Criegee intermediate-hydrogen sulfide chemistry at the air/water interface

Manoj Kumar
University of Nebraska–Lincoln, manoj.kumar@unl.edu

Jie Zhong
University of Nebraska–Lincoln, jzhong4@unl.edu

Joseph S. Francisco
University of Nebraska-Lincoln, frjoseph@sas.upenn.edu

Xiao Cheng Zeng
University of Nebraska-Lincoln, xzeng1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/chemzeng

Part of the Analytical Chemistry Commons, Materials Chemistry Commons, and the Physical Chemistry Commons

http://digitalcommons.unl.edu/chemzeng/156
Carbon–sulfur linkages are ubiquitous in atmospheric, combustion, and biological chemistries. Thioaldehydes comprise an important class of carbon–sulfur compounds that has a broad chemical appeal. For example, thioformaldehyde (HCHS) has been detected in dark clouds, the interstellar clouds and circumstellar envelope around an asymptotic giant branch star. HCHS is also believed to play a key role in the photochemical evolution of sulfur-containing species in the Earth’s atmosphere and other astronomical systems. In synthetic organic chemistry, thioaldehydes are used as key building blocks. The high intrinsic reactivity and polarizability of thioformyl group makes possible the construction of new carbon bonds with remarkable selectivity. Thioaldehydes also possess potential biological activities. Recently, thioaldehydes have been implicated as common intermediates in biosynthetic pathways in methanogens. Despite their broad profile, the laboratory synthesis of simpler aliphatic thioaldehydes has been a great challenge because of their tendency towards oligomerization.

In the atmosphere, thioaldehydes are believed to be formed by the nucleophilic attack of SH⁻ ion on the carbonyl group. However, it has recently been suggested that the gas-phase reaction between Criegee intermediate or a carbonyl compound and hydrogen sulfide (H₂S) under water or acid catalysis could account for the atmospheric formation of thioaldehydes and provide useful guidelines for efficiently synthesizing thioaldehydes within laboratory environment. Criegee intermediates are not only important in atmospheric context, but also play a key role in enzymatic reactions, pharmaceutical pathways and general synthetic organic reactions. H₂S is released into the air naturally and as a result of human activity. Natural sources, such as swamps, bogs, natural gases, geothermal hot springs, fumaroles and volcanoes, account for about 90% of the total amount of H₂S in the atmosphere. Typical H₂S concentrations in volcanic and geothermal regions are about 500 parts per billion. However, gypsum drywells present in the construction and demolition wastes could produce significant amounts of H₂S ranging from 7 parts per million (ppm) to 100 ppm. In certain cases, more dangerous levels of 5000–12 000 ppm were also measured. H₂S is also emitted by plants. Estimates of the terrestrial emission rates of H₂S range from 58 to 16 000 ppm were also measured. In the atmosphere, the abundance of aerosols can rise up to ~10⁸ to 10¹⁰ m⁻³, and the maximum surface area of the aerosols in clouds can be ~10⁻⁹ m². This suggests that the air/water interface, which is characteristic of the surface of oceans, lakes, and atmospheric aerosols, may also play a more direct role in the Criegee reactions due to their

Cite this: Chem. Sci., 2017, 8, 5385
ability to concentrate and align reacting species in a water restricting environment. However, most of the Criegee reactions have only been examined in the gas phase until recently32 when the dynamics of the Criegee-water (H_2O) reaction at the air/water interface was investigated in detail using the adaptive buffered force Quantum Mechanics/Molecular Mechanics dynamics simulations (adbf-QM/MM). Contrary to the previously established concerted mechanism in the gas-phase, a significant fraction of the Criegee-H_2O reaction at the air/water interface follows a stepwise mechanism.

In the atmosphere, the major sink of H_2S is assumed to be its reaction with the OH radical. However, nearly half of H_2S emitted into the troposphere comes from ocean,24 suggesting that the aqueous surface chemistry of H_2S could play an important role in its tropospheric oxidation under certain conditions. In this article, we show a direct evidence, based on the Born–Oppenheimer molecular dynamics (BOMD) simulations, that the reaction between the simplest Criegee intermediate, CH_2OO, and H_2S at the air/water interface occurs within few picoseconds and results in the formation of thioaldehyde. In the terrestrial regions, the Criegee intermediate and H_2S may first react in the gas-phase to form the Criegee-H_2S complex, which then could get adsorbed on the water droplet and allow the subsequent reaction. The reaction at the air–water interface follows both concerted and stepwise mechanisms. To our knowledge, this is the first evidence that suggests the role of the water droplets (e.g., clouds) in catalysing the non-photochemical formation of a C–S linkage. These results not only reveal a general effect of the water droplet on the Criegee-H_2S chemistry, but also offer valuable insights into the tropospheric oxidation of H_2S on the aqueous surface.

