University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Xiao Cheng Zeng Publications

Published Research - Department of Chemistry

1-10-2020

A possible unaccounted source of atmospheric sulfate formation: amine-promoted hydrolysis and non-radical oxidation of sulfur dioxide

Shixian Wang

Xiao Cheng Zeng

Hui Li

Joseph S. Francisco

Follow this and additional works at: https://digitalcommons.unl.edu/chemzeng

Part of the Analytical Chemistry Commons, Materials Chemistry Commons, and the Physical Chemistry Commons

This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Xiao Cheng Zeng Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Chemical Science

EDGE ARTICLE

View Article Online
View Journal | View Issue

Cite this: Chem. Sci., 2020, 11, 2093

dll publication charges for this article have been paid for by the Royal Society of Chemistry

Received 20th September 2019 Accepted 9th January 2020

DOI: 10.1039/c9sc04756e

rsc.li/chemical-science

A possible unaccounted source of atmospheric sulfate formation: amine-promoted hydrolysis and non-radical oxidation of sulfur dioxide†

Shixian Wang, a Xiao Cheng Zeng, b *ba Hui Li b *a and Joseph S. Francisco b *c

Numerous field and laboratory studies have shown that amines, especially dimethylamine (DMA), are crucial to atmospheric particulate nucleation. However, the molecular mechanism by which amines lead to atmospheric particulate formation is still not fully understood. Herein, we show that DMA molecules can also promote the conversion of atmospheric SO_2 to sulfate. Based on *ab initio* simulations, we find that in the presence of DMA, the originally endothermic and kinetically unfavourable hydrolysis reaction between gaseous SO_2 and water vapour can become both exothermic and kinetically favourable. The resulting product, bisulfite $NH_2(CH_3)_2^+ \cdot HSO_3^-$, can be readily oxidized by ozone under ambient conditions. Kinetic analysis suggests that the hydrolysis rate of SO_2 and DMA with water vapour becomes highly competitive with and comparable to the rate of the reaction between SO_2 and OH^{\bullet} , especially under the conditions of heavily polluted air and high humidity. We also find that the oxidants NO_2 and N_2O_5 (whose role in sulfate formation is still under debate) appear to play a much less significant role than ozone in the aqueous oxidation reaction of SO_2 . The newly identified oxidation mechanism of SO_2 promoted by both DMA and O_3 provides another important new source of sulfate formation in the atmosphere.

1 Introduction

Sulfuric acid in the atmosphere, mainly produced by the oxidation of gaseous sulfur dioxide, is known as the most important nucleating agent in the earliest stage of atmospheric new particle formation (NPF), as it possesses the lowest vapour pressure (<0.001 mmHg at 298 K) among the gaseous species in the atmosphere.¹⁻⁹ SO₂ in the atmosphere is mainly oxidized by OH• radicals produced from excited oxygen and water vapour.¹⁰⁻¹² However, numerous observations indicate that there is insufficient OH• to account for the unexpectedly rapid growth in H₂SO₄ concentration in the highly polluted atmosphere, in which the high aerosol concentration can actually block solar ultraviolet radiation and lower the concentration of OH• radicals, thereby preventing them from participating in photochemical reactions.⁵ Moreover, OH• oxidation alone cannot explain the observed level of H₂SO₄ at nighttime.¹³

On the other hand, although the abundance of the common oxidizing gases O3 and NOx is much higher than that of OH. radicals in the atmosphere, previous ab initio calculations show that the direct oxidation of SO_2 by O_3/NO_x in the gas phase is kinetically unfeasible due to extremely high activation barriers. The hydrolysis of gaseous SO₂ is proposed as an alternative reaction pathway to yield H₂SO₄ because sulfurous acid can be more easily oxidized to sulfuric acid by some moderate oxidants, e.g., ozone and NOx.14-17 However, the hydrolysis of SO2 in the gas phase has also been shown to be both thermodynamically and kinetically unfavourable via high-level quantum mechanical (QM) calculations 10,18-20 since the hydrolysis of SO₂ with either H₂O monomer or dimer is an endothermic process and, again, entails very high energy barriers.10 Hence, new oxidation pathways must be explored to explain the fast conversion of SO2 to atmospheric H2SO4.

Atmospheric bases, such as ammonia (NH₃), are another important contributor to initial sulfate aerosols.²¹ In addition, both cloud chamber studies and field measurements have revealed that atmospheric amines, especially dimethylamine (DMA), also play a surprisingly crucial role in the NPF process, even though their concentrations are two or three orders of magnitude lower than that of NH₃.^{22–30} For example, Almeida *et al.* detected that a 5 pptv level of DMA can enhance the particle formation rate more than 1000-fold than 250 pptv NH₃.⁸ More recently, Yao *et al.* reported that H₂SO₄·DMA·H₂O nucleation leads to high NPF rates in urban areas of China.³⁰ Li

^eBeijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemistry Technology, Beijing 10029, China. E-mail: hli@mail.buct.edu. cn

^bDepartment of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA 68588. E-mail: xzeng1@unl.edu

Department of Earth and Environmental Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104. E-mail: frjoseph@sas.upenn.edu

[†] Electronic supplementary information (ESI) available. See DOI 10.1039/c9sc04756e

et al. found that sulfamic acid, produced from SO₃ and high concentrations of NH₃, can directly participate in H₂SO₄·DMA clustering.³¹ Currently, it is widely accepted that DMA, similar to NH₃, can further stabilize sulfate clusters through salification with H₂SO₄. On the other hand, although Liu et al. showed that alkaline gases, such as ammonia, can promote the hydrolysis of SO₂ to form H₂SO₃ (ref. 22) and Chen et al. proposed that alkaline aerosols can trap SO₂, then being oxidized by NO₂,¹⁴ the role played by DMA molecules in atmospheric chemistry is still incompletely understood, despite its fundamental importance for exploring the role of amines in atmospheric chemistry.

Here, we show that atmospheric amines can play a key role in the formation of sulfates at high relative humidity (RH) and low illumination, thereby contributing to enhanced aerosol formation on highly polluted days. Ab initio simulations demonstrate that the presence of methylamine (MA)/DMA molecules leads to exothermic hydrolysis of SO2 with water vapour, without a barrier, to a product that can be oxidized by O_3 and NO_x . O_3 is also found to be a stronger oxidant than NOx in the amineassisted oxidation of SO₂. As a result, the concentration level of atmospheric H₂SO₄ from aqueous oxidation may be mainly controlled by the concentration of O₃ rather than that of NO_x. Based on transition state theory (TST) analysis and the observed concentrations of the participating atmospheric species, the rate of the SO₂ hydrolysis reaction with the assistance of DMA at 100% RH is even higher than the rate of SO₂ oxidization by OH. This finding may shed new light on the long-standing endeavour to identify the unknown oxidation pathway leading to atmospheric sulfate formation.

