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Structural elements in transportation vehicles are exposed to different types of dynamic 

loadings and impact scenarios. Protecting passengers against injury and providing 

mechanisms to avoid impact induced damages to the critical components are the two hot 

topics in crashworthiness engineering. The presented research work includes two parts. 

The first part is about designing a novel double-sided composite corrugated tube that can 

be implemented in front chassis rail of ground vehicles to improve their crashworthiness 

against collision and car accidents. To maximize the controllable energy absorption of 

corrugation troughs as observed in the single sided corrugated (SSC) tube, we proposed 

and tested a new structure design, i.e., double-sided corrugated (DSC) tube made of Al 

6060-T6 aluminum alloy or CF1263 carbon/epoxy composite. Finite element models were 

developed to test the DSC tube in comparison with both SSC and classical straight (S) 

tubes under axial crushing. Results have shown that the total absorbed energy of the DSC 

aluminum tube with 14 corrugations was 330% and 32% higher than that of the SSC tube 

with 14 corrugations and the S-tube, respectively. The second part of this research work is 

about designing a novel protective mechanism for railway car axle against ballast impact. 

The ice detached from the train body can fall on the track and form projectiles of ice and 

gravel (ballast); sharp, heavy, and at high impact energy. The main preventive mechanism 



 

 

in many countries such as Norway is to use protective coating on the axle. But when the 

coating is damaged by impact, bare steel of the axle can be exposed. The corrosion of these 

exposed impact zones can cause pits and cavities that become points of stress concentration 

where fatigue cracks can develop. Due to the current problems with coating technique we 

suggested a novel protective mechanism and used sandwich panel to protect railway axle 

against impact. Our results showed that the device can dissipate more than 70 % of impact 

energy without introducing any damage to the axle surface. Moreover, the rebounding 

velocity of projectile reduced by 97 % which eliminates the risk of second impact to the 

other vehicle components. The suggested device can be mounted by using a simple 

clamping system and unmount easily for potential inspections.  
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 Introduction 

This chapter covers the background literature and explains the important concepts which 

are related to this research. All reviewed materials are mentioned here to build a basis for 

understanding of the current research. This section will be presented in the following sub-

sections: 

• Crashworthiness and impact integrity 

• Energy absorption by irreversible deformation 

• Types of crushing energy absorbers  

 Crashworthiness and Impact integrity  

Crashworthiness and impact mechanics are two principal terms in the field of crash and 

safety analysis. Therefore, the fundamental concepts of this area should be elaborated 

before designing of energy absorbers. Generally speaking, the application of energy 

absorbers is mainly associated with transportation industry and vehicles, which include 

variety of aircraft, and ground vehicles.  

In the case of collision and impact condition, the structural component can have 

complicated behavior as the response of dynamic load. However, the design of energy 

absorbers was based on having a predictable crushing behavior which can translate the 

kinetic impact energy to dissipated irreversible energy.  
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1.2.1 Crashworthiness and structures 

Generally, the crashworthiness term is defined as the capability of a vehicle body to be 

exposed to impact loads and protect the passengers, who are inside its survival space, from 

injuries or fatalities. Therefore, the area of structural crashworthiness is actually a study of 

the impact performance of a vehicle when collision occurs [1]. For many years, the focus 

of crashworthiness has been placed on the protecting of a vehicle’s safe space. It can be 

observed that the capability of energy absorption system was evaluated by its capacity to 

absorb kinetic energy and maintain the safe space during a crash event, Figure 1-1.  

 

Figure 1-1 Comparison of vehicle deformations from the NCAP frontal crash tests of; (a) 

Yaris and (c) Silverado, with the numerical models (b, d) [2] 

From the basic pint of view of crashworthiness design, a dynamic load translated to the 

vehicle structural body must be much lower than the threshold that can cause irreversible 

deformation of the safe space. If the performance of structure satisfies the crashworthiness 

requirement, the absorber can be used as a protecting system for collision cases. Moreover, 

it is vital that the deformation of safe space to be minimal as well as the dynamic 

deceleration [3].  
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The main structure of an energy absorber device consists of thin-wall structures such as 

crash box. Attaching this component to the frame can provide safety during a collision. 

Figure 1-2. illustrates a front crash box attached to the chassis. The crash boxes are 

changeable and after a collision, one can replace and attach a new crash box to the chassis. 

In the case of a crash, the energy absorber takes the load initially and deform to dissipate 

the impact energy although transferring the load to the structure can cause bending and 

deformation of other parts. There are different types of energy absorber systems which will 

be discussed later, however, classically thin-walled tubular structures have been used in 

transportation industry for many years.  

Generally speaking, a crashworthiness analysis includes various aspects about the 

capability of a vehicle to provide safety, the performance during and after collision, and 

the collapse properties of the structure. 

 

Figure 1-2 Front chassis rails as an energy absorbing device [4] 

 Energy absorption by irreversible deformation  

The design of crush energy absorbers should consider a predictable collapse behavior 

and a controlled reaction force. The crashworthiness properties of thin-walled tubular 
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structures can be tuned in many ways to satisfy their application requirements. There 

are plenty criterions to be considered to determine the efficiency of energy absorbers.  

In this section we will be covering the critical parameters for designing a crashing 

energy absorber.  

1.3.1 Properties of energy absorber device 

Basically, the overall performance of energy absorbers can be obtained by studying 

their load-displacement response during the collision event. The total absorbed energy 

𝐸𝑎 is defined as the total area under the load-displacement diagram. 

𝐸𝑎 = ∫ 𝑃𝛿𝑑𝛿
𝜎𝑚𝑎𝑥

0

 
( 1 ) 

 

Where P is the incremental crushing load, 𝛿  is the related displacement in each 

increment. From Equation ( 1 ), the mean crushing load can be calculated using the 

following equation. 

𝑃𝑚 =
1

𝛿
∫ 𝑃𝛿𝑑𝛿

𝜎

0

 
( 2 ) 

Generally, the collapse load is defined as the required force to initiate permanent 

deformation, which can be propagated in the collision event. Ideally, the energy 

absorber device can provide a constant crushing force, 𝑃𝑚𝑎𝑥  from the onset of the 

deformation up to the maximum crushing displacement, 𝜎𝑚𝑎𝑥. As mentioned before, 

the total energy absorption can be calculated by computing the area under load-

displacement diagram. Figure 1-3 illustrate a simple depiction of an ideal energy 

absorber.  
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Figure 1-3 An ideal energy absorber and its response under crushing load [5] 

1.3.1.1 Specific absorbed Energy (SAE) 

When it’s come to the efficiency of an energy absorber, one of the most critical 

characteristics is the ability to absorb energy per unit of mass. This characteristic is 

called specific absorbed energy (SAE).  

