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Multicopters are important tools in industry, the military, and research but suffer from

short flight times and mission durations. In this thesis, we discuss three different ways

to increase flight times and therefore increase the viability of using multicopters in a

variety of missions. Alternate fuel sources such as hydrogen fuel and solar cells are

starting to be used on multicopters, in our research we simulate modern fuel cells

and show how well they currently work as the power source for multicopters and how

close they are to becoming useful in Unmanned Aircraft System (UAS) technology.

Increasing the efficiency in which the available energy is used can also increase mission

duration. Two characteristics that effect the efficiency of a mission are the flight

speeds of the multicopter and the payload it carries. These characteristics are well

known in larger rotor crafts but often ignored in smaller multicopters. In our research,

we explore the effect of flight speed on the dynamics of a multicopter and show that

higher speeds lead to higher flight times due to the effect of translational lift. Lastly,

we developed an online updating multi-flight planning algorithm for stop and charge

missions, a method that can potentially indefinitely extend a mission. The multi-flight

planning algorithm, the variable resolution horizon, reduces the computing resources

necessary to 15% to 40% of a typical optimal planner while having a maximum 5.6%

decrease in expected future reward, a metric for accuracy. The results of this thesis

help guide decisions in fuel type for multicopter missions, show examples of how



to increase flight time through increasing efficiency, and develop the framework for

multi-flight missions.
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Chapter 1

Introduction

The diversity of desired missions and associated requirements for multicopter Un-

manned Aerial Systems (UASs) is expanding rapidly. We see this in companies such

as Amazon suggesting the future of delivery lies with multicopter UASs [1, 2]. Re-

searchers and engineers have begun using them for inspection [3, 4] of structures and

environmental areas. Search and rescue teams have adopted the technology for use

in floods, earthquakes, and avalanches [5, 6]. Here in the NIMBUS lab, we have used

multicopters to set prescribed fires [7], take water samples [8], gather weather data

[9], and plant sensors [10], the last of which is the motivation behind this thesis.

Multicopters work terrifically in the above situations, where interacting with the en-

vironment is necessary because of their agile flight and hovering ability. The energy

and power requirements needed to enable this type of mission, however, are a major

weakness. These limitations greatly restrict multicopter UAS mission types. The re-

strictions impact the distance the vehicle can travel, flight speed, and flight time – the

consequences of which means multicopters are primarily good for short, nearby, slow

missions, preferably with minimal payload and unaggressive maneuvers. To power

multicopters lithium polymer, or Li-Po, batteries are the standard because they are

capable of producing large amounts of power and therefore can handle the power

requirements of multicopters. However, their energy density is low, thus limiting the
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mission range. If we are to expand the domains in which multicopters can be used

extending the possible mission duration is imperative. This can be achieved by find-

ing a better power source, increasing the mission efficiency, or creating a way to work

within the current restrictions. In this thesis we explore an approach in each of these

domains to increase mission duration by considering: Alternative fuel sources such

as hydrogen fuel cells and solar power, using flight characteristics to optimize power

usage, and building a multi-flight planner to be used in stop and charge missions.

In terms of alternate fuel sources both solar cells and hydrogen fuel cells are poten-

tial solutions for the low energy density problem of Li-Po batteries, either by replacing

or supplementing them. Solar cells can also be used to indefinitely extend mission

life by supplementing a battery in cases where landing and charging during daytime

hours is an option. Currently, however, they cannot provide nearly enough power

for continuous operation of a multicopter. As a result a vehicle must stop, possibly

in an undesirable location or time, and recharge. Hydrogen fuel cells are compelling

because of their large energy density compared to current battery technology. Hydro-

gen based fuel cells can contain more than 1000 Wh
kg

compared to ∼200 Wh
kg

for typical

Li-Po batteries used in most multicopters [11]. This presents an opportunity to sig-

nificantly extend the range of capabilities if the technology can be made to work with

a multicopter UAS. Solar cells present a different set of challenges as they require a

large surface area to be useful but provide continuous energy in sunlight. This has

some potential on flight if a solar cell can be added and carried stably. More interest-

ing to us is the potential to use a deployable solar cell as a charger in stop and charge,

multi-flight missions. This could potentially extend missions indefinitely, making the

limiting factor wear and tear on the multicopters themselves. To effectively use a

stop and charge method multicopter UASs will need to autonomously decide which

route will optimize their ability to carry out the task at hand.
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Learning flight characteristics of different multicopters is another avenue that

could bear fruit in terms of increasing mission duration. The flight characteristics

of helicopters are very well known [12, 13], in fact each helicopter model has their

own set of instructions on best flight speeds for endurance and distance depending

on their remaining fuel. Pilots are required to be familiar with the specifications

to avoid being stranded without a landing spot and to complete missions efficiently.

The primary characteristic which affects helicopter efficiency according to the FAA

is the idea of translational lift [14]. As the helicopter moves forward the airspeed

over the spinning blades increases therefore requiring the propellers to pull through

less air themselves to achieve lift. This phenomena causes helicopters to be more

efficient while flying than while hovering. While the dynamics of multicopters are

well known [15], formal research into characteristics such as the effect of flight speed

on multicopters is scarce. One would expect though, that they act similarly to their

larger counterparts. Learning the most efficient ways to fly a multicopter would

greatly aid in the ability to increase the length of their missions.

How a UAS responds to a payload is another important aspect of their utility. The

majority of mission types with UASs requires carrying some sort of payload, whether

it is a package, some sort of camera or sensor, or a robotics payload designed to

interact with the environment, most multicopter UASs will be carrying extra weight.

That extra weight will greatly effect the possible flight times for UASs and the shapes

of the payloads will add to the drag effects during flight. Most UAS companies

in fact release figures showing their flight times at different payload weights in the

specifications. Our hope in this section is to validate our model and the flight time

numbers suggested by the developer of our test multicopter, DJI.

Developing a stop and charge multi-flight planner brought up an interesting prob-

lem, how to deal with stochastic and dynamic environments. The planner must
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address uncertainty because conditions such as wind that effect the flight dynamics

or even the battery life aren’t always completely known making all decisions prob-

abilistic. The planner is also going to be effected by changes in the environment.

For example changing weather will effect the ability to charge, air traffic will effect

possible flight paths, and changes in viability of different landing spots can pop up.

The dynamic nature of real world problems needs to be considered.

Decision making in stochastic environments is well explored and frameworks such

as Markov Decision Processes (MDPs) have received wide attention [16, 17]. MDPs

though, are not without limitation. State space explosion hampers their usefulness

as the state space grows exponentially with each variable upon which it is dependant.

In these cases, researchers have developed tools to reduce the state space, therefore,

reducing the computing resources necessary to solve for the optimal policy [18, 19].

For example, factoring the MDP [20] allows independent variables to be considered

separately, while reward gradients allow policies to be estimated [21]. Because of

their size, MDPs are generally solved ahead of time and the optimal policy uploaded

to the vehicle to be executed at run time. This means MDPs must be carefully

designed since, once the policy is uploaded, if anything in the MDPs changes it must

be resolved offline for a new optimal policy. This then affects their ability to adapt

in dynamic conditions or evolve through reinforcement learning techniques as they

cannot compute large MDPs on the fly. In these cases a suboptimal MDP design is

chosen and an imprecise, small MDP that can be solved online is created. The other

option is to build a precise MDP and solve it offline without allowing for adjustments

to the model. As a part of this thesis we suggest a new technique for building MDPs

and solving them online which can produce near optimal policies while limiting the

state space size. This new technique, which we call the Variable Resolution Horizon

(VRH), enables us to indefinitely extend missions with an intelligent multi-flight
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planner.
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Chapter 2

Related Work

This thesis touches on a broad range of topics with the hope of increasing the mission

duration of multicopters. In this section we discuss a number of areas that informed

our work. For the alternate fuel source section the common uses of fuel cells in

industry and research, the use of fuel and solar cells in fixed winged UASs, the types

of fuel cells available and their advantages, and the use of solar cells in flight are

all important context for our research. We use these contexts to build the case that

alternate energy is a critical advancement in multicopter UASs, and we indicate which

current capabilities could translate to these advancements. The second section, flight

characteristics, is primarily motivated by what is known about how helicopters react

to different flight speeds. Translational lift is common knowledge amongst pilots and

power curves to optimize efficiency are widely used. We expand upon this later in this

section. Lastly we discuss where our mission planning work fits in the broader context

of UASs, how MDPs with large state spaces are dealt with in computer science, and

the inspiration for the variable resolution approach.

2.0.1 Alternate Fuel Sources

Using hydrogen and solar energy to power vehicles has been most prominently done

in automobiles. Their lack of green house gas emissions and ability to run quietly
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have helped fuel their development as we push forward into a greener world. Tollefson

explored the prospects of hydrogen cars on behalf of Nature [22]. Hydrogen fueled

automobile research seemed to pass its peak after initial investment in the early

2000’s but has made a comeback as fuel cell technology has rapidly improved in the

last decade. Fuel cells are getting smaller and more efficient addressing previous

concerns.