2 Results and discussion

2.1 Hydrolysis of SO₂ assisted by DMA

The potential energy surfaces (PESs) for the hydrolysis reaction of SO₂, MA/DMA and nH_2O (n = 1-3) are shown in Fig. 1(a-b) and S1 in ESI.† In the reaction with the water monomer (Fig. 1(a)), the breaking of the O-H bond of water in the presence of MA and DMA requires activation energies of 5.8 and 3.2 kcal mol⁻¹, respectively, indicating that both reactions can take place quite readily under ambient conditions. In contrast, the process of $SO_2 + H_2O \rightarrow H_2SO_3$ in the gas phase needs to overcome a high energy barrier of 33.9 kcal mol⁻¹. Note that previous quantum-mechanical (QM) calculations showed that atmospheric ammonia can also lower the barrier for the hydrolysis of SO_2 to ~ 12.0 kcal $mol^{-1}.^{22}$ However, this energy barrier is still quite high for a reaction to take place at room temperature. According to our calculations, the hydrolysis barriers with MA and DMA are approximately 6.0 and 9.0 kcal mol⁻¹ lower than the barrier with NH₃, respectively, suggesting that amines can promote SO2 hydrolysis more strongly than NH₃. Furthermore, spontaneous ionization to form HSO_3^- and $NH_3CH_3^+/NH_2(CH_3)_2^+$ during the hydrolysis reactions is also observed.

The energy barrier for hydrolysis can be further lowered by introducing an additional water molecule to the reaction through

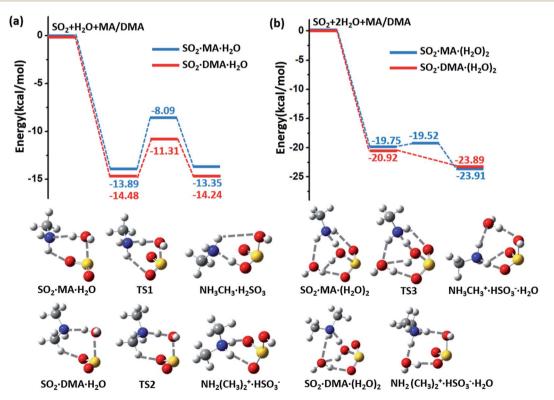


Fig. 1 (a) Potential energy profiles for the hydrolysis reactions of MA (blue lines)/DMA (red lines), SO_2 , and H_2O monomer. (b) Potential energy profiles for the hydrolysis reactions of MA (blue lines)/DMA (red lines), SO_2 , and H_2O dimer. The energy profiles are calculated at the M06-2X/cc-pVDZ-F12 level with zero-point-energy (ZPE) correction.

Edge Article

the formation of a ring structure in the transition state, as shown in Fig. 1(b). The hydrolysis of SO_2 with a water dimer and DMA can become barrierless. Likewise, hydrolysis with $(H_2O)_n$ ($n \ge 3$) are also barrierless reactions (ESI Fig. S1†). In addition, increasing the number of water and DMA molecules also promotes further ionization of the already formed H_2SO_3 and amine molecules. As shown in ESI Fig. $S2\dagger(a)$, H_2SO_3 is partially ionized to HSO_3^- in the $(DMA)_2 \cdot H_2SO_3 \cdot (H_2O)_n$, (n = 1–3) clusters, while complete ionization of H_2SO_3 and DMA to $(NH_2(-CH_3)_2^+)_2 \cdot SO_3^{2-}$ is observed in the presence of $(H_2O)_n$ ($n \ge 4$) with a very low dissociation barrier of 0.24 kcal mol $^{-1}$ (ESI Fig. S2(b)†). Next, we show that the complete ionization of H_2SO_3 can benefit its oxidation, a phenomenon that may occur on aerosol surfaces

(with high pH) in air with high concentrations of DMA and water.

The spontaneous formation and ionization processes of bisulfite/sulfite are confirmed by Born-Oppenheimer molecular dynamics (BOMD) simulation (Fig. 2). As shown by the BOMD trajectories at 300 K in Fig. 2(a), the hydrolysis of SO₂ with a water dimer and MA molecule is a very fast process, where the OH bond of a bridging water molecule breaks during the initial 0.33 ps of the BOMD simulation. Meanwhile, the N-H and O-S bond distances decrease to ~ 1.07 and ~ 1.78 Å, respectively, suggesting the formation of NH₃CH₃⁺·HSO₃⁻·H₂O. It is observed that the system does not maintain the ionized form and returns back to the molecular state of SO₂ after 2.70 ps, indicating the reversible transition between SO₂ and HSO₃⁻ due to the thermal effect. It is interesting that such a chemical equilibrium can be sensitively regulated by temperature. The simulation system maintains the form of NH₃CH₃⁺·HSO₃⁻ at 300 K for \sim 2.4 ps during the total BOMD simulation time of 20 ps (lower panel in Fig. 2(b)), while the time period that NH₃-CH₃⁺·HSO₃⁻ lasts is approximately six times longer at 250 K (\sim 12.2 ps) than at 300 K (upper panel in Fig. 2(b)). The BOMD simulation of SO₂·DMA·(H₂O)₂ shows a similar trajectory as that of the $SO_2 \cdot MA \cdot (H_2O)_2$ system (Fig. 2(c) and (d)), where the time periods of the $NH_2(CH_3)_2^+ \cdot HSO_3^-$ state are 9.1 and 10.6 ps at 300 and 250 K, respectively. Clearly, lower temperature is beneficial for bisulfite/sulfite formation due to its entropy being lower than that of the loose $SO_2 \cdot H_2O$ cluster.

Previous studies have suggested that heterogeneous reactions on the surface of water droplets play crucial roles in atmospheric chemistry, such as the ionization of N₂O₄. 32,33 Zhong et al. found that SO2 on a water nanodroplet tends to have an S-O bond exposed to the air that can readily react with other gaseous species in the air. 34 Here, BOMD simulations also confirm that increasing the size of the water cluster can move the $SO_2 \leftrightarrow HSO_3^-$ equilibrium towards the right-hand side. As shown in ESI Fig. S3(a) and (b),† SO2, MA/DMA, and two water quickly convert to $NH_3CH_3^+/NH_2(CH_3)_2^{+-}$ ·HSO₃ ·H₂O cyclic structures, which remain stable on the water cluster during the BOMD simulation at 300 K. By contrast, no similar structure is formed from SO₂ and NH₃ during the BOMD simulation (ESI Fig. S3(c)†), implying that the amines have a unique promotion effect on the hydrolysis of SO₂. The NH₂(CH₃)₂+·HSO₃ complex on the water droplet can also uptake an additional DMA molecule to form (NH2(CH3)2+)2- \cdot SO₃²⁻, as shown in ESI Fig. S3(d).†

