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The information-containing nature of the DNA molecule has been long known and

observed. One technique for quantifying the relationships existing within the

information contained in DNA sequences is an entity from information theory

known as the average mutual information (AMI) profile. This investigation sought

to use principally the AMI profile along with a few other metrics to explore the

structure of the information contained in DNA sequences.

Treating DNA sequences as an information source, several computational

methods were employed to model their information structure. Maximum likelihood

and maximum a posteriori estimators were used to predict missing bases in DNA

sequences. Other novel prediction methods based upon the AMI profile and its

ability to evaluate the predictability of DNA bases were also developed and tested

for accuracy. The AMI profile was also adjusted to account for the triplet-code

nature of DNA sequences. Additionally, machine-learning techniques such as neural

networks, support vector machines, and principal component analysis were used to

classify different regions of DNA sequences using the AMI profile and to compare

coding versus noncoding regions.

Finally, the analysis considered the relative frequency of groups of bases (known

as k-mers) in DNA sequences. Arithmetic coding was explored as a way to effect the

compression of DNA sequences modeled upon the relative frequency of the

appearance of k-mers. It was concluded that biological information stored in DNA



is complex, yet this investigation provided methods to elucidate some of the

character of the information structure of DNA sequences.
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Chapter 1

Background

1.1 Introduction

Deoxyribonucleic acid (DNA) is the molecule in the cells of all living organisms that

contains the information necessary for those organisms to function and reproduce.

DNA is both a code—a recipe for life—and a manufacturing platform with

instructions for building and regulating the proteins that constitute much biological

material. DNA can be described as a “digital” code, meaning that it is composed of

discrete entities called bases (or nucleotides) which correspond to specific chemical

structures in the molecule. The chemical names of these bases are adenine, cytosine,

guanine, and thymine, and they are usually represented as “A,” “C,” “G,” and “T,”

respectively, when DNA is transcribed as a code. Inside the cells of living

organisms, DNA is organized into long strands called chromosomes, which can be

up to millions of bases long. As a digital code containing the information necessary

for life, DNA has a highly organized structure and specifically ordered content. The

structure of the information present in the DNA molecule is not readily evident to

the human eye; in other words, the language of DNA is not a language that human

beings are able to read directly.
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Since the discovery of DNA in the middle part of the twentieth century (often

attributed to James Watson and Francis Crick), scientists have been devising

methods to be able to sequence DNA’s code and interpret what that code says.

Much of this work has involved the use of biological “wet-lab” experimentation. The

location of genes or other informationally significant segments on a DNA strand has

traditionally been found by physical processes and methods that serve as indicators

that an expressed gene originates from a specific location on a chromosome. In

order to better understand the function of DNA in various organisms, a study of

each organism’s genome, the complete set of chromosomes for that particular

organism, was desired. Beginning just over 30 years ago, a concerted effort was

made to determine the base content, as far as possible, of all chromosomes in the

genomes in a multitude of species, most notably human beings (via the Human

Genome Project). The development of DNA sequencing methods has allowed

databases containing the contents of these genomes to be constructed. As a result,

this has made the information contained in the DNA molecule of many organisms

available for further research and analysis.

Of particular interest in the study of the information content of DNA is the

determination of which regions of the chromosomes are used by the cell to make

proteins. Various sections of DNA strands, known as “coding regions,” are used by

the cell as the “blueprints” to construct various protein molecules via a

transcription and translation process. However, other regions of DNA strands,

known as “noncoding regions,” have other various uses or else no known use. With

regard to protein coding, the triplet structure of DNA is well-known, and biological

“wet-lab” experimentation has yielded the ability to discover which regions of DNA

strands code for proteins and which do not. While the basic structure of DNA with

respect to the locations of coding and noncoding regions is known, there are
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currently other aspects of the information structure of DNA that are potentially

unrecognized, especially in noncoding regions where the DNA is not generally

expressed through translation in the cells of the organism. Given the interest in

knowing the function of various DNA regions, a method that could uncover the

underlying information structure present in DNA sequences by segmenting DNA

sequences into segments that correspond to biological realities without recourse to

indirect methods, such as studying gene expression in cells, would be highly useful.

