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Distribution and Properties of Vesicular 
Horizons in the Western United States

Pedology

The vesicular horizon is a surface or near-surface horizon characterized by the 
predominance of bubble-like vesicular pores (Fig. 1). Th ey are a common 

feature of soils in arid and semiarid lands and play an important role in control-
ling the surface hydrology (Young et al., 2004) and dust emissions (Goossens and 
Buck, 2009) in the landscapes where they occur. Vesicular horizons are common in 
extremely arid, arid, and semiarid lands around the world (Fig. 2), and have been 
reported in salt fl ats in a subhumid setting as well (Fig. 2, Ref. 3). Th e expression of 
vesicular horizons is heterogeneous on multiple scales. For example, in an alluvial 
fan or bajada landscape (Peterson, 1981), the vesicular horizons vary with the age 
of the geomorphic surface on which they occur (McDonald, 1994), while within 
a single geomorphic surface vesicular horizons are well expressed in the shrub in-
terspace, with limited or no occurrence in the shrub islands (Eckert et al., 1978; 
Shafer et al., 2007). Vesicular horizons are associated with certain types of surface 
cover, including physical and biological surface crusts, as well as desert pavement 
(Eckert et al., 1978).

It has consistently been observed that parts of the landscape with vesicular 
horizons have much lower infi ltration rates compared to those without vesicular 
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Vesicular horizons are thin (usually <10 cm) surface or near-surface horizons characterized by the predominance 
of vesicular porosity. Th ey are widespread in arid and semiarid lands, occurring on every continent and covering 
156,000 km2 of the western United States. Vesicular horizons have critical implications for management due to 
their role in controlling surface hydrology and dust mobilization. Th is study evaluates the distribution and varia-
tion in expression of vesicular horizons across the western United States using the soil databases available from the 
USDA. A vesicular horizon index (VHI) that incorporates vesicular horizon thickness and the size and quantity of 
vesicular pores was developed using soil descriptions from a published chronosequence study. Th e VHI was applied 
to descriptions from the soil survey databases to evaluate vesicular horizon expression across the western United 
States. Vesicular horizons were better expressed (higher VHI) in the Central and Northern Basin and Range com-
pared to the Mojave and Sonoran Basin and Range. Th is may be due to diff erences in temperature regime or to 
larger areas of playas in the Central and Northern Basin and Range that serve as sources of dust that forms the par-
ent material for vesicular horizons. Th e median VHI was highest in the Aridisols and Mollisols compared to other 
soil orders. No signifi cant relationship was found between VHI and soil textures. Vesicular horizons are widely 
distributed in western United States and occur across a wide range of soil types and soil-forming environments.

Abbreviations: CBR, Central Basin and Range; cry, cryic; DP, drying period for vesicular horizon 
aft er a precipitation event; frig, frigid; fsl, fi ne sandy loam; hyp, hyperthermic; MOJ, Mojave Basin and 
Range; NASIS, National Soil Information System; NBR, Northern Basin and Range; OSD, offi  cial 
series description; mes, mesic; Q, vesicular pore quantity class; S, vesicular pore size class; sil, silt loam; 
SDI, soil development index; sl, sandy loam; SON, Sonoran Basin and Range; SSURGO, Soil Survey 
Geographic dataset; STATSGO, State Soil Geographic dataset; therm, thermic; vfsl, very fi ne sandy 
loam; VHI, vesicular horizon index; Xve, vesicular pore term; ΔT, increase in temperature during 
drying of the vesicular horizon.
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horizons (Table 1). As a result, runnoff  and ponding are more 
common on parts of the landscape with vesicular horizons 
(Eckert et al., 1978; Brown and Dunkerley, 1996). Th e low in-
fi ltration rates can be attributed primarily to the development 
of the vesicular horizon, rather than any underlying horizon, 
since infi ltration rates increase dramatically when the vesicular 
horizon is removed (Young et al., 2004). Negative correlations 
have been observed between the abundance of vesicular pores 
in the surface horizon and infi ltration rates (Blackburn, 1975; 
Valentin, 1994; Lebedeva et al., 2009), further suggesting that 
the vesicular horizon is a critical regulator of infi ltration. Soil 
development in deserts, including vesicular horizon formation, 
tends to reduce the plant water supply, leading to lower shrub 
densities (McAuliff e, 1994) and more drought-adapted species 
(Hamerlynck et al., 2002) on older surfaces. Desert landscapes 
are characterized by clusters of plants in “islands of fertility” sep-
arated by barren shrub interspaces (Schlesinger et al., 1990). Th is 
pattern is reinforced by stronger expression of vesicular horizons, 
and resulting in runoff  of water from shrub interspace and con-
centration of runon in the “islands of fertility,” where infi ltration 
rates are higher (Shafer et al., 2007). Vesicular horizons are better 
expressed under increasingly arid conditions, which may create a 

positive feedback that promotes desertifi cation in semiarid lands 
by reinforcing hydrologic and ecological patterns characteristic 
of desert shrublands (Lebedeva et al., 2009).

Vesicular horizons are oft en best expressed on geomorphic 
surfaces that trap dust. Th is includes surfaces that are mantled 
by desert pavement, a monolayer of interlocking clasts that oc-
curs at the surface of many desert soils (Wood et al., 2005). Th e 
primary mechanism of desert pavement formation is through 
vertical infl ation by eolian materials trapped beneath the surface 
clasts (McFadden et al., 1987; Wells et al., 1995). Th is process 
causes a smoothing of the original surface topography and the 
accumulation of an eolian mantle that favors the formation of 
vesicular horizons and other pedogenic features. Relatively weak 
expression of vesicular horizons has been observed on landforms 
with smooth microtopography (e.g., sandy beach ridges) com-
pared to those with initially rough microtopography that favors 
dust entrapment and desert pavement formation (e.g., gravelly 
piedmont and lava fl ows) (McFadden et al., 1992). Th e eolian origin 
of vesicular horizons has been supported in settings where the suite 
of minerals contributed by dust is distinct from the underlying parent 
material (Wells et al., 1985; Ugolini et al., 2008). Th e vesicular horizon 
is oft en formed predominantly in eolian parent materials, even when 
the underlying soil horizons are formed in another parent material, 
such as alluvium (McDonald, 1994) or glacial till (Rossi, 2009).