𝑆𝐴𝐸 =
𝐸𝑎𝑏𝑠

𝑚
 

( 3 ) 

The importance of this parameter is to detect a lightweight energy absorber with the 

ability to absorb the required crushing energy [6]. Using different materials and 

techniques can alter this parameter. Foam-filling of hollow structures and multi-cell 

tubular absorbers should be designed in order to have a high SAE value.  

1.3.1.2 Mean Crush load 

The mean crushing force or load in here is shown by 𝑃𝑚𝑒𝑎𝑛  which is defined by 

dividing the total absorbed energy by the crushing displacement, 𝛿.  

𝑃𝑚𝑒𝑎𝑛 =
𝐸𝑡

𝛿
 

( 4 ) 

 

Crushed tube 
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This parameter indicates the capability of device to absorb crushing energy when the 

crushing displacements is in comparison. Due to the nature of crushing, the thin-walled 

tubular absorbers present a fluctuation of crushing load in the plateau region, Figure 

1-4. At the beginning of the crushing the reaction force increases sharply to reaches the 

highest value (𝑃𝑝𝑒𝑎𝑘) which then followed by a progressive crushing of the absorber. 

This parameter shows the initial rigidity against crushing load.  

 

Figure 1-4 Typical load-displacement diagram for a thin-walled tubular energy absorber under axial crushing load [7] 

1.3.1.3 Stroke efficiency 

One of the important crashworthy parameters is the deformation length of energy 

absorber during the impact. Therefore, the required crushing energy to be dissipated 

per unit of length can be determined. This parameter is defined by dividing the 

maximum allowable crush distance by the initial length of the energy absorber. Due to 

the nature of crushing and densification of the deformed absorber this parameter is less 

than unity.  



8 

 

 

 Types of crushing energy absorbers 

After realizing the importance of kinetic energy dissipation during a collision, various 

types of crushing energy absorbers have been suggested over time. The basic idea 

among all those devices is the same which is consume the impact energy in an 

irreversible way such as plastic behavior or fracture. There are effective parameters 

that can distinguish the energy absorbing systems such as cost, weight, ease of 

assembly, and replacement. In this section different types of energy absorbing systems 

are discussed as follows: 

- Metallic thin-walled structures 

- Foam structures 

- Reinforced structures 

1.4.1 Metallic thin-walled structures 

Thin-walled tubes are the most popular type of energy absorbing systems. These 

structures are in use in many structural applications. The idea behind their design is to 

provide a controllable crushing mechanism and progressively convert the kinetic 

energy to dissipated plastic energy [8].  

Needless to say that the material properties and the structural geometry are the two 

influential parameters in energy absorption capacity of the device [9]. In terms of 

structural geometry there are many different thin-walled cross-sections such as circular, 

square, rectangular, and honeycombs that drawn the attention of researchers in this 

field. In the following sub-section, we will review some of the most common cross-

sections for designing energy absorbers. 
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1.4.1.1 Circular cross-section 

These tubes have proven themselves as an efficient structure against axial crushing 

events. The device can be designed with various foil thicknesses and circular diameter 

to satisfy the required energy abruption capacity [10]. Investigation on circular tubes 

goes back many years ago when numerous papers have been studied the performance 

of these structures [11-15]. The conventional studies were mainly experimental lab 

works; however, some analytical formulations have been developed to anticipate the 

crushing response of tubes based on a repetitive folding deformation, Figure 1-5.  

 

Figure 1-5 Models of axisymmetric deformation in concertina mode [2] 

Afterwards, due to the advancement of computational analysis, more studies used finite 

element modeling to study the crashworthiness of these structures.  
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The crushing behavior of circular tubes has been observed as a stable collapse from 

which the deform shapes are known as axisymmetrical ring [13], non-axisymmetric 

(diamond mode) or mixed mode [15], Figure 1-6.  

 

  

Figure 1-6 (a) axisymmetric mode; (b) non-symmetric mode; (c) mixed mode of axial crushing [14] 

The mode of crushing is dependent to the ratio of diameter to thickness (D/t), the ratio of 

length to diameter (L/D), and the material properties of the tube. Generally speaking, 

thicker circular tubes intend to deform under axisymmetric mode, but thinner tubes deform 

in a non-symmetrical mode. The mixed mode deformation can be defined in a place where 

a transition from axisymmetric to non-symmetrical modes tends to happen. The biggest 
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challenge with the crushing response of the circular tubes was the high value of maximum 

load just before the progressive crushing response.  

1.4.1.2 Rectangular crushing tubes  

Another cross section of thin walled absorber is rectangular cross sections with 

perpendicular walls. The response and performance of these tubes have been investigated 

since 1984 [12] which then followed by more in-depth works on the behavior of these 

structures under static and  dynamic loading conditions [16-18]. Although there are 

similarities between the crushing load-displacement diagram of rectangular tubes with 

circular ones, their deformation modes are different. Jensen et al. [19] reported that 

rectangular tubes have high variation of crushing load during collision.  

 

Figure 1-7 (a) Deformation mode and (b) force–deformation curve of a rectangular tube under axial crushing load [19] 

Moreover, the geometry of these structures must be meticulously controlled such as initial 

length, cross section dimensions, and thickness, as these tubes tend to deform under global 

bending condition which is counted as an unstable crushing mode [20]. Global bending of 
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a tubular structure a significantly decrease its capability in energy absorption. On way to 

prevent global bending and buckling of the tube was to provide a triggering mechanism 

(chamfer/tapered) at the end of square tubes to guide and control the beginning of wrinkling 

[21].  

Comparing with circular tubes, it has been reported that the actual static crushing load is 

smaller for a square tube with the same foil thickness and solidity ratio (𝐴
𝐴𝑡

⁄ ). Hence, the 

effectiveness of square tubes is lower than circular counterparts. Due to this reason, circular 

tubes have been more preferable in terms of axial crushing energy absorption [12]. 

