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The goal of this dissertation is to detect the incipient flaws in metal parts made using 

additive manufacturing processes (3D printing). The key idea is to embed sensors inside a 

3D printing machine and conclude whether there are defects in the part as it is being built 

by analyzing the sensor data using artificial intelligence (machine learning). This is an 

important area of research, because, despite their revolutionary potential, additive 

manufacturing processes are yet to find wider acceptance in safety-critical industries, such 

as aerospace and biomedical, given their propensity to form defects. The presence of 

defects, such as porosity, can afflict as much as 20% of additive manufactured parts. This 

poor process consistency necessitates an approach wherein flaws are not only detected but 

also promptly corrected inside the machine. This dissertation takes the critical step in 

addressing the first of the above, i.e., detection of flaws using in-process sensor signatures.  

Accordingly, the objective of this work is to develop and apply a new class of machine 

learning algorithms motivated from the domain of spectral graph theory to analyze the in-

process sensor data, and subsequently, detect the formation of part defects. Defects in 

additive manufacturing originate due to four main reasons, namely, material, process 

parameters, part design, and machine kinematics. In this work, the efficacy of the graph 

theoretic approach is determined to detect defects that occur in all the above four contexts. 

As an example, in Chapter 4, flaws such as lack-of-fusion porosity due to poor choice of 

process parameters in additive manufacturing are identified with statistical accuracy 

exceeding 80%. As a comparison, the accuracy of existing conventional statistical methods 

is less than 65%.  
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1 Introduction 

1.1 Goal, Objective, and Hypothesis 

The overarching goal of this work is to detect and correct the incipient defects in parts 

made using additive manufacturing (AM) processes. The fundamental research aspects 

necessary to usher such a smart additive manufacturing paradigm are as follows: 

(1) Pragmatic Experimentation: Conduct experiments designed to initiate a specific type 

of process phenomena or part defects, such as porosity. Characterize the quality of the 

parts thus built using offline measurements, e.g., an X-ray computed tomography. 

(2) In-Process Heterogeneous Sensing: Integrate different types of sensors inside the 

additive manufacturing machine and acquire sensor data as the part is being built. 

(3) Big Data Analytics and Artificial Intelligence: Advance novel analytical approaches 

to extract and correlate signatures from the large volume of heterogeneous in-process 

sensor data to specific defects. 

(4) Process Knowledge (Modeling): Develop theoretical models to explain the 

fundamental physics of how and why defects are formed in the parts. 

(5) Process Innovation: Suggest manufacturing strategies to avoid defects in future parts 

with minimal experimentation. For instance, devise closed-loop controls to ensure that 

the defect in a layer is corrected before the next layer is deposited. 
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Figure 1-1: The five fundamental aspects of smart additive manufacturing. 

In pursuit of the ultimate goal of smart additive manufacturing, this dissertation 

focuses on the first three of the five foregoing aspects, namely, (i) conducting experiments 

that focus on creating and studying a particular type of part defect, such as porosity; (ii) 

acquisition of in-process sensor data; and (iii) devising new approaches to analyze the in-

process sensor data, and thereby identify and isolate part defects created during the process. 

Specifically, the objective of this work is to develop and apply a spectral graph theoretic 

approach to analyze the process signatures acquired from sensors integrated into a metal 

AM system for online detection of part flaws. 

The central hypothesis of this work is that the spectral graph-theoretic 

signatures – called Laplacian eigenvalues and eigenvectors – extracted from the in-process 

sensor data are statistically significant discriminants of defects formed during the additive 

manufacturing process. In other words, the hypothesis entails that using the Laplacian 
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eigenspectra (eigenvalues and eigenvectors) as derived signatures from the in-process 

sensor data, AM part defects are detected with significantly higher statistical accuracy 

compared to the conventional signal processing algorithms. 

This hypothesis is tested based on four practical implementations of spectral graph 

theory for process monitoring in two metal AM processes, called laser powder bed fusion 

(LPBF) and directed energy deposition (DED). These studies, which use a multitude of 

sensors, such as high-speed video cameras, infrared thermal sensors, and photodetectors 

integrated inside LPBF and DED machines, demonstrate that phenomena that are 

symptomatic of defect formation in AM are captured within the Laplacian eigenspectra of 

the acquired signals. 

The resulting ability to detect defects using such a spectral graph-theoretic approach 

is shown to be several times faster and statistically more accurate than existing 

conventional signal processing techniques. For instance, in Chapter 0, the use of Laplacian 

eigenvectors for detecting the presence of material contamination in LPBF is illustrated. 

Accordingly, instances of material contamination were detected within 1 millisecond, with 

statistical accuracy exceeding 95% (Type II error < 5%) using the proposed spectral graph-

theoretic approach. In contrast, conventional time series-based approaches had an error 

exceeding 20% and computation time of about 1 second.  

Currently, metal AM parts are inspected post-process using X-Ray Computed 

Tomography (XCT). This is a tedious and expensive process, which becomes progressively 

cumbersome and costly with the size and density of the part. Instead of cumbersome post-

process X-ray Computed Tomography (XCT) scanning and expensive destructive material 
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testing, the proposed approach uses sensor data to detect the formation of defects, so that 

appropriate corrective action can be taken. This research thus provides a pathway to ensure 

that the part quality in AM processes meets the required specifications. For instance, from 

a more conventional quality assurance perspective, the sensor signatures, in terms of 

Laplacian eigenspectra for a few defect-free parts, can be mapped after the part has been 

cross-examined through XCT. These sensor signatures belonging to defect-free parts can 

then be demarcated as a nominal baseline.   

This schema can be further extended in the future to closed-loop feedback control in 

AM, wherein, once a defect has been detected and isolated from sensor signatures and 

process parameters, for example, the laser power and scan speed can be changed to correct 

or rectify the defect. This dissertation thus establishes the foundational step to realize a 

concept called correct-as-you-build in AM, wherein defects are detected, isolated, and 

removed before they are sealed in by subsequent layers. 

1.2 Overview of the Additive Manufacturing Technology 

Prior to elaborating on the challenges associated with in-process sensors and data 

analytics in additive manufacturing, a broader view of the scientific motivation and 

rationale of this research is taken. Additive manufacturing (AM), also colloquially referred 

to as 3D printing, is an umbrella term to represent seven different types of processes where 

parts are built by layer-upon-layer deposition of material as opposed to subtractive 

(machining) and formative (e.g. forging, casting) processes [1].  The manufacturing 

process in AM can be summarized in eight steps as follows [1]: 
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Step 1: Prepare the solid model of the desired part through a Computer-aided Design 

(CAD) software or a scanning device. 

Step 2:  Convert the CAD file into the STL (an abbreviation of stereolithography) file 

format that specifies the external surface of the part.  

Step 3: Transfer the STL file to the AM machine language (called G-Code). 

Step 4: Set the printing parameters on the 3D printer such as laser power, scan velocity, 

layer thickness, etc.  

Step 5: Build the part layer by layer, after running the G-code on the AM machine.  

Step 6: Remove the part from the machine build plate. 

Step 7: Complete the extra post-processing step to clean the part and extra support material.  

Step 8: Obtain the final product using machining, grinding, painting, and assembly with 

other components. 

The unique ability of the AM process to selectively place material allows transcending 

some of the inherent boundaries of traditional subtractive and formative processes. For 

instance, the following freedoms are all described in the AM processes [2]: 

• Freedom of shape and design complexity. It takes the same effort to make simple 

Euclidean geometries or complex lattice-like structures. 

• Freedom of scale. The design of larger or smaller objects (within limits) does not cost 

more in terms of new tooling and machines. 
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• Freedom from highly skilled labor. The printing process runs almost supervision-free, 

irrespective of the geometry. Hence, highly skilled technicians, such as those required 

for machining operations are not needed. 

• Freedom from material constraints and changes. Ideally, the process does not change 

drastically when production switches from one type of material to another. For 

instance, switching from steel to aluminum can be accomplished by adjusting a few 

parameters, as opposed to changing the expensive tooling. 

• Freedom from assemblies and multiple processes. It is possible to form a part entirely 

with one type of AM process, without the need for intervening steps. This reduction in 

multiple steps is advantageous from both the cost and part integrity perspective. 

An example of these freedoms is the often-used engine nozzle additively manufactured 

by General Electric as part of its LEAP engine. In this fuel nozzle, all 20 parts are combined 

into a single unit and weigh 25% less than its traditionally manufactured counterpart [3].  

As another example, the buy-to-fly ratio (i.e., the ratio of raw material used to produce 

one pound of finished part in the aerospace industry) with traditional manufacturing is 

typically 15:1 to 20:1. In other words, for making a finished part weighing one pound, 

nearly 20 pounds of raw material is required. This buy-to-fly ratio can be drastically 

reduced to as small as 4:1 with AM technology [4, 5]. If this level of material and weight 

savings can be realized consistently by producing parts that meet stringent quality 

standards, it will revolutionize strategic manufacturing industries such as aerospace, 

automotive, biomedical, and energy generation. Now, the two (of the eight) additive 
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manufacturing processes that are the central focus of this dissertation are going to be 

introduced, namely, laser powder bed fusion and directed energy deposition. 

1.2.1 Introduction to Powder Bed Fusion and Directed Energy Deposition 

Powder bed fusion (PBF) refers to a family of AM processes in which thermal energy 

selectively fuses regions of a powder bed [6]. A schematic of the PBF process is shown in 

Figure 1-2. A layer of powder material is spread across a build plate. Certain areas of this 

layer of powder are then selectively melted (fused) with an energy source, such as a laser 

or electron beam. The bed is lowered and another layer of powder is spread over it and 

melted [1]. This cycle continues until the part is built.  

The schematic of the PBF process shown in Figure 1-2 embodies a laser power source 

for melting the material; accordingly, the convention is to refer to the process as laser 

powder bed fusion (LPBF). A galvanic mirror scans the laser across the powder bed. The 

laser is focused on the bed with a spot size on the order of about 100 µm, and the linear 

scan speed of the laser is typically varied in the 102   ̶ 103 mm/s range [1].  

 
Figure 1-2: The schematic of the laser powder bed fusion (LPBF) process. 
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Figure 1-3: A schematic of a powder feed directed energy deposition (DED) process. 

The second metal AM process investigated in this dissertation is the directed energy 

deposition (DED) process. Figure 1-3 illustrates a DED process. As opposed to LPBF, in 

DED the powder is not fused on a powder bed, but instead, the metal is sprayed from an 

arrangement of nozzles. A focused heat source, such as a laser, melts the feedstock 

material. The nozzle and table move relative to each other akin to the spindle and table of 

a CNC machine tool, and the part is built layer-upon-layer.  

The optical system is typically capable of generating a spot size of 50 microns in 

diameter for printing small features or scaled up to 25 mm wide for larger parts. In the 

laser-based DED machines, the laser power can set between 400 and 4,000 W; high power 

can be achieved in systems with an arc-based energy source [7]. Two of the advantages of 

the DED process versus LPBF are: (1) it can be used to build on the top of previous features 

such as repairing the cracks on the surface of the parts, and (2) multiple different materials 

can be set from the nozzles, as a result of which functionally gradient parts can be made 

[8]. Table 1-1 represents the main differences between LPBF and DED [1, 8].  
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Regarding the build speed in metal AM processes, it should be noted that the powder 

recoating process is omitted in DED which saves a significant building time in comparison 

with LPBF. Furthermore, as the build plate is not required to be covered with powder, the 

required material for building a part in DED would be less than LPBF. However, the 

amount of powder recovered post-process in metal LPBF is significantly larger than in 

DED.  

 

Table 1-1: Comparison between LPBF and DED processes. 

 DED LPBF 

Build Speed Fast (> 100 g/hr) Relatively slow. 

Feedstock Powder, Wire Powder 

Heat Source Laser, Electron Beam, or Arc Plasma Laser 

Material usage Low High 

Build Volume Greater than 1.2 m3 Less than 0.03 m3 

Multi-Material Print Yes No 

Resolution 
Poor 

(Layer height > 250 µm) 

Medium to High 

(Layer height < 50 μm) 

Surface finish Poor (Ra > 25 μm) 
Medium 

(10 μm < Ra < 25 μm) 
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1.2.2 Motivation of the Research 

Despite the demonstrated potential of metal AM to revolutionize manufacturing, 

process repeatability, and part consistency, there remains a consequential and open 

challenge [9-12].  The quality assurance-related challenges in additive manufacturing are 

exemplified in Figure 1-4, which shows seven identical parts built simultaneously on a 

commercial LPBF machine. The parts vary only in their build orientation; all other process 

conditions are identical. Despite extensive process automation, and besides using the 

default process parameter settings for the material (stainless steel) recommended by the 

machine manufacturer, only two parts out of seven were built successfully. The rest of the 

five builds were afflicted with various other types of defects, which renders them unfit for 

operational use. Such low process reliability makes LPBF difficult to scale commercially. 

More pertinently, Figure 1-4 affirms that defects in LPBF are multifarious and result from 

complex, poorly understood interactions amongst process phenomena, materials, 

processing conditions, and machine dynamics [13-17].  

 
Figure 1-4: Example of process inconsistency in laser powder bed fusion.  

In this picture, out of the seven different orientations of the same part geometry built under identical 
process conditions on a commercial LPBF machine, only two (part D and part G) were completed 

without any visible defects. Each of the rest of the five parts had different types of failures.   
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Accordingly, there are two motivating reasons for in-process, sensor-based process 

quality monitoring in AM [18, 19]: 

1. Quality inspection of LPBF parts, especially those destined for mission-critical 

aerospace and defense applications, currently relies on post-process scanning using X-

Ray Computed Tomography (XCT), which is a cumbersome and expensive process. 

Moreover, the resolution of XCT scans progressively degrades with the increase in size 

of the part and density of the material [18]. Hence, XCT-based quality certification for 

every LPBF part is not viable from an industrial production perspective.  

2. Although the critical process parameters, such as laser power (P, W), hatch spacing (H, 

mm), scan velocity (V, mm/s), and layer height (mm), can be optimized for certain part 

geometries, and aggregated in terms of the global volumetric energy density 

(EV =  
P

V×H×T
 J/mm3 ), part defects can still occur as shown in Figure 1-4 [20]. This is 

because the global energy density does not account for the magnitude and direction of 

the heat flow in the part (heat flux), which may change depending on the part geometry, 

orientation, and location on the build plate. Nor does energy density account for the 

subtle machine-related malfunctions.  

It is therefore imperative to establish in-process monitoring approaches in AM. One 

such strategy is to build a library of sensor signatures corresponding to specific defects for 

representative parts. Subsequently, this library can be used for the rapid qualification of 

part quality. If such a strategy for the in-process qualification of build quality assurance is 

successful, it will lead to a qualify-as-you-build paradigm in AM, thus expanding the reach 

of AM to strategically important sectors [21-25]. For the final step, after anomaly detection, 
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proper corrective action should be considered. These corrective actions can be described 

in several ways such as rescanning the surface of the part or removing the defected layer 

using machining.  

The introduction of hybrid additive manufacturing systems which combine subtractive 

machining and additive manufacturing in one machine is capable of entirely removing a 

defect. The hybrid AM technology, coupled with sensing and analytics, provides the 

opportunity of building defect-free AM parts without implementing the costly and time-

consuming quality control inspections such as XCT. Such a correct-as-you-build approach 

is part of the planned future of research by the Laboratory for Advanced Manufacturing 

Processes and Sensing (LAMPS) by the Rao group at the University of Nebraska-Lincoln. 

1.2.3 Defects in Metal AM 

The two AM processes – LPBF and DED – contain a combination of complicated 

physics, such as absorption and transmission of laser energy, temperature-dependent 

properties of the material, nonlinear cooling rates, multi-scale solidification phenomena of 

molten metal powder, complex and heterogeneous microstructural evolution, capillary 

action and surface tension phenomena in the molten pool, and materials evaporation, 

among others [1].  

Hence, to achieve a printed part with the highest quality similar to what is designed in 

its STL file, the printing conditions should be kept within a strictly defined nominal range. 

For instance, in the LPBF process alone, close to 50 parameters are known to influence the 

quality of the parts [26, 27]; a change in these parameters may result in a process 

phenomenon that can cause a defect [28]. The different types and corresponding scales of 

defects that typically occur in metal AM are summarized in Table 1-2 [14, 27, 29, 30]. 
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Table 1-2: Classification of defects in metal additive manufacturing processes. 

Type Cause Figure 

Porosity 

(10 μm to 

100 μm) 

 

Lack-of-fusion porosity caused due to insufficient 

melting of powder, and gas porosity due to 

vaporization can be induced due to improper 

selection of process parameters, impurities within 

the powder, and the complex physics of 

solidification.  

Cracking 

(> 100 μm)  

Separation of solidified metal on the surface or grain 

boundaries resulting from a high-temperature 

gradient and residual stress. 

 

Balling 

(100 μm to 1 

mm) 

Solidification of melted material into spheres due to 

instability in the melt pool surface tension, and 

wetting dynamics (Plateau-Rayleigh effect and 

Marangoni Convection). 

 

Delamination 

(> 1 mm) 

Separation of successive layers because of 

insufficient overlap with previous underlying 

solidified layers, and incomplete melting of the 

powder particles. 

 

Warping 

(> 1 mm) 

Bending on the sides of the part when the thermal 

stress in the substrate exceeds the strength of the 

substrate material 

 

Geometric 

(> 1 mm) 

Geometric deviations from the nominal model, 

typically due to shrinkage of the molten metal, and 

poor calibration of the machine. 
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Figure 1-5: Illustration of the four major causes of defects in metal AM parts. 

(a) Build failure resulting from poor calibration of the AM machine, shown here is an instance 

of recoater crash caused due to unbalanced torqueing of the bolts holding down the build 

plate. 

(b) Poor choice of process parameters, e.g., if the laser power is insufficient to melt the material 

it will lead to lack-of-fusion defects as seen in this image  

(c) Ill-considered design of the part – shown is a knee implant with a long overhang section 

which is not adequately supported, which leads to overheating and microstructural 

heterogeneity 

(d) Poor quality of feedstock materials, such as the presence of contaminants and non-uniform 

particle size. For instance, this image is an X-ray of a Inconel 625 coupon with tungsten 

contaminant particles evident as bright particles. 
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The aforementioned defects in metal AM are separable into four main types [31]. 

These are summarized in Figure 1-5 and explained in detail below.  

(a) AM Equipment. The equipment-induced defects are related to imperfections and 

improper calibration of AM machine components. The source of this type of defect may 

be attributed to the laser beam variation, build chamber environmental condition, powder 

recoating system, and build surface alignment, etc[32]. For instance, in Figure 1-5 (a), a 

part has failed to build due to contact with the recoater. The reason for the recoater crash 

is probably associated with the poor calibration of the distance of the recoater blade from 

the build platen, or due to uneven tightening of the bolts fixing the build platen to the 

powder bed. 

(b) Process Parameters. The interaction between the energy source (laser power), fresh 

metal powder, and the fused material is capable of initiating process-induced defects. The 

defects typically result from a combination of printing parameters [33-38]. For instance, 

energy density (called Andrew Number) ‒ a representative term for the laser energy applied 

per unit volume of the build (J/mm3) ‒ is a key factor in the LPBF and DED process as a 

function of the laser power (watt), spacing between passes of the laser (mm), scan velocity 

of the laser (mm/sec), and build layer height (mm). The energy density significantly 

impacts the physical and mechanical properties of the printed parts [39, 40]. Changing the 

printing parameters will change the energy density, which in turn will determine the 

thermal gradients in the part and ultimately the physical properties. Hence, the nominal 

values associated with each factor should be optimized with respect to the powder material 

and part design. 
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 Figure 1-5 (b) demonstrates the effect of decreasing laser power by 50% from the 

nominal point (340 W), which results in the decrease in energy density and formation of 

lack-of-fusion pores. Other factors such as the effect of inert gas flow within the build 

chamber are also consequential. For instance, Ferrar, et al. investigated the effect of gas 

flow on the repeatability of the part properties within and between LPBF builds. The results 

demonstrated that the gas flow variation affects both the value and the range of density as 

well as compression strength of porous titanium components [41].  

(c) Part Design: The components and features included in part design play a 

fundamental role in the mechanical properties of the manufactured object. These part 

features, apart from the geometry of the final part, also include the support material, which 

is a sacrificial material, and the part orientation on the build plate. The supports are 

generated to ensure down-facing (overhang) regions do not collapse as a result of weight 

from successive layers, and the part remains fixed in its designed place. Supports are also 

purposely built to ensure that the heat in the part during the build process is distributed to 

avoid thermal residual stresses that may warp the part or affect the geometry of the build 

[10, 42-46]. In Figure 1-5 (c), the overhang edge of a knee implant is affected by the heat 

accumulation in the overhang region because of the overly thin cross-section area of the 

supports, which in turn caused the change in the microstructure. 

(d) Powder feedstock material. Powder characteristics, namely size, shape, surface 

morphology, composition, the presence of extraneous impurities, and moisture can lead to 

defects, such as porosity. For instance, the moisture in the powder may vaporize, leading 

to pinhole porosity defects. The powder quality is governed by the techniques used for 

manufacture of the powder, i.e. gas atomization (GA), rotary atomization (RA), and plasma 
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rotating electrode process (PREP)[29]. Figure 1-5 (d) illustrates the vertical cross-section 

of the AM parts made from Inconel 625 that is contaminated by the tungsten particle at 

some designated layers. The impurities can negatively affect the quality and mechanical 

properties of the parts.  

1.2.4 Analytical Methods for Process Monitoring in Metal AM 

The application of sensing and in-situ monitoring in two metal AM processes— 

namely, LPBF and DED— are discussed in detail in each chapter. However, to have a 

better overview of the diversity of analytical methods applying to the sensor data (signals, 

images), the following survey is provided. Table 1-3 summarizes a complete range of 

studies and commercial software, implementing analysis on the sensor data in the online 

monitoring of AM processes[47, 48]. 

Clijsters et al. [49] used a combination of two optical sensors to monitor the geometric 

characteristics of the melt pool. Having a pair of photodiode and near-infrared thermal 

CMOS cameras working with a sampling frequency of 10 kHz to 20 kHz, they studied the 

monitoring of the part quality based on melt pool characteristics like intensity, area, length, 

and width. The resulting images generated by this system are representative of melt pool 

variation that could be attributed to the porosity in the part.  

Doubenskaia et al. [50] implemented an optical monitoring system in a selective laser 

melting machine. The online monitoring of temperature was performed using a bi-color 

pyrometer and a CCD camera integrated with a PHENIX PM-100 device. They found that 

the variation of temperature at the heat-affected zone could be captured as a result of an 

improper change in printing parameters, such as printing velocity, hatch distance, and layer 

thickness.  
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Table 1-3: Overview of the analytical approaches in metal AM. 

Reference 
Process 

Signature 

Sensing/Data 

Generation 

Approach 

Defect / 

Phenomenon 

Analytical 

Method 

Clijsters, 2014[49] 
Melt pool 

shape 
Pyrometry Porosity 

position-based 

visualization 

(mapping) 

Doubenskaia, 

2012[50] 

Temperature 

profile 

Pyrometry, 

Optical Imaging 

Geometry, 

Mechanical 

Properties 

Image 

processing 

Kanko, 2016[51] 
Track 

geometry 

Interferometric 

imaging 

Process 

defects (i.e. 

porosity) 

Plotting, Image 

processing 

Mazumdar, 

2015[19] 

Geometry, 

temperature, 

microstructure, 

and 

composition 

Optical 

spectroscopy 

Geometry, 

Cracking, 

Porosity 

Supervised (like 

SVM) and 

unsupervised 

techniques with 

PCA 

Li, 2019[52] 
Temperature, 

vibration 

thermocouples, 

infrared 

sensors, and 

accelerometers 

Surface 

Roughness 

ensemble 

learning 

algorithm 

Zhang, 2017[53] 
Powder 

spreading 

Discrete 

Element 

Method (DEM) 

Geometry Neural Network 

Gobert, 2018[54] 

Powder 

spreading, 

fused powder 

digital single-

lens reflex 

(DSLR) camera 

Porosity, 

Cracking 

ensemble binary 

classification 

 

Scime, 2018[55] 
Powder 

spreading 
Stock Camera 

Surface 

Roughness, 

Porosity, Part 

Failure 

Computer vision 

unsupervised 

learning 

Shevchik, 

2018[56] 
Acoustic waves 

Acoustic 

Sensing 
Porosity 

Wavelet 

transform, 

SCNN 

Concept Laser 

Toolkit[57] 

Meltpool, 

Laser source 

Pyrometry, 

Optical Imaging 

Undesired 

Parameter 

Change 

Computer vision 

EOS Toolkit[58] 
Meltpool, 

tomography 

Pyrometry, 

Optical Imaging 

Undesired 

Parameter 

Change 

Computer vision 
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Kanko et al. [51] introduced the application of a new imaging technique to capture the 

melt pool morphology and laser track. Inline coherent imaging (ICI), low-coherence 

interferometric imaging, was used to represent the melt pool dynamics and capture the 

quality of the laser tracks.  

Mazumdar [19] implemented a new design for metal additive manufacturing processes 

to certify the quality of the parts. Having a closed loop feedback system equipped with 

optical sensors, he gathered the process signatures related to the part temperature, 

microstructure, and composition to certify the compliance of the part. The optical emission 

spectroscopy signal was used for detecting the porosity and cracks using supervised and 

unsupervised machine learning techniques. At the same time, the plasma signal was used 

in a multiple parameter algorithm to define the composition and phase change of the part. 

Li et al. [52] studied the improvement of the surface morphology in additive 

manufactured parts. They introduced a data driven system to predict the surface roughness 

using multiple sensors incorporated into a fused filament fabrication (FFF) machine, 

including thermocouples, infrared, and accelerometers. The temperature and vibration data 

represented in the time and frequency domain were used for training an ensemble algorithm 

to predict the surface roughness with high accuracy. 

Powder spreading is one of the important steps in the powder bed fusion process which 

is not studied well in the literature. Zhang et al. [53] investigated the effect of powder 

spreading parameters, such as spread speed, on the structure and quality of the powder 

layer. Given the fact that the simulation of the spreading process is expensive and time 
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consuming, they used a Discrete Element Method (DEM) to simulate a few layers and fed 

the results into a machine learning algorithm to predict the rest of the process.  

Grobert et al. [54]studied the in-situ monitoring of powder bed fusion using optical 

imaging. A digital single-lens reflex (DSLR) camera was used to capture the build plate 

before and after each recoating phase. Using a binary classification technique like the 

support vector machine, the authors distinguished between two types of build structures— 

namely, flaw and normal build conditions. In order to generate the ground truth or labels 

of each layer, a high resolution CT was performed on the manufactured parts. These X-ray 

images were used to identify anomalies like lack of fusion, cracks, or inclusions with their 

XYZ locations. The online detecting algorithm could reach an accuracy of 80% in a two-

level classification problem. 

Scime et al. [55] introduced a comprehensive real time monitoring system in an LPBF 

machine. The stock camera and lighting configurations added to the LPBF machine were 

used to generate the optical images after spreading a layer. They specified eight anomalies 

related to the powder recoating process that were used for labeling the optical images. To 

analyze the data, a computer vision and unsupervised machine learning technique (K-

means) were implemented that resulted in more than 80% classification accuracy. 

Shevchik et al. [56] investigated the application of acoustic emission sensors for 

quality monitoring of selective laser melting (SLM). They generated different levels of 

porosity in the workpiece by changing the process parameters. To capture the acoustic 

signal, a fiber Bragg grating sensor was installed into a commercial SLM machine. The 

feature, extracted from the acoustic signal using a standard wavelet packet transform 



21 

 

(WPT), was used in spectral convolutional neural networks (SCNN) to classify the severity 

of the pores with 83% to 89% accuracy. 

Some of the LPBF machine developers started to introduce different types of process 

monitoring toolkits. These modules generally focus on the in-situ monitoring of the process 

and provide users with post process reports. As a result, the output of the toolkits cannot 

directly be attributed to the defects and further analysis and algorithms are required to 

provide an automatic alarm for the occurrence of a defect. 

Concept laser, which is one of the main leading providers of AM machines, has 

developed a quality management (QM) system suit that incorporates several modules. The 

QM Meltpool 3D module is designed to monitor melt pool characteristics, such as area and 

intensity, using a photodiode and a camera. Some of the other modules in the toolkit are 

QM coating, fiber power, atmosphere focusing on the monitoring of powder dose factor, 

laser power, and oxygen concentration respectively [57]. 

EOS, another global AM technology leader, has provided the EOSTATE Meltpool for 

real-time monitoring of the process as an extension to the EOS M290 machine. The 

incorporated sensors capture the melt pool light emission to display the melting process. 

The process lighting is also separated from the reflected laser light to eliminate the noise 

data. This toolkit is equipped with other modules to monitor other aspects of the process. 

The EOSTATE powder bed records the quality of coating and the exposure phase using a 

camera. The other valuable module that eliminates the requirement of post process 

scanning is EOSTATE Exposure OT which provides complete optical tomography 

throughout the part [58]. 
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1.3 Contribution of the Graph Theoretical Approach 

In this section, two mathematical justifications of using the graph theoretical 

eigenspectra (Laplacian eigenvalues and eigenvectors) are described as to why the 

Laplacian eigenspectra are appropriate quantifiers for monitoring the process states: 

a) An analogy with the Fourier transform from the statistical signal processing is 

proffered. 

b) An explanation is given from the network topology perspective. 

 

a) A Justification from the Signal Processing Viewpoint  

The following properties of the normalized Laplacian matrix 𝓛n are important. 

Because 𝓛n is a diagonally dominant symmetric matrix with non-positive off-diagonal 

elements (called the Steiltjes matrix) [59] it leads to the following properties:  

• 𝓛 is symmetric, positive semi-definite, (i.e. 𝓛 ≥ 0).  

• The eigenvectors of 𝓛 are orthonormal to each other. 

Based on the orthogonality of the Laplacian eigenvectors, a link between the graph 

transform 𝓛𝓧(λ
∗, 𝑣) and the fast Fourier transform (FFT) can be made, where 𝓧 is a 

sequence of sensor data (time series or images). It is apparent that the eigenvectors of the 

Laplacian are essentially like a Fourier basis. 

In other words, the so-called graph Fourier coefficients 𝑐𝑖 are multiples of the 

eigenvalues λ∗ of the Laplacian. In summary, a mapping of 𝓧 ↦ 𝓛𝒳(λ
∗ , 𝒗) can be 

achieved in which the dynamics are characterized using the Laplacian eigenvectors (𝑣). 

Instead of tracking statistical features of the signal in the time and frequency domain, the 
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proposed graph-theoretic approach entails monitoring the topology of the network graph 

(𝐺) in terms of the Laplacian eigenvectors (𝒗).  

As a result, the graph theoretical transform eliminates intermediate signal filtering 

steps and provides multi-dimensional signals. It does not require mining statistical features, 

such as mean, standard deviation, etc., from the data as the presented approach is feature-

free. 

In addition, the approach does not require predefined basis functions similar to the 

sinusoidal basis for the Fourier transform, or a predefined probability distribution as in 

typical stochastic modeling schemas; and the need for a rigid model structure is eliminated 

(e.g., the number of hidden layers and nodes in a neural network). 

 

b) A Justification from the Network Topology Viewpoint  

The first justification in the literature is from Belkin and Niyogi [60, 61] who 

substantiated the intuition that the graph Laplacian, indeed, captures the complex 

spatiotemporal dynamics of high dimensional data in a low dimensional space— namely, 

the graph 𝐺(𝑉, 𝐸,𝑊)— based on the theory of Laplace-Beltrami operators on Riemannian 

manifolds. Elucidating this justification is beyond the scope of the current work.  

The second justification is motivated from a spectral graph segmentation area. It is 

based on the normalized Laplacian and was proved by Shi and Malik [62]. Shi and Malik 

showed that the Laplacian eigenvector 𝒗2 (Fiedler vector) is the most efficient means to 

partition a graph 𝐺 ≡ (𝑉, 𝐸,𝑊). Partitioning a graph is analogous to the number of edges 

that must be broken to cut a graph into two. The eigenvector 𝓿2 is the shortest way to 
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partition a graph (to sever the least amount of edges); the eigenvector 𝓿3 is longer, and so 

on (𝓿1 is merely a vector of ones and corresponds to an eigenvalue of 1). In other words, 

the Laplacian eigenvectors and eigenvalues are not merely statistics but are topological 

invariants that are representative of the signal structure in the graph space.  

The specific mathematical implication of Shi and Malik’s work is that the graph 

segmentation (or cutting) problem has an efficient discrete solution in the Rayleigh 

quotient of the Laplacian matrix 𝓛 [62]. Consequently, on using the Courant-Fischer 

theorem (see Ref. [63]), which gives minimum and maximum bounds on the Rayleigh 

quotient, Shi and Malik arrived at the following solution to a discretized modification of 

the graph segmentation problem, where 𝐱 is a vector in the span of 𝓛, and the left hand side 

terms are Rayleigh quotients of the Laplacian: 

arg min
𝐱j 

𝐱j
T𝓛𝐱j

𝐱j
𝐓𝐱j

= 𝓿2, min
xj

𝐱j
T𝓛𝐱j

𝐱j
T𝐱j

= λ2; and  

arg max
xj 

𝐱j
Tℒ𝐱j

𝐱j
T𝐱j

= 𝓿k,    max
xj

𝐱j
T𝓛𝐱j

𝐱j
T𝐱j

= λk 

(1-1) 

Therefore, the Fiedler vector (𝓿2) solves the graph segmentation (cutting) problem, 

with the Fiedler number (λ2) as the minimum attained [62]. The highest eigenvalue (λk) is 

the maxima. Thus, the Laplacian eigenvectors are linked to the inherent structure in the 

signal. 
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1.4 Structure of the Dissertation 

Table 1-4: The categories used for analyzing the fidelity of defect detection. 