2.2 Oxidation of $NH_2(CH_3)_2^+ \cdot HSO_3^-$ and $(NH_2(CH_3)_2^+)_2 \cdot SO_3^{2-}$ by O_3

The oxidization process of $NH_2(CH_3)_2^+ \cdot HSO_3^-$ by O_3 is divided into two steps: (1) Adsorption of O_3 and (2) dissociation of $[SO_3 \cdot O_3H]^-$, as shown in the energy profiles in Fig. 3(a) and (b). The oxidation starts from the physical adsorption of O_3 with one oxygen atom approaching the HSO_3^- group $(E_{ads} = -3.03 \text{ kcal mol}^{-1})$, and then the O_3 molecule is chemically adsorbed to HSO_3^- by forming a cyclic structure, $NH_2(CH_3)_2^+ \cdot$



Fig. 2 (a) Snapshots taken from the BOMD simulation of $SO_2 \cdot MA \cdot (H_2O)_2$ at 300 K. (b) Time evolution of the O-H, O-S, and N-H bond lengths in $SO_2 \cdot MA \cdot (H_2O)_2$ at 250 and 300 K. (c) Snapshots taken from the BOMD simulation of $SO_2 \cdot DMA \cdot (H_2O)_2$ at 300 K. (d) Time evolution of the O-H, O-S, and N-H bond lengths in $SO_2 \cdot DMA \cdot (H_2O)_2$ at 250 and 300 K, respectively.

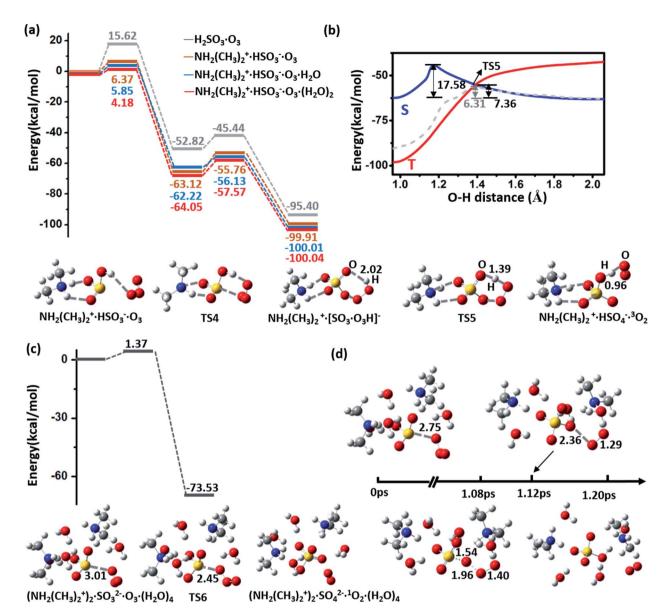


Fig. 3 (a) Potential energy profiles for the oxidation reactions of $H_2SO_3/CH_2(CH_3)_2^+ \cdot HSO_3^- \cdot (H_2O)_n$ (n=0,1,2) and O_3 . Snapshots are taken from the BOMD simulation. (b) Potential energy *versus* the O-H distance in $CH_2(CH_3)_2^+ \cdot [SO_3 \cdot O_3H]^-$. The blue and red lines correspond to the singlet and triplet multiplicities, respectively. The grey line is obtained from the spin-polarized calculation with the PBE functional in the VASP. Snapshots are taken from the BOMD simulation. (c) Potential energy profiles for the oxidation reactions of $(CH_2(CH_3)_2^+)_2 \cdot SO_3^{2-} \cdot (H_2O)_4$ and O_3 . Snapshots are taken from the BOMD simulation. (d) Snapshots are taken from the BOMD simulation of $(CH_2(CH_3)_2^+)_2 \cdot SO_3^{2-} \cdot O_3 \cdot (H_2O)_4$ at 300 K. All energy profiles are calculated at the M06-2X/cc-pVDZ-F12 level with ZPE correction.

 $[SO_3 \cdot O_3 H]^-$, as an intermediate state. This process is highly exothermic ($\Delta E = -63.12 \text{ kcal mol}^{-1}$) and overcomes a low barrier of 6.37 kcal mol^{-1} , which is 9.25 kcal mol^{-1} lower than the energy barrier without an amine (Fig. 3(a)). This energy barrier can be further lowered by adsorption of additional water molecules, where the energy barrier equals 5.85 and 4.18 kcal mol^{-1} for one and two H_2O molecules, respectively (Fig. 3(a)). Due to the low energy barrier, formation of the $\text{NH}_2(\text{CH}_3)_2^+\cdot[\text{SO}_3\cdot\text{O}_3\text{H}]^-$ complex can spontaneously occur during the BOMD simulation at room temperature (ESI Fig. S4†).

As $\mathrm{NH_2(CH_3)_2}^+ \cdot [\mathrm{SO_3 \cdot O_3 H}]^-$ is an extremely stable intermediate state, the dissociation of $[\mathrm{SO_3 \cdot O_3 H}]^-$ needs to overcome a relatively high energy barrier ($E_a = 17.58 \text{ kcal mol}^{-1}$) to

produce HSO_4^- and singlet O_2 in the spin-restricted calculation (Fig. 3(b)). This barrier seems too high for a room–temperature reaction to occur. However, it is known that unstable singlet O_2 in the atmosphere can quickly convert to the triplet ground state³⁵ through collision and that, in particular, the strong spin-orbit interaction of the heavy element sulfur can greatly enhance the spin-flipping rate. Thus, the real dissociation process is accompanied by a spin-flipping process, which can greatly lower the dissociation barrier. Because the O–H stretching vibration corresponds to the main imaginary frequency of the transition state, we scan the energy surface *versus* the O–H distance (d_{OH}) of $[SO_3 \cdot O_3 H]^-$, as shown in Fig. 3(b). The cross-point $(d_{OH} = 1.39 \text{ Å})$ between the singlet and

Edge Article Chemical Science

triplet Born–Oppenheimer potential surfaces is found to yield a dissociation barrier of 7.36 kcal mol^{-1} , indicating the kinetic feasibility of the oxidation process under ambient conditions. The low dissociation barrier ($E_a=6.31~\mathrm{kcal~mol}^{-1}$) is also confirmed by a calculation at the spin-polarized Perdew–Burke–Ernzerhof (PBE)/plane-wave level,³⁶ as implemented in the Vienna *Ab initio* Simulation Package (VASP 5.3).³⁷ The dissociation reaction is also highly exothermic ($\Delta E=-36.79~\mathrm{kcal~mol}^{-1}$). Unlike the barrier to the adsorption of O₃, the dissociation barrier is minimally affected by additional vicinal water molecules (Fig. 3(a) and ESI Fig. S5†).

Moreover, the dissociation of HSO_3^- to SO_3^{2-} , which generally happens on alkaline aerosol surface, can promote oxidation with O_3 . A cluster containing one H_2SO_3 , two DMA, and four H_2O molecules is chosen to mimic this situation, where the DMA and H_2SO_3 molecules spontaneously form $NH_2(CH_3)_2^+$ and SO_3^{2-} . As shown in Fig. 3(c), the oxidation becomes a one-step reaction with an extremely low barrier ($E_a = 1.37 \text{ kcal mol}^{-1}$). This oxidation process can be reproduced in the BOMD simulation as well (Fig. 3(d)).