There are still many obstacles for hydrogen fuel cells to overcome before they be-

come a commercially viable option for cars but they are already a great alternative

in other sectors, especially the military. A recently declassified review of potential

military uses for fuel cells by the Australian government confirmed that Departments

of Defense across the world are intrigued by fuel cell potential [23]. In this review

Campbell, Crase and Sims discuss the advantages of replacing typical fuel and bat-

teries with a number of different fuel cells. The positives are shown specifically in

missions that require silent power. Fuel cells and batteries are excellent options for

these cases as both run quietly while gasoline and other combustible fuels do not. Fuel

cells though, have a much higher energy density and do not require a long charging

times. Instead they can be refueled by filling or changing the tank. This is important

for vehicles where space and weight come at a premium or vehicles that cannot afford

a long down time.

Kim and Kwon’s recent paper [24] shows the potential for using fuel cells as

alternates to battery power to increase flight times on unmanned winged aircrafts.

The researchers showed that hydrogen fuel cells can be quite effective at this goal

especially when a hybrid power system is used to overcome the pitfalls of the cells.

This technique combined with the replacement of some materials with lighter acrylic

will be useful in adapting fuel cells for multicopter UASs. Such work isn’t uncommon

as fuel cells on winged aircrafts have been explored for over a decade. The different
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generations of fuel cells that have been used on winged flight can be seen in [25], [26],

and [27].

Other work into exploring the effectiveness of fuel cells for flight have shown

promising results. The authors in [11] presents a detailed analysis of the benefits

and pitfalls of different fuel sources for UASs. In this paper they compared LiCoO2,

LiFePO4, Li-Po, and Li-ion before determining that Li-Po and Li-ion are typically the

best battery types for flight applications due their high energy density, stability, and

ability to maintain their effectiveness over many charging cycles. When compared

to a fuel cell the primary advantage of Li-Po batteries is its ability to supply very

high power at low weights (power density) and its efficiency at discharging usable

energy. However, energy density in the fuel cell was shown to be much better and the

weight needed to achieve a specific flight time much lower. In [11] battery and fuel

cell weights are compared for different flight time requirements. For 1 hour flight time

the Li-Po battery required enabled a slightly lighter craft than the fuel cell. However,

after that point the weight of the Li-Po battery required grew much quicker to 10 kg

for a 10 h flight as opposed to 4 kg for the fuel cell.

Similar research has looked into using different sources of hydrogen with fuel cell

flight in mind. In [28], the authors create and test a hydrogen fuel cell system to

help increase the performance of a winged UAS. They surmise that the potential

in fuel cells for military applications comes from their low noise and heat signature

being ideal for covert ops alongside the high energy density compared with batteries.

In their experiment [28], the authors use a hydrogen based solution and explore

how to best maximize the fuel. Such methods will be useful to future research and

applications as this technology grows. The authors also discuss their use of a hybrid

power system allowing the fuel cell to stay constantly at peak performance, sharing

the load with the battery when necessary, and charging the battery when supplying
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excess power. Such a system would likely significantly increase flight times even in

multicopter applications.

There are also other fuel cell types that could possibly be used. In [29], a number

of different types of fuel cells were explored for the purpose of extending the flight

of UASs. Electrolyte Membrane Fuel Cell or Proton Exchange Membrane Fuel Cell

(PEMFC), Alkaline Fuel Cell (AFC), Phosphoric Acid Fuel Cell (PAFC), Molten

Carbonate Fuel Cell (MCFC), and Solid Oxide Fuel Cell (SOFC) were all considered.

These different fuel cells use different chemical or electrolytic processes to achieve the

same result, turning hydrogen into water and energy. PEMFC were determined to

be likely the best for this application due to its temperature range (between 30 ◦C

and 100 ◦C) and its potential for large power outputs. This paper found that using a

continuous power for the fuel cells is the most efficient use. Increasing the load too

quickly causes a sharp fall off in productivity and can cause a quick drop in power

produced. This finding reaffirms the usefulness of a hybrid power system which allows

a battery to account for fluctuations in the load.

Gong and Verstraete also explore the historical uses of hydrogen fuel cells and

compare different fuel cell tanks and fuel sources [30]. They show that PEM fuel cells

are the most popular because they have the best operating power, energy density and

power density when compared to other fuel cell types. When considering brands, their

comparison shows Horizon Aerostack A-1000 and Protonex ProCore VI as the two

best in terms of specific power having 571 W kg−1 and 1961 W kg−1 respectively. The

ProCore VI is the fuel cell used on the Aerovironment Puma UAS, a UAS that was

able to fly 9 h non-stop. When considering fuel types Gong and Verstraete explored

pressurized hydrogen, chemical hydrogen and liquid hydrogen. Pressurized hydrogen

is the most commonly used and is quite efficient but has the issue of requiring a large

bulky tank which negatively affects its specific power and energy. Chemical hydrogen
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has the advantage that you can safely store high density hydrogen at a low pressure.

Chemical hydrogen removes the need for a pressurized tank but requires a chemical

reaction to separate the hydrogen for use. Liquid hydrogen, however, may not make

sense because of the extremely low temperatures in which it must be stored.

For winged aircraft there is now a fleet of hydrogen powered UASs being deployed

by some militaries. [31] discusses the shift of military research to creating drones

powered by fuel cells. Military projects have ranged from small UASs such as the

Swedish HyFish to larger High Altitude, Long Endurance (HALE) UASs. This shows

the range that fuel cells can be useful. The power requirements from some of these

projects are as small as 50 W while other can be in excess of 10 kW. [31] illustrates

that these fuel cells have become a huge area of interest to the military because of

increased flight time and ease of adding more fuel, thus limiting down time. The

ability to use different fuels such as different hydrides, which are stable compounds,

or just pure hydrogen also gives a tactical advantage as it can be adjusted for the

situation. In a spot where having soldiers carry pure compressed hydrogen may be

too dangerous, safer alternatives can be found.

Solar power has become prevalent in military research of UASs. The potential

for winged aircrafts to fly continuously without refueling during the day gives solar

power a unique advantage over other forms of fuel. In fact a number of papers present

analysis and experiment for exploring the viability of using solar cells on winged UASs

[32–34]. Some results show the ability to create an aircraft that can continuously fly

for 6 hours on a day with solar radiation conditions that are about the world average.

In fact winged UASs aren’t the only UASs that can be powered by solar energy.

[35] demonstrated that purely solar powered flight was possible for a multicopter by

creating a quadcopter to run purely on solar energy. In their paper, they explain the

selection of solar panels and how to properly protect them from in flight vibrations.
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For the purposes of this paper, knowing that sustained solar-powered flight is possible,

gives us an experimental example of increasing the flight time of a multicopter using

solar cells.

2.0.2 Flight Characteristics

Multicopter UAS efficiency is another important area to consider. Strong efficiency

will help overcome some of the limitations of alternate fuel sources. The fuel source,

the motors, the propellers all add to the overall efficiency of the aircraft. The effi-

ciency of different propellers on different multicopters was done by S. Z. Sverdlov in

[36]. Zulkipli, Raj, Hashim, and Huddin describe their experiments to pick the most

efficient motor [37] where they show the efficiency of different motors at different

power levels.

The efficiency of flight is not only dependant on the quality of the parts. Charac-

teristics of flight such as angle of attack and speed can have a huge affect. The authors

in [38] explored the angle of attack idea and showed how the yaw tilt of a multicopter

UAS can change the efficiency of flight. In helicopters the idea of translational lift

is very important and well known. As a helicopter moves forward the increased air-

speed over the propellers increases the amount of air being pulled through naturally,

reducing the amount of power necessary to generate lift and therefore increasing the

efficiency compared to a hover. In fact helicopters have handbooks [12, 13] which

describe this characteristic with power curves allowing pilots to calculate the most

efficient speed to fly to optimize flight distance or time depending on the weight of the

craft. The dynamics of multicopters is quite well known [15, 39] but little comprehen-

sive research into how translational lift affects their flight has been done. Some path

planning research has considered the affect to make their algorithms energy aware

[40, 41]. This research was done on each groups respective UAS of choice and shows
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how beneficial considering flight speeds in path planning can be on their respective

airframes. Considering that translational lift in rotored aircrafts is a vital concept,

a comprehensive model of our multicopter platform’s characteristics should help to

greatly increase flight efficiency.

2.0.3 Multi-flight Path Planning

Path planning to both maximize mission efficiency and allow for multi-flight plan-

ning for autonomous UAS missions has developed as its own distinct area in research.

This area is quite broad and many different strategies have been applied, for example

missions such as surveillance or collecting sensor data have been broken down into a

shortest path problem [42, 43]. The authors in these papers plan their paths exclu-

sively over the most efficient way to cover an area using one or multiple agents. This

approach has proven effective in environments with little uncertainty and where each

goal has the same priority. Others such as [44] use combinatorics to solve more com-

plex problems such as multiple goal UAS swarm routing. This method treats actions

as a chromosome like structure and uses random mutations and rewards to determine

the best possible outcome. This technique works well in solving their swarm prob-

lem but isn’t suitable for online updating as it requires large computations. To deal

with uncertainty and different valued goals, many researchers [45, 46] have taken a

different approach opting for the power of MDPs in these situations. This approach

suffers from the same problem we are attempting to solve, the explosion of the state

space as dimensions are added. Jeong, Ha, and Choi solve this problem using task

allocation as their method of reducing the state space. This method chooses to only

compute over accessible states, a similar goal to our receding horizon.