Chapter 
Source of 

Anomaly 
Collaborators Status 

Chapter 2 

Build Condition 

Monitoring in LPBF 

Part Design 
(Overhang) 

Dr. Brandon Lane 

NIST Engineering 

Laboratories 

Published in 

ASME 

Transactions 

Chapter 3 
Material 

Contamination 

Monitoring in LPBF 

Powder 

Contamination 

Mr. Paul Boulware 

Edison Welding Institute 
(EWI) 

Published in 

ASME 

Transactions 

Chapter 4 

Porosity Monitoring 

in LPBF 

Process 
Parameters 

Dr. Abdalla Nassar 
Applied Research Laboratory  

Published in 

Institute of 

Industrial and 

Systems Engineers  

Chapter 5 

Porosity Monitoring 
in DED 

Process 
Parameters, 

and possibly 

AM machine 

Dr. Abdalla Nassar 
Applied Research Laboratory 

Pennsylvania State 

University 

Published in 

Additive 

Manufacturing 

Table 1-4 summarizes the outcomes from this research; we provide a brief summary 

of each chapter herewith. Given the quality-related impediments, manufacturers are 

reluctant to use AM parts in mission-critical applications. An approach to overcome these 

bottlenecks in metal AM is to rapidly qualify the part quality in situ ‒ inside the machine 

‒ instead of offline using XCT, by means of in-process sensing and data analytics. Indeed, 

such a sensor-based approach for quality assurance in AM has been identified as a research 

priority in roadmap reports by federal agencies, national labs, and in research articles [9, 

12, 14]. To investigate different types of anomalies in metal AM and build a dictionary of 

sensor signatures, specific experiments must be conducted to isolate the origin of each type 

of defect in terms of sensor signatures.  
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Accordingly, a series of experimental datasets in collaborations with researchers at 

national labs, industries, and universities have been used. Table 1-4 represents four 

different experiments performed based on the origins of the design, powder, process 

parameters, and AM machine for defect formation.  

Regarding the design-based errors in metal AM, the experiments in Chapter 2 are 

conducted at the Engineering Laboratory of the National Institute of Standards and 

Technology (NIST) by Dr. Brandon Lane and Dr. Jarred Heigel. The goal of this work is 

to monitor the LPBF process using an array of heterogeneous sensors so that a record may 

be made of those temporal and spatial build locations where there is a high probability of 

defect formation. In pursuit of this goal, a commercial LPBF machine was integrated with 

three types of sensors, namely, a photodetector, high-speed visible camera, and shortwave 

infrared (SWIR) thermal camera with the following objectives: (1) to develop and apply a 

spectral graph-theoretic approach to monitor the LPBF build condition from the data 

acquired by the three sensors, and (2) to compare results from the three different sensors 

in terms of their statistical fidelity in distinguishing between different build conditions. 

The first objective will lead to the early identification of incipient defects from 

heterogeneous sensor data. The second objective will ascertain the monitoring fidelity 

tradeoff involved in replacing an expensive sensor, such as a thermal camera, with a 

relatively inexpensive, low-resolution sensor, e.g., a photodetector. As a first-step towards 

detection of defects and process irregularities that occur in practical LPBF scenarios, this 

work focuses on capturing and differentiating the distinctive thermal signatures that 

manifest in parts with overhang features. Although not a defect, overhang features can 
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significantly decrease the ability of laser heat to diffuse from the heat source. This 

constrained heat flux may lead to an issue such as poor surface finish, distortion, and 

microstructure inhomogeneity. In this work, experimental sensor data was acquired during 

LPBF of a part having an overhanging angle of 40.5o.  

The second experiment described in Chapter 3 is specifically focused on analyzing the 

feedstock material-induced defects.  Experiments for this chapter were conducted on the 

open architecture LPBF platform at Edison Welding Institute (EWI) directed by Mr. Paul 

Boulware [64, 65]. In this study, the goal was to detect the onset of material cross-

contamination in the LPBF AM process using data from in-situ sensors. Material cross-

contamination refers to trace foreign materials that may be introduced in the powder 

feedstock used in the process due to reasons such as poor cleaning of the AM machine after 

previous builds, or inadequate quality control during production and storage of the 

feedstock powder material. Material cross-contamination may lead to deleterious changes 

in the microstructure of the AM part and consequently affect its functional properties. 

The objective of the work described in Chapter 3 was to develop and apply a spectral 

graph-theoretic approach to detect the occurrence of material cross-contamination in real 

time during the build using in-process sensor signatures, such as those acquired from a 

photodetector. The central hypothesis is that decomposing the process signals acquired 

from the photodetector in the spectral graph domain leads to early and more accurate 

detection of material cross-contamination in LPBF compared to the traditional stochastic 

delay-embedded time series analysis techniques, such as autoregressive (AR) and 

autoregressive moving average (ARMA) modeling. To test this hypothesis, Inconel alloy 
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625 test parts were made on a custom-built LPBF apparatus integrated with multiple 

sensors, including a photodetector with the wavelength range of 300 nm to 1100 nm. 

The third experiment described in Chapter 4 was performed at the Applied Research 

Laboratory at Pennsylvania State University by Dr. A. R. Nassar. The goal of this research 

was to detect the onset of defects such as porosity in additively manufactured metal parts 

using data acquired from in-process sensors. As a step towards this goal, this study focuses 

on the analysis of in-process sensor data to detect lack-of-fusion porosity in titanium alloy 

(Ti-6Al-4V) parts made using the DED metal additive manufacturing process. This avenue 

of research is consequential to ensure the production-scale viability of additive 

manufacturing processes, which despite their significant and revolutionary advantages over 

conventional subtractive and formative manufacturing processes, are currently impeded by 

their lack of part consistency and quality. 

To realize this objective, Inconel 718 cylinders were built on a commercial LPBF 

machine (3D systems ProX 200) with different process settings. Optical emissions were 

monitored using a multispectral photodetector array to estimate the line-to-continuum 

emissions around 520 nm. The line-to-continuum ratios were subsequently related, on a 

layer-by-layer basis, to the level of porosity in the part obtained from offline XCT scans. 

The link between the in-process multispectral sensor and XCT data was made via the 

spectral graph Laplacian eigenvectors and eigenvalues extracted from the photodetector 

signals.  
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In chapter 5, equipment and parameter-induced lack-of-fusion defects, were 

investigated using a dataset acquired from an Optomec MR-7 DED machine from the 

Applied Research Laboratory at Pennsylvania State University by Dr. A. R. Nassar. The 

objective of this work was to detect in situ the occurrence of lack-of-fusion defects in 

titanium alloy (Ti-6Al-4V) parts made using the DED process. For realizing this objective, 

the data from two types of in-process sensors, namely, a spectrometer and a visible 

spectrum optical camera are used which was integrated into an Optomec MR-7 DED 

machine. Both these types of sensors were focused on capturing the dynamic phenomena 

in the melt pool region. Specifically, the spectrometer measures the line-to-continuum ratio 

of the optical emission corresponding to atomically excited titanium atoms (Ti I) in the 430 

nm and 520 nm wavelength regions, while the optical camera captures the images of the 

melt pool plume.  

To detect lack-of-fusion porosity from this sensor data, an approach is devised to fuse 

(combine) the data from the in-process sensors, invoking the concept of Kronecker product 

of graphs. Accordingly, this work demonstrated the use of heterogeneous in-process 

sensing and online data analytics for in situ detection of defects in DED metal AM 

processing. 

The critical need for an in-process monitoring strategy to detect porosity in DED is 

exemplified in Figure 1-6, which shows five slices of X-ray computed tomography (XCT) 

images taken in the X-Y plane, perpendicular to the build direction (Z-axis), of a cuboid-

shaped titanium alloy (Ti-6Al-4V) test coupon made in this study. 
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 The part in Figure 1-6 shows the intermittent occurrence of lack-of-fusion type 

porosity.  For instance, layers 1 and 2 were found to be discernably free of flaws; however, 

in layer 6 prominent lack-of-fusion type pores were observed along the seams of two 

adjacent hatches made by the laser, which are termed as systematic flaws. In layer 9, a large 

pore (> 50 µm diameter) was observed whose root-cause was not readily explicable ‒ these 

are termed as random flaws. Continuing with the deposition, layer 13 was again 

demonstrably free of flaws.  

 
Figure 1-6: X-ray Computed Tomography of a titanium alloy DED part at different layers 

showing presence of systematic and random (stochastic) flaws.  

 

In this part the first few sequences of layers are devoid of observable flaws (flaw-free state) 
followed by the sudden appearance of systematic and random flaws, before returning to a flaw-free 

state. 

Based on the observations tendered in Figure 1-6, the scientific rationale for this work 

is as follows: defects in metal AM processes, such as DED can occur despite offline 

empirical optimization. This is due to the complex, and yet not completely understood, 

intricate interactions between part design, process parameters, and material behavior that 

influence the thermal physics of the process, and which in turn governs defect formation. 

Additionally, noise factors, such as impurities in the feedstock, inaccuracies in the 

machine, and changes in the environmental conditions are known to influence the quality 

and consistency of AM parts.  
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Note to the Reader 

A literature review chapter is not provided in this dissertation. Instead, a contextual 

approach was chosen by providing a literature review in each chapter. In principle, 

Chapters 2 through 5 are meant to be standalone descriptions of the work; each of these 

four chapters have now been published as peer-reviewed archival journal articles. 

  



32 

 

2 Build Condition Monitoring in LPBF 

2.1 Goal, Objective, and Hypothesis 

The goal of this work is to monitor the laser powder bed fusion (LPBF) process using 

in-process sensor signatures so that a record may be made of those temporal and spatial 

build locations where there is a high probability of defect formation. This goal is termed 

as build condition monitoring. In pursuit of this goal, a commercial LPBF machine was 

integrated with three sensors, namely, a photodetector (spectral response 300 nm to 1200 

nm), high-speed visible spectrum video camera (4,000 frames per second, spectral response 

300 nm to 950 nm), and shortwave infrared (SWIR) thermal camera (1,800 frames per 

second, spectral response 1350 nm to 1600 nm, thermally calibrated from 500 °C to 1025 

°C) with the following two objectives:  

Objective 1: Develop and apply a spectral graph-theoretic approach to monitor the 

build condition in LPBF from the data gathered by the aforementioned three sensors. The 

intent is to detect the onset of deleterious phenomena such as unexpected variations in the 

thermal history (cooling rate) which would lead to inconsistent properties [66-68]. In the 

worst case, these may ultimately result in build failures. The proposed approach is 

extensible to other AM processes and sensor systems. 

Objective 2: Assess the statistical fidelity of the three different sensors, namely, high-

speed camera, infrared thermal camera, and a photodetector in monitoring the LPBF build 

condition by capturing the differences in the thermal signature of the part as it is being 

built. The intent is to ascertain the monitoring fidelity tradeoffs when replacing a relatively 

expensive, high-fidelity sensor such as a thermal camera with an inexpensive, low-fidelity 

sensor, e.g., a photodetector.   
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Realizing these objectives will lead to the following consequential impacts: 

1) In-process quality monitoring in LPBF. 

Unfortunately, even with the high level of process automation in commercial 

equipment, print defects are common in LPBF, which hinders the use of LPBF parts in 

mission-critical applications, such as aerospace and defense [12, 69]. While there is an 

abundance of pioneering literature on sensor integration and hardware aspects for 

monitoring AM processes, there is a persistent research gap in seamlessly integrating the 

in-process sensor data with approaches for online signal analytics [70, 71]. This gap has 

been pointed out in roadmap reports published by federal agencies and national labs [9, 12, 

72-74]. Addressing this need for online data analytics is critical to mitigate the poor 

repeatability and reliability in LPBF, and more generally in AM. 

2) Layer-wise analysis of sensor data to reduce expensive testing. 

To ensure compliance, the norm is to subject LPBF parts to X-Ray computed 

tomography (XCT) or destructive materials testing. This is prohibitively expensive and 

time-consuming [18, 75]. However, if a layer-by-layer sensor data record is available, then 

this data, instead of destructive testing or XCT scanning, can be used to rapidly qualify the 

part quality, leading to considerable cost savings [21, 76].  

Furthermore, because AM phenomena and concomitant defects occur at multiple 

scales, there is also the need to combine data from multiple sensors. The challenge with 

this concept of using sensor data for layer-wise quality assurance in AM ‒ termed  certify-

as-you-build by Professor Jyoti Mazumder [19]  ‒  is that sensors may differ in resolution, 

sensitivity, or bandwidth appropriate to detect particular process signatures. The limited 
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fidelity of a single sensor limits the variety of defects that it may be able to detect if any at 

all.   

In closing this section, it should be noted that researchers in the AM area prefer the 

term qualify-as-you-build over certify-as-you-build, based on the reasoning that 

certification is typically done by a third-party in the quality assurance paradigm.  In the 

same vein, Sigma Labs, Inc., of New Mexico, has trademarked the term in-process quality 

assurance (IPQA) in reference to their PrintRite3D software that combines process 

monitoring, data analysis, and feedback control in AM [77, 78].  

Each type of build defect in LPBF relates to a specific process phenomenon. The onset 

of such defect-causing phenomena may manifest in statistically distinctive signatures from 

appropriately designed and utilized sensors [79-81]. Hence, by tracking the signatures from 

in-process sensor data, it is hypothesized that the defects in the LPBF process can be 

discriminated. The hypothesis tested in Sec. 2.5 is that the spectral graph-theoretic 

approach forwarded in this work leads to higher statistical accuracy for distinguishing the 

build condition compared to popular machine learning approaches, such as neural networks 

and support vector machines. The statistical accuracy is measured in terms of the statistical 

F-score, which combines both the Type I (false alarm) and Type II (failing to detect) 

statistical errors. 

The applicability of the different sensors and the proposed analysis methodology was 

tested by building an overhang part. While not a defect, the LPBF of overhang features is 

a challenging proposition due to the following reason.  As the thermal conductivity of the 

powder is roughly one-third of a solid part, heat tends to accumulate within the overhang 
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area, i.e., the thermal flux through an overhang is restricted [67]. Constriction of heat to a 

relatively small area leads to inconsistent thermal gradients within the overhang features 

compared to the bulk material, which ultimately manifests in distorted builds, poor surface 

finish, or heterogeneous microstructures [29, 46].  In this work, the distinctive thermal 

signature representative of overhang features was used as a means to discriminate the build 

condition. Furthermore, the present work provides an avenue for online monitoring of in-

process signals through analysis in the spectral graph domain.  

The understanding of thermal aspects of overhang geometries is also consequential in 

the related context of design for additive manufacturing. For instance, recent studies 

emphasize the need for an evolved approach for support design depending upon the 

severity of the overhang feature [45].  

The rest of this study is organized as follows: Sec. 2.2 summarizes the recent 

developments in sensing and monitoring in LPBF. Sec. 2.3 describes the experimental 

LPBF studies carried out at NIST. Sec. 2.4 elucidates the spectral graph-theoretic approach 

and illustrates its application to a synthetic signal. Sec. 2.5 discusses the results from the 

application of the spectral graph-theoretic approach to analyze the thermal imaging, high-

speed videography, and photodetector signals acquired during the build process. In closure, 

the conclusions from this work and avenues for further research are discussed in Sec. 2.6. 

2.2 Prior Work and Challenges in Sensor-Based Monitoring in LPBF 

Tapia and Elwany [82] have conducted a comprehensive review of sensor-based 

process monitoring approaches, specifically focused on metal AM processes. More 

recently, Foster et al. [83], Purtonen et al. [84], Mani et al. [73], Everton et al. [85], and 
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Grasso and Colosimo [14] provided excellent reviews of the status quo of sensing and 

monitoring focused in metal AM. However, there is a persistent gap in analytical 

approaches to synthesize this data and extract patterns that correlate with specific process 

conditions (build status) and defects [86]. Chua et al. in a recent article have placed 

emphasis on the need for (a) data mining, (b) data processing, and (c) data analysis to 

monitor and subsequently translate the sensor signatures into actionable feedback control 

[70].  From the hardware vista, two methods were predominantly used in the literature 

towards monitoring the PBF — namely, melt pool monitoring (MPM) systems and layer-

wise imaging (staring) systems. The relevant works under these respective headings are 

summarized in the following two sections, Sec. 2.2.1 and Sec. 2.2.2, respectively. 

2.2.1 Melt pool Monitoring Systems in PBF 

The AM group at the Catholic University of Leuven, Belgium has published several 

influential articles in the area of quality monitoring and control in LPBF, as well as in the 

general area of AM; a select few of these are cited herewith [80, 81, 87-90]. The common 

theme in these prior works is in extracting features from the data from one sensor at a time, 

typically, in terms of a statistical moment (mean, variation) of image-based grayscale 

values, and correlating these features with controlled flaws based on the offline 

analysis[91-93].  However, to take these pioneering works in sensing forward into the 

domain of real-time closed-loop process control and further to defect correction, there is a 

need to translate the signals into decisions in real time. In turn, this work addresses a 

necessary and critical step to realize real-time decision-making by translating the process 

signatures in a form tractable for build condition monitoring.  
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Craeghs et al. [90] explained the need for a melt pool imaging system, which was also 

coupled with sensors capable of monitoring the status of process inputs. Although the melt 

pool was valuable for monitoring the local thermal aspects, it was difficult to translate the 

melt pool information quickly into a corrective action since process dynamics are relatively 

faster than current technologies for sensor acquisition, processing, and feedback control. 

In other words, Craeghs et al. [90] recommended that a heterogeneous sensor suite be used 

for process monitoring PBF processes. The work reported in the study assessed the fidelity 

of using different sensors for process monitoring.  

For monitoring the melt pool, a photodiode and (complementary metal oxide 

semiconductor) CMOS camera coaxial with the laser and equipped with infrared (IR) 

filters were used by Craeghs et al. [90].  This constrained the wavelength of light in the 

region of 780 nm to 950 nm. The upper limit was at around 1000 nm to block out the laser 

wavelength from entering the detectors. The sampling rate was 10 kHz. This translated to 

a sample every 100 μm, considering a 1000 mm/sec scan speed.  Using image processing 

techniques, the authors ascertained the melt pool area and the length to width ratio of the 

melt pool and used these for tracking the process. They found that these melt pool features 

were related to defects such as balling – however, the statistical significance of these 

studies has not been reported [94, 95].  

Chivel and Smurov [96] implemented a coaxial charge-coupled device (CCD) camera 

(perpendicular to the powder bed through the optical track of the machine) and a two-color 

pyrometer (900 nm and 1700 nm) setup to monitor the melt pool morphology (100 µm 

local, focal diameter) and temperature in the powder bed fusion process. The temperature 

distribution and intensity of the melt pool (from processing the CCD camera data) were 
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correlated with the laser power. A linear trend in laser power at three levels (50 W, 100 W, 

150 W) and melt pool surface temperature was observed (viz., between approximately 

1800 °C and 2000 °C).  In the work predating Chivel and Smurov [96], Bayle and 

Doubenskaia [97] used a similar setup with an IR camera along with a pyrometer with an 

active wavelength of 1000 nm to 1500 nm mounted on a laser powder bed fusion machine. 

Pyrometer readings were obtained over time for different layer thicknesses and hatch 

spacing settings. The IR camera was used to monitor the dynamics of melt pool particles 

and spatter patterns as they interacted with the laser beam.  

Two recent reports by Sigma Labs described a heterogeneous sensing system to relate 

the thermal aspects of the LPBF process to physical properties of the part, namely, the part 

density (porosity) [77, 78]. One of these reports described a hardware system incorporating 

four in-situ sensors consisting of two photodetectors, one pyrometer, and one position 

sensor to map the sensor signatures vis-à-vis the density of titanium alloy samples made 

under different laser power and velocity conditions [78]. The connection between the 

sensor signatures and part density was made via a trademarked proprietary metric called 

Thermal Emission Density (TEDTM). The TEDTM metric is reported to have a nearly one-

to-one correlation with the part density. While this work demonstrated the efficacy and 

need for combining data from multiple sensors for online monitoring, the mathematical 

details of the data fusion process were not revealed, and the statistical error was not 

assessed.  

2.2.2 Layer-Wise Imaging or Staring Configuration Systems in PBF 

Jacobsmuhlen et al. [66] implemented an image-based monitoring approach 

specifically for detecting build super-elevation effects. Builds are said to be super-elevated 
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if the prior solidified layers protrude out of a freshly deposited powder bed due to 

distortion.  Super-elevated builds will cause the recoater to make contact with the part as 

the powder is raked across the bed, leading to damage to the part and/or the recoater. To 

detect this condition Jacobsmuhlen et al. coupled a CCD camera with a tilt-shift lens and 

mounted the camera assembly on a geared head. This setup had the ability to traverse the 

camera in three axes, and the tilt-shift lens allowed corrections of perspective distortions 

and enabled the camera to maintain focus on the powder bed.  

The central theme of Jacobsmuhlen et al.’s work was to visually detect these super-

elevated regions and compare the results with a reference, which would eventually allow 

adjustment of process parameters, such as laser power and hatch spacing. The experimental 

results of Jacobsmuhlen et al. indicated that super-elevations could be reduced by 

decreasing laser power and increasing hatch distance. By detecting the occurrence of super-

elevation at an earlier stage, the layer height could be corrected, or the build could be 

canceled. The drawback of the cited work is that the analysis for this work used image 

processing techniques, namely the Hough transform and areal operations, on images 

(connectivity thresholding), which are exceedingly sensitive to image processing-related 

parameters. The ability to translate these image processing techniques to different build 

geometries and defects remains to be ascertained.  

In a recent work, Cheng et al. used a near-infrared thermal camera to correlate the 

effect of laser scan speed and layer height on the melt pool dimensions during LPBF of 

Inconel 718 material [98]. The intent was to use these melt pool measurements to monitor 

the build condition. While the melt pool length and width were reported to change with the 

laser scan velocity (in three levels, 400 mm/sec, 600 mm/sec, and 800 mm/sec), the 
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consequence of layer height on melt pool dimensions were negligible. While very valuable 

and foundational towards understanding the effect of process conditions on melt pool 

dynamics in LPBF, in this study by Cheng et al., the test artifact was a rectangular test 

coupon devoid of specific features. Furthermore, the test artifact was not examined for 

defects, such as porosity – which might result from changes in the scan velocity. This is 

because, the energy density (called Andrew Number) is inversely proportional to the laser 

velocity, and at low energy density levels the powder particles may fail to fuse together, 

and consequently, lead to porosity. 

Krauss et al. [99, 100] incorporated a microbolometer-type infrared camera operating 

in the long wave infrared (LWIR) region, specifically in the 8,000 nm to 14,000 nm range. 

The IR camera was mounted on the outside of the build chamber and looked down on the 

powder chamber at an angle of 45° through a germanium window. This setup allowed 

measurement of a larger area of the powder bed, as opposed to small local areas as in 

coaxial measurement systems. The central theme of the authors’ work was to obtain the 

area and morphology of the heat affected zone (HAZ). They correlated the changed in-

process parameters, such as laser power, scan velocity hatch distance, and layer thickness 

with the melt pool area, aspect ratio (length to width ratio). These correlations served as 

the basis on which build quality could be monitored.  For instance, the authors deliberately 

induced large flaws in the build (voids), as opposed to pores that typically occur in the 20-

100 μm range. The measured melt pool morphology during the defective build with 

induced voids was compared with an ideal state. A significant difference was reported in 

the irradiance profile recorded for the ideal build versus the defective build. 
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To reiterate, the practical applicability of these pioneering and early works is 

overshadowed by the offline analysis of data from a single sensor. To realize the qualify-

as-you-build paradigm in AM, these foregoing studies should be coupled with emerging 

machine learning techniques from the big data analytics domain that can combine data 

from multiple sensors.  

2.3 Experimental Setup and Data Acquisition 

2.3.1 Measurement System and Test Artifact  

This section describes the sensor suite instrumented on a commercial LPBF machine 

(EOS M270) at NIST. The machine was integrated with three types of sensors, namely, a 

shortwave infrared thermal camera, a high-speed visible camera, and a photodetector. 

Table 2-1 summarizes the location and relevant specifications of the sensors. The SWIR 

thermal camera and photodetector captured the thermal aspects of the melt pool, whereas 

the high-speed video camera captured its shape and surrounding spatter pattern. 

Photodetector data was acquired at a sampling rate of 1 MHz, in addition to frame pulses 

from each camera indicating the time each frame was acquired. Figure 2-1 shows the 

schematic and actual implementation of the setup. The detailed explanation of the setup is 

available in Ref. [101, 102]. 
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Figure 2-1: Schematic layout of sensors installed on the LPBF machine at NIST. 
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Table 2-1: The information related to all sensors used in the LPBF process. 

Sensor Type Location Details 

Short  
Wave Infrared 

Thermal 

camera 

Stirling cooled. 

extended range 

Indium 
Antimonide 

(InSb) detector 

with Cameralink 
connection. 

1 megapixel. 

Behind the 

machine door, 

inclined at an 

angle of 43.7𝑜 
with the build 

plane. 

Frame rate: 1,800 frames per 

second. 

Wavelength: 1,350 nm – 1,600 nm. 

Shutter speed/Integration time: 40 

μs. 

Calibration range: [500, 1025]oC. 

Instantaneous field of view (iFoV): 

36 μm per pixel. 

High-Speed 

Visible 

Camera 

Silicon-based 

array. 

1.2 megapixel. 

Inside the build 
chamber 

(Upper right 

corner). 

Frame rate: 4,000 frames per second. 

Photodetector 

Lensed. 

silicon-based 

photodiode. 

Parallel with 

the thermal 

camera. 

Spectral response: 300 nm to 
1,200 nm. 

Cutoff frequency: 141.5 kHz. 

Sampling rate: 1 MHz. 

The test artifact, which was made from nickel alloy 625 (tradename Inconel 625, UNS 

designation N06625), had an overhang of 40.5𝑜, and did not include a support structure. 

In this work, sensor information was analyzed at three examples build heights, namely, 

6.06 mm, 7.90 mm, and 9.70 mm. These example layers included the formation of the 

overhang structure. The process parameters are shown in Table 2-2. The overarching aim 

was to distinguish the thermal patterns that emerge during melting of the overhang.  

The overhang here was specifically defined as being the last two scan vectors prior to 

or just after forming the edge, not including the pre- or post-contour scan as shown in 

Figure 2-2. The rest of the scans, apart from the pre- or post-contour scans, were considered 

to belong to the bulk volume of the part. A stripe pattern scan strategy was used and is 

shown in Figure 2-2(c and d); hence the laser scanned along the overhang four times (four 

stripes) for each layer past the 4 mm build height. The stripe orientation shifted 90° 

between layers, and the three example layers demonstrated a vertical stripe pattern such 
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that each scan vector within a stripe was horizontally aligned with the thermal camera field 

of view.  

Admittedly, the part design studied herein was a simple unsupported overhang 

geometry and bereft of the complex geometrical features that could be created with LPBF. 

The test artifact shown in Figure 2-2 was chosen by researchers at NIST to study the 

physical aspects of the melt pool when building overhang geometries so that the thermal 

phenomena could be explained using physical modeling. The relatively compact 

dimensions and tractable geometry of this test artifact allowed researchers at NIST to avoid 

de-focusing concerns with the infrared camera ‒ the precision of the thermal measurements 

would be deleteriously affected if a large object was observed, given that the field of view 

of the thermal camera is limited. In other words, because the sensors used in this study 

were not coaxial with the laser but were in the staring configuration, hence, if a bigger and 

more complex object was monitored, the details of the melt pool shape would be occluded 

due to blurring if the field of view was increased.   

We reiterate that this work takes the first step in a series of forthcoming research that 

will focus on sensor-based monitoring of defects in AM using spectral graph theory.  

Table 2-2: Scanning parameters in the LPBF of the overhang structure. 

Print Parameter Value 

Hatch distance (spacing) 0.1 mm 

Stripe width 4 mm 

Stripe overlap 0.1 mm 

Layer thickness 20 μm 

Scan speed 800 mm/s 

Laser power 

195 W (infill) 

100 W (pre-contour) 

120 W (post-contour) 
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Figure 2-2: The part schematic with 40.5° overhang angle. 

(b) as-built without supports, (c and d) Side-view and top views of the stripe pattern at the build 

height of 7.9 mm in the context of the thermal camera position. 

2.3.2 Visualization of the Representative Data Acquired 

This section describes the qualitative differences in the three types of sensor data 

acquired while scanning the overhang and bulk features. 

1) Thermal Camera Images 

Thermal video files were captured as raw 14-bit digitized data. These images were 

pre-processed and converted to radiance temperature values through a calibration 

procedure described in one of NIST articles  [103].  Radiance temperature, not to be 

confused with true temperature, is the equivalent temperature measured if the emitting 

surface has an emissivity of  = 1.  The image pixel values were multiplied by a factor of 

10 and then stored as unsigned 16-bit integers to reduce the file size; hence there was a loss 

in numerical precision of 0.1 °C. Each thermal frame was a two-dimensional matrix of 128 
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pixels × 360 pixels. The data captured in a frame was an average of over 40 μs of data. 

This was related to the integration time (or shutter speed) of the camera. In this work, an 

analysis was conducted on the binary transformation of the thermal images, because the 

temperature recorded by the thermal camera was a radiance temperature, which had not 

been corrected using emissivity values to obtain the true thermodynamic surface 

temperature.   However, this did not inhibit the analysis techniques described to observe 

the relative effect of build conditions on a thermal video signal.   

For example, the melt pool images taken with a SWIR thermal camera (sensor) while 

scanning the bulk and overhang sections of a test artifact used in this work are shown in 

Figure 2-3(a) and (b), respectively. Figure 2-3(b) reveals that melting of the overhang 

section manifests in distinctive melt pool shapes[66, 67]; the melt pool for the overhang 

features, was roughly 1.5 times larger in length than its bulk counterpart. This was likely 

due to the residual heat in the overhang section stemming from the poor heat flux therein. 

Consequently, it was posited that correlation of the melt pool signature with the build 

condition facilitated in the isolation of process variation.   

 
Figure 2-3: Distinctive melt pool shape for bulk and overhang areas. 

Note the residual heat for the overhang area resulting from the previously scanned stripe. 
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2) High-speed Visible Camera Imaging 

The high-speed visible camera images were windowed to 256 pixels × 256 pixels. 

Images were acquired at 1,000 frames per second. Representative images for the overhang 

and bulk build features are shown in Figure 2-4 (a) and (b) respectively. The difference in 

the melt pool characteristics between overhang and bulk features in high-speed visible 

camera images, although discernible, was not as prominent as in the corresponding thermal 

images shown in Figure 2-3.  

 
Figure 2-4: Two representative high-speed video images taken during the process. 

(a) bulk build conditions (b) overhang build condition corresponding to the frames in Figure 2-3. 

3) Photodetector Signal (Time Series Data) 

The photodetector signal was acquired as a time series sampled at 1 MHz; the response 

was in voltage. To ensure photodetector and both thermal and visible camera signals could 

be synchronized during analysis, both the photodetector raw signal and frame pulses (a 5 V 

square pulse indicating when a frame was captured) from the camera were collected on the 

same data acquisition system.   

 Furthermore, in analysis of the photodetector signal, the number of data points 

corresponding to the frame rate of the thermal camera must be taken into consideration. 

This was obtained by dividing the sampling rate of the photodetector (1 MHz) by the frame 
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rate of the thermal camera (1800 frames per second). This equated to 555 data points 

(roughly 555 µs) measured by the photodetector within one frame period of the thermal 

camera. A representative trace juxtaposing the photodetector signal for the overhang and 

bulk build features is shown in Figure 2-5(a).  

 
Figure 2-5: Photodetector signal windows for the overhang and bulk features. 

(a) intensity, (b) Fourier transform, and (c) empirical cumulative distribution function (ECDF) for 

three consecutive layers. 

A spike in the photodetector signal for the overhang condition was observed. Some 

typical difficulties with using existing statistical signal processing approaches in the 

context of the LPBF photodetector sensor data from this work are exemplified in Figure 

2-5. Figure 2-5(b) shows the Fourier transform of the same photodetector signal for the 

time series for the overhang and bulk features described in Figure 2-5(a). The difference in 

the spectral profile of the signal for the two build conditions (i.e., overhang and bulk) was 

scarcely distinguishable; only one clear peak was observed despite the high sampling rate 

(1 MHz). Analysis of the power spectrum revealed that the two build states were not 

statistically distinguishable.   

The cumulative probability distribution of the photodetector trace for the overhang and 

bulk features over several frames (or 555 data points) is mapped in Figure 2-5(c). The large 
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shifts in the distribution shape and spread over different frames, evocative of the inherent 

non-stationarity of the LPBF process, curtailed any attempt to fit a fixed parametric 

statistical distribution to the data. 

2.4 Proposed Methodology 

The aim of this section is to develop a spectral graph-theoretic approach for analysis 

of multidimensional signals. This approach is used later to capture the differences in the 

thermal signatures during the melting of the overhang and bulk features of the test artifact 

shown in Figure 2-2. Application of graph-theoretic approaches for signal processing is a 

nascent domain with recent notable review articles by Hammond et al. [104], Sandryhaila 

et al. [105], and Shuman et al. [106, 107]. Niyogi et al., in a series of seminal articles, 

proposed embedding high dimensional data as an undirected graph, and subsequently 

projecting the data into the eigenvector space of the graph Laplacian [60, 61, 108].  

2.4.1 Previous Work in Spectral Graph Theory  

This work builds upon Laboratory for Advanced Manufacturing Processes and 

Sensing (LAMPS) previous research in spectral graph theory for manufacturing 

applications [109-113]. These previous works are enumerated below. 

1) Spectral graph theory to differentiate between different types of surfaces in 

ultraprecision semiconductor chemical mechanical planarization (CMP) process [109]. 

The spectral graph-theoretic invariant Fiedler number (λ2), viz., the second eigenvalue 

of the spectral graph Laplacian matrix, described later in Sec. 2.4.2 in Eq. (2-9) and 

(2-10), was used as a discriminant to track changes in the surface that were not detected 

using statistical surface roughness parameters [109].  



