
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department of

2012

Roles in a Networked Software Development
Ecosystem: A Case Study in GitHub
Patrick Wagstrom
IBM TJ Watson Research Center Hawthorne, NY, pwagstro@us.ibm.com

Corey Jergensen
University of Nebraska-Lincoln, cjergens@cse.unl.edu

Anita Sarma
University of Nebraska-Lincoln, asarma@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csetechreports

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Wagstrom, Patrick; Jergensen, Corey; and Sarma, Anita, "Roles in a Networked Software Development Ecosystem: A Case Study in
GitHub" (2012). CSE Technical reports. 149.
http://digitalcommons.unl.edu/csetechreports/149

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports/149?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages

Roles in a Networked Software Development Ecosystem:
A Case Study in GitHub

Patrick Wagstrom
IBM TJ Watson Research Center

19 Skyline Dr
Hawthorne, NY, USA 10532

pwagstro@us.ibm.com

Corey Jergensen, Anita Sarma
Computer Science and Engineering Department

University of Nebraska, Lincoln
Lincoln, NE, USA 68588

{cjergens,asarma}@cse.unl.edu
ABSTRACT
Open source software development has evolved beyond single
projects into complex networked ecosystems of projects that
share portions of their code, social norms, and developer commu-
nities. This networked nature allows developers moving into a
new project to easily leverage knowledge about process and so-
cial norms along with reputation gained in related projects. In this
paper we examine a subset of the communities found in GitHub, a
large software development community that focuses on “social
coding”. We identify a variety of roles in the ecosystem that go
beyond the previous user/developer dichotomy and find that these
roles often persist across sub-communities in the GitHub ecosys-
tem. This has dramatic implications for the way that we view
open source and related software development processes and
suggests that a more nuanced view of the roles and relationships
in these communities would be beneficial.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management: programming
teams: D.2.8 [Software Engineering]: Metrics: process metrics

General Terms
Management, Measurement, Documentation, Human Factors,

Keywords
GitHub, open source software, networked project ecosystem

1. INTRODUCTION
Open source software (OSS) development has spread from being
employed in a niche infrastructure project, such as the Apache
web server, to being a standard methodology to develop almost
any piece of software for which the source code can be shared [9,
20, 21]. New project hosting sites such as GitHub, which brands
itself as facilitating “social coding” are changing the way open
source is perceived and how it is practiced. Rather than projects
being developed in isolation and reputation accrued in individual
projects that culminates in the right to directly commit code to a
single project, this new style of development relies on an inher-
ently networked ecosystem where developers and users can view
and track each other’s contributions across a wide variety of pro-
jects[5, 16].

This networked ecosystem reflects current software development
needs where a project often includes source code written in mul-

tiple languages and utilizing multiple different development
frameworks and libraries, For example, development of a web
application may use the JavaScript library jQuery for the user
interaction, Ruby on Rails for the backend processing, and Rack
as a web server. Another project may choose to use jQuery for the
user interaction, Sinatra for backend process, and Rack as a web
server. This need for knowledge of multiple technologies requires
users to leverage their knowledge of a wide variety of projects
when contributing to an individual project. Networked ecosys-
tems, such as GitHub, make it easy to see all the contributions of
a user across all their projects and thus assess their skill.

GitHub has opened up the open source development process in
radical new ways. Traditionally in open source projects the source
code for a project was hosted in a central repository that only a
handful of developers could directly access. Changes to the code
had to be mediated through central community members. Indi-
viduals had to undergo a complicated and involved socialization
process, whereby they began learning about the project norms,
culture, and technical content by progressively participating in
social to technical roles (e.g., progressing from mailing list par-
ticipation to reporting bugs and providing patches, to gaining
commit access [7, 13]).

However, in GitHub the technical barriers have been reduced
vastly. For example, forking of the code, the process by which an
individual starts a new source code repository, rarely happened
and was typically seen as a last resort for dramatic social or tech-
nical conflicts in a project. Distributed version control systems
such as git, upon which GitHub is based, allow anyone to create
lightweight forks and immediately begin developing code. When
the new code is mature the user can issue a pull request to have
the main code repository pull their code in or they can choose to
easily maintain their own external branch. This has radically
changed the socialization process in open source by tearing down
the barriers to entry for writing source code.

GitHub also greatly simplifies the process of starting a new pro-
ject by providing a common, efficient infrastructure. Developers
can create any number of open source projects with only a few
mouse clicks, and, in contrast to previous hosting environments
such as SourceForge and Google Code that were built primarily
on top of existing non-integrated tools, such as CVS, Subversion,
and Mailman, GitHub provides a robust integrated environment
built and architected for collaboration from the ground up. This
lack of integration in previous tools resulted in information silos
around projects where it was not possible to see an individual’s
development and social contributions beyond a single specific
project.

Finally, the social media aspects in GitHub allow developers to
watch repositories of interest or follow developers whose coding
style or expertise they admire. This brings awareness of activities
in the community and greatly improves the socialization process.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FSE’12, November 13–15, 2012, Raleigh, NC, USA.
Copyright 2012 ACM 1-58113-000-0/00/0010…$10.00.

proyster2
Typewritten Text
Department of Computer Science & Engineering, University of Nebraska-Lincoln,
Technical Report, TR-UNL-CSE-2012-0006

For example, the number of followers that a user has is treated as
a signal of status and some members with a large follower net-
work are treated as local celebrities [5].

In this new model the traditional roles through which developers
became code contributors may not hold true. Thus far there is no
research that has empirically looked into how the traditional join-
ing script has evolved to fit this new model of open source com-
bined with social media. The immense popularity of GitHub with
more than 1.4 million registered users and 2.3 million code re-
positories1 could be attributed to the social infrastructure afforded
by GitHub. It is vital to understand and characterize this new
networked infrastructure that promotes “social coding” as it has
the potential to change the OSS landscape, as well affect tradi-
tional organization structures. Together these issues prompt the
following research questions:

RQ1: How has the basic user/developer dichotomy in an open
source project evolved with the addition of social data and more
robust tracking of code contributions?

In traditional OSS, it was not possible to discern between users
who when simply using the software found a bug and reported it
or fixed a bug related to their work and submitted a patch, and
users who were trying to onboard by actively tracking bugs and
contributing patches. In GitHub we can easily distinguish be-
tween these groups, which can help projects in socializing new-
comers or in actively recruiting patch-fixers who would otherwise
drift way.

RQ2: What are the more nuanced roles of developers in a modern
networked open source project?

The visible cues of others’ development patterns and social net-
works, along with the reduced technical hurdles in participation
has allowed the creation of more nuanced roles in GitHub than
the traditionally accepted user/developer dichotomy in open
source. Because of the availability of a common socio-technical
infrastructure, developers who specialize in certain activities can
work in concert to create a better ecosystem. An understanding of
these roles and their effects can help projects attract these special-
ists.

RQ3: With the addition of social data and tracking of relation-
ships across an entire ecosystem, how has the understanding of
participation across open source projects evolved?

Our current understanding of OSS stems from research that has
studied single, monolithic projects. However, the reality is that
projects do not exist in isolation; rather sub-communities exist
around related technology that may be founded around a common
programming language, such as RubyForge2 – a general hosting
community for tools written in Ruby, or a problem space, such as
the COIN-OR3 community that provides a variety of software
packages for operations research. The common social and techni-
cal infrastructure provided by GitHub further extends this by
being a general hosting site for all open source, while still provid-
ing an infrastructure to develop sub-communities, which we study
by investigating the overlap of roles across projects in sub-
communities.

