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Wind power is one of the world's fastest-growing renewable energy resources and has 

expanded quickly within the US electric grid.  Currently, wind power producers (WPPs) 

may sell energy products in US markets but are not allowed to sell reserve products, due 

to the uncertain and intermittent nature of wind power.  However, as wind’s share of the 

power supply grows, it may eventually be necessary for WPPs to contribute to system-

wide reserves.  This paper proposes a stochastic optimization model to determine the 

optimal offer strategy for a WPP that participates in the day-ahead and real-time energy 

and spinning reserve markets.  The objective function maximizes the WPP’s total 

expected profit while minimizing risk by allowing the WPP to split its offers between the 

energy market and the spinning reserve market, which has lower penalties for failing to 

deliver the cleared day-ahead offer.  Risk is considered through the Conditional Value at 

Risk metric and several risk aversion levels are studied.  Case study results show that the 

proposed offer strategy increases expected profit and decreases risk compared to the case 

where the WPP only participates in the energy market.
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CHAPTER 1: INTRODUCTION 

 

Wind power is one of the world's fastest growing renewable energy resources, with 

installed wind capacity reaching 743 GW worldwide by the end of 2020 [1].  The world's 

two largest wind markets, China and the U.S., together accounted for 75% of new wind 

capacity installed during 2019.  Despite its rapid integration into the global energy supply, 

wind resources are still unable to provide reserve products due to high forecast 

uncertainty.  As wind power’s share of the global energy supply increases, though, wind 

power producers (WPPs) may replace conventional generators and will need to provide 

spinning and regulation reserves. 

One method of offsetting wind forecast uncertainty is for WPPs to purchase reserves 

for themselves in the day-ahead (DA) market.  Approaches for reserve scheduling include 

game theory, machine learning, and analytical solutions.  For example, reference [2] 

proposed a bilateral reserve market, in which WPPs purchase reserve power from 

conventional generators using game theory.  Deep reinforcement learning was used to find 

the optimal quantity of reserves to purchase given the forecast uncertainty in [3], while 

analytical solutions for the quantity of reserve power a WPP should purchase were derived 

in [4].  WPPs may also address power production uncertainty by participating directly in 

the balancing market [5].  However, since real-time (RT) electricity prices tend to be 

higher than DA prices, purchasing reserves in the RT market may decrease profit 

compared to the case where the WPP schedules its own reserves.  Lastly, WPPs may self-

schedule reserves by using a storage system to curtail power for later use [6]. 
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Allowing WPPs to participate in both the DA and reserve markets can increase overall 

system security and decrease total balancing reserve requirements [7].  Other work has 

shown that wind power is suitable for providing regulation reserves, and has studied 

market structures that will encourage WPPs to participate in both the energy and 

regulation markets [7]-[8].  In [7], probabilistic wind power forecasts were used to 

determine optimal DA energy and regulation offers.  Results showed that imposing lower 

penalties for deviations in the regulation market than in the energy market encouraged 

WPPs to submit offers to both.  The authors of [8] considered a WPP in the California 

Independent System Operator (CAISO) market that submits offers to energy and 

regulation markets.  Results showed that the WPP was willing to offer regulation reserves 

under a similar penalty structure.  Additionally, WPPs may indirectly participate in 

regulation markets by using electrical vehicle batteries to curtail wind power, then selling 

the curtailed power in the RT regulation market [9]-[10]. 