However, in a real impact situation, the crushing load might not be perfectly axial, and the 

absorber exposes oblique crushing loads. Despite this face, only a few investigations on 

the oblique impact of the crushing absorbers have been conducted [22].  

1.4.1.3 Conical tubes  

Another type of energy absorber that has been implemented in different industries is 

conical tubes. They have a pretty stable response and relatively high energy absorption 

capacity [23]. The related investigations on these structures can be classified into numerical 

and experimental studies [24, 25]. It was reported that occurrence of global buckling during 

crushing is less probable for conical tube absorber compared with its cylindrical 

counterpart [26]. Therefore, it has more stable crushing response and preferable since it 

provides a larger Euler buckling load. Due to the inclined walls and the angle with respect 

to the tub axis, conical tubes do not need a triggering mechanism as is required for a circular 

tube [27]. The crushing properties of conical tubes is related to the mentioned features 

before and also the cone angle [28], Figure 1-8. 
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Figure 1-8 conical crush energy absorbers with different cone angles [28] 

 

Figure 1-9 Crushing response of the conical tube [29] 

Figure 1-9 shows the crushing response of a conical tube under axial loading. It can be seen 

the crushing occurs in a repetitive manner in axial direction. However, the crushing 

response has a large initial maximum load and significant fluctuations during crushing 

process.  
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1.4.2 Polymeric and Metallic Foams 

In addition to the metallic structures that are being in use as energy absorbers, polymeric 

foams are another alternative. Polymeric foams can be classified into two types of closed-

cell and opened-cell. Foams response under axial loading provides a smooth load-

deflection diagram Figure 1-10, [5].  

 

Figure 1-10 A typical nominal stress-strain curve for foam materials [5] 

Due to their unique structure, foams can take large deflection and provide a steady low 

stress level during crushing [30]. According to a typical crushing response the first region 

of load-deflection is associated with linear elastic deformation, the second region which is 

comparatively large is the plateau crushing region, and the last region which has a sharp 

increase of crushing load is called densification region. Metallic foams are also popular as 

a lightweight crushing energy absorber. Among different materials, aluminum foams have 

drawn much attention due to its unique characteristics.  
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 The target structural components 

1.5.1 Longitudinal crash rails (front chassis rails)  

The carbody of vehicle has a big portion of vehicle total mass (almost 20%) [31]. The 

carbody which is known as the skeleton of vehicle is the largest subassembly of the system. 

To meet the safety protocols, a carbody must be able to provide a safe cabin an acceptable 

crashworthiness property. The stiffness of carbody needs to be high enough to guarantee 

the integrity of structure against severe loading scenarios. On the other hand, the crush 

zone of the carbody is collapsible and deforms in a predictable way to absorb the impact 

crushing energies.   

The most critical part in this zone is the longitudinal crash rails. It has been reported that 

in crash scenarios approximately 35 % of impacts are in the longitudinal direction (front) 

and this load should be mainly dissipated through the deformation of longitudinal crash 

rails. Aluminum tubes are the most common elements for manufacturing longitudinal crash 

rails. The previous studies illustrated that the thin-walled tubes present a high initial 

reaction force before the collapse progress and the reaction force fluctuates in the crushing 

zone due to the buckling of straight tube. Therefore, there are some researches about 

optimizing the performance of these tubes by introducing corrugations along the 

longitudinal direction. However, the corrugated tubes reduce the capacity of energy 

absorption as the tube is deformed easier [32].  
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Figure 1-11 A brief overview of some key body structure elements [31] 

 

1.5.2 Railway Axle  

Railway axles are known as the most loaded parts in the railway vehicles since they account 

for about 70% of wagon mass. Axles are designed against endurance limit. While failures 

occur in axles because of very long fatigue life about 30 years and in-service damages. 

Defects from sub-surface and surface defects, predominantly initiating at corrosion pits 

[33] and nucleated micro cracks [34]. Fatigue crack initiation and corrosion pits mostly 

occur due to the flying ballast impacts [35]. The flying ballast is caused by a combination 

of mechanical forces such as falling ice blocks on the railway track, and aerodynamic 

forces. It is reported that 30 % of the major problem in terms of safety and early 

deterioration of the high-speed railways were due to flying ballast impacts [35]. The micro-

cracks initiate from ballast impacts, typically small, sharp gravel particles or pebbles from 

the sleeper beds of railway tracks [36]. The cracks propagate as the stress state increased 
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and caused rapture in axles and catastrophic failures [37]. Flying ballast can affect the 

safety of staff working along the railway lines, train safety and consequently passenger or 

cause financial damage to the railway vehicle and the infrastructure maintenance [38]. 

Since, no regulation is defined by international standards about flying ballast, 

implementing a method to protect the vehicle axle will control the inflicted damages to the 

rolling stocks and decrease the maintenance costs.  

One of the first solutions was provided by Murphy et al. by using a rubber layer on axles. 

The rubber had to be removed for inspection in an expensive operation [39]. The model 

was improved by Kontio et al. by altering the protective device to a circular-cylindrical 

pipe consist of an inner and outer layer which the inner layer was made of foamed plastic 

and glued to the outer layer. The whole system fastened to the axle. Therefore the 

installation process was faster than the previous method [40]. However, tight connection 

thereof against the axle lead to trapping moisture between the inner layer and the axle. The 

rusts created due to moisture might form cracks and axle damages. To remove this problem, 

an updated version of the previous model was proposed by Tolérus and Lundhammar by 

adding radial gaps and elongate ridges which formed an air channel between the cover and 

the axle [41]. A less expensive technique was proposed by Chretien et al. where the axle 

was protected by supple polymer strip with an easy assembly and disassembly process. The 

application of mentioned protective systems was limited to the axle classes which depends 

on the rolling stock speed. A protective system which could be implemented to rolling 

stock with independent of their class while facilitating different inspection of the axle were 

presented by Guenard and Thouvenot. The system consists of two or three layers of 

different materials. The first layer is capable of adhering to the axle, consist of aluminum 
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and elastomers on an adhesive compound. The second layer comprises at least one adhesive 

compound in pasty form of putty-like. Depending on the axle class, the third layer may be 

implanted. Moreover, using special adhesive and different layers of protection improve the 

shock absorbing properties [42]. However, the designed system could not protect the axle 

against the flying ballast. Therefore, the outer layer was substitute with a relatively hard 

shielding layer to resist against ballast impact without cracking and a flexible inner layer 

as a damper [43]. Another protection device was proposed by Dohn and Jensen to fulfill 

axle protection against flying ballast, grit and chunk of ice while preventing corrosion. The 

protective device has a substantially tubular shape comprises a shell and spacers which 

creates a gap between the shell and the axle which acts as an anti-corrosion system. The 

gap and the rotation of the wheel lead drainage of the condensed water. The device can be 

easily removed for a safer maintenance and inspection. A two half shells protective device 

were also presented by adding elastomer strips. Based on the axle diameter, different 

elastomer thickness can be implemented since the elastomers are interchangeable. 