50 

 

2) The preceding work was extended to online monitoring of the surface finish in 

conventional machining. A CCD camera was used to take images of a rotating shaft as 

it was being machined. The machined surface images were analyzed online, and the 

Fiedler number (𝜆2) was correlated with the surface roughness [110]. 

3) The spectral graph-theoretic approach was used for detection of change points from the 

sensor data. The Fiedler number (λ2) from different types of planar graphs was 

monitored using a multivariate control chart to capture the onset of anomalous process 

conditions in ultraprecision machining (UPM) and chemical mechanical planarization 

(CMP) processes [111]. 

4) The Fiedler number was used to differentiate the geometric integrity of fused filament 

fabrication (FFF) AM parts made using different materials [113] based on laser-

scanned point cloud data.  This work was further extended to parts made under different 

FFF conditions using several spectral graph Laplacian eigenvalues and not just the 

Fiedler number. 

This work differs from the authors’ previous works in the following manner. It is the 

first to report the application of Laplacian eigenvectors for the diagnosis of process 

conditions in AM. The approach is integrated within a learning framework for online 

monitoring of process conditions. None of the previous studies by the authors had an online 

learning capability for state detection from sensor signals. This is not a trivial extension 

because the Laplacian eigenvectors present a multi-dimensional challenge to classification. 

Furthermore, the previous works were based on converting a signal into an unweighted and 

undirected graph. This required using thresholding functions, which in turn led to loss of 

information. In this current work, such a threshold is not required as the graph constructed 
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is of the weighted and undirected type. A brief overview of the approach is provided in the 

forthcoming Sec. 2.4.2.  

2.4.2 Overview of the Approach 

Before describing the mathematical intricacies of the approach, a high-level overview 

is provided. The mathematical convention is to denote matrices and vectors with bold 

typesets. Suppose a sequence of sensor data, 𝓧 (time series or images) is gathered from a 

process. Further, consider that the process manifests in 𝑛 different known process 

conditions or build states labelled as 𝓈1, 𝓈2, 𝓈𝑖⋯ 𝓈𝑛. In LPBF these states could refer to 

different process conditions, such as melting of bulk, overhang, thin sections, etc. This 

allows the sensor data 𝓧 associated with each condition 𝓈𝑖 to be represented with the 

symbol 𝔁𝑖. The aim is to identify the system state 𝓈𝑖 from which an unlabeled signal 𝑦 is 

observed (i.e., if a signal 𝑦 is observed, the purpose is to find the process condition i to 

which it belongs). From the LPBF perspective, for instance, the intent is to conclude from 

one frame of the high-speed video camera whether there is an impending build failure; or 

given a photodetector signal sample, infer if the onset of distortion is imminent. The signal 

𝔁𝑖  can take various forms depending on the type of sensor data acquired. 

• Temporal data [𝔁𝑖]
𝑚×𝑑 where each column of 𝔁𝑖 is a type of sensor, and each row is 

a measurement in time 𝑡 =  {1 …𝑚} for the 𝑑 sensors; each 𝑎𝑗
𝑡 is a data point for 

sensor 𝑗 =  {1…𝑑} at time instant 𝑡. In the context of LPBF this matrix could represent 

multiple photodetector signals acquired simultaneously, where each column of 𝔁𝑖 is 

the data from a photodetector. It is restated that 𝔁𝑖 is associated with a specific process 

state 𝓈𝑖. 
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𝔁𝑖 =

[
 
 
 
𝑎1
1 𝑎1

2  ⋯ 𝑎1
𝑑

𝑎𝑡
1

⋮
⋱ 𝑎𝑡

𝑑

⋮
𝑎𝑚
1 ⋯ 𝑎𝑚

𝑑 ]
 
 
 

 (2-1) 

• Spatiotemporal data such as high-speed visible camera or thermal camera, where each 

𝒙𝑖
𝑡 is an image frame captured at time instant 𝑡 for a state i. The matrix 𝔁𝑖 must be 

further qualified with a time index 𝑡 because data is acquired in discrete frames. 

Thermal and video camera data are in such a format; the signal in this instance is a 

three-dimensional array. Each 𝒙𝑖
𝑡 is an array of image pixels. For a frame of a thermal 

camera image, each pixel corresponds to the intensity of light converted to a radiant 

temperature value using the thermal calibration; for the high-speed video camera each 

pixel records the intensity of light.  

• Purely spatial point cloud data where 𝔁𝑖 contains information of coordinate related to 

the locations. An example is the 3D point cloud data, such as those obtained from a 

laser or structured light scanner. This information is obtained as spatial coordinate 

indexed information. 

The approach involves the following three broad steps (see Figure 2-6); the detailed 

steps and mathematics are explained later. 
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Figure 2-6: The three steps in the proposed spectral graph-theoretic approach. 

Step 1: Transform the signals 𝔁𝑖 corresponding to each pre-labeled state 𝓈𝑖 into an 

undirected, weighted network graph 𝐺𝑖(𝑉, 𝐸,𝑊), where 𝑉 and 𝐸 are the vertices and edges 

of the graph and W is the weight between the edges. 

Step 2: The spectral graph Laplacian matrix 𝓛𝑖 is computed from the graph 𝐺𝑖. The first 

non-zero 𝓃 graph Laplacian eigenvectors 𝒗𝑖  are used as an orthogonal basis set 

corresponding to the process state 𝓈𝑖.  

Step 3: Each 𝔁𝑖 is decomposed by taking an inner product  𝒙𝑖
T ∙ 𝒗𝑖 akin to a Fourier 

transform into a set of coefficients 𝒄𝑖 called graph Fourier coefficients.  

• The graph Fourier coefficients are written in block matrix form as ℂ =

[[𝒄1
T] [𝒄2

T] ⋯ [𝒄𝑖
T] ⋯ [𝒄𝑛

T]] corresponding to different states 𝓈1, 𝓈2, 𝓈𝑖⋯ 𝓈𝑛 

. The matrix ℂ is called the dictionary. 

• Given an unlabeled signal 𝑦, an inner product 𝓹𝑖 = 𝑦T ∙ 𝓋𝑖 is taken with each of the n 

basis vector sets one at a time; where n are the different states.  The matrices 𝓹𝑖
T are 

called the candidate coefficients. Each 𝓹𝑖
T  is compared with the corresponding 𝒄𝑖

T in 
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the dictionary ℂ in terms of the squared error 𝑒𝑖. The comparison resulting in the least 

error is the designated state of 𝑦. 

The advantages of the approach are as follows: 

1. The graph Fourier transform eschews intermediate signal filtering steps and 

accommodates multi-dimensional signals. It does not require mining statistical 

features, such as mean, standard deviation, etc., from the data. Hence the presented 

approach is feature-free. Given an unlabeled signal 𝑦 belonging to an unknown state 

𝓈𝑖, a computationally simple inner product is needed for classification. This is apt for 

online monitoring applications. 

2. The approach does not require a priori defined basis functions akin to the sinusoidal 

basis for the Fourier transform; nor does it rely on a predefined probability distribution 

as in typical stochastic modeling schemas; and lastly the need for a rigid model 

structure is eliminated (e.g., number of hidden layers and nodes in a neural network). 

The disadvantages of this approach are:  

1. As with all supervised classification models, a pre-labeled data set is needed.  

2. All the sensor data [𝔁𝑖]
𝑚×𝑑, if they are temporal sensors, must have the same 

sampling rate. This assumption can be relaxed by signal smoothing steps.  

Frequent symbols and notations are noted inTable 2-3. Each of the three steps of the 

approach is next described in detail. 
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Table 2-3: List of major mathematic symbols and notations used in this work. 

Symbol Description 

𝓧 Sequence of sensor data (time series or images) 

𝓈1, 𝓈2, 𝓈𝑖⋯ 𝓈𝑛 Process conditions or build states 

𝔁𝑖 Sensor data 𝓧 associated for each state 𝓈𝑖 

𝑝 ∈  {1…ℎ} Number of windows 

𝑞 ∈ {1…k} Length of windows 

𝒙𝑞⃗⃗ ⃗⃗  , 𝒙𝑟⃗⃗⃗⃗  Two rows of the signal window 𝑥𝑖
𝑝
 

𝓌𝑞𝑟 Pairwise comparison of 𝒙𝑞⃗⃗ ⃗⃗  and 𝒙𝑟⃗⃗⃗⃗  

𝐺𝑖(𝑉, 𝐸,𝑊) 
Undirected, weighted graph with, nodes 𝑉, edges 𝐸 and weights 

W 

𝑺 Symmetric similarity matrix 

𝓓 Diagonal degree matrix 

𝓛𝑖 Spectral graph Laplacian matrix for each state 𝓈𝑖 

𝒗𝑖 Graph Laplacian eigenvectors 

𝓥𝓈𝑖  Single universal basis for a system 𝓈𝑖 

𝓃 The number of eigenvectors in the universal basis 

𝐺(𝓧) Spectral graph transform on a signal 𝓧 

ℂ Graph Fourier coefficients 

ℙ Candidate coefficients 

𝑒𝓈1 Sum of square errors for classification of a system 𝓈𝑖 
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1) Step 1: Converting a signal into a Network Graph. 

The aim of this step was to represent a sequence 𝓧 of sensor data (time series, images) 

as a weighted, undirected network graph 𝐺, i.e., achieve the mapping 𝓧 ↦  𝐺(𝑉, 𝐸,𝑊) 

with nodes (vertices) 𝑉, edges (links) 𝐸, and edge weights 𝑊.  The graph 𝐺(𝑉, 𝐸,𝑊) is a 

lower dimensional representation of 𝓧. Consider an m-data point long signal 𝔁𝑖 

corresponding to a known state 𝓈𝑖 , 𝑖 =  {1…𝑛} as per the matrix shown in Eq. (2-1). This 

signal is divided into h windows of length k (= m/h) data points each. Let each window be 

represented as a k×d matrix 𝒙𝑖
𝑝
, 𝑝 ∈  {1 …ℎ}, 𝔁𝑖 is written in block matrix form as, 

𝔁𝑖 = [
𝑥𝑖
1

⋮
𝑥𝑖
𝑝
]  (2-2) 

For each 𝒙𝑖
𝑝
 the following graph transform procedure is followed.  First, pairwise 

comparisons 𝓌𝑖𝑗 are computed using a kernel function Ω; in Eq. (2-3), 𝒙𝑞⃗⃗ ⃗⃗  and 𝒙𝑟⃗⃗⃗⃗   are two 

rows of the signal window 𝒙𝑖
𝑝
 

𝓌𝑞𝑟 = Ω(𝒙𝑞⃗⃗ ⃗⃗ , 𝒙𝑟⃗⃗⃗⃗ ) ∀ 𝑞, 𝑟 ∈ (1⋯𝑘). (2-3) 

Different types of kernel functions Ω may be used, such as the Gaussian (Eq. (2-4)) 

and Mahalanobis (Eq. (2-5)) kernel shown below: 

𝓌𝑞𝑟 = 𝑒
−[
‖𝒙𝑞⃗⃗ ⃗⃗  −𝒙𝑟⃗⃗ ⃗⃗  ‖

𝜎
]

2

 

(2-4) 

𝓌𝑞𝑟 = (𝒙𝑞⃗⃗ ⃗⃗ − 𝒙𝑟⃗⃗⃗⃗ )𝐶
−1(𝒙𝑞⃗⃗ ⃗⃗ − 𝒙𝑟⃗⃗⃗⃗ ) (2-5) 
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The weight of an edge connecting a node q with another node r is 𝓌𝑞𝑟. It is apparent 

that the topology of the graph 𝐺 depends on the kernel Ω. In this work, the Mahalanobis 

kernel, Eq. (2-5) with 𝐶 as the variance-covariance matrix is used exclusively. The 

mathematical implication of using the Mahalanobis kernel is as follows: 

lim
𝒙𝑞⃗⃗ ⃗⃗  −𝒙𝑟⃗⃗ ⃗⃗  →0

𝓌𝑞𝑟 = 0 (2-6) 

In other words, given two data points 𝒙𝑞⃗⃗ ⃗⃗  and 𝒙𝑟⃗⃗⃗⃗ , the more similar 𝒙𝑞⃗⃗ ⃗⃗  and 𝒙𝑟⃗⃗⃗⃗  are, the 

weaker is the connection between the two. The symmetric similarity matrix 𝑺𝑘×𝑘 = [𝓌𝑞𝑟] 

represents a weighted and undirected network graph 𝐺; each row and column of 𝑺𝑘×𝑘   is 

the vertex 𝑉 (or node) of the graph, and the relationship between two nodes is indexed by 

edges, in terms of its connection status 𝐸, and weight 𝑊. The graph is then represented as 

𝐺 ≡ (𝑉, 𝐸,𝑊). The following notational additions are made: 𝑺𝒙𝑖
𝑝 and 𝐺𝒙𝑖

𝑝 , where 𝒙𝑖
𝑝
 relates 

to a specific window 𝔁𝑖 for the signal 𝑝. 

An analogy can be drawn between a graph network with an electrical circuit with 

resistors. Indeed, there is an equivalence in literature between the Laplacian Matrix and the 

Kirchhoff Matrix of electrical circuits [114]. The node 𝑉 of a graph corresponds to the node 

or common point in the circuit; the edge 𝐸 of the graph is a branch in the circuit; and the 

resistance on the branch is the weight 𝑊. The smaller the weight of the edge connecting 

two nodes, the smaller the resistance between them.  

Knowing that the electric current takes the path of shortest resistance, an electrical 

network can be characterized in terms of the path taken by the current; if the resistance 

along a branch changes, the path taken may also change. Hence, by tracking changes in the 
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path taken by the current, drastic changes that may have occurred in the circuit can be 

detected. This very idea carries over to the presented approach. A signal is redrawn as a 

graph and the different paths on a graph are tracked in terms of the eigenvectors of the 

Laplacian Matrix.  

2) Step 2: Extracting topological information for the graph surface 

The aim of this step was to extract topological information from the graph 𝐺. Once the 

data 𝑥𝑖
𝑝
  in a particular window is represented as a graph 𝐺𝒙𝑖

𝑝 , the Laplacian eigenvectors 

are computed. This topological information is subsequently used to capture the process 

dynamics contained in the signal 𝓍𝑖. Going back to 𝒙𝑖
𝑝
,  the degree 𝑑𝑞 of a node 𝑞, 𝑞 =

{1…k} is computed, which is a count of the number of edges that are incident upon the 

node. The node degree is the sum of each row in the similarity matrix 𝑺K × K  and the 

diagonal degree matrix 𝓓 structured from 𝑑𝑞 is obtained as follows, 

𝑑𝑞 =∑𝑤𝑞𝑟

𝑘

𝑟=1

 ∀ 𝑞, 𝑟 = {1…𝑘} (2-7) 

𝓓𝑘 × 𝑘 ≝ diag(𝑑1, ⋯ , 𝑑𝑘). (2-8) 

This leads to the normalized Laplacian ℒn of the graph 𝐺, which is defined as, 

𝓛n  ≝ 𝓓 −
1
2 × (𝓓 − 𝑺) × 𝓓 −

1
2, 

where, 𝓓 −
1

2 = diag (1
√𝑑1
⁄ ,⋯ , 1

√𝑑𝑘
⁄ ). 

(2-9) 

An alternative is the random walk Laplacian ℒ𝑟  of the graph 𝐺 defined as, 

𝓛r   ≝ 𝓓 −1 × (𝓓 − 𝑺), (2-10) 
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Simplifying the notation, both Laplacians are represented with the symbol ℒ. 

Thereafter, the eigenspectrum of ℒ is computed as, 

𝓛𝒗 = λ∗𝒗. (2-11) 

At the end of Step 2 a spectral graph transform on a signal  𝒳 is defined;  

𝐺(𝓧) → 𝓛𝓧(λ
∗ , 𝒗). (2-12) 

In other words, the information in the signal 𝓧 was captured in the form of the 

eigenvectors (𝑣) and eigenvalues (λ∗) of the Laplacian matrix.  

3) Step 3: Classification of Process States 

The aim of this step was to find out or classify the process state 𝓈𝑖, given a signal 𝑦. 

For instance, given a frame of the thermal image, the intent was to ascertain if there was 

an impending build fault.  This is a type of a supervised classification approach, where a 

set of labeled data is assumed to exist a priori. This presumption of labeled data is one of 

the disadvantages of this approach. It will be relaxed with new graph-theoretic 

unsupervised learning approaches in the authors’ future work. 

Step 3.1: This step applied the graph transform from Eq. (2-12) to the signal 𝓍𝑖 

corresponding to a state 𝓈𝑖, as follows, where h is the number of windows in the signal, 

𝐺(𝔁𝑖) = [

𝓛𝑥𝑖
1

⋮
𝓛𝑥𝑖

ℎ

]. (2-13) 

This means that the signal 𝒙𝑖
𝑝
 corresponding to a state 𝓈𝑖, at window 𝑝 is associated 

with a Laplacian eigenvector basis 𝒗𝒙𝑖
𝑝  through the spectral graph transform. Each 𝒗𝒙𝑖

𝑝  is 

a k-long column vector. 
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Step 3.2: Next, the aim was to learn a single universal basis 𝓥𝓈𝑖   for a system 𝓈𝑖  as 

data is continuously acquired (consider that the signal 𝒙𝑖  arrives in discrete chunks as a 

window).  This was done through a simple update schema, akin to the delta update rule 

frequently used in machine learning [115]. For each window, the basis vectors are updated 

as follows, 

𝑽
𝑥𝑖
𝑝+1 = 𝒗𝒙𝑖

𝑝 + ∆(𝒗
𝒙𝑖
𝑝+1 − 𝒗𝒙𝑖

𝑝) , 𝑝 = {1…ℎ}  (2-14) 

initialized with 𝑽𝒙𝑖
1 = 𝒗𝒙𝑖

1 with ∆ set to a small value (∆ = 0.01 in this work). To make the 

process computationally simpler a smaller subset of the Laplacian eigenvalues was 

updated; typically, the first 10 non-zero eigenvectors of the Laplacian ℒ𝑥𝑖
𝑝 were found to 

be adequate. Hence, the universal basis 𝓥𝓈𝑖  
𝑘×𝓃

 is the matrix obtained when 𝑽𝒙𝒊  converges, 

that is 𝓥𝓈𝑖  = 𝑽𝑥𝑖
ℎ, where 𝓃 is the number of non-zero eigenvectors updated. 

Step 3.3: The spectral graph Fourier transform, which is analogous to the discrete 

Fourier transform is now defined. A spectral graph Fourier transform 𝐺̂(⋅) on a signal 

𝓧𝑁×1 (consider d = 1 for simplicity) can be defined assuming that the Laplacian matrix 

(ℒ) is not defective (i.e., the graph has no isolated nodes) as follows, 

𝐺̂(𝓧) = [𝓧T ⋅ 𝑽1 = 𝑐1 ⋯ 𝓧T ⋅ 𝑽𝑁 = 𝑐𝑁] 

𝓧 =∑𝐺̂(𝓧) ⋅ 𝑽𝑖

𝑖=𝑛

𝑖=0

 
(2-15) 

Applying this analogy to the signal 𝑥𝑖 across each of the h windows by taking the 

product (𝒙𝑖
𝑝)
T
∙ 𝓥𝓈𝑖  ∀ 𝑝 = {1…ℎ} leads to the coefficient matrix 𝐺̂(𝒙𝑖). 

𝐺̂(𝒙𝑖  ) = [[(𝒙𝑖
1)𝑇(𝓥𝓈𝑖  ) = 𝕔1,𝓈𝑖 

𝑑×𝓃] ⋯ [(𝒙𝑖
ℎ
 
)
T
(𝓥𝓈𝑖  ) = 𝕔ℎ,𝓈𝑖 ]] 

(2-16) 
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Essentially, each term 𝕔𝑝,𝓈𝑖 is a matrix that is 𝑑 × 𝓃 long, where 𝓃 is the number of 

eigenvectors in the universal basis 𝓥𝓈𝑖  selected for analysis; the universal basis 𝓥𝓈𝑖  has 

dimensions 𝑘 × 𝓃.  If this procedure is repeated for all n systems 𝓈1⋯𝓈𝑛, then a dictionary 

of coefficients can be formed, written in block matrix form ℂ (ℎ×𝑛), and partitioned by 

𝕔1,𝓈𝑖
T each of which has dimensions 𝓃 × 𝑑: 

ℂ (ℎ×𝑛) =

[
 
 
 
 
𝕔1,𝓈1

T ⋯𝕔1,𝓈𝑖
T⋯ 𝕔1,𝓈𝑛

T

𝕔2,𝓈1
T

⋮

⋯𝕔2,𝓈𝑖
T⋯

⋮

𝕔2,𝓈𝑛
T

⋮
𝕔ℎ,𝓈1

T ⋯𝕔ℎ,𝓈𝑖
T⋯ 𝕔ℎ,𝓈𝑛

T
]
 
 
 
 

 

(2-17) 

Step 3.4: Given an unknown signal 𝒚 with k × d data points, an inner product (𝒚)T ∙

𝓥𝓈𝑖   is taken with each of the n universal basis vector sets 𝓥𝓈𝑖  one at a time. This gives a 

candidate set populated by block matrices [𝓹𝓈𝑖]
𝑑×𝓃

, as follows,  

ℙ = [[𝓹𝓈1
T ], ⋯  [𝓹𝓈𝑛

T ] ] . (2-18) 

Step 3.5: The next step was to compare each of the candidate block matrices 𝓹𝓈1with 

the dictionary of coefficients 𝕔𝑝,𝓈𝑖  in Eq. (2-17) having the corresponding label 𝓈𝑖. In other 

words, find the error between 𝓹𝓈𝑖 and corresponding 𝕔𝑝,𝓈1  ∀ 𝑝. This is done by taking the 

sum of square errors, 

𝑒𝓈1 = ∑ ‖(𝕔𝑝,𝓈𝑖
T −𝓹𝓈𝑖

T)‖𝑝=ℎ
𝑝=1

2
. (2-19) 

The label assigned to 𝑦 is the one which has the minimum sum of square errors, i.e.,  

argmin
𝓈𝑖

𝑒𝓈𝑖.  
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2.4.3 Application of the Approach to Synthetically Generated Signals. 

The aim of this section is to test the efficacy of the spectral graph approach in 

classifying signals from a nonlinear deterministic Rössler time series [116]. The Rössler 

system 𝜑(𝑡; 𝑎, 𝑏, 𝑐) shown below in Eq. (2-20) is a set of interlinked nonlinear differential 

equations, whose behavior is governed by three constants:  , 𝑏 , and 𝑐. A slight change in 

these constants leads to markedly different behavior of the system. It is an archetypical 

nonlinear dynamic system, which shows sensitivity to initial conditions. Four types of 

systems were generated by setting the constant 𝑎 to four different values, namely, 𝑎 = 0.16; 

0.17; 0.19; and 0.21. These four systems were labelled 𝓈1, 𝓈2, 𝓈3, and 𝓈4. The generated 

signals were 20,000 data points long for each 𝒙(𝑡), 𝒚(𝑡), and 𝒛(𝑡), which were initialized 

at {0,0,0}. Each 𝒙(𝑡), 𝒚(𝑡) and 𝒛(𝑡) was considered a signal, each of which occupied one 

column in Eq. (2-1). Different values of the constant 𝑎 led to different  𝜑(𝑡).  

The following procedure was used: four different levels of Gaussian white noise (η) 

were added to the system; η = {0,5%, 10%, 20%}. From each of the four systems 125 

samples each 20,000 data points long were selected. Referring to Eq. (2-1), the dimensions 

are d = 3 for the Rössler system, and m = 20,000. Three different window sizes of length 

k = 500, 750, and 1000 data points were evaluated. The classification fidelity on applying 

the graph-theoretic approach in terms of the F-score was recorded. The F-score is an 

aggregate measure of the statistical Type I (false alarm) and Type II (failing to detect) 

errors. The higher the F-score the better. The process was repeated five times, i.e., a five-

fold replication study. The result from this analysis is shown in terms of the F-score 

contingent on the noise level (η) and window size in Table 2-4. 



63 

 

𝜑(𝑡; 𝑎, 𝑏, 𝑐) =

{
 
 

 
 

𝑑

𝑑𝑡
𝒙(𝑡) = −(𝒚(𝑡) + 𝒛(𝑡))

𝑑

𝑑𝑡
𝒚(𝑡) = 𝒙(𝑡) + a𝒚(𝑡) 

𝑑

𝑑𝑡
𝒛(𝑡) = b + 𝒙(𝑡) ∙ 𝒛(𝑡) − c𝒛(𝑡)}

 
 

 
 

 (2-20) 

 
Figure 2-7: The four different Rössler systems used for testing the approach. 

From Table 2-4 it is evident that window k = 750 gave a consistently higher F-score. 

Remarkably, the addition of noise to the system did not lead to significant changes in the 

F-score, which underscored the robustness of the proposed approach to noise. The reason 

a window size of k =750 led to the best results is because it was neither too short to be 

afflicted with temporal correlation, nor too large to be affected by noise.   The so-called 

confusion matrix for k = 750 is shown in  

Table 2-5 along with a sample calculation for the F-score. The approach is compared 

against seven other popular classifiers in Table 2-6.  
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The inputs to these classifiers are eight statistical moments: mean, median, standard 

deviation, skewness, kurtosis, minimum, maximum, and inter-quartile range. These 

features were extracted for each of the three components, 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡), of the 

Rössler system, and principal components (capturing 99% of the variation) are used within 

the seven different machine learning approaches. The results presented in Table 2-6, 

indicate that the proposed approach with Laplacian eigenvectors outperforms these other 

approaches. 

Table 2-4: Evaluation of the proposed approach for the Rössler system. 

Percentage F-score results (higher the better) for distinguishing between the four Rössler systems. 

The numbers in parenthesis are the standard deviations from a five-fold classification study. 

Noise Level 

(η%) 

Window Sizes (k in Eq. (2-2)) 

k = 500 k = 750 k =1000 

η = 0% 0.8 (0.05) 0.83 (0.04) 0.81 (0.04) 

η =10% 0.77 (0.02) 0.83 (0.05) 0.84 (0.03) 

η =15% 0.77 (0.05) 0.83 (0.04) 0.81 (0.04) 

η = 20% 0.74 (0.04) 0.83 (0.03) 0.79 (0.05) 

 

Table 2-5: The confusion matrix for distinguishing the four Rössler systems. 

 Predicted Process Condition False Negative Rate 

(FNR, Type II error) 𝓈1 𝓈2 𝓈3 𝓈4 

A
ct

u
al

 

P
ro

ce
ss

 

C
o
n
d
it

io
n

 𝓈1 122 3 0 0 3/125   = 2.4% 

𝓈2 26 93 6 0 32/125 = 25.6% 

𝓈3 5 11 99 10 26/125 = 20.8% 

𝓈4 0 0 23 102 23/125 = 18.4% 

False Positive Rate 

(FPR, Type I error) 

31/375 

= 8.2% 

14/125 

= 11.2% 

29/125 

= 23.2% 

10/125 

= 8% 

Avg. FNR (β) 

= 16.8% 

Avg. FPR 

α =  12.5% 

F-score =1 − 2
α + β

 α×β
 = 0.821 (82.1%) 
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Table 2-6: Comparing the graph-theoretic approach against six other approaches. 
The numbers in the table are the F-scores (larger is better) along with the standard deviation over 

five replications in the parentheses. 

Noise 

Level 

(η) 

Classifier 

Linear 

Discriminant 

(LD) 

K-Nearest 

Neighbors 

(KNN) 

Decision 

Tree 

Support 

Vector 

Machines 

(SVM) 

Boosted 

Trees 

(BT) 

Neural 

Network 

(NN) 

Quadratic 

Discriminant 

Analysis 

(QDA) 

Proposed 

Graph-

Theoretic 

Approach 

0% 0.81(0.01) 0.79(0.02) 0.76(0.03) 0.83(0.02) 
0.80 

(0.02) 

0.79 

(0.01) 
0.81(0.01) 

0.83 

(0.04) 

10% 0.74 (0.01) 0.63(0.02) 0.72(0.03) 
0.75 

(0.03) 

0.78 

(0.02) 

0.75 

(0.02) 
0.78 (0.02) 

0.83 

(0.05) 

15% 0.73(0.02) 0.6 (0.03) 0.77(0.02) 
0.72 

(0.03) 

0.78 

(0.02) 

0.73 

(0.02) 
0.75 (0.02) 

0.83 

(0.04) 

20% 0.72(0.03) 0.58(0.04) 0.7 (0.04) 0.7 (0.04) 
0.75 

(0.02) 
0.72 

(0.03) 
0.75 (0.02) 

0.83 
(0.03) 

2.5 Results and Discussions  

The aim of this section is to apply the spectral graph approach described in Sec. 2.4 to 

discriminate between the overhang and bulk build conditions. Data from each of the three 

type of signals, thermal images, high-speed video frames and the photodetector time traces 

were analyzed, and their ability to distinguish between the two build conditions (overhang 

and bulk) was statistically assessed in terms of the F-score. A critical parameter that needed 

to be determined a priori was the window length k. In the thermal video and IR images the 

window size was 1 frame; for the photodetector, the window size was selected to be 555 

data points (acquired over a time interval of 555 µs) long to correspond to one thermal 

image frame, as explained before. 

For the thermal and video images, each pixel row corresponded to a row on the matrix 

𝑥𝑖, shown in Eq. (2-1), whereas, the photodetector signal was a column vector. Using Eq. 

(2-5), the weight matrix 𝓌𝑞𝑟 was obtained, and the steps in Eq. (2-7) – Eq. (2-9) were 

followed. This gave the eigenspectrum (𝜆∗, 𝜈). The eigenvalues 𝜆∗ were plotted to illustrate 

visually the manner in which the signals for different build conditions, namely, the melting 
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of overhang and bulk features, were distinguishable in the spectral graph domain. These 

plots are shown in Figure 2-8,  based on which of the following inferences were drawn: 

•  Figure 2-8 (a) traces the second eigenvalue (𝜆2), also called the Fiedler number, 

across 5000 thermal camera frames for one layer (9.70 mm layer height) of the 

process. Distinctive peaks are evident in the plot where the overhang sections were 

built. The smoothed trend line in the figure was obtained using a seventh order 

Savitzky-Golay filter taken over a window size of 101 data points to accentuate the 

patterns in the data.  

• Corresponding to the same 5,000 frames in Figure 2-8 (a), in Figure 2-8 (b) the L2 

norm of the eigenvalues (𝜆∗) is given by ‖𝜆2
2, 𝜆3

2, … , 𝜆𝑘
2‖ for the photodetector 

signal. This is because the Fiedler number alone failed to show any clear peaks. The 

trends were not as visually prominent as those obtained from the thermal camera. 

Indeed, some of the peaks in the photodetector signal did not seem to align with those 

of the thermal camera. This was most likely due to the sensitivity of the photodetector 

to the direction of the scan. As the laser melted material nearer to the photodetector, 

higher amplitude peaks were observed, compared to the instances where the laser was 

farther away. A count of the (periodic) peaks in Figure 2-8 (b) reveals that they 

correspond to the number of hatches. Given this variation in the signal characteristics 

it is reasonable to expect a lower detection fidelity for the photodetector signal 

compared to the thermal camera. 
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Continuing with the analysis, the approach was applied to the data acquired by the 

three sensors for distinguishing between the overhang and bulk build conditions. The 

approach was compared against seven other popular machine learning approaches 

following the procedure described in Sec. 2.4.3. For brevity, the parameter settings are 

encapsulated in the Appendix, noting that for the photodetector signal, the random walk 

Laplacian for Eq. (2-11) was used. Table 2-7 represents the performance of the spectral 

analysis algorithm for all three types of sensor signals in terms of F-score value. Based on 

Table 2-7 and  

Table 2-8 the following inferences are tendered: 

1) The proposed spectral graph-theoretic approach outperforms all the other approaches 

tested; this holds for all sensing scenarios (Table 2-7). An F-score in the range of 80-

95% is possible with the proposed approach while it is at best 60% with the other 

approaches, i.e., little better than a random guess. 

2) The prediction results from the photodetector signal are inferior for the spectral 

graph-theoretic approach compared to the same approach applied to other sensor 

signals. Nonetheless, the F-score results are within 20% of the highest resolution 

sensor (i.e., the thermal camera). The confusion matrix based on 250 randomly 

selected samples — a sample is a frame for the thermal and video images and 555 µs 

of data for the photodetector — is shown in  

3) Table 2-8.  

4)  The detection fidelity is contingent on the analytical approach used. Even a sensor 

with the highest spatial resolution, such as a thermal camera, when integrated with an 

ill-suited analytical approach will lead to poor results. For instance, the thermal 
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camera when combined with a linear discriminant classifier, had a poor F-score (36%) 

compared to the visible camera (58%) and photodetector (59%). 

Table 2-7: F-score results from applying the proposed approach. 

to each of the three types of sensor signals. (a) The percentage F-score results for detecting 

the two process conditions in thermal camera, visible camera and photodetector. The numbers in 

parentheses represent the standard deviation from a five-fold replication (data from three layers). 
Acronyms are as follows: LD: Linear Discriminant, KNN: K-Nearest Neighbors, Tree: Decision 

Tree, SVM: Support Vector Machines, BT: Boosted Trees, NN: Neural Network, QDA: Quadratic 

Discriminant Analysis. 

Sensor 
Data 

Dimension 

Proposed 

Approach 

LD 

 
KNN Tree SVM 

Boosted 

Trees 
NN QDA 

Thermal Camera 
2D 

(128×360) 

0.95 

(0.01) 

0.36 

(0.02) 

0.5 

(0.02) 

0.38 

(0.03) 

0.42 

(0.03) 

0.43 

(0.03) 

0.40 

(0.02) 

0.6 

(0.02) 

Visible Camera 
2D 

(256×256) 

0.83 

(0.02) 

0.58 

(0.02) 

0.57 

(0.03) 

0.61 

(0.01) 

0.63 

(0.02) 

0.62 

(0.01) 

0.54 

(0.00) 

0.5 

(0.01) 

Photodetector 
1D (555 × 

1) 

0.79 

(0.01) 

0.59 

(0.02) 

0.6 

(0.02) 

0.62 

(0.01) 

0.61 

(0.01) 

0.61 

(0.02) 

0.6 

(0.01) 

0.5 

(0.01) 

 

Table 2-8: The confusion matrix for detecting the two conditions (overhang and bulk) from the 

thermal camera, high-speed camera, and photodetector.  