2.3 Oxidation of $NH_2(CH_3)_2^+ \cdot HSO_3^-$ with NO_x

 $NH_2(CH_3)_2^+ \cdot HSO_3^-$ can be oxidized by NO_2 to form the radical $NH_2(CH_3)_2^+ \cdot SO_3^-$ and HNO_2 (HONO) with an energy barrier of

13.08 kcal mol^{-1} and a potential energy change of -5.15 kcal mol^{-1} , as shown by the energy profiles and corresponding structures displayed in ESI Fig. 4(a) and S6(a),† respectively. In contrast to this oxidation reaction, the oxidation process without DMA has a relatively higher barrier (18.02 kcal mol^{-1}) and a positive energy change (6.30 kcal mol^{-1}), as shown in Fig. 4(a). Similar to the barrier for O₃ oxidation, the barrier for oxidizing NH₂(CH₃)₂⁺·SO₃⁻ with NO₂ can be lowered by extra neighbouring water molecules; *e.g.*, the values of the oxidation barrier in the presence of the water monomer and dimer are equal to 10.20 and 8.32 kcal mol^{-1} , respectively. Such a barrier is believed to be even lower on the surface of aqueous aerosols.

The NH₂(CH₃)₂⁺·SO₃⁻ radical product is an active radical, so it can easily react with other radicals, such as O₂, NO₂, and OH'. For example, our calculations demonstrate that NH₂(CH₃)₂⁺·SO₃⁻·(H₂O)_n ($n \ge 1$) and another NO₂ molecule can spontaneously form a NH₂(CH₃)₂⁺·HSO₄⁻·(H₂O)_{n-1} cluster (ESI Fig. S6(b)†). In addition, HNO₂, the other product of this oxidation reaction, is also an important precursor of OH' radicals in the atmosphere.^{38,39}

The potential energy profiles of $NH_2(CH_3)_2^+ \cdot HSO_3^- \cdot (H_2O)_n$ (n = 0–3) oxidized by N_2O_5 , another abundant oxidative NO_x species in the atmosphere, are shown in Fig. 4(b) and ESI

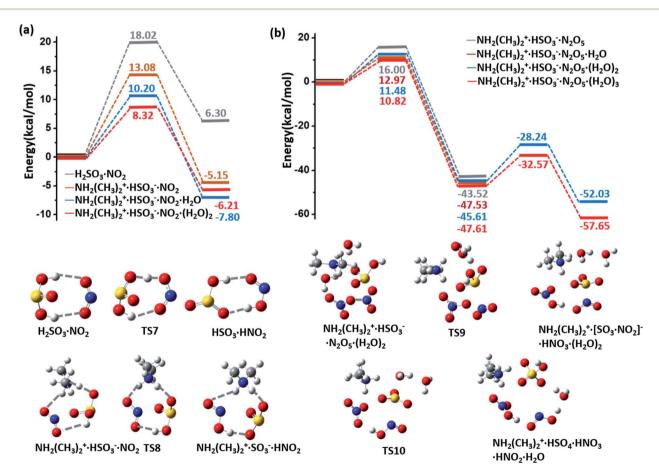


Fig. 4 (a) Potential energy profiles for the oxidation reactions of $H_2SO_3/CH_2(CH_3)_2^+ \cdot HSO_3^- \cdot (H_2O)_n$ and NO_2 (n=0-2). (b) Potential energy profiles for the oxidation reaction for $H_2SO_3/NH_2(CH_3)_2^+ \cdot HSO_3^- \cdot (H_2O)_n$ (n=0,1-3) and N_2O_5 . The energy profiles are calculated at the M06-2X/cc-pVDZ-F12 level with ZPE correction. Snapshots are taken from the BOMD simulation.

Table 1 Values of the total rate constants (k, cm³ molecule⁻¹ s⁻¹) for the hydrolysis reactions at temperatures from 240 to 300 K

Reaction	$k \text{ (cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$			
	240 K	260 K	280 K	300 K
$SO_2 \cdot H_2O + MA$	6.56×10^{-13}	3.09×10^{-13}	$\textbf{1.58}\times\textbf{10}^{-13}$	8.96×10^{-14}
$SO_2 \cdot H_2O + DMA$	3.35×10^{-10}	9.42×10^{-11}	3.21×10^{-11}	1.39×10^{-11}
$SO_2 \cdot (H_2O)_2 + MA$	3.79×10^{-9}	3.17×10^{-9}	$1.18 imes 10^{-9}$	4.22×10^{-10}
$SO_2 \cdot (H_2O)_2 + DMA$	9.01×10^{-9}	7.26×10^{-9}	5.64×10^{-9}	4.53×10^{-9}

Fig. S6(c).† Similar to O₃ oxidation, the process of $(NH_2(CH_3)_2^+ \cdot HSO_3^- \cdot (H_2O)_n$ $CH_2(CH_3)_2^+ \cdot HSO_4^- \cdot (H_2O)_{n-1} + HNO_3 + HNO_2$ is a two-step reaction, where N_2O_5 first dissociates into a $NO_2^- \cdot NO_3^+$ ion pair and combines with the bisulfite cluster to form a HNO₃ molecule and a stable complex $[SO_3 \cdot NO_2]^-$ (Fig. 4(b)). The energy barrier of this step also decreases from 16.0 to 10.82 kcal mol⁻¹ as the number of participating water molecule increases (n = 0-3). In the second step, a H₂O molecule that attacks the sulfur atom will assist the breaking of $[SO_3 \cdot NO_2]^-$, and the product $CH_2(CH_3)_2^+ \cdot HSO_4^- \cdot HNO_3 \cdot HNO_2 \cdot (H_2O)_{n-1}$ is finally formed. This step is also an exothermic process ($\Delta E =$ -6.42 and -10.04 kcal mol⁻¹ for n = 2 and 3, respectively), and the barrier of this step is weakly affected by the number of water molecules ($E_a = 17.37$ and 15.04 kcal mol⁻¹ for n = 2 and 3, respectively). Such high energy barriers indicate that N₂O₅ plays a negligible role in the oxidation of sulfite.

2.4 Kinetics and implications for atmospheric chemistry

The reaction rate constants of hydrolysis reactions are calculated based on TST, as listed in Table 1, and details of this calculation and the reactant concentrations are listed in ESI Tables S1, S2 and S3.† The rate constant for the hydrolysis reaction of $SO_2 \cdot H_2O$ with DMA adopts an inverse relation with temperature, decreasing from 3.35×10^{-10} to 1.39×10^{-11} cm³ molecule⁻¹ s⁻¹ as the temperature changes from 240 to 300 K. According to previous observations, [SO₂] and [DMA] are $\sim 10^{12}$

and ${\sim}10^9$ molecules cm $^{-3}$ in highly polluted air, respectively, while the concentration of H_2O decreases from 9.7 \times 10^{17} to 9.0 \times 10^{15} molecules cm $^{-3}$ at 100% relative humility (RH) as the temperature drops from 300 K to 240 K. 7,30,40 On the basis of these parameters, the estimated concentrations of the $SO_2 \cdot H_2O$ and DMA·H $_2O$ complexes at 300 K are approximately 3.4×10^8 and 1.9×10^6 molecules cm $^{-3}$, respectively, and the rate of hydrolysis for SO_2 and H_2O monomer assisted by DMA is estimated to be 4.8×10^6 molecule cm $^{-3}$ s $^{-1}$.