As a consequence of their eolian origins, soils with vesicu-
lar horizons are prone to high dust emission when they are dis-
turbed by human activities, such as off -road driving (Goossens 
and Buck, 2009). Dust released from soil disturbance can have 
adverse eff ects on human health (Smith and Lee, 2003) and 
far-reaching ecological impacts. Desert dust deposited on al-
pine snow packs reduces their albedo, thereby increasing their 
melting rate and altering the hydrology of major river systems 
(Painter et al., 2010).

Fig. 1. Photograph of vesicular horizon with platy structure (Dixie 
Valley, NV).

Fig. 2. Examples of studies recognizing vesicular horizons around the world, in relation to the global distribution of extremely arid, arid, and 

semiarid lands (USGS, 1997). References: (1) McDonald, 1994, (2) Blackburn, 1975, (3) Joeckel and Clement, 1999, (4) Noller, 1993, (5) Bouza 
et al., 1993, (6) Cantόn et al., 2003; (7) Adelsberer and Smith, 2009; (8) Amit and Gerson, 1986; (9) Paletskaya et al., 1958; (10) Lebedeva et al., 
2009; (11) Valentin, 1994; (12) Ellis, 1990; (13) Henning and Kellner, 1994; (14) Brown and Dunkerley, 1996; (15) Bockheim, 2010.
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Vesicular horizons occur at or 
near the soil surface and are com-
monly thin (<10 cm) (Anderson et 
al., 2002). Th e morphological fea-
ture that distinguishes vesicular ho-
rizons from other surface horizons is 
the predominance of isolated, nearly 
spherical vesicular pores. Columnar 
or prismatic structure that parts to 
platy structure is a common, but not 
universal, feature of vesicular hori-
zons. Th e pedogenic processes that 
form vesicular horizons include: 
(i) the additions of eolian material 
to the soil surface, (ii) the develop-
ment of a surface seal in the form of 
an embedded gravel layer or a physi-
cal or biological crust, and (iii) wet-
ting and drying cycles that cause the 
growth of vesicular pores and their collapse to form platy struc-
ture (Fig. 3). Th e role of wetting and drying cycles in the forma-
tion of vesicular pores has been observed in laboratory studies in 
which vesicular pores are regenerated through the wetting and 
drying of crushed soils (Springer, 1958; Miller, 1971; Evenari et 
al., 1974; Figueira and Stoops, 1983). Wetting and drying cycles 
also cause polygonal cracking and the formation of prismatic or 
columnar structure in the vesicular horizons. Th e vesicular pores 
are believed to be formed by air that is trapped as bubbles during 
the wetting of an initially dry soil. Th e presence of a gravel layer 
or a physical or biological crust prevents the trapped air from es-
caping at the soil surface (Evenari et al., 1974). Vesicular pores 
are more common under embedded surface rock fragments com-
pared to nonembedded rock fragments, due to the more eff ective 
surface sealing (Valentin, 1994). Th e formation of vesicular pores 
has been associated with silt-rich soil materials (Miller, 1971). 
Th e addition of eolian materials to the surface of desert soils 
helps to create conditions for vesicular pore formation by enrich-
ing the soil surface in silt-sized particles. Th e process of eolian ad-
ditions may continue even in well-developed vesicular horizons. 
Th is material is carried into the vesicular horizon with infi ltrat-
ing water, resulting in a progressive thickening of the vesicular 
horizon and the formation of ped surface features that may help 
to stabilize the vesicular pores and platy peds (e.g., argillans and 
calcite coating) (Sullivan and Koppi, 1991; Anderson et al., 2002; 
Lebedeva et al., 2009).

Th e process of vesicular pore formation can occur rapidly. 
In the lab, vesicular pores are observed to form in crushed and 
sieved soil material, collected from vesicular horizons, over 4 to 
25 wetting and drying cycles (Miller, 1971; Figueira and Stoops, 
1983). In the fi eld, vesicular pores were observed to reform in 
disturbed soils aft er only 4 mo (Yonovitz and Drohan, 2009). 
Th in vesicular horizons (<1 cm) have been observed on very 
young (<100 yr) geomorphic surfaces (Gile and Hawley, 1968) 
and surfaces subject to active sediment transport (Peterson, 

1980). Chronosequence studies in the Mojave Desert have suggested 
that vesicular horizons are the fi rst indicators of soil development 
(McFadden et al., 1986; McFadden, 1988). Th e rapid formation of ve-
sicular pores indicates that they are a dynamic soil property. However, 
the eolian surface horizon, containing material that is conducive to ve-
sicular pore formation, may be considered a stable feature, unless phys-
ical disturbance (Goossens and Buck, 2009) or a change in hydrologic 
conditions (Wells et al., 1985) causes erosion of the surface material.

A wealth of pedon descriptions, using a consistent termi-
nology for describing key features of the vesicular horizon (e.g., 
the size and quantity of vesicular pores) is available through the 
USDA databases of Offi  cial Soils Descriptions (OSDs) (Soil 
Survey Staff , 2009a) and National Soil Survey Characterization 
Data (Soil Survey Staff , 2009b). We used these databases to study 
the distribution and properties of vesicular horizons across the 
western United States. Our objectives were to (i) use soil data-
base information to characterize the distribution of vesicular ho-
rizons and their range of physical and chemical properties, (ii) to 

Table 1. Summary of studies fi nding lower infi ltration rates in soils with vesicular horizons 
compared to soils without vesicular horizons in the same landscape. Regions are designated 
as SON = Sonoran Basin and Range, MOJ = Mojave Basin and Range, CBR = Central Basin 
and Range.

Region Dominant vegetation
Interspace 

surface cover

Infi ltration rate, cm h–1

Reference
Vesicular Nonvesicular

SON
Larrea divaricata, Ambrosia 
dumosa

Desert pavement 0.8 6.0–9.6 Musick, 1975

MOJ
Larrea tridentata, Ambrosia 
dumosa, Yucca spp.