The rest of the paper is organized as follows. In section 2 we
discuss the research on joining traditional, independent, open

1 As of March 2012
2 http://www.rubyforge.org/
3 http://www.coin-or.org/

source projects. In section 3 we discuss how interconnected pro-
ject hosting sites, such as GitHub, function and what data we
collected for our analysis. In section 4 puts forth the various roles,
both those related to development maturity and specialized roles,
that a user can assume in an interconnected project hosting site
and presents a description of how these roles provide additional
insight and what can be done to identify these roles. Next, in
section 5 we present our analysis of the prevalence of our defined
development and how those roles overlap with each other, both
within a single project and also across projects. We close the
paper with a discussion of our findings in section 6, we address
the threats to validity in section 7, and finally lay out future
implications and research in section 8.

2. ONBOARDING IN TRADITIONAL OSS
Prior research identified a variety of barriers that newcomers face
in the course of immigrating to a new software project [6]. Open
source projects, with their decentralized nature and frequent lack
of formal roles poses additional challenges [8, 10]. Open source
projects typically lack formal mentoring and training for new-
comers and it is the responsibility of new project participants to
learn about the social and technical norms of the project and iden-
tify the appropriate technical tasks and begin contributing [7, 13].
Newcomers are rarely directed to technical tasks or exemplars.
For example in an analysis of the Freenet project, von Krogh et
al. found that only 1 in 6 newcomers were given specific techni-
cal tasks to work on [13]. Instead, a majority of newcomers were
given general encouragement when they expressed an interest in
joining the community through the mailing list, but otherwise
were left on their own to find a proper way to contribute to the
project. This was sometimes confounded by the fact that, irre-
spective of the depth of technical knowledge that a user may pos-
sess, making significant technical contributions to a community
requires social standing and identity in the community. In most
projects, commit access is only given after a newcomer has
proved their worth and potential to the active community mem-
bers; a process that limits the overall potential contributions of
newcomers to the project [3, 13].

The peculiarities of the process through which newcomers be-
come code contributors have been studied by many researchers
[4, 11]. The most common model, often called the Onion Model,
postulates that members in an Open Source community evolve
through different roles ranging from peripheral users to core con-
tributors and these roles can be arranged as concentric layers –
similar to an onion. More specifically, the following roles have
been suggested (progressing from most central and most technical
layer to outer layers that are the least technical): project leader,
core developer, active developer, bug fixer, bug reporter, docu-
menters, users (active in mail messages), and peripheral user.

von Krogh et al. proposed a slight variation of this model in a
qualitative study of the transition of roles in Open Source where
they proposed the concept of a “joining script” for new develop-
ers joining a community [13]. Members were categorized into
three broad groups: joiners are members who are active only in
mailing lists, newcomers are members who have just gained
commit access, and developers are active members with commit
access who have shown strength of contributions and a technical
ability. The joiners, who are potential future developers, begin by
joining project mailing lists that allow them to converse about the
project and learn some of the socio-technical norms and capabili-
ties of the project. As they participate they learn how to properly
participate in the community by submitting bugs, triaging bugs,
and eventually working to track down the technical details of

bugs by submitting small patches. At this point all code contribu-
tions from a new developer must be offered through another de-
veloper through a patch. After a joiner has shown competence
with managing bugs they may be offered the ability to become a
committer (newcomer) to a project, which allows them to directly
modify the project source code without the need of an intermedi-
ary. After an intermediary trial period newcomers are considered
to have transitioned to developer, if no major concerns were
raised. After transitioning to the developer role they are often free
to improve the project in whatever area their skills are most ap-
plicable. In this way a user is viewed a moving through different
layers toward the core of the onion.

A consistent finding is that members near the center of the model
exert more influence over the technical decisions of the project
and other factors affecting the community than those on the pe-
riphery [1, 7, 14]. Another consistent finding is that projects that
behave similar to the onion model are frequently meritocratic. As
members make more frequent and important contributions to the
project code they move toward the center of the project which
gives them a larger voice in the direction of the project, including
the process of bringing a joiner into a project, overseeing them as
they become a newcomer, and eventually a developer [22].

However, the above studies have largely studied standalone indi-
vidual projects. Our earlier work that analyzed six projects in the
GNOME desktop ecosystem found the onion model to not hold
true at the individual project level [12]. Instead we found evi-
dence of developers being socialized at the ecosystem level. That
is we found developers to directly start contributing in technical
medium (bug patches or code) in a project, however, when we
expanded our focus to track their work across other projects in the
ecosystem we saw that they had participated in the social media
in other projects. This implied that the common technical infra-
structure provided by GNOME allowed developers to transfer
their knowledge across projects. Further, we found that tenure did
not correlate with the centrality of code contribution, instead, we
found the longer tenured developers to take on project manage-
ment roles

3. METHODOLOGY AND DATA SOURCE
In order to address our research questions, we examined the roles
and contributions of users in a set of ten projects in GitHub, a
large, open source software hosting site. We selected GitHub
because it provides a common scaffolding of “social coding”
tools and a common technical infrastructure for multitude of pro-
jects. GitHub is especially suited to allow the growth of commu-
nities since it makes user identities, project artifacts, and actions
on the artifacts publicly visible across the site. This increases the
social bonds of the community and success of projects [21].

3.1 GitHub Background
GitHub allows developers to create profiles that include their
name, email address, organization, location, webpage, and op-
tionally a gravatar – a globally recognized and consistent avatar
image that can be associated with many different websites. These
developer profiles serve both social and technical functions. From
a social perspective users of GitHub can choose to follow other
users and watch projects of interest. Information about recent
activity of followed users and watched projects appears in a dash-
board when users visit GitHub. As of March 2012 there are over
1.4 million user profiles on GitHub.

GitHub allows all users to create unlimited open source code
repositories managed using the git version control system and

additional private repositories for a monthly fee. As of March
2012 there are over 2.3 million code repositories hosted on
GitHub. These repositories span a variety of different purposes:
development frameworks critical for the next generation of web
applications, clusters of code around a particular type of technol-
ogy such as graph databases, mirrors of popular projects from
established organizations like the Apache foundation and Linux
kernel, and small scale repositories serving the needs of inde-
pendent developers, among other purposes. Each repository in
GitHub by default has a wiki, issue tracker, and a system for
managing pull requests from other users who wish to contribute
code for the project.

When creating a project repository in GitHub the site suggests
one of two possible socio-technical collaboration architectures.
The first architecture closely mirrors traditional open source de-
velopment patterns. Individuals who are trusted to commit to a
project are given direct access to add code to the central code
repository. Other developers who wish to make contributions
must go through a socialization process to contact these develop-
ers and get their patches accepted by the project. The second ar-
chitecture, which takes advantage of distributed development
patterns enabled by git and the infrastructure provided by GitHub,
has developers who wish to contribute code first fork the project
source code repository and then create pull requests that are man-
aged through GitHub. This makes all of the potential changes
readily apparent and makes it easy to manage pull requests.