1.2 Information Theory

The ability to segment DNA strands into biologically significant sections by

understanding the DNA’s underlying information structure holds potential for new

discoveries in biology and bioinformatics research. Developing a mechanism to

segment DNA would require a method to determine which bases on the DNA strand

are more informationally significant than other bases. For example, if the DNA

strand were compared to written text in a paragraph, a method to determine that

the word “the” is less informationally significant than a word like “exquisite” would

be required. In short, to discover the biologically significant segments of the DNA

strand, some way of knowing its information structure is needed.

Through biological research, it is known that DNA has a highly organized

structure and specifically ordered content. In other words, DNA contains

information. Consequently, some success has been achieved analyzing DNA using

methods developed to analyze information in general, such as with the concept of

average mutual information.[1] Collectively, these methods derive from the field of

“information theory,” which is a field of study related to the representation of

information that arose from the study of how to communicate information
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effectively.[2] To be able to compress information, something about its structure and

specifically its redundancy must be known. Once that structure is characterized, it

can be exploited to reduce the symbols used to represent the information to a

representation closer to its absolute minimum. The more that is known about the

structure of the information, the closer to the theoretical minimum the compression

can achieve.

1.2.1 Self Information

Information theory as developed by Shannon[2] relies on the fundamental intuition

that the information content of a certain entity or event is inversely related to the

probability that the entity or event will appear from a given source. For example, if

someone were to observe the sun rising tomorrow, that would be an event that has

an extremely high probability of occurring. The fact that the sun rises tomorrow is

not surprising in the least, and thus that event contains very little information—it

tells that person nothing new. However, if that person were to wake up tomorrow

well past the time for sunrise and realize that the sun had not risen, that would have

major implications. The probability of that event happening tomorrow is extremely

close to zero; thus, if that event were to happen, it would contain a large amount of

information; namely, that something has gone very wrong with the solar system.

Information is thus an inverse measure of how probable or improbable it is to

observe a certain effect. Some have even called this measure “surprisal,” how

surprising or unsurprising the occurrence of a particular event is. High probability

means the event is not surprising and thus has low information; inversely, low

probability means the event is surprising if it occurs and thus has high information

content. Thus, letting i(x) be a function measuring the information content for any

event x and letting p(x) be the probability density function, the information (or
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“self information”) for a specific event x = X can be described by the following:

i(X) ∝ 1

p(X)
(1.1)

Mathematically, then, there are three properties that this measure of

information needs to satisfy: (1) An event with a probability of 1 is completely

unsurprising and thus has no information. (2) The less probable an event is, the

more surprising it is and thus the more information it has. (3) If two independent

events are measured separately, the total amount of information contained in their

combination must be the sum of the individual informations of the individual events.

It was shown by Shannon that this relationship between information and probability

can thus be expressed with logarithms such that it satisfies these three properties.[2]

i(X) = log2

(
1

p(X)

)
= − log2 p(X) (1.2)

Because of the inverse relationship in Equation (1.2), property (2) is satisfied

since, as the probability increases, the information decreases, and vice versa. If the

probability of an event is 1, p(X) = 1 and thus i(X) = − log2(1) = 0, satisfying

property (1). Finally, for two independent events, their probability p(XY ) can be

expressed with a product: p(XY ) = p(X)p(Y ). Applying this to Equation (1.2)

yields the following which satisfies property (3):

iT (XY ) = − log2 p(XY ) = − log2 (p(X)p(Y ))

= − log2 p(X) +− log2 p(Y ) = i(X) + i(Y ) (1.3)
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Thus, the information contained in two independent events is just the sum of

their individual informations. A logarithm of any base can be chosen, but log2 is

most often used because it quantifies information represented in bits, since a base-2

number system only has two digits, 0 and 1.

