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ABSTRACT 
 

Structural damage assessment following an extreme event can provide valuable information and 

insight into unanticipated damage and failure modes to improve design philosophies and design 

codes as well as reduce vulnerability. Oftentimes, structural engineers create finite element models 

(FEM) of the structure in which numerous model parameters require calibration to simulate the 

current state. This information may include structural plan details (geometry), material 

characteristics (strength and stiffness parameters), as well as observed damage patterns (cracks, 

spalling, etc.). Ground-based lidar (GBL) scans and Structure-from-Motion (SfM) can rapidly 

capture dimensionally accurate point clouds of the structure or facility of interest.  Furthermore, 

point clouds can used to efficiently document perishable structural damage data digitally prior 

recovery or retrofit efforts. Within these point clouds, information can be extracted to objectively 

locate damage patterns in non-temporal datasets. Localization and quantification of damage can 

serve to update models with high fidelity within forensic investigations as well as to estimate the 

remaining structural capacity. In this work, an algorithm based on two spatially invariant 

geometrical features was used to identify and quantify structural damage from point cloud data for 

two case study buildings. The first case-study building is an 18-story high-rise condominium 

building that was significantly damaged during the 2015 Gorkha (Nepal) Earthquake. The damage 

included significant cracks in partition walls, unreinforced masonry infill walls, and section-loss 

within coupling beams and staircases at various levels. The second case-study structure, from the 

same earthquake event, is a five-tiered pagoda style temple built using timber beams and thick 

brick masonry walls. The temple sustained moderate damage where shear cracks developed at 

lower levels and seam of the wall piers. Through the developed damage detection method, 

cracking, concrete spalling, and loss of cross section within the point cloud data of the 

nonstructural and structural elements are quantified. 
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ABSTRACT 
 

  Structural damage assessment following an extreme event can provide valuable 

information and insight into unanticipated damage and failure modes to improve 

design philosophies and design codes as well as reduce vulnerability. Oftentimes, 

structural engineers create finite element models (FEM) of the structure in which 

numerous model parameters require calibration to simulate the current state. This 

information may include structural plan details (geometry), material characteristics 

(strength and stiffness parameters), as well as observed damage patterns (cracks, 

spalling, etc.). Ground-based lidar (GBL) scans and Structure-from-Motion (SfM) 

can rapidly capture dimensionally accurate point clouds of the structure or facility 

of interest.  Furthermore, point clouds can used to efficiently document perishable 

structural damage data digitally prior recovery or retrofit efforts. Within these point 

clouds, information can be extracted to objectively locate damage patterns in non-

temporal datasets. Localization and quantification of damage can serve to update 

models with high fidelity within forensic investigations as well as to estimate the 

remaining structural capacity. In this work, an algorithm based on two spatially 

invariant geometrical features was used to identify and quantify structural damage 

from point cloud data for two case study buildings. The first case-study building is 

an 18-story high-rise condominium building that was significantly damaged during 

the 2015 Gorkha (Nepal) Earthquake. The damage included significant cracks in 

partition walls, unreinforced masonry infill walls, and section-loss within coupling 

beams and staircases at various levels. The second case-study structure, from the 

same earthquake event, is a five-tiered pagoda style temple built using timber 

beams and thick brick masonry walls. The temple sustained moderate damage 

where shear cracks developed at lower levels and seam of the wall piers. Through 

the developed damage detection method, cracking, concrete spalling, and loss of 

cross section within the point cloud data of the nonstructural and structural elements 

are quantified. 
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Introduction 
 

Digital technology to create point cloud data from real-world environments have been evolved in 

recent decades and enable users to collect data efficiently. Point clouds, a set of vertices in the 

three-dimensional space that represents the surface of objects, can be created with various methods 

including light detection and ranging technology (lidar) or a computer vision method known as 

Structure-from-Motion (SfM). Lidar systems (i.e., ground based lidar or GBL) generate 

geometrically accurate point cloud data which have been implemented within civil engineering 

applications including laboratory testing to measure displacement data [1, 2], documenting scene 

for forensic investigation scenarios [3], preserving damaged structures after an extreme event prior 

cleanup operations (e.g., earthquake) [3, 4, 5], exporting accurate dimensions and geometry form 

objects of interest for structural engineering purposes [6], and further analyze the point cloud data 

and their corresponding color information data (i.e., images captured by lidar platform) or intensity 

field data to detect surface defects, cracks, or volumetric losses [7, 8, 9, 10, 11, 12]. SfM-derived 

point clouds are formed from a set of images collected from the object or region of interest. As a 

result, SfM-derived point clouds inherently lack real-world dimensions and accuracy can verify as 

a function of ground control (e.g., georeferencing). Although SfM-derived point cloud formation 

requires a longer process, data collection can rapid and efficient using unmanned aerial systems 