Methods

The BOMD simulations were performed on the basis of density functional theory (DFT) method implemented in the CP2K25 code. The reaction between CH_2OO and H_2S at the air/water interface is investigated using a model system that contained 191 H_2O molecules, one CH_2OO molecule, and one H_2S molecule, as shown in Fig. 1. The solvation structure of H_2S and CH_2OO adsorbed on the water droplet was also examined. The radius of the water droplet in our system is about 11 Å. The dimensions of the simulation box are $x = 35$ Å, $y = 35$ Å, and $z = 35$ Å. This translates into the smallest distance of about 14 Å between the adjacent periodic images of the water droplet. Apparently, the size of the box is large enough to neglect any interactions between the adjacent periodic images of the water droplet. Prior to the BOMD simulations, the system was fully relaxed using a DFT method, in which the exchange and correlation interaction is treated with the Becke–Lee–Yang–Parr (BLYP)26 functional. The Grimme’s dispersion correction method27 is applied to account for the weak dispersion interactions. A double-ζ Gaussian basis set combined with an auxiliary basis set28 and the Goedecker–Teter–Hutter (GTH) norm-conserved pseudopotentials29 are adopted to treat the valence and the core electrons, respectively. An energy cutoff of 280 Rydberg is set for the plane wave basis set and 40 Rydberg for the Gaussian basis set. The BOMD simulations were carried out in the constant volume and temperature ensemble, with the Nose–Hoover chain method for controlling the temperature (300 K) of the system. The integration step is set as 1 fs, which has been previously shown to achieve sufficient energy conservation for the water system.32–d

In addition, the gas-phase reaction of CH_2OO with H_2S and H_2S–H_2O complex was examined. The geometries of all the stationary points on the potential energy surfaces for both reactions were fully optimized using the BLYP26 functional, and aug-cc-pVTZ30 basis set. The harmonic vibrational frequency analyses were performed to ascertain the identity of the stable minima and transition states, as well as for estimating the zero-point electronic energy corrections for the reactants, products, transition states, and intermediates. The single point calculations using the coupled cluster single and double substitution method with a perturbative treatment of triple excitations [CCSD(T)]31 and the aug-cc-pVTZ basis set were performed on the BLYP optimized geometries to further improve the energetics. These DFT and CCSD(T) calculations were carried out using Gaussian0932 software.

Results and discussion

Gas-phase reaction

First, the gas-phase reaction between CH_2OO and H_2S with or without one H_2O molecule is examined at the CCSD(T)/aug-cc-pVTZ//BLYP/aug-cc-pVTZ level of theory. Although the Criegee intermediate entails appreciable multiconfigurational character,33 especially when the substrates on the Criegee moiety are electron-withdrawing groups,34 previous theoretical studies34–37 have shown that the coupled-cluster//DFT level of theory can provide reasonable description of its unimolecular and bimolecular chemistry due in part to relatively small fraction (<15%) of the total wave-function that accounts for multi-reference nature of Criegee intermediate. The computed reaction profiles for the gas-phase $\text{CH}_2\text{OO} + \text{H}_2\text{S}$ and $\text{CH}_2\text{OO} + \text{H}_2\text{S} + \text{H}_2\text{O}$ reactions are shown in Fig. 2. The uncatalyzed addition of H_2S across the COO moiety...
of CH$_2$OO occurs in a concerted manner, which leads to the exothermic formation of (HS)CH$_2$(OOH). The computed barrier for the uncatalyzed reaction, with respect to the CH$_2$OO···H$_2$S complex, is 3.3 kcal mol$^{-1}$ at the CCSD(T)/aug-cc-pVTZ//BLYP/aug-cc-pVTZ level. This barrier is 1.9 kcal mol$^{-1}$ larger than that calculated at the BLYP/aug-cc-pVTZ level. The CCSD(T)/aug-cc-pVTZ//BLYP/aug-cc-pVTZ calculated exothermicity of the reaction is 44.3 kcal mol$^{-1}$, 11.9 kcal mol$^{-1}$ larger than that calculated with BLYP/aug-cc-pVTZ method. These comparisons suggest that the electron correlation appreciably impacts the reaction barrier and energetics, and must be accounted for. For the concerted CH$_2$OO + H$_2$S···H$_2$O reaction, the transition state is submerged below free reactants, and the product complex (HS)CH$_2$(OOH)···H$_2$O is 4.7 kcal mol$^{-1}$ more stable than separated (HS)CH$_2$(OOH) and H$_2$O at the CCSD(T)/aug-cc-pVTZ//BLYP/aug-cc-pVTZ level. Notably, the calculated barrier for the CH$_2$OO + H$_2$S···H$_2$O reaction relative to the Int$_1$, is 3.8 kcal mol$^{-1}$, 0.5 kcal mol$^{-1}$ larger than that for the uncatalyzed reaction.