Accordingly, the manufacturing costs for making shells with different diameter will be 

eliminated. Besides, the number of strips can be varied and optimized to reduce the cost as 

well [44]. However, the protective devices might not be practical from exposure to climate 

factors. The considerable change in the elastic properties of the layer and gap size could 

affect the reliability of the device. Additionally, the designed devices do not cover the 

entire wheelset and these areas can be exposed with external agents and result in serious 

structural failures. To solve this issue, a protective covering technique were applied to the 

at least metal surface of the wheelset. It consists of three painting layers, the first layers 

promoting the adhering properties. The second layer provide an elastic support for the 
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stiffer layer which protect the axle and wheelset against ballast impacts. The second and 

third layer are epoxy-based paint which enforced with fiber [45]. Although the protective 

layers are not subjected to softening at higher temperature, the inspection may become a 

problem. Also, the maintenance will be more laborious and expensive since the coating has 

to be repaired locally.   
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2. Chapter 2: Double sided composite corrugated 

tube  
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 Introduction 

The development and validation of the finite element model (FEM) for the corrugated tube 

under axial loading is explained in this chapter. Validation of the corrugated tube has been 

done by comparing the results of finite element simulations against the available analytical 

solution. The validated model then can be used for further studies for different geometries, 

material properties and various loading conditions.  

 Development of the FE model for thin-walled tubes 

Nominal tube dimensions were adopted at 112 mm in length, 80 mm in diameter and 1 mm 

in thickness [46], regardless of detailed shape configurations, as shown in Figure 2-1. 

Corrugations were considered to be in sinusoidal form with corrugation length 𝜆𝑐  and 

corrugation amplitude 𝑎. Since the tube was fully corrugated with 14 corrugations along 

the tube length, SSC, DSC or DSC-C tubes were also referred to as SSC-14, DSC-14, or 

DSC-14-C respectively. 

 

Figure 2-1 Three-dimensional tube configurations. Left, Straight tube with constrains; Middle, single-sided corrugated 

tube with corrugation parameters; Right, double-sided corrugated tube. 
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Both ends of the tube were confined by two rigid plates. The top plate was fixed and the 

bottom one allowed the Y-direction translation only, with a displacement rate of 

5 mm/min. The general frictionless node-to-surface contact was prescribed between the 

rigid plates and the tube. All tubes, except the composite one, were made of Al 6060-

T6 aluminum alloy with Young's modulus of 71 GPa, Poisson's ratio of 0.33, density of 

2700 kg/m3, yield strength of 160 MPa, and ultimate tensile strength of 200 MPa. The 

elasto-plastic constitutive material model was adopted. For the composite DSC-14-C tube, 

CF1263 carbon/epoxy composite layup was chosen [47] with materials properties listed 

in Table 2-1.   

Table 2-1 Mechanical properties of laminate composite material CF1263. 

 

The Hashin progressive damage model [5] was adopted and the damage is determined at 

the point when each of several damage criteria was met. Each damage criteria compares 

the calculated stresses against the strength properties of the respective material. Energy-

based damage evolution was employed to encompass strain softening response of CFRP 

composite. The stacking sequence of the composite tube was [±45 degrees] with the 

thickness of each layer at 0.25 mm. The laminate had four layers and a thickness of 1 mm 

in total. All tubes were meshed using S4R linear shell elements with five integration points. 

The shell element provides accurate modeling without greatly increasing the computational 

https://www.sciencedirect.com/topics/engineering/rigid-plate
https://www.sciencedirect.com/topics/engineering/displacement-rate
https://www.sciencedirect.com/topics/engineering/aluminum-alloys
https://www.sciencedirect.com/topics/engineering/youngs-modulus
https://www.sciencedirect.com/topics/engineering/poissons-ratio
https://www.sciencedirect.com/topics/engineering/tensile-strength
https://www.sciencedirect.com/topics/engineering/integration-point
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time needed for each run. Mesh convergence analysis were conducted (Figure 2-2) and the 

1 mm element size was chosen. 

 

Figure 2-2 Load-displacement response of S tube for different element sizes 

 Verification of FE model 

The analytical solution for an S-tube based on the kinetic approach [49] was used to 

validate our FE model results. The average compressive force over the whole crushing 

process could be calculated by [6]  

𝜆 = 0.920√2𝑅𝑡 ( 5 ) 

𝑃𝑎𝑣𝑒

𝑀𝑜
=

25.23√2𝑅
𝑡⁄ + 11.9

0.86 − 0.568√𝑡
2𝑅⁄

 ( 6 ) 

Where  𝑀𝑜 =
𝜎0𝑡2

4
 is the fully plastic moment per unit length,  𝜎0 is the energy equivalent 

flow stress which is estimated as the 0.2% of yield strength [13], and 𝜆  is the half-

wavelength of the wrinkle. R and t are radius and thickness of tube, respectively. 

The average compressive force 𝑃𝑎𝑣𝑒 from our model was calculated by dividing the total 

absorbed energy, i.e., the area under the load-displacement diagram (Figure 2-3), by the 

displacement magnitude just before the densification point [46]. 

https://www.sciencedirect.com/topics/engineering/mathematical-convergence
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Figure 2-3 Load-displacement diagrams of the tubes under axial compressive loading. 

Moreover, 𝜆 was obtained by measuring the half-formed wrinkle length of the hinge. The 

calculated reaction force and the half-formed wrinkle length for the S-tube were 12.84 kN 

and 9.26 mm, respectively. The corresponding analytical results from Eqs. (5), (6) were 

14.91 kN and 8.228 mm. The differences between the simulation and the analytical 

solutions were 16% and 12.5%, respectively. These variations could be explained by the 

assumptions used in the kinetic approach [48]. In addition, the modeling framework for 

composite materials was validated in our previous work [49], [50]. 