Plenty of research has been focused on reducing the state space and computing

power necessary to use MDPs. For example, in [47] the state space is reduced by
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finding hidden structures within it. Their algorithm will search a state space by

considering the problem deterministic. Any states that the planner would never

consider due to their lack of path towards a viable goal are removed. Trimming the

state space as such is always an advantage when possible. In many MDPs where there

are only a couple viable routes, this can bring the state space down to a manageable

size. This goal also drives the research in [48]. Instead of looking at possible paths to

a goal state though, Dean, Givan, and Kim remove states and actions which will not

produce meaningful rewards. Like these papers above we hope to reduce the size of

the state space by not including unimportant information. In our research though, we

determine that there is unnecessary detail in our state space as you move away from

the current state and remove that detail as our means of problem space reduction.

To deal with excessively large state spaces in control theory, receding horizon

approaches have been utilized throughout the field. This approach breaks a problem

into chunks manageable by the CPU by only looking at the next couple of steps instead

of the problem as a whole. This technique has been used in many different ways. [49]

suggests it as a solution for dealing with feedback control for non-linear systems.

Receding horizons are also familiar territory when flight planning, for example [50]

uses a receding horizon approach to create trajectories for UASs when using mixed

integer linear programming optimization. The receding horizon approach has also

been applied as a useful technique to solve MDPs where the state space is considered

infinite. Chang and Marcus proposed their solutions to this problem in [51] and

[52]. By using a small, moving horizon at each decision all computations stay small

enough to fit the processor. This paper discusses two solutions. First, a roll out

policy is created by considering the average future reward of each state in the space.

This estimates a finite horizon and creates a base policy and then builds on that

base policy as needed. In some cases the receeding horizon encounters a problem



14

where they can not confidently predict what the best base policy is. For these cases

a parallel roll out strategy is implemented using multiple base policies to track the

different trajectories and rank the policies. Techniques such as this which allow you

to make micro decision that will help proceed towards a macro goal are incredibly

useful in cases where things need to be calculated dynamically. In our research we

leverage the idea of a receding horizon to determine where we include highly detailed

information. Like the roll out strategy we are able to recompute and adjust the policy

as we move throughout the state space.

Usually a state space is just arbitrarily defined as a discrete system since consid-

ering it continuous means an infinite state space. In control theory multi-resolution

approaches have been used as a way of discretization. They have been applied in

models from economics to vehicle control [53–55]. Both the paper written by Grune

and Semmler and the paper by Nash use a multigrid approach to increase resolution

for control problems. This method has proved valuable in controls as it can lower

computation power necessary while increasing accuracy. Munos and Moore suggest a

slightly different approach, looking at each state as a node on a decision tree, splitting

each node whenever one of the three criteria they propose is met. The corner value

theorem and the value non-linearity theorem they suggest give useful tools to create

a near optimal policy while not over loading the CPU. Munos and Moore’s corner

value theorem was a significant inspiration to our work. The value difference method

we use to determine the discretization of the state space uses their idea that large

value differences between neighboring states imply important information is missing

between them. This is the basis of how we determine the best possible discretization

within our resolution horizon. Unlike the above work, which uses changing resolu-

tion throughout the whole problem space and solve, we only increase along a moving

horizon.
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Chapter 3

Extending Endurance with Alternate Fuel Sources

3.1 Introduction

Extending mission duration starts with better energy sources. Current LiPo batter-

ies are great for meeting the power requirements necessary for multicopters but fail

to sustain the power requirements for very long due to low energy densities, typi-

cally about ∼200 Wh
kg

. Higher density energy sources, such as hydrogen gas greatly

outperform LiPo batteries with an energy density on the order of ∼30 000 Wh
kg

. Hy-

drogen gas though need to be converted to electrical energy to be used and requires

heavy fuel cells and storage containers to do so, fuel cells which grow with the power

requirements, dropping the energy density of the entire set up significantly. Other

options such as solar cells can give 250 W for 0.174 kg of weight and theoretically

supply unlimited energy but require large surface areas. In this chapter we discuss

and analyze through simulation how hydrogen and solar on multicopters would work

and how future advancements are likely to vastly improve the industry.



16

3.2 Theory

Here we develop the equations and theory that determine hover endurance of a mul-

ticopter. We consider the power required to hover, the multicopter’s efficiency, and

discuss how to determine the energy contribution from each source. Using this we

derive equations for the life of the battery in hybrid power systems, which is gener-

ally a necessity as current fuel cells struggle to provide the necessary peak power and

adjust to changing conditions without a battery.

3.2.1 Power to Hover

In this section we derive the equations which describe the power necessary to hover,

similar to the work done in [56] and [57]. To start, we consider the lift generated by

the air moving through the rotors of our multicopter, which in a hover will equal the

weight of the craft. Rearranging this with M being the mass of the craft, m being

the mass of air being moved and using v as the velocity of the air we get

Mg

v
dt = dm, (3.1)

Considering the infinitesimal changes of the kinetic energy formula we get

dE =
1

2
dmv2. (3.2)

To solve for air velocity, consider the equation for torque from a propeller rearranged

for velocity

v =

√
T

ρA
. (3.3)
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Where ρ is the density of air and A is the area of the propeller. Note that this is the

force of thrust for each single propeller. The thrust from all the propellers will equal

the gravitational force for hovering. Therefore bT = Mg where b is the number of

propellers on the multicopter. Knowing the area of a circle and that power is energy

per second we derive

P =
M

3
2

r

√
g3

4πbρ
, (3.4)

where the constant
√

g3

4πbρ
will be often denoted as k.

3.2.2 Efficiency

Using Equation 3.4 we calculate the theoretical power that is necessary for the multi-

copter UAV to hover. To find the theoretical energy used in a battery this theoretical

power is multiplied by the time the multicopter can hover in seconds, ET = Pt. The

hover time is taken from each multicopter’s specifications provided by the manufac-

turers. The actual energy that the multicopter uses is equal to the amount of energy

the batteries can provide, also taken from the manufacturers specification, leaving

us with the actual energy used or EA, and the theoretically required energy, ET .

Efficiency is then

η =
ET
EA

. (3.5)

This calculated efficiency will be assumed to stay constant for all the energy sources

we use for the remainder of this paper.

3.2.3 Time of Flight

Since alternate fuel sources can struggle to deliver sufficient peak power or adjust to

quickly changing conditions fast enough the multicopter will only fly as long as its

battery can provide the power. Therefore the flight time is calculated by dividing the
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energy in the battery, EB, by the power required from the battery, PB. Therefore,

t =
EB
PB

. (3.6)

Using the assumption that the supplementary fuel source’s power, PS, will be directly

applied to the multicopter and that the efficiency in which the power is used is the

same as the battery we get

P = η(PB + PS) (3.7)

This equation though, is only valid for t < tS where tS is the lifetime of the sup-

plementary power source, after that PS = 0. In all cases explored in this paper the

lifetime of the supplementary power source is much larger than that of the battery.

3.2.4 Solar Cells

Recent improvements in solar panels make them a viable option for supplementing

power for a multicopter. Solar cells have become so light weight, flexible and efficient

that their addition can often add much more power to the system than is required to

carry them. To calculate the added flight time we make the following assumptions.

First, since taking load off the battery is a common goal of solar-supplemented flight,

power from the solar cells can directly be applied to the multicopter, therefore skipping

the loss in efficiency that charging the battery would face. Second, we assume that

the multicopter uses the power from the solar cell with the same efficiency that it

uses power from the battery. It is believed that the low efficiency is primarily due

to the multicopter’s dynamics so the source that is delivering power should not have

a huge impact. Finally, we assume that the solar cells are working as efficiently as

claimed by their manufacturer. This assumes they are constantly in direct sunlight

during flight which may not always be the case.
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Two specifications are necessary when trying to determine the added flight time;

power per area, pd, and mass per area, ms. Using these we can determine the total

power added

Ps = pdAs, (3.8)

and the total mass added

Ms = msAs. (3.9)

Where As is the area of the solar cell.

Adding solar cells also creates a distinct advantage to other power sources; near

unlimited energy. Every other option has a limited fuel supply limiting their potential.

With the solar cells there is the option to park and charge as many times as necessary.

This allows for missions outside of the typical range by using multi-flight planners

[46]. Solar cells are not without drawbacks though as they need direct sunlight and

mounting a large enough panel in a way that does not affect stability is difficult.