(UAS) with an onboard camera of large civil structures and networks. The potential of UAS SfM-

derived point clouds in characterizing structural damage of built up areas after 2015 Gorkha 

earthquake and geotechnical reconnaissance after Mw 7.8 Iquique 2014 Chile earthquake has been 

proven the utility of UAS for data collection after an extreme event [13, 14, 15]. While SfM-

derived data can be used as source for estimating the damage to urban areas, decision making 

processes, and landslide quantifications of large areas, due to variation in accuracy and density, it 

may be less reliable for detailed structural assessment in comparison with GBL. 

 The focus of this manuscript is to analyze the lidar-derived point cloud data for structural 

damage detection and localization. To achieve this objective, structural and nonstructural member 

point clouds of two structures with simple to complex geometries, damaged during 2015 Grokha 

earthquake, were analyzed as evaluation data. These datasets were analyzed based on the spatial 

orientation of each point with respect to their local neighboring points to identify surface defects, 

cracks and spalling [11, 12]. 

 

Methodology 

 

Detecting structural damage through point cloud data had been explored by previous researchers. 

For example, Olsen et al. [7] and Kashani et al. [16] investigated damage characterization through 

intensity values. Kim et al. [8] introduced a method to assess point cloud data of only flat surface. 

Valenca et al. [9] and Erkal and Hajjar [10] evaluated the variation of surface geometry and color 

information data to identify defects. More recently, Hou et al. [17] has tested various clustering 

algorithms to analyze the point cloud data based on color information for surface defects. Although 

successful in detecting defects, these methods have a few limitations in terms of applicability (i.e. 

can only analyze planar surfaces) dependency to lighting and environmental conditions (i.e., 

vulnerability to presence darker areas due to moisture), or long preprocessing steps (e.g., intensity 

correction [18]). Furthermore, Olsen [19] developed a method to detect temporal changes within 

a point cloud data of multiple elements using change detection through a point cloud comparison 

collected at two distinct states. Although the method can be accurate and reliable in detecting 



changes (including structural damage), it requires a baseline or reference point cloud for 

comparison which limits its application to the sites that a reliable reference scan is available.  

 Within this work, to identify surface defects, cracks, and volumetric losses, the variation 

of each point with reference to its local closest neighboring points are investigated through two 

independent spatially invariant surface feature descriptors [11,12]. The implemented method relies 

solely on spatial variation of points computed by the two features. This method does not require a 

baseline or color information as a reference or compliment dataset, respectively. To analyze the 

point cloud, initially the input dataset is preprocessed to reduce erroneous points. Then, the 

processing step is concluded by regularizing the point-to-point spacing within the dataset to 

ameliorate the variation of point density. Afterwards, the variation of each point with respect to 

their selected number of closest neighboring vertices are evaluated through two surface feature 

descriptors. The first surface descriptor is known as surface variation, which is computed based 

ratio of smallest to total summation of eigenvalue of covariance matrix of each point and its 

neighboring vertices. The second surface descriptor is the variation of each point normal vector 

with respect to a local reference plane. To compute normal vector for each point, a weighted 

average of the normal vector of adjacent triangles of selected neighboring vertices is used [20], 

and the local reference plane is identified over a larger neighborhood of vertices through 

computing the best fitted least square plane [21]. Once both surface feature descriptor values are 

computed, a probability distribution function (pdf) for each feature is identified using a Kernel pdf 

[22]. Then the vertices are classified into two groups of likely damage and undamaged based on 

selected confidence level percentile. In the final step, the algorithm compares each feature’s 

classification result and update the classification of each point if and only if it was classified as 

damage by both features.  

 The described damage detection algorithm only requires five input parameters to identify 

likely damage points. This include the point-to-point regulating step size, number of neighboring 

vertices for surface variation, computation of point normal vector, and local reference plane for 

each point, as well as the damaged confidence level. As the point-to-point regulating step uniforms 

the point-to-point spacing within the cloud, it directly influences the damage detection accuracy. 