Using this definition of information, the information contained in DNA

sequences can now be quantified. When calculating information values for DNA

sequences, each base in the DNA sequence is treated as an event that can occur

with a certain probability. For example, just considering the short DNA sequence of

bases GAGACAT, the probability of the appearance of C and T, given this short

snippet alone, would be p(C) = p(T ) = 1/7, which is low. Thus, the information

content of bases C and T is high, since each only appears once. Per Equation (1.2),

the information of C and T is i(C) = i(T ) ≈ 2.807. On the other hand, since the

base A appears three times in this sequence, it has the highest probability of

occurrence (p(A) = 3/7) and thus its information content is lower at i(A) ≈ 1.222.

1.2.2 Mutual Information

Often, events carry information not only about themselves but about other related

events as well. When discussing independent events and deriving Equation (1.3), it

was noted that the total information contained jointly in both of the events was just

the sum of the information contained in each of the events. While this is true for

independent events, it is not true for events that are not probabilistically

independent. If the two events are independent, then knowing about one event does

not give any information about the other event. However, if events are

probabilistically dependent on each other, that means each event also contains some

information about the other. This is known as mutual information.[3]
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Before defining mutual information mathematically, a clarification needs to be

made. When determining the total information contained in events X and Y, the

joint probability is used. The joint probability is the probability that events X and

Y both occur. Thus, when representing the associated probabilities using a Venn

diagram, the joint probability represents the overlapping section, as shown in Figure

1.1. However, when determining the information based on the joint probability as in

Equation (1.3), the total information contained in events X and Y is determined. In

other words, when X and Y are considered in terms of information content using a

Venn diagram, the whole Venn diagram is shaded as in Figure 1.2. This is because

the total information contained in events X and Y is contingent on the state of

affairs where both X and Y occur; thus, it is calculated from their joint

(intersection) probability rather than their union probability. However, in the

“information space,” so to speak, it produces a union quantity rather than an

intersection quantity.

Figure 1.1: Venn-diagram representation of the joint probability of two events, in
other words, the probability that both events occur.

The intersection quantity in the “information space” is mutual information, the

information shared by two events, as shown in the Venn-diagram representation of

Figure 1.3. In order to calculate this quantity, the self-informations of events X and
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Figure 1.2: Venn-diagram representation of the total information of two events, in
other words, the total information content of both events X and Y.

Figure 1.3: Venn-diagram representation of the mutual information of two events, in
other words, the information that both events share about each other.

Y can be summed, and then the total information contained in the joint event X

and Y can be subtracted. In the case of dependent events which contain redundant

information about each other, the sum of self-informations will be larger than the

total information. Subtracting the information in the joint event will then yield the

redundant part, which is equal to the information that both events share (the

overlap in the Venn diagram in Figure 1.3), i.e., the mutual information, as

described by Equation (1.4).
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iM(XY ) = i(X) + i(Y )− iT (XY )

= − log2 p(X) +− log2 p(Y )− (− log2 p(XY )) = log2
p(XY )

p(X)p(Y )
(1.4)

In the case of independent events, if the result of Equation (1.3) for iT (XY ) is

substituted in Equation (1.4), it is found that the mutual information contained in

two independent events is zero, and this makes intuitive sense. This means that,

while independent events are not mutually exclusive with respect to probability,

they are mutually exclusive with respect to their information content, as represented

in Figure 1.4. Thus, knowing information about event X does not give any

information about event Y, and vice versa. Dependent events produce an

“information space” that has redundancy and thus would show overlap in the

Venn-diagram representation as in Figure 1.3; in other words, probabilistically

dependent events are not mutually exclusive with respect to information. Thus,

some part of the information content about event X is also information about event

Y, and vice versa.

Figure 1.4: Venn-diagram representation of independent events both with respect to
their probabilities and their information content.