WPPs may also participate directly in the spinning reserve market [11]-[13]. Two 

strategies for offering power in the energy and spinning reserve markets are proposed in 

[11]: a proportional control strategy, in which the WPP always offers a fixed fraction of its 

total power output in the reserve market; and a constant control strategy, in which the 

WPP offers a fixed amount of power in the reserve market only after reaching a minimum 

threshold of total power production.  Under the proportional control strategy, revenue is 

maximized when the WPP participates fully in either the energy or reserve market; while 

under the constant control strategy, the optimal bids in each market are given by wind 

power quantiles that depend on the relationship between the DA/RT energy and reserve 
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prices.  Case studies showed that both strategies increased profit compared to participating 

in only the energy market, but risk was not considered.  In [12] the proportional control 

strategy was implemented using stochastic programming to show that a WPP can 

successfully provide spinning reserves for a small, islanded power system.  Finally, [13] 

evaluated the proportional control strategy using stochastic optimization.  The authors 

assumed that the WPP could change its offers to each market between the DA and 

balancing stages, similar to participating in a European adjustment market.  Although 

revenue increased, results showed that the share of power offered the DA/balancing 

markets sometimes changed significantly between the DA and balancing stages, which 

could lead to imbalances in systems with high levels of wind power penetration. 

This thesis proposes a stochastic optimization model to find the optimal offer strategy 

for a price-taker WPP who participates in the DA and RT energy and spinning reserve 

markets. Uncertainty in DA and RT locational marginal prices (LMPs) for energy 

products, DA/RT market clearing prices (MCPs) for reserve products, and wind power 

production is considered via scenario generation and reduction.  The quantities of power 

offered to the energy and spinning reserve markets in the DA stage are modeled as 

stochastic decision variables.  The proposed model generates stepwise offer curves for 

energy and spinning reserves, along with the optimal offers in the RT energy and spinning 

reserve markets.  A case study compares the results of the proposed bidding strategy to the 

case where the WPP only participates in the energy market.  Results show that the 

proposed model decreases risk while increasing profit for comparable levels of risk-

aversion. 
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 Compared to previous work, this thesis proposes a new method of allowing WPPs 

to participate directly in the spinning reserve market through stepwise offer curves.  Other 

contributions include a novel method of determining the optimal fraction of power to offer 

to the energy and spinning reserve markets, and a model formulation that allows the WPP 

to offer excess power in RT to either the energy or spinning reserve market.  The proposed 

model is beneficial from the WPP’s perspective, by allowing the WPP to increase profit 

and decrease risk.  The model is also beneficial from the system operator’s perspective, 

since it encourages WPPs to provide spinning reserves to hedge against uncertainty, 

increasing the total amount of system reserves. 

The rest of this thesis is organized as follows: Chapter 2 describes the structure of US 

electricity markets.  Chapter 3 provides the mathematical formulation of the proposed 

model.  Chapter 4 uses a case study to compare the proposed model to the standard case in 

which the WPP only participates in the energy market, and chapter 5 discusses the 

conclusions of the thesis. 
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CHAPTER 2: ELECTRICITY MARKET STRUCTURE 

Competitive bidding in US markets takes place during two stages.  The first stage is 

the day-ahead (DA) stage, which takes place 12-36 hours before scheduled power 

delivery.  The second is the real-time (RT) bidding stage, which takes place 5-15 minutes 

before delivery.  During the DA stage, generators submit offer curves consisting of 

forecasted DA LMPs, and the power production they are willing to offer at each LMP, to 

the system operator.  The system operator clears the offers by balancing the expected 

system demand and generation.  The system operator then returns the cleared offers, or 

expected hourly power production, to each generator.  Generators are paid for their power 

production up to the cleared DA offer at the DA market price.  If the RT power 

production is less than the cleared DA offer (defined as a negative deviation), the 

generator must purchase the difference in the RT market at the RT LMP.  Similarly, if the 

RT power production is more than the cleared DA offer (positive deviation), the generator 

may attempt to its excess generation in the RT market, at the RT LMP. 