Developers can communicate around code-related actions by
commenting on a commit, an issue, or a pull request. The site also
allows subscription actions that include following and watching.
Developers can follow other developers and watch projects. De-
velopers can also subscribe to be notified when a new issue (any-
thing else?) is created, therefore, getting notified of ongoing ac-
tions in their projects and other projects of interest.

3.2 Project Selection
Our project selection was based on finding successful communi-
ties for which we could obtain deep knowledge about the underly-
ing socio-technical practices of the community.

The first set of projects use Ruby as the underlying language and
are therefore form a part of a sub-community

• Rails: An extremely popular full stack web development
framework for creating web applications using a model-view-
controller architecture in Ruby. Rails has been in development
since 2004 and was one of the first high profile projects to
move to GitHub.

• Sinatra: A web application library and lightweight domain
specific language for quickly developing web applications. Si-
natra is often viewed as an alternative to full stack frameworks
in that it strives to be both minimal and more flexible than
other Ruby based web development frameworks.

• Rack: A modular library for building complex web applica-
tions in Ruby. It provides a standard interface for accessing
HTTP requests and responses and is used by many Ruby based
web frameworks, including Rails and Sinatra.

In contrast to the large communities around the Ruby based pro-
jects, we selected a group of related projects in an exciting do-
main that is increasing in prominence, NoSQL databases – spe-
cifically graph databases. Tinkerpop is a loosely organized virtual
organization that develops open source tools for accessing data-
bases that store their data as a graph rather than a more traditional
relational database that uses tables. All tools from Tinkerpop are

written in languages that run on the Java virtual machine, such as
Java, Groovy, and Scala. What is interesting about Tinkerpop is
that the projects form a stack of tools that interact with graph
databases, with Blueprints at the base and Gremlin, Rexster, and
Frames at the top. Pipes is sandwiched in the middle as an inter-
mediary tool that is most often accessed through Gremlin.

• Blueprints: A graph database agnostic property graph frame-
work that provides a consistent API across graph database sys-
tems. This is similar to what JDBC does for relational data-
bases on the JVM.

• Pipes: A dataflow framework built on top of Blueprints for
performing complex graph traversals.

• Gremlin: A domain specific language that is an extension of
Groovy, Scala, or Java that allows data scientists to easily con-
struct graph traversal queries. Gremlin is built on top of Pipes.

• Rexster: A multi-faceted tool that exposes any Blueprints
enabled graph as a REST enabled web service.

• Frames: A property mapping framework that allows a devel-
oper to easily map Java objects to graph objects through Blue-
prints.

Finally, we selected three projects that are semi-autonomous.
These projects were selected because they were among the most
watched projects on GitHub at the time of our research:

• Jekyll: A tool for creating static HTML websites from a set of
templates and data. Jekyll is used by GitHub to create static
webpages for GitHub hosted projects.

• Resque: A Ruby based library for creating and managing tasks
that run in the background. Resque is used internally by
GitHub which contributes to its popularity on the site.

• Homebrew: A software package manager for Mac OS X that
makes it easy for developers to compile and install a large
number of software packages. Homebrew, as an artifact of the
process it uses and the code structure, is the most forked pro-
ject on GitHub.

3.3 Data Collection
The data were collected using a custom designed set of tools that
interfaced with the GitHub public APIs. The code for the project
is freely available and, naturally, published on GitHub4. There are
three major data sources that are used: information about project
repositories, information about GitHub users, and project source
code. By pulling information about a project repository on
GitHub we obtain information about socio-technical nature of the
project. For each repository of interest on GitHub we retrieve the
following pieces of information:

• Basic information about the project such as when it was cre-
ated, primary programming language, project URLs, etc

• Identity of each individual who “watches” the project
• Identity of each individual who has contributed to the project.

In this case we use GitHub’s definition of “contributor” which
means an individual who has code in the source code reposi-
tory for the project

• Complete history of all issues filed against the project
• Complete history of all pull requests filed against the project
• List of all of the publicly available forks of the project

From the GitHub repository information it is possible to get a list
of the individuals who have been active on a project. We define
this as the set of all GitHub users watching the project, all con-

4 see https://github.com/pridkett/gitminer

tributors to the project, all users who have had any activity on an
issue or pull request, and all users who have forked the project.
Our tool then retrieves the following pieces of information for
each individual:

• Account information about the user such as name, email ad-
dress, age of account, and URLs associated with web pages for
the account

• The set of GitHub users that user is following
• The set of users following that user
• The list of repositories the user owns

Finally, the GitHub repository information provides a location of
where to download the complete project source code using the git
version control system. This allows us to get the complete history
of all changes applied to the master branch of the project. For
each git repository we collect the following information on the
master branch of the project repository:

• The set of all changesets applied to the master branch
• The set of all files in the master branch and their association

with each changeset
• The identity of the individual who is marked as having

authored and committed the code

The data are then linked together using an automated process on
various different linkage points based on shared email addresses,
shared gravatar ids, and explicit references of commits in issues
and pull requests. These three automated linking methods allow
us to associate 94% of commits in our dataset with user informa-
tion obtained from the GitHub API. A majority of the commits
that we cannot associate with GitHub users were done before
projects had migrated to GitHub, possibly when using other ver-
sion control systems, such as Subversion or CVS, which do not
preserve the provenance of the code to the same degree that git
does.

4. ROLES
We divided the roles that a user can assume in GitHub into two
classes: Development Maturity and Specialized roles. The former
tracks the progress of an individual as they become socialized
into the community to become full contributors. The latter in-
cludes roles that a contributor can take depending on their com-
mitment and interest.

4.1 Development Maturity Roles
Development maturity roles provide a finer grained method to
follow a user through their participation in a project as they move
from an interested lurker to a core project member. Although it is
possible to skip roles in this progression, each individual occupies
only a single role at a time.

• Lurkers: Individuals who have only taken action to monitor a
project or issues related to a project. In the context of GitHub
an individual can choose to “watch” a project, which is an in-
tentional action a user takes that results in activity related to the
project appearing on their dashboard when the user logs into
GitHub. While many users will “watch” projects and contribute
to them by writing code or filing bug reports, for a lurker the
only trace of their association and interest in a project is that
they have chosen to “watch” the project.

• Issues: Individuals who have been active on the project issue
tracker, either by filing new issues or commenting on existing
issues or pull requests. This role identifies individuals who par-
ticipate in the project community but do not do anything with
project source code.

• Independent: Individuals who have forked the project source
code repository using the GitHub infrastructure but have not is-
sued any pull requests. These individuals may be experiment-
ing with the technology, developing features that they haven’t
finished, or electing to maintain their own branch of the project
source code with a set of private customizations.

• Aspiring: Individuals who have created pull requests that have
been closed but have never had their pull requests merged. This
indicates that the individual has a desire to contribute to the
project, but has yet to successfully navigate the socio-technical
norms necessary to get their code accepted by the community.

• External Contributors: Individuals who have created pull
requests that were later merged into the project source code,
but are not official contributors to the project or members of
the organization that own the project.

• Internal Collaborators: Individuals who are marked as con-
tributors to the project or are members of the organization that
owns the project and have source code in the main project re-
pository. In the traditional user/developer dichotomy model for
open source participation these individuals would comprise the
set of developers.

Note, that apart from the Issues and Collaborators role, we are
able to discern the other roles because of the networked and so-
cial structure implemented in GitHub. This finer grained charac-
terization of users who are not yet members can help in better
understanding the socialization process and in mentoring to facili-
tate the process.

