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SUMMARY 

Understanding the unique features of algal metabolism may be necessary to realize the full 

potential of algae as feedstock for the production of biofuels and biomaterials. Under nitrogen 

deprivation, the green alga C. reinhardtii showed substantial triacylglycerol (TAG) 

accumulation and up-regulation of a gene, GPD2, encoding a multidomain enzyme with a 

putative phosphoserine phosphatase (PSP) motif fused to glycerol-3-phosphate dehydrogenase 

(GPD) domains. Canonical GPD enzymes catalyze the synthesis of glycerol-3-phosphate (G3P) 

by reduction of dihydroxyacetone phosphate (DHAP). G3P forms the backbone of TAGs and 

membrane glycerolipids and it can be dephosphorylated to yield glycerol, an osmotic stabilizer 

and compatible solute under hypertonic stress. Recombinant Chlamydomonas GPD2 showed 

both reductase and phosphatase activities in vitro and it can work as a bifunctional enzyme 

capable of synthesizing glycerol directly from DHAP. In addition, GPD2 and a gene encoding 

glycerol kinase were up-regulated in Chlamydomonas cells exposed to high salinity. RNA-

mediated silencing of GPD2 revealed that the multidomain enzyme was required for TAG 

accumulation under nitrogen deprivation and for glycerol synthesis under high salinity. 

Moreover, a GPD2-mCherry fusion protein was found to localize to the chloroplast, supporting 

the existence of a GPD2-dependent plastid pathway for the rapid synthesis of glycerol in 

response to hyperosmotic stress. We hypothesize that the reductase and phosphatase activities 

of PSP-GPD multidomain enzymes may be modulated by post-translational 

modifications/mechanisms, allowing them to synthesize primarily G3P or glycerol depending on 

environmental conditions and/or metabolic demands in algal species of the core Chlorophytes. 
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INTRODUCTION 

Microalgae, photosynthetic eukaryotic microorganisms, can convert CO2 to a variety of products, 

including high value chemicals, pharmaceuticals, and biofuel precursors (Borowitzka, 1998; Pulz and 

Gross, 2004; Spolaore et al., 2006; Giovanardi et al., 2013). Some microalgal species can accumulate 

high quantities of nonpolar lipids, mainly triacylglycerols, and can potentially be used as feedstock for 

the production of edible oils and biofuels (Morales-Sanchez et al., 2014; Gimpel et al., 2015). 

However, microalgae are very diverse and their physiology and metabolism appear to have unique 

features whose understanding may be required to fulfill the potential of these organisms as sustainable 

biotechnological resources (Gimpel et al., 2015; Zienkiewicz et al., 2016). 

 

Chlamydomonas reinhardtii is a unicellular alga well established as a model system for examining 

photosynthesis, physiology, metabolism and the structure and function of flagella (Riekhof et al., 

2005; Merchant et al., 2007). Chlamydomonas has been shown to accumulate considerable amounts 

of storage compounds when subject to various stresses, such as nutrient deprivation or high salinity, 

under photoheterotrophic or photoautotrophic conditions (Siaut et al., 2011; Msanne et al., 2012; 

Goodenough et al., 2014; Schmollinger et al., 2014; Zienkiewicz et al., 2016). In wild type cells, 

nitrogen depletion triggered an initial increase in starch content followed by substantial TAG 

accumulation (Siaut et al., 2011; Msanne et al., 2012). Transcripts encoding certain glycerol-3-

phosphate dehydrogenase isoenzymes, particularly GPD2, exhibited markedly enhanced abundance 

under these conditions (Goodenough et al., 2014; Schmollinger et al., 2014). GPDs catalyze the 

formation of glycerol-3-phosphate, the backbone of TAGs and membrane glycerolipids, by reduction 

of dihydroxyacetone phosphate; and they may influence TAG accumulation by affecting G3P levels 

(Wang et al., 2001; Radakovits et al., 2010). 

Indeed, GPDs are commonly involved in glycerolipid metabolism and in the preservation of cellular 

redox status by consuming NAD(P)H and regenerating NAD(P)+ (Klöck and Kreuzberg, 1989; Wang 

et al., 2001; Goshal et al., 2002). These enzymes have also been implicated in osmotic stress 
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acclimation in several algal species of the genera Dunaliella, Asteromonas and Chlamydomonas (Ben-

Amotz et al., 1982; Klöck and Kreuzberg, 1989; Gee et al., 1993; Goshal et al., 2002; Oren, 2016). 

GPDs play a role in the response to osmotic and salinity stress by affecting the synthesis of glycerol, a 

known osmoprotectant (Ben-Amotz et al., 1982; Goshal et al., 2002). Gee et al. (1993) identified 

biochemically three GPD isoforms in the halotolerant microalga Dunaliella tertiolecta: a chloroplast 

osmoregulatory form, which is stimulated by NaCl, a chloroplast glyceride form whose activity is 

increased during cell growth, and a minor cytosolic form. Genes encoding similar enzymes from 

Dunaliella salina (DsGPDH2 and G3PDH) and from Dunaliella viridis (DvGPDH1 and DvGPDH2) 

have also been cloned and characterized in relationship to salinity tolerance (He et al., 2007; He et al., 

2009; Chen et al., 2011; Cai et al., 2013). The C. reinhardtii genome encodes five NAD(P)+-

dependent GPDs (Merchant et al., 2007) and a partially purified enzymatic activity was described in 

earlier work (Klöck and Kreuzberg, 1989). Recently, Herrera-Valencia et al. (2012) characterized in 

silico three Chlamydomonas GPD isoforms. Additionally, based on transcript abundance analyses, 

they proposed that GPD4 (referred to as GPDH1) might be constitutively expressed whereas GPD2 

and GPD3 appeared to be induced in response to salinity stress. 

 

Bioinformatic analyses revealed that the Chlamydomonas GPD2, GPD3 and GPD4 isoforms as well 

as their putative Dunaliella orthologs have an unusual structure consisting of canonical glycerol-3-

phosphate dehydrogenase domains fused, at their N-terminus, with a putative phosphoserine 

phosphatase (PSP) motif (He et al., 2007; He et al., 2009; Herrera-Valencia et al., 2012; Cai et al., 

2013). The role of the PSP domain in these chimeric proteins is currently unknown, although we and 

others have hypothesized that it may function in the dephosphorylation of G3P to glycerol (He et al., 

2009; Cai et al., 2013). We report here on the enzymatic and physiological characterization of C. 

reinhardtii GPD2, as the archetypical form for these PSP-GPD fusion proteins. Our observations 

indicate that GPD2-like enzymes can catalyze directly the synthesis of glycerol, by using as substrates 

DHAP and NAD(P)H, and are localized to the chloroplast, suggesting a unique pathway for rapid 

glycerol synthesis during acclimation to hyperosmotic stress. In Chlamydomonas (and likely in the 
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core Chlorophytes) GPD2-like enzymes are necessary for both TAG accumulation under nitrogen 

deprivation and for glycerol production under high salinity. 