3.2.5 Hydrogen Fuel Cells

The hydrogen fuel cells present another option for increasing the flight times. They

are lightweight, can be scaled up to provide a lot of power to take the load off a

battery and have a much higher energy density than the batteries used on current

multicopter, providing up to 4 times as much energy per kg in some cases [11]. There

are limitations though, as mentioned in the related work section. Fuel cells are not

as good at quickly adjusting to changing loads as batteries are and can and often

struggle to deliver enough peak power to keep a multicopter running by itself. To

complete the calculations, the fuel cells will be assumed to be running at full power

at all times, a reasonable assumption considering the power they provide is generally

less than the power required by the multicopter to hover. Energy the fuel cell can
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provide will be its nominal power multiplied by the number of seconds it can operate,

ts giving us

EH = PHtS. (3.10)

We use PH as the supplementary power source in Equation 3.10 which will then hold

valid as long as t < tS. After that point though the multicopter goes back to being

operated purely on battery power or battery and solar if a solar cell is attached.

3.2.6 Ideal Battery Size

The battery is the limiting factor of multicopter flight time due to its ability to

deliver peak power and quickly adjust to changing conditions. It may be beneficial

to increase the size of the battery even though the batteries comparatively inefficient

source of energy. To find the ideal battery size for each alternate power source we

derive equations for the total battery life, B, which will also be the total hover time

B =
EB

P
η
− PS

. (3.11)

where EB = MBd. Since the goal is to get battery life as a function of the battery’s

mass we split up the mass of the battery from the mass of the system. This gives

M = MB +MS. These equations are substituted into Equation 3.4 to get

B =
MBd

(MB +MS)
3
2 k
ηr
− PS

. (3.12)

We then use this equation to graphically demonstrate results for specific cases below.
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Table 3.1: Multicopter Specifications

Make/Model Airframe mass Total standard mass Standard flight time Max Takeoff Weight

DJI Matrice 600 5.96 kg 9.5 kg 32 min 15.1 kg
DJI M200 2.76 kg 3.80 kg 27 min 6.1 kg
Kitty Hawk 4.08 kg 9.15 kg 30 min 18.6 kg

Table 3.2: HES Aerostak Fuel Cell Specifications

Power Mass(Original/New) L/min Operating pressure Equivalent volume at STP Time at max power

200/250 W 2.06/1.93 kg 2.8 0.5 bar 1200 L 25714 s
500 W 2.90/2.12 kg 6.5 0.5 bar 1200 L 11077 s
1000 W 3.75/2.97 kg 14 0.55 bar 1091 L 4675 s

3.3 Case Study

Our case study consists of three parts: initial investigation, current advancements,

and future advancements. The initial investigation contains our simulations and anal-

ysis on the systems available at the beginning of 2018. For the current advancements

we consider the newest available technology as of November 2018 in our simulations.

Finally in future advancements we explore what the future landscape of hydrogen

powered multicopters could look like with some small improvements to technology.

3.3.1 Initial Investigation

We apply our theory to three different multicopters, a DJI Matrice 600, DJI M200,

and a KittyHawk HDX4. Each of these multicopters are different sizes and allow three

distinct cases to support our theory. For auxiliary power supplies, only commercially

available products are explored to show current viability. Alta Devices technology

solar panels are considered to model the equations and theory. The solar panels

that they supply are highly efficient compared to the industry standard, about 28.8-

31.6% giving a power output of about 250 W
m2 while weighing 0.174 kg

m2 [58]. The fuel
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(a) Flight time with solar cell (b) Flight time with fuel cell and increasing
battery size

Figure 3.1: Matrice 600

cells used are HES Aerostaks and have a Ultra-Light Composite Storage Cylinder

(E-Series) tank [59]. The 200 W, 500 W and 1000 W cells equipped with a tank that

can hold 2 L at a pressure of 300 bar (Model # 3271522) are considered for this case

study. Larger tanks could be useful in future research or if the plan is to park to

charge but will not be included in this analysis.

Table 3.2 shows the specifications of the fuel cells that will be used. All calculations

for fuel cells are made based on these specifications. The time at max power is the

operating time each of these fuel cells can achieve. This is much greater than the

overall flight time of the multicopter and therefore will not be considered in analysis.

The Matrice 600 specifications can be seen in Table 3.1. Plugging in these num-

bers, along with the added power and mass of the solar cell into Equation 3.12 a

curve describing the relationship between solar cell area and flight time is shown in

Figure 3.1a. We note that the quadratic shape will not hold if the size of the solar

cell continues to increase, this is due to the M
3
2 relationship as seen in Equation 3.4 .

That though, is not of concern due to the relatively small amounts of area available
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on the multicopter. Figure 3.1a shows the flight time was increased by 64% when a

2 m2 solar cell was added and about 24% when there is 1 m2. The requirements of

needing direct sunlight still exists but in good conditions one can expect a significant

boost to the flight time. With such little weight added also there is very little fall off

from standard performance if those conditions are not met. Knowing the potential to

increase flight time also lends itself to the idea of multi-flight planning missions where

there are scheduled charge times as mentioned earlier. In practice integrating enough

area of solar cells to effectively harvest energy could be challenging on a multicopter.

For the fuel cells to add value a larger battery becomes useful. In Figure 3.1b, the

graph of total mass including the fuel cell, the multicopter and the increasing battery

size is plotted vs total time of hover in seconds. The multicopter’s default battery

specifications, particularly its energy density, is used as the standard in this case

study. Figure 3.1b shows the 200 W and 500 W fuel cells are less effective than just

increasing the size of the battery. This is a product of the battery life. The smaller

fuel cells only take a small load off of the battery but leave unused excess energy when

the battery dies. For the fuel cell to be effective it needs to take the majority of the

load off of the battery. The 1000 W fuel cell shows good potential for increasing the

flight time topping out at 2601 s with a total mass of 16 kg. This 16 kg is comprised

of 3.75 kg for the fuel cell, 5.96 kg for the multicopter and the remaining 6.29 kg for

the battery. This configuration increases the flight time by about 11.33 min, or by

35.5%. Although 16 kg is above what DJI suggests as the maximum take off weight,

tests we conducted with this vehicle anecdotally show it can take off and is stable at

that weight. Worth discussing is the case where the size of the battery is increased.

At under 11.8 kg the increased battery size, 5.84 kg of battery, outperforms any of the

other options besides the 1000W fuel cell, and improves flight time by 19.5% from

1920 s to 2294 s.
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(a) Flight time with solar cell (b) Flight time with fuel cell

Figure 3.2: Matrice 200

Though the area available to fit a solar cell on the M200 is small, improved flight

time could still be realized. In Figure 3.2b a 19% increase in hover time is shown for

as small as 0.3 m2 of solar cell area. Anything larger will be a challenge to fit on the

limited area but the added extra 6 min could prove to be useful in certain situations.

In contrast to the M600, the M200 is not suitable for the fuel cell. Being a much

smaller craft, as seen in Table 3.1, it requires less power to hover but cannot carry

nearly as much. Considering the load restrictions of this vehicle, a 1000 W fuel cell is

unreasonable to carry. For this reason analysis will be kept to the 200 W and 500 W

fuel cell. As seen in Figure 3.2b the M200 does not seem like a viable option to run

on hydrogen. The weight added by either fuel cell actually adds less power than is

required to carry it. This is a problem small multicopters will face as the base weight

of a fuel cell large enough to help is much higher than what they can carry.

The KittyHawk is a prime candidate for solar cells. In the right conditions a

theoretical increase in the KittyHawk’s flight time occur with every reasonable de-

nomination of solar cell area.

From Figure 3.3a, with 2 m2 of solar cell, up to 2243 s of theoretical flight time
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(a) Flight time with solar cell (b) Flight time with fuel cell

Figure 3.3: Kitty Hawk

can be achieved. This is about a 25% increase from the original 1800 s that the

specifications show. This gives some confidence that solar cells, as light as they have

become, will add extra flight time to a system of this size. However, the lack of

efficiency from the aircraft creates serious obstacles for applying a fuel cell. The

KitttyHawk had a calculated efficiency of about 25%, compared to about 31% for

the Matrice aircrafts. This difference causes the fuel cell effectiveness to be severely

limited because of the inability to use most of its power. The results, shown in

Figure 3.3b, demonstrate that the fuel cells require more power to carry than can be

used from them.

Increasing the size of the battery for this multicopter is the most effective way

to increase the flight times. When the system weight, including increased battery, is

at 12 kg a max flight time of 2343 s can be realized. This includes a base weight for

the aircraft of 4.08 kg and 7.92 kg of battery. For the 1000 W fuel cell we max out

at a flight time of 2149 s at 14.13 kg showing the fuel cell’s inability, in this case, to

outperform the battery even with its superior energy density. This, like in previous

cases, is due to limitations of the battery as the fuel cell has an excess of energy when
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the battery dies.

3.3.2 Current Advancements

HES Energy Systems has reduced the weight of their new line of fuel cells. Their

Aerostak 200 W system has been increased to 250 W at 0.13 kg less than the previous

iteration. The Aerostak 500 W system weighs 0.4 kg less than the previous iteration

and the Aerostak 1000 W system weight went down 0.78 kg. For this analysis we

assume these fuel cells have a F2 F-series tank also from HES fuel systems.

Figure 3.4: Matrice 600 flight time with current fuel cell

Since less weight requires less power, a smaller, lighter battery is sufficient to

hover, and the vehicle can take advantage of the high energy density of the fuel cells.

