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Metal additive manufacturing (AM/3D printing) offers unparalleled advantages over 

conventional manufacturing, including greater design freedom and a lower lead time. 

However, the use of AM parts in safety-critical industries, such as aerospace and 

biomedical, is limited by the tendency of the process to create flaws that can lead to sudden 

failure during use. The root cause of flaw formation in metal AM parts, such as porosity 

and deformation, is linked to the temperature inside the part during the process, called the 

thermal history. The thermal history is a function of the process parameters and part design.  

Consequently, the first step towards ensuring consistent part quality in metal AM is to 

understand how and why the process parameters and part geometry influence the thermal 

history. Given the current lack of scientific insight into the causal design-process-thermal 

physics link that governs part quality, AM practitioners resort to expensive and time-

consuming trial-and-error tests to optimize part geometry and process parameters.  

An approach to reduce extensive empirical testing is to identify the viable process 

parameters and part geometry combinations through rapid thermal simulations. However, 



a major barrier that deters physics-based design and process optimization efforts in AM is 

the prohibitive computational burden of existing finite element-based thermal modeling.  

The objective of this thesis is to understand the causal effect of process parameters on 

the temperature distribution in AM parts using the theory of heat dissipation on graphs 

(graph theory). We develop and apply a novel graph theory-based computational thermal 

modeling approach for predicting the thermal history of titanium alloy parts made using 

the directed energy deposition metal AM process. As an example of the results obtained 

for one of the three test parts studied in this work, the temperature trends predicted by the 

graph theory approach had error ~11% compared to experimental trends. Moreover, the 

graph theory simulation was obtained within 9 minutes, which is less than the 25 minutes 

required to print the part.   
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1 Introduction 

1.1 Background 

Metal additive manufacturing (AM) processes, such as laser powder bed fusion 

(LPBF) and directed energy deposition (DED), offer considerable advantages over other 

conventional manufacturing methods. While noteworthy differences between the two AM 

processes are discussed later, schematics of LPBF and DED are presented in Figure 1. 

Compared to conventional subtractive processes, AM often requires lower lead times and 

allows for greater design freedom. However, inconsistencies in the process and part quality 

currently prevent AM from being widely accepted in critical applications. The part is often 

pervaded by heterogeneous microstructures and defects, such as pores and cracks. Process 

parameters can directly lead to the formation of certain defects. For instance, Figure 2 

depicts one type of defect that is caused by a phenomenon known as lack of fusion (LOF). 

Although the defects in Figure 2 are taken from an LPBF part, LOF also appears in DED. 

As the name suggests, it occurs when the laser power is too low or the scan speed is too 

high, which results in incomplete melting of the metal powder particles. The part is then 

left with irregular voids, thus giving rise to potentially catastrophic stress concentrations.  



7 
 

 

Figure 1. (a) LPBF process schematic and (b) DED process schematic. In DED, 
metal powder is sprayed via nozzles and fused onto a substrate by a laser beam. 

 

Figure 2. Lack-of-fusion defects in a titanium part made with LPBF. These same 
defects are common in DED. 

Previous works have already proven graph theory to be a powerful tool in the thermal 

modeling of LPBF [1-4]. In contrast, this work focuses on DED, which poses a greater 

challenge for any thermal model. There are currently very few thermal models that can 

provide an accurate and repeatable prediction for any given material and geometry in the 

DED process. The proposed graph-theoretic model, a mesh-free approach, could fill a large 



8 
 

need for a dependable thermal model that can provide a predicted temperature distribution 

in a matter of minutes on a desktop computer.  

Figure 3 outlines the salient thermal phenomena in DED [5]. In Figure 3, the 

phenomena labeled 3, 4, and 5 are unique to DED and are not present in the LPBF process. 

Consequently, certain heat transfer-related assumptions made in the context of the LPBF 

process to aid computation in our previous work must be relaxed for the DED process [1]. 

 

Figure 3. Salient thermal phenomena in DED include conductive, convective, and 
radiative heat transfer. 

The first and most important difference between LPBF and DED is that in the former 

process, the part is surrounded by unfused powder material, viz., an insulating medium. 

Hence, heat loss on the top surface of the part occurs through radiation and forced 

convective heat transfer from the melt pool. Heat loss in the rest of the LPBF part occurs 

largely through conduction, albeit, heat loss through free convection occurs at the part-

powder boundaries given air gaps in the unfused metal powder surrounding the part. 
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In contrast, as shown in Figure 3, the part in DED is surrounded not by metal powder 

but by an inert gas, and therefore heat is lost to the surroundings through convection and 

radiation from all surfaces. Convection involves both free and forced convection, as the 

metal powder is delivered to the substrate via an inert carrier gas, such as argon. 

Consequently, for a comprehensive model of part-level thermal history in DED, it is 

necessary to account for heat loss through conduction, both free and forced convection, 

and radiation. 

Second, the laser heat source-related assumptions in LPBF do not carry over to the 

DED process because the scan velocity and spot size (beam diameter) of the laser, and 

layer thickness are considerably different. In LPBF, the laser is moved by a set of mirrors 

and the mirrors are moved by galvanometers. By contrast, in DED, the laser head is 

translated by the physical motion of computer numerical controls (CNC), or in other words, 

CNC-based axes. Consequently, the scan velocity of the laser in DED is ten times slower 

compared to LPBF – the scan speed of the laser in LPBF is typically 200 to 500 mm·s-1; in 

DED, the scan speed is on the order of 10 mm·s-1. Further, the typical layer thickness is 

around 50 μm in LPBF, compared to ~100 μm to 200 μm for DED. Lastly, the laser beam 

diameter in the DED process is typically nearer to the millimeter range compared to ~50 

μm to 100 μm in LPBF.  

From a thermal modeling perspective, the higher laser scan velocity and smaller layer 

thickness of LPBF are advantageous for reducing the computation time. Researchers often 

simulate the deposition of multiple layers at a time in LPBF (called the super-layer or meta-

layer assumption) to reduce the computation time [6].  For example, Williams, et al. use 
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the meta-layer assumption in an FE-model to predict thermal-induced deformation in 

LPBF. Meta-layers ranging from 12 to as large as 50 times the actual layer thickness (50 

μm) are simulated. Williams, et al. show that their model predicts distortion within 5% of 

measurements, despite simulating the deposition of ~15 layers at a time. The slow scan 

speed and large laser spot size of DED ensure that the melt pool has a large diameter and 

penetrates deeper into the previous layers compared to LPBF. Consequently, the meta-

layer assumption is not viable in DED. 

1.2 Goal and Motivation 

The goal of this work is to validate the graph theory approach for thermal modeling 

for AM in the context of the DED process. In the DED process, material in the form of 

powder is melted on account of energy supplied by a laser. Metal powder material in 

aerosolized form is delivered onto the substrate via nozzles and injected into the path of a 

high-power laser. The thermal phenomena at the melt pool scale, coupled with the part-

level temperature distribution, influence the formation of defects and govern the 

microstructural evolution. These thermal aspects in turn are linked to the process 

parameters and design of the part. Consequently, the first step towards ensuring consistent 

part quality in DED is to understand the fundamental link between the process parameters, 

thermal phenomena, and part properties.  

The graph theory approach for thermal modeling in AM has been published in the 

context of the LPBF process [1-4]. Theoretical verification with finite element (FE) 

modeling shows that the graph theory approach predicts the temperature distribution in 

LPBF parts within about 1/10th of the time required by commercial FE solutions and with 
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errors fewer than 10%. The approach has also been validated with experimental data from 

the LPBF process. The author now takes this work forward by validating the approach in 

terms of the DED experiment run by Heigel, et al. [7, 8]. 
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2 Literature 

2.1 Simulation  

Determination of an AM part’s thermal history is crucial to its functional integrity [5, 

9]. Various approaches have been taken by researchers to model the DED process. The 

majority have attempted to simulate the process with finite element analysis (FEA) by 

transferring the same principles that apply in weld modeling [10-19]. For certain process 

phenomena, weld modeling principles are transferrable. For instance, the double ellipsoid 

model proposed by Goldak is commonly used to approximate the melt pool shape and 

temperature in DED [7, 8]. Goldak’s model was originally developed for welding [20]. A 

version of the double ellipsoid model is used in this work to describe the laser heat source.  

Conversely, a major difference between DED and welding relates to the volume of the 

deposited material. In the welding process, the newly deposited material often composes a 

small fraction of the overall part since welding often only occurs along seams and 

junctions. As a result, most of the heat from the weld pool is quickly conducted away. 

However, in the DED process, the deposited material composes most, if not all, of the final 

part. This means that the entire part remains at a much higher temperature than those seen 

in welding since it was only recently deposited and solidified. Not only are temperatures 

in DED much higher as a result of the increased amount of newly deposited material, that 

material is also exposed to those higher temperatures for a much longer period of time. The 

combination of higher temperatures and longer exposure makes convective heat loss much 

more prevalent in DED than it does in welding processes. Therefore, a new consideration 

for convection must be developed for the DED process. 
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Numerous approaches to a new approximation for convection loss in DED have been 

studied. Attempting to apply an assumption common in weld modeling, some researchers 

have considered convective heat loss to be negligible in DED [21-24]. Others have 

implemented convection into their DED models by assuming it to be uniformly distributed 

over all surfaces. In those cases, they considered the heat loss to be equal to free convection 

loss in air [10, 12, 25-31]. Furthermore, some researchers have considered the forced nature 

of the shield gas in the process by employing a higher convection that is uniformly applied 

to all free surfaces [32, 33]. Still others have taken it a step further by using tools such as 

empirical equations or computational fluid dynamics to develop a more complex 

convection model [11, 34]. Finally, an effort to develop a measurement-based, forced 

convection model was proposed and tested by Heigel, et al. [7, 8]. Gouge, et al. detailed a 

comprehensive comparison between their convection model and other assumed convection 

regimes [35]. From their findings, they argue that a forced convection model will produce 

more accurate simulation results than a model that considers only free convection or no 

convection at all.  

In this current work, a combination of free and forced convection regimes is 

considered and applied to the part surfaces. The convection coefficients are compared to 

those used by Heigel, et al. for different flow regimes in Table 1. The values used in the 

graph-theoretic approach are discussed in more detail later in the paper. Other notable 

assumptions used by Heigel, et al. were as follows: they assumed thermal symmetry, thus 

modeling only the half-symmetry of the part, and they included the clamp in their model. 

In contrast, the graph-theoretic model included the entire 3-D part geometry but not the 
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clamp. Nevertheless, an approximation for heat loss to the clamp was applied in the graph-

theoretic approach and will be described in more detail later in the paper. 