 

RESULTS 

Bioinformatic analyses show that Chlamydomonas GPD2 has a multidomain structure, 

consisting of fused PSP and GPD motifs  

Six genes encoding glycerol-3-phosphate dehydrogenase enzymes were identified by homology 

searches of the C. reinhardtii genome. Five genes code for NAD(P)+-dependent GPDs, namely 

Cre12.g511150 (GPD1), Cre01.g053000 (GPD2), Cre01.g053150 (GPD3), Cre10.g421700 (GPD4), 

and Cre09.g387763 (GPD5). The sixth gene, namely Cre13.g577450 (mtGPD), encodes a FAD+-

dependent GPD, which is likely located to the mitochondrion. Of the five NAD(P)+-dependent GPD 

homologs, only GPD1 and GPD5 exhibit the canonical protein organization, consisting of an N-

terminal NAD(P)+-binding domain and a C-terminal substrate-binding domain (Figure 1a). The other 

three homologs (GPD2, GPD3 and GPD4) have a unique structure, including at their N terminus an 

additional motif, a haloacid dehalogenase (HAD)-like superfamily domain most closely related to 

phosphoserine phosphatase (Figure 1a). 

 

To gain insight into the evolution and diversity of these chimeric NAD(P)+-dependent GPD 

homologs, phylogenetic analysis were performed independently with the GPD and the HAD-like 

domains, including available algal sequences as well as those from assorted eukaryotes and 

eubacteria. However, PSP-GPD fusion enzymes appear to be limited to algal species in the 

Chlorophyceae and Trebouxiophyceae classes (Figure 1b and 1c). The GPD domains of the algal 

chimeric proteins clustered in phylogenetic trees with canonical glycerol-3-phosphate dehydrogenases 

of diverse eukaryotes (Figure 1b), suggesting a common ancestry with these enzymes characterized as 

cytosolic in metazoans and fungi (Wang et al., 2001; Lee et al., 2012). Additionally, homology-
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modeling studies previously suggested that the GPD domains of Chlamydomonas GPD2, GPD3, and 

GPD4 had fold topology features similar to human GPD1 (Herrera-Valencia et al., 2012). In contrast, 

Chlamydomonas GPD1 and GPD5 clustered with eubacterial (as well as plant and algal) glycerol-3-

phosphate dehydrogenase sequences (Figure 1b), suggesting that they might have been acquired 

through an endosymbiotic event or possibly through horizontal gene transfer. The PSP (HAD-like) 

domains of the algal chimeric GPDs grouped together in phylogenetic trees (Figure 1c), but as a sister 

clade to canonical eukaryotic phosphoserine phosphatases (commonly involved in L-serine 

biosynthesis). Thus, it is tempting to speculate that the PSP-GPD fusion enzymes may have arisen, in 

an early green algal lineage, by duplication of a gene encoding an ancestral phosphoserine 

phosphatase with subsequent (or concomitant) translational fusion of one of the duplicated copies to a 

gene encoding a eukaryotic-like GPD. 

 

Alignment of the N-terminal sequences of Chlamydomonas GPD2, GPD3, and GPD4, as well as of 

their Dunaliella and Chlorella homologs, with the phosphoserine phosphatases from Mycobacterium 

avium and Methanococcus jannaschii indicated conservation of three short HAD-like typical motifs 

(Figure 1d). The amino acids of these motifs cluster together in the canonical PSP three dimensional 

structure to form the active site, and the first aspartate of the conserved DXDX[T/V] motif I (Figure 

1d) is used as a nucleophilic residue for catalysis (Collet et al., 1998; Peeraer et al., 2004). Homology 

modeling of the three-dimensional structure of the GPD2 HAD-like domain indicated a similar overall 

fold to the M. avium PSP template (Figure S1a). In particular, GPD2 showed similar clustering of the 

residues critical for catalysis and for binding of the Mg2+ cofactor (Figure S1b). These observations 

suggested that the PSP domain of GPD2 might be enzymatically active but, based on the phylogenetic 

analysis (Figure 1c), it appears to have diverged from canonical phosphoserine phosphatases and 

might act on a different, although likely related, substrate. Since G3P has a similar stereochemical 

configuration as L-phosphoserine (the natural substrate of PSPs) we decided to explore the possibility 

that algal GPD2-like enzymes may have G3P phosphatase activity and catalyze directly the two-step 

conversion of DHAP to glycerol. 
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GPD2 is a bifunctional protein, with reductase and phosphatase activities, capable of 

synthesizing directly glycerol from DHAP  

To examine the enzymatic activities of GPD2, recombinant proteins of the wild type isoform, two 

mutant versions, as well as canonical GPD1 were produced by in vitro transcription/translation in a 

continuous-exchange cell-free wheat germ system. Chlamydomonas GPD1 was used as a positive 

control for the standard activity of a glycerol-3-phosphate dehydrogenase, since it lacks a PSP 

domain. GPD2 mutants were generated by site-directed mutagenesis of specific residues within the 

PSP domain (Collet et al., 1998; Peeraer et al., 2004), in order to eliminate any potential phosphatase 

activity. In GPD2-NV2Mut the first aspartate (presumably the nucleophilic residue for catalysis) in 

the conserved DVDCT motif I was replaced with asparagine (D93N) whereas in GPD2-NVN3Mut 

both aspartates in this conserved motif were replaced with asparagines (D93N and D95N). 

 

We first tested for glycerol-3-phosphate dehydrogenase activity of the recombinant proteins by 

measuring a decrease in NADH as it is oxidized to NAD+, a reaction stoichiometrically coupled with 

the reduction of DHAP to G3P (Vigeolas et al., 2007; Casais-Molina et al., 2016). All four proteins 

caused a similar decrease in NADH concentration, implying equivalent GPD activities under the 

experimental conditions used (Figure 2a), although this was achieved with a smaller amount of 

recombinant protein for GPD1 (see Methods S1). As a control, an aliquot of the wheat germ lysate 

programmed with an empty vector did not affect the NADH concentration. These observations 

corroborated that Chlamydomonas GPD2 has glycerol-3-phosphate dehydrogenase activity, as 

previously demonstrated by complementation of a Saccharomyces cerevisiae gpd1Δgpd2Δ double 

mutant via expression of a GPD2 cDNA (Casais-Molina et al., 2016). Moreover, the GPD activity of 

GPD2 was no affected by mutations in its PSP domain (Figure 2a). 