In Figure 3.4 there is a significant difference the lighter 1000 W fuel cell makes on

the Matrice 600. Hover time peaks at 3148 s, or 52.5 min, as compared to 43.4 min

for the last generation of fuel cell. Additionally, the peak flight time in the newest

iteration occurs when the system weighs 11.23 kg which is a significant decrease from

the 16 kg that was previously necessary. This improvement comes not only from the
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(a) Matrice 200 flight time with new fuel cell (b) Kitty Hawk flight time with new fuel cell

Figure 3.5: New fuel cells

0.78 kg savings from the fuel cell but the fact that only 2.3 kg of battery is necessary

to power the system instead of the 6.29 kg. This weight difference can have a large

impact on mission logistics. A take off weight of 16 kg is above the DJI’s suggested

maximum while the new system can easily carry the fuel cell and a small payload.

Even with the weight savings the smaller fuel cells still will not increase the flight

time on the Matrice 600 and are not useful for the same reasons previously outlined.

The new fuel cell is not quite viable to be used as a source of energy for the

M200. As can be seen in Figure 3.5a, though there is an increase in viability from the

previous iteration of fuel cell it is still not enough to be useful for the M200. Small

UAV multicopters such as this are still likely far from being able to use hydrogen

cells.

The Kitty Hawk also did not show the same potential with the improvements to

the fuel cells in large part due to less efficiency as previously outlined. As seen in

Figure 3.5b, the battery still outperforms the new advancements. The amount of

power needed to power the vehicle, even at the lower weight, is too much for the fuel

cell to overcome. This illustrates that higher efficiency multicopters will likely be the
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first to make use of on board fuel cells, further increasing their capabilities.

3.3.2.1 Hydrogen Multicopters

Since our first analysis in Spring 2018, a number of hydrogen powered multicopters

have been advertised. HES fuel systems has released its HyCopter, a lightweight

hydrogen powered multicopter UAV with a 1500 W fuel cell attached [60].Based on

advertised specifications, this multicopter can sustain flight for 1.5 h to 3.5 h depend-

ing on the tank attached [61]. At the smaller tank the weight is about 11.5 kg and an

additional 2.5 kg of payload can be added. MMC has also released a hydrogen pow-

ered multicopter called the HyDrone 1550. Based on specifications this multicopter

can fly for about 2.5 h at a standard weight of 17 kg with the ability to carry an extra

1.5 kg of weight. This multicopter is equipped with a spare battery though it is not

clear whether it is needed for sustained flight or difficult maneuvers.

These new releases show how the effects of new generation of fuel cell technology

can have on the multicopter industry. New high efficiency fuel cells have allowed for

specially made, high efficiency multicopters to be created that can effectively take

advantage of the high energy density in hydrogen fuel. These new multicopters are

also consistent with the analysis provided in this paper. A small advancement in fuel

cell technology has increased the power density allowing it to completely take the

load off of a battery. This allows the limiting factor for flight time to be the amount

of fuel that can be carried rather than the battery’s energy. As a result they can fly

much longer, fully taking advantage of the high energy density of hydrogen. These

technologies, though still in their infancy, are exciting and we look forward to seeing

how these vehicles will perform in practice.
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(a) Theoretical fuel cell (b) Theoretical efficiency

Figure 3.6: Matrice 600 with theoretical improvements

3.3.3 Future Advancements

Current technology is just now breaking through the barriers previously preventing

growth in multicopter flight time using hydrogen fuel cells or solar cells. Presumably

minor advancements in fuel cell and multicopter weights and efficiencies are all that

is needed for more fuel-cell-powered multicopters. There were two areas we have

identified for potential advancement: fuel cell efficiency and aircraft efficiency. Fuel

cells need to take the majority, if not all of the load off of the battery to unlock the

potential of fuel cells. With either of these advancements the load on the battery

quickly approaches zero making the limiting factor of flight time the fuel carried on

the multicopter. To illustrate this, two theoretical graphs, Figure 3.6a and Figure 3.6b

show how the flight time of the Matrice 600 would be extended if the power output

from a fuel cell could be increased while maintaining the 1000 W weight or if increases

to how efficiently the Matrice 600 uses energy could be made.

There are two important takeaways from Figure 3.6a. First, a modest increase in

power output of just 30%, from 1000 W to 1300 W, increases the flight time by more
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than 63% compared to the current fuel cell. An advancement allowing this fuel cell

to nominally produce its current max power corresponds to a large increase in flight

time. Second, as fuel cell technology advances, our ability to traverse long distances

with them will rapidly grow, only being limited by fuel storage. Figure 3.6b shows a

different, but interesting effect of increasing the efficiency of the system; a hybrid fuel

cell system benefits much more than a battery-only system. This happens because the

improvement overcomes the issue with power density in the fuel cell. As efficiency

increases, more usable power becomes available removing the load on the battery.

The relationship seen will hold until the limiting factor becomes the energy in the

form of hydrogen the drone is carrying. Once we reach this point, flight time will

become linearly proportional to total energy just as it is with the battery. This goes

to show that the multicopter efficiency increase has a similar effect as in Figure 3.6a,

there is more power available to the multicopter therefore decreasing the load on the

battery and extending the life.

3.4 Discussion

Here we discuss key takeaways and limitations we have found during our research

that can impact how researchers design, build, and use multicopters. First, using

current, commercially available solar cells is a viable path to increase flight time

for both single flights and multi-flight missions. 1 m2 of solar cell can increase the

flight time of the multicopters analyzed by around 25%, and can be considered for

applications where solar charging is an option. Second, in specific cases, using a

1000W fuel cell on currently available vehicles can increase the flight time. This has

the potential to be useful in a number of different applications, but is limited to little

or no payload, even on large multicopters. In cases where landing and battery charging
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is an option, an excess of hydrogen can be carried to supplement the batteries and

increase average flight time. Lastly, we are on the cusp of exponentially increasing

the flight times and distances of multicopters using fuel cells, and this technology is

advancing rapidly as can be seen by the jump from our initial investigation to our

analysis of current technology. The industry is starting to break through the barriers

to sustained hydrogen-powered multicopter flight, and some companies are releasing

their own hydrogen-powered multicopters.

A limitation of note on hydrogen fuel cells that should be noted is the danger of

hydrogen gas. Compressed hydrogen can be explosive if sparked, a danger that is

very real in multicopters during crashes. Filling the tanks can also be dangerous as a

spark can light both the tank on the multicopter and the larger storage tank on fire.

The systems required to safely fill these tanks combined with the training necessary

is prohibitive to casual multicopter users.

Solar cells have a couple important limitations of their own. Firstly, adding a

solar cell must be done very carefully, as many configurations could seriously effect

the flight dynamics and stability of the multicopter system. Configurations that

closely hug the body of the multicopter without significantly effecting the flight may

run into problems by violating one of our key assumptions, that the solar cell is in

direct sunlight. The need for direct sunlight makes the multi-flight planner a more

likely endeavour as a deployable solar cell can be used to better meet this need.
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Chapter 4

Optimizing Flight Characteristics

4.1 Introduction

The flight time of a multicopter, or any vehicle for that matter, is based on the

relationship between how much energy it uses to run and the amount of energy

available. In the previous chapter we discussed ways to increase the amount of energy

provided to a multicopter as a way to increase flight times. In this chapter we work

to reduce the energy needed to fly. Flight characteristics are a big part of overall

efficiency and are an important area of knowledge in all larger aircrafts where the

cost of energy is very high.

4.2 Theory

Rotor based aircrafts have three distinct types of drag that affect their efficiency:

parasitic drag, profile drag, and induced drag. The authors in [62–64] all describe the

effects of these types of drags. Parasitic drag is the drag caused by parts of the aircraft

that do not contribute to generating lift or thrust. These parts can be things such

as landing gear or any accessories or payloads a multicopter or helicopter is carrying.

Parasitic drag, as seen in Figure 4.1a, rapidly increases with speed, meaning the
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power requirements to overcome it do also. Profile drag, Figure 4.1b, is the frictional

resistance of the air as it moves over the profile of the aircraft. Profile drag stays

relatively constant for most airspeeds but grows rapidly at very high speeds. This

happens because of an effect called retreating blade stall that we will not concern

ourselves with in this analysis. The final type of drag is induced drag, shown in Figure

4.2a. This is the drag the multicopter creates to move air through its propellers and

create lift. At a hover, all of the airflow through the propellers to create lift must be

induced by the multicopter requiring a large amount of power. As airspeeds increase,

more air starts moving through the propellers without the induction, lowering the

induced drag significantly. This is the driving factor behind translational lift. When

all three of these drag factors are considered, a power curve as shown in 4.2b can be

created. From this curve, the airspeed that produces the minimum power is deduced

and can be used to maximize efficiency.

(a) Parasite drag as a function of airspeed (b) Profile drag as a function of airspeed

Figure 4.1: Figures from [62].

Multicopters, though they have some differences, should be expected to have sim-

ilar dynamics of a helicopter. They will have drag effects from their features and

payloads, they have a similar profile to create friction with the passing air, and they

create lift the same way with induced drag. In this chapter we discuss how flight
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(a) Induced drag as a function of airspeed

(b) Power curve of a helicopter example

Figure 4.2: Figures from [62].

speed affects the life of a battery in a Matrice 600 multicopter.