Desert pavement 0.3–0.8 6.8–15 Young et al., 2004

MOJ Larrea tridentata Desert pavement 1.3–4.6 8.9 Miller et al., 2009

MOJ/CBR
Coleogyne ramosissima, 
Ephedra nevadensis, Atriplex 
canescens

Desert pavement 1.2–4.5 5.5–17 Shafer et al., 2007

MOJ/CBR
Larrea tridentata, Coleogyne 
ramosissima

Desert pavement 0.4–1.4 3.1–3.2 Eckert et al., 1979

CBR Artemisia spp. Bare ground 1.7–3.2 5.8–7.2 Blackburn, 1975

Fig. 3. Summary of processes central to vesicular horizon formation.
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develop a fi eld index for quantifying vesicular horizon expression, 
and (iii) to apply the developed fi eld index to the soil database 
information, to evaluate trends in vesicular horizon expression 
across diff erent ecoregions (i.e., hot and cold deserts) and among 
soils with varying properties (i.e., soil temperature regimes, soil 
orders, and textures). Th is broad evaluation of vesicular horizon 
distribution and variability in expression is intended to reveal the 
extent of this feature, as well as to examine patterns that may help 
us unravel the mechanisms involved in vesicular horizon forma-
tion. Th e vesicular horizon’s near-surface position, its control of 
surface hydrology (Young et al., 2004), and its sensitivity to dust 
mobilization (Goossens and Buck, 2009), as well as the dynamic 
nature of vesicular porosity (Yonovitz and Drohan, 2009) make 
it an important feature to be recognized in land-use planning 
and studies of ecological change in arid and semiarid lands.

MATERIALS AND METHODS
Analysis of Soil Databases

Soil series with vesicular horizons were found by searching all OSDs 
(Soil Survey Staff , 2009a) in the 11 western states for the term “vesicular” and 
checking each description for vesicular pores in a horizon that starts within the 
upper 10 cm of the soil surface. Only those descriptions in which the vesicular 
pores had a higher quantity class than all other pore types were included in 
the dataset. Th ese criteria were used to limit the dataset to those horizons that 
restrict infi ltration rates because they are close to the surface and are domi-
nated by noninterconnected porosity. Th e area of soil series with vesicular 
horizons mapped in the Soil Survey Geographic (SSURGO) dataset was de-
termined using the Soil Extent Mapping Tool (Soil Survey Staff , 2007). Th is 
evaluation represents a minimum estimate of the area of vesicular horizons, 
since areas mapped aft er 2007, including many soil survey areas in arid and 
semiarid regions, are not yet entered into the Soil Extent Mapping Tool. Th e 
distribution of soils with vesicular horizons was also evaluated using the State 
Soil Geographic data set (STATSGO) (USDA-NRCS, 2006), by selecting 
all map units in which one or more major components is a soil series with a 
vesicular horizon in the OSD. Th is data set lacks the resolution and accuracy 
of the SSURGO data, but off ers a complete, broad-scale depiction of vesicular 
horizon occurrence in the western United States.

Th e names of the soil series with vesicular horizons were used to 
query the National Soil Survey Characterization Data (Soil Survey 
Staff , 2009b) for lab data and National Soil Information System 
(NASIS) pedon descriptions of soils with vesicular horizons. Using both 
OSDs and NASIS pedon descriptions creates potential for duplication 
of data points, because some OSDs are also in NASIS. To avoid this 
problem, all OSDs that had the same location description as a NASIS 
pedon descriptions were removed from our dataset. Th e location of each 
pedon description with a vesicular horizon (type location for the OSDs) 
was plotted using ArcMap 9.3 (Esri, 2008). Locations recorded using 
the Public Land Survey System were converted to an approximate lati-
tude and longitude using Graphical Locator (Gustafson, 2003).

Development and Application of the Vesicular 
Horizon Index

Th e methods for developing a fi eld index for the vesicular horizon 
were based on those used by Harden (1982) to evaluate the soil devel-

opment index (SDI). Th e index was evaluated using pedon descrip-
tions from a published chronosequence study in the Mojave Desert 
(McDonald, 1994), according to the most recent evaluations of surface 
age at the site (McDonald, 2008). Th is chronosequence study, locat-
ed on a series of alluvial fan deposits of the Providence Mountains in 
California, was selected because it includes a high level of replication 
(5–15 pedon descriptions per surface age) and a wide range of surface 
ages (750–135,000 yr).

Th e VHI was then applied to our dataset of pedon descriptions 
with vesicular horizons, derived from the USDA databases, and used to 
analyze variability in the vesicular horizon expression across the west-
ern United States. Th e pedon description locations were overlaid with 
Level III Ecoregions (USEPA, 2006a) to group the points in a way that 
refl ects spatial variability in climate and biotic factors. Th e VHI was 
compared among soils grouped by ecoregions of the Basin and Range 
Province, including the Sonoran Basin and Range (SON), Mojave Basin 
and Range (MOJ), Central Basin and Range (CBR), and Northern 
Basin and Range (NBR) ecoregions. Th e Basin and Range Province was 
selected for analysis because vesicular horizons are frequently described 
in this region (see Fig. 4a) and the ecoregions represent a gradient of cli-
matic and biotic infl uences. Th e SON and MOJ ecoregions are consid-
ered warm deserts, while the CBR and NBR are considered cold deserts 
(USEPA, 2006b). Th e VHI was also used to compare vesicular horizon 
expression among diff erent soil orders, soil temperature regimes, and ve-
sicular horizon textures.

Due to the non-normal distribution of VHI, all statistical tests 
were performed using nonparametric analyses, including the Kruskal–
Wallis test (Sheskin, 2007) for comparison among all groups and the 
Mann–Whitney test (Sheskin, 2007) and Bonferonni correction (Abdi, 
2007) for comparisons between specifi c groups. All nonparametric 
analyses were performed using MINITAB 15 (Minitab, 2007) and the 
Bonferonni correction was calculated by hand.