This thesis adopts the US market structure described above.  We assume that the WPP 

is a price-taker, i.e., its offers do not affect the market prices.  The WPP submits stepwise 

offer curves to the energy and spinning reserve markets, and it is assumed that market 

participants may offer energy and reserves products during the same hour.  This is 

standard practice in US markets.  The ISO co-optimizes the DA energy and reserve offers 

from all market participants to determine each participant’s cleared offer in the energy 

and reserve markets [14].  The WPP is treated as a conventional power producer, and is 

therefore subject to penalties if it fails to deliver the entire cleared DA energy/spinning 
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reserve offer in RT.  If the WPP defaults on a cleared DA offer (negative deviation), it 

must purchase energy in the corresponding RT market to fulfill its obligation.  However, 

if the WPP’s RT power output is higher than the cleared offer (positive deviation), it may 

sell the excess power in the RT market. 

It is assumed that the WPP may re-offer positive deviations from its cleared DA 

energy or spinning reserve offer in either the RT energy or spinning reserve market.  The 

WPP may also forego making an offer in the DA stage, and instead offer all power in the 

RT market.  In addition, the WPP cannot change the fraction of its total power output 

offered to each market between the DA offer stage and RT balancing stage.  This ensures 

that, if the WPP fails to deliver its entire cleared energy or spinning reserve offer, it 

cannot decrease the corresponding power fraction in RT to avoid incurring a penalty.  

Finally, it is assumed that the WPP is paid for its spinning reserve capacity regardless of 

whether the reserves are deployed.  This reflects current market practices, and further 

incentivizes the WPP to provide spinning reserves as a means of hedging against risk 

[14]. 
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CHAPTER 3: MODEL FORMULATION 

The variables and parameters of the objective function and constraints are defined 

below: 

 

A. Indices and Sets: 

𝑡 Index for time periods, running from 1 to T 

𝜔, 𝜔′ Indices for scenarios, running from 1 to Ω 

 

B. Decision Variables: 

𝑃𝜔𝑡
𝐷𝐴,𝐸

 Wind power offered in the day-ahead (DA) energy market for scenario 𝜔 at time 𝑡 

𝑃𝜔𝑡
𝐷𝐴,𝑆

 Wind power offered in the DA spinning reserve market for scenario 𝜔 at time 𝑡 

𝑔𝜔𝑡 Fraction of total forecasted power production offered to the energy market in the 

DA stage 

ℎ𝜔𝑡 Fraction of total forecasted power production offered to the spinning reserve market 

in the DA stage 

∆𝜔𝑡
𝐸1,+

 Positive real-time (RT) deviation from the DA energy offer, re-offered to the RT 

energy market, or RT energy offer 
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∆𝜔𝑡
𝐸2,+

 Positive RT deviation from the DA energy offer, re-offered to the RT spinning 

reserve market, or RT spinning reserve offer 

∆𝜔𝑡
𝐸,−

 Negative RT deviation from the DA energy offer 

∆𝜔𝑡
𝑆1,+

 Positive RT deviation from the DA spinning reserve offer, re-offered to the RT 

energy market, or RT energy offer 

∆𝜔𝑡
𝑆2,+

 Positive RT deviation from the DA spinning reserve offer, re-offered to the RT 

spinning reserve market, or RT spinning reserve offer 

∆𝜔𝑡
𝑆,−

 Negative RT deviation from the DA spinning reserve offer 

𝜂𝜔𝑡 Auxiliary variable used to compute the Conditional Value at Risk (CVaR) 

𝜑𝜔𝑡 Auxiliary variable used to compute the CVaR 

 

C. Random Variables: 

𝜆𝜔𝑡
𝐷𝐴,𝐸

 DA LMP of energy for scenario 𝜔 at time 𝑡 

𝜆𝜔𝑡
𝐷𝐴,𝑆

 DA MCP of spinning reserves for scenario 𝜔 at time 𝑡 

𝜆𝜔𝑡
𝑅𝑇,𝐸

 RT LMP for scenario 𝜔 at time 𝑡 

𝜆𝜔𝑡
𝑅𝑇,𝑆

 RT MCP for scenario 𝜔 at time 𝑡 

𝑃𝜔𝑡
𝐹  Forecasted wind power production for scenario 𝜔 at time 𝑡 
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D. Constants 