Therefore, it should to be selected based on the desired dimension of the damage that are of 

interest. In addition, the overall density of the cloud should also be considered in selection of point-

to-point spacing, as very small or large grid steps will not result in point cloud with uniform density 

and may limit the detectability of the developed method. For this study, based on the dataset 

densities and desired level of detection, clouds were regulated between 0.5 to 1.25 cm grid steps. 

The second, third and fourth parameters selected are number of closest neighboring points. 

Multiple runs on various datasets demonstrated that evaluating the described surface feature 

descriptors and local reference planes for 8 and 24 number closet neighboring points, respectively, 

can readily capture and reveal the surface variation. The last input parameter is related to damage 

confidence level, which is an initial guess of percent damage of input dataset. 

 

Application of the Described Method on After 2015 Gorkha Earthquake 
 

On April 24, 2015, a Mw 7.8 earthquake shook the Gorkha district of central Nepal (~80 km 

northwest of Kathmandu) at the focal depth of 15k m [23,2 4]. The main event was followed by a 

series of aftershocks up to a Mw of 7.3 resulting in significant damage to both historic and 

urbanized areas of the country. After a few months from the event, a group of researchers from 

various universities visited the affected areas and documented the buildings performance and 



damage during the event [25]. To evaluate the performance of the developed method in detecting 

defects, cracks and other surface nonuniformities, two case study structures have been selected 

from those visited structures that were moderately damaged. Each selected structure represents a 

different construction method, material, and geometry. The first structure selected is an 18-story 

reinforced concrete (RC) apartment building located in Hattiban, Katmandu, approximately 80 km 

southeast of main shock epicenter. The second case study structure was an historic five-tiered 

pagoda styled temple initially built in 1702 with unreinforced brick masonry with mud-mortar. 

The temple had a height of approximately 22 m and was in the Bhaktapur, in the Katmandu Valley, 

approximately 100 km southeast of main shock epicenter.  
 

18-story Reinforced Concrete Building 
 

The 18-story RC apartment building sustained moderate damage as result of the main event and 

the following aftershocks. The damage observed in various components including nonstructural 

exterior and interior infill walls, separation of infill walls and adjacent columns, beam-column 

joint cracking, and concrete spalling and cracking within the coupling beam elements. To 

document the sustained damage throughout the structure the team utilized Faro Focus X-130 

scanner. A phased-based scanner, Faro X-130 can collect up to 1 million points per second at range 

of 130 meters [26]. A total of 16 lidar scans were collected from 5 selected levels, namely the 3rd, 

6th, 9th, 12th, and 15th floors. This pattern of data, allows to document damage throughout the 

structure and study the damage propagation and evolution as the function of building height. To 

achieve this objective, two common members were selected and analyzed by the damage detection 

method. Fig. 1a represents the typical scanner setup for each floor to scan the common members 

throughout the structure [11]. The first member selected was a 1.7 m long coupling beam located 

roughly at the center of structure (Fig 1b). The second member was a 4 m by 2.7 m (L×H) infill 

interior wall located at the west of the structure (Fig. 1c).  

 

 

  

(a) (b) (c) 

Figure 1.    18-story structure damage survey: (a) top view of floor along with typical scan 

placements and location of common members to investigate the damage Evolution. 

(b) View of coupling beam and (c) view of the interior masonry infill wall [11]. 

 

 The coupling beam point cloud consists of two surfaces of beam as demonstrated in Fig. 

2a. This will allow to assess the performance of the developed method for data with more complex 

geometries, here a coplanar surface. The analysis result of the coupling beam is illustrated in Fig. 

2b. To analyze this cloud, initially the point-to-point spacing was regulated to 0.5 cm. Afterwards, 

the two geometrical features for each point and its 8 closet neighboring points were computed and 



initial damage confidence level was set to 60%. Then, the developed method identified the 

significant concrete spalling and exposed rebars within the point cloud. Fig. 2b illustrates the 

results of the methodology.  The output damage percentile after damage evaluation step was 47%. 

The second selected point cloud from this high-rise building is the common wall, which is a planar 

surface. As shown in Fig 3a, the common wall sustained significant horizontal cracking in the 

middle and its perimeter where it meets the beam and columns. To analyze the wall, initially the 

point-to-point spacing was regulated to 0.5 cm. Then, the significant cracking and other defects 

were identified through comparison of each surface feature and initial damage confidence level of 

50% (Fig. 3b). The final damage percentile for the wall was 11%. 