The ability to hover with different payloads is also experimentally explored in

this section. The theory and math behind the power required to hover is discussed

in Chapter 2. Equation 3.4 shows the relationship between the total weight of the

multicopter and the power necessary to hover. This equation shows a M
3
2 relationship

we expect do dictate our results.

4.3 Method

The goal of this chapter is to show the effect of payloads on a hover and quantitative

evidence that increasing flight speeds can have a positive impact on flight time. For

the flight speeds we presume that the main cause of this effect to be translational lift

but other effects such as motor and prop efficiency at different speeds can contribute.

The contributions of each potential effect are not a concern in this research as we are

more focused on the practical application than a deep understanding of the underlying

dynamics.
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We performed the tests on the Matrice 600 to stay consistent with our simulations

of alternate fuel sources. The Matrice 600 is also great for these tests because of

its autonomous flight software and the software based battery sets give good and

accurate readings, adding to the consistency of our tests. We used the same set of

LiPo batteries accross each set of tests as the performance of LiPo batteries change

throughout the life of the battery. The differences across different battery sets can

cause uncertainty in data.

The metrics we chose to evaluate our performance are average flight duration on

a single battery life and average distance traveled on a single battery life. These

metrics were chosen because our goal is to improve what can be achieved in a mis-

sion. Maximizing mission duration and distance are the primary ways to do this. In

testing, not all of the battery levels started at 100% or used the same overall battery

percentage. To deal with this, we calculate the time per percent battery which was

averaged over each flight and then calculated the flight time that would be achieved

going from 100% to 30%, the battery level where the low battery warning appeared.

For the distance metric, this time was multiplied by the flight speed to get distance.

These tests were done at three ground speeds, a hover, 10mph, and 20mph. Au-

tonomous waypoints and a speed were set at the start of each trial. The Matrice

600 then travelled back and forth at the set speed until the low battery warning was

set off. In an ideal situation the UAS would not have to stop and start traveling

between waypoints, but we faced limitations. Only 400ft of straight space was avail-

able to fly and and the autonomous flight software would cause the multicopter to

stop at each waypoint. This We prioritized consistency and relative effect over exact-

ness in these experiments. To get exact results in future work use of a wind tunnel

would greatly increase accuracy as the speeds measured would be air speeds instead

of ground speeds. The hovering with a payload tests were set up similarly except
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with attached payloads of 0lbs, 5.3lbs, and 10.4lbs. We conducted experiments on

days with similar conditions generally, but small differences in wind speeds, from 5

to 10 mph, were beyond our control and affected the accuracy of our data.

4.4 Results

Our results show a clear increase in efficiency as flight speed goes up across different

sets of batteries. Figure 4.3 clearly shows this effect as the time in the air increases

with speed for both sets of batteries. In battery set 1, we see a nearly 19% increase

in the overall flight time, and about a 7% increase in battery set 2. The cause of the

inconsistency is unclear but the trend is not. This result is important because it shows

that multicopters share the same power curve characteristics that are experienced by

larger aircrafts. Knowing that time of flight increases with speed it is apparent that

flight distance will increase dramatically as shown in 4.4. It is unknown from our

testing to what speed this trend continues to and more in depth testing is necessary.

Due to the nature of the tests and batteries it is difficult to know the energy

contained in each battery set. This prevents us from creating a true power curve rep-

resentation of our system as we cannot deduce the power necessary without knowledge

of the energy the system uses. Instead, in Figure 4.5 we show a relative power curve,

where the power to hover is normalized to 100% and the power of different flight

speeds is compared to that. In Figure 4.5 we see as little as 87% of the power to

hover is necessary to fly on battery set 1, a similar effect to the curve we see in Figure

4.2b. In our tests we do not hit speeds high enough to facilitate the power increase

on the right side of the helicopter’s power curve and therefore cannot determine the

ideal speed to fly. More tests should be conducted to fill in this curve better.

Figure 4.6 shows the effect of different payloads on the hover times. The trend
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Figure 4.3: Expected flight time over one full battery life

seems to follow the M
3
2 relationship we expect but more data points would be needed

for certainty. The line showing the DJI specifications is just there for reference. DJI

only gives the no payload and max payload numbers so only two data points exist.

Our number are consistent in comparison, they don’t quite meet the expectations

but this makes sense as the batteries used have a decent amount of wear on them so

aren’t expected to perform like the new batteries DJI would be making specifications

for.
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Figure 4.4: Expected flight distance over one full battery life

4.4.1 Discussion

The results show that there is a clear decrease in necessary power to fly as flight

speed goes up for the speeds we tested. This is consistent with what has been known

about helicopters for years and does not come as a surprise. If this testing was

done in consistent conditions and with no stopping and starting necessary, we expect

that the effect would be even more prominent and that our results would show a

blunted version of the effect of translational lift. To be even more precise more tests,

including different speeds and more batteries should be added. Other effects that

cause changes in efficiency such as motor efficiency and effectiveness of the propeller

blades on different speeds possibly contributed to our overall increase in flight, but we
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Figure 4.5: Relative power curve compared to a hover

believe they are unlikely to be the primary cause. Experiments such as those done in

[36] and [37] show improvements caused by maximizing motor and propeller efficiency,

but not on the scale seen in this experiment. Future work to isolate translational lift

to more precisely characterize the dynamics would be very useful.
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Figure 4.6: Flight times with increasing payload size
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Chapter 5

Multi-flight Planner

As the proliferation of UASs increases new techniques to increase automation in all

facets including mission planning have become important. In most of these cases, the

decisions made are in the face of uncertainty, as conditions and mission objectives can

be dynamic. MDPs are a common framework for dealing with these problems. MDPs

first appeared in the 60s [65] and have been applied to decision making and planning

algorithms successfully [66]. MDPs are powerful because they produce optimal, and

easily executable policies in non deterministic environments. MDPs are described as

a set of states (S), actions (A), transitions (P ), and rewards (R). For each s ∈ S

and a ∈ A there is a transition probability from one state to another represented by

P (s′|s, a) where s′ is the resultant state. For each state, a reward matrix, R(s), is

defined which gives value to each state. In most cases there is a small negative reward

acting as a cost for non goal states and a positive reward for goals. MDP solvers such

as policy or value iteration take this information and converge on the optimal policy

by solving the Bellman equation through iteration [65, 67]. The optimal policy, which

maps states to actions, is then easily executed as long as the vehicle can observe its

current state. In this thesis, we will lay out a plan to build MDPs in a way they can

be solved with limited computing power.

Our proposed algorithm, Variable Resolution Horizon (VRH) allows us to accu-
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rately and dynamically build an MDP which can be computed online by the UAS

using typical MDP solvers because far fewer computing resources are required. We ac-

complish this by building the state space using a variable resolution approach dictated

by a moving horizon. The horizon finds the states that are currently accessible by the

system and the variable resolution algorithm determines an appropriate resolution of

the state space within that horizon. This allows the next step to be determined with

near-optimal accuracy. Outside of the horizon the state space remains at a much

lower resolution to reduce space requirements. We can take this approach because

precision is only necessary for the next couple of decisions and though future steps are

important for computing MDPs the detail is far less useful. By keeping the resolution

low outside the horizon we shrink the total size of the state space making computation

of the MDP much easier. Making a manageable state space this way then allows us

to re-solve the MDP at every step while considering any new information. In our case

we apply VRH to a mission planner for a multi-flight mission. In a situation such as

this new goals, hazards, and conditions can appear and the ability to adapt to them

is imperative.

Another way to lower computational resources when solving MDPs is to use solvers

which approximate the optimal policy such as dyamic programming, linear program-

ming, and Monte Carlo simmulation [68–70]. These solvers are powerful and can be

used effectively in conjunction with shrinking state spaces to further reduce compu-

tational resources necessary. VRH is meant to reduce state space, not as a solver

to MDPs though so for the purpose of this paper we ignore differences in solvers

and consider reducing state space size as the primary way to reduces computational

resources.

Our research is motivated by a multi-flight mission requiring an UAS to land and

recharge its battery with a solar cell. We assume possible landing sites are known
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a priori and each site has an associated cost. At each landing site, the UAS must

consider battery charge and time of day to make the next decision of when and where

to fly. The state space associated with this complexity is much too large for online

solving of the MDP when a fine discretization is used to consider battery charge

and time of day. If a more coarse discretization is used, the problem is easily solvable

online but is a more suboptimal solution to the planner. We should note that optimal

policy in this thesis means something different than in most computer science papers.

Typically the optimal policy in terms of MDPs refers to the optimal solution to that

specific MDP and is used to evaluate the effectiveness of different MDP solvers. Since

we are not developing a solver for an MDP, but rather a way to build the MDP to best

solve a problem, we refer to the optimal policy as the policy created by solving the

best built MDP. We do this for simplicity as policy iteration, the MDP solver we use,

is provably optimal [65] and therefore the effectiveness of the solver does not need to

be considered. In either case, typical methods do not allow for dynamic adjustment

as the policy is determined before flight and will not change. A new method to

determine discretization and deal with dynamic conditions while producing a close to

optimal policy is necessary to solve this problem.

