HIV Suppresses Cervical Neutrophil Infiltration in Women with Normal or Abnormal Pap Smears

Mika Caplan
University of Nebraska - Lincoln, mika.caplan26@gmail.com

Peter C. Angeletti
University of Nebraska - Lincoln, pangeletti2@unl.edu

Duan Loy
University of Nebraska-Lincoln, dloy2@unl.edu

Kandali Samwel
University of Nebraska-Lincoln

Daniela Gonzalez
University of Nebraska-Lincoln

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/ucareresearch

Part of the [Cancer Biology Commons](http://digitalcommons.unl.edu/ucareresearch), [Cell Biology Commons](http://digitalcommons.unl.edu/ucareresearch), and the [Virology Commons](http://digitalcommons.unl.edu/ucareresearch)

Caplan, Mika; Angeletti, Peter C.; Loy, Duan; Samwel, Kandali; Gonzalez, Daniela; Chisanga, Crispin; Mwaiselage, Julius; Munema, Asafa; Bashker, Brenda; Goodwin, Kessy; Loy, John Dustin; West, John T.; and Wood, Charles. "HIV Suppresses Cervical Neutrophil Infiltration in Women with Normal or Abnormal Pap Smears" (2018). *UCARE Research Products*. 148.
http://digitalcommons.unl.edu/ucareresearch/148

This Poster is brought to you for free and open access by the UCARE: Undergraduate Creative Activities & Research Experiences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UCARE Research Products by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Authors
Mika Caplan, Peter C. Angeletti, Duan Loy, Kandali Samwel, Daniela Gonzalez, Crispin Chisanga, Julius Mwaiselage, Asafu Munema, Brenda Bashekera, Kessy Goodwin, John Dustin Loy, John T. West, and Charles Wood

This poster is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/ucareresearch/148
Abstract

Human immunodeficiency virus (HIV) infection of CD4+ T cells results in a weakened immune system due to decreased white blood cells, particularly multi-lobed neutrophils (neutropenia) and other granulocytes.¹ The purpose of this study was to determine whether a correlation exists between HPV/HIV status and presence of neutrophils. To test this, we used a computer software program (QuPath) to analyze neutrophil infiltration seen in pap smears of both HIV+ and HIV- patients from samples collected in Tanzania from three different sites: Bagamoyo, Chalinze, and Dar es Salaam. The software was used to quantify neutrophils per image based on the size and shape of the nuclei. For each sample, three slide images were taken and the average neutrophil count was determined through QuPath and compared to data about sample HIV and HPV status from a previous study. Results showed that HIV+ patients had significantly lower neutrophil counts, regardless of HPV type and cytology grade based on the Bethesda system. Therefore, we concluded that cervical neutrophil infiltration is suppressed in HIV+ samples for both normal and abnormal pap smears.

Screening Methods

Computational Methods

Images of HIV+/- Pap Smears

Increased Abnormality in HIV+ Samples

Decreased Neutrophil Count in HIV+ Samples

Fig. 1 Sample screening process in Tanzania.
Fig. 2 HPV detection process.

Fig. 3 Procedure for neutrophil quantification using QuPath software.

Fig. 4 a) HIV- low neutrophil count. Sample 12021A b) HIV- high neutrophil count. Sample 13022C c) HIV+ low neutrophil count. Sample 13001A d) HIV+ high neutrophil count. Sample 12014A e) Cannonball. Sample 13027f) Cannonball. Sample 13036i2

Fig. 5 Distribution of HIV+ and HIV- patients.

Fig. 6 Distribution of HPV types among HIV+/- samples.

Fig. 7 Graph shows cellular abnormality in HIV+/- Samples

Fig. 8 Graph shows normal and abnormal pap smear neutrophil counts in HIV+/- samples.

Conclusion

• HIV suppresses cervical neutrophil infiltration.

Acknowledgements

We thank members of the Angeletti and Wood laboratories for critical evaluation of this work. This work was supported by a grant from NCI (U54CA190155).

References

References