Air/water interface reaction

There is literature precedence suggesting that aerosols, fog and cloud water may play a key role in the atmospheric chemistry. Here, we provide the BOMD simulation evidence of a reaction between the Criegee intermediate, CH$_2$OO, and H$_2$S on the air/water surface. Unlike in the gas phase, the CH$_2$OO···H$_2$S reaction at the air/water interface can be observed directly in the BOMD simulation trajectory after a few ps, and the reaction follows both concerted and stepwise mechanisms. We have performed total 16 BOMD simulations to study the CH$_2$OO···H$_2$S reaction on the water droplet, one BOMD simulation to study the dynamic behaviour of CH$_2$OO on the water droplet, and one BOMD simulation to study the dynamic behaviour of H$_2$S on the water droplet. In 8 of the 16 simulations, the reaction between CH$_2$OO and H$_2$O molecules has been observed whereas in another 8 simulations, the reaction of CH$_2$OO occurs in a concerted manner, which leads to the exothermic formation of (HS)CH$_2$(OOH). The computed barrier for the uncatalyzed reaction, with respect to the CH$_2$OO···H$_2$S complex, is 3.3 kcal mol$^{-1}$ at the CCSD(T)/aug-cc-pVTZ//BLYP/aug-cc-pVTZ level. This barrier is 1.9 kcal mol$^{-1}$ larger than that calculated at the BLYP/aug-cc-pVTZ level. The CCSD(T)/aug-cc-pVTZ//BLYP/aug-cc-pVTZ calculated exothermicity of the reaction is 44.3 kcal mol$^{-1}$, 11.9 kcal mol$^{-1}$ larger than that calculated with BLYP/aug-cc-pVTZ method. These comparisons suggest that the electron correlation appreciably impacts the reaction barrier and energetics, and must be accounted for. For the concerted CH$_2$OO + H$_2$S···H$_2$O reaction, the transition state is submerged below free reactants, and the product complex (HS)CH$_2$(OOH)···H$_2$O is 4.7 kcal mol$^{-1}$ more stable than separated (HS)CH$_2$(OOH) and H$_2$O at the CCSD(T)/aug-cc-pVTZ//BLYP/aug-cc-pVTZ level. Notably, the calculated barrier for the CH$_2$OO + H$_2$S···H$_2$O reaction relative to the Int$_1$, is 3.8 kcal mol$^{-1}$, 0.5 kcal mol$^{-1}$ larger than that for the uncatalyzed reaction.

Concerted reaction at the air/water interface

Most of the CH$_2$OO···H$_2$S reaction (87.5%) occurs concertedly. There are three different concerted pathways that have been observed in the BOMD simulations: (i) the direct reaction between CH$_2$OO and H$_2$S (12.5%), (ii) one H$_2$O molecule-mediated reaction (50%), and (iii) two H$_2$O molecules-mediated reaction (25%). The mechanistic details of the concerted direct reaction are quite similar to that of the uncatalyzed reaction in the gas phase. As shown in Fig. 3, the formation of a pre-reaction complex between CH$_2$OO and H$_2$S is observed at ~5.33 ps, where the C–S bond is 3.1 Å long, and there is virtually no interaction between the terminal Criegee oxygen and thiol proton (S–H$_2$). At ~5.35 ps, the CH$_2$OO···H$_2$S complex looks more like the transition state in the gas phase, where the C–S bond is shortened to 1.9 Å while the S–H$_2$ bond is elongated to 1.8 Å. There is also a 1.6 Å bond between the terminal Criegee oxygen and thiol proton (O$_1$–H$_1$). This complex converts into the final product, (HS)CH$_2$(OOH) (Movie S1†) at ~5.37 ps. The time evolution of key bond distances clearly supports the formation of (HS)CH$_2$(OOH). In a recent study, a sizable fraction of the CH$_2$OO···H$_2$O reactions at the air/water interface has been shown to follow a similar concerted mechanism. The gas-phase calculations suggest that (HS)CH$_2$(OOH) is formed with an excess energy of 44.3–44.7 kcal mol$^{-1}$. At the air/water interface, this excess energy will be absorbed by the water droplet and the surrounding environment (due to the enforcement of the constant-temperature condition) and (HS)CH$_2$(OOH) will remain bound to the water surface via hydrogen bonding interaction. Alternatively, (HS)CH$_2$(OOH) might decompose into HCHS and H$_2$O$_2$. This reaction is a proton transfer event and might also be mediated by the interfacial water molecules. However, this reaction in the gas-phase involves a barrier of over 49.0 kcal mol$^{-1}$, and is, thus, unlikely to be observed via BOMD simulations.