The data is for 250 randomly chosen sequences from each build condition. 

   Predicted Build Condition 

   Overhang Bulk 

A
ct

u
al

 P
ro

ce
ss

 C
o
n
d
it

io
n

 

Thermal Camera 
Overhang 250 0 

Bulk 24 226 

Visible Camera 
Overhang 250 0 

Bulk 83 167 

Photodetector 
Overhang 157 93 

Bulk 9 241 
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2.6 Conclusions 

This work proposed a spectral graph-theoretic approach for monitoring the build 

condition in the laser powder bed fusion (LPBF) additive manufacturing (AM) process via 

a sensing array consisting of a photodetector, SWIR thermal camera, and high-speed video 

camera. The central idea of the approach is to convert the sensor data into a lower 

dimensional manifold, specifically, a weighted and undirected network graph. Specific 

conclusions are as follows: 

1. An LPBF part with a steep overhang feature (40.5°) was built without supports. The 

build was monitored continuously with the aforementioned sensor suite with the intent 

to detect the difference in signal patterns when the bulk and overhang sections were 

sintered. Extracting and detecting the difference in sensor signatures for such a simple 

case was the first-step towards in-situ defect detection in AM. The analysis was 

extended to more sophisticated machine learning approaches, such as neural networks 

and support vector machines, among others (Sec. 2.5). These approaches had a fidelity 

(F-score) for distinguishing between the overhang and bulk states in the vicinity of 

40-60%. 

2. The proposed graph-theoretic approach was applied to the sensor data with the intent 

to distinguish between the overhang and bulk build states, the F-score obtained was in 

the region of 80 to 95%, contingent on the type of sensors: F-score ~ 95% for the 

shortwave infrared thermal camera, F-score ~ 83% for the high-speed video camera, 

and F-score ~ 79% for the photodetector sensor.  
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These results led to the following inferences: 

• To monitor the LPBF process, in-process sensing must be integrated with new and 

advanced analytical approaches capable of combining data from multiple sensors. 

Existing approaches, such as neural networks are ineffective probably due to their 

inability to discern the subtle and short-lived indications of an incipient fault, and their 

limitations with accommodating heterogeneous sensors.   

• A low fidelity sensor, such as a photodetector, although not as capable in discriminating 

between build conditions as a high-fidelity sensor, has detection capability still within 

20% of the thermal camera. This limitation may be overcome by using multiple 

photodetector sensors together.   
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Appendix 

Classification 

Method 
Input type Setting 

Laplacian 

eigenvector Basis 

Thermal camera 

No. of eigenvectors: 10 

Laplacian matrix: weighted symmetric 

Kernel Function: MD distance 

Visible camera 

No. of eigenvectors: 1 

Laplacian matrix: weighted symmetric 

Kernel Function: MD distance 

Photodetector  

No. of eigenvectors: 5 

Laplacian matrix: weighted random walk 

(orthogonalized using Gram Schmidt ) 

Kernel Function: MD distance 

Linear Discriminant 

(LD) 
An array of eight  

Statistical Features 

for each 
dimension/ 

column: 

Mean, 

Standard 

Deviation 

Range, 

Skewness, 

Kurtosis, 

Interquartile range, 

Min, 

Max 

Linear boundaries between classes 

K-Nearest Neighbors 

(KNN) 
numbers of neighbors: 1 

Decision Tree maximum number of splits: 100 

Support Vector 

Machines 

(SVM) 
Gaussian scale: √number of predictors / 4 

Boosted Trees 

(BT) 

an ensemble of decision trees (maximum number 

of splits set to 20) using the AdaBoost algorithm 

Neural Network 

(NN) 
number of hidden neurons: 2 

Quadratic 
Discriminant 

Analysis 

(QDA) 

Elliptical, parabolic, and hyperbolic boundaries 

between classes 

 

  

https://www.google.com/search?q=gram+schmidt+matlab&spell=1&sa=X&ved=0ahUKEwjUxrz8sNnTAhXI6oMKHTz-C6wQvwUIJCgA
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3 Detecting Material Contamination in LPBF 

3.1  Goal, Objective, and Hypothesis 

As a first step to realize the long-term aim of qualify-as-you-build in AM, the goal of 

this work is to detect the onset of material contamination-related anomalies in LPBF. In 

pursuit of this goal, the objective is to develop and apply a spectral graph-theoretic 

approach for real-time detection of material cross-contamination using process signatures 

acquired by a photodetector sensor.  

The central hypothesis is that tracking the signatures acquired from the photodetector 

in the spectral graph domain leads to early and more accurate detection of material cross-

contamination in LPBF, compared to the traditional Box-Jenkins stochastic delay-

embedded time series analysis of the signal, such as autoregressive (AR) and 

autoregressive moving average (ARMA) modeling. This work addresses the following 

open research question in the context of material cross-contamination in the LPBF process ̶ 

what process signatures can capture the onset of contamination?  

To put the challenge of cross-contamination in pictorial context, Figure 3-1 shows 

optical images of an etched Inconel 625 AM sample from this work contaminated with 

varying severities of tungsten and aluminum trace material. These images demonstrate that 

material cross-contamination changes the basic microstructure of the build and has the 

proclivity to spread beyond the layer in which they occur.  
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Figure 3-1: Optical image of an etched and polished Inconel 625 specimen showing the effect of 

contamination. 

The black arrow indicates the build direction. (a) Contamination with tungsten, which due to its 

high melting point does not fuse and tends to cascade through several layers. The dashed-line (1) 

indicates the shape of a melt pool, penetrating the previously deposited layer. Also, the overlaps 

between tracks could be recognized. The dashed line and circle (2) shown at the bottom of the 
tungsten specimen are representative of the hatching directions in the two consecutive layers. (b) 

The contamination with aluminum is not readily evident as trace particles, but a closer examination 

of the hatch pattern reveals that aluminum tends to distort the melt pool as indicated by the arrows 
(3), and (4) vaporization of the aluminum particles causes uniform circular pinhole (gas-induced) 

porosity of diameter ~10 μm. 
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In Figure 3-1 (a), contamination with tungsten manifests as unfused particles evident 

as light-hued inclusions in the darker Inconel 625 matrix. This is probably because: (1) the 

melting point of tungsten is much higher (~ 3422 °C) than Inconel 625 (~1300 °C), and (2) 

tungsten is not an alloying element in Inconel 625. Given these two reasons, tungsten does 

not dissolve into the Inconel 625 matrix. The contamination of Inconel with tungsten is a 

critical problem that may lead to premature failure of AM parts. For instance, in a recent 

publication, Brandão et al. hypothesized that given the hardness of tungsten, un-melted 

tungsten particles tend to become preferred sites for crack initiation under tensile 

loading[117].  

In Figure 3-1 (b), contamination with aluminum does not manifest in clearly 

distinguishable particle traces; however, it tends to distort the melt pool. This is because of 

two reasons:  (1) Unlike tungsten, aluminum has a much lower melting point (~ 660 °C) 

than the melting point of Inconel 625 (~ 1300 °C). Further, aluminum is also an allowable 

alloying element in Inconel 625 (maximum 0.4% by mass). Hence, aluminum particles 

may dissolve into the Inconel 625 matrix.  (2) Aluminum particles may vaporize given the 

higher energy applied to melt Inconel 625. This vaporization of aluminum particles leads 

to uniform circular pores of diameter ~ 10 μm, which is termed as gas porosity or pinhole 

porosity in the literature [29].  

During the process, two types of foreign contaminant materials, namely, tungsten and 

aluminum powders under varying degrees of severity were introduced. Offline X-ray 

Computed Tomography (XCT) and metallurgical analyses of parts indicate that contingent 

on its severity, contaminant particles may cascade to over eight subsequent layers of the 
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build and enter up to three previously deposited layers. In this context, this research took 

the first step towards detecting cross-contamination in AM by tracking the process 

signatures from the photodetector sensor, hatch-by-hatch, invoking spectral graph 

transform coefficients. These coefficients were subsequently traced on a Hotelling T2 

statistical control chart to determine the location of contaminants [118]. 

The rest of this study is organized as follows. The literature in the area of sensing and 

monitoring in AM is discussed in Sec. 3.2, followed by a description of the experimental 

methodology to initiate controlled material cross-contamination in Sec. 3.3. The spectral 

graph-theoretic approach is explained in Sec. 3.4, and subsequently applied to the LPBF 

process signals in Sec. 3.5, followed by a summary of the conclusions and avenues for 

future research in Sec. 3.6.  

3.2 Prior Work and Challenges in Material Contamination in LPBF 

Brandão et al. reported the effect of high-density tungsten inclusions on the tensile 

strength and microstructure of LPBF test parts. Although contaminants were not found to 

influence the mean tensile strength of the specimen, the fracture cracks during testing were 

found to initiate at the locations where contaminants were present. Furthermore, specimens 

with cross-contamination tended to have large variability in the tensile strength readings 

compared to those without contamination.  

In the related context of purity and physical characteristics (diameter and shape) of the 

powder, studies have been conducted to understand the effect of powder reuse on part 

functional attributes in electron beam PBF (EB-PBF) [119]. This is because, unlike LPBF, 

in EB-PBF the powder is maintained at a higher temperature [120]. Hence, there is a 
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practical concern that repeated reuse of the powder in EB-PBF may lead to deviation in 

powder characteristics and hence the functional performance of the part. These studies have 

concluded that although the repeated reuse of the powder increases its oxygen content and 

changes it particle geometry, the impact of powder reuse on mechanical strength was 

statistically insignificant [119, 120].  

The effect of feedstock characteristics on the mechanical properties of LPBF parts was 

investigated by Ardila et al. who found that the effect of reuse of Inconel 718 powder had 

statistically insignificant effect on material strength, nor did the shape of the powder 

particles deviate significantly over 14 iterations[121]. Recent studies by Clemon at the 

University of California, Berkeley attempted to characterize the effect of powder properties 

on the process performance [122]. Thus, the understanding of the effect of material cross-

contamination on part microstructure in LPBF remains to be thoroughly investigated. 

The second challenge that this work must tackle lies in the domain of data analytics 

and modeling in AM. The in-process sensor data in AM processes are heterogeneous 

(several different sensors are used), acquired at high velocity (the sampling rate of sensors 

is high), and high in volume (several gigabytes of data are acquired for a build). There is 

an active and ongoing effort to develop data analytics and modeling approaches to track 

and monitor these sensor data in real time, and relate the sensor signatures to functional 

properties [73, 74]. The need for approaches to synthesize the data gathered in AM 

processes has been explicitly designated as a research priority area in recent roadmap 

reports [9, 12]. 
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Comprehensive review articles for in-process sensing are available in Ref.[82, 85, 123]. 

Nassar and Reutzel, et al. at Pennsylvania State University experimented with imaging of 

the LPBF powder bed under various illumination conditions [124]. Defects, such as large 

voids caused by improper raking of the powder across the bed were identified from these 

images[125].  They have also used a multispectral photodetector setup that concentrates on 

observing the line-to-continuum ratio of the laser plume in both the LPBF and DED 

processes to detect the onset of defects, such as porosity [126, 127]. Lane et al. at NIST 

integrated an LPBF machine (EOS M270) with thermal and high-speed cameras, and a 

photodetector [101]. Researchers at NIST are currently building customized LPBF testbeds 

instrumented with multiple sensors, based on findings at Edison Welding Institute (EWI)  

[65, 101]. A large body of work in sensing and monitoring in LPBF was reported by the 

Kruth group [80, 81, 87, 128] and Witt group [66, 67, 129, 130] in Europe.  The sensing 

and monitoring approaches for PBF used in these pioneering works are categorized into 

the following two broad areas: 

• Melt pool monitoring: Optical cameras, high-speed cameras, Infrared (IR) cameras, 

photodetectors, and pyrometers are used to gauge thermal, intensity, and 

morphological aspects of the melt pool. The visual systems and sensors are either 

embedded coaxially with the laser; or a system that is either external or internal to 

the chamber is inclined at an angle to the build platen [73, 74]. The challenge is that 

the temperature profiles captured by IR systems are a trend and not the actual 

temperature. This is because the material emissivity has to be factored into the 

readings, and furthermore, if the sensor is mounted at an angle to the powder bed, 

the incident thermal radiation is, therefore, not perpendicular to the sensing 
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elements in the IR camera, which in turn affects the accuracy of the temperature 

reading.  

• Powder bed monitoring: Acoustic (ultrasonic) sensors, vibration (accelerometers), 

optical cameras, and IR thermal cameras have also been proposed to monitor the 

powder bed conditions. For instance, Rieder et al. built a system with ultrasonic 

sensors mounted underneath the build platen to detect voids in the build [131]. 

Vibration sensors were used by Craeghs et al. to identify faulty deposition of 

powder layers resulting from a damaged recoater [81]. Instances of super 

elevations, poor surface finish, and defective features have been detected using both 

visual and vibration sensors. In a similar vein, Nassar et al. used optical images 

taken layer-by-layer to detect improper raking of the material and distortion during 

the process [68].    

The work reported by Craeghs et al. in Ref. [81] serves as an archetypical example of 

both melt pool and powder bed monitoring. Craeghs et al. [81] incorporated three sensors, 

namely, a visual camera to ascertain the characteristics of the powder raked by the blade 

across the build platen (i.e., a powder bed monitoring system); and a photodiode 

(photodetector) and a camera coaxially aligned with the laser, both of which were used to 

monitor the melt pool.  In the context of monitoring the powder bed raked across the platen, 

Craeghs et al. made two observations. First, the gradual wear of the recoater blade caused 

streaks to appear across the deposited powder bed. In a similar vein, Abdelrahman et al. 

showed that non-uniform raking of the powder bed may lead to defects[125]. The effect of 

using a damaged recoater blade leads to discernable streaks on the powder bed surface, 

which in turn manifests in poor part surface finish. The uneven deposition of the material 
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resulting from a damaged recoater blade was detected by Craeghs et al. using a statistical 

control chart-type strategy. The grayscale values of the powder bed taken by the visual 

camera were tracked and used as a feature to discriminate the onset of defects due to 

improper raking of the powder across the bed. For instance, the grayscale image values for 

a layer deposited with a damaged blade showed clear spikes compared to when the powder 

was raked uniformly. 

Furthermore, the melt pool was monitored with the photodiode and optical camera 

system. The optical systems were augmented with filters to constrain the wavelength of 

acquired light in the region of 780 nm to 950 nm. The sampling rate of the photodiode was 

10 kHz, which translates to a sample every 100 μm of the linear distance traversed by the 

laser, considering that the laser scan velocity was set at 1000 mm/sec. Incidentally, the 

laser scan velocity and sampling rate of the photodiode used by Craeghs et al. [81] were 

nearly identical to those in this work (see Sec. 3.3).  Further, using image segmentation and 

pixel intensity estimation techniques from the area of image processing, the authors tracked 

the melt pool area and the length to width ratio of the melt pool. These melt pool image 

features were the monitoring statistics which could be used in a statistical control chart; 

they have also shown to be indicative of process phenomena such as balling by other 

researchers [94, 95].  

Another example was tendered by Craeghs et al. [81] for detecting porosity in LPBF 

due to process drifts. In this case, abrupt machine errors led to an increase in the part 

porosity. At certain instances, due to faults in the build platform stage motor, the powder 

bed was lowered farther than the set layer height. Hence, a powder thickness equivalent to 

multiple layers was accidentally raked across the bed. This unusually high layer of 
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thickness led to an increase in porosity, because, the energy applied per unit volume 

(volumetric energy density) was insufficient to melt the powder. The authors reported that 

the photodiode signal depicted an inordinate increase in mean and standard deviation 

corresponding to layers with faulty deposition.   

A lacuna of the analysis used in these prior works in sensing and modeling in AM, and 

as exemplified in the pioneering work of Craeghs et al. [81], is that they are largely offline 

and use approaches such as Fourier transforms or statistical-feature models, which, as it’s 

demonstrated in Sec. 3.5, are not amenable to online monitoring.  To take these pioneering 

works of in-process monitoring in AM forward, it is necessary to develop approaches 

capable of detecting a wider variety of defects in real time and with greater accuracy. 

Recent works by Yang et al. [69] have attempted to overcome these challenges by resorting 

to advanced analytics, such as fractal signal analysis, and adaptive clustering and Bayesian 

modeling.  

A drawback with these newer data analytics approaches is that they require well-

defined model structures, e.g., a logistic fractal model, tuning of parameters, setting the 

number of layers and nodes in neural networks, and tuning the number of terms in 

traditional time series analysis techniques, such as ARMA. Furthermore, the classical time 

series approaches assume that the statistical moments of the signal do not change over time 

(stationarity assumption). These assumptions are not tenable in LPBF, wherein the signal 

may not confirm with well-known distributions, or may change from layer-to-layer and 

from one part design to the next. The spectral graph-theoretic approach proposed herein 

has two advantages over existing approaches:  
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(1) The approach is feature-free, in that it does rely on extracting statistical features, such 

as mean or the frequency power spectrum to detect changes in the process; and 

(2) Spectral graph theory is model-free, i.e., it does not need an a priori defined model 

structure, such as number of time delay parameters as in stochastic time series 

modeling. 

3.3 Experimental Setup and Data Acquisition 

This section is divided into two parts. Sec. 3.3.1 describes the experimental setup and 

the procedure used to initiate contamination of different types and severity levels, and Sec. 

3.3.2, which describes the sensor instrumentation and data acquisition methodology. 

3.3.1 Experimental Procedure  

In this research, a customized, Open Architecture LPBF Platform was designed and 

implemented at Edison Welding Institute (EWI) [65]. This platform, shown in Figure 3-3 

(a and b) allowed complete control of the key process factors, such as laser power, scan 

speed, and scan pattern; commercial LPBF systems typically do not allow users to 

customize the process settings. The energy source was a ytterbium fiber laser with 

wavelength of 1070 nm operating in continuous mode (manufacturer IPG). Furthermore, 

an array of heterogeneous sensors was integrated within the apparatus and was located on 

an optical table near the laser scanning mechanism.  

Further details of this setup are available in previous work by Boulware et al. [65]. An 

Inconel 625 cuboid-shaped test part of size 10 mm × 10 mm × 15.20 mm (vertical build 

height) was made with the following parameters after extensive offline studies: scan 

velocity (V) 960 mm/s, laser power (P) 270 W, layer thickness (T) 0.040 mm, and hatch 
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spacing (H) 0.1 mm, i.e., an applied volumetric energy density EV ≈ 70 J/mm3
 =  

P/(H×V×T).   

All powders used in this work were sourced from Electro Optical Systems GmbH 

(EOS) and were commercially marketed as NickelAlloy IN625; in the material data sheet 

supplied by the company this material was stated as corresponding to UNS N06625[54]. It 

is noted that the layer thickness of 0.040 mm was an input value to the system. It was 

controlled by accuracy of the motion stages on the build platform and the dispenser 

platform (typically 0.001 mm resolution). It was not an average of multiple layers or 

measured directly, but rather an input to the system and validated during preventive 

maintenance and calibration routines performed semi-annually. To precisely control the 

degree of material contamination, a material dispensing setup was fabricated. The setup 

attached to the recoater arm, and powder material (contaminant) was dispensed from a 

motorized hopper. Figure 3-3 shows the schematic illustration of the sensor test bed and 

the equipment used for dispersion of the contaminants (tungsten and aluminum particles).  

The experimental procedure for dispersing contaminants, namely aluminum (Al) and 

tungsten (W), is depicted in Figure 3-2. The contaminants were dispersed over the powder 

bed every 20th layer. This procedure for purposely introducing contamination was repeated 

three times over a total build consisting of 380 layers. The severity of contamination was 

controlled at three levels for each type of contaminant material, viz., aluminum and 

tungsten. Further, the contaminant particles were distributed over the powder bed in two 

ways, called dynamic contamination and static contamination. In the so-called static 

contamination, which occurred in levels labeled L1, L2, and L3 (in ascending order of 

contaminant volume), the contaminant particles were dispensed entirely in one area of the 
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layer and then raked across the bed. In the dynamic contamination mode, which occurred 

in layers labeled L4, L5 and L6, the contaminant particles were dispensed continuously as 

the recoater moved across the bed.  

When the rotary dispenser shaft in Figure 3-3(c) was started it opened the hopper and 

the contaminant material was dispensed through a small notch from the hopper side to an 

open column. The contaminant particles were then deposited on the powder bed via a 

nozzle. There was a 0.5-mm gap between the nozzle that deposited the contaminants and 

the powder bed surface. The degree of contamination for every layer was controlled by 

varying the number of rotations of the dispenser shaft mechanism below the hopper. A 

relationship between the number of shaft rotations and the volume of material deposited 

was described in a patent application granted to EWI [64]. 

In the static contamination mode, the recoater was stopped while it was raking the 

Inconel 625 powder and the shaft was rotated. This dropped the contaminant onto one spot 

on the powder bed. The recoater then began to move and spread the contaminants on the 

powder bed. In the dynamic contamination mode, the contaminant powder was dispensed 

synchronous with the recoater movement. That is, the hopper motor in the fixture shown 

in Figure 3-1(c) was continually operational as the recoater raked the Inconel 625 powder 

across the bed. 

This sort of deposition of the contaminant resulted in an elongated line or streak across 

the powder bed, and was labeled L4, L5 and L6 in ascending order of severity (Figure 3-4). 

The consequence of the different types of contamination modes (i.e., static and dynamic 

mode) was captured using an in-process optical camera in Figure 3-4 (a1) and (a2); the 
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severity of the contamination levels and their sequence within each replicate of experiment 

are further detailed in Figure 3-4 (b1) and (b2), and Table 3-1. 

The quantifier used for assessing severity of contamination (Figure 3-4) was the 

volume contamination per unit area of the base material (Inconel 625), i.e., mm3/mm2. This 

measure accounted for the distribution profile of contaminant powder in each 

contamination level. As a result, length, width, and compactness of contaminant powder 

were considered in the design of the six levels of contamination (L1, L2 and L3 for static 

contamination; and L4, L5 and L6 for dynamic contamination).  

There was the possibility of the contaminant powder accidentally leaking from the 

hopper if there were gaps in the mechanism assembly. If leakage were to occur it would 

lead to erroneous traceability – i.e., the in-process photodetector sensor signatures would 

(correctly) show a spike, while the layer would be (incorrectly) recorded by the operator 

as not being contaminated. To ensure that powder leakage did not occur during the 

experimental tests, the whole test bed including dispenser, build plate, and collector was 

sealed, and the hopper system was tested for 100 times. During these test runs, no leakage 

of powder was detected from the powder container on the build platform and collector. 
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Figure 3-2: The schema used for introducing contamination during the build.  

The gray layers show the ones where data is captured. The red layers indicate where the 

contamination is introduced. 

Table 3-1. The build layout and contamination pattern. 

The contamination set of L1 through L6 was deposited three times, and at the end of 3 iterations 

was followed by 20 cover layers. 

Contamination 

Set # 

Base Line (BL) / Contamination 

Layer (Ln, n=1 to 6) 

Start 

Layer 

End 

Layer 

End Height 

(mm) 

Iteration 1  

Base line (non-contaminated layer) 1 19 0.76 

(Static contamination) L1 -1 20 20 0.80 

Base line (non-contaminated layer) 21 39 1.56 

(Static contamination) L2 -1 40 40 1.60 

Base line (non-contaminated layer) 41 59 2.36 

(Static contamination) L3 -1 60 60 2.40 

Base line (non-contaminated layer) 61 79 3.16 

(Dynamic contamination) L4-1 80 80 3.20 

Base line (non-contaminated layer) 81 99 3.96 

(Dynamic contamination) L5-1 100 100 4.00 

Base line (non-contaminated layer) 101 119 4.76 

(Dynamic contamination) L6-1 120 120 4.80 

× 2 iterations 
of the build 

pattern 

BL- L1-2 through L6 -2 

BL- L1-3 through L6 -3 
121 360 14.44 

Cover Layers Base line (non-contaminated layer) 361 380 15.20 
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Figure 3-4: Post recoating optical images after tungsten contamination under different conditions. 
 (a1) Tungsten contamination and (a2) Aluminum contaimination. The unit volumes of deposited 

powders for each of six contamination levels in (b1) tungsten and (b2) aluminum. 
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3.3.2 Sensor Integration and In-Process Data Acquisition 

Photodetector signal data were acquired for a total of 10 layers as follows: (1) two 

layers prior to contamination, (2) the contaminated layer, and (3) seven layers subsequent 

to the contamination. The photodetector sensor was used in this study to detect occurrence 

of contamination. Especially, a Thorlabs model PDA36A photodetector was used and was 

located coaxial and synchronized with the switching of the laser (i.e., data was acquired 

only when the laser was active).  

The analog photodetector signal was acquired via the National Instruments NI 9215 

analog input module. The detection range of the photodetector was the 350 nm to 1100 nm 

range with the gain of 40 dB, and the sampling rate was set at 10 kHz.  The photodetector 

module was a Silicon junction photodiode (also called a photoelectric pyrometer or 

photodiode) coupled with an amplifier, which proportionally translates radiated light 

intensity into an electrical signal. The transducing mechanism at play with this type of 

photodiode was the generation of a photocurrent upon light absorption in the depleted 

region of the semi-conduction detecting element (silicon). The optical delivery to the 

photodetector aperture was integrated coaxially into the optical path of the laser, such that 

the light being interrogated stemmed from the laser plume during the melting process. In 

other words, the photodetector measured the radiation intensity of the laser plume (which 

in turn was proportional to the temperature of the melt pool) in terms of an amplified 

electrical signal with output in volts. 

The sensor operated in a fast, highly linear manner, producing a current output 

proportional to the light intensity absorbed by the sensor. The data was acquired hatch-by-
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hatch; the laser traced the hatch pattern’s alternating manner as shown in Figure 3-5  ‒  

parallel (to the recoater direction) for odd layers, and perpendicular for even layers. The 

hatch pattern information is used in Sec. 3.5.2 to relate the sensor signatures to the position 

at which the contamination occurred in XCT. In all, data was available for 180 of the total 

380 layers of the build. Each layer was comprised of 100 hatches, and each hatch took ~ 

0.01 sec. (10 milliseconds) to melt noting that the laser scan velocity was 960 mm/sec. 

Hence there were 100 photodetector data points acquired per hatch given that the sensor 

sampling rate was 10 kHz. In this build the laser stayed on for ~ 1 sec. per layer, for a total 

of under 7 minutes counting the time to melt the contour.   

 
Figure 3-5: The horizontal and vertical hatch patterns implemented during the printing process. 

The symbols O and X demarcate the starting and ending points for a hatch. There are 100 hatches 

per layer, each hatch takes close to 10 milliseconds to melt (laser velocity 960 mm/sec), the entire 

layer takes ~ 1 sec. to fuse.  
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3.4 Proposed Methodology 

The aim of this section is to detect the onset of material cross-contamination in the 

LPBF process using in-process data. To realize this aim, the key idea is to transform the 

raw data into a domain that makes it tractable to extract signatures in real time. In this 

work, the signal transformation procedure adopted was from the area of spectral graph 

theory and has been discussed in depth in our previous research [25, 132].  

3.4.1 Overview of the Approach 

A similar form to the approach proposed in this work has been used previously by the 

authors in the context of surface finish characterization in the chemical-mechanical 

planarization (CMP) semiconductor manufacturing process, monitoring chatter in 

ultraprecision diamond turning, and recently for assessment of post-process geometric 

integrity in polymer additive manufacturing. The main difference of this work from those 

previous forays lies in the application of spectral graph eigenvectors for real-time 

classification of material cross-contamination in PBF. The previous works were mainly 

restricted for offline characterization and used spectral graph eigenvalues which were not 

amenable for real-time adaptive monitoring of a fast-changing processes such as PBF. The 

underlying mathematics described herewith bears close resemblance to our previous works 

in spectral graph theory but is nonetheless repeated here for the sake of cohesiveness and 

continuity [25, 132].    

The procedure is summarized in Figure 3-6 and encapsulates four key steps. Steps 1 

through 3 can be considered as the training phase, wherein a library of sensor signatures 

representing non-contaminated states was created. The last step, Step 4, classified a hatch 

photodetector signal for each hatch into one of the two states, namely, contaminated vs. 
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non-contaminated in real time within a control chart framework. The underlying concept 

for each step is summarized herewith. The mathematical convention is to denote matrices 

and vectors with bold typesets. 

The approach has the following four steps, each of these steps is described in detail in 

Sec. 3.4.2. 

Step 1: The photodetector signal 𝒙𝑙
𝑝
 representing each hatch 𝑝 ∈  {1 …ℎ} at layer 𝑙 ∈

 {1…𝐿} of the melting process is converted into a weighted and undirected network graph 

𝐺 ≡ (𝑉, 𝐸,𝑊). Where 𝑉, 𝐸 and W are the graph vertices, edges, and weight between the 

edges, respectively. 

Step 2: The topological information in the graph 𝐺 ≡ (𝑉, 𝐸,𝑊) is extracted in terms of the 

eigenvectors (𝒗𝒙1
𝑝) and eigenvalues (λ𝒙1

𝑝) of the Laplacian matrix (𝓛𝒙1
𝑝). In other words, a 

spectral graph transform 𝐺(⋅) on the signal 𝒙1
𝑝

 is defined, i.e., 𝐺(𝒙1
𝑝) → 𝓛𝒙1

𝑝(λ𝒙1
𝑝 , 𝒗𝒙1

𝑝). 

Step 3: A learning procedure is used to obtain a universal eigenvector basis 

𝓥𝑛𝑜𝑟𝑚𝑎𝑙  corresponding to the normal or non-contaminated process state. Through this 

universal basis a spectral graph Fourier transform 𝐺̂(𝒙𝑙
𝑝) = [(𝒙𝑙

𝑝)
𝑇
(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  )] is defined 

for non-contaminated layers. Such a graph-based Fourier transform facilitates creating a 

library of spectral graph coefficients 𝑪 archetypical of the non-contaminated process state.  

 

 



93 

 

 
  

F
ig

u
re

 3
-6

: 
G

ra
p
h
ic

al
 o

v
er

v
ie

w
 o

f 
th

e 
p
ro

p
o
se

d
 s

p
ec

tr
al

 g
ra

p
h

-t
h
eo

re
ti

c 
ap

p
ro

ac
h

. 



94 

 

Step 4: The coefficients 𝑪, representative of the normal or non-contaminated process state, 

are used to build a multivariate statistical control chart, called the Hotelling T2  control 

chart. Given a new signal 𝒚, an inner product with the basis vector 𝓥𝑛𝑜𝑟𝑚𝑎𝑙  , 𝐺̂(𝒚) =

[(𝒚)𝑇(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  )] leads to a set of new spectral graph Fourier coefficients 𝐺̂(𝒚) that are 

easily traced on the control chart. If 𝐺̂(𝒚) falls outside the control limits established based 

on the data from the non-contaminated layers, then it is deemed as belonging to an out-of-

control state, i.e., the data indicates that the layer is contaminated with trace materials.  

3.4.2 Applying Spectral Graph Theory to the LPBF Photodetector data 

Step 1: Converting the photodetector signal hatch-by-hatch into a network graph. 

In this step, the aim is to represent each hatch related to the photodetector sensor data 𝒙 as 

a weighted, undirected network 𝐺(𝑉, 𝐸,𝑊). This graph 𝐺(𝑉, 𝐸,𝑊) is a lower dimensional 

representation of the signal 𝒙.  Consider an m-data point long 1-dimensional signal 𝒙 for a 

layer 𝑙 ∈  {1…𝐿} per the matrix shown in Eq. (2-1).  

• 𝒙𝑙 = [𝑥1 … 𝑥𝑖 ⋯ 𝑥𝑚]
T, 𝑙 ∈  {1…𝐿 = 180}.  

(3-1) 

In this work L = 180 (data from ten layers for each of the six levels of contamination 

replicated thrice, 10 × 6 × 3). Each layer was comprised of h hatches; in this work h = 100, 

m = 10,000. Thus, the signal 𝒙𝑙 was further divisible into the corresponding h hatches; each 

hatch had k data points, with k = 100. This information was obtained by tracking the on-

off switching time of the laser in each layer (i.e., the time between when the laser went on 

and off related to one hatch).  Let each hatch in a layer be defined as a matrix 𝒙𝑙
𝑝
 so that it 

can be written in matrix form as, 
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𝒙𝑙
𝑝
= [𝑥𝑙

1 … 𝑥𝑙
𝑞

⋯ 𝑥𝑙
𝑟 ⋯ 𝑥𝑙

𝑘]
T
 ,  

𝑘 ∈ {1…𝑘 = 100}, 𝑝 ∈  {1…ℎ = 100}, 𝑙 ∈  {1…𝐿 = 180}. 

(3-2) 

To transform a signal of each hatch into a network graph, the following procedure was 

followed. First, the pairwise comparisons 𝓌𝑞𝑟 were computed using a kernel function Ω 

[62] per Eq. (2-3), where 𝑥𝑙
𝑞,𝑝

 and 𝑥𝑙
𝑟,𝑝

 are two points of the photodetector signal for a 

specific hatch 𝒙𝑙
𝑝
 

𝓌𝑞𝑟
𝑙,𝑝
= Ω(𝑥𝑙

𝑞,𝑝
, 𝑥𝑙

𝑟,𝑝) ∀ 𝑞, 𝑟 ∈ (1⋯𝑘). (3-3) 

While different types of kernel functions Ω, such as the radial basis or Mahalanobis 

can be defined to obtain the graph 𝐺, for simplicity, the standardized Euclidean kernel 

shown in Eq. (2-5) is used, where V is the variance of the one-dimensional signal 𝒙𝑙
𝑝

.  