4.2 Specialized Roles
Not every individual chooses to contribute to a project in the
same way. For example, in a mature project some developers may
work on experimental features, other developers perform mainte-
nance, and other developers may respond to bugs reported via the
issue tracker. Although all of these individuals may have fulfilled
the same general development maturity role their actions provide
us with a much more nuanced view of the development process.
In contrast to the development maturity roles, which are mutually
exclusive, a single individual can occupy multiple specialized
roles.

• Prodder: Individuals who identify and take on long standing
issues or issues that have idle for a long time. Note that the
common infrastructure afforded by GitHub lowers the techni-
cal barriers, which can in turn allow an individual to take on
such a role. For example, in a regular project an individual
would have to first create an account in the project, learn about
the project through the mailing list and then identify issues,
even then the members of the project might not take kindly to

an outsider prodding the team into resolving an issue. The
common infrastructure by GitHub allows any individual who
has an account and is interested in the project to identify these
issues. Further, the reputation already garnered by the individ-
ual in the community lends weight to the individual’s recom-
mendation.

Formally, we define a prodder as an individual who is active on
issues that have sat idle for more than 14 days, either by com-
menting, closing, or reopening an issue. We rank all individu-
als by the number of issues they have prodded and then take
the top 20% of this set, subject to a floor than an individual
must have been involved on at least 1% of the issues in a pro-
ject. This is put in place to control for long-lived projects that
may see thousands of individuals that periodically prod issues
they’re interested in.

• Project Stewards: Individuals who primarily focus on manag-
ing the project. They merge Pull Requests (from External con-
tributors) into the project, comment on the Pull Requests, and
close a Pull Request once it has been merged. Formally, these
individuals are among the top 20% of individuals working on a
project both in terms of number of issues closed and number of
pull requests closed.

• Code Warriors: Individuals who have frequent and consistent
commits to a project. We define a code warrior to be an indi-
vidual who is among the 20% of individuals working on a pro-
ject in terms of both the frequency of their commits and also
the standard deviation of the time between their commits.
These individuals reliably produce and make available new
pieces of code for the project.

• Nomad Coders: Individuals who have contributed only minor
code changes and then have either move onto the next projects
or individuals who are participating in one project, but make
minor contributions to another project. Similar to Prodders,
this role would not have been possible in the absence of the
common infrastructure provided by GitHub.

• Project Rockstars: Individuals who have a high visibility in
their project and are significant contributors to their project.
Similar to a code warrior, these individuals have the same con-
tribution distribution are in the top 20% for the number of
commits to a project, but in addition they are also in the top
20% in terms of number of people in the project who follow
them.

Note, that a project need not have all specialized roles. Indeed, we
expect that smaller projects will lack individuals in many of these
roles.

Table 1. Prevalence of Development Maturity Roles across Communities

 Total Lurkers Issues Independent Aspiring External Internal
 # % # % # % # % # % # %
Rails 14075 9779 69.48 1726 12.26 1863 13.24 275 1.95 397 2.82 35 0.25

Sinatra 3359 2768 82.41 176 5.24 328 9.76 42 1.25 41 1.22 4 0.12
Rack 1261 710 56.30 197 15.62 228 18.08 56 4.44 56 4.44 14 1.11

Blueprints 266 200 75.19 20 7.52 28 10.53 3 1.13 7 2.63 8 3.01
Pipes 118 99 83.90 3 2.54 5 4.24 1 0.85 2 1.69 8 6.78

Gremlin 549 494 89.98 19 3.46 21 3.83 2 0.36 4 0.73 9 1.64
Rexster 150 112 74.67 23 15.33 6 4.00 1 0.67 0 0.00 8 5.33
Frames 37 25 67.57 1 2.70 1 2.70 0 0.00 2 5.41 8 21.62

Jekyll 5521 4393 79.57 409 7.41 641 11.61 32 0.58 43 0.78 3 0.05
Resque 3549 2718 76.58 374 10.54 344 9.690 91 2.56 19 0.54 3 0.08

Homebrew 10724 4724 44.05 2559 23.86 1594 14.86 1797 16.76 44 0.41 6 0.06

5. ANALYSIS
The final set of data surrounding the communities was collected
using the GitHub over a course of four days in February 2012.
Although numerous elements of data provided through the
GitHub API provide timestamps, some critical elements, notably
the dates in which an individual first watches a project or follows
another individual are not present. Therefore with this data we are
able to address our research questions at the current moment in
time. Using this data we are able to characterize GitHub, in terms
of the roles that users may take in the subset of our selected pro-
jects and its user community to answer questions such as: What
are the different roles that users occupy? Do they take on multiple
roles? Do users participate in multiple projects? If yes, then do
they take on same roles or do they perform different actions in
different projects? We answer the above questions by first em-
pirically characterizing the different roles that can occur in
GitHub, followed by an analysis of the roles of individuals in our
subset of projects.

5.1 Development Maturity Roles
The prevalence of each of the defined development maturity roles
across each of the projects can be seen in Table 1. Most striking is
the large number of users who can be termed “Interested Lurk-
ers”, that is, individuals who have shown an interest in the project
by “watching” the project. We note that lurkers range from about
90% (Gremlin) to 44% (Homebrew) of all individuals affiliated
with a community. This large number of lurkers is possibly a
result of the fact that GitHub makes it so easy to register an inter-
est in a project. It is likely that individuals may not follow activi-
ties of every repository that they are watching, but these large
numbers show that members like to be aware of ongoing project
activities.

Although the number of lurkers may seem very high for projects,
in most cases it indicates there is a large enough population to
support the other roles in the project. In the onion model the sec-
ond level of participation after an interested lurker or an individ-
ual active on a mailing list, was individuals active on project bug
trackers. The number of individuals active only on issues in the
project ranged from approximately 3% (Frames) to 24% (Home-
brew). In Homebrew this large number of individuals active on
issues is probably related to the relatively non-coupled nature of
the project. Most issues filed with homebrew tend to be related to
packaging scripts being broken for a different software package.
Therefore, their interest may not reside as much in Homebrew as
it does in the variety of other software packages that Homebrew
interacts with.
Another highly interesting result is the number of individuals
involved in roles that were not adequately captured by the tradi-

tional user/developer dichotomy of open source software devel-
opment. Between 4 and 18% of the users involved in each project
are classified as individual developers – each maintaining their
own branch of the project source code without having ever even
requested that their code be merged into the project. What is even
more surprising is that except for two projects (Rails and Pipes),
the number of independents is higher than the number of users
who are contributing to the project (summing Externals and In-
ternals). This shows that a significant number of users have cre-
ated their own forks and have made changes. The lightweight
forking process afforded by GitHub probably leads to this high
number of Independents in the project. Nevertheless, our results
show that there is a large untapped potential that can be easily
leveraged by projects.

When we investigate aspiring developers, we find that although
their overall percentages are small, numerous users have at-
tempted to have their code merged into a project but have not yet
been successful in their attempts. In a large project, such as Rails,
even the 2% of users who are classified as aspiring developers
still adds up to 275 potential new developers. On the small pro-
jects that make up the Tinkerpop community, most which are
reliant on only a handful of developers, there are numerous indi-
viduals who fall into the aspiring role, providing a pool of possi-
ble future contributors. In six of our projects, the number of these
individuals is higher than the Internal contributors. This suggests
that there is a large body of untapped potential that can be lever-
aged if these individuals are socialized into the project.