We next examined whether GPD2 may have phosphatase activity in reactions containing glycerol-3-

phosphate as the substrate. Production of inorganic orthophosphate (Pi) was measured 

colorimetrically as phosphomolybdate (Heinonen and Lahti, 1981). In these reactions, only wild type 
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GPD2 showed substantial release of Pi whereas GPD1 (lacking a PSP domain) and GPD2-NV2Mut or 

GPD2-NVN3Mut (with mutated residues in the putative PSP catalytic site) exhibited no enzymatic 

activity (Figure 2b). Similar results were obtained by measuring glycerol production (Figure 3a) 

instead of Pi release. These findings indicated that the GPD2 PSP domain can use G3P as a substrate, 

prompting us to explore whether the chimeric enzyme might catalyze directly the two-step conversion 

of DHAP to glycerol. Indeed, wild type GPD2 yielded inorganic phosphate and glycerol in reactions 

containing as substrates DHAP and NADPH (Figures 2c and 3b) or DHAP and NADH (Figures 2d 

and 3c). However, the absence of NAD(P)H in the reactions, required to reduce DHAP to G3P, 

abolished the GPD2-mediated production of Pi (Figure 2e) and glycerol (Figure 3d). In all these 

assays, GPD1, GPD2-NV2Mut and GPD2-NVN3Mut demonstrated no activity, indicating that an 

intact PSP domain is required for the production of Pi and glycerol from DHAP and NAD(P)H. 

Additionally, none of the recombinant proteins, including wild type GPD2, showed phosphatase 

activity with L-phosphoserine as the substrate.   

 

These observations strongly suggested that GPD2-like enzymes can catalyze the reduction of DHAP 

to G3P (via their GPD domains) followed by dephosphorylation of G3P to glycerol (via their PSP 

domain). Consistent with a two-step conversion from DHAP to glycerol, the initial rate of reaction for 

the production of inorganic phosphate by GPD2 is slower (~0.024 mmol/min) when using DHAP and 

NADH as substrates (which would require the synthesis of G3P prior to its dephosphorylation) than 

when providing directly G3P as the substrate (~0.25 mmol/min). Similar conclusion can be reached 

when analyzing the initial rate of reaction for the synthesis of glycerol by GPD2 using as substrates 

either DHAP and NADH or G3P. 

Chlamydomonas GPD2 is localized to the chloroplast  

To gain insight on where GPD2 may function we examined its subcellular localization. Bioinformatic 

analyses with ChloroP and PredAlgo tools suggested that GPD2, GPD3 and GPD4 have N-terminal 

chloroplast transit peptides (CTPs), whereas GPD1 and GPD5 would not be targeted to an organelle 
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(Table S1). These analyses and the experimental work were carried out with the protein sequences 

predicted by Phytozome v11.0 gene models, except for GPD3 since the gene model 

ova_au5.g2031_t1 appears to be more accurate (including a longer N-terminal sequence similar to 

that in the very closely related GPD2). To assess experimentally the subcellular localization of GPD2 

and GPD1, the 5' end of the GPD2 coding sequence (CDS) (including the predicted CTP and the PSP 

domain) and the full-length GPD1 CDS were fused in frame at the 5' end of the mCherry fluorescent 

protein CDS. These transgenes, under the control of the PsaD promoter, were then introduced by 

electroporation into C. reinhardtii CC-124. The intracellular distribution of GPD2-mCherry and 

GPD1-mCherry was examined in the transgenic strains by laser scanning confocal microscopy. The 

fluorescent signal from GPD2-mCherry overlapped with that from chlorophyll fluorescence (Figures 

4 and S2), indicating that the recombinant protein is located predominantly in the chloroplast. In 

contrast, GPD1-mCherry appears to be localized throughout the cytosol and, possibly, also in the 

nucleus (Figures 4 and S2). Non-transgenic, wild type CC-124 was used as a negative control, to 

verify the absence of any background signal in the mCherry channel (Figures 4 and S2). This 

subcellular localization suggested that GPD2-like enzymes may synthesize G3P and/or glycerol in the 

chloroplast of core Chlorophytes. 

 

GPD2 and GPD3 are required for both triacylglycerol accumulation under nitrogen depletion 

and glycerol production under high salinity   

In order to assess the in vivo role of GPD2-like enzymes, expression of the closely related GPD2 and 

GPD3 genes was simultaneously suppressed by RNA interference (RNAi) in transgenic strains 

derived from Chlamydomonas CC-125. Several RNAi strains (Ri14, Ri16 and Ri18), with partial 

GPD2/GPD3 suppression, were used for the experimental analyses. The growth of these RNAi lines 

in nutrient replete medium under photoautotrophic conditions was very similar to that of the wild type 

(Figure S3). We also examined the relative abundance of the most prevalent membrane lipids: 

monogalactosyldiacylglycerol (MGDG), diacylglycerol-N,N,N-trimethylhomoserine (DGTS), 
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phosphatidylethanolamine (PE), phosphatidylglycerol (PG), digalactosyldiacylglycerol (DGDG), 

sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylinositol (PI). However, when cultured in 

standard minimal (HS) medium, no statistically significant differences were observed between the 

wild type and the RNAi strains in relative or total amounts of these membrane lipid classes (Figure 

S4a). For analyses under environmental stress conditions, CC-125 and the RNAi lines were pre-

cultured to middle logarithmic phase in HS medium. Cells were then harvested by centrifugation, 

resuspended in HS medium containing 100 mM NaCl (HS+Na) or in HS medium lacking nitrogen 

(HS-N) and cultured under photoautotrophic conditions during 6 hours for the high salinity 

experiment or during 2-3 days for the nitrogen deprivation analyses. 

Under nitrogen starvation Chlamydomonas cells halt cell division and channel excess carbon into 

storage compounds (Siaut et al., 2011; Msanne et al., 2012; Goodenough et al., 2014; Schmollinger et 

al., 2014). The primary product of CO2 fixation, 3-phosphoglycerate, can feed directly into starch 

synthesis or can be used for TAG synthesis, as a precursor of the glycerol backbone and of acetyl-

CoA for fatty acid production (Hu et al., 2008; Radakovits et al., 2010). Thus, the synthesis of starch 

and TAGs may compete with each other, although the relationship between these two metabolic 

pathways appears to be more complex than mere competition (Li et al., 2010; Work et al., 2010; Siaut 

et al., 2011; Krishnan et al., 2015). To evaluate neutral lipid accumulation during nitrogen starvation, 