 Mechanical performance of double-sided corrugated tube 

To improve the energy absorption capacity of the SSC without decreasing its controllable 

energy absorption of corrugation troughs, we tried a variety of corrugation shapes, such as 

moon shape, half-circular, diamond and half-diamond before finding the desirable DSC 

tube. The mechanical performance of the proposed DSC-14 tube was demonstrated by 

comparing it with existing tubes such as the SSC-14 and S-tube. Their load-displacement 

behaviors were depicted in Figure 2-3. It is clear that the DSC-14 could take more loads 

and thus absorb more crushing energy than both the SSC-14 and S-tube, especially at large 

displacement. The load fluctuation of the corrugated tubes was also relatively small 
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compared to the S-tube, which allowed better regulation of their energy absorption 

behaviors. 

The advantage of the DSC-14 over the SSC-14 and S-tube could be visualized from the 

snapshots of tube compression, as shown in Figure 2-4. The contour plot of the equivalent 

plastic strain (PEEQ) in Figure 2-4shows that the PEEQ concentrated around the folds, 

whose geometry parameters were the critical design factors for optimization of energy 

absorption ability. The percentage of DSC-14 tube surface with plastic deformation (PEEQ 

≥ 0.1%) just before densification was 97%, while it was 68% for the SSC-14 tube, 

indicating a 170% relative increase. During the crushing of each corrugation, there are four 

plastic hinges for DSC-14 while there is only 1 plastic hinge for SSC-14 (Figure 2-5). 

Accumulation of these plastic hinges indicates the higher plastic deformation of DSC-14 

compared with SSC-14. 
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Figure 2-4 Equivalent Plastic Strain (PEEQ) contours. (a) S tube: Left, first fold initiation at crushing displacement of 

0.37 mm; Middle, second fold development at displacement of 31.75 mm; Right, final compressed state with crushing 

displacement of 97.83; (b) SSC-14 tube: Left, first fold initiation at crushing displacement of 17 mm; Middle, second 

fold development at displacement of 27.7 mm; Right, final compressed state with crushing displacement of 89 mm; (c) 

DSC-14 tube: Left, first fold initiation at crushing displacement of 11 mm; Middle, second fold development at 

displacement of 23.5 mm; Right, final compressed state at crushing displacement of 79.8 mm. 
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Figure 2-5 Folding schematics of DSC-14 (top) and SSC-14 (bottom). 

The initiation of both first and second folds as well as the final compressed state were 

illustrated. For the S-tube, a single abrupt hinge was initiated near the crushing interface, 

i.e., the movable plate, when the plate displacement reached 0.37 mm. This first fold or 

hinge progressed until collapse (Figure 2-7), and then the new hinge was developed and so 

on. The PEEQ history at one specific point located within the formation of the first fold 

was plotted in Figure 2-6. The progression of the first fold from initiation to collapse 

resulted in the increase in the PEEQ and then stayed at a plateau. 
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Figure 2-6 The (PEEQ) history at one specific region (first formed wrinkle) for S, SSC-14 and DSC-14 tubes. 

 

Figure 2-7 Crushing progression of DSC-14 (Top) and SSC-14 tube (Bottom). 
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The second fold initiated at a plate displacement of 31.8 mm, and the S-tube was 

completely crushed at a displacement of 97.8 mm. The location of the first fold agreed with 

the previous report [46]. In addition, the hinge collapse pattern led to a changing load 

fluctuation in the S-tube, also referred to as P-mode deformation, as labeled in Figure 2-3. 

This kind of axial behavior could be explained by the first hinge induced abrupt stress 

concentration, which resulted in the sharp rise in its load-displacement behavior and the 

plastic deformation regime. 

The corrugated tubes exhibit a gradual increase in compression loading with a larger 

displacement, labeled as S-mode behaviors in Figure 2-3 and illustrated by the PEEQ 

contours in Figure 2-4 (b & c). The crushing load induced large irreversible plastic 

deformation, which determined the energy absorption capacity of the tubes. The first two 

folds initiated at a plate displacement of 17.0 mm and 27.7 mm for the SSC-14 tube, and 

11.0 mm and 23.5 mm for the DSC-14 tube, respectively. The complete crushed state was 

reached at a plate displacement of 89.0 mm and 79.8 mm for the DSC-14 and the SSC-14, 

respectively. It is clear that the PEEQ region was located near the crushing interface for 

both DSC-14 and S-tube, but for the SSC-14, it initiated from the middle of the tube. The 

plastic hinge formation occurred more uniformly through the tube length. There was 

minimal fluctuation in the load-displacement response during crushing, which is associated 

with a reduced risk of injuries. This is a desirable characteristic in crashworthy design. It 

is also interesting to observe that the initiation of the first crushing fold for the corrugated 

tubes occurred relatively later than for the S-tube. However, it took much less crushing 

displacement, but more energy, to form the second fold in the DSC-14 tube in the than 

other two tubes. Besides, the final crushed state of the DSC-14 tube was relatively longer 
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than the other two. This indicates that the axial deformation of the DSC tube could play an 

important role in crashworthy design [32]. 

It is clear that the energy absorption capability of the SSC-14 tube subjected to axial 

crushing is notably lower than the S-tube with identical dimensions (Figure 2-3). This 

agrees with the work by Eyvazian et al. [32]. As expected, more crushing load could be 

absorbed in the S-tube due to the bending of a straight wall, resulting in more plastic 

bending energy. On the other hand, the load and dissipated energy was reduced in the SSC-

14 due to the existence of radial corrugations [49]. This indicated that the formation of 

hinges in the S-tube demanded much more energy than guiding the deformation of single-

sided corrugation troughs. For double-sided corrugations, the additional symmetric side 

reinforced the structural stiffness of the tube and thus altered the deformation pattern of the 

tube as illustrated in Figure 2-7. 

At the compression displacement of 10 mm, the second corrugation near the crushing 

interface, i.e., the movable plate experienced relatively larger distortion and crushing 

before the initiation of the second plastic hinges, which was spaced in every other 

corrugation. This pattern of crushing behavior repeated until reaching the other end of the 

tube. Then the second level of crushing was initiated at the compression displacement of 

60 mm. At this stage, the uncrushed corrugations underwent plastic deformation one by 

one. The corrugations underwent plastic folding along with the densification of the tube. 