In summary, this means that iT , the total information, represents a union in the

“information space” but is directly calculated from the joint probability, which is an
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intersection in the “probability space.” The mutual information shared between two

events, iM , represents the intersection relationship in the “information space” and

must be calculated by finding the difference between the sum of each event’s

self-information and the total information contained in both events together.

Using the concept of mutual information, the relationship that is shared

between bases in DNA sequences can be quantified. For example, consider a short

DNA sequence of bases AGGACGAGACATG. The sequence has a length of 13

total bases and contains five A bases and five G bases, meaning that the probability

of seeing an A base is estimated at p(A) = 5/13 and the probability of seeing a G is

the same, p(A) = 5/13. The joint probability of seeing an A base and then a G base

immediately after it can also be considered. To calculate this joint probability, it

must be noted that while there are 13 individual bases, there are only 12 complete

pairs of bases, and of these pairs, only two of them are an A followed by a G base

(see Figure 1.5). This means that the joint probability of observing an A base next

to a G base is p1(AG) = 2/12. Using this, the mutual information shared between

bases A and G, given that A and G appear next to each other in that order, can be

calculated using Equation (1.4), which produces the result in Equation (1.5):

iM1(AG) = log2
p1(AG)

p(A)p(G)
= log2

2/12

(5/13)(5/13)
≈ 0.172 (1.5)

Figure 1.5: Calculation of the mutual information on a DNA sequence between bases
A and G given that A and G appear next to each other in that order.
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Additionally, the mutual information between bases A and G can also be

calculated under a slightly modified scenario. In this case, the separation between

the bases is considered, and thus, for example, the mutual information between

bases A and G given that they are separated by only one base could be calculated.

(In other words, bases A and G are two base positions apart). In order to do this,

the joint probability of seeing a G base that occurs two base positions after an A

base must be considered. To calculate this joint probability, it must be noted that

while there are 13 individual bases, there are only 11 complete pairs of bases that

occur one base apart, and of these pairs, three of them are an A followed by a G

base (see Figure 1.6). This means that the joint probability of observing a G base

one base away from an A base is p2(AG) = 3/11. In this manner, the mutual

information shared between bases A and G, given that A and G are one base apart,

can be calculated by once again using Equation (1.4) to produce the result in

Equation (1.6):

iM2(AG) = log2
p2(AG)

p(A)p(G)
= log2

3/11

(5/13)(5/13)
≈ 0.883 (1.6)

Figure 1.6: Calculation of the mutual information on a DNA sequence between bases
A and G given that A and G appear one base apart from each other.

Bringing this all together, it makes sense in these examples, given the slightly

lower frequency of occurrence for bases A and G next to each other (2 occurrences)

compared to one base apart (3 occurrences), that the mutual information between
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bases A and G is greater when they appear one base apart (iM2(AG) ≈ 0.883) than

when they appear next to each other (iM1(AG) ≈ 0.172).

1.3 Average Mutual Information

A key tool for evaluating the information structure of DNA is the average mutual

information (AMI), which is built directly upon the concept of mutual information.

1.3.1 AMI Calculation

The AMI is a weighted average of the mutual information of base pairs calculated

over a whole DNA sequence (S). In order to relate the bases contained in the DNA

sequence to information theory, each base is treated as an event. First, one needs to

estimate the marginal probability of seeing each particular base. To calculate this

marginal probability for an arbitrary base X, the total number of the times base X

occurs in the DNA sequence S (n(X)) divided by the total number of bases in S

(n(S)) yields this result:

p(X) =
n(X)

n(S)
(1.7)

These marginal probabilities need to be calculated for each possible base in the

DNA sequence: A, C, G, or T. Collectively, this set of four bases is called the DNA

base alphabet, denoted by B = {A,C,G, T}.