𝓌𝑞𝑟
𝑙,𝑝
= (𝑥𝑙

𝑞,𝑝
− 𝑥𝑙

𝑟,𝑝)V−1(𝑥𝑙
𝑞,𝑝
− 𝑥𝑙

𝑟,𝑝). (3-4) 

The symmetric similarity matrix 𝑺𝑘×𝑘 = [𝓌𝑞𝑟
𝑙,𝑝] represents a weighted and undirected 

network graph 𝐺; each row and column of  𝑺 is the vertex 𝑉 (or node) of the graph, the 

relationship between the two vertices is captured in terms of its connection status 𝐸 and 

weight 𝑊. The graph is then represented as 𝐺 ≡ (𝑉, 𝐸,𝑊) [133]. To be more specific, the 

following notational additions to the similarity matrix 𝑺 and graph 𝐺: 𝑺𝒙𝑙
𝑝 ; 𝐺𝒙𝑙

𝑝 are made, 

where 𝒙𝑙
𝑝

 relates to a specific hatch 𝑝 for the signal related to the layer l. 

Notes for practical application:  In practice, it is found that the number of data points k in 

each hatch h may not be exactly 100 but may vary about 10%. As explained earlier, 
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immediately following Eq. (2-1), a hatch is readily demarcated in the data based on the 

laser activation time - when the laser goes off, the photodetector signal immediately 

degrades to zero as illustrated in Figure 3-11, Sec. 3.5.2. This method of demarcating a 

hatch was readily applicable in this work given the simple cuboid geometry of the test part 

(10 mm × 10 mm × 15.2 mm) – the hatch length, as shown in Figure 3-5, was constant 

across a layer. Such a regular and constant hatch length rarely occurs in practice.  

Nevertheless, the approach can be readily modified even if a layer does not have a 

uniform hatch length. In the case of a complex geometry, a way to form the matrix 𝒙𝑙
𝑝
 is 

by tracking the data over a fixed timeframe instead of a complete hatch. Moreover, the part 

geometry does not intrinsically affect the approach because a pairwise comparison between 

data points is taken in Eq. (2-5) to track the change in the process. 

Step 2: Extracting topological information for the graph surface 

This phase aims to extract topological information from the graph 𝐺. Once the data 𝒙𝑙
𝑝
  

in a particular hatch was represented as a graph 𝐺𝒙𝑙
𝑝, the Laplacian eigenvectors 𝒗𝒙𝑙

𝑝  Were 

computed. This topological information was subsequently used to capture the process drifts 

from the nominal condition.  From 𝑺𝒙𝑙
𝑝 ,  the degree 𝑑𝑞

𝑙,𝑝
 of a node 𝑞, 𝑞 = {1…𝑘} was 

computed, which is a count of the number of edges that are incident upon the node. The 

node degree is the sum of each row in the similarity matrix 𝑺. Subsequently, the diagonal 

degree matrix 𝓓𝑘×𝑘was structured from 𝑑𝑞
𝑙,𝑝

  as follows, 

𝑑𝑞
𝑙,𝑝
=∑𝓌𝑞𝑟

𝑙,𝑝

𝑘

𝑟=1

 ∀ 𝑞 = {1…𝑘}, (3-5) 
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𝓓𝑘 × 𝑘 ≝ [
𝑑1
𝑙,𝑝

⋯0⋯ 0
⋮ ⋱ ⋮

0 ⋯0⋯ 𝑑𝑘
𝑙,𝑝
]. 

(3-6) 

This led to the normalized Laplacian 𝓛 of the graph 𝐺, for each hatch, which is defined 

as, 

𝓛 ≝ 𝓓 −
1
2 × (𝓓 − 𝑺) × 𝓓 −

1
2, 

where, 𝓓 −
1

2 =  

[
 
 
 
 
 
 
1

√𝑑1
𝑙,𝑝⁄

⋯0⋯ 0

⋮ ⋱ ⋮

0 ⋯0⋯ 1

√𝑑𝑘
𝑙,𝑝⁄
]
 
 
 
 
 
 

. 
(3-7) 

Thereafter, the eigenspectrum of 𝓛 was computed as, 

𝓛𝒗 = λ𝒗. (3-8) 

At the end of step 2, a spectral graph transform on a signal 𝒙𝑙
𝑝
 is defined,  

𝐺(𝒙𝑙
𝑝) → 𝓛𝒙𝑙

𝑝(λ𝒙𝑙
𝑝 , 𝒗𝒙𝑙

𝑝). (3-9) 

In other words, the signal 𝒙𝑙
𝑝
 have been transformed for a specific hatch in terms of the 

eigenvectors (𝒗) and eigenvalues (λ𝒙𝑙
𝑝) of its Laplacian matrix (𝓛𝒙𝑙

𝑝).  

Step 3: Building the signal basis and spectral transformation 

This step aims to obtain the eigenvectors of 𝓛𝒙1
𝑝  across all non-contaminated hatches and 

converge them towards a universal eigenvector basis. In other words, It is required to 

represent the signal during the non-contaminated state in terms of a single or universal 

eigenvector represented as 𝓥𝑛𝑜𝑟𝑚𝑎𝑙  .  
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Step 3.1: A single universal basis 𝓥𝑛𝑜𝑟𝑚𝑎𝑙  was obtained by applying a simple update 

schema. As the eigenvectors 𝒗𝒙𝑙
𝑝 , for each hatch was calculated, the basis is updated as 

follows, 

𝓥
𝒙𝑙
𝑝+1 = 𝓥𝒙𝑙

𝑝 + ∆(𝒗
𝒙𝑙
𝑝+1 − 𝒗𝒙𝑙

𝑝) , 𝑝 ∈  {1…ℎ}, 𝑙 ∈  {1…𝐿},  

𝓥𝑛𝑜𝑟𝑚𝑎𝑙  = 𝓥𝒙𝐿ℎ
 

(3-10) 

initialized with 𝓥𝒙11 = 𝒗𝒙11 with ∆ set as a small value (in our case 0.001). To make the 

process computationally simpler only a small set of the first 10 non-zero eigenvectors of 

the Laplacian 𝓛𝒙1
𝑝  were updated. 

Step 3.2: the spectral graph transform is defined, which is analogous to the discrete Fourier 

transform. A spectral graph Fourier transform 𝐺̂(⋅) on a signal hatch 𝒙𝑙
𝑝
 can be defined as 

follows [105-107, 134, 135], 

𝐺̂(𝒙𝑙
𝑝) = [(𝒙𝑙

𝑝)
𝑇
(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  )] , 𝑙 =  {1…𝐿}, 𝑝 ∈  {1 …ℎ} (3-11) 

Applying this inner product through all the non-contaminated layers and hatches by 

taking the product (𝒙𝑙
𝑝)
T
∙ 𝓥𝑛𝑜𝑟𝑚𝑎𝑙 , led to the graph coefficient matrix 𝑪. 

𝑪 = [[(𝒙1
1)𝑇(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  ) = 𝒄1,1 ]; ⋯ ; [(𝒙L

𝑝

 
)
T
(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  ) = 𝒄𝐿,𝑝 ]]  

𝑙 =  {1 …𝐿}, 𝑝 ∈  {1…ℎ} 

(3-12) 

Essentially, each term 𝒄𝑙,𝑝  is a matrix that is 1 × 𝓃 long, where 𝓃 (= 10) is the number 

of eigenvectors in the universal basis 𝓥𝑛𝑜𝑟𝑚𝑎𝑙  selected for analysis. Each 𝒄𝑙,𝑝 can be 
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visualized as a set of output variables which need to be tracked across the process – they 

are termed as spectral graph Fourier transform coefficients.  

Step 4: Change point detection using spectral graph Hotelling T2 control chart 

This step aims to detect material cross-contamination by tracking the spectral graph 

transform coefficients 𝒄𝑙,𝑝. To realize this aim, a multivariate statistical control chart called 

the Hotelling T2 is used [118]. The control limit of the chart was constructed based on the 

so-called in-control state which in the context of this work was defined as the non-

contaminated signal. For the Hotelling T2 control chart only the upper control limit (UCL) 

needs to be estimated as the lower control limit (LCL) is zero. The application of the control 

chart proceeded in two phases. In the first phase (Phase 1), called the training phase, the 

upper control limit of the chart was constructed based on the spectral graph Fourier 

coefficients from the non-contaminated state; and in the second phase (Phase 2), called the 

monitoring phase, the coefficients for incoming signals for each new hatch was tracked on 

the chart, and their status (i.e., whether they belong to contaminated or non-contaminated 

state) was determined. 

Step 4.1: Phase 1 – Training the control chart 

In this phase the control limits of the chart are ascertained. Data points below the UCL 

were said to be in-control, which in the context of this work refers to a non-contaminated 

state. The data points falling above the UCL were termed out-of-control. In this research, 

an out-of-control point was interpreted as the onset of cross-contamination.  

For setting the control limits, the photodetector signals from the two layers before the 

contamination was introduced, and only those from the first iteration of the build are used. 
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Such an exceedingly conservative strategy towards determining the control limits largely 

precluded the possibility of introducing signals which might be vitiated, noting that 

metallurgical analysis revealed that contamination tends to cascade over several 

subsequent layers (Figure 3-9). Accordingly, only 24 of the total 60 layers for which data 

was available in iteration 1 were used in the training phase, amounting to 2400 hatches. 

This translated to roughly 15% of the available data for 180 layers used for analysis.   

The test statistic, or the point plotted on the control chart was called the T2 value and 

was delineated in Eq. (3-13) where 𝑪̅ is the mean vector of the spectral graph-theoretic 

coefficients, 𝜮−1 is the inverse of the covariance matrix of 𝑪, and T is the transpose 

operator. 

𝑇𝑙,𝑝
2 = (𝒄𝑙,𝑝 − 𝑪̅ )

 T
𝜮−1 (𝒄𝑙,𝑝 − 𝑪̅ )  (3-13) 

The upper control limit (UCL) of the chart was calculated using Eq. (3-14) where 

𝛽 𝛼,𝓃/2,(ℎ𝐿−𝓃−1)/2 is the upper α tail of a Beta distribution with parameters 𝓃 (the number 

of eigenvectors = 10), and ℎ = 100 and 𝐿 = 24 are the number of hatches and number of 

layers, respectively. In this work, α set at 0.0013 for the Beta distribution, as the LCL of a 

Hotelling T2
 was set at zero with these parameter values. The Type I error rate was found 

to be within 10% irrespective of the type of contamination.  

UCL =
(ℎ𝐿 − 1)2

ℎ𝐿
𝛽 𝛼,𝓃/2,(ℎ𝐿−𝓃−1)/2 (3-14) 

Thereafter, the T2 values from Eq. (3-13) were plotted on the control chart, and the 

UCL was revised by removing any data points that fell erroneously above it. The re-
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estimation of the control limit by removing erroneous out-of-control data was only done 

once and was called the delete and revise procedure. 

Step 4.2: Phase 2 – Using the control chart for monitoring the process 

Once the UCL of a chart is determined, the new sensor signatures are plotted upon the 

chart as follows.  Suppose a photodetector signal 𝒚 is obtained for a hatch, its graph Fourier 

coefficients 𝐺̂(𝒚) is estimated as,  

𝐺̂(𝒚) = [(𝒚)T(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  )] (3-15) 

The Hotelling T2
 statistic, labeled 𝑇𝑦

2 for this new sensor signature, is calculated as follows, 

𝑇𝑦
2 = (𝐺̂(𝒚) − 𝑪̅ )

T
𝑺−1 (𝐺̂(𝒚) − 𝑪̅ )  (3-16) 

The 𝑇𝑦
2 value is plotted on the control chart, and if it falls above the UCL, it is concluded 

that contamination has occurred.  

We now briefly describe the statistical error measurements that underscore the 

effectiveness of detecting contamination in the context of a control chart. Control charts 

are culpable of two types of statistical errors, namely, Type I (α or false alarm) and Type 

II (β or failing to detect). The Type I error rate is the percentage of data points (each data 

point on the control chart used in this work represented a hatch) that are falsely categorized 

as falling above the upper control limit when the process is in-control. In other words, a 

Type I error was a hatch that was falsely deemed to indicate contamination, i.e., there was 

no actual contamination, but the control chart erroneously indicated that contamination had 

occurred in that hatch.  
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The Type II (β) error rate is the percentage of data points that fall inside the UCL when 

they should in reality lie outside, i.e., contamination has occurred, but the control chart fails 

to indicate it because the data point falls inside the control limits. However, because it was 

not possible to pinpoint exactly which hatch was contaminated, but it was known 

beforehand which layer was contaminated, accordingly, in this work the Type II error in 

terms of layers is estimated. The Type I and Type II error rates were estimated as follows: 

Type I error rate =  𝛼

=
Number of hatches falsely indicated as belonging to contaminated layers

Number of hatches expected in non − contamined layers
 

Type II error rate =  𝛽 =
Number of layers incorrectly indicated as in control

Number of contamined layers
 

 There were two experimentally derived instances to verify these statistical detection 

errors:  

1) Information from the experimental design, in that, the exact layers at which the 

contaminants were dispensed over the base powder is known.  

2) The XCT scans of the part from which the presence of contamination on a layer  could 

be verified, noting that the contamination was liable to spread from the layer in which 

it was introduced.to previous and subsequent layers. 
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3.5 Results and Discussion 

3.5.1 Offline X-Ray Computed Tomography Analysis of the Build 

The aim of this section is to understand the effect of contamination on the structure of 

the build. Using XCT scans additionally allows verification of the online analysis. To 

realize this aim, the specimen was examined using XCT along the various cutting planes 

demarcated in Figure 3-7. The XCT scanning was made at 225 kV with a resulting voxel 

resolution of 16 μm and pixel pitch of 200 μm on a Perkin Elmer detector.  The vertical 

and horizontal cross sections of the 3D volume captured for the tungsten contaminated 

specimen is shown in Figure 3-8, wherefrom the contaminant powder is clearly discerned.  

 
Figure 3-7. Three-dimensional reconstruction of the XCT scan image for the specimen 

contaminated with tungsten powder particles.  

Figure 3-8(a) shows the XCT across the vertical cross-section (Y-Z plane, cutting 

plane A-A as depicted in Figure 3-7) of the test artifact. Observed in Figure 3-8(a) are the 

contaminated layers over three replicates. Closer examination of these vertical cross-

sections revealed that for high tungsten contamination levels, such as L3, the tungsten 

particles dispersed up to three layers preceding the layer in which they were introduced, 

and as much as eight subsequent layers. In other words, contamination tended to cascade 

across layers, and influenced the structure of both the preceding and subsequent deposition.   
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This assertion was further corroborated through metallurgical analysis in Figure 

3-9.Similarly, Figure 3-8(b) shows the effect of contamination as viewed along the X-Z 

direction (cutting plane B-B); Figure 3-8(c) is the cross-section taken along the X-Y 

direction (cutting plane C-C). It is noted that in Figure 3-8(a) and (b), due to procedural 

lapses during XCT scanning, the second level of tungsten contamination for the first 

iteration (L2-1) was not captured. This missing data is demarcated by a star in Figure 3-8(a) 

and (b). In the context of aluminum contamination, Figure 3-10 shows the vertical cross 

sections of the specimen; aluminum trace particles were not detected with XCT. To 

reiterate, aluminum contaminant particles were not discernable in the XCT images, 

because, (a) aluminum is an alloying element in Inconel 625, and (b) the melting point of 

aluminum (~ 660 °C) is much lower than the melting point of Inconel 625 (~ 1300 °C). 

Consequently, aluminum readily dissolves into the surrounding Inconel 625 matrix, and is 

therefore undetected in the XCT. Additionally, aluminum may have also vaporized due to 

the high energy density (~ 70 J/mm3) applied in the process to melt Inconel 625.  

The specimen with embedded tungsten contaminant was sectioned and primary etched with 

an alcohol-based Kalling’s solution. The specimens were secondary etched using a 10% 

weight chromic acid solution at 2.4 volts. In the optical micrograph of the etched sample 

shown in Figure 3-9(a) the presence of tungsten contaminants in the Inconel 625 matrix is 

evident. More remarkably, tungsten particle traces were observed not just in the layer in 

which they were introduced, but also over multiple layers – both preceding and subsequent 

layers. The spread of contaminants to layers beyond which they were introduced was 

hypothesized as the effect of the repeated remelting of the material. However, modeling of 

the melt pool dynamics is required for confirming this effect. Recent computational 
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modeling work at Lawrence Livermore National Laboratories by King et al. towards 

simulating the melt pool dynamics showed that material reflow and remelting influence the 

structure of the previous layers, and may even be used beneficially to control and mitigate 

defects, such as porosity[136]. Further investigation in this direction to elucidate how and 

why material contamination cascades across layers is beyond the scope of this work.  

The cascading effect of contamination was further verified in the XCT observations in 

Figure 3-9(b). The XCT cross-section in Figure 3-9(b) was taken in the X-Y plane, the 

label n refers to the layer in which contamination was introduced, n-1 is the immediate 

preceding layer, n-2 is two layers prior, and so on. Similarly, a plus sign is used to indicate 

layers subsequent to layer n. The ensuing section, Sec. 3.5.2  applies a spectral graph-

theoretic approach to capture these instances of contamination during the build using data 

from the photodetector. 

 
Figure 3-8. The cross sectional XCT views of the Inconel 625 specimen contaminated by the 

tungsten particles. 
(a) vertical cross section normal to the recoating direction (A-A, Y-Z direction, b) vertical cross 

section along the recoating direction (B-B, X-Z direction) c) horizontal cross section (C-C, X-Y 

direction). Due to procedural lapses in the XCT process the second contamination level in the first 

iteration (L2-1) was missed.  
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Figure 3-9: The microstructure of the inconel 625 specimen contaminated with tungsten particles.  

(a) optical micrograph (b) XCT images in the horizontal plane section (cutting plane C-C, X-Y 

direction) for the L3 severity level show that trace tungsten particles persist over eight subsequent 

layers and penetrate through three preceding layers. 
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Figure 3-10: The cross-sectional views of the Inconel 625 specimen contaminated by the Aluminum 
powder particles. 

(a) vertical cross section normal to the recoating direction (cutting plane A-A, Y-Z direction), (b) 

vertical cross section along the recoating direction (cutting plane B-B, X-Z direction). The 

contaminant particles are not evident within the aluminum matrix. 

3.5.2 Online Spectral Graph-Theoretic Analysis of the Signal 

The photodetector signal related to the six levels of tungsten and aluminum 

contamination for one iteration are shown in Figure 3-11(a) and (b), respectively. The layers 

contaminated with tungsten portrayed significant peaks. However, such a clear change was 

not apparent in the photodetector signal for the aluminum contamination case. Herewith, a 

physical explanation of the signal characteristics is provided. 

Because the photodetector signal essentially captures the optical intensity of the plume 

during the melting process, it was reasoned that it is intimately related to the laser-material 

interaction. This effect has been observed by the AM research group at Penn State Applied 

Research Laboratory in both LPBF and DED processes [126, 127]. In these pioneering 

works, researchers showed that the photodetector signal is connected to the intrinsic 

microstructure of the part. In a similar vein, in this work, when the laser passed over the 

powder bed area having contaminant particles, the optical intensity of the vapor plume 
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changed, which was captured by the photodetector, and hence it is related to the elemental 

material aspects. The justification for this reasoning is as follows.  

A crucial difference between this work, and the research reported by the Penn State 

group is that the latter used two photodiodes that captured two different wavelength 

intensities, one at 520 nm (called line emission spectrum) and 530 nm (called continuum 

spectrum) [126, 127]. The ratio of the two spectra (line to continuum ratio) has been shown 

in three successive works by this group to be strongly correlated to pore severity in both 

LPBF and DED, and hence can be deemed to capture the microstructure-level aspects.  

In our present work, an unfiltered signal from a single photodiode was used. On 

juxtaposing the photodiode signal resulting from contamination from tungsten (Figure 

3-11[a]) and aluminum (Figure 3-11[b]), it was evident that, when tungsten contamination 

occurred, the amplitude of the signal (Volts) increased sharply from 1V to over 3V. 

Whereas, for the case of aluminum contamination, barely any increase was evident. This 

observation that the photodiode voltage was dependent on the contaminant material, led to 

the inference that the photodiode signal in this work is inclined to be element-specific.  

In this section, the proposed spectral graph-theoretic algorithm is applied to the LPBF 

process with the aim of detecting the onset of aluminum and tungsten cross-contamination 

from the photodetector signals.  First, the photodetector signal for the non-contaminated 

state was apportioned hatch-by-hatch for each layer. This was possible because the laser 

position was tracked and recorded throughout the build. The photodetector signal for each 

hatch p for layer l is denoted as 𝒙𝑙
𝑝
 in Eq. (2-2).  
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Figure 3-11: The photodetector signal associated with the six levels of contamination. 

(a-top row) Tungsten contamination and (b-top row) Aluminum contamination in Inconel 625. 

(bottom row) The second contamination level (L2) is magnified and the signal corresponding to 

tungsten contamination has clear spikes compared to aluminum. 

We noted that there was no clear correlation evident in the amplitude of the signal and 

the severity of the signal – the statistical features of the signal could not discriminate 

between different types and levels of severity. Next, using Eq. (2-3) and (2-5), the pairwise 

comparison between different rows of photodetector hatches was performed to provide the 

similarity matrix 𝑺 related to graph 𝐺 ≡ (𝑉, 𝐸,𝑊). Going through the second step, the 

Laplacian matrix of graph 𝓛 was constructed using Eq. (2-9). Then the first 10 (= 𝓃) non-

zero Laplacian eigenvectors 𝒗𝑖 , 𝑖 = {2…11} were used to build a spectral universal basis 

𝓥𝑛𝑜𝑟𝑚𝑎𝑙  necessary for spectral transformation (Eq. (2-14)). Subsequently, the spectral 
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graph Fourier coefficients (𝑪) were obtained by taking the inner product (𝒙𝑙
𝑝)
𝑇
(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  ) 

per Eq. (3-12). 

Finally, the coefficients 𝑪 were traced on a Hotelling T2 control chart. Per the 

procedure for building the Phase 1 control chart described in Step 4.1, the UCL was first 

estimated by only considering the so-called in-control signal, viz., those layers not 

contaminated with tungsten or aluminum particles. As mentioned previously, this was 

restricted to 24 of the 60 layers for the first iteration of the build with approximately 100 

hatches per layer. The 𝑇2 statistics and UCL were calculated based on Eq. (3-13) and 

(3-14).  

The Phase 1 spectral graph-theoretic Hotelling T2 control chart along with the data for 

the six levels of tungsten and aluminum contamination for the first iteration are shown in 

Figure 3-12. There were a total of 6000 hatches (60 layers) for which the data was available 

in the first iteration. Each point of the control chart was representative of the spectral graph 

coefficients for one hatch. It was observed that the chart captured the occurrence of 

contamination almost instantaneously.   

The Type I error was ≈ 1% for both tungsten and aluminum contamination in building 

the Phase 1 control chart. This Type 1 error was obtained after revising the control limit by 

removing the outliers (the so-called delete and revise procedure applied only once). This 

manner of constructing the control limit was an extremely conservative strategy that 

prioritized the Type I error rate over the Type II error rate. In other words, the Type I error 

for the control chart was maintained close to 1%, while the Type II error was estimated 

based on the results. Furthermore, the control limits for a type of contaminant material 

(tungsten or aluminum) remained fixed. 



111 

 

 

F
ig

u
re

 3
-1

2
: 

T
h

e 
P

h
as

e 
1
 s

p
ec

tr
al

 H
o
te

ll
in

g
 T

2
 co

n
tr

o
l 

ch
ar

t 
re

la
te

d
 t

o
 s

ix
 l

ev
el

s 
o

f 
co

n
ta

m
in

at
io

n
. 

  

(a
) 

T
u
n
g
st

en
 a

n
d

 (
b

) 
A

lu
m

in
u
m

 c
o

n
ta

m
in

at
io

n
, 

w
h

er
ei

n
 t

h
e 

co
n

tr
o

l 
li

m
it

s 
ar

e 
fi

x
ed

. 



112 

 

Next, following the procedure in Step 4.2, the Hotelling T2 chart was used to detect 

contamination in the rest of the two experimental iterations of the build. The data was 

representative of 120 layers, with each layer having 100 hatches for a total of 12,000 

hatches. To plot the spectral control chart for the other replicates, the UCL stayed identical 

to Phase 1 in Figure 3-12. As new data 𝒚 arrived, it was multiplied with the universal basis 

𝓥𝑛𝑜𝑟𝑚𝑎𝑙  to extract the first ten spectral graph Fourier coefficients 𝐺̂(𝒚) as shown in  Eq. 

(3-15). Subsequently, 𝑇𝑦
2 was obtained in Eq. (3-16), and plotted on the control chart. This 

simple inner product made this approach suitable for online monitoring.  

Figure 3-13 shows the application of the Phase 2 control chart to each type of 

contamination (tungsten and aluminum) over iteration 2 and 3 (i.e., L1-2 through L6-2 and 

L1-3 through L6-3). Every level of tungsten contamination, both static and dynamic, was 

detected promptly by the control chart in Figure 3-13(a). Whereas, as evident in Figure 

3-13(a), in the case of aluminum contamination, the contamination level L5-3 (dynamic 

contamination type) was missed (an example of a Type II error). This underscores some of 

the challenges with contamination detection.  

Table 3-2 summarizes the Type I and Type II errors estimated from three replicates of 

the experiment in detecting powder contamination. It is noted that because it is intractable 

to pinpoint a priori the exact hatch where contamination has occurred, the Type II errors 

are reported in terms of all the hatches for the entire layer where contaminants were added. 

In contrast, it was known for certain whether a hatch belonged to a non-contaminated layer, 

hence the Type I error could be localized with respect to every hatch.  
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Table 3-2: The algorithm accuracy in comparison with traditional approaches. 

for detecting the Tungsten and Aluminum contamination. The numbers in the parenthesis are 

from three-fold experimental replications. 

 
Aluminum 

Contamination 
Tungsten Contamination 

Computation 

time  

per hatch (sec) Model 
Model 

Structure 

Type I 

error (% ) 

Type II 

error (% ) 

Type I 

error (% ) 

Type II 

error  

(% ) 

ARMA 

(2,2) 0.6 (0.1) 83.3 (0.0) 1.0 (0.1) 0.0 (0.0) 0.0912 

(2,4) 0.6 (0.1) 83.3 (0.0) 1.0 (0.1) 0.0 (0.0) 0.0971 

(2,6) 0.6 (0.1) 83.3 (0.0) 1.0 (0.0) 0.0 (0.0) 0.1021 

(4,2) 0.7 (0.1) 83.3 (0.0) 1.2 (0.1) 0.0 (0.0) 0.0968 

(4,4) 0.7 (0.1) 83.3 (0.0) 1.3 (0.2) 0.0 (0.0) 0.0976 

(4,6) 0.8 (0.2) 66.7 (16.7) 1.2 (0.0) 0.0 (0.0) 0.1302 

(6,2) 1.2 (0.1) 33.3 (17) 1.0 (0.1) 0.0 (0.0) 0.1588 

(6,4) 1.7 (0.1) 16.7 (9.2) 1.0 (0.1) 0.0 (0.0) 0.2829 

ARIMA 

(2,2) 0.6 (0.2) 83.3 (0.0) 0.8 (0.1) 0.0 (0.0) 0.1128 

(2,4) 0.5 (0.1) 83.3 (0.0) 0.9(0.1) 0.0 (0.0) 0.1216 

(2,6) 0.7 (0.2) 83.3 (0.0) 0.9 (0.0) 0.0 (0.0) 0.1225 

(4,2) 1.1 (0.1) 66.7 (16.7) 1.3 (0.0) 0.0 (0.0) 0.2164 

(4,4) 1.2 (0.0) 66.7 (16.7) 1.3 (0.10 0.0 (0.0) 0.2576 

(4,6) 1.1 (0.0) 66.7 (16.7) 1.2 (0.1) 0.0 (0.0) 0.1560 

(6,2) 1.5 (0.1) 11.1 (9.6) 1.6 (0.2) 0.0 (0.0) 0.2011 

(6,4) 1.6 (0.1) 11.1 (9.6) 1.6 (0.1) 0.0 (0.0) 2.4152 

AR 

(2) 1.0 (0.0) 22.2 (19.2) 1.0 (0.20 0.0 (0.0) 0.0210 

(4) 1.1 (0.1) 16.7 (9.2) 0.9 (0.3) 0.0 (0.0) 0.0089 

(6) 0.8 (0.2) 16.7 (9.6) 0.9 (0.1) 0.0 (0.0) 0.0080 

(8) 0.7 (0.10) 16.7 (9.6) 0.9 (0.1) 0.0 (0.0) 0.0085 

(10) 0.5 (0.1) 33.3 (17) 0.8 (0.2) 0.0 (0.0) 0.8641 

Statistical  

Control Chart 
1.5 (0.0) 11.1 (9.6) 1.3 (0.7) 0.0 (0.0) 0.0427 

Spectral Graph-

Theoretic  
0.5 (0.0) 5.0 (9.2) 1.1 (0.1) 0.0 (0.0) 0.0008 
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3.5.3 Verification with Statistical Time Series Analysis  

The results from the proposed approach were compared with traditional delay-

embedded Box-Jenkins stochastic time series models, such as autoregressive (AR), 

autoregressive moving average (ARMA), and autoregressive integrative moving average 

(ARIMA) models [137]. Starting with the simplest model with two autoregressive terms, 

the model search was stopped when the number of terms in the model reached 10. The 

stopping criteria was chosen so that the number of terms in the most complicated model 

did not exceed the number of eigenvectors (𝓃 =10) used in the spectral graph-theoretic 

approach.  

For instance, Eq. (3-17), (3-18), and (3-19) show the AR(10), ARMA(6,4), and 

ARIMA(6, 4), respectively [137]. Where 𝕃 is the lag operator, such that 𝕃𝑖(𝑥𝑡) = 𝑥𝑡−1, 𝑥𝑡 

is a photodetector data point (i.e., the amplitude of the photodetector signal at time t). The 

parameter 𝛼𝑖 is connected to the AR part of the time series model, 𝜃𝑖 are the parameters of 

the moving average (MA) part, and 𝜀𝑡 are model error terms. The terms 𝛼 and 𝜃 are 

optimized using the time series modeling toolbox in Matlab, such that the sum of squared 

errors, i.e.,  ∑ 𝜀𝑡
2

∀𝑡 , is minimized. 

AR(10) model: (1 − ∑ 𝛼𝑖
10
𝑖=1 𝕃𝑖)𝑥𝑡 = 𝜀𝑡 (3-17) 

ARMA(6,4) model: (1 − ∑ 𝛼𝑖
6
𝑖=1 𝕃i)𝑥𝑡 = (1 + ∑ 𝜃𝑖

4
𝑖=1 𝕃𝑖)𝜀𝑡 (3-18) 

ARIMA (6,4) model: (1 − ∑ 𝛼𝑖
6
𝑖=1 𝕃𝑖)(1 − L)𝑥𝑡 = (1 +

∑ 𝜃𝑖
4
𝑖=1 𝕃𝑖)𝜀𝑡 

(3-19) 

In Phase 1, the model coefficients 𝛼 and 𝜃 were trained to fit the data hatch-by-hatch 

(using Matlab), and then these model coefficients were tracked on a Hotelling T2 control 

chart. The procedure followed is identical to the one described previously for the spectral 
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graph-theoretic approach in Sec. 3.5.2. The only difference is that 𝛼 and 𝜃 were used to 

populate the library of coefficients 𝑪 per Eq. (3-12) instead of the spectral graph Fourier 

coefficients 𝐺̂(𝒙𝑙
𝑝). 

For each model, the Hotelling T2 control chart was constructed and the Type I and 

Type II errors were estimated using the same procedure used for the proposed spectral 

graph-theoretic approach. The Phase 2 results for the traditional stochastic time series 

methods are presented in Table 3-2, from which it is evident that the onset of material 

cross-contamination was promptly detected in the case of tungsten contamination; the Type 

II (β) error rate was  negligible for tungsten contamination and the Type I (α) error was less 

than 1% for a majority of cases. However, detection of aluminum contamination was rather 

intractable with these existing traditional Box-Jenkins time series approaches; the Type II 

error exceeded 10%.  

These results were further juxtaposed with a Hotelling T2
 control chart built with 

statistical features extracted from each hatch, such as mean, standard deviation, skewness, 

etc. The results depicted in Table 3-2 also provide the average computation time for 

extracting the T2 values for one hatch in the Phase 2 part of the control chart. It is noted 

that the computation time for the proposed graph-theoretic approach was less than a 

millisecond (~ 0.8 millisecond), which is a magnitude smaller in comparison to traditional 

approaches, and thus attests to the viability of the approach for real-time process 

monitoring in AM. 
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3.5.4 Consistency Between Spectral Graph Theory and XCT  

Continuing with the analysis, since the position data for each hatch of the 

photodetector signal was available, the spectral graph T2 coefficients could be correlated 

with the layer-by-layer contamination pattern obtained from the XCT scan. Such an attempt 

is made in Figure 3-14 for the tungsten contamination case.  In Figure 3-14(a), the Hotelling 

T2
 values for the spectral graph coefficients are color-coded, with red indicating out-of-

control or contaminated hatches. These color-coded T2 values are superimposed on the 

XCT of the specimen taken along the X-Z cross-section in Figure 3-14(b); the XCT is along 

the cutting plane B-B in Figure 3-7. From the overlaid plot in Figure 3-14(b) it is evident 

that there was a near one-to-one correlation between the sensor signatures and the layer at 

which contamination occurred.  