Chlamydomonas cells were examined by fluorescence microscopy after staining with the nonpolar 

lipid fluorophore Nile Red. Lipid body formation, which normally increases substantially in nitrogen-

stressed C. reinhardtii (Siaut et al., 2011; Msanne et al., 2012; Goodenough et al., 2014), was reduced 

in the GPD2/GPD3 RNAi lines compared with the wild type (Figure S5). Consistent with this 

observation, TAG content, determined as fatty acid methyl esters analyzed by gas chromatography-

flame ionization detection, was significantly lower in Ri16 and Ri18 relative to CC-125 after two days 

of nitrogen deprivation (Figure 5a). Moreover, under these conditions, the cellular content of nearly 

all major membrane glycerolipids was also reduced in the GPD2/GPD3 RNAi strains (Figure S4b), 

although their relative levels (expressed in mol %) remained almost identical to those in the wild type 

(Figure S4a). 
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In addition, the RNAi strains showed somewhat enhanced accumulation of starch, compared with CC-

125, when subject to nitrogen depletion (Figure S6). Under nutrient stress conditions, the 

GPD2/GPD3 enzymes likely increase carbon flux toward membrane glycerolipid and TAG 

production (and reroute it from starch accumulation) by influencing the synthesis of the glycerol 

backbone. We also attempted to determine changes in glycerol content in the Chlamydomonas strains 

but this was difficult to assess because glycerol amounts were fairly low in cells grown 

photoautotrophically in minimal medium and decreased slightly in nitrogen-deprived cells, without 

any obvious difference among the wild type and the GPD2/GPD3 RNAi lines (Figure 5c). 

 

Salt stress has also been shown to induce TAG accumulation in C. reinhardtii under 

photoheterotrophic conditions (Siaut et al., 2011). Likewise, we observed a slight increase in TAG 

content in cells cultured in HS+Na under photoautotrophic conditions and, the same as under nitrogen 

deprivation, this increase was of somewhat lower magnitude in the GPD2/GPD3 RNAi strains 

(Figure 5b). In response to hyperosmotic stress, Chlamydomonas also synthesizes large amounts of 

glycerol as an osmoregulatory metabolite (Husic and Tolbert, 1986). However, the accumulation of 

glycerol triggered by exposure of cells to 100 mM NaCl was substantially diminished in the Ri16 and 

Ri18 RNAi strains relative to the wild type (Figure 5d). Thus, our overall results indicate that 

Chlamydomonas GPD2/GPD3 are mainly required for glycerol and/or membrane glycerolipid/TAG 

production under certain environmental stresses, but they appear to be dispensable in cells grown in 

nutrient replete medium. 

 

Few genes encoding enzymes of glycerol metabolism show altered expression in C. reinhardtii 

subject to nitrogen deprivation or salinity stress  

Production of glycerol-3-phosphate and glycerol under nitrogen starvation or hyperosmotic stress 

likely involves interconversions catalyzed by several enzymes (Wang et al., 2001; Oren, 2016) 

(Figures 6 and 7). Besides GPD2-like chimeric proteins, DHAP conversion to glycerol can be carried 
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out by two canonical enzymes, a standard GPD (like GPD1 or GPD5) and a glycerol-3-phosphate 

phosphatase (GPP) (Figure 7). Conversely, glycerol can be converted to G3P by a glycerol kinase 

(GK) and to DHAP by a glycerol 2-dehydrogenase and a dihydroxyacetone kinase (DAK) (Figure 7). 

In Dunaliella, several of these enzymes were proposed to constitute a glycerol cycle, involving 

specific pathways for glycerol synthesis and for glycerol removal during the osmoregulatory process 

(Ben-Amotz et al., 1982; Chen et al., 2012; Oren, 2016). Putative orthologs of these enzymes encoded 

in the C. reinhardtii genome were identified by homology searches, and their roles are indicated in 

Figure 7 (yellow box). However, the true Chlamydomonas ortholog of glycerol 2-dehydrogenase (i.e., 

dihydroxyacetone reductase) is difficult to determine based solely on sequence alignments and we 

chose to examine AKR3 (aldo/keto reductase 3) as the best match to a putative D. salina 

dihydroxyacetone reductase (ACL13982). Additionally, the intracellular compartmentalization of 

enzymes is expected to affect carbon flux and product generation. The subcellular location of several 

of these enzymes has been experimentally determined in C. reinhardtii (Terashima et al., 2011; 

Johnson and Alric, 2013; Polle et al., 2014; this work), whereas the location of others, as represented 

in Figure 7, has been inferred based on bioinformatic analyses (e.g., AKR3, DAK1, GK, GPP and 

GPD5).  

 

To assess whether genes encoding enzymes of glycerol metabolism may be transcriptionally activated 

in cells exposed to environmental stress, their transcript abundance, in wild type CC-125 and in the 

Ri16 GPD2/GPD3 RNAi strain, was examined by RT-PCR (Figure 6). As previously reported 

(Goodenough et al., 2014; Schmollinger et al., 2014; Casais-Molina et al., 2016), GPD2 mRNA 

levels were substantially enhanced in CC-125 under nitrogen deprivation or hyperosmotic stress. 

However, this up-regulation was largely suppressed in the Ri16 RNAi strain (Figure 6). All other 

examined genes showed comparable transcript abundance upon nitrogen depletion as in nutrient 

replete medium, in both CC-125 and Ri16. In contrast, in cells exposed to high salinity, both GPD2 

and GK appeared to be up-regulated in wild type CC-125. Of note, enhanced transcript abundance for 
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these genes was not detected in Ri16, even though only GPD2/GPD3 mRNAs are targeted for RNA 

interference by the introduced inverted repeat transgene (see Discussion). 

 

DISCUSSION 

The C. reinhardtii GPD2-like isoforms are chimeric proteins consisting of a phosphoserine 

phosphatase-like motif fused to canonical glycerol-3-phosphate dehydrogenase domains. Phylogenetic 

analyses indicated that putative orthologs of these multidomain polypeptides are unique to algae 

within the Chlorophyceae and Trebouxiophyceae classes of Chlorophytes. Canonical GPDs catalyze 

the reversible redox conversion of dihydroxyacetone phosphate to glycerol-3-phosphate and our 

observations substantiated that recombinant GPD2 has G3P dehydrogenase activity in vitro, as 

previously established by complementation of a S. cerevisiae gpd1Δgpd2Δ double mutant (Casais-

Molina et al., 2016). This reductase activity of GPD2 was not affected by mutations in its PSP 

domain. Moreover, two D. viridis GPD2 homologs with deleted PSP domains were still capable of 

reverting the high salt sensitivity of the S. cerevisiae gpd1Δ mutant (He et al., 2009), implying their 

competence to synthesize G3P. These collective results suggest that GPD2-like enzymes can catalyze 

the reduction of DHAP to G3P via their GPD domains and that this activity appears to be independent 

from the presence of a functional PSP motif. 