Table 1. Heat transfer coefficients used to approximate convective heat loss from part 
surfaces. 

Heat Transfer Coefficient 
Graph Theory (this work) 

[W·m-2·K-1] 
Heigel’s Model [7] 

[W·m-2·K-1] 
Free 5.3 10 

Forced 49.1 25-60 
 

 
2.2 Computation Techniques 

As previously mentioned, finite element modeling for welding processes forms the 

foundation on which DED modeling has been built. A review of FE modeling for welding 

is available in references [17-19, 36-39]. It is common for some parts produced by DED to 

have in excess of 1000 layers, which far exceeds the scope of traditional weld modeling. 

Considering the sheer size and complexity of many of the parts produced by DED though, 

it becomes evident that the modeling of this process introduces a significant computational 

load. Consequently, there exists a considerable need for an accurate and fast computational 

approach to determine a part’s thermal history [40-45]. In search of a computationally 

efficient model, a variety of commercial software have been used to simulate the deposition 

process [12, 31, 46-50]. A novel technique that was specifically developed for the 

simulation of additive manufacturing processes was introduced by Panagiotis Michaleris 

[51]. In an effort to increase computational efficiency, Michaleris proposed and tested two 

material deposition methods: (1) the use of quiet and (2) inactive elements [52, 53]. The 

quiet approach assigns material properties to elements that have not yet been deposited 

such that they do not affect the overall analysis. In contrast, the inactive approach does not 
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even include elements in the analysis until they have been deposited, at which point they 

are activated. Although the underlying mathematical theory is different, the novel 

technique (graph theory) employed in this work uses a similar inactive element method.  

Results from our previous work, which employed the graph-theoretic approach, 

showed that it was about ten times faster than the benchmark Goldak model used in 

conjunction with Abaqus, an FE method [1-4]. In addition, the mean absolute percentage 

error of the graph-theoretic approach was less than 10%, relative to the FE analysis. 

2.3 Validation 

It is necessary to validate any thermal model in order to assess its prediction accuracy 

and capabilities. The best way to validate is through experimentation. This current work 

used data from other literature for validation of the graph-theoretic approach [7, 8]. The 

experimental data used in this work was acquired via thermocouples, which are contact 

sensors that are well established for the purpose of in-situ temperature monitoring. Yan, et 

al. reviewed different part-level thermal measurement approaches for AM in a recent paper 

[54]. That review paper also includes a summary of numerical models for AM and 

corresponding validation efforts by various researchers. Among the validation efforts are 

many that use contactless measurement techniques, which are the most common for 

determining melt pool temperatures.  

Despite considerable advances in in-situ monitoring techniques for AM, some 

inconsistencies remain regarding melt pool behavior and temperature distribution. A 

summary of observed, as well as predicted melt pool temperatures found by different 

researchers is presented in Table 2 for DED of Ti-6Al-4V. The three different melt pool 
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temperatures considered in this work: 1900 °C, 2200 °C, and 2450 °C, were chosen to 

represent the range of values observed and measured in the literature. 

Table 2. Summary of melt pool temperatures found by other researchers. 

Geometry 
Laser 

Power [W] 
Scan Speed 

[mm·s-1] 
Method 

Melt Pool 
Temperature 

[°C] 
Publications 

Thin Wall 425 8.5 
Inactive 
Element 

Technique 
1800 - 2000 [51] 

Thin Wall 300 12.7 Pyrometer ~1850 [55] 
Thin Wall 290 12.7 Pyrometer 1900-2000 [56] 

Rectangular 
Thin Wall 

300 2.0 
Quiet Element 

Technique 
2447 [57] 

Cube 800 10.0 
In-house Code 

(GAMMA) 
2500 [58] 

L-shaped 
Thin Wall 

450 10.6 IR Camera 2485 ± 161 [59] 

Cylinders 350 16.9 Pyrometer 2100 – 2500 [60] 
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3 Methods 

3.1 Experiments 

The experimental data for this work, shown in Figure 4, was acquired from Heigel, et 

al. [7, 8]. In their experiments, three so-called single-track thin walls were deposited with 

an Optomec® LENS MR-7 system. In a single-track thin wall, material in a layer was 

deposited in a single pass (i.e., a layer has only one hatch). The part material used was Ti-

6Al-4V powder, which was delivered to the melt pool by a stream of inert argon gas. The 

gas passed through four nozzles that were positioned concentrically around the fiber laser’s 

beam. These nozzles directed the argon gas and titanium powder mixture into the melt 

pool, where the argon gas shielded the melt pool while new powder particles entered the 

laser beam and were melted into a rapidly solidifying layer. The laser used in the process 

was a 500 W IPG Photonics fiber laser with a diameter of 1.5 mm. As this cyclic process 

was repeated, the single-track thin walls were manufactured layer by layer. The walls were 

deposited onto their own Ti-6Al-4V substrate with dimensions 76.2 mm × 25.4 mm × 6.4 

mm (L×W×H). Each substrate was clamped at one end, as depicted in Figure 5(a). Table 3 

summarizes the process conditions for each case. The distinguishing characteristics of the 

three deposition cases, labeled A through C, are outlined below and shown in Figure 5.  

A. A single-track wall including 62 layers with a programmed 20-second dwell time 

between each subsequent layer, also called the inter-layer cooling time. Deposition 

direction alternated for each layer. In other words, the laser traveled in one direction 

for odd-numbered layers and the opposite direction for even-numbered layers. The 

20-second dwell refers to the added pause after the laser had reached the start 
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position, before deposition of the next layer. The addition of dwell time between 

each of the 62 layers resulted in a substantially longer production time of 20 

minutes to the no-dwell Case B described below. Because of the dwell between 

layers there was a longer time for the heat to dissipate into the substrate before new 

material at higher temperature was deposited.  

B. A single-track wall including 62 layers deposited without any programmed dwell 

time. The author notes that there was an inherent pause of 3 seconds between the 

end of one layer and the beginning of the next as the deposition head repositioned 

and resumed powder flow. It was assumed that the inherent dwell time in between 

layers was 3 seconds. 

C. A single-track wall including 62 layers without any programmed dwell time. As in 

Case B, the inherent dwell time of 3 seconds is considered. This wall was deposited 

on top of the pre-existing wall described as Case B. To explain further, the thin wall 

in Case B was allowed to cool down to ambient temperature before deposition of 

the additional wall layers was initiated. The result was a single-track wall that was 

essentially twice the height of the Case A and Case B walls and consisted of 124 

deposition layers in total. 
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Figure 4. Experimental data for each deposition case along with the corresponding 
thermocouple location and dwell time. 
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Figure 5. A schematic of (a) the clamped substrate in relation to the thin wall, (b) 
Case A and B, and (c) Case C. 

  Table 3. Process conditions for each case, detailed by Heigel et al. [7, 8]. 

Case A B C 
Measured Laser Power [W] 415 410 415 

Travel Speed [mm·s-1] 8.5 
Powder delivery rate [g·min-1] 3.0 

Additional dwell time [s] 20 0 0 
Wall height [mm] 10.7 11.2 23.2 

Measured wall length [mm] 37.2 39.2 39.3 
Measured wall width [mm] 2.2 3.0 3.1 

Measured Layer thickness [mm] 0.1726 0.1806 0.1871 
Laser spot size [mm] 1.5 

Standoff Distance [mm] 11.4 
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3.1.1 Temperature Measurements 

Temperature measurements were acquired using Omega GG-K-30 type K 

thermocouples. Thermocouple (TC) 1 was located at the center of the substrate’s bottom 

surface. Thermocouple 2 was located beside the thin wall’s base, on the top surface of the 

substrate. These thermocouples were not bolted onto the substrate but appear to be brazed 

or spot welded to the substrate. As stated by Heigel, et al., an aluminum foil tape was used 

to shield the top thermocouple (TC 2) from forced convection effects during deposition of 

Cases A and C. However, the tape was not used during Case B, and hence temperature 

measurements from TC 2 were not used. Thermocouple positions are depicted in Figure 6.  

 

Figure 6. Thermocouple locations for each case. 
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3.2 Simulation Procedure 

The graph theory approach is distilled into four major steps. These steps are described 

below and pictorially represented in Figure 7. The mathematics behind each step are 

described in more detail in previous works [1-4]. 

Step 1: Discretizing the part geometry into nodes and blocks 

The volume of the part to be simulated is randomly populated with nodes; the number 

of nodes is set at a certain number per unit volume (called node density). This discretization 

results in each node having a unique Cartesian (x, y, z) coordinate, i.e., the location of each 

node is spatially defined within the part. Next, each layer is divided into a hatch (in the 

case of a thin wall, each layer has only one hatch), and each hatch is further divided into 

discrete blocks (volumes) with a fixed height and length, with breadth equal to the hatch 

width.  

For this study, the single track or hatch that composes each deposited layer will be 

broken up into five equal blocks. These discrete blocks are 7.84 mm long, 3 mm wide, and 

0.1806 mm thick. There are a total of 2830 blocks in the part. The reason for dividing a 

hatch into blocks is explained in the context of Step 3 (Figure 8). Since the nodes are 

populated in a random manner, there is a degree of uncertainty in the model predictions. 

We quantify this uncertainty by repeating the simulations three times for each case. 
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Figure 7. Representation of the four steps in the graph-theoretic approach for the DED 

process. 

Step 2: Constructing a network graph from the cloud of discrete nodes created in Step 1  

Each node is connected to its nearest neighboring nodes within a ɛ-radius. Consider ɛ 

[mm] as describing the radius of a sphere around a node at the center of the sphere. Nodes 

that fall within the volume of the sphere are connected to the node at the center of the 

sphere. Nodes that are outside of the sphere are not connected. This step is completed 

throughout the entire cloud of nodes, which results in a complex web of connections called 

a network graph.  

Consider two nodes, 𝜋௜ and 𝜋௝, whose spatial Cartesian coordinates are 𝑐௜ ≡ (𝑥௜ , 𝑦௜ , 𝑧௜) 

and 𝑐௝ ≡ (𝑥௝ , 𝑦௝ , 𝑧௝), respectively; 𝜋௜ and 𝜋௝ are connected by an edge having weight 𝑎௜௝ if 

the distance between them is less than ɛ,   



24 
 

𝑎௜௝ = ቊ𝑒ି൫௖೔ି௖ೕ൯
మ

/ఙమ  if൫𝑐௜ − 𝑐௝൯
ଶ

≤ 𝜀

0 otherwise
 

 

    (1) 

In Eqn. (1), σ is the standard deviation of all the pairwise distances between nodes, 

and the exponential term is the Gaussian function that scales the distance between the nodes 

in the part between 0 and 1.  Nodes that are farther away from each other have an edge 

with a smaller weight connecting each other; nodes closer to each other are connected with 

an edge with a larger weight, 

lim
൫௖೔ି௖ೕ൯→଴

𝑎௜௝ = 1 

lim
൫௖೔ି௖ೕ൯→ఌ

𝑎௜௝ = 0 

 (2) 

The neighborhood distance ɛ is a heuristic tunable parameter in the graph theory 

model, that needs to be calibrated (only once) for a material type. The calibration procedure 

for ɛ is described in Section 3.2.1.  