Secondly, one needs to estimate the joint probabilities for observing two bases in

relation to each other. These bases can occur next to each other, or one of the bases

in the pair under consideration can occur at a location k base positions downstream

from the other base in question. Thus, the number of pairs of the two bases in

question that occur k positions apart relative to how many total bases occur k

positions apart in the whole sequence S needs to be counted. For arbitrary bases X
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and Y , the number of pairs of those bases that occur k positions apart will be

denoted as nk(X, Y ). To obtain the total number of base pairs that occur k

positions apart in the sequence, all base pairs k positions apart in the whole

alphabet B are simply counted up as given in Equation (1.8):

nk(S) =
∑
I∈B

∑
J∈B

nk(I, J) (1.8)

The joint probability can then be straightforwardly estimated by dividing the

number of occurrences of the base pair in question nk(X, Y ) by the total number of

base pairs in sequence S occurring k positions apart to obtain the joint probability

for two bases X and Y k positions apart. In the following, X and Y are arbitrary

bases from the alphabet B which is the set of bases {A,C,G, T}, pk(X, Y ) is the

joint probability of bases X and Y appearing k positions apart, nk(X, Y ) is the

number of times bases X and Y are observed k positions apart in the DNA

sequence, and the denominator represents the total number of base pairs k positions

apart in the DNA sequence.

pk(XY ) =
nk(X, Y )

nk(S)
=

nk(X, Y )∑
I∈B

∑
J∈B nk(I, J)

(1.9)

Using the probabilities defined in Equation (1.4), the mutual information

between bases X and Y can be calculated as follows:

iMk(XY ) = log2
pk(XY )

p(X)p(Y )
(1.10)

Finally, then, the average mutual information is a weighted average of these

mutual informations for all base pairs in the DNA sequence S that occur k positions
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apart. This is calculated as follows:

AMIk =
∑
X∈B

∑
Y ∈B

pk(XY )iMk(XY ) =
∑
X∈B

∑
Y ∈B

pk(XY ) log2
pk(XY )

p(X)p(Y )
(1.11)

The average mutual information represents a measure of the information which is

shared between bases regardless of the specific base pair in question. In other words,

it relates the information any one base likely shares, on average, with any another

base given that the bases are k positions apart.

1.3.2 AMI Profile

The tools of information theory, specifically AMI, may have the potential to model

the information structure of DNA sequences. In general, the more that is known

about the information structure of any data source and the better the model that

exists for it, the better its data can be understood and exploited by the knowledge

of that information’s structure. Based upon the concept of the average mutual

information, a tool for analyzing DNA sequences was developed by Bauer, Schuster,

and Sayood called the “AMI profile.”[1] The AMI profile is simply a vector that

contains the AMI for a certain set of values of k up to a certain “lag.” For a DNA

sequence, its AMI profile describes the differences in how much information bases

share with each other as a function of their distance from each other, on average.

The AMI profile is obtained by calculating the AMI between bases that are 1, 2, . . .

N away, forming a vector of N values describing how the bases in a DNA sequence,

on average, relate to surrounding bases. An example of an AMI profile for human

chromosome 19 can be seen in Figure 1.7.

The concept of the AMI profile can be used to model the information structure

of DNA sequences. The AMI profile of a species’ DNA can contain information
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Figure 1.7: AMI profile for human chromosome 19 showing 150 base lags (k, the
number of positions that separates bases on the DNA sequences for the purposes of
assessing their mutual information). The actual raw value of the AMI on the Y axis is
rather meaningless compared to the relative comparison of those values for different
values of k.

about how its DNA is uniquely structured and can even act as a “species signature”

for identifying from which species a DNA sequence might have originated [1]. The

AMI profile, as it relates to the DNA of a specific species, has been found to have

two somewhat surprising properties that make it an excellent identifier of the

species from which it originates: (1) AMI profiles calculated from DNA are

consistent in shape for all chromosomes from an organism. In other words, the

general shape of the AMI profile does not change regardless of where in the

organism’s genome the DNA sequence is selected from. (2) Although AMI profiles

from one organism are consistent in shape, when compared to the AMI profiles

calculated from the DNA of other organisms, the AMI profiles have distinct shapes.