5.1 Method

To solve large state space problems we propose a variable resolution approach to the

discretization of the physical domain. We theorize that detail in the state space is less

advantageous the farther you are from said state. Keeping this in mind we leverage the

UASs ability to compute new policies dynamically while it moves through the physical

problem, only increasing the resolution of the physical domain that is accessible.

The variables that are considered inaccessible are left in a coarse discretization. For
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Figure 5.1: Coarse discretization vs. fine discretization of multi-flight example

example, in the multi-flight UAS problem, described further in the experimental setup

section, we may start with the discretization bins for charge being 100%, 50%, and

0%, while we create day and night bins for time of day. From here we increase

the resolution of the bins according to some sort of criteria that determines more

information is necessary. An example of the results of possible discretizations for a

landing spot are shown in Figure 5.1. To determine where the resolution should be

increased, we create what we call a receding resolution horizon. This horizon finds

the states that are immediately accessible to the UAS from its current position and

the states accessible from those states, looking as far out as desired for the specific

problem. Once a horizon has been determined, a modified value splitting algorithm,

similar to that of [55], is used to determine where a finer discretization is useful. A

new policy is then computed, the UAS attempts the decided action and the process

repeats from the new state.

5.1.1 Discretization of Variables

Creating a viable state space in real world problems is often difficult. This is because

there are so many variables in interactions, these variables often are dependent on each

other and can be represented by continuous functions. Consider again our motivating

example described above. A UAS that needs a multi-flight plan in which it can land
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and charge by solar energy. If the UAS has n landing locations available, it will have

n+ 1 possible actions; land at each landing spot, represented by ln, or stop to charge

during daytime hours, c. Therefore actions a can be a = ln or a = c. To make these

decisions, the UAS must consider what position it should land next, p, what battery

life is remaining, b, and what time of day it is, d. All three of these variables can

be modeled as continuous, as the UAS could land anywhere between sections at any

charge and any time of day. In the case of our motivating example though position

is seen as discrete.

To solve this problem the physical domain must be discretized so states can be

matched to it and an MDP built. An optimal solution can be obtained for every

possible discretization using an MDP solver, though these will all be different as the

actual MDP they are solving is different. It follows that the best solution would be

the optimal solution that is derived from the MDP with the most information, or

the finest discretization. To have true optimality of a solution to this problem, we

would need to calculate using the smallest differences in variables the drone could

reasonably sense (as mentioned in the introduction the optimal policy refers to the

optimal policy of the finest discretization unless otherwise specified). In the case

of of the solar charged UAS, if it can land with 1 meter accuracy, sense 1% charge

differences, and has a clock counting seconds the state space would contain over

8,000,000 states per square meter. This is obviously unrealistic to attempt. Even

in a situation where you break down the charge into 5% increments and day into 15

minute chunks, the average flight time of a UAS on a charge, there would still be

1,920 states for every possible landing spot you choose. For each of these states there

are 3 possible actions, meaning the transition matrix will contain S3 elements. A

better solution is necessary for this to be viable.
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5.1.2 Receding Resolution Horizon

In stochastic problems receding horizons have been one of the most successful methods

for dealing with an infinite horizon or any state space which is too large to compute by

building manageable state spaces for MDP solvers. In our case, we use a modification

on the receding horizon idea to instead decide where to increase resolution of our

discretization. Typical receding horizon approaches could also be applied to the state

space as a whole in problems that warrant it, but that will not be explored in this

paper.

The chosen horizon can vary on a case by case basis depending on the problem

requirements. To calculate the horizon, we consider any s′ such that transition prob-

ability P (s′|a, s) × . . . × P (s(n)|a, s(n−1)) > B where n is the number of transitions

the horizon should encompass and B is a parameter that can be tuned. Any of these

actions or sets of actions which are more likely than the parameter chosen are what

we consider reasonable steps. This calculation can then be made easier by evaluating

the given system. For example when considering the solar UAS, any landing spot

beyond the ones that don’t fit the set criteria will also similarly not fit and therefore

do not need to be considered. Similarly with the day time, we know that any action

can only take at most an hour so we do not increase the resolution of that variable

beyond that time. Using the receding revolution horizon with dynamic, real time

decision making allows us to completely ignore many states which would otherwise

need to be considered.

5.1.3 Value Difference

The discretization of the physical space is what will determine the accuracy of the

policy and therefore is adjusted as part of VRH. The higher the resolution of the state
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space, the closer to optimal the policy is because more data is available to the MDP to

consider. The goal of this section is to decide when a physical domain contains useful

information that cannot be seen at the current resolution and to expand it. The hope

is that we can find a balance in VRH which provides enough detail to produce a near

optimal policy while also not overloading the computer with too much information.

Value difference is based on the assumption that any large jump in value between

neighboring states likely means important information can be found in the space be-

tween them. This tells us that increasing the discretization of the physical domain in

this area and rebuilding the state space would be useful. Say there are two neighbor-

ing states, s1 and s2 where s1 = (a1, b1) and s2 = (a1, b2). In this case variable b is

a coarsely discretized continuous variable. If the difference in value of the two states

is large, or |V (s1) − V (s2)| > Z where Z is the splitting criteria, then we determine

that important information is hiding between variable b1 and b2. This causes a split

in variable b between b1 and b2 causing b2 to shift to b3. The value assigned to the

new b2 variable is just the average between the immediately surrounding values, or

V (s2) = (V (s1) + V (s3))/2.

Figure 5.2: Visualization of resolution horizon
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5.2 Experimental Setup

We tested the performance of VRH in simulation on a small controlled problem we

call our test problem and the much more complicated UAS stop and charge problem,

which motivated our research.

5.2.1 Test Problem

To test our solution, we propose a sample problem. The problem consists of a 1

dimensional physical domain in which the ”UAS” can move either forwards or back-

wards with a specified probability as visualized in Figure 5.3. The UAS starts on one

end and must reach a goal state that is on the opposite end. For each jump along the

physical domain, there are 2 possible probabilities assigned, low (P (si|si+1) = 0.2)

or high (P (si|si+1) = 0.8). When the UAS reaches a low probability transition, the

value difference between its current state and the next state is very high compared to

when the transition probability is high. Therefore |V (s1)− V (s2)| > Z and the value

splitting algorithm will split the continuous physical domain to add a new possible

state s′i+1 and shifting si+1 → s′i+2, pushing all future states similarly. This state,

which for sake of our problem, has a high transition probability from the current state

and the policy will suggest it as the next move. As the UAS moves past this state

it will forget the added state and continue on. This problem allows a very controlled

environment for us to test the effectiveness of VRH. It splits in predictable places and

has an easy to solve ”full state space” for comparison.

The full state space, visualized in Figure 5.4 that is used for comparison had a

finer discretization throughout it. It contains all of the states seen in the coarse dis-

cretization version described above with a high transition probability state in between

each of them. This, for comparison gives a very complete state space but with more
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information than necessary, the condition where VRH should be used. Being able to

compute the optimal policy for the full state space allows us to have a performance

comparison

Figure 5.3: Visualization of test problem using VRH to discretize physical space (Z
= 1.1)
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Figure 5.4: Visualization of test problem with maximum discretization

5.2.2 Multi-flight Planning Problem

The motivating problem, as discussed earlier is a simulation of a UAS, which charges

using solar power trying to travel from a starting spot to a goal site. On the way

the UAS will need to stop and charge to complete the mission. To test this we

built a problem space consisting of a rectangular grid with 10 possible landing spots.

The start is in one corner and the end is in the far corner. A normal distribution to

compute the transition probabilities for flights and charging. Low and high resolution

state spaces were made from this grid, with charge being discretized into 3 states for

the low and 12 for the high while the time of day was discretized into 2 states for

the low and 8 for the high. VRH was initially given the low resolution state space

with the ability to change its resolution up to the same discretization as the high

resolution when it sees fit. In this problem we want to pick the quickest possible

route and therefore the cost function that is to be minimized is a function of time.

The only positive reward available is for reaching the goal state.

5.3 Results

The effectiveness of the algorithm was judged on two different factors, correctness

and MDP complexity. Correctness is determined by the average accumulated reward
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which will correspond to how efficiently the algorithm gets from the start state to

the goal state. An optimal algorithm will have the highest average reward, therefore

accruing the minimum amount of cost (the negative reward associated with each

non-goal state transition). MDP complexity is the metric we use to measure the

memory and processing power used by the problem. The MDP complexity is defined

as the number of possible states, actions, and rewards all multiplied by each other

or S × A × R. We chose this metric as it is a better indicator of the resources the

problem will require and is not dependent on the code implementing it.

Two variables that will have the largest affect on our results, number of states and

the minimum optimal path length (MOPL). The MOPL is the number of states that

will be visited if the policy could be carried out in a deterministic manner. In Figures

5.2, 5.3, and 5.4 red states show locations that will only be seen when resolution

is high while blue states will appear regardless of resolution. The results are split

into two sections representing the isolation of each of these variables to show the

conditions in which VRH is most effective.