However, such an overlaid plot for the aluminum contamination case could not be 

produced, because the XCT of Inconel 625 specimens contaminated with the aluminum 

particles did not show visually prominent inclusions (Figure 3-10). To reiterate, the XCT 

of parts with aluminum was not informative, because, (a) aluminum particles may dissolve 

within the Inconel 625 matrix given their low melting temperature relative to Inconel 625 

(~ 660 °C vs. ~1300 °C), and (b) aluminum vaporizes due to the high energy density (70 

J/mm3) applied to process Inconel 625. This result corroborated that the spectral graph 

sensor signatures were indeed indicative of material cross-contamination and could be 

traced back to physical locations where contamination was present. This traceability of 

sensor signatures to XCT demonstrates the viability of the qualify-as-you-build paradigm 

in AM, in which in-process sensor data instead of cumbersome offline measurement and 

testing can be used to rapidly qualify the part quality. 
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Figure 3-14: (a) The color coded T2 values of the spectral graph Fourier coefficients. 

Red indicates out-of-control (contaminated) hatches, and black indicates in-control hatches. These 

T2 values are plotted along the X-Z plane of the part, since the position of each hatch is known. (b) 
The spectral graph T2 values are overlaid upon the XCT scan to demarcate the near one-to-one 

correspondence between the two.  

Furthermore, through this research, once the presence of contaminants was discovered 

at a layer, measures to forestall their spread further over future layers could be taken. Such 

a preventive strategy could be, for instance, rescanning an entire layer with higher energy 

density to ensure thorough fusion of contaminant particles like tungsten, or removing a 

layer using a hybrid additive-subtractive strategy. This in-process correction strategy is 

possible with hybrid LPBF systems, e.g., Matsuura Lumex Avance and Sodick OPM250L, 

which have an in-built subtractive machining attachment that can be used to remove a 

contamination-afflicted layer.  In the worst-case scenario, the build could be stopped to 

prevent poor part quality and waste of expensive powder. 
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3.6 Conclusions 

This work describes a spectral graph-theoretic approach to detect occurrence of 

material cross-contamination in the laser powder bed fusion (LPBF) additive 

manufacturing (AM) process based on in-process sensor data. The key idea is to convert a 

signal into its network graph equivalent, and subsequently, extract so-called spectral graph 

Fourier coefficients as surrogate signatures to track the process hatch-by-hatch. A 

photodetector signal was specifically used to demonstrate the efficacy of the approach of 

an LPBF of an Inconel 625 alloy part. During the build, two types of foreign material 

contaminants were introduced, namely, tungsten and aluminum, varying in the severity and 

the controlled manner in which they were introduced ‒ static deposition, and 

dynamic/continuous deposition over a layer.  

The key advantages of this approach over existing time-delay stochastic time series 

modeling techniques, such as ARMA is that: (a) it does not require fitting a model to the 

data; essentially it is model-free, and (b) it eschews decomposition or extraction of features 

from each incoming signal; a simple inner product with an eigenvector basis is required, 

thus saving on computational time. As a result, the approach detects instances of material 

contamination with high accuracy; the worst-case Type I error was found to be < ~1%, and 

the Type II error < 5%, which presents a magnitude improvement over traditional time 

series modeling. The ability to detect contamination was corroborated with offline 

metallurgical and XCT scanning.  
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Specific conclusions from this work are enumerated below. 

1. Metallurgical and XCT analysis of specimens revealed that contaminants are not 

confined to the layer in which they were introduced. Indeed, it was observed that 

contaminant particles not only entered previously deposited layers, but also tended to 

cascade to subsequent layers. The repeated re-melting of the material is hypothesized as 

the root cause of the behavior that leads to cascading of contamination to previous and 

subsequent layers. Physical modeling to explain the transportation of contaminant 

particles across layers is beyond the scope of this work. 

2. Tungsten contamination is readily discernable in both offline metallurgical and XCT 

images, and online photodetector signals. This is probably because tungsten has a higher 

melting point and is also not elemental to Inconel 625. In contrast, aluminum has a lower 

melting point than Inconel 625 and may be present as an alloy in minor quantities (< 

0.4%) in the same. There is also the possibility that aluminum may be vaporized during 

the build (which causes pinhole porosity). Therefore, contamination of Inconel 625 with 

aluminum was harder to discern in either the XCT or photodetector signals than the 

tungsten contamination case. 

3. The graph Fourier coefficients were extracted for each hatch of the material and traced 

in a Hotelling T2 control chart. The occurrence of both tungsten and aluminum 

contamination were detected with high fidelity using the spectral graph Fourier 

coefficients; the Type I and Type II errors were < ~1% and < 5%, respectively.  

4. The Hotelling T2 values obtained from the spectral graph-theoretic Fourier coefficients 

were overlaid on the XCT scans of the specimen. A near one-to-one correlation was 

demonstrated between the status of the Hotelling T2
 values ̶ whether they are in-control 

or out-of-control   ̶ and the layer at which contamination was observed in the XCT.  
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4 Detecting Lack-of-Fusion Porosity in LPBF 

4.1 Goal, Objectives, and Hypothesis 

The objective of this work is to first detect lack-of-fusion porosity that results from the 

incomplete melting of the powder material, and subsequently, to predict the level or 

severity of porosity using in-process optical emission spectroscopy signatures. To realize 

this objective, the line-to-continuum ratio of Chromium emission around 520 nm was 

monitored during LPBF of Inconel 718 (UNS N07718) powder feedstock [126, 127, 138]. 

Next, a graph-theoretic approach is developed and applied to analyze the acquired line-to-

continuum optical emission signatures. The graph-theoretic approach transforms the line-

to-continuum measurements into features called Laplacian eigenspectra. These graph-

theoretic features were subsequently used as derived process signatures to predict the level 

of porosity layer-by-layer through three types of machine learning models. The correlation 

between the predicted and actual level of porosity was verified via offline XCT of the parts. 

Accordingly, the underlying hypothesis is that the Laplacian eigenspectra extracted from 

the in-process spectral signatures are statistically distinctive discriminants of the level of 

porosity in LPBF parts.  

The rest of this study is organized as follows. A review of the literature, focused on 

optical spectroscopy monitoring in metal AM, is provided in Sec. 4.2. In Sec. 4.3 the 

research methodology encompassing the experimental procedure, sensing, and data 

acquisition is described. This is followed by discussion of the results and conclusions in 

Sec. 4.5, and Sec. 4.6, respectively. 
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4.2 Prior Work and Challenges at Optical Spectroscopy in LPBF 

Several comprehensive review articles have been recently published describing 

sensing techniques for process monitoring in metal AM processes [31, 83]. Here, the 

primary focus is on optical emission-based techniques utilizing single-point 

photodetectors, e.g. photodiodes and spectrometers. While sensors, such as infrared 

thermal cameras and optical imaging are capable of providing high-resolution, image-

based data that can detect defects [66], the advantage of using photodetectors and 

spectrometers in AM is their fast response rates (sampling rates exceeding 100 kHz are 

possible) and relatively low cost [139].  In metal AM, photodetectors and optical 

spectrometers (which essentially consist of an array of photodetectors) are primarily used 

to measure the intensity and wavelength, respectively, of the light emitted in the laser-

material interaction region.  

Mazumder et al. have pioneered the use of photodetectors for closed-loop control in 

metal AM, albeit, in the specific context of the directed energy deposition (DED) metal 

AM process[140].  One of their early works describes the use of three photodetectors for 

closed-loop control of the surface finish, geometry, and microstructure of the part by 

modulating the energy density via changing the build height[140]. As a result of this 

closed-loop control strategy, the surface roughness improved by as much as 20%, and parts 

with unusual bulk properties, such as the negative coefficient of thermal expansion, were 

produced.  
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Recent patents by Mazumder et al. also describe the use of optical spectrometry-based 

closed-loop control in DED [141, 142].  Through various examples, including DED of 

titanium and nickel-based superalloys, Muzumder et al. showed that the intensity of the 

line emissions correlate with the level of phase transformation in the material. This 

relationship was further extended for prediction of the microstructure of the resulting 

material. Furthermore, the use of an optical spectroscopy approach was also demonstrated 

for the monitoring of defects, and detection of undesirable DED process conditions such 

as lack of deposition and overbuilding. By tying the optical emissions to specific process 

variables, e.g., laser power and laser spot size (beam diameter), a closed-loop control 

schema for tailoring the microstructure can be envisioned. Mazumder et al. have termed 

such a sensor-based closed-loop control of AM a smart additive manufacturing system 

[141].  

Song and Mazumder further demonstrated the use of a two-color pyrometer to measure 

the melt pool temperature [143]. The temperature measurements from the pyrometers were 

coupled with a generalized predictive controller for attaining a desired microstructure in 

tool steel. In this case, the controller adjusted the voltage delivered to the laser to modulate 

the volumetric energy density. A similar work with a combination of CCD cameras and a 

two-color pyrometer for controlling the build height has also been reported by the 

Mazumder group [139].  

In a similar vein, Nassar et al. have demonstrated a correlation between the line-to-

continuum ratios around certain titanium emission lines during DED of Ti-6Al-4V and 

lack-of-fusion [127, 138]. They isolated lack-of-fusion in Ti-6Al-4V using optical 
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emissions spectroscopy around 430 nm and 520 nm, as well as using a camera filtered 

around 430 nm.   

The main drawback in these pioneering works is in the application of rudimentary 

signal processing techniques to extract signatures from in-process sensors for isolating one 

type of defect or phenomena at a time through an experiment designed to initiate the desired 

effect. In practical implementation, however, multiple defects with varying severity can 

occur simultaneously. Furthermore, defects in AM can occur even if the process is 

maintained at an optimal parameter set point. Here, graph theory is applied to reduce sensor 

data and apply machine learning to discriminate porosity levels in LPBF parts.  

4.3 Experimental Setup and Data Acquisition 

4.3.1 Part Build Conditions 

In this work, cylindrical test parts (discs) were built on a 3D Systems ProX DMP 200 

LPBF machine. Each disc was 12 mm in diameter and 6.6 mm in height. The build direction 

was parallel to the axis of each cylinder. Laser power (P, W), laser scan velocity (V, mm/s), 

and hatch spacing (H, mm) were varied for each disk. Five discs, labeled A through E, 

were selected for analysis — processing parameters for each of these discs are listed in 

Table 4-1, and their relative location on the build plate is shown in Figure 4-1. The parts 

were characterized post-process using X-Ray Computed Tomography (XCT); Figure 4-2  

exemplifies a representative XCT slice from five discs processed at varying global 

volumetric energy densities. Additionally, based on Figure 4-2, an obvious relationship 

between global volumetric energy density (EV = 
P

V×H×T
 J/mm3) and porosity was not 

visually evident. While porosity discernably decreased for Disc C through Disc E, 
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corresponding to an increasing EV, the relationship did not hold for Discs A and B. This 

indicates that factors beyond power, speed, and layer thickness influence the likelihood of 

flaw formation.   

It is noted that, because Discs D and E were both found to be largely devoid of pores, 

Disc E is not used for further analysis. This was done so that there were roughly an equal 

number of layers corresponding to the different levels of porosity. Having an equal number 

of representative data further prevented biasing the machine learning models used in this 

work. 

Table 4-1: The build conditions for the five disks used in this study. 

Disc 

Laser 

Power 

[W] 

Laser Scan 

Velocity 

[mm/s] 

Hatch 

Spacing 

[µm] 

Energy 

Density 

[J/mm3] 

A (H-50%) 300 2500 25 160 

B (P0, V0, H0) 300 2500 50 80 

C (V-25%, H+50%) 300 1875 75 53 

D (V-25%) 300 1875 50 107 

E (V-25%, H-50%) 300 1875 25 213 

 
Figure 4-1: The relative location of the discs A through E on the build platen. 
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4.3.2 Sensor Instrumentation 

The ProX 200 machine is equipped with a photodetector-based sensor detailed in 

previous researches [126, 127]. The sensor measures the line-to-continuum ratio of 

chromium emission lines around 520 nm.  As shown in the schematic diagram in Figure 

4-3, the sensor array consisted of two off-axis photodetectors (photodiodes) that captured 

light from the laser-material interaction zone.  

A custom optical system was used to image the build plate of the LPBF machine (140 

mm × 140 mm) onto the sensor of each photodiode. Bandpass optical filters were used to 

capture emissions around 520 nm and 530 nm (10 nm FWHM) —this approach is detailed 

in the authors previous works [126, 127, 138]. The output current of each photodetector 

was amplified and converted to a voltage, which was sampled at 100 kHz.  Photodetector 

outputs were synchronized with the laser scanner position, laser trigger, and laser power 

output. Hence, the part geometry and scan pattern were matched one-to-one.  

 

Figure 4-3: Schematic of the multispectral sensor installed within the AM machine. 
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4.3.3  X-Ray Computed Tomography (XCT) of Test Parts 

X-ray computed tomography (XCT) of the five discs was carried out on a GE Phoenix 

v|tome|x m system. Components were scanned using a beam voltage of 170 kV and a voxel 

resolution of 0.015 mm. Image processing techniques were used to extract three quantities 

for each layer: (i) the average proportions of pores, (ii) the number of pores, and (iii) the 

average distance between pores (in terms of their pixel proximity). These three metrics 

were then aggregated into a metric termed as normalized porosity level (μ), described 

subsequently in this section. 

Porosity information was extracted using three image processing steps to detect the 

boundary of each pore and then label its interior: 

1. Detecting and cropping around the boundary of each disc to eliminate XCT artifacts. 

2. Adjusting the brightness and contrast of the XCT slice to make the pores differentiable 

from the background. This was done heuristically for a few layers of a particular disc, 

and then the parameters were maintained constant for the rest of the layers for that 

disc.   

3. Detecting all the edges related to a pore using the Canny edge detection algorithm 

[144] with manually-adjusted threshold parameters. However, the pore edges obtained 

from the Canny approach were not continuous (because there were subtle differences 

between the contrast of the layers). Hence, to ensure that the edges of the pore formed 

a contiguous boundary, an iterative image dilation technique was used. Lastly, the 

interior of each pore was labeled with a (binary) pixel value of one. 
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Figure 4-4 illustrates the implementation of image processing steps. On comparing 

Figure 4-4(c) and (d), it is noted that some of the smaller pores whose boundaries could 

not be closed in Step 4, were missed. However, this loss of information was found to be 

consistent across all discs. From the binary image from Figure 4-4(d), the following metrics 

is extracted to characterize porosity: 

i. The proportion of an area in a layer affected by the porosity (𝜌1),  

ii. Frequency of occurrence, i.e., the number of discrete pores in a layer (𝜌2), 

iii. The average distance between a pair of pores (𝜌3). 

iv. The combination of above three metrics into a single metric, called the normalized 

porosity level (μ).  

These porosity metrics, and the approach to obtain them are detailed hereunder.  

Proportion of area covered by pores in a layer (𝜌1, unitless) defines the area occupied by 

the pores as a ratio of the pixels related to the pores in proportion to all the pixels in the 

image. This was calculated by summing the pixels with value 1 in a binary image.  

If the binary image is represented as a matrix 𝐼 with M rows and N columns, with each 

element (pixel) 𝑝𝑖,𝑗 then, 

𝜌1 =
 Pixels related to the pores

All pixels in the image
=
∑ ∑ 𝑝𝑖,𝑗

𝑗=𝑁
𝑗=1

𝑖=𝑀
𝑖=1

M× N
 (4-1) 
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Number of the pores in a layer (𝜌2, unitless) is defined as the distinctive number of pores 

in a layer. This was found by first estimating the coordinates of the centroid of each pore 

in the layer, and then counting the number of distinct centroids.  If the centroids are marked 

as 𝑐1…𝑐𝑘, then 𝜌2 is given as,  

𝜌2 = |𝑐𝑖|0 ∀𝑖;   𝑖 = {1…𝑘} (4-2) 

Average distance between pores in a layer (𝜌3, pixels) is the mean pairwise distances 

between the centroid of the pores. The numerator in Eq. (3) is the sum of the Euclidean 

distance between pores, and the denominator is the number of pairs of pores. 

𝜌3 =
∑ ‖𝑐𝑖 − 𝑐𝑗‖2∀𝑖,𝑗

(
𝜌2
2
)

[pixles]  ∀𝑖, 𝑗; 𝑖, 𝑗 = {1…𝑘} (4-3) 

Normalized porosity level (𝜇, unitless) combines 𝜌1, 𝜌2, and 𝜌3 into a dimensionless 

number (𝜇) between 0 and 1. It is assumed that 𝜌1, 𝜌2, and 𝜌3 were all non-zero. 

Accordingly, 𝜇 was obtained in two steps. First, in Eq. (4-4) the porosity measure 𝜌4 was 

obtained for each layer. Subsequently, the 𝜌4 value was normalized in Eq. (4-5) to obtain 

a value between 0 and 1.  

𝜌4 =
𝜌1 ×M × N

𝜌2 × 𝜌3

[pixles2]

[pixles]
=
∑ ∑ 𝑝𝑖,𝑗

𝑗=𝑁
𝑗=1

𝑖=𝑀
𝑖=1

𝜌2 × 𝜌3
[pixles] (4-4) 

𝜇 =  
𝜌4 −min(𝜌4)

max (𝜌4)
 (4-5) 

The physical meaning of 𝜇 can be explained as follows. The area occupied by pores 

in a layer is represented in 𝜌1, hence a small 𝜌1 is desirable for a fully dense component. 
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However, 𝜌1 does not capture how many pores account for this area. For example, one big 

pore of a certain area A may have a more deleterious effect on the physical properties of 

the part than multiple pores which add up to the same area A (i.e., the smaller the ratio  

𝜌1
𝜌2⁄  the better[145]). Next, having pores farther away from each other is more desirable 

than having two pores closer together. Hence, the average distance between the pores (𝜌3) 

should also be considered with the physical contention that the severity of porosity is 

inversely proportional to 𝜌3.  

 Accordingly, in the combined measure 𝜌4 of Eq. (4-4),  𝜌1 went to the numerator, 

whereas, 𝜌2 and 𝜌3 were in the denominator. Subsequently, 𝜌4 was normalized to 𝜇 to 

obtain a value between 0 and 1 for each test part (disc), with a value nearer to 0 representing 

an ideal outcome. It is noted that if 𝜌1 was zero for a layer, such as in Disc D the number 

𝜇 was forced to zero.  

In Sec. 4.5.3,  𝜇 is used as the response (output) to be predicted for each layer as a 

function of graph-theoretic Laplacian eigenvectors and eigenvalues extracted from the 

multispectral sensor data. The procedure to derive these graph-theoretic process signatures 

is described in the forthcoming section, Sec. 4.4.  
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4.4 Proposed Methodology  

There are four steps in the approach used to extract the Laplacian eigenspectra of line-

to-continuum signatures. Each step is explained in detail herewith. The mathematical 

underpinnings of the proposed methodology have been addressed in the authors’ previous 

work; some of it have been restated here for the sake of continuity [25]. Detailed 

mathematical justifications for the approach are available in Rao’s previous work [25, 112].  

The novelty of this work can be described as the reconstruction of sensor data into an 

undirected weighted graph to extract the Laplacian eigenspectra for each layer and relate 

these process signatures to the level of porosity. In previous works the sensor signatures 

were mainly correlated with defects due to overhang and contamination in LPBF [13, 25] 

Step 1: Transforming the one-dimensional multi-spectral signal into a graph. 

In this step, the aim was to convert the one-dimensional line-to-continuum ratio 

signatures into a weighted, undirected graph 𝐺(𝑉, 𝐸,𝑊), where 𝑉, 𝐸 and W are the vertices, 

edges, and weight between the edges of a network graph, respectively. To begin with the 

graph conversion process, it was necessary to reshape the signal as a matrix that would be 

used as an input for the approach. To realize this aim, the multi-spectral signal related to 

each layer of the disc, which was comprised of approximately 56,000 to 157,000 data 

points, was represented as a signal matrix (𝑿𝑙). Where l is the layer number in this work, 

line-to-continuum data was available for 110 layers for each disc (i.e., l = 1, 2, …, 110) 

indexed in terms of the laser scan coordinates.  

The total number of data points per layer for each disc is detailed in Table 4-2: 

Approximate number of data points available per layer. 
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for a particular disc, and the corresponding number of rows (N) for each layer (d = 

50). The number of data points obtained per layer was contingent on the scan velocity and 

hatch spacing – a higher scan speed and hatch spacing implied less time spent melting a 

layer. Hence the fewest data points were sampled per layer of Disc C, for example, which 

had the highest hatch spacing. The key aspect of this step is to populate the signal matrix 

(𝑿𝑙).  

Accordingly, the line-to-continuum emission signal for each layer was first separated 

into equal lengths corresponding to 50 data points which translated to approximately 1 mm 

and 1.25 mm of scan length for the lowest (1.875 m/sec) and highest scan velocity (2.5 

m/sec), respectively. The approach is illustrated in Figure 4-5. Based on extensive offline 

studies not reported in this work, the length of 50 data points was found to be the smallest 

possible window wherein the approach was found to be viable. This allowed the signal to 

be converted into a matrix with a fixed column width, i.e., each row of the data was a 50 

data point long signal segment of a layer (l).  

Table 4-2: Approximate number of data points available per layer. 

for a particular disc, and the corresponding number of rows (N) for each layer (d = 50). 

Discs 
Average number of 

data points per layer 

Number of rows (N) in the 

signal matrix 𝑿𝑙 
Disc A 157000 3140 

Disc B 76000 1620 

Disc C 56000 1120 

Disc D 113000 2260 
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Figure 4-5: Illustration of the approach taken to window the signal. 

Shown here is an example of windowing the photodetector signal in each layer into 50 data point 

long segments. The diagram is not to scale. 

In other words, each 50-point long segment populated a separate row of 𝑿𝑙. Hence the 

matrix 𝑿𝑙 had N rows and d (=50) columns. The value of N, which was the number of 50-

point segments in the layers, varied roughly between 3100 to 1100 and, as mentioned 

previously, was inversely proportional to the laser velocity and hatch spacing (Table 4-2: 

Approximate number of data points available per layer. 

for a particular disc, and the corresponding number of rows (N) for each layer (d = 

50).). Consequently, the signal matrix (𝑿𝑙) was setup for each layer as follows,   

𝑿𝑙 = [
𝑥1
1 ⋯ 𝑥1

𝑑

⋮ ⋱ ⋮
𝑥𝑁
1 ⋯ 𝑥𝑁

𝑑
]∀𝑙 = {𝑙 =  1,2,… , 𝐿 =  110}, and 𝑑 = 50. (4-6) 

Next, a pairwise comparison was made between each of the rows of the matrix 𝑿𝑙. 

Such a pairwise comparison implies that the change in the signal across a layer is tracked. 

In graph-theoretic parlance, each of the N rows in  𝑿𝑙 became a node or vertex in the graph. 

The weight of an edge connecting one node (q) to another (r) in the graph was the pairwise 
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distance between them. The distance 𝓌𝑞𝑟 was computed using a normed kernel function 

Ω per Eq. (2-3). The kernel function could relate to a similarity measure, such as a 

Euclidean distance, between the set of data points in row r and q of the matrix 𝑿𝑙. 

Following this reasoning if  𝒙𝑞 and 𝒙𝑟 are the qth and rth row vectors in  𝑿𝑙, the similarity 

distance between them (𝓌𝑞𝑟) can be mathematically represented as, 

𝓌𝑞𝑟 = Ω(𝒙
𝑞, 𝒙𝑟) ∀ 𝑞, 𝑟 ∈ (1⋯𝑘). (4-7) 

Among different types of kernel functions Ω, such as the radial basis or Euclidean, in 

this work the Mahalanobis kernel shown in Eq. (2-5) is used, where 𝜮 is the covariance 

matrix of 𝑿𝑙. The Mahalanobis kernel was chosen because it tends to normalize the data 

with respect to its covariance. 

𝓌𝑞𝑟 =  (𝒙
𝑞 − 𝒙𝑟)𝜮−1(𝒙𝑞 − 𝒙𝑟) (4-8) 

Because, there are N rows in the matrix 𝑿𝑙, a weighted undirected graph with N nodes and 

𝑁(𝑁−1)

2
 edges is obtained. Once the pairwise distances 𝓌𝑞𝑟 are computed, they can be 

compacted into a similarity matrix. The similarity matrix 𝑺𝒍
𝑁×𝑁 = [𝓌𝑞𝑟] which is a 

symmetric matrix, represents a weighted and undirected graph 𝐺. Hence, 𝑺𝒍  is the matrix 

representation of the signal 𝑿𝑙 in terms of the graph.  

Each row (or column) of 𝑺𝒍  is a node in the graph. Each element is the weight of the 

edge connecting two nodes indexed by its row and column. For instance, the element 

𝑺𝒍(𝑖, 𝑗) = 𝑺𝒍(𝑗, 𝑖) represents the weight of the edge connecting between node i and node j. 

In other words, the graph 𝐺(𝑉, 𝐸,𝑊) is a lower dimensional, specifically a planar 2D, 



137 

 

graph representation of the relationship between each segment of the signal 𝑿𝑙 in terms of 

the similarity matrix 𝑺𝒍.  

Step 2: Calculating eigenspectrum (topological information) of the graph 

This step aimed to extract topological information from the graph 𝐺 embedded in the 

eigenvectors and eigenvalues of its Laplacian matrix.  After converting the signal into a 

matrix  𝑿𝑙 as described in Step 1 and representing it as a planar graph 𝐺𝑙 in terms of the 

similarity matrix 𝑺𝒍, next the Laplacian eigenspectrum including eigenvalues (𝚲𝑙) and 

eigenvectors (𝑽𝑙) is calculated. These so-called spectral features were subsequently used 

to predict the degree of porosity in a layer.  

The procedure to obtain 𝚲𝑙 and 𝑽𝑙 is encapsulated in Eq. (2-7) ‒ Eq. (2-11). The 

normalized Laplacian matrix was first calculated in Eq. (2-7) ‒ Eq. (2-9) based on the 

similarity matrix (𝑺𝑙) and degree matrix (𝓓𝑙), where the degree matrix Eq. (4-10) is the 

sum of each row in the similarity matrix. To be more specific, the degree of each node in 

the graph is described as the sum of the weight of the edges that are incident upon a node. 

In Eq. (2-7),  q represents a node on the graph. 

𝑑𝑞 =∑𝑤𝑞𝑟

𝑁

𝑟=1

 ∀ 𝑞 = {1…𝑁} (4-9) 

𝓓𝑙 ≝ diag(𝑑1,⋯ , 𝑑𝑁). (4-10) 

Having the degree matrix, the normalized Laplacian 𝓛 of the graph 𝐺 can be defined as, 

𝓛𝑙  ≝ 𝓓𝑙  
−
1
2 × (𝓓𝑙 − 𝑺𝑙) × 𝓓𝑙  

−
1
2, 

where, 𝓓𝑙  
−
1

2 = diag (1
√𝑑1
⁄ ,⋯ , 1

√𝑑𝑁
⁄ ). 

(4-11) 
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Accordingly, the eigenspectrum of 𝓛 is computed as, 

𝓛𝑙𝑽𝑙 = 𝚲𝑙𝑽𝑙 . (4-12) 

 And the graph Laplacian eigenvalues (𝚲𝑙) and eigenvectors (𝑽𝑙) can be described as 

follows, 

𝚲𝑙 = [ 𝝀𝑙,1;  𝝀𝑙,2; … ; 𝝀𝑙,𝑁] 

𝑽𝑙 = [[𝒗𝑙,1]; [𝒗𝑙,2];… ; [𝒗𝑙,𝑁]] 

(4-13) 

where, 𝑽𝑙 is composed of N individual eigenvectors 𝒗𝑙,(∙), and 𝚲𝑙 contains the 

corresponding number of eigenvalues 𝝀𝑙,(∙).  

A property of the Laplacian eigenvalues and eigenvectors that is central to this work 

is that that all the eigenvalues are real and non-negative, and the eigenvectors are 

orthogonal to each other (because the matrix 𝓛𝑙 is symmetric and positive semi-definite). 

These properties are encapsulated in Eq. (4-14), with the additional caveat that the first 

eigenvector is a zero vector (𝒗𝑙,1 = 0⃗ ) and the first eigenvalue of 𝓛𝑙 is zero (𝝀𝑙,1 = 0). 

𝒗𝑙,2 ⊥ 𝒗𝑙,3 ⊥ 𝒗𝑙,𝑖⋯ ⊥ 𝒗𝑙,𝑁, ⇒ 〈𝒗𝑙,𝑖 , 𝒗𝑙,𝑗〉 = 0 ∀𝑖 ≠ 𝑗,  

and 〈𝒗𝑙,𝑖, 𝒗𝑙,𝑗〉 = 1 ∀𝑖 = 𝑗, noting 𝒗𝑙,1 = 0⃗  
(4-14) 

𝝀𝑙,(∙) ≥ 0,  and 𝝀𝑙,1 = 0 

Step 3: Constructing the signal basis to obtain graph Fourier coefficients 

In this step, the eigenvectors 𝑽𝑙 were used to transform a raw line-to-continuum signal 

into so-called graph Fourier coefficients. To realize this aim, a universal eigenvector basis 

space must be constructed. The rationale for forming such a universal eigenvector basis 

space is as follows. The signal (𝑿𝑙) from a nominally defect-free disc (Disc D) are 

presumably statistically distinctive compared to the signals obtained from other test parts 
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(Discs A, B, and C). However, due to the presence of noise for even a nominally defect-

free disc the signal patterns will vary across layers, and hence the eigenvectors 𝑽𝑙 will also 

differ from one layer to the next.  

To overcome this challenge, a universal basis is framed, (𝓥𝑏𝑎𝑠𝑖𝑠  ) as a time-weighted 

average of the eigenvectors across layers for Disc D, which represents a prototype/ideal 

eigenvector. The procedure for obtaining the 𝓥𝑏𝑎𝑠𝑖𝑠  is a layer-wise simple update schema. 

It was started with the eigenvector of the first layer (𝑽𝑙=1) of Disc D. This would be 

continually updated by a small portion (∆< 0.01) of the difference between the 

eigenvectors for the next consecutive layers for Disc D, and so on.  

𝓥𝑙+1 = 𝓥𝒍 + ∆(𝒗𝑙+1,𝑖 − 𝒗𝑙,𝑖), ∀  𝑙 ∈  {1…𝐿 = 110}, 𝑖 ∈  {1 …𝑁}  

𝓥𝑏𝑎𝑠𝑖𝑠  = 𝓥𝐿  

(4-15) 

We defined the spectral graph transform 𝑪 using Eq. (2-15) which is analogous to the 

discrete Fourier transform as follows, where 𝑿𝑙 is a sensor signal for a layer l, which is an 

N data point long column vector [107]. 

𝑪 = [(𝑿𝑙)
𝑇(𝓥𝑏𝑎𝑠𝑖𝑠  )] (4-16) 

As the 𝓥𝑏𝑎𝑠𝑖𝑠  is fixed, using the above inner product through all the layers (𝑿𝑙) 

resulted in the graph coefficient matrix 𝑪. The graph Fourier transform (𝑪) in this study is 

a 1×N vector that results from the dot product of the 1 × N line-to-continuum signals for 

each layer (𝑿𝑙
𝑇) with the N × N dimensional eigenvector basis (𝓥𝑏𝑎𝑠𝑖𝑠  ) [105-107, 134, 

135]. However, to reduce the computational burden, only the first 5 to 10 non-zero values 

of the 𝑪 are used. This was verified through principal component analysis; it is found that 
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more than 85% of the variation in the dataset were captured within the first ten eigenvectors 

in 𝓥𝑏𝑎𝑠𝑖𝑠  . 

Step 4: Predicting the porosity properties using spectral graph features 

The aim of this step was to predict the level of porosity, which was expressed in terms 

of the normalized porosity level (µ), as a function of the graph Fourier coefficients (𝑪) and 

eigenvalues (𝚲𝑙) derived from the in-process, line-to-continuum ratio measurements. This 

mapping of sensor signatures (𝑪) to normalized porosity (µ) was done using machine 

learning approaches, which are described in detail in the forthcoming section, Sec. 4. 

We have used the following two-fold strategy for predicting the porosity in a disc 

based on the line-to-continuum emission ratio obtained from the multispectral sensor data. 

1) Classifying or binning the normalized porosity level (µ) into discrete categories. 

2) Estimating the value of the normalized porosity level (µ). 

There are two types of graph-theoretic sensor signatures that can be extracted from the 

line-to-continuum signals and used for either classification or estimation. The first method 

relates to the Laplacian eigenvalues (𝚲𝑙), which will be used as inputs to a machine learning 

model to ascertain the normalized porosity level (µ) for a particular layer. This approach 

requires extracting the Laplacian eigenvalues from the line-to-continuum ration signals for 

each layer of each disc, and subsequently, training a supervised machine learning model to 

predict a particular class (or label) of normalized porosity level (µ) which is obtained a 

priori from the offline analysis of the XCT images as described in Sec. 4.3.3.  

Consequently, when a new sensor signal dataset for a layer (𝑿𝑙) was acquired, the 

Laplacian eigenvalues (𝚲𝑙) were extracted from it, and subsequently used as an input to the 
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already trained machine learning model to predict the porosity level (µ). The advantage of 

this approach is that the steps to obtain 𝚲𝑙 from the signal for each layer are relatively 

straightforward in terms of the mathematics – following Eq. (4-6) – Eq. (4-13). The 

drawback is that the signal from every layer must be subjected to the analysis for extracting 

the Laplacian eigenvalues. This takes a relatively long computational time, because, 

obtaining the Laplacian eigenvalues requires first converting the signal into a planar graph, 

and then solving the cumbersome eigen decomposition problem for a large matrix (Eq. 

(2-11)). 

The second method was more complex to train initially but was more tractable to 

implement for real-time monitoring and relied on the graph Fourier transform (𝑪) (Eq. 

(2-15)). Herein the eigenvectors basis (𝓥𝑏𝑎𝑠𝑖𝑠  ) were extracted from the nominally defect-

free part, which in our case was Disc D. The eigenvectors (𝓥𝑏𝑎𝑠𝑖𝑠  ) served as a basis or 

projection space for the sensor data. The rationale is that when a set of data belonging to 

the nominal defect-free condition, such as Disc D, is projected onto this space, in terms of 

the graph Fourier transform coefficients 𝑪, it will cluster closely in space with the 

coefficients from previous nominally defect-free layers.  