This is why the AMI profile can be used as a reliable “species signature”; it is
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consistent within all DNA sequences of one species, but it is also sufficiently

different from the AMI profile of any other species.

The AMI profile is simply one way to quantify the information structure

contained in DNA sequences, and it has been shown that the AMI profile can be

reliably used to identify a species simply by the structure of its DNA information as

expressed in the AMI profile.[1] Given this, it would seem feasible that the

information structure of DNA is perhaps sufficiently quantifiable in such a way as to

be able not only to identify a species from its AMI profile but also to recognize and

interpret the significant regions of the DNA sequences themselves within each

species. It is also reasonable to think that the AMI profile itself, or some adjacent

or derivative concept, can be used to discover and describe that structure.

1.4 Overview

This thesis will attempt to explore the question of whether probabilistic models

based on the core concepts of information theory can be used to discover the specific

structure of the information contained in the DNA sequences of organisms. With

the concept of the AMI profile, the relationships between the bases of DNA

sequences can be analyzed and quantified with the hope of differentiating between

more informationally significant regions and less informationally significant regions,

perhaps between coding regions and noncoding regions, and perhaps between bases

or groups of bases that form “hinge points” between differing regions of

chromosomes.

This investigation has followed a somewhat indirect and meandering process of

exploration which has culminated in the discovery of various insights and

limitations concerning the use of information theory methods, and the AMI profile
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in particular, to ascertain DNA’s unique structure. The chapters of this thesis will

contain the following investigations:

• In Chapter 2, an attempt is made to provide a baseline with which to compare

the results obtained from using the AMI profile to predict unknown bases.

Maximum likelihood and maximum a posteriori estimators are used to

quantify how well basic estimation theory can predict unknown bases. From

this result, it can be determined what threshold standard must be exceeded,

and thus a metric can be produced by which to judge the success of using

more sophisticated methods, such as the AMI profile.

• In Chapter 3, in order to use the AMI profile as a method of predicting

unknown bases from known existing bases, an ad hoc method of selecting

which bases to remove and which bases to keep was developed. The results of

this method were an indication of how well the AMI profile could predict

unknown bases in the case when the bases used to make the prediction and

the bases making the prediction were chosen arbitrarily. However, a key

component in compressing DNA sequences is choosing which bases can be

discarded and which bases can be retained in order to get an accurate

reproduction. The AMI profile was used to make this determination to see

whether or not a subset of bases chosen by the AMI profile itself would yield

better results than the method of choosing them arbitrarily for base prediction.

• In Chapter 4, to further explore the features of the AMI profiles calculated

from DNA sequences, alternate AMI profiles calculated with respect to DNA

triplets were constructed since DNA is known to operate via a triplet code.

The features and anomalies of these triplet AMI profiles were analyzed and
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compared amongst organisms, and special attention was made to the

appearance of long tandem repeats in human DNA sequences.

• In Chapter 5, it was noted that DNA consists of regions that code for proteins

known as coding regions found by “wet-lab” experimentation, the locations of

which are generally well known. Various machine learning techniques such as

neural networks and support vector machines were explored in combination

with the AMI profile to determine whether coding regions, whose locations are

already known, could be sufficiently differentiated from noncoding regions.

This would indicate whether the AMI profile is helpful in differentiating

between known regions.

• In Chapter 6, a method to identify differing regions of the DNA sequences on

chromosomes was developed using principal component analysis based upon

the AMI profile to differentiate between regions. The goal was to determine if

any clustering of DNA sequences produced by the principal component

analysis could be related to the information contained in the various

differentiated regions.