Moreover, the double-sided corrugations were able to produce four plastic hinges at each 

corrugation, compared to only one plastic hinges for the SSC-14. This way, the tube 

resistance against crushing increased, resulting in a larger percentage of plastic zone and 

therefore a higher absorbed energy. 
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The crashworthiness parameters for each tube were characterized in Figure 2-8. 

Specifically, the average compressive force over the whole crushing process was 18.82, 

4.38, and 12.84 kN for the DSC-14, SSC-14 and S-tube, respectively. The corresponding 

total absorbed energy, i.e., the area below the load-displacement curve, was 1.62, 0.38, and 

1.22 kJ. The specific absorbed energy (SAE), defined as the total absorbed energy per unit 

mass, was calculated as 2.25, 0.97, and 5.55 kJ/kg for the DSC-14, SSC-14 and S-tube, 

respectively. Our proposed DSC-14 tube demonstrated a 32% greater increase in energy 

absorption than the S-tube with the same nominal dimensions. However, the SAE of the 

DSC-14 is approximately 40% of the one for the S-tube. To improve the SAE of the DSC-

14, a composite tube, denoted as DSC-14-C, was then investigated. 

 

Figure 2-8 Crashworthiness properties of tube structures. 

 

 Composite DSC-14 tube 

A dramatic increase in the load bearing capacity of the DSC-14-C was observed in 

comparison with the aforementioned tubes. The crashworthiness parameters for the DSC-
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14-C tube were 43.71 kN for the average compressive force over the whole crushing 

process, 3.49 kJ for the total absorbed energy, and 24.75 kJ/kg for the SAE. The change of 

tube materials from Al 6060-T6 aluminum alloy to CF1263 carbon/epoxy composite 

laminate doubled the crashworthiness parameters in terms of the average compression 

force and the total absorbed energy and boosted the SAE by eleven times. The DSC-14-C 

had obvious crashworthiness advantages over the S-tube. The crushing progression of the 

DSC-14-C is similar to the DSC-14 as shown in Figure 2-4. The specific absorbed energy 

of the DSC-14 is 59% lower than that of the S-tube. The SAE value of the DSC-14-C is 

ten times higher than the DSC-14 and 346% larger than the simple straight tube, S-tube. 

 Effect of corrugation spacing on the performance of the DSC tube 

The role of corrugation spacing on the crashworthiness of DSC tubes was also studied as 

shown in Figure 2-9. The nominal dimension of the tube remained the same. The number 

of corrugations for the aluminum alloy DSC tube was altered from 14 to 6 or 10, denoted 

as DSC-6 and DSC-10, respectively. As the number of corrugations increased from 6 up 

to 14, the corrugation spacing, i.e., the straight tube segment linking the corrugations 

shortened from 20 mm to 0 mm. Due to the corrugation spacing, relatively larger load 

fluctuations were observed in both the DSC-6 and the DSC-10, which were initiated at the 

crushing displacement of 49 mm and 79 mm, respectively. There is not any load fluctuation 

for fully corrugated DSC-14 tube. This indicated that the straight tube segment induced 

large load fluctuations during crushing, which might pose a safety threat to passengers, if 

any. Even though longer straight connectors resulting in a larger energy absorption, but 

less smooth crushing behavior is induced. 
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Figure 2-9 Corrugation spacing affect the crushing responses of DSC tubes. 

The mechanism could be well demonstrated by the crushing progression of the DSC-6 tube 

(Figure 2-10). Prior to the compression displacement of 40 mm, the corrugations were 

plastically hinged one by one from the interface until reaching the other end of the tube, 

which correlated with the small fluctuations of load between 11 kN and 14 kN in Figure 

2-10. At the compression displacement of 49 mm, the first large load fluctuation between 

14 kN and 75 kN was observed corresponding to the plastic buckling of straight wall 

segments. Similar behavior happened for the DSC-10. 
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Figure 2-10 Crushing progression of DSC-6 tube. 

Conventional single-sided corrugated aluminum tubes have demonstrated a desirable 

smooth load-displacement behavior, but at the cost of a lower energy absorption capacity, 

compared with the straight tube. In this work, we proposed and tested a DSC tube made of 

aluminum alloy or CF1263 carbon/epoxy composite. The aim was to improve the energy 

absorption capacity as well as preserve the controllable smooth crushing behavior, which 

is negatively associated with the safety threat to passengers. Finite element models were 

developed to test the new tube design following its validation against analytical solutions. 
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3. Chapter 3: Ballast impact protection 

mechanism 
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 Introduction 

This chapter is about the second part of the thesis. In here we are going to elaborate on the 

developed ballast impact protection mechanism. The design started with material searching 

to find an appropriate combination to design the sandwich panel for this application. 

Furthermore, a finite element model has been developed to incorporate the structural 

characteristics and mechanical properties of the suggested sandwich panel. According to 

the results of simulations, our team prepared the samples of sandwich panel to conduct out 

of plane impact tests. Finally, by comparing the results, we suggested the sandwich panel 

design for ballast impact protection mechanism.  

 Sandwich panel 

Sandwich panels have been among top engineering materials in transportation engineering. 

Compared to the traditional metal sheets or composite laminates, the sandwich structures 

have considerable characteristics such as high energy absorption capacity, high flexural 

stiffness and strength. Basically, a sandwich panel consists of a low-density core and the 

stiff skins. The structure usually absorbs and dissipate impact energy by using two different 

mechanisms, namely, local crushing and global bending. For the ballast impact protection 

device, the first mechanism is more important as the sandwich panel is fixed on the axle. 

In the local crushing mode, the lightweight core crushed largely to absorb significant 

amount of impact energy. Therefore, the core material must be lightweight with an 

acceptable crush energy absorption capacity. The skin on the other hand, is responsible to 

provide bonding and integrity of structure. Here we have elaborated the materials of the 

ballast impact protection device.  
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3.2.1 Core material 

The common and lightweight cores have open-cell or closed-cell structures such as 

Polyurethane and metal foams [51]. These materials have unique mechanical properties 

which make them interesting for a variety of structural applications. Among the different 

available polymeric and metal foams our team chose aluminum foams. These materials 

have interesting combinations of properties such as high stiffness, strength combined with 

high energy absorption capacity, and formability. These features guide us to choose these 

foams as the potential elements of the ballast impact absorber. Three aluminum foams were 

produced with different densities. Large foam cylinder was foamed and processed as cubic 

specimens (25 mm × 25 mm× 25 mm). In order to prevent any damage to the cellular 

structure, the cubic foam samples were cut by Electric Discharge Machining (EDM). 