It is interesting to compare the rate of SO₂ hydrolysis assisted by DMA to the rate of SO2 reacting with OH · radicals under high RH conditions. The latter was previously thought to be the main reaction for SO₂ oxidation. Using the average concentration of OH• during the daytime $(1 \times 10^6 \text{ molecules})$ cm⁻³), the reaction rate of the oxidation of SO₂ by OH' based on a previously calculated rate constant $(1.3 \times 10^{-12} \text{ cm}^3)$ molecule⁻¹ s⁻¹ at 300 K and 1 atm)⁴¹ is 1.5×10^6 molecule cm⁻³ s⁻¹, which is lower than the hydrolysis rate. In this case, the consumption of SO₂ in the hydrolysis reaction can exceed that in the oxidation reaction with OH· radicals. Similarly, the estimated hydrolysis rate for atmospheric SO2, DMA, and $(H_2O)_2$ at 300 K and 100% RH is 2.9×10^6 molecules per cm³ per s, which is also more competitive with the reaction rate of SO₂ and OH·. Moreover, the concentration of OH· would be further lowered due to the reduced photochemistry either during heavily polluted periods or at night time, when the hydrolysis reaction would even play an even more crucial role in SO₂ oxidation.

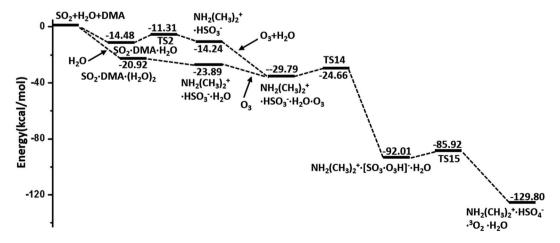


Fig. 5 Overall potential energy profiles for the hydrolysis of SO_2 promoted by DMA and oxidized by O_3 (M06-2X/cc-pVDZ-F12 with ZPE correction).

Edge Article Chemical Science

The hydration products $CH_2(CH_3)_2^+ \cdot HSO_3^- \cdot (H_2O)_n$ are expected to be oxidized by O₃, NO₂, and N₂O₅. The estimated rate constant of the oxidation of $CH_2(CH_3)_2^+ \cdot HSO_3^- \cdot (H_2O)_2$ by O_3 $(5.82 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$ is 3 orders of magnitude higher than that of the oxidation by NO_2 (1.73 \times 10⁻¹⁸ cm³ molecule⁻¹ s⁻¹). As the concentrations of O₃, NO₂ and N₂O₅ were separately measured to be $\sim 10^{12}$, $\sim 10^{12}$, and $\sim 10^{10}$ molecules cm⁻³ in haze episodes, respectively, ^{7,42} we can estimate the lifetime of $CH_2(CH_3)_2^+ \cdot HSO_3^- \cdot (H_2O)_2$ by the expres- $(k \times [oxidant])^{-1}$. The lifetime $CH_2(CH_3)_2^+ \cdot HSO_3^- \cdot (H_2O)_2$ during oxidation by O_3 is $\sim 1/1000$ of that during oxidation by NO2 at 300 K. Considering the much lower oxidation rate constant and concentration of N2O5 than O₃ and NO₂, the oxidation by N₂O₅ is negligible. As a result, the proposed hydrolysis of SO₂ assisted by DMA in an O₃-polluted atmosphere is an important pathway for sulfate formation.

3 Conclusions

In summary, the hydrolysis and oxidation of SO_2 promoted by DMA are studied by using QM calculations and BOMD simulations. In both gaseous and heterogeneous environments, SO_2 can be easily hydrated with the assistance of DMA and then oxidized by O_3 , as shown by the overall energy profile in Fig. 5. By contrast, NO_2 and N_2O_5 , also viewed as important oxidants in the atmosphere, appear to play a much less important role than O_3 in the oxidation of SO_2 . Kinetic analysis shows that the consumption rate of SO_2 during hydrolysis in the presence of DMA can surpass the rate of oxidation with $OH \cdot radicals$ under the conditions of heavily polluted air and high RH.

In the last decade, O_3 levels in the global atmosphere, according to field measurements, have greatly increased. For example, it has been reported that the yearly mean concentration of O_3 in Chinese megacities increased by 69% from 2006 to 2015.⁴³ The results from this research suggest that the hydrated oxidation of SO_2 with amines and O_3 has an important role in atmospheric chemistry.

4 Methods

4.1 Details of QM calculations and BOMD simulations

The geometries of the reactant states, transition states, and product states in all the reactions are optimized at the unrestricted M06-2X/cc-pVDZ- F_{12} level, 44-46 which has shown good results on weak interactions and has been widely used in computational studies of atmospheric chemistry. 16,46-48 Zeropoint energy (ZPE) corrections are included when calculating the potential energies, and intrinsic reaction coordinate (IRC) analysis is carried out to confirm the reaction pathways. WB97XD/cc-pVDZ-F12 and B2PLYPD/def2-TZVP methods are also employed for the total potential energy profiles for comparison, which show great consistency with energy profiles based on M06-2X. All the QM calculations for the reaction pathways are performed by using the Gaussian 09 software package. 49 The spin-polarized calculations are performed based on the generalized gradient approximation of the PBE functional, as implemented in the VASP 5.3.37,50-52 A

kinetic energy cutoff of 400 eV is chosen for the plane-wave expansion. The cell size for the $NH_2(CH_3)_2^+ \cdot [SO_3 \cdot O_3 H]$ cluster is $15 \times 15 \times 15$ Å³.

BOMD simulations are performed in the framework of the Becke-Lee-Yang-Parr (BLYP) functional^{53,54} with the Quickstep module in CP2K code.55 The Gaussian and plane wave (GPW) basis sets (280 Ry energy cutoff) combined with the Goedecker-Teter-Hutter (GTH) pseudopotential⁵⁶ are employed to obtain a good balance between computational cost and accuracy. In addition, the dispersion correction is also included to better describe weak intermolecular interactions.⁵⁷ Periodic boundary conditions are used, and the cell sizes for the SO2·MA/ $DMA \cdot (H_2O)_2$ $NH_2(CH_3)_2^+ \cdot HSO_3^- \cdot O_3 \cdot (H_2O)_4$ $(NH_2(CH_3)_2^+)_2 \cdot SO_3^{2-} \cdot O_3 \cdot (H_2O)_4$ systems are $20 \times 20 \times 20 \text{ Å}^3$. A larger cell size (35 \times 35 \times 35 \mathring{A}^3) is chosen for the hydrolysis reaction of SO₂ on the surface of a water nanodroplet containing 100 water molecules. The BOMD simulations are carried out at lower and higher temperatures (250 and 300 K), and the temperatures of the systems are controlled using the Nosé-Hoover thermostat. The time step of BOMD is set to 1.0 fs, which has been proven to achieve sufficient energy conservation for water systems. 34,47,58 The reaction process is unchanged with a smaller time step of 0.5 fs (ESI Fig. S7†).