In the BOMD simulations, the one H$_2$O molecule-mediated concerted CH$_2$OO···H$_2$S reaction is the most dominant pathway (Fig. 3 and Movie S2†). The reaction involves the formation of a pre-reaction complex involving CH$_2$OO, H$_2$S and one H$_2$O molecule at 2.73 ps. At this point, the C–S bond is 3.0 Å long, and H$_2$S is hydrogen-bonded to H$_2$O (O$_1$–H$_2$ = 2.2 Å), which, in turn, is hydrogen-bonded to the terminal oxygen of CH$_2$OO (O$_2$–H$_2$ = 2.2 Å). At 2.77 ps, the cyclic CH$_2$OO···H$_2$S···
H₂O complex transforms into a transition state like intermediate in which the S–C bond is 2.4 Å long, the S–H₁ bond is 1.6 Å long whereas the O₁–H₁, O₂–H₂, and O₂−H₂ bonds are nearly 1.4 Å long. This intermediate immediately converts into the water-bound final product, (HS)CH₂(OOH)−•H₂O at 2.81 ps. The time evolution of key bond distances, S–C, S–H₁, O₁–H₁, O₁−H₂, and O₂−H₂ corroborate the formation of the postreaction complex in this concerted pathway. The BOMD simulations also suggest the concerted reaction mediated by two H₂O molecules. The reaction occurs on the ps time scale and is mediated by the prereaction and postreaction complexes, respectively. The formation of the hydrogen-bonded (HS)CH₂(OOH) in this pathway is also supported by the time evolution profiles of key bond distances (Fig. S1 and Movie S3†).

Stepwise reaction at the air/water interface

In addition to the concerted mechanism, a noticeable fraction of the CH₂OO···H₂S reaction at the air/water interface (12.5%) also proceeds in a stepwise manner. In the first step, the breakage of H₁–S bond of H₂S occurs, leading to the concerted formation of C–S bond and (H₃O)⁺. This event occurs at ~9.01 ps. The time evolution profiles of C–S, S–H₁ and O₁–H₁ bond distances (Fig. 4 and Movie S4†) clearly show the formation of (HS)CH₂(OO)− in the first step. At this point, the S–H₁ bond is elongated to ~2.0 Å whereas the O₁–H₁ bond is more like a normal O–H bond (~1.0 Å). These structural changes imply the breakage of S–H₁ bond, and the formation of C–S bond and (H₃O)⁺, respectively. Notably, there exists no interaction between the terminal Criegee oxygen and hydrogen of nearby H₂O molecule at this stage (O₂–H₂ ~ 1.0 Å). In the second step, one water molecule, which is hydrogen-bonded to (H₃O)⁺, catalyses the proton H₂ transfer from (H₃O)⁺ to the terminal Criegee oxygen. Following a structural reorganization, a ring-like structure including (H₃O)⁺, two H₂O molecules, and the terminal oxygen of (HS)CH₂(OO)− is formed at ~9.80 ps. This configuration looks like a transition state, showing the two concerted proton transfers, (H₃O)⁺ → H₂O → (HS)CH₂(OO)−. In this configuration, both the O₁–H₁ and O₂–H₂ bonds are elongated to ~1.5 Å, suggesting the bond formation between the terminal Criegee oxygen and the hydrogen of a nearby water
molecule, H₂. The formation of (HS)CH₂(OOH) is complete at ~9.86 ps. The time insensitivity of C–S bond distance beyond 9.0 ps also supports the proton transfer from the water droplet to (HS)CH₂(OO)⁻ in the second step.