Meanwhile, the community around the Homebrew project, which
encourages massive amounts of forking for facilitating largely
parallel work, includes nearly 1700 individuals who fall into the
aspiring category. Note that the project as compared to the con-
tributors (Internal and external), the community has 16 times as
many aspiring users. However, this is an artifact of the workflow
of the project that often includes developers who merge in pull
requests without actually closing the pull requests. Furthermore,
most contributions to Homebrew are small independent snippets
of code that allow Homebrew to build and package very specific
software packages. Recent changes to the Homebrew tool have
given it the ability to automatically pull in code from pull re-
quests when the code is not present in the main repository. This
further limits the necessity of developers to merge code into the
main repository.

Finally, we find evidence of projects following two different
workflows. Homebrew relies almost exclusively on issuing pull
requests to provide new code for the project. In contrast, while
the Tinkerpop stack allows pull requests, almost all of the code
comes from formal project contributors. Most of the other pro-
jects are some combination of pull requests and commits from

Table 2. Prevalence of Specialized Roles Across Communities

 Total Prodder Steward Code
Warrior Nomad Project

Rockstar
 # % # % # % # % # %

Rails 14075 144 1.02 102 0.72 45 0.32 76 0.54 73 0.52
Sinatra 3359 7 0.21 18 0.54 5 0.15 28 0.83 10 0.30
Rack 1261 15 1.19 23 1.82 4 0.32 44 3.49 7 0.56

Blueprints 266 2 0.75 2 0.75 1 0.38 1 0.38 3 1.13
Pipes 118 1 0.85 3 2.54 1 0.85 1 0.85 2 1.69

Gremlin 549 2 0.36 1 0.18 0 0.00 2 0.36 1 0.18
Rexster 150 3 2.00 0 0.00 0 0.00 0 0.00 2 1.33
Frames 37 1 2.70 3 8.11 1 2.70 1 2.70 1 2.70
Jekyll 5521 51 0.92 20 0.36 2 0.04 24 0.43 5 0.09

Resque 3549 31 0.87 15 0.42 4 0.11 24 0.68 5 0.14
Homebrew 10724 208 1.94 101 0.94 38 0.35 65 0.61 82 0.76

core project members. Future research into the nature of the
commits by core project members versus those that arrive as pull
requests could provide a great amount of insight into the open
source software development process.

Our investigations show that the analysis of a hosting ecosystem
such as GitHub allows us to easily identify hundreds of individu-
als who would have previously been left out in the user/developer
dichotomy of open source development, which can help us better
understand the open source ecosystem. This suggests that with
respect to our first research question, it is clear that there has been
significant evolution of the user/developer dichotomy in modern
open source projects.

5.2 Specialized Roles
Our second research question sought to expand the traditionally
mutually exclusive definitions of user/developer and automati-
cally identify specialized roles in an open source project. As
would be expected, the number of individuals who occupy spe-
cialized roles in a project is strongly correlated with the total
number of individuals who contribute to a project. This is particu-
larly clear as Rails and Homebrew, the two largest projects in the
ecosystem in terms of individuals participating in the project, also
have the highest number of individuals in specialized roles.
Approximately 2% of the individuals participating in the Home-
brew project are prodders. This is a huge number of people (208
individuals) who go back and perform actions on issues and pull
requests that have sat dormant for weeks. This is partially a result
of the process adopted around Homebrew – which allows indi-
viduals to make small contributions of nearly completely inde-
pendent code and share the code with a pull request. It is natural
with so many individuals filing issues within the project that a
substantial number of these individuals would also go back and
raise activity on issues that they had filed, but which have not
been resolved yet. While it is generally desirable to have indi-
viduals revisit dormant issues and pull requests, the volume of
individuals prodding issues within the Homebrew project may
prove troublesome for long-term project management.

Somewhat surprising was the number of project rockstars work-
ing with Rack. These individuals not only contribute substantial
amounts of code, but also are followed by many people in the
community. Although as a percentage it is comparable to Rails
and Homebrew, it is far greater than the other midsized projects
of Sinatra, Resque, and Jekyll. We haven’t been able to discover a
definitive answer to why this is the case; one hypothesis extended
by a member of the Rack community was that it had to deal with
the infrastructure nature of Rack. Because Rack is a core compo-
nent upon which many tools depend there are many users who
follow it, but this core nature of the project also means that there
is a higher barrier for the quality of code that is added to Rack as
defects could have cascading effects on numerous other projects.

Another interesting observation is that for all projects in our study
(except Frames, which has only one individual in majority of the
projects) the percentages of individuals who are project rockstars
outnumber the code warriors. This could be indicative of the
highly social nature of development in GitHub, as the rockstar
role is half social and half technical. It could also be a reflection
of the fact that project leaders, those that one would expect to
have the most followers, often need to engage in variety of behav-
iors that detract from their ability to write code. For example,
leaders of open source projects are desirable speakers at confer-
ences or they may be hired on as consultants to corporations us-
ing the technology. Both of these results make it more difficult

for developers to deliver code on a reliable and predictable
schedule, which is what the code warrior role identifies.

The existence of nomad coders shows that the common infra-
structure provided by GitHub allows users to make contributions
across a set of projects. These nomads could be a result of inde-
pendent developers (development maturity role) who had forked
and made changes contributing those changes to the project, but
not really participated in the community.
Perhaps most interesting was the fact that some projects had no
individuals who fulfilled some of the specialized roles on the
project, not even when we consider the project leads. In particu-
lar, no stewards, code warriors, or nomads were identified in the
Rexster project. While Rexster is a healthy project at the moment,
a single developer performs most tasks for the project. When this
developer has other engagements the activity on the project drops
off significantly. This is particularly worrisome for the long-term
health of the Rexster project and any individual who wishes to
use the project as a critical component in a software solution.

In summary, although the specialized roles were not common in
the community, they do exist. As per our definition, these special-
ized roles are taken up those by users who are very active with
development and we expected these numbers to be low. Our re-
sults are in line with the overall “law of the vital few” principle
that governs contributions in online communities. That is, it is
typical for a small minority to produce the majority of work and
has been observed in open source development [18].

5.3 Overloading Specialized Roles
The evidence of existence of specialized roles in our projects
prompted investigation of the degree to which individuals fulfill
multiple specialized roles within a given project (note that the
specialized roles are not mutually exclusive). This provides a
deeper insight into the distribution of work among project partici-
pants and creates a deeper understanding of the project health and
future growth prospects.

To investigate the extent of the roles overlap, we focus only on
the larger projects in our study – those that collective fall into the
space of web frameworks for Ruby: Rails, Sinatra, and Rack. The
commonalities of project space and programming language be-
tween these three projects should make comparisons easier. The
overlap between specialty roles for Rails, Sinatra, and Rack are
show in Table 3, Table 4, and Table 5. We specifically exclude
projects in the Tinkerpop stack, Jekyll, and Resque from our
analysis, because of the limited number of individuals who ful-
filled specialized roles in those communities. Likewise we ex-
clude Homebrew because of its unique process.