Analysis of Weather Records
To consider the relationship of VHI to modern climate condi-

tions, weather records were analyzed at 20 Remote Automated Weather 
Stations (RAWS) (Western Regional Climate Center, 2011), includ-
ing fi ve stations in each of the ecoregions discussed above (SON, MOJ, 
CBR, and NBR). Th e stations were selected based on proximity to data-
base pedon descriptions with vesicular horizons (Fig. 4a). Two climatic 
variables were extracted: (i) the average number of precipitation events 
per year and (ii) the average increase in temperature during the drying 
period following a precipitation event (ΔT). Th ese variables are consid-
ered the most signifi cant in terms of understanding the relation of cli-
mate to vesicular pore formation. Vesicular pores only form and expand 
when the soil is wet (Springer, 1958; Miller, 1971; Figueira and Stoops, 
1983), presumably because vesicular horizons have a weak structural 
consistence when they are wet (Bouza et al., 1993).

Th e amount of time required for the vesicular horizon to dry fol-
lowing a precipitation event, hereaft er called the drying period, is a criti-
cal assumption that infl uences the analysis of both of the extracted vari-
ables. Th e drying period was used to defi ne the split between successive 
pore-forming precipitation events. Th is was because the soil will only 
trap air and form vesicular pores if it has dried fi rst, thus introducing 
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more air to be trapped. Th e ΔT was defi ned as the diff erence between 
the maximum temperature during the drying period and the tempera-
ture at the time of initial precipitation. Air temperatures were used for 
this analysis, rather than soil temperatures, because these data were read-
ily available and because the vesicular horizons typically occur at the soil 
surface, where temperature fl uctuations are most directly infl uenced by 
aboveground weather conditions. 

Th e actual drying period depends on current weather conditions 
(e.g., air temperature, relative humidity), the water retention character-
istics of the vesicular horizons, the relationship between water content 
and consistence of the vesicular horizon, and drainage conditions of the 
soil. Our analysis assumed a drying period of 1 d during the summer 
( June–August), 5 d during the winter (December–February), and 3 d 
at other times of the year. Th ese assumptions were based on casual ob-
servations of vesicular horizon behavior in the fi eld. Th orough verifi ca-
tion of these assumptions was beyond the scope of this study, but we 
did consider the sensitivity of our analysis to the assumption of drying 
period (Table 2). Assumption of a longer drying period results in cal-
culation of fewer precipitation events per year and a greater ΔT. Using 
a longer drying period resulted in fewer precipitation events because 
the drying period was used to defi ne the separation of successive pre-
cipitation events, therefore using a longer drying period causes more 
precipitation to be lumped into a single event. Th e impact of this as-

sumption was similar at climate stations located in each of the ecoregions 
and therefore is not presumed to introduce any bias to our comparison 
between ecoregions. Precipitation events of <5 mm were not included 
in the analysis, as small events are unlikely to be eff ective at trapping air 
and forming vesicular pores. Our analysis included between 5 and 10 yr 
of weather records at each RAWS site. Th e annual number of precipita-
tion events and ΔT were compared between the ecoregions according to 
ANOVA and multiple comparisons using Tukey’s test (Sheskin, 2007). 
Statistical analysis was performed using MINITAB 15 (Minitab, 2007).

RESULTS AND DISCUSSION
Distribution and Range of Properties

Th e analysis of soil databases produced 1092 OSDs and 295 
NASIS pedon descriptions with vesicular horizons. Soils with 
vesicular horizons occur throughout the western United States, 
but have been described most frequently in the Basin and Range 
Province, particularly in the NBR and CBR (Fig. 4a). Th is distri-
bution may be biased by diff erences in the intensity of sampling 
across diff erent soil survey areas and the scarcity of points in ar-
eas where soil surveys have not been completed (e.g., the Mojave 
Desert region of California). Th e distribution of soil series with 
vesicular horizons derived from the STATSGO dataset (Fig. 
4b) may provide a better depiction of the overall distribution of 

Fig. 4. Spatial distribution of soils with vesicular horizons indicated by: (a) Soil descriptions with vesicular horizons, including Offi cial Series 
Descriptions (OSDs) and National Soils Information System (NASIS) pedon descriptions and the location of Remote Automated Weather Stations 
(RAWS) used in climate analysis and (b) State Soil Geographic data set (STATSGO) map units in which one or more major components are soil 
series with a vesicular horizon in the OSD. Shaded areas in (a) indicate the ecoregions of the Basin and Range Province, SON = Sonoran Basin 
and Range, MOJ = Mojave Basin and Range, CBR = Central Basin and Range, NBR = Northern Basin and Range.
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vesicular horizons. Th ese data also show that vesicular horizons 
are extensive throughout the western United States, but are es-
pecially common in the Basin and Range Province. Th e total 
area of soil series with vesicular horizons mapped in SSURGO 
is 156,000 km2 (as of 2007). Based on SSURGO, the vesicular 
horizons cover about 5% of the western United States and 21% 
of the Basin and Range Province.

Th e distribution of vesicular horizons in the western United 
States (Fig. 4), as well as the worldwide distribution of research 
sites where vesicular horizons have been described (Fig. 2), show 
that they mainly occur in arid and semiarid regions. Vesicular 
porosity is also better expressed under the more arid conditions 
across a climatic gradient in Mongolia (Lebedeva et al., 2009). 
Th e soils with vesicular horizons in our dataset derived from the 
USDA databases are mostly soils with aridic moisture regimes 
(72%). Th e association of vesicular horizons with arid ecoregions 
and soils with aridic moisture regimes can be attributed to a few 
factors: (i) high rates of dust deposition which create a surface 
layer that is conducive to vesicular pore formation (McFadden, 
1988; McFadden et al., 1998), (ii) periodic drying and rewet-
ting of the soil surface, which drives vesicular pore formation 
(Springer, 1958; Miller, 1971; Figueira and Stoops, 1983), and 
(iii) low vegetative cover, which allows surface crusting and air 
entrapment in the soil (Evenari et al., 1974).

Th e vesicular horizons in the soil databases occurred in a 
range of soil orders and were present across all temperature re-
gimes. Th e soils included in the data set are mostly Aridisols 
(65%), but also include Mollisols (14%), Entisols (13%), Alfi sols 
(5%), Inceptisols (3%), and a few Andisols and Vertisols (<1% 
each). Th e common occurrence of vesicular horizons in Aridisols 
refl ects the association of vesicular horizons with arid environ-
ments. Th e temperature regimes of the soils with vesicular hori-
zons were hyperthermic (4%), thermic (13%), mesic (64%), frig-
id (18%), and cryic (1%). Mesic and frigid temperature regimes 
were most common because many of the pedons with vesicular 
horizons were described in the cold deserts (i.e., CBR and NBR 
ecoregions) (Fig. 4a).