The matrix formed by placing 𝑎௜௝ in a row i and column j is called the adjacency 

matrix, 𝐀 = ൣ𝑎௜௝൧, which is a positive symmetric matrix. From the adjacency matrix, the 

degree ℎ௜ of a node 𝜋௜ is calculated by summing the corresponding ith row (or column) of 

A, ℎ௜ = ∑ 𝑎௜௝∀௝ . The graph Laplacian at node 𝜋௜ is defined as: 𝑙௜௝ ≝ ℎ௜ − 𝑎௜௝, and the 

Laplacian matrix is obtained 𝐋 = ൣ𝑙௜௝൧.  Finally, the eigenspectra of the graph Laplacian 

matrix (𝐋) will be computed as 𝐋𝛟 = 𝚲𝛟 , where 𝛟 are the eigenvectors and 𝚲 are the 

eigenvalues of L [61].  

Step 3: Block-by-block simulation of a layer 

The DED simulation proceeds by heating the nodes in a block, before proceeding to 

the nodes in the next block. In other words, a time step involves heating of nodes inside a 
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block, one block at a time. Figure 8 demonstrates the block-by-block heating scheme used 

in this work. Since the laser scan velocity is 8.5 mm‧s-1
 and the length of each block is 7.84 

mm long, the time to step between blocks is 0.922 s.  

 

Figure 8. Block-by-block heating scheme used in graph theory DED simulation. 

Step 3(a): Heat loss through conduction 

After a block is heated by the laser, the heat is allowed to diffuse through the network 

graph that was constructed in Step 2. Conduction is the sole mode of heat transfer between 

the nodes. The only nodes active during this step are the ones located within layers and 

blocks that have already been deposited. Other nodes that are in subsequent blocks and 

layers remain inactive and therefore unable to transfer heat. After the heat diffuses from 

the block that had just been heated by the laser, the deposition of the next block is 

simulated. This process is repeated for every block and every layer in the part. The 

mathematical implications of the approach will be summarized here by only including the 

final derived equation, shown in Eqn. (3).  
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After time step 𝑡௕ (= 0.922 s), viz, the time required to process each block, the 

temperature of each active node is contained in the temperature matrix 𝐓௕. The temperature 

following heat transfer by conduction (𝐓𝒄) is defined as a function of the Laplacian 

eigenvectors (𝛟) and eigenvalues (𝚲) of the network graph over active nodes, where T0 is 

the melt pool temperature, and g is a tunable parameter called the gain factor (g). The gain 

factor (g) scales the rate of thermal diffusivity or heat flux between nodes. A higher gain 

factor increases the rate of thermal diffusion through the part, i.e., the larger the gain factor, 

the faster the heat will dissipate through the part by conduction. The procedure to calibrate 

the gain factor is reported in Section 3.2.1. 

𝐓௖ = 𝛟𝑒ିఈ୥𝚲௧್𝛟ᇱT଴ (3) 

Step 3(b): Heat loss through convection 

Heat transfer by conduction between the nodes is followed in tandem with heat loss 

through forced and free convection from the nodes on the surface of the part. The 

temperature distribution after heat loss through forced and free convection, and through 

clamp conduction takes place for the duration of the time 𝑡௕, and is obtained as, 

𝐓௕ = 𝐓𝒄𝑒ିఉ௧್  
 

𝛽 =
ℎ

𝜌 × 𝐿 × 𝑐௣
 

(4) 

 
Where h [W·m-2·K-1] is the heat transfer coefficient, ρ is the material density [kg·m-3], and 

L ( = 7.84 mm) is the length of the block, and 𝐶௣ is the specific heat [J‧kg-1‧ oC -1] which is 

not a constant, but temperature-dependent in this work. The derived coefficient, β, is called 

the inverse time constant [s-1]. The heat transfer coefficient h has two parts, to include both 
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free and forced convection. Heat loss due to forced convection is applied to the sides of the 

part and top of the substrate, as the carrier argon gas flows over these surfaces. Free 

convection is dominant on the sides and bottom of the substrate, where there is no active 

gas flow. The heat transfer coefficients are discussed in depth in Section 3.2.1. 

In steps 3(a) and 3(b), for simplicity, we described the heating of only those blocks in 

the topmost layer. However, in DED the block immediately below the block being heated 

is also at an elevated temperature as the laser penetrates deeper. The heating of the blocks 

immediately below an actively heated block is implemented using Goldak’s double 

ellipsoid model, and detailed in the forthcoming Section 3.3. 

Step 3(c). Obtaining the temperature at the end of a layer after dwell 

For each block-by-block iteration of step 3(a) and (b), the temperature of every node 

is recorded in a vector 𝐓௕. This is repeated until an entire layer is simulated. After the 

process reaches the end of the layer, heat is allowed to dissipate by conduction immediately 

followed by convection in steps of 1 second, iteratively for a period equal to the dwell time 

(𝑡ௗ).  In this work, 𝑡ௗ = 20 s for Case A, and 𝑡ௗ = 3 s for Case B and Case C. In Eqns. (5) 

and (6) the time 𝑡 =1 s, and therefore the pair of equations are looped together for 20 times 

for Case A, and 3 times for Cases B and C to simulate the total dwell time between layers.  

𝐓௅௖ = 𝛟𝑒ିఈ୥𝚲௧೏𝛟ᇱ𝐓௕ (5) 

𝐓௅௙ = 𝐓௅௖𝑒ିఉ௧೏  (6) 
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Step 4: Steps 3(a), (b), and (c) are looped until the last layer is built. The temperature of 

each node at each time step is recorded in a vector T, which contains the thermal history 

of the part.  

3.2.1 Implementation 

The graph theory approach was implemented for predicting the temperature 

distribution of the three cases. Calibration was conducted at three different node densities. 

To arrive at these node densities, the thin wall and substrate were first randomly populated 

with nodes and then partitioned into discrete blocks, as depicted in Figure 8. A specified 

number of nodes were randomly allocated within each block (by the computer code). In 

this work, the effect of one, two, and three nodes within each block has been studied. Table 

4 below provides further details about each of the three node densities. 

Table 4. Three node densities, and corresponding simulation parameters ɛ and g. 

Nodes 
per 

Block 

Total 

Number 
of nodes 

Node 
Density 

(nodes/mm3) 

Neighborhood 
Size, 

ɛ (mm) 

Gain Factor (g) 

T0 = 
1900 oC 
(mm-2) 

T0 = 
2200 oC 
(mm-2) 

T0 = 
2450 oC 
(mm-2) 

1 2830 0.2355 4.5 8 10 12 

2 5660 0.4709 4.75 1 1.5 1.95 

3 8490 0.7064 5.5 0.12 0.15 0.17 

 

Case A was used for calibrating the parameters of the graph theory method – namely, 

the neighborhood size (ɛ) and gain factor (g) in Eqn. (3). Case A was chosen for calibration 

given the prominent temperature cycles therein as evidenced in Figure 4. The neighborhood 

size is defined as the radius of the imaginary sphere with a particular node at its center; it 
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determines the number of nodes connected to the node in the center of the sphere. Nodes 

within the volume of the sphere are connected to the node at its center while nodes outside 

the sphere are not connected to the central node. The gain factor (g) scales the rate of 

thermal diffusivity or heat flux between nodes. A higher gain factor increases the rate of 

thermal diffusion through the part (i.e., the larger the gain factor, the faster the heat will 

dissipate through the part).  

An iterative grid search was performed to calibrate the gain factor and neighborhood 

size. The combination of neighborhood size and gain that resulted in the lowest mean 

absolute percentage error (MAPE) in Case A was selected and subsequently tested on 

Cases B and C. This calibration process was repeated for different node densities and melt 

pool temperatures. In other words, these simulation parameters had to be calibrated only 

once for a material and node density.  

Three other heat transfer coefficients exist in the graph theory approach to the DED 

simulation; these were estimated in the calibration step and were held constant throughout 

all ensuing simulation cases, irrespective of node density or melt pool temperature. Table 

5 includes the equivalent heat transfer coefficients for the three factors being discussed, 

along with the corresponding salient thermal phenomena number that describes them in 

Figure 3. The first of these factors is referred to as the clamp coefficient. As previously 

described in the experimental setup, the substrate was clamped at one end. From a heat 

transfer perspective, the surfaces of the substrate in contact with the clamp had an extra 

loss since the clamp acts as a heat sink. Therefore, this extra thermal pathway must be 

considered in the simulation. To account for the extra heat loss without simulating the 
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geometry of the clamp, an elevated loss was considered at the surfaces of the substrate in 

contact with the clamp. In other words, to approximate the large thermal conduction 

between the substrate and clamp in the experiment, a relatively large heat transfer 

coefficient was used on the appropriate surfaces. 

Table 5. Equivalent heat transfer coefficients used in graph theory method. 

Heat Transfer 
Coefficient 

Inverse Time 
Constant in 
Graph-theoretic 
Method [s-1] 

Equivalent Heat 
Transfer Coefficient 
[W·m-2·K-1] 

Corresponding 
Salient Thermal 
Phenomena Number 

Clamp Coefficient 0.05 981.2 6 
Forced Coefficient 0.0025 49.1 3, 4 
Free Coefficient 0.00027 5.3 5 

 

The process uses argon gas to propel titanium powder particles into the laser beam and 

melt pool. The argon gas continues down the sides of the thin wall while the deposition 

takes place. Although the sides of the thin wall and top surface of the substrate experience 

heat loss to a forced flow, the same cannot be assumed for the sides and bottom surface of 

the substrate. This necessitated a separate consideration of each boundary condition, thus 

necessitating the use of two distinct heat transfer coefficients. A forced heat loss coefficient 

was used to describe the forced convection loss caused by the argon shield gas flow 

originating from the four concentric nozzles. A free coefficient described the remaining 

free convection loss experienced at the sides and bottom surface of the substrate. These 

heat losses were divided into two separate components to account for the different flow 

regimes surrounding the part during the DED process.  