Table 3: Overlap of Specialized Roles in Rails

R
oc

ks
ta

r

St
ew

ar
d

Pr
od

de
r

C
od

e
W

ar
ri

or

N
om

ad

Rockstar 73
Steward 9 102
Prodder 18 17 144

Code Warrior 5 2 4 45
Nomad 0 13 1 0 76

Note that while the number of individuals who occupy multiple
roles seems low (individuals who occupy the role of rockstars and
stewards (9) or prodders (18), code warriors (5) in Rails, Table 3),
these actually represent a significant fraction of individuals occu-

pying multiple roles – about 43% of rockstars in Rails also exe-
cute other roles. Understanding the details of this overlap is criti-
cal for managing a large-scale software project.

Table 4: Overlap of Specialized Roles in Sinatra

R
oc

ks
ta

r

St
ew

ar
d

Pr
od

de
r

C
od

e
W

ar
ri

or

N
om

ad

Rockstar 10
Steward 2 18
Prodder 2 1 7

Code Warrior 2 0 0 5
Nomad 0 1 0 0 28

Table 5: Overlap of Specialized Roles in Rack

R
oc

ks
ta

r

St
ew

ar
d

Pr
od

de
r

C
od

e
W

ar
ri

or

N
om

ad

Rockstar 7
Steward 3 23
Prodder 3 6 15

Code Warrior 1 0 1 4
Nomad 0 5 0 0 44

Beyond sheer existence of specialized role overlap, the pair-wise
combinations of roles can yield valuable insight. First, as would
be expected from the definitions of the roles, it is impossible for
an individual to be a Nomad as well as a rockstar or code warrior.
This is due to the fact that the nomad role expressly requires a
small amount of commits to a project while rockstars and code
warriors require numerous commits to a project.

The role that has the most overlap with other roles is the project
rockstar. The rockstar role, which is based on a combination of
social factors, the number of individuals that follow a given indi-
vidual, and technical factors, the number of commits made to a
repository, is naturally related the code warrior, which identifies
individuals who frequently commit to a project. Our results indi-
cate that only a handful of code warriors have the high social
following to be rockstars. This shows that social visibility and
prominence arises not just the amount of contributions, but also
the type of commits made or the files that one changes.
However, it is surprising that it is more common for an individual
to be a rockstar/prodder or rockstar/steward combination than a
rockstar/code warrior. This may be indicative of the fact that
individuals who are active on issue and pull requests, which is a
direct and obvious way of interacting with community partici-
pants, influences social status. A positive interaction on an issue
or pull request may make the issue submitter to be more likely to
follow the project member who handled that issue. Alternatively,
a team working in an agile manner and using an issue tracker for
work items would have similar role combinations [17]. Upon
examination, we did not find evidence of this practice in our data,
instead issue trackers were primarily used to report bugs and not
track new features or changes to the architecture.

We found evidence that there are some nomads who also serve as
stewards on a project. This role combination refers to those indi-
viduals who close many issues and handle many pull requests on
a project, but do little in terms of actually writing new code for
the project. For a large project, an individual with a moderate

technical background can contribute to the project by vetting
contributions from other users and handling issues and on some
occasions delivering code to a project repository.

Note that we could not have identified such combination of roles
in the traditional centralized versioning system (e.g. CVS and
Subversion) that lacked the robust provenance of code contribu-
tions made visible in git. We also note that the majority of par-
ticipants in the projects hold single specialized roles, with a mi-
nority who serve multiple roles. This might be evidence of the
law of the vital few, where there is a small core group that takes
on multiple roles and are critical to the project, a phenomenon
seen in other open source projects [18].

5.4 Overlapping Roles across Projects
For our final analysis we sought to understand how roles are For
our final analysis we sought to understand the similarities and
differences in roles taken by individuals across projects in a well-
connected software ecosystem. In such an ecosystem, we would
expect to see some overlap in development maturity roles as indi-
viduals are able to leverage their knowledge of the socio-
technical processes surrounding one project to participate in other
projects in the ecosystem.

We focus on the five projects within the Tinkerpop stack because
there are clear relations between the projects (i.e. all projects
build on Blueprints), and they all have similar socio-technical
norms. For each project, we collected the set of individuals in
each development maturity role and compared these sets across
projects within the Tinkerpop stack to generate an overlap matrix.
For example, Table 6(a) shows that there were 65 individuals in
both the Blueprints and Gremlin communities, while Table 6(b)
shows there were 45 individuals who were lurkers on both Grem-
lin and Rexster. The diagonal shows the total number of individu-
als in each role for each project within the stack.

Table 6: Overlap of Users in the Tinkerpop Community.
(a/left) Total Users (b/right) Lurkers

B
lu

ep
ri

nt
s

Pi
pe

s

G
re

m
lin

R
ex

st
er

Fr
am

es

 B
lu

ep
ri

nt
s

Pi
pe

s

G
re

m
lin

R
ex

st
er

Fr
am

es

Blueprints 266 200
Pipes 65 118 40 99

Gremlin 129 70 549 88 48 494
Rexster 63 42 69 150 38 24 45 112
Frames 33 24 29 23 37 17 11 17 9 25

There were significant overlaps in the participation of projects
inside of the Tinkerpop stack, as shown in Table 6(a). Blueprints,
the foundation of stack, had the most overlap with other projects.
While the smallest, Frames, had at least 23 out its 38 community
members associated with other projects in the Tinkerpop stack.
Further analysis showed there were 18 individuals who were in
some way associated with all five projects in the stack, although 8
of these individuals were lurkers on all five projects. Table 6(b)
shows that the majority of the population overlaps between pro-
jects comprised individuals who were lurkers in both projects.
For example, in the case of Gremlin, the majority of individuals
that participated in Gremlin and another project in the Tinkerpop
stack were lurkers in both projects. This shows there is a large
population of individuals interested in multiple projects who have
registered interest and are tracking its changes, but not interested
enough to contribute.

Table 7: Overlap of Users in the Tinkerpop Community.
(a/left) Independent (b/right) External Contributor

B

lu
ep

ri
nt

s

Pi
pe

s

G
re

m
lin

R
ex

st
er

Fr
am

es

 B
lu

ep
ri

nt
s

Pi
pe

s

G
re

m
lin

R
ex

st
er

Fr
am

es

Blueprints 28 7
Pipes 1 5 1 2

Gremlin 2 0 21 1 1 4
Rexster 1 0 0 6 0 0 0 0
Frames 1 0 0 0 1 1 1 1 0 2

Despite the fact that Blueprints and Gremlin had significant num-
bers of independent developers, we found little evidence of indi-
vidual developers being active on multiple projects, as shown in
Table 7(a). This is somewhat surprising given that higher level
components in the Tinkerpop stack, such as Gremlin and Rexster,
build on Blueprints and Pipes, it is likely that an individual using
these higher level projects would have some of the technical
knowledge and desire to modify the lower level projects.

Somewhat surprisingly within the set of projects that make up the
No individuals were independent developers on more than two
projects. Additional analysis showed that of the 56 independent
developers across all projects in the Tinkerpop stack only 5 were
active in the more advanced development maturity roles in an-
other project within the stack. Similarly there is little overlap of
the external contributor role across projects in the stack, as shown
in Table 7(b). No user was an external contributor on more than
one project in the Tinkerpop community. Our results indicate that
although the projects in the Tinkerpop community are related,
most projects have their own core group. This could largely be an
artifact of the small size of the projects.