Th e most common fi eld-determined texture of the vesicu-
lar horizons was loam (35%), followed by sandy loam (18%), silt 

loam (15%), fi ne sandy loam (13%), 
very fi ne sandy loam (6%), clay 
loam (4%), silty clay loam (3%), 
loamy sand (1%), coarse sandy 
loam (1%), and loamy fine sand 
(1%). Other textures (sand, silty 
clay, loamy coarse sand, clay, and 
coarse sand) each occurred in <1% 
of the vesicular horizons. Peterson 
(1980) observed a similar distri-
bution of textures in the vesicular 
horizons of the Panamint Valley, 
California, which ranged from 
loamy sand to clay loam, but were 
most commonly sandy loam, loam, 

and silt loam. Laboratory-determined textures, available for 
279 of the vesicular horizons, show a similar range of textures, 
but with stronger concentration of textures in the high-silt 
corner of the textural triangle (Fig. 5).

The geomorphic settings described in the NASIS pe-
don descriptions, grouped based on the classifi cation of land-
forms by Peterson (1981), indicate that vesicular horizons are 
most common on piedmont landforms (alluvial fans, bajadas, 
fan remnants, fan skirts, fan terraces, and pediments) (72%), 
but also occur in mountains (mountainslopes, hillslopes, and 
structural benches) (13%) and basin fl oors (alluvial fl ats, allu-
vial plains, barrier fl ats, beach plains, lake terraces, playas, and 
sand sheets) (16%). Slopes reported in the NASIS pedon de-
scriptions indicate that soils with vesicular horizons are gener-
ally on low slope gradients, with a median of 2% slope and an 
interquartile range from 1 to 5%, but can occur on slopes up to 
45%. Th ese fi ndings are consistent with soil morphological de-
scriptions made across an arid landscape in the Mojave Desert, 
in which vesicular horizons were observed to occur on land-
forms of the piedmont, mountains, and basin fl oor, but within 
the mountains, were more common on gently sloping land-
forms (e.g., mountainfl at) compared to steep landforms (e.g., 
mountainfl ank) (Hirmas and Graham, 2011). Along a single 
hillslope in Australia, vesicular horizons were most common 
on low slope gradients as well (Brown and Dunkerley, 1996).

Vesicular horizons in the western United States occur 
across several ecoregions, which represent diff erent climatic 
and biological infl uences, and are formed in various geomor-
phic settings, which represent diff erences in surface age, parent 
material, and relief. Th us, it is not surprising that the chemi-
cal properties of the vesicular horizon, including organic C, 
CaCO3, pH, electrical conductivity, and exchangeable sodium 
percentage (ESP), vary widely (Table 3). Although some stud-
ies have suggested that low organic C (Wood et al., 1978), 
high CaCO3 (Evenari et al., 1974), and high exchangeable Na 
percentage (Bouza et al., 1993) promote vesicular pore forma-
tion, none of these can be considered an essential prerequisite 
for vesicular horizon development. Of the soils analyzed, 68% 

Table 2. Infl uence of assumed drying period on calculation of ∆T and the frequency of 
precipitation events.

RAWS Site (Ecoregion)†

∆T‡ Annual precipitation events

 DP = 1 d§ DP = 3 d DP = 5 d DP = 1 d DP = 3 d DP = 5 d

Haley Hills, AZ (SON) 7.5 ± 0.6¶ 11.2 ± 0.6 12.8 ± 0.7 8.1 ± 1.2 7.5 ± 1.0 7.0 ± 1.0

Horse Thief Springs, CA (MOJ) 5.9 ± 0.4 9.7 ± 0.5 11.6 ± 0.5 10 ± 0.9 8.3 ± 0.6 7.4 ± 0.6

Austin, NV (CBR) 7.4 ± 0.5 11.3 ± 0.6 13.5 ± 0.7 10.8 ± 0.9 9.8 ± 0.8 7.9 ± 0.5

Triangle, ID (NBR) 6.1 ± 0.4 9.2 ± 0.5 11.3 ± 0.6 13.5 ± 1.2 11.1 ± 0.9 10 ± 0.7

† Ecoregions: SON = Sonoran Basin and Range, MOJ = Mojave Basin and Range, CBR = Central Basin 
and Range, NBR = Northern Basin and Range.
‡ ΔT = Increase in air temperature during vesicular horizon drying after a precipitation event.
§ DP = Drying period used to defi ne the time required for vesicular horizon drying after a 
precipitation event.
¶ Mean ± 1 SE.



SSSAJ: Volume 75: Number 4  •  July–August 2011 1455
 

contained measureable CaCO3 and only 11% were sodic soils 
(ESP > 15; U.S. Regional Salinity Laboratory, 1954).
Vesicular Horizon Index

Th e vesicular horizon index (VHI) was developed as a way 
to quantify vesicular horizon expression based on standard in-
formation recorded in fi eld descriptions. Vesicular horizon ex-
pression is defi ned here according to the abundance of vesicular 
pores (more pores = better expression), the size of vesicular pores 
(larger pores = better expression), and the horizon thickness 
(thicker horizon = better expression). Previous studies have used 
similar rating systems for the purpose of comparing vesicular 
horizon expression within their study areas, based on the grade 
of platy and prismatic structure and the quantity class of vesicular 
pores (Blackburn, 1975; McDonald, 1994). Neither of these rat-
ing systems was suitable for application to the soil databases be-
cause they are not inclusive of all combinations of structure and 
porosity.