𝑃𝑚𝑎𝑥 Maximum wind power output 

𝜋𝜔 Probability of occurrence of scenario 𝜔 

 

The proposed offer strategy is formulated as follows: 

𝑀𝑎𝑥 ∑ ∑ 𝜋𝜔{𝜆𝜔𝑡
𝐷𝐴,𝐸𝑃𝜔𝑡

𝐷𝐴,𝐸 + 𝜆𝜔𝑡
𝐷𝐴,𝑆𝑃𝜔𝑡

𝐷𝐴,𝑆 + 𝜆𝜔𝑡
𝑅𝑇,𝐸(∆𝜔𝑡

𝐸1,+ + ∆𝜔𝑡
𝑆1,+) +

𝑁Ω

𝜔=1

𝑁𝑇

𝑡=1

 

𝜆𝜔𝑡
𝑅𝑇,𝑆(∆𝜔𝑡

𝐸2,+ + ∆𝜔𝑡
𝑆2,+) −  𝜆𝜔𝑡

𝑅𝑇,𝐸∆𝜔𝑡
𝐸,− −  𝜆𝜔𝑡

𝑅𝑇,𝑆∆𝜔𝑡
𝑆,−} + 

∑ 𝛽(𝜂𝑡 −
1

1 − 𝛼
∑ 𝜋𝜔𝜑𝜔𝑡)

𝑁Ω

𝜔=1

𝑁𝑇

𝑡=1

(1) 

 

Subject to the constraints:  

0 ≤ 𝑃𝜔𝑡
𝐷𝐴,𝐸 (2) 

0 ≤ 𝑃𝜔𝑡
𝐷𝐴,𝑆 (3) 

0 ≤ 𝑔𝜔𝑡 (4) 

0 ≤ ℎ𝜔𝑡 (5) 

𝑔𝜔𝑡 + ℎ𝜔𝑡 ≤ 1 (6) 

𝑃
𝜔′𝑡
𝐷𝐴,𝐸 = 𝑃𝜔𝑡

𝐷𝐴,𝐸: 𝜆
𝜔′𝑡
𝐷𝐴,𝐸 (7) 

𝑃
𝜔′𝑡
𝐷𝐴,𝑆 = 𝑃𝜔𝑡

𝐷𝐴,𝑆: 𝜆
𝜔′𝑡
𝐷𝐴,𝑆 = 𝜆𝜔𝑡

𝐷𝐴,𝑆 (8) 
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𝑃
𝜔′𝑡
𝐷𝐴,𝐸 ≤ 𝑃𝜔𝑡

𝐷𝐴,𝐸: 𝜆
𝜔′𝑡
𝐷𝐴,𝐸 ≤ 𝜆𝜔𝑡

𝐷𝐴,𝐸 (9) 

𝑃
𝜔′𝑡
𝐷𝐴,𝑆 ≤ 𝑃𝜔𝑡

𝐷𝐴,𝑆: 𝜆
𝜔′𝑡
𝐷𝐴,𝑆 ≤ 𝜆𝜔𝑡

𝐷𝐴,𝑆 (10) 

Δ𝐸1,+ + Δ𝐸2,+ − Δ𝐸,− = 𝑔𝜔𝑡𝑃𝐹 − 𝑃𝜔𝑡
𝐷𝐴,𝐸 (11) 

0 ≤ Δ𝜔𝑡
𝐸1,+ (12) 

0 ≤ Δ𝜔𝑡
𝐸2,+ (13) 

0 ≤ Δ𝜔𝑡
𝐸1,+ + Δ𝜔𝑡

𝐸2,+ ≤ 𝑔𝜔𝑡𝑃𝐹 (14) 

0 ≤ Δ𝜔𝑡
𝐸,− ≤ 𝑃𝜔𝑡

𝐷𝐴,𝐸 (15) 