4.2 Calculation of the reaction rate constant

The rate constants of hydrolysis and oxidation reactions are evaluated using TST with Wigner tunnelling corrections. ^{48,59,60} As [SO₂][DMA] is negligible relative to [SO₂][H₂O] and [DMA] [H₂O], in the hydrolysis reaction of SO₂ assisted by DMA, two reaction pathways are considered: H₂O first binding to SO₂ and first binding to DMA. Because the concentrations of the reactants DMA, SO₂, SO₂·H₂O, and DMA·H₂O are critical to the final reaction rates, we estimate the number of SO₂·H₂O and DMA·H₂O complexes by the following expressions: [SO₂·H₂O] = $K_{\text{SO}_2 \cdot \text{H}_2\text{O}}$ [SO₂][H₂O] and [DMA·H₂O] = $K_{\text{DMA} \cdot \text{H}_2\text{O}}$ [DMA][H₂O], where $K_{\text{SO}_2 \cdot \text{H}_2\text{O}}$ and $K_{\text{DMA} \cdot \text{H}_2\text{O}}$ are the equilibrium constants for the formation of SO₂·H₂O and DMA·H₂O dimers, respectively. The total reaction rate ν can be expressed as

$$v_{\text{SO}_2 \cdot \text{DMA} \cdot \text{H}_2\text{O}} = k_{\text{SO}_2 \cdot \text{DMA} \cdot \text{H}_2\text{O}}[\text{SO}_2 \cdot \text{H}_2\text{O}][\text{DMA}]$$

$$= k'_{\text{SO}_2 \cdot \text{DMA} \cdot \text{H}_2\text{O}}[\text{SO}_2][\text{DMA} \cdot \text{H}_2\text{O}].$$
(1)

Taking the reaction of $SO_2 \cdot H_2O$ and DMA as an example, the hydrolysis process is represented by

$$SO_2 \cdot H_2O + DMA \xrightarrow[k_{-1}]{k_1} SO_2 \cdot DMA \cdot H_2O \xrightarrow{k_{uni}} DMA^+ \cdot HSO_3^-$$
(2)

By assuming that the reactant complex $SO_2 \cdot DMA \cdot H_2O$ is in equilibrium with the reactant monomers $SO_2 \cdot H_2O$ and DMA, the total rate constant $k_{SO_2 \cdot DMA \cdot H_2O}$ for the reaction can be written as

$$k_{\text{SO}_2 \cdot \text{DMA} \cdot \text{H}_2\text{O}} = \frac{k_1}{k_{-1}} k_{\text{uni}} = K_{\text{eq}} k_{\text{uni}}$$
 (3)

where K_{eq} is the equilibrium constant for forming the reactant complex $SO_2 \cdot DMA \cdot H_2O$ and is expressed by

$$K_{\rm eq} = \exp\left(-\frac{\Delta G_{\rm eq}}{RT}\right) \tag{4}$$

where $\Delta G_{\rm eq}$ is the free-energy change for the formation of the reactant complex, R is the gas constant, and T is the temperature. Here, $k_{\rm uni}$ is estimated by unimolecular TST and is expressed as

$$k_{\rm uni} = \Gamma k_2 \tag{5}$$

The tunnelling effect factor Γ is given by Wigner tunnelling corrections,

$$\Gamma = 1 + \frac{1}{24} \left(\frac{h v^{+}}{k_{\rm B} T} \right)^2 \tag{6}$$

where h is the Planck constant, ν^{\mp} is the imaginary frequency of the transition state, k_B is the Boltzmann constant, and k_2 is represented by

$$k_2 = \frac{k_{\rm B}T}{h} \exp\left(-\frac{\Delta G}{RT}\right) \tag{7}$$

here, ΔG is the activation free-energy change from the reactant complex to the transition state. The entropic term S is obtained from the partition function q(V,T) as

$$S = Nk_{\rm B} + Nk_{\rm B} \ln\left(\frac{q(V,T)}{N}\right) + Nk_{\rm B}T\left(\frac{\partial q(V,T)}{\partial T}\right)_{\rm v} \tag{8}$$

where q(V,T) is determined from the calculation of vibrational frequency.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank Dr Jinrong Yang for valuable discussions. HL is thankful for the funding support from the National Natural Science Foundation of China (21773005). JSF and XCZ acknowledge computer support from UNL Holland Computing Center.

Notes and references

- F. Bianchi, J. Trostl, H. Junninen, C. Frege, S. Henne,
 C. R. Hoyle, U. Molteni, E. Herrmann, A. Adamov,
 N. Bukowiecki, X. Chen, J. Duplissy, M. Gysel, M. Hutterli,
 J. Kangasluoma, J. Kontkanen, A. Kurten, H. E. Manninen,
 S. Munch, O. Perakyla, T. Petaja, L. Rondo, C. Williamson,
 E. Weingartner, J. Curtius, D. R. Worsnop, M. Kulmala,
 J. Dommen and U. Baltensperger, Science, 2016, 352, 1109–1112.
- M. Kulmala, J. Kontkanen, H. Junninen, K. Lehtipalo,
 H. E. Manninen, T. Nieminen, T. Petaja, M. Sipila,
 S. Schobesberger, P. Rantala, A. Franchin, T. Jokinen,