Both factors were encapsulated under the broad term heat transfer coefficients, 

because, apart from conductive and convective heat transfer, heat loss also occurs through 
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radiation. An example calculation using the forced convection inverse time constant is 

included in Appendix A to demonstrate how equivalent heat transfer coefficients were 

found.  

3.2.2 Sensor Location 

A simulated sensor location identical to the location of the thermocouple from the 

experiment was necessary to validate the graph theory approach. In the graph theory 

approach, a cloud of nodes is used to approximate the part geometry as in step 1 of Figure 

7, and the location of each node is identified by its Cartesian coordinates. A node closest 

to the sensor location was identified, and its Cartesian coordinates were modified to match 

those of the sensor location. Once it was moved to the thermocouple locations shown in 

Figure 6, the thermal history of the node was plotted against the experimental data reported 

by Heigel, et al. [7, 8]. This node is henceforth referred to as the sensor node in the context 

of the graph theory approach.  

It is noted that the sensor node location was defined with a slight offset from the actual 

thermocouple location. This was to account for the fact that the thermocouples in the 

experiment were covered with aluminum tape to shield them from convection effects. Since 

the tape was not simulated in the graph-theoretic method, the sensor nodes were “buried” 

at a depth of 0.1 mm below the surface of the substrate. Since the graph-theoretic method 

applies convection losses only to exterior surfaces, the sensor node was essentially shielded 

by no longer being on the surface.  
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3.2.3 Neighborhood size 

Neighborhood size, described in step 2 of Figure 7, was determined to be the proper 

method for this work. However, an alternative quantity that is referred to as “neighborhood 

number” was also explored. Whereas the neighborhood size defines a sphere of certain 

radius in which all nodes are connected to the central node, the neighborhood number 

defines the number of nodes to be connected to a central node, irrespective of spherical 

radius. For instance, a neighborhood number of ten will include the ten nodes closest to the 

central node. In a large body with a uniform node density, neighborhood size and number 

are one and the same, but it was determined that they become vastly different in certain 

cases.  

Neighborhood number was first developed as a means to resolve a nonuniform node 

density in the graph-theoretic method. This nonuniformity was being explored because the 

substrate attached to each single-track thin wall was adding a relatively large computational 

load to the simulation. The obvious solution was then to populate the large substrate 

volume with fewer nodes since it was simply a large thermal mass acting as a heat sink for 

the high temperatures induced by the laser. By introducing a lower node density though, 

fewer substrate nodes fell into any central node’s neighborhood size. The result was a 

substrate that no longer removed heat from the thin wall since very few nodes were 

connected to the thin wall itself. With the lower nodal density, most substrate nodes were 

too far away to fall within the specified neighborhood size. Neighborhood number 

appeared to solve the problem by ensuring that regardless of distance from the central node, 
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a specified number of nodes would still be connected, thus reestablishing the numerous 

connections throughout the thin wall and substrate. 

To fully investigate the neighborhood number and its effects, different location 

scenarios were introduced. It was quickly realized that sharp edges, and especially corners, 

became problematic for the neighborhood number. The problem is demonstrated in Figure 

9, where neighborhood number enabled corner nodes to find just as many heat transfer 

“pathways” as a node in the center of the part. A corner node being able to transfer heat to 

the same number of neighbors as a central node is not consistent with reality, since the 

corner node is much more limited by the surface boundaries that surround it. This discovery 

prompted the author to use neighborhood size instead of neighborhood number to preserve 

the physics in the real system. Using neighborhood size also meant that a uniform density 

would have to be maintained throughout the part, including the substrate. 

 

Figure 9. Heat transfer with neighborhood number vs. neighborhood size. 
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3.2.4 Weight Scaling 

Another exploration that was conducted as part of this work involved weight scaling. 

To understand this concept, recall the network graph that was previously described as one 

of the major steps used by the graph-theoretic method. The nodes that fill the part are all 

linked together with an edge. Each edge has an associated weight that is based off of the 

Gaussian radial basis function, previously shown in Eqn. (1). It was the weight governed 

by the radial basis function that was being scaled before it went into the adjacency matrix. 

Similar to the neighborhood number exploration described earlier, this scaling idea 

arose as a means to resolve the nonuniform node density between the wall and substrate. 

Due to the nonuniformity in density, the wall was much more efficient at transferring heat 

than the substrate. Instead of trying to resolve this discrepancy through an adjustment to 

the neighborhood parameter, like what was attempted and discussed earlier, it was believed 

that another possibility was to adjust the edge weights between certain nodes. By increasing 

the edge weights in the substrate, the nodes located therein would become better conductors 

of heat. This is because in the adjacency matrix, the respective edge weights have been 

adjusted so that the graph-theoretic method treats them as being closer to their partnering 

nodes than they are. Consequently, the node is able to accept more heat from its partner 

since it appears to be closer within the neighborhood. By doing this then, the conduction 

rates through the substrate can be made to duplicate those in the thin wall. This method of 

scaling the weights in the substrate was found to be effective and yielded promising results. 

However, the scaling factor that was found to resolve the nonuniformity was not able to be 
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thoroughly corroborated. Consequently, the method was abandoned due to its lack of rigor 

and substantial evidence. 

3.2.5 Transient Material Properties 

In all previous works, constant material properties have been assumed by utilizing an 

average thermal diffusivity term, α (m2·s-1). In contrast, the current work has defined 

thermal diffusivity as a function of temperature so that the graph-theoretic method can be 

further reconciled with reality. To accomplish this, the values in Table 6 were taken from 

Heigel, et al. and used to calculate corresponding thermal diffusivity values [7, 8]. For all 

calculated thermal diffusivity values presented in the table, a density of 4,430 kg·m-3 was 

used for Ti-6Al-4V [1]. After a temperature-dependent linear function, shown in Eqn. (7), 

had been fit to the calculated values, it was used to redefine the thermal diffusivity in the 

graph-theoretic method. This added capability allowed the graph-theoretic method to 

approximate a new thermal diffusivity value, α୐ୟ୷ୣ୰, for each layer based on the average 

temperature that occurred in the layer before it, T୐ୟ୷ୣ୰. Instead of fixing a thermal 

diffusivity value for the entire simulation, this updated approach requires only an initial 

value to be defined for the first layer. 

Table 6. Temperature-dependent thermal properties for Ti-6Al-4V. 

T [°C] k [W·m-1·°C-1] Cp [J·kg-1·°C-1] Calculated α [m2·s-1] 
20 6.6 565 2.64 
93 7.3 565 2.92 

205 9.1 574 3.58 
250 9.7 586 3.74 
315 10.6 603 3.97 
425 12.6 649 4.38 
500 13.9 682 4.60 
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α୐ୟ୷ୣ୰ = 0.0042 × T୐ୟ୷ୣ୰ + 2.612 (7) 

 

3.3 Goldak’s Double Ellipsoid Heat Source Model 

Past works applying the graph theory approach to LPBF, assume that the laser elevates 

the nodes on the surface to the liquidous temperature [1-4]. In other words, in Eqn. (3), the 

nodes on the topmost layer have an initial temperature (T0) which subsequently diffuses 

through the part. Typically, the temperature T0 is set equal to the liquidus temperature of 

the material being deposited.  

Setting the nodes on the topmost layer to the melting point implicitly assumes that the 

laser does not penetrate past one layer, and that the material at the bottom of that layer is 

solidified. However, this assumption in the context of the LPBF process does not carry 

over to DED, and therefore, needed to be relaxed. This is because, as noted previously, the 

laser velocity in LPBF is 10 to 30 times that of DED (300 mm‧s-1 versus 10 mm‧s-1). At the 

same time, the laser beam has a diameter in the vicinity of 100 μm, while the diameter of 

the laser beam in DED is closer to 1 millimeter. Consequently, the laser in DED penetrates 

deep, over multiple layers, into the part. Hence, in DED, not only are the nodes at the 

surface at an elevated temperature, but so also are nodes in prior layers, immediately below 

the laser path. Therefore, apart from considering only the surface nodes at a higher 

temperature, T0, it is necessary to initiate the sub-surface nodes with an elevated 

temperature.  

To rigorously quantify the temperature reached by the sub-surface nodes, the heat 

source effects in DED were captured using the model created by Römer and Huis in  ’t 
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Veld [62, 63].  This model is encapsulated in a Matlab toolbox; the model shown in Eqn. 

(8) is a slightly revised version of Römer and Huis in ’t Veld’s equation. 

𝑇(𝑥, 𝑦, 𝑧, 𝑡) = C × P ×
1

2𝜋𝐾ඥxଶ + yଶ + zଶ
× ex p ቂ−

v

2𝜅
× ቀx + ඥxଶ + yଶ + zଶቁቃ (8) 

In Eqn. (8), The laser power, P, and scaling factor, C, are discussed in more detail in 

the following paragraph. The thermal conductivity is represented by K while the variables 

x, y, and z are local coordinates. The laser velocity and thermal diffusivity are represented 

by v and κ, respectively. Each variable is defined with appropriate units in Table 7. 

Table 7. Variable definitions for Equation (8) [7, 8, 62, 63]. 

Variable Units Value 
C Dimensionless 0.125 to 0.191 

Laser Power (P) [W] 415  
Laser Velocity (v) [m‧s-1] 8.5 × 10-3  

Thermal Conductivity (K) [W‧m-1K-1] 6.8  
Thermal diffusivity (к) [m2‧s-1] 2.7228 × 10-6   

 

The equation was revised because the original one presented by Römer and Huis in ’t 

Veld was found to have inconsistent units. To reconcile units, the laser power, P, and a 

unitless scaling factor, C, were included. The reason for the scaling factor becomes evident 

when considering how the model behaves around the origin, which corresponds to the 

center of the melt pool. Without the factor, the temperature profile approaches a vertical 

asymptote at the center of the melt pool. The scaling factor allows the user to essentially 

place an upper bound on the temperature profile. The upper bound coincides with the 

liquidus temperature of the material being deposited. In this work, the liquidus temperature 

was assumed to be 1630 oC for Ti-6Al-4V. Knowing that the laser diameter is 1.5 mm, it 
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was also assumed that the melt pool had an equivalent diameter to that of the laser heating 

it. Consequently, it was deduced that the liquidus temperature was reached at the periphery 

of the melt pool, which is depicted in Figure 11(a). This left the center of the melt pool to 

conceivably exceed the liquidus temperature by a considerable amount since it remained 

in the laser beam for a longer duration and was surrounded by molten Ti-6Al-4V. The other 

three scaling factors defined in Table 7 correspond to different assumed melt pool 

temperatures, which are discussed at the end of this section. 
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Figure 10. The effect of the scaling factor C on the melt pool temperature, as a 
function of (a) the melt pool length, and (b) the melt pool depth. 
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Recall that the purpose of the model is to predict the instantaneous temperature at any 

position relative to the center of the melt pool. This work leverages that prediction 

capability to understand the extent to which layers directly below the melt pool, referred to 

as sublayers, are heated. The temperature profile in Figure 10 has both a leading and trailing 

edge since the model assumes a heat source moving with constant velocity, v. It is intuitive 

then why the trailing edge in Figure 10 seems to decay slower than the leading edge. 