Conversely, if the signal belongs to a pore-afflicted layer, its coefficients will cluster 

away from the coefficients belonging to a nominally porosity-free layer. The advantage of 

this approach is that, instead of solving the eigen decomposition problem for each layer of 

the signal, as in the previous approach with the Laplacian eigenvalues (𝚲𝑙), the sensor data 

is transformed into a spectral graph space on obtaining a simple inner product 

multiplication (dot product) of the Laplacian eigenvector with the signal of equal length as 

described in Eq. (2-15).  
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Approach for classifying the normalized porosity level into discrete categories 

The aim herein is to classify the porosity level in terms of the normalized porosity 

metric (𝜇) given the multispectral line-to-continuum signatures. The procedure to obtain 𝜇 

was described previously in Sec. 4.3.3; 𝜇 was obtained for each layer of the 110 layers 

from the offline XCT scans.  Next, the normalized porosity level in a layer was divided 

into different classes. In the first instance, the porosity level was split into two classes (high 

and low), and in the second, the porosity level was grouped into three classes. These class 

groupings or labels were made per a threshold limit value of the porosity level 𝜇 specified, 

based on all the XCT data available from the experiment. 

In making the choice for the threshold value the distribution of the porosity level (𝜇) 

values is considered so that a situation in which a particular class was populated with only 

a few representative porosity levels 𝜇 could be avoided. This strategy entailed that each of 

the classes had at least 100 values of 𝜇 associated with it, and thus minimized the possibility 

of overfitting the data with machine learning models.   

Three rudimentary machine learning classification algorithms, namely, Support 

Vector Machine (SVM), K-Nearest Neighbor (KNN), and Decision Tree (Tree) were used 

to classify the level of porosity. The fidelity of these algorithms was assessed based on the 

F-score measure, which is a combination of both Type I (false error) and Type II (failing 

to detect) statistical errors. The results based on extensive offline studies are reported to 

optimize the parameters for these algorithms.  
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The input features to the algorithms selected are one of the following three types, 

which correspond to 440 deposited layers (4 printed discs with 110 layers for each disc).  

• Input Type 1: First ten non-zero Laplacian eigenvalues (𝚲𝑙), which were obtained as 

described previously in Sec. 4.1, Eq. (4-13). 

• Input Type 2: The graph Fourier coefficients (𝑪) obtained from the first ten non-zero 

Laplacian eigenvectors (𝓥𝑏𝑎𝑠𝑖𝑠  ) shown in Sec. 4.1, Eq. (2-15). 

• Input Type 3: The five statistical features extracted from the line-to-continuum ratio, 

namely, the mean, standard deviation, range, skewness, kurtosis, and interquartile 

range. 

Each feature set was finally subjected to principal component analysis (PCA), which 

is a statistical procedure to further compress the dimension of the data. This PCA-based 

dimension reduction transformed the features into orthogonal components. Further, to 

ensure equitable comparison between the input features, the number of principal 

components chosen corresponded to those capturing at least 85% of the variation in the 

data.  

Estimating the value of the normalized porosity level 

Given that the ability to distinguish between different porosity levels was found to be 

80% at best for a three-level scenario, a simple (shallow) feed-forward neural network is 

implemented with two hidden layers and five neurons in each hidden layer designed to 

predict the exact porosity value (μ). In this neural network, sigmoid activation functions 

were used in the hidden layers, and a linear activation function was used in the output layer. 

The backpropagation algorithm, via Levenberg-Marquardt optimization, was implemented 
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to minimize the sum of squared errors between the predicted (𝜇̂𝑙) and observed (𝜇𝑙) 

normalized porosity level over one layer [146].  

To evaluate the accuracy of the prediction, two measurements are used, namely, 

symmetric mean absolute percent error (SMAPE) and normalized root mean square 

deviation (NRMSD), defined in Eq. (4-17). Both these measures are based on the 

difference between the porosity values (𝜇𝑙) extracted for a layer l ∀  𝑙 ∈  {1 …𝐿 = 110} 

from the offline XCT scans and the predicted porosity values (𝜇𝑙̂) for that layer obtained 

using the neural network. 

𝑆𝑀𝐴𝑃𝐸 =
1

L
∑

|𝜇𝑙 − 𝜇̂𝑙|

(|𝜇𝑙| + |𝜇̂𝑙|)/2

𝑙=𝐿

𝑙=1

;   𝑁𝑅𝑀𝑆𝐷 =
√∑ (𝜇𝑙 − 𝜇̂𝑙)2

𝑙=𝐿
𝑙=1

√∑ 𝜇̂𝑙
𝑙=𝐿
𝑙=1

 (4-17) 

 

4.5 Results and Discussion 

4.5.1 Quantifying Porosity from X-Ray Computed Tomography (XCT) 

The size and distribution of pores varied across the measured discs as evident in Figure 

4-6, which shows the results from applying the procedure for extracting the pores for each 

of the discs for layer 14.  Measurements of the mean percentage of area covered by pores 

(𝜌1), the mean number of pores (𝜌2), the mean distance between pores (𝜌3), and the 

normalized porosity (𝜇) are provided in Table 4-3. Distributions of each porosity metric 

across each disc is also visualized in Figure 4-7. Disc D did not contain any porosity and 

is not shown.  

From Figure 4-7 it is further apparent that the statistical distribution of each porosity 

metrics differed from disc to disc. Disc A appears to have the severest level of porosity 
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with the highest mean porosity proportion of pores per layer (𝜌1), highest mean number of 

pores per layer (𝜌2), smallest average distance between pores (𝜌3), and consequently, the 

largest mean normalized porosity level (μ). In ranking terms, apart from Disc D, the 

samples in terms of descending level of pore severity are: Disc A, followed by Disc B and 

Disc C. 

 
Figure 4-6: The pore extraction procedure as applied to the XCT. 

Shown here is the result of the pore extraction procedure for layer 18 for Disc A through Disc D. 

The proportion of pores, their number, and spatial distribution are observed to vary across the discs.  

Table 4-3: The mean value of the three metrics 𝜌1, 𝜌2, and 𝜌3. 

The data shown is from applying the pore extraction procedure applied to over 110 layers of the 

three discs extracted from their XCT scans. The number in the parenthesis is the standard deviation. 

Disc 

𝜌1 

Mean percentage 

of area covered by 

pores in each layer. 

𝜌2 

Mean number 

of pores in 

each layer 

(rounded) 

𝜌3 

Mean distance in 

pixels between 

pores in each 

layer 

𝜇 

Mean 

normalized 

porosity measure 

in each layer. 

Disc A 1.8% (0.828%) 102 (48) 223 (15.7) 0.64 (0.076) 

Disc B 1.3% (0.997%) 78 (52) 233 (23.3) 0.57 (0.080) 

Disc C 0.7% (0.810%) 40 (40) 263 (34.6) 0.57 (0.097) 
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Figure 4-7: The probability mass functions for three different porosity metrics.  

4.5.2 Visualization of Sensor Data  

The probability distribution of the line-to-continuum ratio for 50,000 randomly 

selected data points from the same layer (60) for the four discs A through D are overlaid in 

Figure 4-8, from which it is evident that there were apparent differences in the distribution 

of the line-to-continuum ratios for the four discs.  
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Figure 4-8: The distribution of 50,000 randomly selected measurements of the line-to-continuum 
ratio for one layer (layer 60) of Disc A through D. 

4.5.3 Classifying the Severity of Pores into Discrete Levels 

We implemented three algorithms each with three types of input features for 

evaluating the proposed approach for a total of 9 treatment conditions, in the parlance of 

design of experiments. Finally, the statistical performance of the algorithm in terms of the 

F-score was evaluated through a 5-fold cross validation technique.  The training and testing 

procedure used is as follows, 

• Training. The dataset was split randomly into 5 tranches with equal number of data 

points per tranche (440 layers/5 = 88 data points per tranche) in each part. Each of the 

four algorithms was first trained for each type of input using data from one tranche (88 

data points). 

• Testing. The algorithms were tested on the data from the rest of the tranches (4 × 88 = 

352 data points). This process was repeated 5 times, and then the average prediction 

fidelity in terms of the F-score over these 5 repetitions was reported. 



148 

 

For the two-class classification case, since 𝜇 ranged between [0,1], the threshold is set 

at 0.5.  In other words, if the normalized porosity level (𝜇) was less than or equal to 0.5 for 

a layer it was considered as an acceptable porosity level, and conversely, any layer having 

𝜇 over 0.5 was labeled as falling within a class representing an unacceptably high level of 

porosity. 

In a similar vein, for the three-class problem, the labeling procedure is as follows: if µ 

= 0 then the porosity-class was labeled as low-level, if 0 < µ < 0.6 as medium-level, and 

0.6 ≤ µ as high-level. It is reiterated that there were several means to partition the porosity 

level into classes; the volume of data available determines how finely the class divisions 

can be made. It is ensured that no class had less than 100 values of µ to avoid overfitting. 

Table 4-4 represents the accuracy of the predictions for a two-level porosity (in terms of 

F-score) among three different methodologies. The confusion matrix related to the most 

accurate F-score is shown in Table 4-5. The following inferences can be drawn based on 

the results depicted in Table 4-4 and Table 4-5. 

For the two-level classification case, the three input types provided appreciably good 

results. Using the Laplacian eigenvectors for the input type, however, led to the highest 

classification accuracy. Furthermore, examining the confusion matrix revealed that the 

Type II error rate, i.e., incorrectly concluding that a layer has a low porosity level when it 

truly belongs to a high-porosity class, was only 1 in 287 layers. However, the Type I 

statistical error, i.e., falsely concluding that the layers have high porosity, was 

approximately 1 in 30 layers. The reason for such a high-level of Type I error can be 

explained based on the physics of the process. While a pore may be created in a layer, and 

promptly detected from the multispectral line-to-continuum emissions; subsequent layers 
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are liable to re-melt the unfused particles in previous layers and thereby eliminate porosity. 

This re-melting phenomena in LPBF has been mathematically simulated by researchers at 

Lawrence Livermore National Laboratories, namely, by Khairallah and King, et al.[136]. 

In the more challenging three-level classification case, there was a more marked 

difference in the three input types. Using the Laplacian eigenvectors resulted in a 

classification accuracy approaching 80%, whereas, the other two input features led to an 

F-score in the 60% to 65% region. Examining the F-score from the Laplacian eigenvectors, 

in terms of the confusion matrix shown in Table 4-5, indicates that, if indeed a layer had a 

level of porosity, it was not detected in only 2 out of 330 cases ‒ 1 in 196 layers belonging 

to the medium-level porosity class were grouped in the low porosity class, while 1 in 134 

layers for the high-level porosity class were wrongly classified as belonging to the low-

porosity level.  However, the concern with the confusion matrix is in the last row of Table 

4-5 where 59 out of a total 134 layers that belong to the high-level porosity case are 

wrongly categorized as belonging to the medium-level porosity. This high level of 

classification error is most likely due to the hard threshold that was used to separate the 

data into three classes. Such a large error needs to be overcome, for the proposed approach 

to be successful in practice. An approach to overcome the limited success of the three-level 

classification is to use a continuous boundary condition, instead of a hard threshold. This 

would also allow estimation of the exact porosity level. However, this entails sacrificing 

the tractability of classification to a more sophisticated data modeling technique, such as a 

neural network.  

 

Table 4-4: Performance of two proposed algorithms in comparison with one that uses statistical 

features for predicting the normalized porosity level (µ). 
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In this table layers with normalized porosity level µ ≤ 0.5 were labeled as acceptable porosity 

whereas µ > 0.5 were considered as unacceptable porosity. 

F-score results from classifying the porosity levels into two classes. 

µ ≤ 0.5 as acceptable-level, µ > 0.5 as unacceptable-level. 

Machine Learning 

Algorithm ↓ 

F-Score (%) 

Input Type 1 

(Laplacian 

eigenvalues) 

Input Type 2 

 (Laplacian 

eigenvectors) 

Input Type 3 

 (Statistical 

features) 

KNN 88 (1.3) 93 (1.1) 83 (1.0) 

SVM 88 (1.7) 93 (0.4) 83 (0.8) 

Tree 87 (1.1) 92 (1.4) 80 (0.3) 

Classifying the porosity levels into three classes 

µ = 0 as low-level, 0 < µ < 0.6 as medium-level, and 0.6 ≤ µ as high-level. 

Machine Learning 

Algorithm ↓ 

F-Score (%) 

Input Type 1 

 (Laplacian 

eigenvalues) 

Input Type 2 

 (Laplacian 

eigenvectors) 

Input Type 3 

 (Statistical 

features) 

KNN 65 (0.4) 79 (1.1) 62 (0.3) 

SVM 65 (1.6) 79 (0.1) 63 (0.2) 

Tree 66 (0.4) 79 (0.6) 65 (0.5) 

Computation Time 61.3 sec 0.4 sec 5.9 seconds 
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Table 4-5: A representative confusion matrix for normalized porosity level (µ) based on the 
Laplacian eigenvectors (graph Fourier coefficients). 

The graph Fourier coefficients were used as inputs and KNN as the classification algorithm. 

Confusion matrix for classifying pore severity into two discrete levels 

using graph Fourier transform coefficients (Input Type 2), and KNN. 

True Class ↓ 

Predicted Class 

Acceptable Porosity 

µ < 0.5 

Unacceptable 

Porosity 

µ ≥ 0.5 

Acceptable Porosity 

µ < 0.5 

(153 data points) 

110 

(out of 153) 

43 

(Type I error, 

False Alarm) 

Unacceptable 

Porosity 

µ ≥ 0.5 

(287 data points) 

1 

(Type II error,  

Failing to detect) 

286 

(out of 287) 

Confusion matrix for classifying pore severity into three discrete levels 

using graph Fourier transform coefficients (Input Type 2), and KNN. 

True Class ↓ 

Predicted Class 

Low-Level 

Porosity 

µ = 0 

Medium-

Level 

Porosity 

0 < µ ≤ 0.6 

High-Level 

Porosity 

0.6 < µ 

Low-Level Porosity 

µ = 0 

(110 data points) 

109 

(out of 110) 
0 1 

Medium-Level 

Porosity 

0 < µ < 0.6 

(196 data points) 

1 
165 

(out of 196) 
30 

High-Level Porosity 

0.6 ≤ µ 

(134 data points) 

1 59 
74 

(out of 134) 
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4.5.4 Estimating the Value of the Normalized Porosity Level  

Figure 4-9 illustrates the observed porosity level (µ) overlaid with the estimated values 

(𝜇̂) obtained using the graph Fourier coefficients as input features to the neural network. 

Figure 4-9 demonstrates that the porosity-level was predicted with a high-level of accuracy 

for all the different discs except Disc D, which had a porosity level of zero (µ = 0). In Disc 

D, roughly one third of estimated porosity levels were negative. This is because the linear 

activation function used in the output layer of the neural network had a non-zero bias that 

prevented the prediction of a constant value. This could be readily alleviated by using a 

positive linear activation function. The prediction accuracy is quantified in Table 4-6, Disc 

D is excluded due to the aforementioned reasons. Aggregating the predictions related to all 

discs, the NRMSD was less than 15%, and the SMAPE was roughly 10%. 

 

Figure 4-9: The actual vs. predicted normalized porosity levels (µ) along the whole dataset using 

the graph Fourier coefficients (method 2). 
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Table 4-6: The goodness of fit in exact porosity prediction using a shallow neural network with 

graph features as inputs. 

Porosity 
Features 

Method 1 

Laplacian eigenvalues 

Method 2 

Laplacian eigenvectors 

SMAPE NRMSD SMAPE NRMSD 

Disc A 0.08 (0.01) 0.10 (0.01) 0.09 (0.01) 0.11 (0.03) 

Disc B 0.10 (0.00) 0.14 (0.00) 0.13 (0.02) 0.17 (0.02) 

Disc C 0.11 (0.02) 0.14 (0.03) 0.12 (0.00) 0.16 (0.01) 

Overall error 0.10 (0.01) 0.13 (0.01) 0.11 (0.00) 0.14 (0.01) 

4.6 Conclusions 

In this work, a graph-theoretic signal processing technique is developed for detection 

and identification of a specific type of defect called lack-of-fusion porosity in laser powder 

bed fusion (LPBF) additive manufacturing of Inconel 718. The approach used output from 

a pair of photodetectors filtered around 520 and 530 nm, to estimate the  line-to-continuum 

ratio of Cr I emissions. These measurements were synchronized with the position of the 

laser. The graph-theoretic approach proposed in this work processes the line-to-continuum 

ratio measurements layer-by-layer, and results in features called Laplacian eigenvalues and 

eigenvectors ‒ collectively called Laplacian eigenspectra. The hypothesis is tested that the 

Laplacian eigenspectra derived from the line-to-continuum ratio measurements captured 

the patterns that are symptomatic of the occurrence and severity of pores in Inconel 718 

parts. 

The ability to relate graph-based features to part porosity was demonstrated in the 

context of machine learning techniques that use the Laplacian eignenspectra as input 

features to (a) classify the severity of the porosity into discrete levels, and (b) estimate the 

porosity level for each layer. There are two specific outcomes from this work: 



154 

 

1) The severity of pore formation is classified into two, as well as three levels via three 

machine learning algorithms with the Laplacian eigenspectra as input features. For the 

two-level classification case, the highest statistical fidelity (F-score > 90%) is obtained 

using graph Fourier coefficients derived from the Laplacian eigenvectors. The 

computational time required for the approach is less than 0.5 second. For the three-

level classification study, the statistical fidelity degraded to 80%. 

2) The Laplacian eigenspectra is also used for prediction of the porosity level, the 

prediction errors (normalized root-mean-square deviation, NMRSD) is approximately 

10%. 
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5 Detecting Lack-of-Fusion Porosity in DED 

5.1 Goal, Objective, and Hypothesis 

The goal of this research is to detect the onset of defects such as porosity in additively 

manufactured metal parts using data acquired from in-process sensors. As a step towards 

this goal, this study focused on the analysis of in-process sensor data to detect lack-of-

fusion porosity in titanium alloy (Ti-6Al-4V) parts made using a directed energy deposition 

(DED) metal additive manufacturing process. This avenue of research is consequential to 

ensure the production-scale viability of additive manufacturing (AM) processes, which 

despite their significant and revolutionary advantages over conventional subtractive and 

formative manufacturing processes, are currently impeded by their lack of part consistency 

and quality.  

The objective is to detect the occurrence of lack-of-fusion defects in DED of titanium 

alloy (Ti-6Al-4V) parts such as those shown in Figure 5-1. To realize this objective, a 

graph-theoretic approach based on the concept of Kronecker product of graphs is 

developed and applied. This approach combines data from multiple in-process sensors 

(sensor fusion), and consequently, the signatures (features) derived from the graph-

theoretic analysis are used for online detection of lack-of-fusion porosity.  

The central hypothesis of this work is that the process signatures derived from the 

graph-theoretic analysis of sensor data are statistically significant discriminants of the lack-

of-fusion porosity that manifest in Ti-6Al-4V parts produced under varying DED process 

conditions of laser power, powder flow rate, and hatch pattern. As a consequence of testing 

this hypothesis, it is shown that significantly more accurate demarcation of the porosity-

level in a layer is obtained when graph-based signal features are used as independent 
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variables, as opposed to statistical moments-based signal features, such as signal mean and 

standard deviation.  To test this hypothesis, the following tasks are framed: 

1. Understand the effect of DED process conditions: laser power (P, Watt), powder flow 

rate (F, g/min), and hatch pattern (H, cross vs. parallel) on porosity. The process 

conditions and porosity (average pore length in a layer) are linked through offline layer-

by-layer XCT measurements made on separate Ti-6Al-4V test coupons produced under 

ten varying P, F, and H settings.   

2. Correlate the in-process sensor data obtained during the deposition of the parts in the 

previous task to average pore length in a layer using the concept of Kronecker product 

of graphs. To elaborate further, the graph Kronecker product is used to combine the 

signatures from two in-process sensors, namely a spectrometer and a melt pool plume 

imaging camera. Then, the signal patterns affiliated with different discrete levels of 

average pore length is learnt in the form of a dictionary. Finally, given the sensor data 

for a new layer, the dictionary is used to predict the average pore length level in the 

layers. 

The rest of this study is structured in the following manner. Sec.5.2, summarizes the 

previous research in-process mapping and sensor-based monitoring of the DED process. 

Next, Sec. 5.3 describes the experimental conditions for making titanium alloy test parts 

and the design of the in-process system. Sec.5.4 explains the graph-theoretic approach for 

the analysis of in-process sensor data. In Sec. 5.5, the graph-theoretic approach is used to 

detect the level of porosity in the test coupons from the in-process sensor signals acquired 

during experiments. The conclusion and future work are summarized in Sec. 5.6. 
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5.2 Prior Work and Challenges in In-process Sensing in DED 

This literature review is divided into two parts. The first part summarizes the DED 

process from the process mapping perspective by focusing on a review of the literature 

concerning the effect of process parameters on mechanical and physical properties. The 

second part summarizes the research in the area of in-process sensing and analytics in DED.  

There are numerous factors in DED; some of these consequential factors  are 

enumerated in accordance with the schema described by Craeghs et al. for a different 

process (PBF) in  Table 5-1[81]. Typical process defects in DED include cracking and part 

geometry distortion due to high cooling rates; improper fusion or bonding of layers called 

lack-of-fusion porosity due to either insufficient energy for melting the material (i.e., the 

powder flow rate is excessive in relation to the energy supplied) or due to deficient powder 

flow rate relative to the volume; porosity from powder contamination and gas entrapment; 

microstructure heterogeneity defects as a consequence of thermal phenomena; and inter-

road (hatch line) defects resulting from poor process planning [81]. Within the context of 

process mapping, Vetter et al. listed the various material-process-machine interactions 

governing the DED process [147].  A review of different control strategies for these defects 

is provided by Boddu et al. [96]. 

We direct the reader to recent studies by Shamsaei et al. and Wang et al. which discuss 

the effect of process parameters on the microstructure and physical properties of AM parts. 

For instance, a recent study by Foster et al. examined the effect of dwell time (the time 

between deposition of successive layers) on the microstructural evolution for Ti-6Al-4V 

and Inconel 625, and demonstrated that a longer dwell time in general results in finer 
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microstructure in both materials, and consequently impacts the resulting mechanical 

properties, namely, microhardness and yield strength. Furthermore, the authors found that 

the microstructure varies with the distance from the substrate. For instance, in Inconel 625 

the dendritic spacing is finest near to the substrate, and progressively increases with height, 

and decreases after reaching a peak value.  

Table 5-1: Boundary conditions and input parameters in DED processes. 

Boundary Condition Factors Controllable Input Parameters 

Part Design 

Factors 

Material Factors Environmental 

Factors 

Process-

Machine 

Factors 

Laser Optics 

and Scanning 

Factors 

Part 

orientation. 

Part 

overhang. 

Platen 

(Substrate) 

type and 

thickness. 

Location, 

Contact 

area and 

design of 

supports. 

Material type 

and purity. 

Powder particle 

size and 

distribution. 

Powder capture 

and reuse. 

Foreign residue 

as a result of 

processing. 

Powder 

flowability. 

Powder mixing 

in the hopper. 

Oxygen 

concentration. 

Chamber 

temperature and 

chamber gas 

factors. 

Substrate 

temperature. 

Cleanliness of the 

lens and exhaust 

efficiency. 

Number of 

degrees of 

freedom of table 

and laser. 

Integrity/accuracy 

of the machine 

elements. 

Powder flow 

rate. 

Layer height. 

Carrier and 

shielding flow 

rate. 

Wavelength 

and operating 

mode. 

Nozzle stand-

off. 

Injection angle. 

Nozzle 

geometry. 

Laser power, 

spot size and 

geometry. 

Beam 

coherence, 

shape, and 

focus integrity. 

Rastering 

(hatch) pattern 

and spacing. 

Laser scan 

speed 

(velocity), 

hatch distance. 

Dwell time. 
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In a similar vein, Keist and Palmer investigated the effect of geometry and build 

direction on the microstructure and tensile strength of samples. Test samples were made 

from thin-wall and thick-wall structures (wall with multiple hatches) deposited in two 

different geometric patterns. The tensile strength of the test samples extracted (machined) 

interacted with the shape, number of hatches (wall thickness), and the direction (parallel or 

perpendicular to the build direction).  

This brief summary of the literature thus exemplifies the complex interactions between 

DED process parameters, thermal phenomena, part geometry, microstructural evolution, 

and part properties.  In the context of monitoring and control of DED processes, research 

efforts can be stratified into three aspects; a review of these techniques is available in 

Reutzel et al.[148]. 

(i) Melt pool monitoring chiefly devolves into measuring the thermal aspects of the 

deposition process. The shape, intensity, and temporal aspects of the melt pool are 

measured, typically using infrared pyrometers and CMOS or a CCD camera fitted 

with a NIR filter.  Infrared (IR) sensors are also often used to get a reading of the 

temperature of the melt pool.  

(ii) Powder delivery rate monitoring uses laser photodiodes and imaging techniques to 

assess the adequacy of the powder flow rates. The sensing system is typically 

coupled to the delivery tube (Hu and Kovacevic [149]) or the nozzle side (Boddu 

et al.[150]). 

(iii) Layer morphology monitoring involves assessing the shape and physical aspects of 

the deposited layer. Traditionally, a line laser is projected on a deposited layer. The 

reflection is captured using a camera and subsequently analyzed using image 
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processing techniques (to account for distortion). The output is the layer height (or 

clad height). Recently, laser spectroscopy has been investigated as a means to go 

beyond simple height measurement towards measurement of the characteristics of 

a deposited road (hatch spacing) [138]. 

Vetter et al. [147] discussed the various factors and interactions in DED, they delineated 

the following two interaction zones concerning the powder flow that have a consequential 

impact on the quality of the build. 

(i) The first interaction zone occurs in the region where the powder leaves the 

nozzle, and involves the laser, gas, and powder.  

(ii) The second interaction zone occurs at the region where the powder contacts 

the substrate and involves the substrate in addition to the first interaction zone. 

To understand the effect of these interactions on the build quality, Vetter et al. [147] 

integrated multiple sensors into the machine. The material flow properties were 

characterized using an optical sensor coupled to a spectrometer. The shape of the stream 

was captured using a CCD camera, while the powder flow characteristics were recorded 

with four silicon photodiodes, and finally, a pyrometer measured the melt pool temperature. 

These sensors enabled the authors to map important aspects, such as powder flow rate and 

temperature gradients at various locations between the nozzle and substrate.  

Nassar et al. [138] captured the optical emission using a spectrometer in the second 

interaction zone; the setup was identical to the one used herein. The central premise was 

that the optical emission spectrum of an incompletely fused hatch would be markedly 

different from that of a well-fused hatch. The emission spectrum measurement was in the 
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200 nm to 1100 nm range, which spans the UV to near infrared (NIR) spectrum. The 

sampling rate of the spectrometer was maintained close to 8 Hz. Nassar et al. [138] 

deposited Ti-6Al-4V layers with varying hatch spacing; the hatch spacing was 

progressively increased during the deposition of each layer [138].  

At the outset, the optical emission spectra was devoid of any sharp peaks for a well-

fused portion of the layer, i.e., where the hatch spacing was smaller. The absence of sharp 

peaks in the optical emission spectrum meant that distinctive elemental forms were not 

detected. Conversely, if clear spikes corresponding to the powder elements were detected, 

then, it implied that the material was not well-fused. The experimental results reported by 

Nassar et al. showed spikes corresponding to Vanadium and Titanium in those portions of 

the part where the hatch spacing was excessive. Taking this rationale forward, the authors 

quantified the optical emission spectrum.  

This quantification was done by using the line-to-continuum ratio found by computing 

the ratio of the area under a particular wavelength band to the lower envelope of the area 

of the entire 200 nm to 1100 nm spectrum, as opposed to the two specific spectra at the 

430 nm and 520 nm regions. The line-to-continuum ratio was used as a monitoring statistic 

in a control chart-like schema. Bartkowiak [151] also investigated spectroscopy as a means 

for online monitoring in DED. A spectrometer was used by Bartkowiak to observe the 

optical emission in the 247 μm – 472 μm (i.e., UV to the violet-blue region of the visible 

spectrum). Visibly evident differences in the emission spectra are reported for different 

process conditions. However, quantification of the differences in spectra with respect to 

the processing conditions is not reported. 
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 Song and Mazumder [139] also used laser spectroscopy for monitoring the elemental 

composition of the deposit. They plotted calibration curves mapping the spectrum behavior 

versus material composition. Experiments were conducted with chromium-based tool steel 

powders with varying chromium compositions. In a related work, Muzumder et al. [139] 

used optical spectrometry to identify elemental phase transformation in various powder 

compositions, including, iron-nickel, iron-titanium, and iron-chromium binary powders. In 

an alternative development, Mazumder et al. [139] used a system with three CCD cameras 

for measuring the height of the melt pool, along with a dual color pyrometer for measuring 

the temperature of the melt pool. The instantaneous layer height was tracked by a 

triangulation method from the images gathered by the CCD cameras. The dual color 

pyrometer operated in the NIR – SWIR range (1.3 μm and 1.4 μm).  

If the layer height deviates above the set point due to deposition of excessive powder 

flow rate, the laser power is reduced so that material fusion reduces. In contrast, if the layer 

height is less than the set point, the temperature sensor reads a proportionally lower 

temperature. This in turn activates a controller that increases the laser power, and also 

increases the amount of material deposited to compensate for the drop in layer height.  

Mazumder et al., [139] used this feedback control approach to build turbine blade 

sections with mitigated distortion in shape due to inordinate heating of narrow, thin wall 

sections. In an earlier work, Song and Mazumder [152] described a state-space predictive 

controller based on readings from the dual color pyrometer alone.  In a recent work by 

Wang et al., a physics-based feedback control approach, as opposed to purely data-driven 

method, was used. The road width and height was measured in-process with a 3D spatial 
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optical profilometer, and the laser speed and deposition speed were used as input variables 

to control the melt pool cross-section area [153].                             

Bi et al. [154, 155] developed an approach using a single-color infrared pyrometer for 

closed-loop control of the laser power in DED. The signals from the IR pyrometer sensor 

were experimentally correlated with the laser power and quality of the deposited surface. 

The control strategy was to maintain the laser power (which was also separately measured) 

at a set point by correlation with the IR pyrometer. Essentially, the pyrometer signal was 

coupled to the laser power. As the pyrometer signal increased (decreased) from an a priori 

set threshold, then the laser power was increased (decreased).  Bi et al. [155]also studied 

the effect of laser power on deposited layer quality in terms of presence of surface defects 

and oxidation. The above-mentioned control strategy was tested on two powder material 

combinations, namely, stainless steel and Ni-based super alloys.   

Researchers have recently begun to integrate the data being acquired using in-process 

sensors with contemporary machine learning approaches capable of extracting signal 

patterns, and further correlating these patterns with phenomena evocative of specific 

defects from the large amount of data. For instance, Khanzadeh et al. [156] investigated 

the effect of a heat affected zone on the emergence of the pores in the direct laser deposition 

process. They demonstrated that by monitoring the features of melt pool images acquired 

from a dual-wavelength pyrometer, the onset of defect formation in terms of lack-of-fusion 

or gas pores could be predicted through machine learning. In this study, they used the 

statistics obtained from functional principal component analysis (FPCA) as predictors to 

estimate the probability of pore formation [156]. 
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5.3 Experimental Setup and Data Acquisition 

This section is divided into two parts: Sec. 5.3.1, describes the experimental conditions 

used to produce the test coupons;  and Sec. 5.3.2, describes the in-process sensing setup. 

5.3.1 Experimental Test Conditions 

The Optomec LENS MR-7 DED system was used in this work. The following process 

parameters were varied: laser power (P, Watt), powder flow rate (F, g/min), and hatch 

pattern (H, cross hatch pattern, and parallel hatch pattern). Other key parameters that were 

maintained constant are as follows: print speed (10.6 mm/sec), layer height (0.254 mm), 

and hatch spacing (1 mm). Concerning the hatch pattern, for the parallel pattern, the laser 

paths in consecutive layers were in the same direction, whereas, in the cross hatch pattern, 

there was a 90o rotation in the hatch direction in alternate layers. 

The material used for printing the test parts was the titanium alloy Ti-6Al-4V in 

powder form consisting of spherical particles with median powder diameter (D50) of 37.72 

μm. A 500 W fiber laser with a second moment diameter of 1.24 mm provided the energy 

for melting the powder. The test part was a cuboid-shaped coupon with the dimensions of 

15 mm × 15 mm × 10 mm (L×W×H – the build direction is parallel to the edge), which 

was printed under the ten combinations of printing parameter settings reported in Figure 

5-1. Each test coupon was comprised of 40 layers with 12 hatches per layer built on a 6.35 

mm-thick Ti-6Al-4V substrate. A photograph of a representative coupon and the offline 

X-ray Computed Tomography (XCT) slices taken at the second layer for each of the ten 

different printing conditions is shown in Figure 5-1.  
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5.3.2 In-Process Heterogeneous Sensor Setup and Data Acquisition 

In this study, two different types of sensor signatures were acquired along with the 

time and location of the laser beam during the build. The first type of sensor installed on 

the machine was a spectrometer that measured the line-to-continuum ratio of two spectral 

emissions during the deposition process. The second type of sensor was a CCD camera that 

imaged the melt pool plume region. The specifications associated with these sensors are 

reported in Table 5-2. A photograph of the apparatus is shown in Figure 5-2. 

Table 5-2: The information related to the spectrometer and plume camera used in the DED machine. 

Specifications 

Plume Camera Spectrometer 

Basler Pilot piA640-210gm CCD 
camera 

Ocean optics HR2000+ UV-VIS-IR 
spectrometer 

Locations 
152 mm from laser interaction zone 

inclined at 30o angle relative to the 

substrate in the vertical plane. 