Somewhat surprisingly there were no users that were aspiring
developers on multiple projects within the Tinkerpop stack (table
not shown because all cells are zeros), which might indicate that
developers did not attempt to contribute to multiple projects si-
multaneously. Five of the seven aspiring developers in the com-
munity had no accepted code in any project in the ecosystem,
while two were external contributors to other projects (Pipes and
Rexster) in the stack. We investigated these two developers fur-
ther. We found that the aspiring developer on Pipes was well
regarded in the community as a designer of additional tools and
libraries that interfaced with the Tinkerpop stack. He was also an
external contributor to Blueprints. The aspiring developer for
Rexster was an external contributor on Blueprints, Pipes, and
Gremlin. This indicates that there may be a relationship between
the progression from aspiring developer to external contributor.
An alternative explanation could be that developers have their
“home” project and because of the contribution policies in
GitHub, they participate in other projects as external contributors.

The overlap of the specialized roles between projects in the Tink-
erpop stack is not shown because of the low number of individu-
als filling these roles. There was some overlap, particularly with
the role of rockstar, code warrior, steward and prodder on the
blueprints, pipes, and gremlin projects. This is due to the fact that
a single individual that fulfilled all four roles undertakes much of
the work in Tinkerpop stack. This creates a strong concern for the
long-term success of the stack if this individual, who is the foun-
der of the stack, were removed.

6. DISCUSSION
In this work we have distinguished the different stages through
which a user progresses as they become more involved in the
community at a fine-grained level. This classification includes six
stages, starting from registering interest (lurkers) to being a part
of the organization (internal contributor). Roles such as inde-
pendents – individuals who have created a fork and have worked
on it privately, aspiring – individuals who have submitted pull
requests which have not been accepted yet, and external contribu-
tors – individuals who contribute to the project via pull requests
that need to be merged by a member of the organization are new
roles that are visible because of the way git tracks the provenance
of changes. These roles allow us to break away from the current
user/developer dichotomy view of open source development. This
fine-grained view of the development maturity model can help
projects adapt their socialization process to target different con-
tributor types. For example, independent developers already have
made changes to their code base and might need a different so-
cialization process as compared to aspiring developers.
Our analysis showed that the majority of users in the projects we
analyzed were lurkers. While most online communities have a
large majority of lurkers [15, 19], we believe that in our case
developers are interested in being aware of changes in these pro-
jects because they have registered their interest by “watching” the
project. When we investigated a subset of related projects in the
Tinkerpop stack to identify the extent of overlap of developers
and their roles across projects, we noted a similar trend in the
case of lurkers; most people involved in multiple Tinkerpop pro-
jects were lurkers.

We were surprised to find little overlap among aspiring, inde-
pendent, or external developers across projects in Tinkerpop. We
believe this is because Tinkerpop is a relatively small project
ecosystem and that individuals largely focus on their projects.
Further investigations showed the existence of one leader who
transcends project boundaries and keeps the community together.

Our findings provide evidence of the existence of specialized
roles in our subset of projects, albeit in small numbers. This is
inline with the “law of the vital few”, which dictates that the ma-
jority of contributions come from a small core group. We note
that within a project users can assume multiple roles. The most
common combination of specialized roles was between rockstars
and prodders, stewards, or code warriors. This trend shows that
the social visibility (number of followers) is accrued to individu-
als who are active on issues and pull requests as they interact with
the community. When we investigate the overlap of the special-
ized roles across the projects in Tinkerpop we found no overlap
of specialized roles in the community. Again, this trend is worri-
some since the entire ecosystem depends on a single individual
and has implications for the future growth of the community.

In summary, we note that the common social and technical infra-
structure provided by GitHub in addition to the provenance of
code changes maintained by git, allows us to create a much finer-
grained characterization of open source projects, including indi-
viduals who are in the process of being socialized, as well as,
more specialist roles. We also found the evidence of the existence
of communities, although, our example turned out to be a very
small ecosystem with very few overlapping roles. The ability to
have an ecosystem of projects that uses a common social and
technical infrastructure can help in the design of such ecosystems
within commercial organizations.

7. THREATS TO VALIDITY
As in any empirical study, our sample and methods may not be
wholly representative of all aspects of the community and prob-
lem space.

Internal: By definition the identification of nomad developers
requires an investigation of developers’ contributions across dif-
ferent projects. However, since we have investigated only a small
subset of projects in GitHub, the prevalence of nomadic coders is
almost certainly underestimated in our study. Here, we have
shown that nomads do exist, which was the primary goal of our
analysis, but collection of more data will serve to enhance our
findings, which are a lower bound.

We also utilized automated methods to connect entities in our
data and only considered the master branch of a project. This may
result in some of the same caveats regarding research using arti-
facts from git repositories highlighted by Bird et. al [2].

Construct: Identification of rockstar, steward, prodder, and code
warrior roles required us to identify top participants using a
threshold. In each of these cases we applied an additional joint
filter, either the requirement to be in the top 20% of two or more
attributes, or a level of overall participation in the case of prod-
ders. In the case of a joint filter, if the two distributions were
independently distributed then approximately 4% of individuals
would fall into a category. However, we find this not the case.
Taking the example of project rockstars, which requires that an
individual be in the top 20% of both the number of followers and
source code contributions, we found only a handful of individuals
on the smaller Tinkerpop projects and less than 1% of the indi-
viduals in the larger projects, fit these requirements. Clearly, the
level of the threshold significantly alters the results, but we ex-
perimented with several different thresholds before settling on
20% - a level that follows the Pareto law (law of the vital few), a
common contribution model in online communities, including
open source [18].

Further, to identify prodders we chose a time span of 14 days to
consider an issue old. This time span was selected through a
multi-part process that involved investigation of the distribution
of time between interactions on projects and qualitative examina-
tions of some of these interactions after our periods of idleness.

External: Our subset of projects chosen might not be representa-
tive of other projects in GitHub or GitHub in total. We chose the
Ruby Rails project because of the original prominence of the
Ruby on Rails community in pushing git as a version control
system and GitHub as a hosting platform. As an early project this
provided a significant amount history, but also may show artifacts
as the norms around GitHub have evolved since project creation.
The tools of the Tinkerpop stack were selected because of their
prominence in a field, graph databases, and also the perceived
tight knit nature of the community around Tinkerpop. The par-
ticipation patterns of the project may be strongly influenced by
project leaders in this relative small project. The other projects
were chosen because of their prominence in the GitHub ecosys-
tem (Jekyll, Resque, and Homebrew) or because of existing rela-
tionships with another project (Rack, and by extension, Sinatra).

8. CONCLUSIONS
Open source software development has expanded from a novel,
fringe development process to an established and, at least in some
contexts, dominant way of developing software. In the fourteen
years since the term “open source” was first defined much has
changed about the makeup of the community, the process used to

develop software, and the very nature of the software itself. When
these dramatic changes around open source are combined with an
increasingly networked and collaborative world, it becomes clear
that we should revisit some of the older assumptions about how
individuals work in open source projects. The large amount of
data available through the APIs for collaborative software devel-
opment tools allows us to build a more robust picture of the de-
gree to which individuals participate in open source projects, and
by extension, provides insight into the learning and evolution
process of a new user participating in a software development
project.

In this work we have shown that the traditional user/developer
dichotomy of open source software development hides a broad
range of different types of participation in open source projects.
By understanding the level of development maturity that an indi-
vidual has with a project we can better target support, training,
and mentoring to better ensure that each open source project re-
mains a viable project for many years.