 

Homology modeling of the N-terminal region of GPD2 indicated a similar fold, and similar clustering 

of residues essential for catalysis, to the M. avium phosphoserine phosphatase. However, given the 

phylogenetic divergence of the GPD2 PSP domain from canonical phosphoserine phosphatases, we 

explored the possibility that it might dephosphorylate glycerol-3-phosphate. Indeed, in in vitro 

reactions, recombinant GPD2 yielded inorganic orthophosphate and glycerol when using G3P as the 

substrate. However, this activity was eliminated by mutations in the GPD2 DVDCT motif. The 

reaction mechanism of phosphoserine phosphatases, members of the HAD-like superfamily, involves 

a conserved DXDX(T/V) motif where the first aspartate functions as a nucleophilic residue for 
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catalysis (Collet et al., 1998; Peeraer et al., 2004; Larrouy-Maumus et al., 2014). Substitution of 

asparagines for the first aspartate (D93N) or both aspartates (D93N and D95N) in the DVDCT motif 

of GPD2 abolished its phosphatase activity towards G3P. Equivalent mutations in human L-3-

phosphoserine phosphatase resulted in complete inactivation of the enzyme (Collet et al., 1998), 

supporting a similar catalytic mechanism for the PSP domain of GPD2. 

 

Land plants such as Arabidopsis thaliana encode two low-molecular-weight, typical G3P 

phosphatases (Caparrós-Martin et al., 2007). Subcellular fractionation revealed that AtGPP1 is 

located in plastids, consistent with it having a predicted chloroplast transit peptide, whereas AtGPP2 

is found in the cytosol (Caparrós-Martin et al., 2007). In contrast, green algae of the Chlorophyceae 

and Trebouxiophyceae classes appear to encode a single GPP in their genomes, more closely related 

to the cytosolic form from A. thaliana. Thus, it is tempting to speculate that these algae may have lost 

during evolution the chloroplast targeted canonical GPP and that this activity may have been replaced 

by the divergent PSP domain of the GPD2-like enzymes. 

 

The Chlamydomonas GPD2 protein can catalyze in vitro the two step conversion of DHAP to glycerol 

[in the presence of NAD(P)H]. These results and the GPD2 plastid localization suggested that PSP-

GPD multidomain enzymes may synthesize G3P and/or glycerol within the chloroplast in core 

Chlorophytes (Figure 7). Consistent with our observations, partial protein purification and 

biochemical studies in D. tertiolecta had also implicated a chloroplastic GPD isoform, which seemed 

to form a tight complex with a G3P phosphatase activity, in the osmoregulatory synthesis of glycerol 

(Goyal, 2007; Chen and Jiang, 2009). In Chlamydomonas, suppression of GPD2/GPD3 expression by 

RNAi showed that the chimeric enzymes are required for membrane glycerolipid and TAG production 

under nitrogen deprivation as well as for glycerol accumulation under high salinity. GPD2-like 

enzymes may play a key role in algal responses to these environmental stresses by enhancing carbon 

flux toward membrane lipids/TAG and/or glycerol synthesis (and diverting it from starch production) 
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(Figure 7). As already mentioned, G3P is the precursor for the backbone of glycerolipids, with TAGs 

accumulating as carbon and energy reserves under nutrient deprivation (Hu et al., 2008; Radakovits et 

al., 2010; Msanne et al., 2012; Johnson and Alric, 2013; Morales-Sánchez et al., 2013; Zienkiewicz et 

al., 2016). On the other hand, glycerol is involved in algal acclimation to high salinity as osmotic 

stabilizer and compatible solute that allows maintenance of enzyme activities under conditions of low 

water activity (Ben-Amotz and Avron, 1973; Ben-Amotz et al., 1982; Goshal et al., 2002; Goyal, 

2007; Chen and Jiang, 2009; Chen et al., 2011; Oren, 2016). 

 

An important, possibly a controlling role of GPD2-like enzymes in lipid and glycerol metabolism in 

C. reinhardtii under environmental stress is also suggested by the significant up-regulation of the 

corresponding genes under both nitrogen deprivation and hyperosmotic stress (Goodenough et al., 

2014; Schmollinger et al., 2014; Casais-Molina et al., 2016; this work). However, there are also 

obvious differences between these two conditions when considering the regulation of other genes 

encoding enzymes of glycerol metabolism. Under high salinity, we observed increased transcript 

abundance for GPD2, conceivably involved in direct glycerol synthesis from DHAP, but also for GK, 

conceivably involved in glycerol removal (via glycerolipid synthesis and/or the 

glycolytic/gluconeogenic pathway). As proposed before, algal cells may modulate the internal 

glycerol concentration for osmoregulatory purposes by the coordinated action of antagonistic enzymes 

involved in either glycerol synthesis or glycerol catabolism (Ben-Amotz et al., 1982; Chen et al., 

2012). Intriguingly, GK gene expression might be regulated by sensing metabolite (possibly glycerol) 

levels since its up-regulation was minimized in the GPD2/GPD3 RNAi strains with reduced 

accumulation of glycerol under high salinity. 

 

In contrast, under nitrogen deprivation, most genes involved in glycerol metabolism did not change 

expression and a significant increase in transcript abundance appeared to be limited to GPD2. 

Moreover, GPD2-like enzymes may synthesize predominantly G3P under these conditions (as well as 
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in nutrient replete medium) since the generation of intraplastidic G3P (barring its import from the 

cytosol) would be required for the synthesis of plastid glycerolipids. Chlamydomonas GPD1 and 

GPD5, based on the protein sequences predicted by Phytozome v11.0 gene models, do not localize to 

organelles and the PSP-GPD fusion polypeptides may be the only enzymes capable of catalyzing G3P 

formation inside the chloroplast (possibly constitutively expressed GPD4 in nutrient replete medium 

and primarily up-regulated GPD2/GPD3 under nitrogen depletion, explaining the reduction in plastid 

glycerolipid abundance in the nitrogen deprived Ri16 RNAi strain). However, a potential role of 

GPD1 in this metabolic pathway cannot be ruled out (Figure 7) since its transcript may be translated 

from an alternative start codon resulting in a longer protein capable of localizing to organelles (Table 

S1, GPD1_pasa). 

 

There is extensive evidence suggesting post-translational modulation of enzymes involved in glycerol 

metabolism in diverse organisms. In C. reinhardtii under salt stress, substantial changes in metabolite 

levels preceded adjustments in enzyme abundance (Mastrobuoni et al., 2012). In S. cerevisiae the two 

homologous glycerol-3-phosphate dehydrogenases, Gpd1 and Gpd2, are negatively regulated post-

translationally through phosphorylation (Lee et al., 2012). Conversely, in the case of the Phycomyces 

blakesleeanus G3P phosphatase, it has been proposed that phosphorylation causes its activation (Van 

Schaftingen and Van Laere, 1985). Protein phosphorylation has also been implicated in the response 

of D. viridis to hypertonic shock (Jiménez et al., 2004). Additionally, in D. salina, de novo protein 

synthesis was not required for the osmotic response and the considerable increase in glycerol content 

triggered by high salinity (Sadka et al., 1989). Thus, it seems possible that key enzymes of glycerol 

metabolism are largely controlled by post-translational modifications/mechanisms and that 

transcriptional up-regulation under stress conditions simply reinforces enzymatic capacity. 