(Δ𝜔𝑡
𝐸1,+ + Δ𝜔𝑡

𝐸2,+) ≥ 0 ⊥ ∆𝜔𝑡
𝐸,−≥ 0 (16) 

Δ𝑆1,+ + Δ𝑆2,+ − Δ𝑆,− = ℎ𝜔𝑡𝑃𝐹 − 𝑃𝜔𝑡
𝐷𝐴,𝑆 (17) 

0 ≤ Δ𝜔𝑡
𝑆1,+ (18) 

0 ≤ Δ𝜔𝑡
𝑆2,+ (19) 

0 ≤ Δ𝜔𝑡
𝑆1,+ + Δ𝜔𝑡

𝑆2,+ ≤ ℎ𝜔𝑡𝑃𝐹 (20) 

0 ≤ Δ𝜔𝑡
𝑆,− ≤ 𝑃𝜔𝑡

𝐷𝐴,𝑆 (21) 

(Δ𝜔𝑡
𝑆1,+ + Δ𝜔𝑡

𝑆2,+) ≥ 0 ⊥ ∆𝜔𝑡
𝑆,−≥ 0 (22) 

𝑃𝜔𝑡
𝐷𝐴,𝐸 + 𝑃𝜔𝑡

𝐷𝐴,𝑆 + Δ𝜔𝑡
𝐸1,+ + Δ𝜔𝑡

𝐸2,+ +   Δ𝑆1,+ + Δ𝑆2,+ ≤  𝑃𝑚𝑎𝑥 (23) 

0 ≤ 𝜑𝜔𝑡 (24) 

𝜂𝑡 − {𝜆𝜔𝑡
𝐷𝐴,𝐸𝑃𝜔𝑡

𝐷𝐴,𝐸 + 𝜆𝜔𝑡
𝐷𝐴,𝑆𝑃𝜔𝑡

𝐷𝐴,𝑆 +  𝜆𝜔𝑡
𝑅𝑇,𝐸(∆𝜔𝑡

𝐸1,+ + ∆𝜔𝑡
𝑆1,+) +
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𝜆𝜔𝑡
𝑅𝑇,𝑆(∆𝜔𝑡

𝐸2,+ + ∆𝜔𝑡
𝑆2,+) −  𝜆𝜔𝑡

𝑅𝑇,𝐸∆𝜔𝑡
𝐸,− −  𝜆𝜔𝑡

𝑅𝑇,𝑆∆𝜔𝑡
𝑆,−} ≤ 𝜑𝜔𝑡 (25) 

 

The objective function (1) maximizes the WPP's total expected profit in the DA and 

RT energy and spinning reserve markets for each operating hour, considering risk through 

the inclusion of the CVaR term.  One of the terms ∆𝜔𝑡
𝐸1,+

/∆𝜔𝑡
𝐸2,+

 will always be equal to 

zero, since in the case of positive deviations, the RT market prices will determine that it is 

optimal for the WPP to re-offer the entirety of the positive deviation in either the energy 

market (if 𝜆𝜔𝑡
𝑅𝑇,𝐸

 > 𝜆𝜔𝑡
𝑅𝑇,𝑆

) or the spinning reserve market (if 𝜆𝜔𝑡
𝑅𝑇,𝐸

 < 𝜆𝜔𝑡
𝑅𝑇,𝑆

).  The same 

applies to ∆𝜔𝑡
𝑆1,+

/ ∆𝜔𝑡
𝑆2,+

.  Constraints (2) and (3) enforce non-negativity on the DA energy 

and spinning reserve offers.  Constraints (4)-(6) require that the fractions of forecasted 

power 𝑔𝜔𝑡 and ℎ𝜔𝑡 offered in the DA energy and spinning reserve markets, respectively, 

must be non-negative and less than or equal to the WPP’s total forecasted power in each 

scenario.  Constraint (7) enforces non-anticipation for the DA energy offers, i.e., the WPP 

may not use knowledge of future RT prices to offer different amount of power in the DA 

stage, for the same DA LMP.  Constraint (8) specifies that the offer curves must be non-

decreasing, which is a requirement in US electricity markets.  Constraints (9)-(10) 

enforce non-anticipation and non-decreasing offer curves for the DA spinning reserve 

offers.  Constraint (11) imposes that the sum of the positive and negative deviations from 

the WPP’s DA energy offer must be equal to the fraction of power offered in the DA 

energy market times the forecasted power production, minus the DA energy offer.  If the 