Whereas the trailing edge had already experienced the peak temperatures of the melt pool, 

the leading edge had yet to reach those levels as the laser and accompanying melt pool 

approached. Therefore, one must choose whether to apply the scaling factor C to the 

leading edge or trailing edge of the laser. Although a strong case can be made for either, 

the trailing edge was chosen in this work. The rationale behind that decision is discussed 

in the next paragraph.  

Referring back to Figure 8, which demonstrates the graph-theoretic method’s block-

by-block heating scheme, it is evident that the laser heats each block over a discrete time 

period. Therefore, the laser in the model was not truly continuous. The specified time over 

which the laser heats a block was calculated based off block length and known velocity of 

the laser. The resulting heating duration for each block was found to be 0.92 seconds. Since 

the laser is quasi-stationary as it heats an individual block and those below it, it made the 

most sense to focus on the trailing edge when applying the scaling factor. After all, that 

edge corresponds to the portion that just experienced the laser beam’s direct radiation. In 

the graph-theoretic method, the blocks have not just experienced the laser beam’s radiation 
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but rather are experiencing it at that moment in time as the heat from the laser penetrates 

through multiple sublayers, as illustrated in Figure 11(b). 

 

Figure 11. (a) Top View and (b) Side View of melt pool. 

There are three major steps to obtaining the sublayer temperatures. These steps are 

described below. 

1. Set a reference point from which all depths will be measured. The reference point 

in this work was set between the top layer, which receives the most direct radiation 

from the laser, and the first sublayer. This reference point was chosen because it 

was assumed that the molten Ti-6Al-4V reaches to at least the bottom of the first 

layer. If this were not true, it would be impossible for each deposited layer to be 

fused to the one under it. After the reference point has been set, determine relative 

depths for each sublayer. To best approximate the temperature in the sublayer 

blocks, depth measurements were taken at the middle, as opposed to the top or 

bottom, of each sublayer. Recall that the layer thickness in the experiment was 
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0.1806 mm. For this reason, the first sublayer temperature was taken at a depth of 

0.0903 mm (half of the layer thickness). 

2. Adjust the scaling factor C so that the temperature at the periphery of the 1.5-mm 

(dia.) melt pool matches the liquidus temperature (1630 oC). Save the resulting 

temperatures for each sublayer corresponding to the depths determined in step 1. 

Only sublayers with predicted values greater than 20% of the liquidus temperature 

were included in the graph-theoretic model, since those layers comprise most of the 

heat from laser penetration.  

3. Input the saved temperatures into the model as values normalized to the liquidus 

temperature. 

Critical to the model was the actual melt pool temperature which, as previously 

mentioned, would conceivably exceed the liquidus temperature. Given the wide range of 

melt pool temperatures used by other researchers and outlined in Table 2, three different 

temperatures were tested in a range of approximately 600 oC. The lowest of these was 

approximately 15% higher than the Ti-6Al-4V liquidus temperature at a value of 1900 oC. 

The other two melt pool temperatures considered were 2200 oC and 2450 oC. Together, 

these three temperatures represented an average melt pool temperature, peak melt pool 

temperature, and superheated melt pool temperature, respectively. Each temperature was 

simulated increasing the assumed temperature at the melt pool periphery by 15%, 35%, or 

50%. The associated temperature profiles are presented in Figure 10. Ambient temperature 

of the argon gas in the chamber was assumed to remain at a constant 30 oC throughout each 

deposition.  



43 
 

4 Results  

Figure 12 illustrates the simulation results at four different instances during the 

deposition process. These results were generated for the peak melt pool temperature (2200 

oC). As expected, the highest temperatures were achieved in Case B, where no programmed 

dwell time was included. In contrast, Case A remained at the lowest temperature, which 

was due to the 20-second dwell time that was applied between each deposition layer. In the 

following sections, each case is considered individually, and their results are presented. 

4.1 Case A Results 

Figure 13 presents the simulation results and thermal history of the deposition using a 

20-second dwell between layers (Case A). In the absence of melt pool temperature data 

from the experiment, three different melt pool temperatures were considered in the 

simulation. In addition, recall that three different node densities were also selected. Figure 

13 shows the corresponding results for each melt pool temperature and node density. The 

calibration values that were determined from Case A (namely, neighborhood size and gain) 

are presented in Table 4. The neighborhood size is only dependent on node density. It is 

clear to see that an increased melt pool temperature resulted in larger temperature 

excursions during the deposition of each layer. This was especially noticeable at the higher 

node densities, where the prediction results seemed to be stretched vertically as one 

compared the lowest to highest melt pool temperatures. Due to the programmed 20-second 

dwell time, Case A resulted in the lowest peak temperature (200 oC) achieved between the 

three experimental cases. 
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It may also be noted that the initial rise in temperature observed in the experiment is 

consistently higher than the graph theory predictions. The main reason for this early-time 

mismatch is that the gain factor was chosen based off of a calibration of the whole time 

domain. If the calibration step had only considered the first half of the experimental data, 

there would have been a smaller mismatch during that portion of the simulation. The 

portion of experimental data best suited for calibration of the graph-theoretic approach is 

dependent on the specific situation. 

There are two other compounding assumptions in the simulation that could be further 

contributing to the early-time mismatch: (1) the constant ambient temperature 

consideration and (2) the laser only melts the material and does not impinge upon the 

substrate even for the first few layers. Regarding the first assumption, it is assumed that 

changes in ambient temperature over the course of the build are negligible. In turn, the 

ambient argon gas that surrounds the thin wall and substrate was fixed at a constant 

temperature of 30 °C. In reality, the envelope of argon that engulfs the part would 

experience a temperature increase as it reaches a new equilibrium, especially during the 

initial deposition layers. After transient heating of the gas during those initial layers, a 

constant ambient temperature assumption would again be more acceptable, but it would 

likely be higher than the initial temperature of 30 °C. If the elevated transient temperature 

of the gas were to be included in the model, it would lower its ability to remove heat from 

the thin wall and substrate, leading to a larger initial temperature rise in the prediction. 

Since the 30 °C temperature assumption was used in all simulation cases, this same 

explanation can be applied to all graph theory results. In the second assumption, the 

simulation assumes that the laser only melts the material and does not impinge upon the 
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substrate even for the first few layers. However, this is not the case, as in practice during 

the first few layers, the laser also strikes the substrate. This inherent laser impingement 

would tend to preheat the underlying material as new powder enters the laser beam and 

begins to stick to the substrate or previously deposited layers. 

 

Figure 13. Simulation results for Case A. 

Table 8 shows the corresponding errors and computation times for all Case A 

simulation results presented in Figure 13. The measured build time for Case A was 

approximately 26 minutes. Errors between the experimental thermal history and graph 
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theory simulation were calculated by comparing the measured temperature to the predicted 

temperature at instances in time. Two different methods of calculating errors were used in 

this work. Eqns. (9) and (10) show the mean absolute percentage error (MAPE) and root 

mean square error (RMSE), respectively: 

𝑀𝐴𝑃𝐸 =
100%

𝑛
× ෍ ቤ

𝑇௜ − 𝑇෠௜

𝑇௜
ቤ

௡

௜ୀଵ

 (9) 

 
where 𝑛 is the number of instances in time that were compared over the duration of the 

deposition, 𝑖 is the current instant of time, 𝑇௜ is the measured temperature, and 𝑇෠௜ is the 

simulated temperature. The lowest MAPE was found to be approximately 6.0%. 

Table 8. Summary table for Case A simulation. 

Node Density 
[nodes·mm-3] 

Computation 
Time [min] 

Data 
Points 

(n) 
1900 °C 2200 °C 2500 °C 

  

1800 

MAPE 
[%] 

RMSE 
[°C] 

MAPE 
[%] 

RMSE 
[°C] 

MAPE 
[%] 

RMSE 
[°C] 

0.2355 9 13.10 
(1.36) 

25.92 
(1.62) 

10.75 
(1.95) 

23.21 
(2.84) 

10.13 
(4.48) 

21.48 
(6.88) 

0.4709 82 9.80 
(0.61) 

22.82 
(0.99) 

7.65 
(1.28) 

18.77 
(2.05) 

7.55 
(2.34) 

17.67 
(3.75) 

0.7064 194 7.95 
(1.62) 

20.70 
(1.65) 

6.60 
(1.10) 

18.39 
(1.41) 

5.98 
(2.59) 

16.54 
(2.89) 

 

4.2 Case B Results  

Figure 14 presents the simulation results and thermal history of the deposition using a 

3-second inherent dwell between layers (Case B). Corresponding results for each melt pool 

temperature and node density are shown. Due to the much lower dwell time, individual 

temperature excursions for each layer were much less pronounced. In addition, the lower 

𝑅𝑀𝑆𝐸 = ඩ෍
൫𝑇௜ − 𝑇෠௜൯

ଶ

𝑛

௡

௜ୀଵ

 (10) 
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dwell time resulted in a much higher peak temperature of nearly 500 oC in the experiment. 

The higher temperatures seen throughout the experiment also mean that the constant 

ambient temperature assumption described previously was less applicable in this case. 

Once again, it is suspected that this assumption led to a lower temperature rise in the 

simulation.  

Also notable in this case, the graph theory simulation for the superheated melt pool 

temperature consistently ended with temperatures higher than those of the experiment. This 

was due to not enough heat being lost to the surroundings as it diffused downwards into 

the substrate, where the sensor is located. It is suspected that the apparent missing heat loss 

was likely a result of not directly considering radiation in the graph-theoretic model. As 

previously discussed, radiative heat loss is not explicitly included in the heat transfer 

coefficients applied to the part surfaces. However, it is recognized that a component of 

radiative heat transfer must exist in at least the forced coefficient, the one that is applied to 

the surfaces of the wall. As the deposition progresses upwards, higher temperatures will be 

observed in the newly deposited layers. This is because as the wall is built, it forms a longer 

“bottleneck” through which the heat must be conducted to reach the substrate. 