In Chlamydomonas under nitrogen starvation GPD2-like proteins may function predominantly as 

reductases, synthesizing G3P, which can be used in the chloroplast for glycerolipid synthesis and/or 

exported to the cytosol for membrane lipid/TAG assembly in the endoplasmic reticulum. For 
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glycerolipid synthesis, this reaction would be energetically favored over the generation of glycerol as 

the end product. Moreover, the capacity of isolated Chlamydomonas chloroplasts to synthesize and 

export G3P, as a product of starch degradation, has been previously demonstrated (Klöck and 

Kreuzberg, 1987). In contrast, under hyperosmotic stress, activation (or de-repression) of the PSP 

domain of GPD2-like proteins may lead to the rapid synthesis of intraplastidic glycerol, which may 

then translocate to the cytosol for osmoregulatory purposes. Supporting this hypothesis, an 

experiment mentioned by Wegmann (1986) indicated that isolated Dunaliella chloroplasts can 

perform glycerol synthesis. 

 

In summary, GPD2-like proteins are chimeric PSP-GPD enzymes with both G3P dehydrogenase and 

G3P phosphatase activities. Their chloroplast localization implies the existence of a plastid pathway 

for rapid glycerol synthesis, which appears to be triggered in response to hyperosmotic stress in algae 

of the core Chlorophytes. We propose that the reductase and phosphatase activities of these 

multidomain proteins may be regulated independently by post-translational 

modifications/mechanisms, allowing them to synthesize primarily G3P or glycerol depending on 

environmental conditions and/or metabolic demands. However, further work will be necessary to 

assess the validity of this hypothesis. 

 

EXPERIMENTAL PROCEDURES 

Strains and culture conditions  

C. reinhardtii CC-124 and CC-125 (Harris, 1989) as well as derived transgenic strains (described 

below) were used in all reported experiments. Unless noted otherwise, cultures were incubated under 

continuous illumination on an orbital shaker at 25 ºC and ambient level of CO2 (Msanne et al., 2012). 

For subcellular localization experiments, CC-124 and derived transgenic strains were grown in Tris-

Acetate-Phosphate (TAP) medium (Harris, 1989) to the middle of the logarithmic phase. For other 
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experiments, CC-125 and derived RNAi strains were pre-cultured to middle logarithmic phase in 

minimal (HS) medium (Sueoka, 1960). Cells were collected by centrifugation, washed twice, and 

resuspended in HS medium, HS medium lacking nitrogen (HS-N) or HS medium containing 100 mM 

NaCl (HS+Na) at a density of ~2 x 106 cells mL-1. Strains were then cultured under strictly 

photoautotrophic conditions during 6 hours for the high salinity experiment or during 2-3 days for the 

nitrogen deprivation analyses. At the end of the experimental period, cells were harvested by 

centrifugation at 2000xg for 5 minutes and the pellets frozen in liquid nitrogen and stored at -70 ºC for 

further analyses. 

 

Phylogenetic and bioinformatic analyses 

GPD and PSP related sequences were identified by BLASTP searches against GenBank, Phytozome 

v11.0 (https://phytozome.jgi.doe.gov/pz/portal.html) and Uniprot, using as queries the 

Chlamydomonas GPD2 (Cre01.g053000) PSP or GPD domains, or the whole sequences of GPD1 

(Cre12.g511150) or PSP1 (Cre04.g217955). Protein sequences were aligned by Clustal-omega (Pedro 

et al., 2016), and maximum-likelihood phylogenetic trees were built using PhyML (Guindon and 

Gascuel, 2003). Most phylogenetic analyses were done with prebuilt scripts in the ETE3 toolkit 

(Huerta-Cepas et al., 2016). Independent phylogenetic trees were constructed with the PSP or the 

GPD domain sequences and accession numbers are indicated in the corresponding figures. Homology 

modeling of the three dimensional structure of GPD2 was performed by using the Phyre2 web portal 

(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index). 

Generation of full-length GPD1, GPD2, GPD2-NV2Mut and GPD2-NVN3Mut coding sequences 

for recombinant protein production 

Total RNA isolated from nitrogen deprived CC-124 was used as template for cDNA synthesis by 

reverse transcription, as previously described (Carninci et al., 1998). For GPD1, the full-length GPD1 

CDS was amplified by PCR with primers GPD1-F/GPD1-R (Methods S1). This PCR product was 

cloned into the vector pIVEX 1.3 WG (5 Prime). For GPD2, the coding sequence was obtained by the 
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independent amplification of three partially overlapping PCR products, which were then assembled 

into a full-length fragment to generate the pIVEX-GPD2 construct (Methods S1). Modified versions 

of the GPD2 CDS, namely GPD2-NV2Mut and GPD2-NVN3Mut, were obtained by site-directed 

mutagenesis. Plasmid pIVEX-GPD2 was used as the template for the generation of the mutants with 

the QuikChange II-E site-directed mutagenesis kit (Agilent Technologies) as described in Methods 

S1. 

 

Synthesis of recombinant proteins and in vitro enzymatic assays 

GPD1, GPD2, GPD2-NV2Mut and GPD2-NVN3Mut proteins were produced from the pIVEX 1.3 

WG vector constructs by in vitro transcription/translation in a continuous-exchange cell-free wheat 

germ system (Biotechrabbit), in accordance with the manufacturer’s instructions. Phosphatase activity 

was analyzed following Gancedo et al. (1968), with some minor modifications (Methods S1). 

Glycerol production was monitored by using the free glycerol reagent (Sigma-Aldrich), following the 

manufacturer’s directions. Glycerol-3-phosphate dehydrogenase activity was examined according to 

the protocols of Vigeolas et al. (2007) and Casais-Molina et al. (2016), as described in Methods S1. 

The amount and size of the recombinant proteins produced in the cell-free wheat germ system were 

checked by immunoblotting (Figure S7 and Method S1), as previously reported (van Dijk et al., 

2005). 