To develop an index that is inclusive of all possible ranges 
and combinations of properties that occur in vesicular hori-
zons, the VHI was modeled aft er the soil development index 
(SDI) (Harden, 1982). In the SDI, the thickness of the soil ho-
rizons is multiplied by terms that quantify individual soil prop-
erties. Th e SDI does not include a term for vesicular porosity, 
therefore the fi rst step in developing the VHI was to determine 
a suitable method for assigning a numerical value based on 
the description of vesicular pores. Th e standard method for 
describing vesicular pores includes the assignment of both a 
quantity class (Q) and size class (S) (Soil Survey Division Staff , 
1993; Schoeneberger et al., 2002). Point values were assigned 
to Q (few = 10, common = 20, many = 30) and S (very fi ne 
= 10, fi ne = 20, medium = 30, coarse = 40, very coarse = 50) 
using intervals of 10 to be consistent with points assignments 
used in the SDI (Harden, 1982). Several possible combinations 
of Q and S were compared by calculating each of the candidate 
terms for soil descriptions from a chronosequence study in the 
Mojave Desert (McDonald, 1994) (Fig. 6). Two of the terms fi t 
equally well to the chronosequence data (r2 = 0.89, p = 0.005): 
(i) the term calculated by summing Q + S for all size classes 
included in the description and (Fig. 6b) and (ii) the term cal-
culated by summing the product of Q × S for all size classes in-
cluded in the description (Fig. 6d). Th e term calculated by sum-
ming Q + S for all size classes included in the description (Fig. 
6b) was selected for use in the VHI because summation of 
soil property descriptors is more consistent with the cal-
culations applied in the SDI (Harden, 1982). Following 
the notation used by Harden (1982), the vesicular pore 
term is denoted as Xve. As in the SDI, Xve is then set to a 
scale from 0 to 1 (Xven) by dividing by the highest value 
of the term. Th e highest value for Xve encountered in the 
soil databases was 220, this would represent a vesicular 
horizon with many very fi ne, many fi ne, many medium, 
and many coarse vesicular pores. Very coarse vesicular 
pores are rarely described and therefore not included in 
the calculation of the maximum Xve. Finally, VHI is cal-

culated by multiplying vesicular horizon thickness by Xven. If 
more than one vesicular horizon is present in the soil profi le, 
the VHI is calculated for each horizon and then summed. An 
outline and example of VHI calculation is provided in Fig. 7.

Th e resulting index shows a strong relationship with the log 
of surface age (r2 = 0.94) for the surfaces under 100,000 yr old 
(Fig. 8). Th ese data demonstrate that although vesicular pores 
may be subject to collapse and reformation on a short time-scale 
(Fig. 3; Yonovitz and Drohan, 2009) there are also long term 
trends in vesicular horizon expression. Th is may be related to 
the addition of eolian materials to the vesicular horizon. Eolian 
additions cause the vesicular horizon to grow thicker. With age, 
the vesicular pores may also become stabilized by calcitans and 
argillans, which are formed by the transport of eolian-derived 
CaCO3 and clay into the vesicular horizon with infi ltrating wa-
ter (Anderson et al., 2002). Th e decrease in VHI at the oldest site 
in the chronosequence (Fig. 8) can be attributed to dissection 
and erosion of this surface (Meadows et al., 2008). Although the 
VHI (which includes horizon thickness) decreases on the oldest 
surface, the Xve increases (Fig. 6b). Th is suggests that Xve alone 
may be a better indicator of surface age on dissected surfaces 
where the vesicular horizon has been partially eroded. However, 
this would only be true in cases where erosion has been rel-

Fig. 5. Laboratory-determined textures of vesicular horizons plotted 
on the soil textural triangle.

Table 3. Chemical properties of vesicular horizons based on lab data 
for National Soils Information System pedon descriptions with vesicu-
lar horizons.

Property Median
Interquartile

range
Total

 range N

Organic C, % 0.7 0.4–1.2 0–5.3 269

Electrical conductivity, dS m–1 1.2 0.8–2.3 0.1–218 187

Exchangeable Na, % 2 1–6 0–96 256

pH 8.0 7.3–8.4 5–10.7 263

CaCO3 , % 4 0–12 0–49 205
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atively minor. Severe erosion of well-developed desert soils has 
been described in chronosequence studies and attributed to a 
pedogenic threshold, in which reduced permeability due to 
soil development leads to runoff, dissection, and degradation 
of the surface (Wells et al., 1985). Under these circumstances 
the entire vesicular horizon would be removed and neither 
Xve nor VHI would be reflective of the soil age.

The VHI is developed here for analyzing trends in ve-
sicular horizon expression using soil databases, but it may 
be otherwise useful. The heterogeneity of vesicular hori-
zons across desert landscapes could be used as an indicator 
of complex hydrologic patterns. Previous work has shown the 
infiltration rate of soils with vesicular horizons is negatively 
correlated with the quantity of vesicular pores described in 
the field (Blackburn, 1975; Valentin, 1994), as well as with 
the total porosity calculated from bulk density (Lebedeva et 
al., 2009). This suggests that VHI should also be negatively 
correlated with infiltration rate, although VHI is slightly dif-
ferent from the vesicular horizon rating systems used in the 
correlations described above, because it includes horizon 
thickness as well as vesicular porosity. Analysis of chronose-
quence data in arid and semiarid environments may also be 
aided by use of either the VHI or by including the Xve term 
in the calculation of the SDI. Harden (1982) suggested that 
other terms could be added as the SDI is applied to chronose-

quences in various environmental settings, undergoing differ-
ent pedogenic processes.
Vesicular Horizon Index and Ecoregions of the 
Basin and Range Province

A broad-scale trend across the Basin and Range Province 
is revealed when soil descriptions are grouped by Level III 
Ecoregions (USEPA, 2006a) (Fig. 9). Th e VHI is higher in the 
cold deserts (i.e., NBR and CBR) compared to the warm deserts 
(i.e., MOJ and SON). Possible regulators of vesicular horizon ex-
pression at this broad scale include paleoclimatic events, modern 
climatic conditions, and biotic factors.