- E. Jarvinen, M. Aijala, J. Kangasluoma, J. Hakala, P. P. Aalto, P. Paasonen, J. Mikkila, J. Vanhanen, J. Aalto, H. Hakola, U. Makkonen, T. Ruuskanen, R. L. Mauldin 3rd, J. Duplissy, H. Vehkamaki, J. Back, A. Kortelainen, I. Riipinen, T. Kurten, M. V. Johnston, J. N. Smith, M. Ehn, T. F. Mentel, K. E. Lehtinen, A. Laaksonen, V. M. Kerminen and D. R. Worsnop, *Science*, 2013, 339, 943–946.
- 3 A. Kürten, F. Bianchi, J. Almeida, O. Kupiainen-Määttä, E. M. Dunne, J. Duplissy, C. Williamson, P. Barmet, M. Breitenlechner, J. Dommen, N. M. Donahue, R. C. Flagan, A. Franchin, H. Gordon, J. Hakala, A. Hansel, M. Heinritzi, L. Ickes, T. Jokinen, J. Kangasluoma, J. Kim, J. Kirkby, A. Kupc, K. Lehtipalo, M. Leiminger, V. Makhmutov, A. Onnela, I. K. Ortega, T. Petäjä, A. P. Praplan, F. Riccobono, M. P. Rissanen, L. Rondo, R. Schnitzhofer, S. Schobesberger, J. N. Smith, G. Steiner, Y. Stozhkov, A. Tomé, J. Tröstl, G. Tsagkogeorgas, P. E. Wagner, D. Wimmer, P. Ye, U. Baltensperger, K. Carslaw, M. Kulmala and J. Curtius, J. Geophys. Res.: Atmos., 2016, 121, 12377–12400.
- 4 R. Zhang, A. Khalizov, L. Wang, M. Hu and W. Xu, *Chem. Rev.*, 2012, **112**, 1957–2011.
- 5 Y. Cheng, G. Zheng, C. Wei, Q. Mu, B. Zheng, Z. Wang, M. Gao, Q. Zhang, K. He, G. Carmichael, U. Pöschl and H. Su, Sci. Adv., 2016, 2016, e1601530.
- 6 D. L. Yue, M. Hu, R. Y. Zhang, Z. B. Wang, J. Zheng, Z. J. Wu, A. Wiedensohler, L. Y. He, X. F. Huang and T. Zhu, *Atmos. Chem. Phys.*, 2010, 10, 4953–4960.
- 7 G. J. Zheng, F. K. Duan, H. Su2, Y. L. Ma, Y. Cheng, B. Zheng, Q. Zhang, T. Huang, T. Kimoto, D. Chang, U. Pöschl, Y. F. Cheng and K. B. He, *Atmos. Chem. Phys.*, 2015, 2015, 2969–2983.
- 8 J. Almeida, S. Schobesberger, A. Kurten, I. K. Ortega, O. Kupiainen-Maatta, A. P. Praplan, A. Adamov, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, J. Dommen, N. M. Donahue, A. Downard, E. Dunne, J. Duplissy, S. Ehrhart, R. C. Flagan, A. Franchin, R. Guida, J. Hakala, Hansel, M. Heinritzi, H. Henschel, T. Jokinen, H. Junninen, M. Kajos, J. Kangasluoma, H. Keskinen, Kupc, T. Kurten, A. N. Kvashin, A. Laaksonen, Lehtipalo, M. Leiminger, J. Leppa, V. Loukonen, V. Makhmutov, S. Mathot, M. J. McGrath, T. Nieminen, T. Olenius, A. Onnela, T. Petaja, F. Riccobono, I. Riipinen, M. Rissanen, L. Rondo, T. Ruuskanen, F. D. Santos, N. Sarnela, S. Schallhart, R. Schnitzhofer, J. H. Seinfeld, M. Simon, M. Sipila, Y. Stozhkov, F. Stratmann, A. Tome, J. Trostl, G. Tsagkogeorgas, P. Vaattovaara, Y. Viisanen, A. Virtanen, A. Vrtala, P. E. Wagner, E. Weingartner, H. Wex, C. Williamson, D. Wimmer, P. Ye, T. Yli-Juuti, K. S. Carslaw,
- 9 D. R. Hanson, J. Geophys. Res., 2002, 107, 4158.
- 10 W.-K. Li and M. L. McKee, *J. Phys. Chem. A*, 1997, **101**, 9778–9782.

H. Vehkamaki and J. Kirkby, *Nature*, 2013, **502**, 359–363.

M. Kulmala, J. Curtius, U. Baltensperger, D. R. Worsnop,

11 J. J. Margitan, J. Phys. Chem. A, 1984, 88, 3314-3318.

12 P. H. Wine, R. J. Thompson, A. R. Ravishankara,

D. H. Semmes, C. A. Gump, A. Torabi and J. M. Nicovich, *J. Phys. Chem.*, 1983, **88**, 2095–2104.

Edge Article

- 13 R. L. Mauldin, T. Berndt, M. Sipila, P. Paasonen, T. Petaja, S. Kim, T. Kurten, F. Stratmann, V. M. Kerminen and M. Kulmala, *Nature*, 2012, 488, 193–196.
- 14 Z. Chen, C. Liu, W. Liu, T. Zhang and J. Xu, *Sci. Total Environ.*, 2017, 575, 429–436.
- 15 F. Sheng, L. Jingjing, C. Yu, T. Fu-Ming, D. Xuemei and L. Jing-yao, *RSC Adv.*, 2018, **8**, 7988–7996.
- 16 H. Zhang, S. Chen, J. Zhong, S. Zhang, Y. Zhang, X. Zhang, Z. Li and X. C. Zeng, *Atmos. Environ.*, 2018, 177, 93–99.
- 17 J. Yang, L. Li, S. Wang, H. Li, J. S. Francisco, X. C. Zeng and Y. Gao, J. Am. Chem. Soc., 2019, 141, 19312–19320.
- 18 R. Steudel and Y. Steudel, Eur. J. Inorg. Chem., 2009, 2009, 1393–1405.
- 19 T. Loerting and K. R. Liedl, *J. Phys. Chem. A*, 2001, **105**, 5137–5145.
- 20 A. F. Voegele, C. S. Tautermann, C. Rauch, T. Loerting and K. R. Liedl, *J. Phys. Chem. A*, 2004, **108**, 3859–3864.
- 21 J. Kirkby, J. Curtius, J. Almeida, E. Dunne, J. Duplissy,
 S. Ehrhart, A. Franchin, S. Gagne, L. Ickes, A. Kurten,
 A. Kupc, A. Metzger, F. Riccobono, L. Rondo,
 S. Schobesberger, G. Tsagkogeorgas, D. Wimmer,
 A. Amorim, F. Bianchi, M. Breitenlechner, A. David,
 J. Dommen, A. Downard, M. Ehn, R. C. Flagan, S. Haider,
 A. Hansel, D. Hauser, W. Jud, H. Junninen, F. Kreissl,
 A. Kvashin, A. Laaksonen, K. Lehtipalo, J. Lima,
 E. R. Lovejoy, V. Makhmutov, S. Mathot, J. Mikkila,
 P. Minginette, S. Mogo, T. Nieminen, A. Onnela, P. Pereira,
 T. Petaja, R. Schnitzhofer, J. H. Seinfeld, M. Sipila,
 - Y. Stozhkov, F. Stratmann, A. Tome, J. Vanhanen, Y. Vijsanen, A. Vrtala, P. E. Wagner, H. Walther
 - Y. Viisanen, A. Vrtala, P. E. Wagner, H. Walther,
- E. Weingartner, H. Wex, P. M. Winkler, K. S. Carslaw, D. R. Worsnop, U. Baltensperger and M. Kulmala, *Nature*,
- 2011, **476**, 429–433. J. Liu, S. Fang, W. Liu, M. Wang, F. M. Tao and J. Y. Liu, *J.*
- 22 J. Liu, S. Fang, W. Liu, M. Wang, F. M. Tao and J. Y. Liu, *J. Phys. Chem. A*, 2015, **119**, 102–111.
- 23 Y. You, V. P. Kanawade, J. A. de Gouw, A. B. Guenther, S. Madronich, M. R. Sierra-Hernández, M. Lawler, J. N. Smith, S. Takahama, G. Ruggeri, A. Koss, K. Olson, K. Baumann, R. J. Weber, A. Nenes, H. Guo, E. S. Edgerton, L. Porcelli, W. H. Brune, A. H. Goldstein and S. H. Lee, Atmos. Chem. Phys., 2014, 14, 12181–12194.
- 24 J. Zheng, Y. Ma, M. Chen, Q. Zhang, L. Wang, A. F. Khalizov, L. Yao, Z. Wang, X. Wang and L. Chen, *Atmos. Environ.*, 2015, 102, 249–259.
- 25 M. Chen, M. Titcombe, J. Jiang, C. Jen, C. Kuang, M. L. Fischer, F. L. Eisele, J. I. Siepmann, D. R. Hanson, J. Zhao and P. H. McMurry, *Proc. Natl. Acad. Sci. U. S. A.*, 2012, 109, 18713–18718.
- 26 C. Qiu, L. Wang, V. Lal, A. F. Khalizov and R. Zhang, *Environ. Sci. Technol.*, 2011, **45**, 4748–4755.
- 27 S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan and J. H. Seinfeld, *Atmos. Chem. Phys.*, 2007, 7, 289–349.