Recently, the CH₂OO···H₂O reaction at the air/water interface has been found to follow the stepwise mechanism, in addition to the well-known concerted one. It is interesting to compare the stepwise mechanism for the CH₂OO···H₂S reaction with that for the analogous CH₂OO···H₂O reaction. The major difference between the two stepwise mechanisms is that for the CH₂OO···H₂O reaction, the second step proton transfer from (H₂O)⁺ to the terminal Criegee oxygen of (HO)CH₂(OO)⁻ occurs without the involvement of any additional H₂O molecule, whereas for the CH₂OO···H₂S reaction, the proton transfer from (H₂O)⁺ to the (HS)CH₂(OO)⁻ is catalyzed by a H₂O molecule.

The above analysis shows that the air/water interface can mediate the CH₂OO···H₂S reaction. To fully understand the role of water droplet, the hydration structure, orientation and dynamical behaviour of CH₂OO and H₂S on the water droplet is analysed next.

Effects of water droplet

Fig. 5 shows three typical orientations (I, II, and III) of H₂S on the water droplet and their corresponding probabilities. The orientation II has the highest probability, indicating the H atom of H₂S prefers to interact with the water droplet due to hydrogen bonding H(H₂S)···O(H₂O) interaction. See Fig. S2 for the radial distribution function. Closer inspection of orientation II shows that only one of the two H atoms in H₂S forms hydrogen bond with the water droplet (see Fig. S3†). This allows H₂S to transfer one of its H atoms to H₂O molecules easily, which, in turn, favours the CH₂OO···H₂S reaction. Similarly, the orientation III, where one H atom in H₂S interacts with water, would favour the proton transfer from H₂S to the water droplet.

Next, the hydration of CH₂OO on the surface of the water droplet is investigated by computing the joint probability distribution function. In the high probability region (Fig. 6D), the dipole moment vector of the H₂O molecule μ, where μ points to the direction of the specified atoms. The coordinate φ is the angle made by the projection of μ onto a local XY-plane and the local X-axis, which is normal to the H–O–H plane. Based on the computed P(φ,θ), it can be seen that there is no obvious strong interaction between the water droplet and either –CH₂ or O1 of CH₂OO. However, the O₃ atom of CH₂OO interacts strongly with a nearby H₂O molecule (Fig. 6C). See also Fig. S4† for the radial distribution function. In the high probability region (Fig. 6D), the φ is around 90° and θ is close to 60°, which is indicative of the fact that there exists a strong hydrogen bond, O₂(CH₂OO)···H(H₂O), and the H atoms of nearby H₂O in the droplet are easily transferrable to CH₂OO.

“Trapping” effects of the water droplet

Why does the concerted CH₂OO–H₂S reaction without the direct involvement of nearby water molecules on the water droplet occur on a ps time scale? According to the hydration structure analysis, the H atom of H₂S and O₂ atom of CH₂OO prefer to interact with H₂O near the surface of the droplet whereas, the S atom of H₂S and C atom of CH₂OO exhibit relatively weak interaction with the water droplet, and both are located at a further distance from the droplet, which implies the possibility of C–S bond forming reaction. The H₂O molecules in the droplet can make the configurations of H₂S and CH₂OO favourable to form pre-reaction complex, and stabilize such configurations due to trapping effect, thereby allowing the concerted reaction to occur within ps.
Conclusions

In summary, we have shown evidence from the Born–Oppenheimer molecular dynamics simulations that at the air/water interface, a significant fraction of Criegee intermediate, CH$_2$OO (50%) reacts with H$_2$S. Importantly, the reaction of CH$_2$OO with H$_2$S at the air/water surface occurs on a picosecond time scale and follows both concerted and stepwise mechanisms with former being the dominant pathway. The concerted reaction between CH$_2$OO and H$_2$S mediated by one and two water molecules on the water droplet are two of the most dominant pathways. An important mechanistic difference between the CH$_2$OO···H$_2$S and CH$_2$OO···H$_2$O reactions is that the proton transfer in the stepwise H$_2$S reaction is mediated by a water molecule, whereas the proton transfer in the stepwise H$_2$O reaction occurs without the involvement of any additional water molecule. To our knowledge, this is the first simulation evidence of C–S bond formation via Criegee···H$_2$S reaction at the air/water interface. This new Criegee···H$_2$S chemistry could be a new oxidation pathway for H$_2$S in terrestrial, geothermal and volcanic regions.

Acknowledgements

This work is supported by the National Science Foundation (CHE-1500217), and a fund from Beijing Advanced Innovation Center for Soft Matter Science & Engineering for summer visiting scholar, and by the University of Nebraska Holland Computing Center.

References