Furthermore, this research provided valuable insight into the na-
ture of the evolving open source process. Even though we chose a
relatively diverse set of projects, some of which were extremely
niche, such as Frames, we found that in almost all cases there was
overlap between the communities of users interested and affili-
ated with each project. These boundaries crossed technical do-
mains of the projects (e.g. web frameworks such as Sinatra and
Rails, database access from Tinkerpop, and infrastructure from
Homebrew) and also programming language. Indeed, it seems as
though the nature of environments such as GitHub, which pro-
vides a relatively uniform process for individuals to collaborate
on a wide variety of projects, contributes to this fact.

Above all, this research has shown that open source is still an
expanding and evolving area. Tools are continually being devel-
oped that provide greater integration with not only other tools, but
also the social framework that underlies open source projects.
When combined with the fact that open source projects are core
components in many, software development projects, these find-
ings suggest that there is still much to learn about the roles that
individuals play in open source development and how we can best
ensure that these projects are successful and that individuals get
the support they need to continue to grow.

This study was a small-scale study where we focused on a small
set of projects for which it was possible to obtain a deep under-
standing of the social and technical process of the community. In
future research we plan to continue to expand our research to
understand the wider network of open source projects that utilize
GitHub as a hosting and project management tool. We are also
collecting temporal information about participation in projects so
we can better understand the fine-grained nuances that surround
the evolution between development maturity roles and specialized
roles in open source project development.

9. ACKNOWLEDGMENTS
This research is supported by grants NSF IIS-0414698, NSF
CCF-1016134, AFSOR FA9550-09-1-0129.

10. REFERENCES
[1] Bird, C., Pattison, D., D’Souza, R., Filkov, V. and

Devanbu, P. 2008. Latent Social Structure in Open Source
Projects. Proceedings of the 16th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineer-
ing (Atlanta, Georgia, 2008), 24–35.

[2] Bird, C., Rigby, P., Barr, E., Hamilton, D., German, D.
and Devanbu, P. 2009. The Promises and Perils of Mining
Git. 6th IEEE International Working Conference on Min-
ing Software Repositories (Vancouver, BC, May. 2009).

[3] Crowston, K. and Howison, J. 2005. The Social Structure
of Free and Open Source Software Development. First
Monday. 10, 2 (Feb. 2005).

[4] Crowston, K., Wei, K., Howison, J. and Wiggins, A. 2012.
Free/Libre Open Source Software Development: What We
Know and What We Do Not Know. ACM Computing Sur-
veys. 44, 2 (2012).

[5] Dabbish, L., Stuart, C., Tsay, J. and Herbsleb, J. 2012.
Social Coding in GitHub: Transparency and Collaboration
in an Open Software Repository. Proceedings of the ACM
2012 Conference on Computer Supported Cooperative
Work (Seattle, WA, USA, 2012), 1277–1286.

[6] Dagenais, B., Ossher, H., Bellamy, R.K.E., Robillard,
M.P. and Vries, J.P. de 2010. Moving Into a New Software
Project Landscape. Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (Cape
Town, South Africa, 2010), 275–284.

[7] Ducheneaut, N. 2005. Socialization in an Open Source
Software Community: A Socio-Technical Analysis. Com-
puter Supported Cooperative Work. 14, 4 (2005), 323–
368.

[8] Farzan, R., Dabbish, L.A., Kraut, R.E. and Postmes, T.
2011. Increasing Commitment to Online Communities by
Designing for Social Presence. Proceedings of the ACM
2011 Conference on Computer Supported Cooperative
Work (Hangzhou, China, 2011), 321–330.

[9] Fogel, K. 2005. Producing Open Source Software.
O’Reilly & Associates.

[10] Hertel, G., Niedner, S. and Hermann, S. 2003. Motivation
of Software Developers in Open Source Projects: An In-
ternet-based Survey of Contributors to the Linux Kernel.
Research Policy. 32, 7 (Jul. 2003), 1159–1177.

[11] Jensen, C. and Scacchi, W. 2007. Role Migration and
Advancement Processes in OSSD Projects: A Comparative
Case Study. Proceedings of the 29th International Confer-
ence on Software Engineering (Minneapolis, MN, USA,
May. 2007), 364–374.

[12] Jergensen, C., Sarma, A. and Wagstrom, P. 2011. The
Onion Patch: Migration in Open Source Ecosystems. Pro-
ceedings of the 8th Joint Meeting of the European Soft-
ware Engineering Conference and the Foundations of
Software Engineering (Szeged, Hungary, Sep. 2011).

[13] von Krogh, G., Spaeth, S. and Lakhani, K.R. 2003. Com-
munity, Joining, and Specialization in Open Source Soft-
ware Innovation: A Case Study. Research Policy. 32, 7
(Jul. 2003), 1217–1241.

[14] Lakhani, K. and Wolf, R. 2005. Why Hackers Do What
They Do: Understanding Motivation and Effort in
Free/Open Source Software Projects. Perspectives on Free
and Open Source Software. Joseph Feller, Brian Fitz-
gerald, Scott Hissam, and Karim R. Lakhani, eds. MIT
Press.

[15] Lampe, C., Wash, R., Velasquez, A. and Ozkaya, E. 2010.
Motivations to Participate in Online Communities. Pro-
ceedings of the 28th International Conference on Human
Factors in Computing Systems (Atlanta, GA, USA, 2010),
1927–1936.

[16] Lerner, J. and Tirole, J. 2002. Some Simple Economics of
Open Source. Journal of Industrial Economics. 50, 2 (Jun.
2002), 197–234.

[17] Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K.,
Shull, F., Tesoriero, R., Williams, L. and Zelkowitz, M.
2002. Empirical Findings in Agile Methods. Extreme Pro-
gramming and Agile Methods — XP/Agile Universe 2002.
Springer Berlin / Heidelberg. 81–92.

[18] Mockus, A., Fielding, R.T. and Herbsleb, J. 2000. A Case
Study of Open Source Software Development: The
Apache Server. Proceedings of the 22nd International
Conference on Software Engineering (Limerick, Ireland,
2000), 263–272.

[19] Nonnecke, B. and Preece, J. 2000. Lurker Demographics:
Counting the Silent. Proceedings of the 2000 SIGCHI
Conference on Human Factors in Computing Systems (The
Hauge, Netherlands, 2000), 73–80.

[20] Scacchi, W. 2007. Free/Open Source Software Develop-
ment. Proceedings of the 6th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engi-
neering (Dubrovnik, Croatia, Sep. 2007), 459–468.

[21] Tsay, J.T., Dabbish, L. and Herbsleb, J. 2012. Social Me-
dia and Success in Open Source Projects. Proceedings of
the ACM 2012 Conference on Computer Supported Coop-
erative Work (Seattle, WA, USA, 2012), 223–226.

[22] Ye, Y. and Kishida, K. 2003. Toward an Understanding of
the Motivation of Open Source Software Developers. Pro-
ceedings of the 25th International Conference on Software
Engineering (Portland, OR, USA, 2003), 419–429.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2012

	Roles in a Networked Software Development Ecosystem: A Case Study in GitHub
	Patrick Wagstrom
	Corey Jergensen
	Anita Sarma

	Microsoft Word - Github-11.docx

