, on Dy, once it received locally updated parameters from
them. Figure 7(A-C), offer the trajectory of validation loss for
REFINED-DRF under k = 2, 8,24, respectively. Observe how the
between-trajectory variance declined as k increased. Similar reduc-
tion in between-trajectory variances were observed for ANN and
REFINED-CNN validation loss trajectories as well. Consequently,
tracking the variation in validation loss across clients after each
round of parameter update could potentially offer insight into the
homogeneity of observational units across the clients. High vari-
ation in the validation loss trajectory would indicate presence of
client-specific sub-populations.

We recommend a Gelman-Rubin (Gelman and Rubin, 1992)
style convergence diagnostic measure to assess the mixing of client-
specific validation loss trajectories. Suppose, there are n clients go
over M rounds of parameter updates. Suppose, it was observed that
m( < M) updating rounds were required to achieve an approximate
convergence in the validation loss trajectories among clients. Let
x(l’),x(zl)7 ..x;&l be observed trajectory of validation loss for client
j,j =1,2,..n until the convergence point . Define client-specific
loss trajectory mean X; = ﬁz;’;l xE’) and grand mean of valid-
ation loss as ¥ =, % X, We can define between-trajectory

1 — m—1 n = _ =)2
variance B=2=37", (¥, - X)

W =-L ! (=Y - %;)%. Define W = +2°721 W;. Then, a convex
combination of B and W, with appropriate scaling, can be used to
assess how well the client trajectories are mixing up to the conver-
gence point m. For instance, once the within-trajectory and

between-trajectory variances are defined, we can use R =

and within-trajectory variance

W With @ =1/(m — 1) as a mixing diagnostic (Gelman and
Rubin, 1992). Observe that, as B — 0, then for reasonably large 2,
we have R ~ 1. This implies that for a given value of m, if R takes
value in the neighborhood of 1, the client trajectories are mixing
well and we can assume that the population is homogeneously dis-
tributed among clients. However, R > 1 (for a given m) would
strongly indicate that clients are observing heterogeneous popula-
tion clusters. Thus, the server can keep track of the R statistic to de-
tect presence of clusters.
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What should be done if clustering is detected by the server? The
obvious option is to let each client train their own model and tem-
porarily halt federated aggregation. In other words, the server only
keeps track of the validation loss trajectories for each client without
sending out aggregated parameter updates. The other option is to
continue with federated updating but add a personalized layer in
each client’s network. More specifically, each client uses the last
layer of its network to personalize its own parameter estimates.
Clients update their local parameters from the received aggregated
model for all layers but the last layer, letting each client have inde-
pendent parameters for personalization. Furthermore, each client
records the number of non-improving epochs and the server aver-
ages them from all the clients so that the learning rate reduction and
early stopping can still be performed. To compare the predictive
capabilities of these two strategies, we conceptualize the following
simulation study:

We examine the extreme case of no drug overlap among clients,
i.e. k =2 on the CCLE dataset. We retain 10% of samples for each
client for validation and another 10% are treated as hold-out sets.
We allow each client to train its own model, without any federated
updates, and test each client’s model on the foregoing test samples
held out for each client. This predictive performance can be viewed
as local predictive capability—the ability of each client model to pre-
dict observations drawn from the population cluster that the client
is exposed to. We can also test the predictive performance of each
client model on the entire test set obtained by concatenating the
10% samples held out for each client. This global predictive per-
formance, observed on the global test set, is indicative of the efficacy
of each client’s model on predicting test samples arising from popu-
lation clusters that the client was not exposed to during training
phase. Table 1 below shows the local and global predictive perform-
ance of individually trained REFINED-DRF and Federated
REFINED-DRF with single personalized layer:

Table 1. Predictive performance of individually trained client
REFINED-DRF and federated REFINED-DRF with a single personal-
ization layer on both the local and global hold-out sets

Type of test set Individual Federated DRF with
client DRF personalized layer
NRMSE PCC NRMSE PCC
Local 0.74 0.64 0.72 0.69
Global 0.81 0.71 0.82 0.79

It is not reasonable to compare the local versus global predictive
performances because of higher level of heterogeneity in the global
test samples as compared to the local ones. Hence, we compare the
local predictive performance of the two competing models separate-
ly from their global predictive performance. Clearly, the perform-
ance of individually trained models is comparable with the federated
ones when the models are being tested on client-specific test data.
However, when tested on global test set the PCC for Federated DRF
is considerably higher as compared to that observed for individually
trained DRF. This improvement is attributable to the federating pro-
cess because the updates the clients are receiving from the server
contain information about all the clients. Hence, there is an implicit
information assimilation across clients.

4 Conclusion

In this article, we introduced a new FL framework that integrates
DRFs with REFINED CNN with the goal of improving predictive
performance in federated settings. Experimental results on two
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medical datasets using a federated simulation showed the proposed
framework’s effectiveness in the cross-silo federated setting. The fed-
erated REFINED-DRF was shown to improve cross-validation error
considerably as compared to local client models without any FL. We
also found empirical evidence that REFINED-DRF outperformed
the CNN and ANN on both datasets under federated and central-
ized settings. The conceptualized framework showed robustness
against erroneous data entry and extreme population heterogeneity.
We also found that the REFINED method was effective in the feder-
ated setting using only a subset of available data to train the
REFINED mapping. Our methodology enjoyed a rich feature ex-
traction protocol available due to the REFINED mapping and subse-
quent CNN-based convolutional operations. Then, it was paired
with the ensemble of predictions available from DRFs. We also con-
ceptualized a procedure for the server to detect presence of strong
population heterogeneity across clients and developed a personal-
ized formulation that could enable the clients to strike a balance be-
tween fully federated and fully individualized predictive
frameworks. As such depending on the distance between the test
case and the training cases, the clients can decide on whether to in-
voke personalized layer or use the conventional federated estimates.
Clearly, the proposed federated REFINED-DRF framework is a vi-
able approach for cross-silo horizontal FL from medical datasets.
Future research will include development of a formal protocol that
would enable clients to generate predictive distributions depending
on the position of the test case vis-a-vis the position of the training
cases in a REFINED map operating on samples and features
simultaneously.
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