Th e drying of pluvial lakes during interpluvial climatic pe-
riods exposed fi ne-grained sediments to wind erosion, produc-
ing vast areas that acted as dust sources. Episodic dust deposi-
tion from these events is an important driver of soil formation 
processes in both the warm (McFadden et al., 1986; McFadden, 
1988) and cold deserts (Chadwick and Davis, 1990). Th e for-
mation of vesicular horizons has been linked to these periods of 
abundant dust deposition (McFadden et al., 1998; Anderson et 
al., 2002). Th e distribution of pluvial lakes is one possible expla-
nation for the diff erence in vesicular horizon expression between 
the cold and warm deserts of the Basin and Range Province. 
Pleistocene pluvial lakes occupied 27% of the area of cold deserts, 
but only 5% of the area of the warm deserts in the United States 
(extracted from map by Dutch, 1999). Consequently, sources of 

Fig. 6. Comparison of terms for the quantifi cation of vesicular pore descriptions, applied to soils of increasing age on a chronosequence of alluvial 

fans in the Mojave Desert (McDonald, 1994): (a) ΣQ, (b) Σ(Q+S), (c) Q×S , (d) Σ(Q×S), where Q = quantity class (few = 10, common = 20, many 
= 30) and S = size class (very fi ne = 10, fi ne = 20, medium = 30, coarse = 40, very coarse = 50). Error bars indicate one standard error.
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dust, which drives vesicular horizon formation, are much more 
extensive in the cold deserts.

Th e dynamic nature of vesicular horizons, as observed by 
some authors (Springer, 1958; Yonovitz and Drohan, 2009), 
suggests that some destruction and reformation of vesicular 
pores is likely to have occurred under modern climatic condi-
tions. Vesicular porosity has been observed to increase with 
increasing number of wetting and drying cycles (Miller; 1971; 
Figueira and Stoops; 1983) and expansion of vesicular pores 
is commonly hypothesized to be driven by thermal expansion 
(Paletskaya et al., 1958; Evenari et al., 1974; Bouza et al., 1993; 
Henning and Kellner, 1994; Brown and Dunkerley, 1996; 
McFadden et al., 1998). With these mechanisms in mind, cli-
matic records were analyzed to derive the annual number of 
wetting and drying cycles, as well as the average increase in tem-
perature during drying. Th e frequency of wetting and drying 
cycles was found to increase along the gradient of ecoregions 
from the SON to the NBR (Fig. 10a), however high variabil-
ity within each of the ecoregions means that the diff erence be-
tween the ecoregions was not signifi cant according to ANOVA 
(p = 0.07). Th e modern climate may lead to greater vesicular 

horizon expression in the cold deserts due to the more fre-
quent precipitation events, which off er more opportunities for 
vesicular pore formation and growth, but the high variability 
of precipitation frequency clouds the importance of this trend 

Fig. 7. Outline, description, and example of steps involved in calculation of the vesicular horizon index.

Fig. 8. Vesicular horizon index as a function of soil age on a 

chronosequence of alluvial fans in the Mojave Desert (McDonald, 

1994). Error bars indicate one standard error.
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relative to observed diff erences in VHI between the ecoregions. 
Average temperature increase during drying was actually lowest in 
the NBR, highest in the CBR, and intermediate in the SON and 
MOJ (Fig. 10b); Th is indicates that diff erences in thermal expan-
sion do not likely explain the trend in vesicular horizon expression.

Biotic influences on vesicular horizon distribution in-
clude past and present vegetation types, burrowing animals, 
and biological soil crusts. Vesicular horizons are usually not 
observed, or are weakly expressed, in the undercanopy envi-
ronment because of the increased activity of burrowing ani-
mals (Shafer et al., 2007) and protective canopy cover, both 
of which prevent surface sealing required for vesicular hori-
zons formation (Evenari et al., 1974). Bare or clast-covered 
interspace soils that allow the formation of vesicular hori-
zons are characteristic of desert scrub communities in both 
the hot and cold deserts (Eckert et al., 1978). In the Mojave 
Desert, vesicular horizons occur in three vegetation commu-
nities that occur with increasing elevation: creosote (840 m), 
blackbush (1400 m), and pinyon-juniper (1750 m), but do 
not occur in the higher elevation fir-pine forests (Amundson 
et al., 1989). Contrary to our findings, weaker expression of 
vesicular horizons was observed in the Great Basin steppe 
community that occurs at high elevations in the Mojave 
Desert (Quade, 2001). In that study, the weak expression of 
vesicular horizons in the high elevation zones was attributed 
to the disruption of desert pavement by vegetation advances 
during the last glacial maximum. However, subsequent stud-
ies in the Mojave Desert have suggested that desert pavements 
recover rapidly from disruption due to vegetation advances 
(Valentine and Harrington, 2006; Pelletier et al., 2007). 
Considering the rapid formation of vesicular pores under fa-
vorable conditions (Yonovitz and Drohan, 2009), it is also 
likely that vesicular horizons were only temporarily affected 
by past vegetation advances. Vesicular horizons have been ob-
served to reform in plant scars, which are microtopographic 
features left by the death of long-lived perennial vegetation, 
even though these areas were mixed by burrowing animals 
that inhabited the undercanopy environment during the life 
of the plant (McAuliffe and McDonald, 2006). Given these 
considerations, differences in past or modern vegetation are 
unlikely to explain differences in vesicular horizon expression 
among the deserts of the Basin and Range Province. Vesicular 
horizons are observed across a range of plant communities, 
as long as bare interspace is present, and are unlikely to be 
significantly impacted by past vegetation advances that may 
have decreased or eliminated the bare interspace.

Biological soil crusts are a biotic factor that may have 
more direct influence on vesicular horizons. Biological soil 
crusts have been observed growing directly on vesicular hori-
zons (Danin et al., 1998; Joeckel and Clement, 1999; Cantón 
et al., 2003). Moss-lichen crust can promote vesicular ho-
rizons formation by trapping dust (Williams et al., 2010). 
Biological soil crusts of the hot and cold desert display differ-
ences in morphology; having a prominent pinnacled micro-
topography in the cold deserts and a smooth microtopogra-
phy and cryptic appearance in the hot deserts (Belnap et al., 
2001). This difference in microtopography suggests a stron-
ger dust-trapping capacity by the biological soil crusts in the 
cold desert, which could impact vesicular horizon formation.

Fig. 9. Box plots of vesicular horizon index by Level III ecoregions 

(USEPA, 2006a): SON = Sonoran Basin and Range, MOJ = Mojave 
Basin and Range, CBR = Central Basin and Range, NBR = Northern 
Basin and Range. Boxes labeled with the same letter indicate a 
nonsignifi cant difference between groups, according to the Mann–
Whitney test with a Bonferonni correction for multiple comparisons 
(per family α = 0.05, per test α = 0.008). Outliers are not shown.