 

Construction of GPD2-mCherry and GPD1-mCherry fusions, generation of transgenic strains, 

and confocal fluorescence microscopy 

The GPD2 and GPD1 coding sequences were amplified by RT-PCR using as template total RNA 

isolated from nitrogen deprived CC-124. The GPD2 5' end CDS, comprising a putative chloroplast 

transit peptide and the PSP domain, was obtained using primers GPD2-mCherry-F/GPD2-mCherry-R, 

whereas the full-length GPD1 CDS was amplified with primers GPD1-mCherry-F/GPD1-mCherry-R 
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(Methods S1). The PCR fragments were inserted into the pQU vector, to generate a translational 

fusion with the mCherry CDS expressed from the PsaD promoter. This plasmid also contains the Bler 

gene for zeocin resistance (Plucinak et al., 2015). The transgenes were transformed into CC-124 by 

electroporation, as previously described (Plucinak et al., 2015), and colonies selected on TAP-agar 

plates containing 16 μg mL-1 zeocin. To examine the subcellular localization of the fusion proteins, 

images of Chlamydomonas cells were captured using a Nikon A1 confocal imaging system mounted 

on a Nikon Eclipse 90i microscope with a 100x objective. mCherry and chlorophyll fluorescence 

signals were acquired sequentially with 561.5 nm excitation and 570-620 emission and 641 nm 

excitation and 662-737 emission, respectively, and pseudo-colored green and red for visualization. 

 

Generation of GPD2/GPD3 RNAi transgenic strains 

Chlamydomonas strains containing an inverted repeat (IR) transgene homologous to GPD2 and GPD3 

were obtained as described under Methods S1, following established protocols (Rohr et al., 2004; 

Kim and Cerutti, 2009). The MAA7/GPD2 tandem IR transgene can induce co-silencing of GPD2 and 

GPD3 as well as of MAA7 (encoding tryptophan synthase β subunit), conferring resistance to 5-

fluoroindole to transformed cells (Rohr et al., 2004; Kim and Cerutti, 2009). This construct was stably 

introduced into CC-125 as previously described (Rohr et al., 2004).  

 

Lipid analyses, starch determination and glycerol quantification 

Total lipids from C. reinhardtii were extracted by the method of Bligh and Dyer (1959), with some 

modifications (Methods S1), and fatty acid methyl esters (FAMEs) from TAGs or membrane lipids 

identified and quantified as previously described (Msanne et al., 2012; Tsai et al., 2015). Starch 

measurements were performed according to the protocol already described by Ball et al. (1990), using 

an ethanol-washed chlorophyll-free cell pellet (Methods S1). Glycerol content was determined with 

the free glycerol reagent (Sigma-Aldrich). 
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Reverse transcriptase (RT)-PCR assays 

Reverse transcription reactions from total cell RNA were performed as previously described (Carninci 

et al., 1998). The synthesized cDNA was then used as the template for standard or real time PCR 

reactions (Sambrook and Russell, 2001). Primers and PCR conditions are described in Methods S1. 
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SHORT SUPPORTING INFORMATION LEGENDS 

Additional supporting information may be found in the online version of this article. 

 

Figure S1. Homology modeling of the three-dimensional structure of the GPD2 HAD-like domain 

and its catalytic site. 

Figure S2. Subcellular localization of Chlamydomonas GPD1 and GPD2. 

Figure S3. Growth of wild type CC-125 and GPD2/GPD3 RNAi strains (Ri16 and Ri18) under 

photoautotrophic conditions in nutrient replete minimal medium (HS). 

Figure S4. Analysis of major membrane lipids in the wild type CC-125 and the GPD2/GPD3 RNAi 

strain Ri16 grown under photoautotrophic conditions in nutrient replete minimal medium (+N) or in 

HS medium lacking nitrogen (-N). 
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Figure S5. Nonpolar lipid accumulation in wild type C. reinhardtii CC-125 and GPD2/GPD3 RNAi 

strains (Ri16 and Ri18) subject to nitrogen deprivation. 

Figure S6. Starch accumulation in wild type C. reinhardtii CC-125 and GPD2/GPD3 RNAi strains 

(Ri14 and Ri16) subject to nitrogen deprivation. 

Figure S7. Immunoblot analysis of recombinant proteins produced by in vitro 

transcription/translation in a continuous-exchange cell-free wheat germ system. 

Table S1. Prediction results of protein subcellular localization according to ChloroP and PredAlgo. 

Methods S1. Supporting experimental procedures. 
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FIGURE LEGENDS 

Figure 1. Glycerol-3-phosphate dehydrogenases (GPDs) encoded in the C. reinhardtii genome. (a) 

Schematic representation of the Chlamydomonas GPD homologs. Color bars indicate conserved 

protein domains. The length of each protein, in amino acids, is indicated by the numbers at the end. 

For GPD3, gene model ova_au5.g2013_t1 was used in all analyses. For other proteins, Phytozome 

v11.0 gene models were used in the analyses. (b) Maximum-likelihood phylogenetic tree based on the 

alignment of the canonical GPD domains of protein sequences from C. reinhardtii (bold), green algae 

(green branches) and several eukaryotes and prokaryotes. Numbers on branches indicate the 

percentage of 1,000 bootstrap replications supporting a particular node. Abbreviations: Ath, 

Arabidopsis thaliana; Bpr, Bathycoccus prasinos; Cel, Caenorhabditis elegans; Cme, 

Cyanidioschyzon merolae; Cre, Chlamydomonas reinhardtii; Cso, Chlorella sorokiniana; Csu, 

Coccomyxa subellipsoidea; Cva, Chlorella variabilis; Dfr, Desulfovibrio frigidus; Dhy, Desulfovibrio 

hydrothermalis; Dme, Drosophila melanogaster; Dre, Danio rerio; Dsa, Dunaliella salina; Dvi, 

Dunaliella viridis; Dzo, Desulfovibrio zosterae; Eco, Escherichia coli; Ehu, Emiliania huxleyi; Gel, 
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Geopsychrobacter electrodiphilus; Hoc, Haliangium ochraceum; Hsa, Homo sapiens; Mko, 

Methylomonas koyamae; Mma, Maricaulis marinus; Mtu, Methylobacter tundripaludum; Mva, 

Methylomarinum vadi; Ncr, Neurospora crassa; Olu, Ostreococcus lucimarinus; Ota, Ostreococcus 

tauri; Pae, Pseudomonas aeruginosa; Pca, Pelobacter carbinolicus; Ppa, Physcomitrella patents; Ppr, 

Pelobacter propionicus; Pso, Phytophthora sojae; Ptr, Phaeodactylum tricornutum; Pul, Pythium 

ultimum; Sce, Saccharomyces cerevisiae; Smi, Scytonema millei; Tin, Thermodesulfatator indicus; 

Tps, Thalassiosira pseudonana; Vca, Volvox carteri. (c) Maximum-likelihood phylogenetic tree based 

on the alignment of the HAD-like domains of GPD2-like and PSP protein sequences from C. 

reinhardtii (bold), green algae (green branches) and several eukaryotes and prokaryotes. (d) Multiple 

sequence alignment of HAD-like domains. The first column indicates the protein and species names. 