WPP chooses to offer power only in RT, constraint (11) imposes that the power offered 

may not exceed the forecasted power.  Constraints (12) and (13) enforce non-negativity 
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for the positive deviations from the DA energy offer. Constraints (14) and (15) determine 

the maximum positive and negative deviations from the WPP’s DA energy offer, 

respectively.  Constraint (16) imposes that the WPP can have either a positive deviation 

or a negative deviation from its DA energy offer, but not both.  Constraints (17)-(22) 

apply the same constraints as (11)-(16) to the spinning reserve offers.  Constraint (23) 

ensures that the sum of the WPP’s bids in the DA and RT stages does not exceed its 

maximum power production.  Constraints (24)-(25) are used to compute the CVaR for 

each hour.  The CVaR is the weighted average of the expected profit in the least profitable 

scenarios, defined as the scenarios in the (1 - 𝛼)-quantile of the profit distribution [15]. 
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CHAPTER 4: CASE STUDY 

The proposed bidding strategy was tested for a WPP that participates in the Southwest 

Power Pool (SPP) market.  The results were compared to the case where the WPP 

participates only in the energy market.  The total installed wind capacity of the WPP was 

80 MW.  Historical data for DA/RT LMPs and MCPs were obtained from SPP’s public 

database [16], [17].  Historical wind power data were obtained from the National 

Renewable Energy Laboratory website [18]. 

The autoregressive integrated moving average (ARIMA) model was used to generate 

1000 scenarios for each of the four price types: DA LMPs, DA MCPs, RT LMPs, and RT 

MCPs [19].  An ARIMA model was also used to generate 1000 scenarios for wind power 

production [20].  Then, a forward scenario reduction method based on the Kantorovich 

distance between scenarios was applied to reduce the number of scenarios for each 

random variable [21].  Based on the tradeoff between accuracy of the results and 

computation time, the original scenario sets were reduced to five scenarios for each 

variable.  A sample of price and wind power scenarios for one day is shown in Fig. 4.1.  

For clarity, the mean of the five scenarios for each variable is shown, rather than the 

scenarios themselves.  The scenarios for each individual variable were then combined 

into tuples to generate 3125 (55) scenarios total.  All case study simulations were solved 

using the simplex method, with Gurobi 5.5 and the YALMIP toolbox in MATLAB [22]- 
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[23].  The CVAR confidence interval 𝛼 was chosen to be 0.95, which corresponds to 

minimizing the losses in the worst 5% of scenarios. 

Fig. 4.2 shows the WPP's expected profit in each market and total expected profit for 

hours 12-24 of a representative day (the same as Fig. 4.1) under the proposed strategy, 

compared to the standard case where the WPP only participates in the energy market.  

For both cases, CVaR weights of 𝛽  = 0, 0.01, 0.1, 0.2, 0.5, and 1 are shown, where 𝛽  = 

0 corresponds to a risk-neutral WPP (i.e. risk is not considered when determining the 

bidding strategy); and 𝛽 = 1 corresponds to the highest level of risk aversion.  The top 

row of plots shows the profit by market for energy bidding only, while the bottom row 

shows the profit by market for the proposed model.  In the top row, the DA energy profit 

is shown in blue, and the RT energy profit is shown in red.  In the bottom row, the DA 

energy profit is shown in blue, and the DA spinning reserve profit is shown in red.  The 

RT energy profit is shown in yellow, and the RT spinning reserve profit is shown in 

 
 

Fig. 4.1: Mean electricity prices and wind power forecast 

for each hour of one representative day.   