Consequently, the heat tends to congregate in the upper region of the thin wall. The 

growing region of elevated temperatures in the wall allows it to radiate more to the 

surrounding gas before it can diffuse downwards. This leads to the conclusion that a 

radiative heat loss term dependent on the wall height existed in the system. In contrast, the 

radiative heat loss that is currently assumed as part of the forced coefficient had a constant 

value, irrespective of wall height. A simple example of this phenomenon can be observed 

by watching a DED system build a thin wall. As the wall height increases, the uppermost 



49 
 

regions of the wall tend to glow brighter and longer, indicating that higher temperatures 

are being reached. This simple observation supports the idea that the heat tends to 

congregate in the upper portion of the wall. This congregation of heat results in higher 

radiative heat loss to the surroundings. Without a height-dependent radiative heat loss term 

in the graph-theoretic model, the elevated temperatures are left to diffuse downwards 

toward the sensor node, thus making the temperature prediction continue to climb. This 

hypothesis is supported by the graph theory simulations for Case A, where the much larger 

dwell time allowed the heat to diffuse downwards instead of congregate in the wall. This 

mitigated the variation in radiative heat loss over the course of the deposition and as a 

result, the graph theory simulation temperatures did not exceed those of the experiment at 

the end of the build. 



50 
 

 

Figure 14. Simulation results for Case B. 
Table 9 shows the corresponding errors and computation times for all Case B 

simulation results presented in Figure 14. The measured build time for Case B was 

approximately 5 minutes since the dwell time between layers was greatly reduced. Errors 

between the experimental thermal history and graph theory simulation were found to be 

larger than those for Case A. This is primarily due to Case A being the case used for 

calibration of the graph-theoretic model. The same calibrations found for Case A were 

directly applied to Case B to test the model. The lowest MAPE was found to be 

approximately 10.5%. 
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Table 9. Summary table for Case B simulation. 

Node Density 
[nodes·mm-3] 

Computation 
Time [min] 

Data 
Points 

(n) 
1900 °C 2200 °C 2500 °C 

  

900 

MAPE 
[%] 

RMSE 
[°C] 

MAPE 
[%] 

RMSE 
[°C] 

MAPE 
[%] 

RMSE 
[°C] 

0.2355 9 26.54 
(2.57) 

114.37 
(11.48) 

17.33 
(1.61) 

75.04 
(5.25) 

10.49 
(2.82) 

48.46 
(11.63) 

0.4709 82 24.45 
(1.89) 

105.21 
(8.23) 

12.70 
(0.54) 

59.50 
(2.42) 

10.48 
(0.90) 

49.46 
(3.58) 

0.7064 194 22.56 
(0.47) 

97.95 
(1.61) 

12.48 
(0.88) 

57.80 
(3.76) 

12.38 
(0.54) 

53.28 
(3.09) 

 

4.3 Case C Results 

Figure 15 presents the simulation results and thermal history of the deposition using a 

3-second inherent dwell between layers for the double wall (Case C). Recall that this thin 

wall was built by first depositing the wall for Case B and after it had cooled, depositing 

another wall on top of it. Corresponding results for each melt pool temperature and node 

density are shown. As noted in Case B, individual temperature excursions for each layer 

were less pronounced due to the relatively short 3-second dwell time. Despite this wall 

being 124 layers tall instead of 62 layers, the lower dwell time still resulted in a peak 

temperature of nearly 300 oC, which is higher than that of Case A. It was observed that the 

graph theory simulation temperature tended to continue climbing past the experimental 

temperatures, especially when the melt pool temperature was assumed to be superheated. 

The same discussion regarding the height-dependent radiative heat loss term applies to this 

case. 

It may also be noted that the rising action of the graph theory simulation was once 

again not as steep as that of the experiment. One explanation of this is related to the constant 

ambient temperature discussion, as previously described. Another explanation is related to 
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the geometry of the part. Since the Case C wall was twice as tall as the other walls and the 

lower half was deposited separately, the heat had twice as far to travel before it reached the 

sensor node. The previous calibration was not only determined for a wall that was half the 

height of the current one but also a wall that was at an elevated temperature for the entirety 

of the build. Since the walls in Cases A and B included layers that had only been deposited 

seconds or minutes before, they were hot to begin with. From Table 4, it is evident that 

thermal conductivity increases with temperature. It is suspected that the previously 

deposited wall composing the lower half of Case C, which was allowed to cool down before 

continuing, would have different material properties than that of the other walls. 

Additionally, it is known that the graph-theoretic model was calibrated for thin walls and 

substrate that were, in a sense, preheated since the deposition process was never stopped 

once it had started. In effect, the deposition process for Case C was equivalent to building 

on a new substrate that had both different thermal properties and a different geometry. It is 

suspected that these differences in properties and geometry compounded with the constant 

ambient temperature assumption to give the errors observed in Figure 15. 
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Figure 15. Simulation results for Case C. 

Table 10 shows the corresponding errors and computation times for all Case C 

simulation results presented in Figure 15. The total build time for Case C was 

approximately 10 minutes since the dwell time between layers was once again only 3 

seconds. Errors between the experimental thermal history and graph theory simulation 

tended to be the largest of any case, which is largely due to the compounding issues 

previously described. Case C was the second test case for the calibration values determined 

from Case A. The lowest MAPE was found to be approximately 9.5%. 
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Table 10. Summary table for Case C simulation. 

Node Density 
[nodes·mm-3] 

Computation 
Time [min] 

Data 
Points 

(n) 
1900 °C 2200 °C 2500 °C 

  

900 

MAPE 
[%] 

RMSE 
[°C] 

MAPE 
[%] 

RMSE 
[°C] 

MAPE 
[%] 

RMSE 
[°C] 

0.2355 21 31.62 
(3.98) 

84.88 
(10.69) 

28.19 
(2.02) 

78.59 
(5.51) 

16.71 
(0.49) 

45.72 
(1.57) 

0.4709 188 31.96 
(1.06) 

84.02 
(2.69) 

19.72 
(0.21) 

51.74 
(0.90) 

12.51 
(1.18) 

35.03 
(5.17) 

0.7064 650 21.84 
(1.12) 

55.26 
(3.35) 

10.02 
(0.69) 

26.05 
(3.26) 

9.28 
(3.40) 

27.99 
(14.63) 
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5 Conclusions and Future Work  

Previous works have shown that spectral graph theory is a feasible method for relatively 

rapid simulation of the LPBF additive manufacturing process. The goal of this work was 

to test the graph-theoretic method on a different, and in many ways more challenging, 

additive process known as DED. For this to be accomplished, it was necessary to 

implement new considerations for the salient thermal phenomena that are unique to the 

process. It was found that by applying the graph-theoretic method to the thin wall 

deposition experiments, a calculated error of approximately 12% was attainable for each 

case (A, B, and C). Being the intermediate condition, the peak melt pool temperature case 

at 2200 oC was considered to be the best case to draw conclusions from. Meanwhile, the 

average melt pool temperature case attained a calculated error of 22% and the superheated 

melt pool temperature case typically achieved lower errors of approximately 10% or less 

for each case. Depending on how much accuracy one desires, an operator could run the 

simulation in as little as 9 minutes on a standard desktop computer.  

 

Figure 16. Case-wise comparison between the experiment, graph-theoretic model, 
and Heigel, et al. model. 
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Table 11. Prediction comparison between Heigel model and the graph-theoretic model for 
2200 oC and 0.4709 nodes·mm-3. 

Data Case A Case B Case C 

 
Time 
[min] 

MAPE 
[%] 

Time 
[min] 

MAPE 
[%] 

Time 
[min] 

MAPE 
[%] 

Heigel Model 136 10.4 136 2.4 
No 

Report 
4.1 

Graph Theory 82 7.59 82 11.94 188 19.79 
Build Time 25.6 minutes 5.2 minutes 10.1 minutes 

 

This work shows that the graph-theoretic method can provide valid thermal predictions 

for the DED process at a relatively low computational expense. A qualitative comparison 

between the graph-theoretic model, Jarred Heigel’s model, and the experimental data is 

presented in Figure 16. The presented graph-theoretic results correspond with a maximum 

melt pool temperature of 2200 oC and a node density of 0.4709 nodes·mm-3. Table 11 

provides a quantitative comparison between both models. It should be noted that the 

computation time reported for Heigel’s model is for the part’s half-symmetry. The graph 

theory computation time, on the other hand, is for the entire part. There are several 

improvements that can still be made to increase the prediction accuracy of the model. The 

following list outlines four main improvements for future work. 

 Obtain melt pool temperature directly from the experiment. Due to 

inconsistencies in the melt pool temperatures measured by other researchers, three 

different temperatures were considered. As one can see from the results previously 

presented, the accuracy of the graph-theoretic method is directly dependent on the 

melt pool temperature. Therefore, narrowing down the temperature ranges seen at 

the melt pool level would allow for a better calibration and corresponding 

prediction. 
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 Resolve disproportionate boundary node quantities. With low node densities in 

narrow geometries like the one in the thin walls, current boundary node 

identification techniques begin to classify most of the nodes in the wall as boundary 

nodes. This is problematic because the extra heat losses associated with convection 

and radiation are applied to the boundary nodes. If nearly all of the nodes in the 

wall are being identified as part of the boundary, the entire wall effectively receives 

an additional heat loss that is only intended for the wall’s exterior surfaces. This 

over application of heat loss can result in an unrealistically low temperature 

prediction. A subsequent investigation of the boundary node proportions used in 

this work was conducted and found that nearly 60% of the total number of nodes in 

the part were identified as boundary nodes for the lowest node density. In contrast, 

approximately 45% of the total nodes had been identified as existing on the 

boundaries for the higher node densities. It was then concluded that the lowest node 

density was experiencing 15% more in heat loss than its higher density 

counterparts. This disproportionality is most likely manifesting itself by increasing 

the overall errors. 

 Implement a more rigorous approximation for radiative heat loss. As 

previously discussed, radiative heat loss effects are currently assumed to be 

accounted for as part of the forced coefficient. Considering how much radiative 

heat loss would vary across part geometries like the thin wall, a more rigorous 

approach to radiation may be necessary. Even if some radiative heat loss is 

currently being represented by the forced coefficient, it is evident that the loss 
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would not remain constant over time as the wall height increases with each new 

deposition layer. 