GPD2, GPD3 and GPD4, C. reinhardtii GPDs; GPD_Dun, Dunaliella salina GPD; GPD_Chlo, 

Chlorella variabilis GPD; PSP_Myc, Mycobacterium avium phosphoserine phosphatase; PSP_Meth: 

Methanococcus jannaschii phosphoserine phosphatase. Numbers indicate the amino acid residues to 

the N-terminal end of each protein and numbers in parentheses indicate the amino acid residues in 

gaps between the aligned segments. The highlighted amino acids are conserved in the HAD 

superfamily (Peeraer et al., 2004). 

Figure 2. Enzymatic activities of Chlamydomonas GPD1 and GPD2. Recombinant proteins of the 

wild type GPD2 isoform, two mutant versions with substitutions in the PSP domain (GPD2-NV2Mut 

and GPD2-NVN3Mut) and canonical GPD1 were produced by in vitro transcription/translation in a 

continuous-exchange cell-free wheat germ system. An aliquot of the wheat germ lysate (WGL), 

supplied with an empty vector, was used as a negative control. Values shown are the mean ± SD of 

three independent experiments. (a) Glycerol-3-phosphate dehydrogenase activity of the recombinant 

proteins determined as oxidation of NADH. (b) Phosphatase activity of the recombinant proteins 

when using G3P as the substrate. (c) Phosphatase activity of the recombinant proteins when using 

DHAP and NADPH as the substrates. (d) Phosphatase activity of the recombinant proteins when 

using DHAP and NADH as the substrates. (e) Effect of the absence of NADH, in reactions containing 

DHAP, on the phosphatase activity of the recombinant proteins. 
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Figure 3. Glycerol production by recombinant GPD2 in vitro. Recombinant proteins were produced 

as indicated in the legend to Figure 2. An aliquot of the wheat germ lysate (WGL), programmed with 

an empty vector, was used as a negative control. Values shown are the mean ± SD of three 

independent experiments. (a) Glycerol production by the recombinant proteins when using G3P as the 

substrate. (b) Glycerol production by the recombinant proteins when using DHAP and NADPH as the 

substrates. (c) Glycerol production by the recombinant proteins when using DHAP and NADH as the 

substrates. (d) Effect of the absence of NADH, in reactions containing DHAP, on the production of 

glycerol by the recombinant proteins. 

 

Figure 4. Subcellular localization of Chlamydomonas GPD1 and GPD2. Recombinant GPD2 or 

GPD1 polypeptides, with the fluorescent protein mCherry fused at their carboxyl ends, were 

expressed under the control of the PsaD promoter in transgenic strains derived from CC-124. 

Representative images of transgenic and wild type cells, acquired by laser scanning confocal 

microscopy, are shown. Chlorophyll autofluorescence is shown in red and mCherry fluorescence is 

shown in green. Wild type CC-124 was used to verify the absence of any background signal in the 

mCherry channel. 

Figure 5. Triacylglycerol (TAG) and glycerol content in wild type CC-125 and GPD2/GPD3 RNAi 

strains (Ri16 and Ri18) subject to nitrogen deprivation or high salinity. Expression of the GPD2 and 

GPD3 genes was simultaneously suppressed by RNAi in transgenic strains derived from 

Chlamydomonas CC-125. For nutrient deprivation experiments, cells were incubated for two days in 

HS medium, either nutrient replete (+N) or nitrogen depleted (-N) [(a) and (c)]. For high salinity 

experiments, cells were incubated for 6 hours in standard HS medium (0 mM NaCl) or in medium 

supplemented with NaCl (100 mM NaCl) [(b) and (d)]. Values indicate the mean ± SD of three 

independent experiments. Different lowercase letters indicate a significant difference among means 

(one way ANOVA with post-hoc Tukey HSD test, P<0.01). (a) - (b) Total fatty acids (FAMEs) in 

triacylglycerols. (c) - (d) Total glycerol content. 
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Figure 6. Expression of genes encoding enzymes of glycerol metabolism in wild type CC-125 and 

GPD2/GPD3 RNAi strain Ri16 subject to hyperosmotic stress (+Na) or nitrogen deprivation (-N). 

Cells were cultured as indicated in the legend to Figure 5. In addition to GPD2 and GPD4, examined 

genes included GLYCEROL KINASE (GK), ALDO/KETO REDUCTASE 3 (AKR3, encoding a putative 

glycerol 2-dehydrogenase), DIHYDROXYACETONE KINASE 1 (DAK1) and GLYCEROL-3-

PHOSPHATE PHOSPHATASE (GPP). Amplification of transcripts from ACT1 (encoding actin) was 

used as a control for normalization purposes. (a) Relative transcript abundance analyzed by 

quantitative RT-PCR. Values shown, normalized to those in CC-125 grown in standard HS medium, 

are the mean ± SD of three independent experiments. Samples indicated with an asterisk are 

significantly different from the control (P<0.01) in a two tailed Student's t test. (b) Transcript 

abundance was examined by semi-quantitative RT-PCR. The panels show representative reverse 

images of agarose resolved RT-PCR products stained with ethidium bromide.  

 

Figure 7. Glycerol metabolism (yellow box) in Chlamydomonas reinhardtii, reconstructed on the 

basis of the annotated genome, and connections to starch and triacylglycerol synthesis. The lower part 

of glycolysis appears to occur exclusively in the cytosol in C. reinhardtii (Terashima et al., 2011; 

Johnson and Alric, 2013; Polle et al., 2014). Metabolites: 2PGA, 2-phosphoglycerate; 3PGA, 3-

phosphoglycerate; DHA, dihydroxyacetone; DHAP, dihydroxyacetone phosphate; FFA, free fatty 

acid; G1P, glucose-1-phosphate; G3P, glycerol-3-phosphate; GAP, glyceraldehyde-3-phosphate; Gly, 

glycerol; PEP, phosphoenolpyruvate; Pyr, pyruvate. Enzymes: AGPase, ADP glucose 

pyrophosphorylase; AKR3, aldo/keto reductase 3 (putative glycerol 2-dehydrogenase); DAK1, 

dihydroxyacetone kinase 1; ENO, enolase; FAT, fatty acyl-ACP thioesterase; GK, glycerol kinase; 

GPD1/2/3/4/5, NAD(P)+-dependent glycerol-3-phosphate dehydrogenases; GPP, glycerol-3-

phosphate phosphatase; LACS, long-chain acyl-CoA synthetase; PDC, pyruvate dehydrogenase 

complex; PYK, pyruvate kinase. The abbreviations for enzymes are written in red. Additional 

abbreviations: ACP, acyl carrier protein; CoA, coenzyme A; ER, endoplasmic reticulum.  
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