 



15 
 

purple.  For both sets of plots, the total profit is shown in green.  Positive profit indicates 

that the WPP successfully delivered its cleared offer, while negative profit indicates that 

the WPP defaulted on the DA offer, and had to purchase the difference between the 

cleared offer and the actual generation in the RT market. 

 Results from both models show that as risk-aversion increases, the WPP’s bidding 

strategy in the DA market changes.  For example, for the standard model and 𝛽 = 0 −

0.01, the WPP incurs a RT penalty of -$1850 during hour 19.   However, for 𝛽 ≥ 0.1, the 

RT penalty during hour 19 goes from -$1100 to -$800 as the risk aversion level increases.  

The WPP’s expected DA profit during hour 19 also decreases as risk aversion increases, 

indicating that the WPP submits smaller bids with a lower risk of default.  For the 

proposed model, the WPP’s profit in the spinning reserve markets is the same for all 

levels of risk aversion.  The expected profit in the energy market is the same during hours 

1-19.  For hours 20-24, as risk aversion increases, the WPP tends to submit a higher bid 

 

Fig. 4.2: Expected profit per in each market and total profit, for the standard bidding model vs the 

proposed model. 
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to the DA energy market and a lower bid to the RT energy market, indicated by the 

change in expected profit.  

Under the proposed model, the WPP can mitigate risk by submitting bids to the DA 

spinning reserve market, where it will face lower deviation penalties than in the energy 

market since RT MCPs are generally lower than RT LMPs. For all risk aversion cases, 

the WPP chooses to offer power in the DA spinning reserve and energy markets during 

hours 18-22.  During these hours, RT LMPs (Fig. 4.1) are relatively high, suggesting that 

the WPP uses the DA reserve offers to avoid high RT penalties for negative deviations.  

Under the standard model, the WPP faces large deviation penalties for hours 18-20.  

However, under the proposed model, the penalties are much smaller or zero.  Total 

expected profit is higher for the proposed model for those hours as well, which suggests 

that the WPP uses the reserve offers to hedge against the risk of RT penalties and 

increase its profit. 

 

Fig. 4.3: Energy and spinning reserve offer curves for hour 22 with varying levels of risk aversion. 
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Fig. 4.3 shows the DA offer curves for the energy (top, red) and spinning reserve 

(bottom, blue) markets for the 22nd hour.  The value of the risk aversion parameter 𝛽 is 

shown in the plot titles.  For the risk-neutral case (𝛽 = 0) the WPP offers nothing in the 

energy market until the forecasted DA LMP is $33.50/MW.  For higher levels of risk 

aversion, the WPP submits an offer to the DA energy market at lower prices, since it is 

less risky to have a guaranteed payoff equal to the DA LMP than to wait to make an offer 

in the RT stage.  For 𝛽 = 0 − 0.2, the WPP offers 16 MW to the spinning reserve 

market, while for 𝛽 = 0.5 − 1, the WPP offers 18 MW.  This indicates that as the risk-

aversion increases, the WPP uses higher reserve bids to decrease the probability of facing 

high RT penalties in the worst-case scenarios. 

Fig. 4.4 compares the energy offer curves from the proposed model (top, red) to the 

offer curves from energy-only bidding (bottom, blue).  The offer strategy for low prices is 

similar in both cases.  However, for higher prices, the WPP offers less in the energy 

 

Fig. 4.4: Energy offer curves for the proposed model (top) and standard model (bottom) for hour 22 

with varying levels of risk aversion. 
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market under the proposed model than the standard model.  At the highest price point 

(DA LMP equal to $34.30/MWh), the WPP offers 62 MW under the proposed model 

versus 80 MW under the standard model.  This is because under the proposed model, the 

WPP also offers some power to the reserve market, and the sum of both offers must be 

less than 80 MW.  Under the proposed model, as risk aversion increases from 𝛽 = 0.1 to 

𝛽 = 0.2, the WPP submits energy offers to the DA market at lower prices rather than 

waiting to submit an offer to the RT market.  This is the same strategy as the standard 

model. 