- 28 H. Yu, R. McGraw and S.-H. Lee, *Geophys. Res. Lett.*, 2012, 39, L02807.
- 29 C. Qiu and R. Zhang, Phys. Chem. Chem. Phys., 2013, 15, 5738–5752.
- 30 L. Yao, O. Garmash, F. Bianchi, J. Zheng, C. Yan.,
 - J. Kontkanen, H. Junninen, S. B. Mazon, M. Ehn,
 - P. Paasonen, M. Sipilä, M. Wang, X. Wang, S. Xiao,
 - H. Chen, Y. Lu, B. Zhang, D. Wang, Q. Fu, F. Geng, L. Li,
 - H. Wang, L. Qiao, X. Yang, J. Chen, V.-M. Kerminen, T. Petäjä, D. R. Worsnop, M. Kulmala and L. Wang,
 - Science, 2018, 361, 278-281.
- 31 H. Li, J. Zhong, H. Vehkamaki, T. Kurten, W. Wang, M. Ge, S. Zhang, Z. Li, X. Zhang, J. S. Francisco and X. C. Zeng, *J. Am. Chem. Soc.*, 2018, **140**, 11020–11028.
- 32 B. J. Finlayson-Pitts, L. M. Wingen, A. L. Sumner, D. Syomin and K. A. Ramazan, *Phys. Chem. Chem. Phys.*, 2003, 5, 223–242.
- 33 Y. Miller., B. J. Finlayson-Pitts and R. B. Gerber, *J. Am. Chem. Soc.*, 2009, **131**, 12180–12185.
- 34 J. Zhong, C. Zhu, L. Li, G. L. Richmond, J. S. Francisco and X. C. Zeng, J. Am. Chem. Soc., 2017, 139, 17168–17174.
- 35 C. Schweitzer and R. Schmid, *Chem. Rev.*, 2003, **103**, 1685–1757.
- 36 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- 37 J. Furthmüller, J. Hafner and G. Kresse, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1994, **50**, 15606–15622.
- 38 A. J. M. Anglada, S. Olivella and A. Solé, *Phys. Chem. Chem. Phys.*, 2014, **16**, 19437–19445.
- 39 C. Ye, N. Zhang, H. Gao and X. Zhou, *Environ. Sci. Technol.*, 2017, **51**, 6849–6856.
- 40 M. E. Dunn, E. K. Pokon and G. C. Shields, *J. Am. Chem. Soc.*, 2003, **126**, 2647–2653.
- 41 B. Long, J. L. Bao and D. G. Truhlar, *Phys. Chem. Chem. Phys.*, 2017, **19**, 8091–8100.
- 42 H. Wang, K. Lu, X. Chen, Q. Zhu, Q. Chen, S. Guo, M. Jiang, X. Li, D. Shang, Z. Tan, Y. Wu, Z. Wu, Q. Zou, Y. Zheng, L. Zeng, T. Zhu, M. Hu and Y. Zhang, *Environ. Sci. Technol.*, 2017, 4, 416–420.
- 43 W. Gao, X. Tie, J. Xu, R. Huang, X. Mao, G. Zhou and L. Chang, *Sci. Total Environ.*, 2017, **603–604**, 425–433.
- 44 C. Hattig, W. Klopper, A. Kohn and D. P. Tew, *Chem. Rev.*, 2012, 112, 4–74.
- 45 G. Knizia, T. B. Adler and H. J. Werner, *J. Chem. Phys.*, 2009, **130**, 054104.
- 46 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241.
- 47 J. Zhong, H. Li, M. Kumar, J. Liu, L. Liu, X. Zhang, X. C. Zeng and J. S. Francisco, *Angew. Chem., Int. Ed. Engl.*, 2019, **58**, 8351–8355.
- 48 R. Wu, S. Pan, Y. Li and L. Wang, *J. Phys. Chem. A*, 2014, **118**, 4533–4547.
- 49 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
 M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
 G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato,
 A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts,
 B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov,

Chemical Science

- J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson,
- D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,
- G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota,
- R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
- Kitao, H. Nakai, T. Vreven, K. Throssell,
- J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark,
- J. J. Heyd, E. Brothers, K. N. Kudin, V. Staroverov, T. N. Keith, R. Kobayashi, J. Normand, K. Raghavachari,
- A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi,
- J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas,
- J. B. Foresman and D. J. Fox, Gaussian 09, Revision D.01,
- 50 G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter Mater. Phys., 1993, 47, 558.

Gaussian Inc., Wallingford, CT, 2009.

51 G. Kresse and J. Furthmüller J. Comput. Mater. Sci., 1996, 6,

- 52 G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 54, 11169-11186.
- 53 A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098.
- 54 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785-789.
- 55 J. VandeVondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik and M. Parrinello, J. Chem. Phys., 2005, 122, 14515.
- 56 G. Lippert, J. Hutter and M. Parrinello, Mol. Phys., 2010, 92, 477-488.
- 57 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 58 C. Zhu, M. Kumar, J. Zhong, L. Li, J. S. Francisco and X. C. Zeng, J. Am. Chem. Soc., 2016, 138, 11164-11169.
- 59 J. Elm, S. Jorgensen, M. Bilde and K. V. Mikkelsen, Phys. Chem. Chem. Phys., 2013, 15, 9636-9645.
- 60 H. S. Johnston and J. Heicklen, J. Chem. Phys., 1962, 66, 532-533.