Fig. 10. Results of climate analysis grouped by ecoregion (SON = 
Sonoran Basin and Range, MOJ = Mojave Basin and Range, CBR 
= Central Basin and Range, NBR = Northern Basin and Range): (a) 
frequency of precipitation events resulting in wetting of the vesicular 
horizon and (b) increase in temperature during drying of the 
vesicular horizon (ΔT). Bars labeled with the same letter indicate a 
nonsignifi cant difference according to Tukey’s test.
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Vesicular Horizon Index and Other 
Soil Properties

Th e median VHI was lowest in soils with hyperthermic 
temperature regimes, higher in thermic soils, and highest in 
mesic and frigid soils (Fig. 11a). Due to the smaller number of 
cryic soils, the median VHI was not signifi cantly diff erent from 
the other temperature regimes, except for the hyperthermic soils. 
Th e reason for the relationship between VHI and soil temperature 
regime cannot be evaluated from the purely observational data 
presented here. Th is relationship is diffi  cult to separate from that 
described above between VHI and ecoregions of the Basin and 
Range Province. While both relationships suggest that vesicular 
horizons are better expressed in soils of colder environments, the 
relationship may be an artifact of another factor that infl uences 
vesicular horizon formation, such as the prevalence of pluvial dry 
lakes that act as dust sources in those areas.

Analysis of VHI by soil order shows that VHI is signifi cantly 
higher in Aridisols and Mollisols compared to Inceptisols (Fig. 11b). 
Th e aridic moisture regime of the Aridisols, and most of the Entisols 
in the dataset, may explain why soils in these orders tend to have high 
VHIs. Vesicular horizons are better expressed in arid soils because 
of greater rates of dust deposition (McFadden, 1988; McFadden et 
al., 1998), exposure to cyclic wetting and drying (Springer, 1958; 
Miller, 1971; Evenari et al., 1974; Figueira and Stoops, 1983), and 
sparse vegetation cover, which allows more extensive surface sealing 
(Evenari et al., 1974). Th e high VHI of the Mollisols is contrary to 
the common perception that vesicular horizons are associated with 
low organic matter soils (Blackburn, 1975). Th e median organic C 
content of Mollisols in our data set is 1.5%, more than double the 
median organic C content for all of the soil orders in the dataset to-
gether (0.7%). Th e organic C content of the Mollisols with vesicular 
horizons is apparently not suffi  cient to stabilize aggregates and pre-
vent formation of vesicular pores.

Th e median VHI is not signifi cantly diff erent among any of 
the most common vesicular horizon textures (Fig. 11c). Th e me-
dian VHI was slightly higher in soils with silt loam textures, but 
was not signifi cantly diff erent from the other commonly observed 
textures according to the statistical analysis. Th is result suggests 
that all of the most common textures observed in vesicular ho-
rizons (loam, sandy loam, fi ne sandy loam, very fi ne sandy loam, 
and silt loam) are equally conducive to vesicular horizon forma-
tion. Previous studies have demonstrated that vesicular porosity 
can form across a similar range of soil textures (Peterson; 1980; 
Yonovitz and Drohan, 2009). Coarser textures (e.g., sands and 
loamy sands) and fi ner textures (e.g., clay loams) are much less 
common in vesicular horizons (Fig. 6). Th us, coarse-textured par-
ent material may require substantial alteration, typically through 
eolian additions, to allow vesicular horizon formation. On the 
other hand, extensive weathering and clay accumulation may lead 
to textures that are too clay-rich to support vesicular pore forma-
tion. Th is is thought to occur in some settings where eolian deposi-
tion allows the formation of a new vesicular horizon at the surface, 
while the buried vesicular horizon becomes increasingly enriched 
in clay and is transformed to a B horizon (McFadden, 1988).

SUMMARY AND CONCLUSIONS
Soil databases were used to analyze a large dataset, includ-

ing 1387 soils with vesicular horizons, spanning the western half 
of the United States. We estimate that there are 156,000 km2 of 
soils with vesicular horizons in the western United States, mostly 
within the arid Basin and Range Province. Vesicular horizons 
have highly variable chemical properties (organic C, electri-

Fig. 11. Box plots of vesicular horizon index in soils grouped by: (a) 
soil temperature regime (Hyp = hyperthermic, Therm = thermic, Mes 
= mesic, Frig = frigid, Cry = cryic), (b) soil order, and (c) vesicular 
horizon texture (l = loam, sl = sandy loam, fsl = fi ne sandy loam, vfsl 
= very fi ne sandy loam, sil = silt loam). Boxes labeled with the same 
letter indicate a nonsignifi cant difference between groups, according 
to the Mann–Whitney test with a Bonferonni correction for multiple 
comparisons (per family α = 0.05, per test α = 0.005). Outliers are 
not shown.
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cal conductivity, ESP, pH, CaCO3), refl ecting the diversity of 
soil-forming environments in which they occur. Th e VHI, cal-
culated from horizon thickness and size and quantity of vesicu-
lar pores, was developed and used to quantify vesicular horizon 
expression. Application of the VHI using the soil databases re-
vealed that the strongest expression of the vesicular horizon oc-
curs in the cold deserts (i.e., NBR and CBR ecoregions) and in 
soils with mesic and frigid temperature regimes. Th e association 
of strongly-developed vesicular horizons with cold soils may be 
due to a confounding factor, such as the large extent of pluvial 
dry lake beds that act as sources of dust in the cold deserts of the 
Basin and Range Province. Only weak associations were found 
between soil order and VHI, with the highest VHI occurring in 
the Aridsols and Mollisols. Th ere was no signifi cant diff erence 
in VHI among vesicular horizons with diff erent textures (loam, 
sandy loam, fi ne sandy loam, very fi ne sandy loam, and silt loam). 
Other textures are rarely observed in the vesicular horizon. Th e 
cause of the trends presented here cannot be evaluated based 
on the observational methods used in this study, however, the 
results suggest hypotheses that may be tested experimentally in 
future studies.
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