Fig. 4.5 compares the CVaR for the standard model (top) versus the proposed model 

(bottom) for each value of 𝛽.  The CVaR of hours 1-17 is the same for both models, 

which is as expected, since the WPP only participates in the energy market during those 

hours.  However, hours 18-22 show how the proposed model is advantageous for 

 

Fig. 4.5: CvaR by hour for the standard and proposed models. 
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decreasing risk.  During hours 18-22, the WPP participates in the energy and spinning 

reserve markets, and the CVaR is higher than the standard model.  For 𝛽 = 1 the CVaR 

increases from ~$1200 to ~$1800 during hour 19, and from ~$1350 to ~$1800 during 

hour 20.  This shows that during those hours, the WPP successfully uses the spinning 

reserve market to hedge against economic risk. 

Fig. 4.6 plots the efficient frontier of the proposed (top) vs standard (bottom) models.  

The efficient frontier is the CVaR (x-axis) versus expected profit (y-axis) for each CVaR 

weight 𝛽.  The profit and CVaR are summed over the entire representative day under 

study.  For all values of 𝛽, both the expected profit and the CVaR are higher for the 

proposed model are higher than for the standard model.  Table 4.1 shows the values of 

the expected profit and CVaR for the standard model, for each value of 𝛽.  Table 4.2 

shows the same, for the proposed model.  The values in Tables 4.1 and 4.2 are also 

plotted in Fig. 4.6.  The results reflect the tradeoff between expected profit and risk 

aversion.  For both cases, as the CVaR weight increases, profit decreases but the CVaR 

 

Fig. 4.6: Efficient frontier for the standard and proposed models. 
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increases.  This indicates that the WPP adopts a more conservative bidding strategy, 

maximizing the profit in the worst case scenarios while accepting lower profit overall. 

 

 

 

 

 

 

  

 

 

 

 

 

 

Table 4.1: Profit and CVaR for the standard model. 

β 0 0.01 0.1 0.2 0.5 1 

Profit($) 44,577 44,577 44,545 44,404 44,295 44,077 

CVaR ($) N/A 31,594 32,138 33,063 33,454 33,745 

 

Table 4.2: Profit and CVaR for the proposed model. 

β 0 0.01 0.1 0.2 0.5 1 

Profit($) 46,705 46,704 46,686 46,619 46,435 46,294 

CVaR ($) N/A 34,523 34,791 35,255 35,807 35,988 
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CHAPTER 5: CONCLUSION 

This paper develops a stochastic optimization model for finding the optimal offer strategy 

for a WPP that participates in the DA and RT energy and spinning reserve markets.  The 

WPP is allowed to split its total forecasted power production between the energy and 

reserve markets, and the fractions of power offered to each market are determined 

through stochastic optimization.  Stepwise offer curves for the DA energy and spinning 

reserve markets are generated, and results show that the optimal strategy sometimes 

involves participating in both markets.  Case study results also show that the proposed 

bidding strategy increases expected profit and decreases risk compared to the case where 

the WPP only participates in the DA market; and that the WPP can use the spinning 

reserve market, in which it faces lower penalties for negative deviations, to hedge against 

the uncertainty in power production.  Finally, the results show that the optimal bidding 

strategy changes based on the level of risk aversion of the WPP. 

 From a WPP, providing reserve products can increase profit while decreasing 

economic risk.  Allowing WPPs to provide reserves would be beneficial to system 

operators as well, since the reserves provided by WPPs would hedge against the 

uncertainty in wind production and leave other reserve sources free to respond to 

contingency events.  Further research may include incorporating a probability distribution 

of wind power forecast errors into the optimization model and using the likelihood of 

default on the DA cleared offer to determine the optimal bidding strategy. 
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