Compression tests were performed (properties were determined) according to ISO 13314-

2011. 

 

Figure 3-1 The prepared aluminum samples for quasi-static compression tests  
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The mechanical response of the foams was obtained by using quasi-static compression 

tests. For each case 3-5 tests were performed, and the average response was considered. 

The naming of samples was based on their density.  

 

Figure 3-2 The stress-strain diagram of aluminum foam cores  

Figure 3-2 shows the stress-strain curved captured during the compression tests for each 

foam. The mechanical properties of the foams are listed in Table 3-1.  

Table 3-1 The mechanical properties of tested foams in preliminary stage  

Foam type Density (kg/m3) Young’s modulus Poisson’s ratio Yield Strength (MPa) 

AF630 630 337 0 12.181 

AF830 830 402 0 13.1 

AF1300 1300 450 0 32.686 
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3.2.2 Skin material 

Among the available materials such as mat, GFRP, CFRP and different metallic sheets, our 

team decided to choose aluminum alloy 6082 for the skin of sandwich panel due to its 

crushing performance, low cost, and good formability, Figure 3-3. The samples were made 

by Dr. Gabriella Epasto from University of Messina, Italy.  

 

Figure 3-3 The aluminum sheets for preparing the sandwich panel skin 

The mechanical properties of aluminum skin are described in Table 3-2. 

Table 3-2 Mechanical properties of Aluminum alloy 6082 [52] 

Density Young’s modulus Yield’s Strength Elongation at break 
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(kg/m3) (MPa) (MPa) 

2700 70000 255 10 % 

  

 Finite Element Simulation 

3.3.1 Modeling 

After choosing the constituents of the sandwich panel we needed to decide the dimension 

of sandwich panel. The most important parameter was the total thickness of the absorber 

which according to the Railway tolerance standard must be less than 50 mm, [39]. At the 

next step, the impact of flying ballast is simulated. According to NF F07-101 standard to 

describe the impact for simulating ballast projectiles, we used the K4 class corresponding 

to an impact with energy of 35 J. Due to the local effect of ballast impact, we used two 

cutting planes to take a section of axle and then applied symmetrical boundary conditions 

at both ends, Figure 3-4. The dimensions of the axle were obtained from [53]. The total 

thickness of absorber was 50 mm and the thickness of skin was 2.5 mm. The total number 

of nodes was 167925 and the total number of elements were 164220 which included 13000 

linear quadrilateral S4R and 151220 linear hexahedral C3D8R elements.  
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Figure 3-4 Finite element model of the impact analysis; (a) Railway axle model and the cutting planes; (b) the selected 

section of the axle covered with absorber; (c) The dimension of striker (mm). 

The both ends of axle was constrained in all degrees of freedom. The striker was modeled 

by using rigid body feature and the point mass applied to its centroid. The magnitude of 

velocity was adjusted to provide kinetic energy of 35J. The axle was modeled as elastic 

perfectly plastic material. The model was meshed with 3D solid elements, Figure 3-5. The 

impact region was meshed with more refined mesh for the sake of accuracy and mesh 

sensitivity analysis were performed to obtain the optimum element size. Surface to surface 

 
(a) 

 
 

 

(b) 

 
(c) 
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contact was applied between the striker and the absorber. The tie constraint was applied 

between the absorber and axle to simulate clamping mechanism. Moreover, an impact test 

was performed on the bare axle to observe the possible damage of the projectile on axle 

surface.  

 

Figure 3-5 The meshed model of axle and absorber 

3.3.2 Results  

One of the critical parameters is the plastic deformation. This parameter shows that the 

permanent indentation and the irreversible deformation induced by projectile impact. 

Fortunately, in none of the cases we observed fully plastic deformation. In other words, a 

portion of deformation was elastic which is a reversible deformation. Figure 3-6 shows the 
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equivalent plastic strain for each case. The least plastic deformation is for the absorber with 

foam AF1300 due to its higher strength. Although the difference between the three types 

were less than 6%. Unlike the conventional rubber systems or coating mechanisms, the 

suggested sandwich panel design can transform the kinetic energy of projectile to 

irreversible plastic deformation. This merit will be further explained.  
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Figure 3-6 Equivalent plastic strain (PEEQ) for each case after the impact 

 

In order to observe the behavior of projectile before, during and after impact the kinetic 

energy during the impact is plotted versus time, Figure 3-7. It can be seen that the initial 

impact energy was 35 J and immediately after the initiation of contact with the absorber 

this value decreases sharply down to zero. At this time majority of kinetic energy has been 

absorbed by the protective mechanism and the rebounding of the projectile is insignificant. 

The response of three foams were almost similar with minor differences in rebounding 

time. The relative difference between final and initial kinetic energy for AF1300 is 82.2%, 

while this parameter for AF830 and AF630 is approximately equal to 86.2%.  
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Figure 3-7 Kinetic energy of the projectile during the impact simulation 

The plastic dissipated energy of the absorbers is plotted in Figure 3-7 in order to determine 

the magnitude of energy dissipated by irreversible plastic deformation during the impact. 

It can be seen that This parameter sharply increases in the response of projectile impact 

and reaches to its maximum value when the projectile velocity reaches to zero. The final 

plastic dissipated energy for AF830 and AF630 was higher than that of AF1300 and equal 

to 25.15 J which is 71.85% of the impact energy. The plastic dissipated energy for AF1300 

was 23.20 J which is 8.4% lower than the other absorbers.  
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Figure 3-8 Plastic dissipated energy during impact  

The variation of projectile velocity during and after the impact can provide useful 

information about the rebounding and efficiency of absorber to reduce this parameter. The 

velocity of projectile versus time is plotted in Figure 3-9. It can be seen that the absorbers 

interestingly reduced the impact velocity and the rebounding velocity by 63 %.  