A preliminary exploration into heat loss due to radiation was conducted for the 

three thin wall cases and is briefly discussed here. The steady-state radiation heat 

transfer equation is presented in Eqn. (11). In the equation, 𝜀  is the emissivity of 

the material (assumed to be 0.5 for Ti-6Al-4V), 𝜎 is the Stefan-Boltzmann onstant, 

𝐴 is the surface area, 𝑇 is the surface temperature, and 𝑇ஶ is the temperature of the 

surroundings. Since the graph-theoretic approach currently uses convective heat 

loss at the surface level to approximate other heat transfer mechanisms (i.e., 

conductive heat loss to the clamp and now radiative heat loss to the surroundings), 

an equivalent convective heat transfer coefficient must be found to represent 

radiation. Eqn. (12) shows the resulting equation, which is simply the steady-state 

convection equation with an added heat transfer coefficient, ℎ௥௔ௗ, to approximate 

heat lost by radiation. In that equation, ℎ௖ represents the heat transfer coefficient 

typically found in the convection equation. The result is an equation for total heat 

transfer at the surface, which is determined by adding the contributions of both heat 

transfer mechanisms. The next step was to define the ℎ௥௔ௗ term, which can be found 

in any heat transfer textbook. The final definition, taken from Cengel and Ghajar, 

is presented in Eqn. (13) [64].  

𝑞௥௔ௗ = 𝜀𝜎𝐴(𝑇ସ − 𝑇ஶ
ସ ) (11) 

𝑞 = (ℎ௖ + ℎ௥௔ௗ)𝐴(𝑇 − 𝑇ஶ) (12) 

ℎ௥௔ௗ = 𝜀𝜎(𝑇 − 𝑇ஶ)(𝑇ଶ + 𝑇ஶ
ଶ ) (13) 
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The transient heat loss equation, defined in Appendix A, was then applied to 

determine the inverse time constant representative of the new radiative heat transfer 

coefficient, ℎ௥௔ௗ. After solving the transient equation for the inverse time constant 

representing radiation, the inverse time constant was added to its convective loss 

counterpart that was solved for in Appendix A. As previously stated though, the 

radiative heat loss term cannot be considered as a constant term, independent of 

time. As such, it is necessary to find a function that defines the inverse time constant 

for radiation as a function of temperature. To accomplish this, the average 

temperature of the top three deposition layers was determined. In other words, after 

every new layer had been deposited in the simulation, it would calculate the average 

temperature of the newly deposited layer along with the two layers below it to arrive 

at one average temperature. That average temperature is what determines the 

inverse time constant that governs radiative heat loss in the graph-theoretic model, 

thus giving an approximate radiative heat loss term that increases linearly with each 

new deposition layer. 

The results of the exploration into radiation are presented in Figure 17. In the 

interest of time, only the lowest node density was considered with a melt pool 

temperature of 2200 oC. One should note that the added consideration of radiation 

appears to have had a significant impact on Cases B and C but little to no impact 

on Case A. This is due to the peak temperatures reached in each case. Since 

radiation is a temperature-dependent quantity and Case A achieved a lower peak 

temperature than the other two cases, a lower impact was observed. It is interesting, 

and not completely understood, why the added radiation appeared to significantly 
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improve the prediction for Case B but had an adverse effect on Case C. This may 

be related to the new part geometry present in Case C. More work needs to be done 

to investigate this phenomenon.  
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Figure 17. Case-wise radiation loss effects at melt pool temperature of 2200 oC and 
lowest node density. 
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  Understand implications of the weight scaling method. As previously described 

in Section 3.2.4, the method was found to be effective and yielded promising 

results. However, the factor used to scale the weights was not able to be entirely 

explained since the effects of weight scaling were not exhaustively investigated. 

Deeper exploration of the theory and application of this method would lead to a 

better understanding, which may allow it to be employed with more confidence. In 

turn, a model that can handle heterogeneous node densities would be extremely 

advantageous for investigating certain user-defined regions of the part. Areas of 

less interest could accordingly contain a lower number of nodes, thus reducing 

computation time. The weight scaling method could also lend itself useful to the 

simulation of a part containing multiple materials. The weights for each new 

material could be scaled in a way that is representative of each material’s thermal 

properties, thus allowing the changing thermal gradients for different materials to 

be captured. 
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Appendix A. Heat Transfer Coefficient Calculation 

Transient Heat Loss: 𝑒𝑥𝑝 ቀ−
௛×஺×௧

ఘ×௏×௖
ቁ = 𝑒ିఉ×௧ 

Solve for heat transfer coefficient: ℎ = ቀ
ఉ×ఘ×௏×௖

஺
ቁ 

Simplify: ℎ = (𝛽 × 𝜌 × 𝐿 × 𝑐) 

Variable Value Units 
Heat Transfer Coefficient, h 49.1 W·m-2·K-1 
Inverse Time Constant, β 0.0025 s-1 
Material Density, ρ  4430 kg·m-3 
Block Length, L 0.00784 m 
Specific Heat, c 565 J·kg-1·K-1 

  

 

  



64 
 

References Cited 

[1] M. R. Yavari, K. Cole, and P. Rao, "Thermal Modeling in Metal Additive 
Manufacturing using Graph Theory," ASME Transactions, Journal of 
Manufacturing Science and Engineering, vol. 141, pp. 071007-27, July 2019. 

[2] M. R. Yavari, K. D. Cole, and P. K. Rao, "Design Rules for Additive Manufacturing 
– Understanding the Fundamental Thermal Phenomena to Reduce Scrap," Procedia 
Manufacturing, vol. 33, pp. 375-382, 1/1/2019 2019. 

[3] K. D. Cole, M. R. Yavari, and P. K. Rao, "Computational heat transfer with spectral 
graph theory: Quantitative verification," International Journal of Thermal 
Sciences, vol. 153, p. 106383, July 2020 2020. 

[4] R. Yavari, J. Severson, A. Gaikwad, K. Cole, and P. Rao, "Predicting Part-Level 
Thermal History in Metal Additive Manufacturing Using Graph Theory: 
Experimental Validation With Directed Energy Deposition of Titanium Alloy 
Parts," in ASME 2019 14th International Manufacturing Science and Engineering 
Conference, 2019. 

[5] T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, et 
al., "Additive manufacturing of metallic components – Process, structure and 
properties," Progress in Materials Science, vol. 92, pp. 112-224, 3/1/2018 2018. 

[6] R. J. Williams, C. M. Davies, and P. A. Hooper, "A pragmatic part scale model for 
residual stress and distortion prediction in powder bed fusion," Additive 
Manufacturing, vol. 22, pp. 416-425, August 2018 2018. 

[7] J. C. Heigel, P. Michaleris, and E. W. Reutzel, "Thermo-mechanical model 
development and validation of directed energy deposition additive manufacturing 
of Ti–6Al–4V," Additive Manufacturing, vol. 5, pp. 9-19, 1/1/2015 2015. 

[8] J. C. Heigel, "Thermo-Mechanical Model Development and Experimental 
Validation for Directed Energy Deposition Additive Manufacturing Processes," 
Doctor of Philosophy Dissertation, Mechanical Engineering, Pennsylvania State 
University, State College, PA, 2015. 

[9] M. M. Francois, A. Sun, W. E. King, N. J. Henson, D. Tourret, C. A. Bronkhorst, 
et al., "Modeling of additive manufacturing processes for metals: Challenges and 
opportunities," Current Opinion in Solid State and Materials Science, vol. 21, pp. 
198-206, 8/1/2017 2017. 

[10] M. Labudovic, D. Hu, and R. Kovacevic, "A three dimensional model for direct 
laser metal powder deposition and rapid prototyping," Journal of Materials 
Science, vol. 38, pp. pages35–49, January 2003. 

[11] S. Zekovic, R. Dwivedi, and R. Kovacevic, "Thermo-structural finite element 
analysis of direct laser metal deposited thin-walled structures," 16th Solid Freeform 
Fabrication Symposium, pp. 338-355, August 2005. 

[12] R. Jendrzejewski, G. Śliwiński, M. Krawczuk, and W. Ostachowicz, "Temperature 
and stress fields induced during laser cladding," Computers & Structures, vol. 82, 
pp. 653-658, March 2004. 

[13] M. Chiumenti, M. Cervera, A. Salmi, C. A. d. Saracibar, N. Dialami, and K. Matsui, 
"Finite element modeling of multi-pass welding and shaped metal deposition 
processes," Computer Methods in Applied Mechanics and Engineering, vol. 199, 
pp. 2343-2359, 8/1/2010 2010. 



65 
 

[14] A. Anca, V. D. Fachinotti, G. Escobar‐Palafox, and A. Cardona, "Computational 
modelling of shaped metal deposition," International Journal for Numerical 
Methods in Engineering, vol. 85, pp. 84-106, 12/20/2010 2011. 

[15] S. Marimuthu, D. Clark, J. Allen, A. Kamara, P. Mativenga, L. Li, et al., "Finite 
element modelling of substrate thermal distortion in direct laser additive 
manufacture of an aero-engine component," Journal of Mechanical Engineering 
Science, vol. 227, pp. 1987-1999, 12/21/2012 2013. 

[16] E. R. Denlinger, J. C. Heigel, and P. Michaleris, "Residual stress and distortion 
modeling of electron beam direct manufacturing Ti-6Al-4V," Journal of 
Engineering Manufacture, p. 11, 7/16/2014 2014. 

[17] L.-E. Lindgren, "Finite element modeling and simulation of welding part 1: 
Increased complexity," Journal of Thermal Stresses, vol. 24, pp. 141-192, February 
2001. 

[18] L.-E. Lindgren, "Finite Element Modeling and Simulation of Welding part 2: 
Improved material modeling," Journal of Thermal Stresses, vol. 24, pp. 195-231, 
7/29/2006 2001. 

[19] L.-E. Lindgren, "Finite element modeling and simulation of welding. Part 3: 
Efficiency and integration," Journal of Thermal Stresses, vol. 24, pp. 305-334, 
April 2001. 

[20] J. Goldak, A. Chakravarti, and M. Bibby, "A new finite element model for welding 
heat sources," Metallurgical Transactions B, vol. 15, pp. 299-305, June 01 1984. 

[21] V. Tikare, M. Griffith, E. Schlienger, and J. Smugeresky, "Simulation of coarsening 
during laser engineered Net-Shaping," Sandia National Labs, Albuquerque, NM 
(United States)1997. 

[22] W. Hofmeister, M. Wert, J. Smugeresky, J. A. Philliber, M. Griffith, and M. Ensz, 
"Investigation of Solidification in the Laser Engineered Net shaping (LENS) 
Process," Journal of Metals, vol. 51, 6/18/1999 1999. 

[23] A. J. Pinkerton and L. Li, "The development of temperature fields and powder flow 
during laser direct metal deposition wall growth," Journal of Mechanical 
Engineering Science, vol. 218, pp. 531-541, 5/1/2004 2004. 