VRH is an algorithm designed to build a MDP state space dynamically and there-

fore we need to use a typical MDP solver to build a policy. In our case we used Policy

Iteration as the solver. The ever changing nature of our state space also means that

typical indicators of performance such as expected reward cannot just be computed

by the resultant policy, so to test our algorithm we executed it on a simulator up to

10,000 times depending on the conditions and use the averages for our results.

5.3.1 State Space Size

The primary purpose of VRH is to reduce excessively large state spaces to ones man-

ageable by the processor available while not sacrificing significant accuracy, allowing

UASs to integrate MDPs into their decision making process more readily. Figure 5.5a
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shows that even as the size of the state space grows VRH is consistently about 3.5%

less efficient than the optimal policy. The savings, as seen in Figure 5.5b rapidly grow

as the state space grows, using as little as 1
5

of the computing resources in the largest

case tested. In the optimal case for this test problem, where n is the number of states

in high resolution, n states, actions, and rewards must be considered resulting in a

complexity of n3. VRH only sees a high resolution at a maximum of 2 transitions in

either direction, while seeing half the states of the high resolution elsewhere. This

results in n
2

+ 4 states, actions, and rewards or a MDP complexity of (n
2

+ 4)3 . In

other problems the savings are potentially even greater as they depend on the number

of states that are hidden to VRH at a time.

(a) Expected reward as number of base states
increases

(b) Complexity as number of base states in-
creases

5.3.2 Minimum Optimal Path Length

The MOPL corresponds to the number of states which would be visited if the optimal

policy was followed deterministicly. We use this as a control variable because the

number of states that the optimal policy visits which are not contained in the low

resolution state space, or the red states in Figure 5.3, and Figure 5.4, increase linearly

as the MOPL does. For the test problem, there are 10 locations which will be seen by
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the low resolution and initially by VRH. Nine additional locations appear in the high

resolution version. The 10 locations from the low resolution will always appear in the

optimal policy, so in a case where the optimal path length is 10, only those 10 locations

appear in the optimal path. Every additional stop on the optimal path length will

correspond to an additional position from the high resolution version being used on

the optimal path. This allows us to test the performance of VRH as the number of

times it rediscretizes the state space increases.

Figure 5.6a shows how VRH compares to low and high resolution MDPs. VRH

is nearly as effective as the high resolution MDP at solving this problem. When

only the initially visible states are visited, VRH and both high and low resolution

MDPs preform nearly identically. Even in the other extreme where the minimum

optimal path visits every state in the high resolution, meaning VRH will increase to

the high resolution at every opportunity, VRH still preforms nearly optimally as seen

in Figure 5.6a. Even in the edge case VRH is only 5.6% less efficient than the high

resolution MDP. The low resolution on the other hand does not see states that are

advantageous to visit and gets stuck attempting low probability transitions rendering

it ineffective. The advantage for VRH in this problem comes from the computing

resources it saves. Figure 5.6b shows how VRH’s max MDP complexity is affected

by the minimum path length of the optimal policy. The high resolution MDP has

around 7 times the complexity in the low minimum path length of optimal policy

edge case and about 2.5 times the complexity as VRH in the high end edge case.

This happens as VRH will never need to compute over the entire problem space

by limiting high resolution to its horizon. Even in cases where a fine discretization

is needed everywhere there is a distinct advantage in VRH’s ability to reduce the

complexity of the calculations as the high resolution is only seen within the horizon.



54

(a) Expected reward as MOPL increases (b) Complexity as MOPL increases

5.3.3 Performance on Motivating Example

Figure 5.7 shows the performance of VRH in terms of expected reward compared

to using either the high or low resolution state space. VRH’s median performance

matched the median performance of the high resolution state space and greatly out-

paced that of the low resolution state space. This result is consistent with the sample

test problem where VRH’s performance nearly matches the optimal case and achieves

this while using a fraction of the resources. Figures 5.8b and 5.8a are examples of

the changing resources used by VRH in a representative simulation. Even at its peak

MDP complexity VRH is about 1
3

the MDP complexity of the high resolution. The

combination of performance and computational savings means that problems too large

for high resolution to solve can be solved to a near optimal standard using VRH. The

time decisions take can be an issue, at the peak MDP complexity the recalculation

can take anywhere between 1 and 3 hours, an issue that depending on the time scale

the decision needs to be made on can be prohibitive. In the case of our motivating

example the decision’s time scale is similar or smaller than the charging time scale

and therefore does not slow down the UAS’s mission.

The size of problem that can be computed generally by VRH is also greatly in-

creased, opening VRH as a possible solution to any, even non-dynamic problems. In
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Figure 5.7: Performance of VRH vs. High and Low Resolution

tests the maximum size of problem which could be solved by the high resolution MDP

was a 2 by 5 grid, resulting in 10 total states. For VRH we were able to compute

solutions to grids as large as 2 by 12, giving 25 states, or 2.5 times the size of a prob-

lem. These were run on a lab computer, not a super computer, but this information

can be extrapolated to show VRH’s usefulness in a variety of situations.

(a) How the state space changes over a run of
VRH (b) Changing MDP complexity of VRH

Figure 5.8: Example of how the state space changes through a run of VRH and how
that effects the complexity compared to a high resolution MDP
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5.4 Discussion

There are many different conditions under which stochastic problems operate. In

environments where changing conditions lend themselves to dynamic responses VRH

is an effective method to enable online computing of policy. VRH lowers resource

requirements and produces highly accurate policy making it more available to UASs

which are typically limited in their computing resources. VRH though is a tool to

help build manageable MDPS much like the other techniques discussed in the related

work section. Factoring MDPs, receding horizons and alternate MDP solvers all have

their utility in making MDPs easier to compute online. In fact they are rarely in

conflict with VRH and can be used in conjuncture with it to further reduce the state

space, improving solvability.

VRH faces limitations with the run time especially when used on a small processor.

Computing online is costly as the new MDP must be solved at each step. There are

cases where decisions must be made quickly where VRH will not be able to meet

the requirements. VRH though performs better, both in speed and accuracy than

recomputing a complete MDP every time making it a more viable solution. In high

level mission planning problems though actions often take place on a time scale of

minutes instead of seconds. In these cases VRH can compute quick enough to not

significantly slow down a mission meaning the run time is less of a concern.

VRH works well in cases where discretization of variables is need and online com-

puting is realistic. This makes it perfect for making decisions regarding surveillance

where multiple targets are moving, planning paths where the movement of other ob-

jects can be modeled as probabilistic, and in problems such as the travelling sales

person where traffic conditions are changing. There are many cases though, where

VRH is not useful, practical, or both. These cases happen in tracking controllers
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where decisions are being made very quickly as recomputing over the state space

takes time. They also occur when state spaces are made up of naturally discretized

variables where resolution changes are unnecessary. The last case of note is when

there isn’t a function to calculate or learn the transition probabilities. VRH requires

some sort of knowledge of the problems probabilistic dynamics to rebuild a state

space.



58

Chapter 6

Conclusions and Future Work

From our research we believe there is a clear outline for increasing the mission du-

ration of UAS multicopters. The first comes simply from advancements in the fuel

sources. Right now we are on the brink of hydrogen fuel cells becoming an incredible

asset to the multicopter industry. Companies have begun to release new fuel cell

based systems, which at the moment are expensive, often dangerous to use and trans-

port, and lack robustness, but show vast promise in the coming years. As shown in

Chapter 2’s Future Advancement section an increase to 1400W of power from 1000W

could result in 2+ hour flight times. This advancement, or any serious advancement

in batteries which can achieve similar results, are poised to be the single biggest

breakthrough that will grow this industry. This is because low flight times restricts

multicopters mission types severely, and these fuel source improvements can unlock

multicopters potential in so many areas.

Understanding flight characteristics, especially how flight speeds can improve effi-

ciency is a great way to make marginal changes. In any case where improving mission

duration or distance is important this research should be considered by a flight plan-

ner. Our research showed that a 20mph flight speed can improve flight times by up

to 19% from a hover on our Matrice 600 airframe. This increase is far from trivial

and is important to understand if you need to squeeze every last drop out of a flight.
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For the future of this research the flight characteristics should be explored for any

flight platform that is used as they will vary from multicopter to multicopter.

The performance of the VRH algorithm in our test situations and its ability to

solve the complex problem in our motivating example is very encouraging. VRH

performs nearly as well as an optimal policy, topping 5.6% less efficient in our tests,

while having a MDP complexity anywhere between 2.5 and 7 times lower than using

a typical MDP. This then combines with its ability to adapt to changing conditions

makes it ideally suited to increase autonomy and decision making in UASs.

In the future we hope to use VRH’s ability to compute online to apply reinforce-

ment learning to path planning. Being able to update online means we can take new

information to better build transition probabilities for MDPs. In most mission plan-

ners the transition probabilities are based off our best model of the UAS’s dynamics.

Being able to collect data on the accuracy of the model to improve transition proba-

bilities will lead to a more accurate MDP representation of the physical space we are

navigating.
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