 

Figure 3-9 Variation of projectile velocity during impact simulation  
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So far, we observed that the performance of the absorbers with three different cores were 

almost similar. At the next step of design, we chose the lighter cores by taking out the 

absorber with core AF1300. Then, we needed to find the optimum thickness for the final 

design. As it was mentioned before, the allowable thickness of absorber can be up to 50 

mm, however, our developed device can be designed slimmer. In order to find the optimum 

thickness for the absorber we created a path of elements on the absorber on the axis of 

impact as depicted in Figure 3-10. Afterwards, the final plastic deformation was plotted 

versus the location on the path. It can be seen that the impact energy is totally dissipated at 

the depth of 15 mm and there is 35 mm safe zone from which any of the absorbers did not 

undergo any deformation. Therefore, the final design of absorber can be thinner, and the 

thickness of minimum 20-35 mm can interestingly absorb the induced impact energy.  

 

Figure 3-10 PEEQ variation through the thickness of absorber 
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We also conducted an impact analysis of the bare axle to see the possible damage if there 

is no absorber attached. Figure 3-11 shows the induced stresses at the impact location 

which reached to the yield strength of axle. Moreover, the induced plastic strain after the 

impact illustrates that with the same impact scenario if there is no absorber attached to the 

axle, there will be perforation, notch and high possibility of crack formation and failure. In 

our research we considered only radial impact in which the impact direction is 

perpendicular to the absorber at the location of impact.  
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Figure 3-11 The induced stress (top) and PEEQ (bottom) on the axle without absorber 

 Experimental tests 

We have prepared the sandwich panels to evaluate its performance when exposed to 

impact. We also made a change and replaced the composite skin with an aluminum skin. 

The prepared samples are in two groups with different thicknesses and densities. The 

specifications of samples are listed in Table 3-3 and the test setup is shown in Figure 3-12.  

Table 3-3 The sample specifications for experimental tests  

foam thickness [mm] specimen ID foam density (kg/m3) 

20 mm 

AF420 420 

AF530 530 

AF390 390 

35 mm 

AF640 640 

AF560 560 

AF520 520 

 



50 

 

 

 

Figure 3-12 The Impact test setup 

The critical outputs here were the energy absorption capability, integrity of the structure, 

and the rebounding of the impactor. The impact energy according to railway standard was 

set to 35J. Figure 3-13 shows the samples after the impact test. It can be seen that there is 

not failure of skin or perforation. The skin is locally bended in response of the impact and 

the sandwich panel absorbed impact energy through irreversible deformation.  
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Figure 3-13 The cross section of samples with core thickness of 35 mm (top); the samples after impact tests (bottom) 
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The results of experimental test are plotted in Figure 3-14 and summarized in Table 3-4.  

 

Figure 3-14 Load-displacement curves of the tested sandwich panels 

Table 3-4 The results of impact tests 

specimen ID 
impact 

energy [J] 
Fmax [N] 

AF420t20 35 6250.4 

AF530t20 35 7257.0 

AF390t20 35 6080.7 

AF640t35 35 8187.6 

AF560t35 35 6221.1 

AF520t35 35 6367.5 

 

The velocity of impactor versus impact duration is plotted in Figure 3-15 The velocity of 

impactor versus impact duration for each case. It can be seen that the initial velocity is 3.5 

m/s and sharply decreases when exposed to the protective mechanism and its kinetic energy 
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after rebounding is decreased by 97 %. Therefore, the mechanism (in all the samples) were 

able to prevent the projectile from rebounding.  

 

Figure 3-15 The velocity of impactor versus impact duration 
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 Chapter 4: Conclusion and future work 
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In this research work we have developed two different mechanisms to improve 

crashworthiness of vehicles and provide protection against ballast impact. We introduced 

the advantages of double-sided corrugated composite tube over conventional straight 

metallic tubes. We have demonstrated the performance advantage of the DSC tubes over 

both SSC and S-tube under axial crushing. Specifically, the absorbed energy of the DSC-

14 tube was 330% and 32% higher than that of the SSC tube and S-tube, respectively. 

However, due to the additional mass in the DSC-14 tube, its specific absorbed energy was 

59% lower than that of the S-tube. The change of DSC-14 tube materials from Al 6060-T6 

aluminum alloy to CF1263 carbon/epoxy composite laminate could boost its absorbed 

energy and specific absorbed energy up to 186% and 346% higher than that of the S-tube, 

respectively. The mechanism of energy absorption for different tube configurations was 

inspected. The plastic deformation in terms of PPEQ is the key parameter correlating with 

the energy absorption capacity. Moreover, the influence of number of corrugations on the 

load-displacement behaviors of the DSC tube was quantified. Results suggested using a 

thin-walled tube design with minimal straight sections for a controllable smooth crushing 

behavior, even though minimal straight sections resulted in less SAE. These results could 

be further verified in crushing experiments of DSC tube, especially composite ones. In 

addition, the optimization of both geometrical parameters and material properties for the 

performance of the DSC-tube could be conducted. In summary, the proposed DSC tube 

might shed light on the design of a thin-walled energy absorber device in transportation 

industries for mitigation of damages and injuries such as railway industry, Figure 4-1. 
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Figure 4-1 Application of Double-sided composite corrugated tube in railway application [54] 

The next suggested mechanism was ballast impact protection device. We developed finite 

element models to evaluate the performance of developed sandwich structure in impact 

energy absorption of projectiles. Our results showed that the initial velocity is 3.5 m/s and 

sharply decreases when exposed to the protective mechanism and its kinetic energy after 

rebounding is decreased by 97 %. Therefore, the mechanism (in all the samples) were able 

to prevent the projectile from rebounding. 

Our suggested technology is based on the capabilities of sandwich structure. Here are the 

benefits of this novel mechanism: 

• Less sensitivity to variation of temperature 

• Easy installation by using clamping mechanism 

• The inner sealing layer protect the axle against corrosion and humidity without any 

chemical reactions.  

• Easy and fast inspection of axle by just unmounting the absorber 
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• No need to make roughness on the surface of axle 

• Absorption of impact energy instead of rebounding the projectile  

• Environmentally friendly, as there is no plastic or polymeric component in device. 

Aluminum is amongst the most environmentally friendly metals on the planet. On 

a percentage basis, it is the most recycled of any industrial metal. 

• The device after its service life can be totally recycled due to the characteristics of 

its components  

We have prepared the sandwich panels to evaluate its performance when exposed to 

impact. The developed mechanism is able to absorb the impact energy of ballast efficiently. 

There is an ongoing work about finalizing the design of this device, however our suggestion 

is to develop to half-tubular shape and attach them by using a clamping system, Figure 4-2.  

 

Figure 4-2 The assembly of ballast impact absorber and clamping system 
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