109 mm from laser interaction zone 

inclined at 20o angle relative to the 

substrate in the vertical plane. 

Detail 

Integration time: 20 ms 
Wavelength: [200 nm -1100 nm] 
Slit width: 10 µs 
Resolution: 1 nm (FWHM) 
optical fiber: 600 μm core diameter 

Exposure time: 10 ms 
Between images lag: 20 ms 

 

 

Figure 5-2: The image of the spectrometer and plume camera integrated into the DED machine.  
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The features extracted from the spectrometer signal and plume camera images were 

the line-to-continuum ratio and total plume area, respectively. Two line-to-continuum 

ratios were estimated at wavelengths of 430 nm and 520 nm that corresponded to the 

emission of Ti (I)[157]. The concept of the line-to-continuum ratio and optical emission 

spectroscopy for AM applications was explained in recent publications by Nassar et 

al.[127, 138]. The total plume area was calculated after binarization of the plume images. 

The difficulty in using the raw (unprocessed) signal features to differentiate between 

different levels of porosity is illustrated in Figure 5-3. Using the same number of data points 

in three layers (500 total measurements), the histogram of the line-to-continuum ratio at 

520 nm was plotted for an identical number of bins (n = 15) to provide a consistent metric 

for comparison. A subtle distinction in the shape of the empirical probability distribution 

is evident in Figure 5-3(a). Similarly, Figure 5-3(b) represents the sample data for the 

plume imaging area. From these frequency plots, it is evident that while a subtle difference 

in the histogram shape can be discerned, quantification of the same is exceedingly 

challenging. In the forthcoming section, the graph-theoretic approach is described to 

combine the data from two sensors.  
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5.4 Proposed Methodology 

The proposed approach to synthesize sensor information, and subsequently, detect the 

porosity levels in a layer has the following steps: 

Step 1. Combining the data from various sensors in one layer in the form of the network 

graph. 

Step 2. Analyzing the data across layers using the concept of Kronecker product of graphs, 

and thus forming a dictionary of signal patterns. 

Step 3. Training a machine learning algorithm to predict the average porosity value in a 

layer as a function of the dictionary (input). 

We herewith detail each of these steps. 

Step 1: Combining the data from multiple sensors into a network graph 

As explained previously, at first, the representative features from each of the sensor 

data in-process are extracted. In the case of the spectrometer, the line-to-continuum ratio 

around the 430 nm and 520 nm wavelength range were extracted. Thus two channels of 

data were obtained from the spectrometer. In the case of the plume camera data, the total 

projected area of the image was estimated using an image processing technique. 

Accordingly, There is a total of three channels of data.  

Given the different sampling frequencies for the spectrometer and plume camera, the 

line-to-continuum ratios and the plume total area measurements were not identical in the 

number of samples gathered in a layer. To overcome this impediment, the sensor data 

streams associated with the middle section of the 10 mm × 10 mm test part were used. 
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Focusing our analysis on sensor data acquired from the middle area of the test part allowed 

eliminating the effects, such as the ill-developed and abrupt changes in the plume image 

around the edges. Lastly, the data from the spectrometer and the plume camera were 

downsampled to 30 data points per layer (15~18 individual data points were averaged). 

Labeling the two line-to-continuum measurements at a given instant t in layer L as 𝑥𝑡
𝐿 

and 𝑦𝑡
𝐿, and the corresponding plume area as 𝑧𝑡

𝐿, the sensor data for a particular layer (L) 

could be represented in matrix form 𝑋𝐿 as follows: 

𝑋𝐿 =

[
 
 
 
 
 
𝑥1
𝐿

𝑥2
𝐿

⋮
𝑥𝑡
𝐿

𝑦1
𝐿

𝑦2
𝐿

⋮
𝑦𝑡
𝐿

𝑧1
𝐿

𝑧2
𝐿

⋮
𝑧2
𝐿

𝑥𝑁
𝐿 𝑦𝑁

𝐿 𝑧𝑁
𝐿 ]
 
 
 
 
 

 (5-1) 

In the matrix 𝑋𝐿, each row is a data point obtained at the time instant t, indexed by a 

sensor along each column. This data was converted into a weighted network graph as 

discussed in our previous works, and thus a brief summary is only mentioned herewith [13, 

25]; The Mahalanobis distance between each row of the data 𝑋𝐿 is calculated as follows, 

𝑤𝑎𝑏 = (𝑟 𝑎
𝐿 − 𝑟 𝑏

𝐿)𝐶−1(𝑟 𝑎
𝐿 − 𝑟 𝑏

𝐿)T (5-2) 

where 𝑟 𝑎
𝐿  and 𝑟 𝑏

𝐿are the ath and bth row of the matrix 𝑋𝐿, and 𝐶−1 is the inverse of the 

covariance matrix of 𝑋𝐿. The calculated distances using Eq. (5-2) will be represented as a 

matrix 𝑆𝐿 , called the similarity matrix. 

𝑆𝐿 = [𝑤𝑎𝑏] (5-3) 
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The matrix 𝑆𝐿  is the weighted, undirected graph representation of the data in layer L. 

For ease of notation, the graph of layer L is denoted as 𝐺𝐿. In summary, the individual 

sensor data in each layer is transformed into a weighted undirected graph 𝐺𝐿. 

Step 2: Building a dictionary of graph-theoretic features related to the porosity level  

Given a graph 𝐺𝐿 for each layer L, every test part can be described as a set of N graphs 

(N = 40 in this study, i.e., 40 layers), through the following Kronecker product random 

walk kernel, 

D𝑐 = [
𝑘(𝐺1⊗𝐺1) ⋯ 𝑘(𝐺1⊗𝐺𝑁)

⋮ ⋱ ⋮
𝑘(𝐺𝑁⊗𝐺1) ⋯ 𝑘(𝐺𝑁⊗𝐺𝑁)

] (5-4) 

In the above matrix D𝑐, called the dictionary, the subscript c refers to the part 

condition; c = {1, 2, …, 10} in this work, since there are 10 process setting combinations 

as evident in Figure 5-1. Further, 𝐺𝑖 ⊗𝐺𝑗 is the Kronecker product of graphs 𝐺𝑖 and 𝐺𝑗 

which are representative of the sensors data for layers i and j, respectively. As an example, 

the Kronecker product for matrices X and Y is described as: 

Given,  𝑋 = [
1 0 1
0 0 1
0 1 0

] ;  𝑌 = [
1 1
1 0

], the Kronecker product of X and Y (𝑋 ⊗𝑌) is 

described in Eq. (5-5). 
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𝑋⊗ 𝑌 = [
𝑋(1,1).𝑌 𝑋(1,2). 𝑌 𝑋(1,3).𝑌
𝑋(2,1).𝑌 𝑋(2,2). 𝑌 𝑋(2,3).𝑌
𝑋(3,1).𝑌 𝑋(3,2). 𝑌 𝑋(3,3).𝑌

] 

=

[
 
 
 
 
 1. [

1 1
1 0

]

0. [
1 1
1 0

]

0. [
1 1
1 0

]

0. [
1 1
1 0

]

0. [
1 1
1 0

]

1. [
1 1
1 0

]

1. [
1 1
1 0

]

1. [
1 1
1 0

]

0. [
1 1
1 0

]]
 
 
 
 
 

 

=

[
 
 
 
 
 
1 1 0
1 0 0
0 0 0
0 0 0
0 0 1

0 1 1
0 1 0
0 1 1
0 1 0
1 0 0

0 0 1 0 0 0]
 
 
 
 
 

 

(5-5) 

As Eq. (5-5) demonstrates,  𝑋 ⊗ 𝑌 is the multiplication of each entry in matrix 𝑋 by 

the whole matrix 𝑌. Therefore, if matrices 𝑋 and 𝑌 have the dimensions of (𝑝 × 𝑞) and 

(𝑟 × 𝑠) respectively, the 𝑋 ⊗ 𝑌 would be a  (𝑝 × 𝑟) × ( 𝑞 × 𝑠) matrix. Next, the so-called 

random walk kernel kernel 𝑘(𝐺𝑖 ⊗𝐺𝑗), representative of the similarity between graphs 𝐺𝑖 

and 𝐺𝑗 is obtained from the Kronecker product (𝑋 ⊗𝑌) as follows [158], letting, 𝐺𝑖 ⊗

𝐺𝑗 = 𝑆𝑖,𝑗, 

𝑘(𝐺𝑖⊗𝐺𝑗) = 𝑘(𝑆𝑖𝑗) = ∑ (I − 𝛾𝑖𝑗(𝑆𝑖𝑗))
−1

∀rows,
columns 

 
(5-6) 

In graph-theoretic terminology, a random walk encapsulates the number of sequential 

nodes and edges that need to be traversed to reach a random node B from a starting node 

A.  Equation (5-6) describes the calculation of the random walk kernel where I is the 

identity matrix and 𝛾𝑖,𝑗 is the decay constant. The decay constant 𝛾𝑖,𝑗 is the inverse of the 

maximal sum taken over the rows (or columns) of 𝑆𝑖,𝑗 = (𝐺𝑖 ⊗𝐺𝑗). 
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Step 3: Predicting the average porosity value in a layer using the dictionary. 

This step had two sub-parts: the first was training a machine learning model to learn 

the relationship between the dictionary  D𝑐 and the corresponding porosity level, and the 

second to predict the corresponding porosity level in a layer given new sensor data. 

The porosity level was quantified as the average pore length. At first it is observed that 

the data from layer i of a part resides in the corresponding row i of the matrix D𝑐. 

Accordingly, the ith row of the matrix D𝑐 is paired with the corresponding pore length 

observed for the ith layer from the XCT data. The procedure to extract the porosity in the 

form of desired porosity features is explained in Sec. 5.5.1. Essentially, if there were N 

rows and N columns in D𝑐, each row was an input vector corresponding to a layer and each 

column was an independent variable. The output variable was the corresponding average 

pore length for the layer obtained from the XCT data.   

To simplify the problem, instead of combining all the N variables (columns) in the ith 

row of the dictionary D𝑐, a dimension reduction technique is used. This was done by 

subjecting the dictionary D𝑐 to the well-known principal component analysis (PCA), and 

using only the first two principal components, instead of all the columns of the matrix D𝑐,  

as the input to predict the porosity of each layer. On the output side (porosity), instead of 

using the average pore length, it is classified into either two or three pre-selected discrete 

classes. For predicting the porosity-level given the input sensor signals, the popular and 

easily implemented support vector machine (SVM) technique with a linear discriminant 

kernel was used.  
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The second part of this step was to make a prediction once new sensor data was 

obtained. The approach is as follows. Consider a data stream 𝑋𝑁𝑒𝑤  for a new layer identical 

to the matrix 𝑋𝐿 in Eq. (5-1).  Following the procedure described in Eq. (5-2) and (5-3), 

the data 𝑋𝑛𝑒𝑤 is first converted into the corresponding graph form 𝐺𝑛𝑒𝑤 . Next, the matrix 

𝜃𝑛𝑒𝑤 is obtained as follows, where 𝐺1 to 𝐺𝑁 are the older data. 

𝜃𝑛𝑒𝑤 = [𝑘(𝐺𝑛𝑒𝑤⊗𝐺1) … 𝑘(𝐺𝑛𝑒𝑤 ⊗𝐺𝑁)] (5-7) 

The input vector in Eq. (5-7) was presented to an a priori trained machine learning 

model after the PCA procedure, to obtain the corresponding porosity level given the data 

𝜃𝑛𝑒𝑤.  

5.5 Results and Discussion 

This section is divided into two parts. In Sec. 5.5.1 the statistical significance of three 

process parameters is analyzed, namely: laser power (P, Watt), powder flow rate (F, g/min), 

and hatch pattern (H, cross vs. parallel) on the average pore length in each layer. 

Furthermore, in Sec. 5.5.2, the graph-based analysis of the in-process sensor data is used 

as described in the preceding Sec. 5.4, to predict the quality of a layer in terms of the 

average pore length. 

5.5.1 Offline Statistical Analysis of Porosity from XCT Slices 

As explained in Sec. 5.3, this work involves the DED of 10 test parts. Subsequent to 

deposition, these parts were analyzed with X-ray Computed Tomography (XCT). In this 

section, the process parameters with the severity of lack-of-fusion porosity level in terms 

of the average pore length per layer are linked. Then, each slice of the XCT (the step height 
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for an XCT slice is 15 µm) is analyzed using an image processing technique which 

consisted of two steps which are illustrated in Figure 5-4. 

 

Figure 5-4: The image processing steps for the extraction of pores from XCT slices. 

1. Cropping and rotation of the XCT slices to remove edge effects. 

Given the non-homogeneous and jagged shape of the part near the edges, the original 

XCT images were cropped and rotated. Cropping left the middle 10 mm × 10 mm in the 

X-Y plane of the test part for analysis. Next, the images were rotated to synchronize the 

XCT with the coordinate system of the DED machine. 

2. Extracting the average pore length layer from the binarized XCT images.  

The XCT images were first binarized using image processing techniques, with a 

heuristically set threshold value for each test part. Further, the step height of the XCT slices 

was less than the layer height; roughly 17 XCT slices were related to one deposited layer. 

Hence, the pores for 17 consecutive slices were projected on a single plane. Figure 5-5 

represents the distribution of the estimated porosities from 6 printed parts with identical 

laser power (P = 300 W) but different flow rate and hatch pattern settings.  

A visual comparison between each column of Figure 5-5 reveals that by increasing the 

volume of powder flow rate under the same laser power, porosity tended to increase in 



176 

 

severity. This phenomenon is explained as follows; by adding more material to the laser 

interaction zone, the energy density available for fusion of a unit mass of powder 

considerably reduced, which in turn manifested in lack-of-fusion porosity. 

We used the average pore length in a layer as a measure of layer quality. The pore 

length was determined as the length of the major axis of an ellipse that encompassed a 

pore. The average pore lengths for the 10 test parts aggregated across 40 layers are 

tabulated in Table 5-3. The effect of the three process parameters, power (P), powder flow 

rate (F), and hatch pattern (H) on the average pore length per layer is visualized in Figure 

5-6. Further, to statistically quantify the printing conditions, a generalized linear regression 

analysis is conducted with the process parameters as inputs and the average pore length as 

output, which revealed that all the three main parameters were statistically significant 

determinants of average pore length (at statistical significance level of α = 5%).  

Moreover, the following interaction effects were also statistically significant: P × H, 

and P × F. The regression coefficient (R2-adj.) was 47% with all terms (main effects and 

interactions) included, and 42% with only main effects, i.e., P, F, and H. This statistical 

analysis indicated that the process parameters were capable of explaining less than 50% of 

the variation in the data. In other words, if the process parameters were to be used as the 

sole predictors of lack-of-fusion porosity in a layer, the fidelity of the prediction would be 

less than 50%. Accordingly, there is a need to augment the process parameters with in-

process sensor signatures to predict pore formation in DED. 
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Figure 5-5: The flaws extracted from the XCT. 

The XCT images are from the same layer for samples that were processed under 300 W laser 

power but differing flow rate and hatch pattern Samples a, b, and c have the parallel hatch pattern 

vs. d, e, and f that have a cross hatch pattern. The powder flow rate increases from top to the bottom. 

 
Figure 5-6: Main effects plots each DED process parameter. 

(a) laser power, (b) powder flow rate, (c) and hatch pattern. The error bars represent a variation of 

one standard deviation. 
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Table 5-3: Printing conditions of 10 parts and their estimated average and maximum pore length. 

Laser 
Power 

[W] 

Powder 

Feed 

Rate 

[g/min] 

Hatch 

Pattern 

Energy per 
unit mass 

of powder 

flow 

 [kJ/g] 

Mean of 
Maximum 

Pores 

Length over 

40 layers 
[µm] 

Mean of 
Average 

Pores 

Length over 

40 layers 
[µm] 

Remarks Assigned class 

300 4 Parallel 4.5 1277 302 Low energy 

Average Pore 

Length per layer 
> 200 µm 

300 3 Parallel 6 1356 294 Low energy 

300 3 Cross 6 794 235 Low energy 

300 2 Parallel 9 629 213 
Insufficient 

mass flow rate 

300 4 Cross 4.5 575 189 Low energy 
50 µm < Average 
Pore length per 

layer < 200 µm 

300 2 Cross 9 400 165 
Insufficient 

mass flow rate 

475 4 Cross 7.125 136 70  

425 3 Cross ~ 8.5 85 39  Average Pore 

length per layer 
< 50 µm 

425 3 Parallel ~ 8.5 102 34  

475 4 Parallel 7.125 62 26  

The following inferences can be drawn based on these statistical analysis results: 

1. The average pore length is, typically, inversely proportional to the energy per unit 

volume of powder flow. The reasoning is that more energy was required to fuse a 

proportionally larger amount of material. Hence, the laser power (P) had a great effect 

on the part quality, as seen in Figure 5-6(a). Typically, energy per unit mass of over 7 

kJ/g was found to be requisite.  

2. There is a significant interaction effect amongst process parameters, attesting to the 

complexity of the process. For instance, severe porosity will result although the energy 

supplied is sufficiently high to melt the powder if the amount of powder mass flow rate 

is insufficient vis-à-vis the volume. For instance, in the case of the settings with powder 

flow rate of 2 g/min, the level of porosity was inordinately high, despite the highest level 

of energy supplied (9 kJ/g).   
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3. The average pore lengths per layer can be broadly demonstrated to fall under two 

categories, namely, less than 50 µm and over 50 µm. A more granular resolution at 

three-levels would be the less than 50 µm, between 50 µm and 200 µm, and over 200 

µm levels  

In the forthcoming section (Sec. 5.5.2), these two-level and three-level 

demarcations will be invoked as discriminants of layer quality. 

5.5.2 Online Detection of Defects from In-Process Sensor Data 

In this section, the average porosity level in each layer is divided into two and three-

level classes, as depicted in Table 5-3, and subsequently, train a linear discriminant support 

vector machine (SVM) model to predict the porosity-level given the sensor data. To train 

the SVM model, two different techniques contingent on either including or excluding the 

knowledge of process conditions were used in the prediction algorithm. 

In the first scenario, the data from 30 random layers is selected for each of the ten parts 

to train the corresponding matrix D𝑐. Therefore, using Eq. (5-4), each process condition 

was associated with a unique dictionary which was a 30×30 matrix. The relatively small 

size of this dictionary was advantageous from a computational perspective. In other words, 

there are ten dictionaries D𝑐, c = {1, 2, …10} corresponding to the 10 test parts. The 

rationale is that the parameters such as laser power (P), powder flow rate (F), and hatch 

pattern (H), etc., are set by the operator, and will seldom change. Hence, given a stream of 

sensor data, these parameters were a priori information that could be used in the model. 

In the second scenario, the dictionary  D𝑐 was built based on the random sampling 

available from all the 10 test parts. Given that there were 40 layers in each of the 10 test 
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parts, a total number of 400 layers was used as a base set for our sampling. Then 300 layers 

from the 400-layer data set are sampled to build our training matrix D𝑐 which was a 

300×300 matrix (using Eq. (5-4)). In this scenario, the processing parameters were not 

included, in that the dictionary was not stratified per the process conditions. Then, 

following Eq. (5-7), the rest of the 100 layers are used for testing the fidelity of the 

algorithm. 

A representative result of the two training scenarios in the form of a confusion matrix 

is shown in Table 5-4. From Table 5-4 (a), it is evident that treating the process parameters 

as known entities led to a statistically higher classification fidelity compared to the scenario 

where the process parameters were assumed to be unknown (Table 5-4 [b]). Further 

examination of the confusion matrix in the known process condition scenario revealed, as 

anticipated, classifying the average pore length in two levels was accomplished with 

greater statistical fidelity compared to the three-level case. 

If the statistical fidelity of classification is expressed in terms of the F-score, the two-

level classification fidelity was 85% compared to 70% for the three-level case. The F-score 

includes both the type I and type II errors where a higher F-score is desirable. Continuing 

with the analysis, this study is extended to include only statistical features, namely, mean, 

standard deviation, range, skewness, kurtosis, and interquartile range of the spectrometer 

and plume camera sensor signatures as features (instead of the graph-theoretic features). 

The results are juxtaposed in Table 5-5, which reveals, affirming our hypothesis, that using 

the graph-theoretic features extracted from sensor signatures as discriminants of part 

quality leads to higher fidelity compared to the traditional statistical features. 
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Table 5-4: (a) Confusion Matrix for two-level and three-level porosity detection. 

with graph random-walk technique assuming process conditions are known. 

Confusion Matrix for two-Level Classification  

True Classes ↓ 
Predicted Classes 

Low Porosity 
Average pore length per layer < 50 µm 

High Porosity 

Average pore length per layer > 50 µm 

Low Porosity 20 (out of 26) 6 (False Alarm) 

High Porosity 12 (Failing to detect) 62 (out of 74) 

Confusion Matrix for Three-Level Classification  

True Classes ↓ 

Predicted Classes 

Low Porosity  

Average pore length per 
layer < 50 µm 

Medium Porosity  
50 µm < Average pore 

length per layer < 200 µm 

High Porosity  

Average pore length per 
layer > 200 µm 

Low Porosity 20 (out of 26) 0 6 

Medium Porosity 4 21 (out of 37) 12 

High Porosity 6 9 22 (out of 37) 

Table 5-4: (b) Confusion Matrix for two-level and three-level porosity detection. 

with graph random-walk technique assuming process conditions are unknown. 

Confusion Matrix for two-Level Classification  

True Classes ↓ 
Predicted Classes 

Low Porosity 
Average pore length per layer < 50 µm 

High Porosity 
Average pore length per layer > 50 µm 

Low Porosity 2 (out of 34) 32 (False Alarm) 

High Porosity 7 (Failing to detect) 59 (out of 66) 

Confusion Matrix for Three-Level Classification  

True Classes ↓ 

Predicted Classes 

Low Porosity  

Average pore length 

per layer < 50 µm 

Medium Porosity  
50 µm < Average pore 

length per layer < 200 µm 
High Porosity Average pore 
length per layer > 200 µm 

Low Porosity 5 (out of 34) 0 29 

Medium Porosity 3 0 (out of 34) 31 

High Porosity 5 0 27 (out of 32) 
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Table 5-5: Performance of the graph classification approach in comparison with the statistical 
feature’s classification for the 2-level and 3-level porosity detection. 

Input Data 

2-level F Score (%) 3-level F Score (%) 

Conditions 

Known 
Conditions 

unknown 
Conditions 

Known 
Conditions 

unknown 

Graph 
Random-Walk 

84.6 (6.3) 43.6 (4.6) 71.5 (3.9) 21.2 (3.1) 

Statistical 

Features 
40.3 (1.0) 40.1 (1.2) 37.3 (2.5) 36.9 (3.5) 

5.6 Conclusions 

This work developed and applied an approach for combining data from multiple 

sensors to detect the onset of lack-of-fusion porosity in the DED AM process of titanium 

alloy (Ti-6Al-4V) parts; it thus takes the first steps towards establishing the following links 

in the AM process chain: 

Process parameters → In-process sensor signatures → Defects (lack-of-fusion)  

The specific contribution of this work is enumerated as follows. 

1. The effect of three process conditions, namely, the laser power (P), powder flow rate 

(F), and hatch pattern (H) on the average pore length was quantified. The average pore 

length was obtained through post-process image analysis of the XCT slices of the part. 

The resulting analysis of the data showed that all the parameters above (P, F, and H) 

have a statistically significant effect on the average pore length with the laser power 

having the largest effect. Broadly, the average pore length is inversely proportional to 

the energy per unit volume of material flow rate, providing the material flow rate is 

sufficient per the part volume. 
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2. Three channels of in-process sensor data were acquired during the build, namely, two 

channels of line-to-continuum optical emission spectra each obtained at 430 nm and 

520 nm wavelengths, and the total area of the melt pool plume from a CCD camera.  

3. The data from the two spectrometer wavelengths and plume camera for a layer were 

combined and represented in the form of a network graph. Further, the data across 

layers was analyzed using the concept of the Kronecker product (tensor product) of 

graphs. This approach facilitates online analysis of the data, whereby the inception of 

lack-of-fusion related porosity in layers is predicted with statistical fidelity (F-score) 

approaching 75% - 85%. In comparison, the traditional statistical feature-based 

machine learning had corresponding fidelity of 35% - 40%.  

This work lays the foundation for a qualify-as-you-build framework in AM processes, 

whereby impending defects are identified before the next layer is deposited, thus allowing 

opportune corrective action to be taken in case of a fault. Furthermore, given the 

availability of hybrid DED systems which include a machining attachment apart from a 

laser deposition head, it is possible to extend the qualify-as-you-build concept to a correct-

as-you-build paradigm, wherein a defect such as lack-of-fusion porosity is detected using 

sensor data, and corrected before the next layer is deposited by entirely machining the 

defect afflicted layer. 
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Appendix 

As described in Sec. 5.5.2, the target output is to predict the average pore length in a 

layer given the sensor data. Additional analysis was also implemented using the maximum 

pore length in a layer as an output feature; the F-score values for the maximum pore length 

per layer as an output feature are represented in Table 5-3. While the classification fidelity 

for the two-level case was nearly identical to those reported in Table 5-4, the three-level 

results were inferior. This is probably due to the precision required in the data to detect a 

point statistical measure, such as a maximum length of pores in a layer as opposed to an 

aggregate measure akin to average pore length. 

Table 5-6: Performance of the graph classification approach in comparison with the statistical 
features classification using the maximum pore length. 

Input Data 

2-level F-Score (%) 3-level F-Score (%) 

Conditions 

Known 
Conditions 

unknown 
Conditions 

Known 
Conditions 

unknown 

Graph Random-
Walk 

84.6 (6.3) 44.4 (5.1) 56.9 (2.7) 25. 0 (0.6) 

Statistical Features 40.3 (1.0) 40.1 (1.2) 37.3 (2.5) 36.9 (3.5) 
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6 Conclusions and Future Work 

6.1 Research Summary 

The goal of this dissertation is to detect defects in metal parts made using additive 

manufacturing processes through data acquired from sensors incorporated into the 

machine. This goal leads towards the expansive, overarching vision of a smart additive 

manufacturing paradigm wherein defects are not only detected as the part is being built, 

but also immediately repaired inside the machine using a corrective closed-loop control 

strategy.  

The advent of additive manufacturing offers unprecedented flexibility in product 

design and materials and thus has the potential to revolutionize strategically important 

sectors of the American manufacturing industry. For instance, in the aerospace sector, it 

currently takes close to 20 pounds of raw material to make a finished part weighing just 

one pound. Studies have shown that additive manufacturing when done right, can 

potentially reduce this 20:1 buy-to-fly ratio to less than 7:1, while simultaneously 

decreasing the product lead time from over a month to less than a week. 

However, manufacturers in precision-orientated industries, such as aerospace and 

defense, are reluctant to use additive manufacturing for mission-critical parts, despite the 

enormous engineering performance, production cost, and delivery time benefits over 

conventional manufacturing. The crux of the challenge encumbering the broad acceptance 

and accelerated deployment of additive manufacturing in industry for making production 

parts, beyond the current prototype-demonstrative role, lies in lack of process repeatability 

and poor part consistency; defects afflict as much as 20% of additively manufactured parts.  
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The large variability in part build properties and high build failure rates in the current class 

of additive manufacturing systems must be overcome if the technology is applied in 

strategic industries such as aerospace, defense, automotive, and biomedical where safety is 

paramount. By providing a pathway to detect incipient defects using sensor data before 

they become permanently sealed in by subsequent layers, this research takes the critical 

first-steps towards accelerating the production-scale viability of additive manufacturing in 

strategic industries important to the national prosperity.  

As a step towards the overarching vision of smart additive manufacturing, the 

objective of this work is to develop and apply a novel type of signal processing approach, 

rooted in the domain of spectral graph theory to analyze the large volume and variety of 

data acquired from in-process sensors. The central hypothesis of this dissertation is that the 

process signatures derived by analyzing the sensor data using the proposed graph-theoretic 

approach are significantly more statistically accurate in identifying the occurrence and 

severity of part defects compared to signatures derived from statistical signal processing 

approaches. 

This hypothesis is tested on four separate experimental data sets obtained from 

collaborators at three institutions – the National Institute of Standards and Technology (Dr. 

Brandon Lane), Edison Welding Institute (Mr. Paul Boulware), and Applied Research 

Laboratory at Pennsylvania State University (Dr. Abdalla Nassar). These data sets 

encompass the laser powder bed fusion and directed energy deposition metal additive 

manufacturing processes. 
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In the first step, to study the detectability of design-induced defects by the proposed 

algorithm, an LPBF machine equipped with three types of sensors, namely, a 

photodetector, a visible camera, and the thermal camera, has been used at NIST. The test 

artifact with an overhanging edge was opted to be considered as a design with a heat 

diffusion problem. The statistical accuracy for isolating the thermal patterns belonging to 

bulk and overhang features represented the preference of the spectral graph-theoretic 

approach over the conventional statistical ones in terms of the F-score as follows: (a) F-

score of 95% from the SWIR thermal camera signatures; (b) 83% with the high-speed 

visible camera; (c) 79% with the photodetector. In comparison, conventional signal 

analysis techniques—e.g., neural networks, support vector machines, and linear 

discriminant analysis were evaluated with F-scores in the range of 40–60%.  

Following other sources of anomalies in metal AM, the feedstock-induced defects 

have been analyzed by contaminating the metal powder (Inconel alloy 625) using tungsten 

and Aluminum contaminates. To detect the cross-contamination during the build, the 

photodetector (with 300 nm to 1100 nm optical wavelength) has been acquired to estimate 

the sensor signatures in the form of spectral graph transform coefficients. These graph 

coefficients were subsequently tracked on a Hoteling T2 statistical control chart. Instances 

of Type II statistical error, i.e., the probability of failing to detect the onset of material 

cross-contamination, were verified against X-ray computed tomography (XCT) scans of 

the part to be within 5% in the case of aluminum contaminant particles. In contrast, 

traditional stochastic time series modeling approaches, e.g., ARMA, had a corresponding 

Type II error exceeding 15%. Furthermore, the computation time for the spectral graph 
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approach was found to be less than one millisecond, compared to nearly 100 ms for the 

traditional time series models tested. 

For the third step, the effect of process parameters including laser power, printing 

velocity, and hatch space on the porosity formation in Inconel 718 at LPBF has been 

investigated. The objective of this work is to detect the incipient formation of pores related 

to lack of material fusion in LPBF through in-process optical emission spectroscopy, and 

subsequently, to identify the level or severity of porosity in real-time using process 

signatures derived from the optical spectroscopy signals. Further, the LPBF machine was 

instrumented with a multispectral photodetector sensor array to measure the line-to-

continuum ratio optical emission spectroscopy signatures as the part was being built layer-

by-layer. The line-to-continuum optical emission signature for each layer of the part was 

consequently related to the corresponding level of porosity measured, based on offline X-

ray computed tomography scans. Using this proposed graph-theoretic machine learning 

approach to analyze in-process optical emission signatures, the part severity was quantified 

with accuracy close to 90% and computation time less than 0.5 seconds; in comparison 

with traditional statistical moments, such as mean, variation, etc., were used as signal 

features for prediction, the porosity level was identified with less accuracy (≈ 80%) with 

computational time exceeding 5 seconds. 

To evaluate the fidelity of the spectral graph-theoretic approach in a DED process, the 

fourth experiment was conducted on an Optomec MR-7 DED machine. In a DED process 

for fabricating the titanium alloy (Ti-6Al-4V) parts, the data from two types of in-process 

sensors, namely, a spectrometer and a plume camera had been acquired. To detect lack-of-

fusion porosity from this sensor data, an approach is devised to fuse (combine) the data 
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from the in-process sensors, invoking the concept of Kronecker product of graphs. 

Specifically, the random walk kernel derived from the graph Kronecker product is used as 

inputs to a machine learning algorithm to predict the severity (level) of average pore length 

in a layer, which was obtained from offline X-ray Computed Tomography of the test parts. 

Consequently, it is demonstrated that the pore severity is classified with statistical fidelity 

close to 85% (F-score) for a two-level classification of pore severity, and ≈ 70% F-score 

for a three-level classification scenario. 

6.2 Future Work 

The sensing and control of AM processes are among the highest priority needs for 

realizing the technology’s potential. This work lays the foundation for a qualify-as-you-

build Smart Additive Manufacturing framework in AM processes, whereby impending 

defects are identified before the next layer is deposited, thus allowing the opportune 

corrective action to be taken in case of a fault. However, regarding the challenges and 

limitations of this research, there are the following unanswered, open research questions. 

i. What other different types and more relevant defects, such as microstructure 

heterogeneity, may be detected from in-process sensor data? 

ii. What is the link between specific defects and sensor signal patterns? In other words, 

is there a one-to-one link between a type of defect and its severity, and the sensor 

signature it manifests? 

iii. What is the detection lag; does the detection accuracy improve with sensor 

redundancy?  

iv. What is the effect of sensor noise and position on the detection accuracy? 

v. How is the effectiveness of the approach affected given different geometries and 

materials? 
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A major drawback of this work is that it used only a single type of sensor in 

chapters 2-4 to detect a specific type of defect, namely, heat accumulation, material 

cross-contamination, and porosity. The efficacy of the approach using multiple sensors 

for different types of defects is investigated peripherally in chapter 5 but remains to be 

ascertained. In other words, both sensors captured the identical phenomena, named 

state-of-the-plume, which prevented the improvement of detecting algorithms by 

sensor fusion techniques. 

Furthermore, different characteristics of the defects like severity or distribution 

could not be isolated based on the sensor data; and the effect of flaws or a specific 

phenomenon on the functional mechanical properties needs to be quantified through 

materials testing. This will allow completing the loop between process phenomena, 

sensor signatures, and part properties. Researchers in the Laboratory for Advanced 

Manufacturing Processes and Sensing (LAMPS) will endeavor to address these gaps in 

their future work in the area. 
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