 

  
(a) (b) 

Figure 2.    Evaluation of detected damage for the coupling beam: (a) black and white point 

cloud of the beam (b) color-coded point cloud were detected surface defects are 

shown in red (grey) [11]. 

 

  
(a) (b) 

Figure 3.    Evaluation of detected damage for the selected wall: (a) black and white point cloud 

of the wall and (b) color-coded point cloud where the detected surface defects are 

shown in red (grey) [11]. 

 

Damage Analysis of Pagoda Style Temple Masonry Walls  
 

The second structure selected is the Nyatapola Temple which sustained moderate-to-severe 

damage during the earthquake sequence. A series of large shear cracks were observed at the base 

level exterior walls, in close proximity to door frames, as well as various surface defects including 

loss of grout and dislodged bricks throughout the structure. To survey the structure, the research 

team performed a total of 38 scans at various distances [27]. Fig. 4a represents the final point cloud 

of the Nyatapola temple. Due to various activities during the scanning sequence at the base level, 

architectural design of the temple, and to minimize the occlusion in the final point cloud data, a 

total of 26 of those 38 scans were conducted at the base level to the bottom of the tiered plinth 

(Fig. 4b). To evaluate the developed method for the earthen masonry wall, a single scan of the 

base level north wall was used as input data which contains approximately 9 million points (Fig. 

5a). The location of the selected scan is highlighted in Fig. 4b. As a result, the point cloud contains 

various damage patterns (e.g. crack at the north wall) and occlusion due to the presence of ornate 



architecture. 

 

 

 
(a) (b) 

Figure 4.    Nyatapola temple structure: (a) southwest isometric view and (b) plan view of scan 

locations along with the location of selected scan [27]. 
 

 To analyze the five-story temple, the point cloud was first regulated to a point spacing of 

1.25 cm. This is larger than the high-rise structure due to the large variation in point density near 

corners as a result of laser beam dispersion and due to the close scanner placement to the structure 

with a resultant high angle of attack at the corners. Then, the two geometrical features were 

computed for each vertex and its 8 closet neighbors. Also, the initial damage confidence level was 

set to 60%. Following the damage evaluation step, Fig. 5b illustrates the result of each feature 

classification and the identified significant cracks and other surface defects. The developed method 

was able to detect all surface defects and cracks with dimensions of 1.25 cm and larger. This 

includes the large shear crack on the top right of the entrance. Furthermore, this developed method 

was successful in the identification of damage near the two edges despite the occlusions in the 

point cloud. One drawback however, the method falsely identified a series of point as likely 

damage due to the ornate architectural details of the wall sculptures and door lintel. Using these 

results, the detected damage enabled analysts to measure the defects with a high-level confidence 

to characterize the structure and update a finite element model [27]. The quantification results for 

the significant crack on the top right of the entrance (crack C1) are presented in Table 1. To 

measure the crack length, the total length of the highlighted connected segments in the horizontal 

direction was measured. Similarly, to measure the width of the crack, multiple measurements in 

the vertical direction were taken and the mean width is reported. 

 



      
(a) 

      
(b) 

Figure 5.    North wall damage detection details: (a) RGB colored point cloud and (b) color 

coded point cloud where the detected surface defects are shown in red (grey). 

 

Table 1.    Details of detected cracks from the first-floor exterior wall. 

 

Classification Quantified Damage 

Shear crack western side of door frame 68 cm (L) by .3.25 cm (W) 

 

Conclusions 

 

This manuscript presents a newly developed approach to detect objectively likely surface defects 

from the point clouds for two case study structures [12]. The first case study structure consists of 

two segmented point clouds with planar (wall) and co-planar (coupling beam) geometries. The 

method was able to detect the major cracks, spalling, cross-loss section, and exposed rebars within 

the both point clouds. The second cases study represents an earthen masonry wall constructed with 

mud-mortar and contained ornate architectural details at the wall and door frame. As a result, the 

point cloud of the second case study introduced even more complex surface geometry, particularly 

at the local level due to the irregularities in the brick and mortar. Furthermore, the analysis of the 

temple highlighted the method’s robustness for uneven point density and occlusion, while 

maintaining its sensitivity to detect surface defects including cracks, loss of grout, and dislodged 

bricks. However, the shadow effects due to occlusion and presence of sharp features (e.g., ornate 

sculptures) can lead to false positives which can be reduced in future work.   
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