[24] A. Vasinonta, J. L. Beuth, and M. Griffith, "Process Maps for Predicting Residual 
Stress and Melt Pool Size in the Laser-Based Fabrication of Thin-Walled 
Structures," ASME Transactions, Journal of Manufacturing Science and 
Engineering, vol. 129, pp. 101-109, 3/31/2006 2007. 

[25] L. Wang, S. D. Felicelli, and P. Pratt, "Residual stresses in LENS-deposited AISI 
410 stainless steel plates," Materials Science and Engineering A: Structural 
Materials, vol. 496, pp. 234-241, 11/25/2008 2008. 

[26] S. M. Kelly and S. L. Kampe, "Microstructural evolution in laser-deposited 
multilayer Ti-6Al-4V builds: Part II. Thermal modeling," Metallurgical and 
Materials Transactions A, vol. 35, pp. 1869–1879, June 2004. 

[27] B. Zheng, Y. Zhou, J. E. Smugeresky, J. M. Schoenung, and E. J. Lavernia, 
"Thermal Behavior and Microstructural Evolution during Laser Deposition with 
Laser-Engineered Net Shaping: Part I. Numerical Calculations," Metallurgical and 
Materials Transactions A, vol. 39, pp. 2228–2236, 6/24/2008 2008. 



66 
 

[28] R. Jendrzejewski, I. Kreja, and G. Śliwińskia, "Temperature distribution in laser-
clad multi-layers," Materials Science and Engineering A: Structural Materials, vol. 
379, pp. 313-320, 8/15/2004 2004. 

[29] P. Pratt, S. D. Felicelli, L. Wang, and C. R. Hubbard, "Residual Stress Measurement 
of Laser-Engineered Net Shaping AISI 410 Thin Plates Using Neutron 
Diffraction," Metallurgical and Materials Transactions A, vol. 39, pp. 3155–3163, 
10/15/2008 2008. 

[30] X. He, G. Yu, and J. Mazumder, "Temperature and composition profile during 
double-track laser cladding of H13 tool steel," Journal of Physics D: Applied 
Physics, vol. 43, p. 015502, 12/7/2009 2010. 

[31] A. Lundbäck and L.-E. Lindgren, "Modelling of metal deposition," Finite Elements 
in Analysis and Design, vol. 47, pp. 1169-1177, October 2011. 

[32] A. F. A. Hoadley, M. Rappaz, and M. Zimmermann, "Heat-flow simulation of laser 
remelting with experimenting validation," Metallurgical and Materials 
Transactions B: Process Metallurgy and Materials Processing Science, vol. 22, pp. 
101-109, February 1991. 

[33] K. Dai and L. Shaw, "Distortion minimization of laser-processed components 
through control of laser scanning patterns," Rapid Prototyping Journal, vol. 8, pp. 
270-276, 12/1/2002 2002. 

[34] R. G. Cobonque, "Heat transfer between a flat plate and jets of airimpinging on it," 
in International Conference on Heat Transfer, Part II, 1962, pp. 454-460. 

[35] M. F. Gouge, J. C. Heigel, P. Michaleris, and T. A. Palmer, "Modeling forced 
convection in the thermal simulation of laser cladding processes," The International 
Journal of Advanced Manufacturing Technology, vol. 79, pp. 307–320, 2/4/2015 
2015. 

[36] L.-E. Lindgren, "Numerical modelling of welding," Computer Methods in Applied 
Mechanics and Engineering, vol. 195, pp. 6710-6736, 10/1/2006 2006. 

[37] L.-E. Lindgren, Computational Welding Mechanics: Thermomechanical and 
Microstructural Simulations. Cambridge, England: Woodhead Publishing, 2007. 

[38] J. A. Goldak and M. Akhlaghi, Computational Welding Mechanics. New York, NY, 
USA: Springer, 2005. 

[39] Minimization of Welding Distortion and Buckling: Modeling and Implementation. 
Cambridge, England: Woodhead Publishing, 2011. 

[40] A. Bandyopadhyay and K. D. Traxel, "Invited Review Article: Metal-additive 
manufacturing—Modeling strategies for application-optimized designs," Additive 
Manufacturing, 2018. 

[41] E. R. Denlinger, M. Gouge, and P. Michaleris, Thermo-Mechanical Modeling of 
Additive Manufacturing: Butterworth-Heinemann, 2018. 

[42] P. Foteinopoulos, A. Papacharalampopoulos, and P. Stavropoulos, "On thermal 
modeling of Additive Manufacturing processes," CIRP Journal of Manufacturing 
Science and Technology, vol. 20, pp. 66-83, 2018/01/01/ 2018. 

[43] G. L. Knapp, T. Mukherjee, J. S. Zuback, H. L. Wei, T. A. Palmer, A. De, et al., 
"Building blocks for a digital twin of additive manufacturing," Acta Materialia, 
vol. 135, pp. 390-399, 2017/08/15/ 2017. 



67 
 

[44] W. J. Sames, F. List, S. Pannala, R. R. Dehoff, and S. S. Babu, "The metallurgy 
and processing science of metal additive manufacturing," International Materials 
Reviews, vol. 61, pp. 315-360, 2016. 

[45] B. Schoinochoritis, D. Chantzis, and K. Salonitis, "Simulation of metallic powder 
bed additive manufacturing processes with the finite element method: A critical 
review," Proceedings of the Institution of Mechanical Engineers, Part B: Journal 
of Engineering Manufacture, vol. 231, pp. 96-117, 2017/01/01 2015. 

[46] R. Jendrzejewski and G. Śliwiński, "Investigation of temperature and stress fields 
in laser cladded coatings," Applied Surface Science, vol. 254, pp. 921-925, 
12/15/2007 2007. 

[47] G. Zhu, A. Zhang, D. Li, Y. Tang, Z. Tong, and Q. Lu, "Numerical simulation of 
thermal behavior during laser direct metal deposition," The International Journal 
of Advanced Manufacturing Technology, vol. 55, pp. 945–954, 1/20/2011 2011. 

[48] S. Ghosh and J. Choi, "Modeling and Experimental Verification of 
Transient/Residual Stresses and Microstructure Formation in Multi-Layer Laser 
Aided DMD Process," ASME Transactions, Journal of Heat Transfer, vol. 128, pp. 
662-679, 12/12/2005 2006. 

[49] R. Ye, J. E. Smugeresky, B. Zheng, Y. Zhou, and E. J. Lavernia, "Numerical 
modeling of the thermal behavior during the LENS® process," Materials Science 
and Engineering A: Structural Materials, vol. 428, pp. 47-53, 7/25/2006 2006. 

[50] P. Peyre, P. Aubry, R. Fabbro, R. Neveu, and A. Longuet, "Analytical and 
numerical modelling of the direct metal deposition laser process," Journal of 
Physics D: Applied Physics, vol. 41, p. 025403, 1/4/2008 2008. 

[51] P. Michaleris, "Modeling metal deposition in heat transfer analyses of additive 
manufacturing processes," Finite Elements in Analysis and Design, vol. 86, pp. 51-
60, 4/28/2014 2014. 

[52] L.-E. Lindgren, H. Runnemalm, and M. O. Näsström, "Simulation of multipass 
welding of a thick plate," International Journal for Numerical Methods in 
Engineering, vol. 44, pp. 1301-1316, 3/30/1999 1999. 

[53] L.-E. Lindgren and E. Hedblom, "Modelling of addition of filler material in large 
deformation analysis of multipass welding," Communications in Numerical 
Methods in Engineering, vol. 17, pp. 647-657, September 2001. 

[54] Z. Yan, W. Liu, Z. Tang, X. Liu, N. Zhang, M. Li, et al., "Review on thermal 
analysis in laser-based additive manufacturing," Optics & Laser Technology, vol. 
106, pp. 427-441, 10/1/2018 2018. 

[55] M. Khanzadeh, S. Chowdhury, M. A. Tschopp, H. R. Doude, M. Marufuzzaman, 
and L. Bian, "In-situ monitoring of melt pool images for porosity prediction in 
directed energy deposition processes," IISE Transactions, vol. 51, pp. 437-455, 
3/13/2018 2018. 

[56] G. J. Marshall, S. M. Thompson, and N. Shamsaei, "Data indicating temperature 
response of Ti–6Al–4V thin-walled structure during its additive manufacture via 
Laser Engineered Net Shaping," Data in Brief, vol. 7, pp. 697-703, June 2016. 

[57] Q. Yang, P. Zhang, L. Cheng, Z. Min, M. Chyu, and A. C. To, "Finite element 
modeling and validation of thermomechanical behavior of Ti-6Al-4V in directed 
energy deposition additive manufacturing," Additive Manufacturing, vol. 12, pp. 
169–177, October 2016. 



68 
 

[58] S. J. Wolff, S. Lin, E. J. Faierson, W. K. Liu, G. J. Wagner, and J. Cao, "A 
framework to link localized cooling and properties of directed energy deposition 
(DED)-processed Ti-6Al-4V," Acta Materialia, vol. 132, pp. 106-117, 6/15/2017 
2017. 

[59] D. A. Kriczky, J. Irwin, E. W. Reutzel, P. Michaleris, A. R. Nassar, and J. Craig, 
"3D spatial reconstruction of thermal characteristics in directed energydeposition 
through optical thermal imaging," Journal of Materials Processing Technology, 
vol. 221, pp. 172-186, 2/21/2015 2015. 

[60] G. Marshall, W. J. Y. II, N. Shamsaei, J. Craig, T. Wakeman, and S. M. Thompson, 
"Dual Thermographic Monitoring of Ti-6Al-4V Cylinders during Direct Laser 
Deposition," in International Solid Freeform Fabrication Symposium, Austin, TX, 
USA, 2015, pp. 259-272. 

[61] F. R. K. Chung, Spectral graph theory: American Mathematical Society, 1997. 
[62] G. R. B. E. Römer, "Matlab Laser Toolbox User Manual," University of Twente, 

Enschede, Netherlands9/23/2010 2010. 
[63] G. R. B. E. Römer and A. J. H. i. t. Veld, "Matlab Laser Toolbox," Physics 

Procedia, vol. 5, pp. 413-419, 2010. 
[64] Y. A. Cengel and A. J. Ghajar, Heat and Mass Transfer: Fundamentals & 

Applications, 4 ed. New York, NY, USA: McGraw-Hill, 2011. 

 

 

 


	Thermal Modeling of Additive Manufacturing Using Graph Theory: Validation with Directed Energy Deposition
	

	Microsoft Word - Severson, Jordan - Final Draft.docx