• In Chapter 7, an arithmetic coding method was developed and applied to

DNA sequences after determining the frequency of appearance of groups of

bases (“k-mers”) in DNA sequences. The relative frequency of the k-mers was

used to test both adaptive and non-adaptive methods of arithmetic coding on

several bacterial genomes to analyze whether the information about the

appearance of k-mers in the DNA of an organism could be used to compress

its own genetic information as well as that of other organisms.
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Chapter 2

Base Prediction Using Estimation Theory

2.1 Introduction

In order to appropriately determine which sections of DNA are informationally

significant, a model of its underlying information structure is required. Such a

model could be constructed in a number of conceivable ways, but it is not yet

known which method can produce a sufficiently accurate model. One way to test

the fitness of a model for the information structure of DNA is to use it to compress

and correctly recover the data contained in a DNA sequence. If compression and

recovery can be performed successfully in this context, it would indicate that the

model used in such a process was sufficiently accurate to describe the information

structure of the DNA sequence.

To develop a compression and recovery process for DNA bases, some method of

recovering DNA bases missing from a sequence that only uses the retained bases in

the sequence would be needed. This chapter studies the possibility that two

common estimators, the maximum likelihood (ML) estimator and the maximum a

posteriori (MAP) estimator, could serve as accurate recovery methods for this

purpose. These two estimators are based on the conditional probabilities of the

surrounding bases and attempt to estimate missing bases in the DNA sequence by
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using the maximum values of these associated conditional probability distributions.

This chapter aims to determine whether these common estimation methods can be

used to accurately predict missing bases in DNA sequences and, more broadly,

whether or not these estimation methods can capture enough of the underlying

information structure of DNA sequences.

The ML and MAP estimators function by determining the values of missing

bases based on both the retained bases and the probabilities of bases being

associated, in general, with one another. To evaluate both the ML and MAP

methods of estimation for missing DNA bases, three main questions about the

sufficiency of these estimators are explored. First, how many bases surrounding the

missing base in question need to be included in the determination of the conditional

probabilities for the predictions to be relatively accurate? In other words, to what

extent will contributions from bases farther away from the missing base affect the

accuracy of these estimators? Second, is it better to consider the conditional

probabilities of surrounding bases individually and then aggregate the results of

multiple conditional probability mass functions (PMFs) for each surrounding base,

or is it better to consider the surrounding bases collectively in a single joint

conditional probability? Finally, will the results match the common understanding

that the MAP estimator is superior to the ML estimator? In other words, is the

MAP estimator more accurate at predicting missing bases from surrounding ones as

would be expected? The answers to these questions will direct the inquiry of

determining the usefulness of estimation-theory methods in predicting DNA bases.
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2.2 Methods

Using traditional estimation methods to estimate or predict missing bases in a DNA

sequence requires some knowledge of the probability distributions that relate to

each base and its position in the DNA sequence. These probabilities can be

measured from the full, original DNA sequence (or a subsection thereof) by

calculating the marginal probability of the appearance of each base as well as joint

probabilities of bases that appear a specific number of positions away from each

other, e.g., the probability that base A appears at a certain position and base T

appears two positions after it. Using these probabilities calculated from the known

DNA sequence, the associated discrete conditional probability distributions can

then be approximated. Once these PMFs are obtained, then the ML and MAP

estimators are found by simply identifying the base at which the maximum

probability mass appears. Since the PMFs are based on “valueless” elements (the

DNA bases A, C, G, and T have no numeric value relative to each other), selecting

the base with the maximum probability in the distribution will yield the estimate.

The probabilities calculated from the known DNA sequence (before bases are

removed) are obtained as follows. As with the determination of AMI in Equation

(1.7), the marginal probabilities for each base are calculated by considering the total

number of times a base X appears in the sequence and dividing that number by the

total number of bases in the sequence. The joint probabilities for each pair of

specific bases appearing a certain distance from each other are calculated according

to Equation (1.9). Based on these empirical marginal and joint probability

calculations, both the likelihood and posterior conditional PMFs are approximated

using Bayes’ Theorem according to Equation (2.1). In this equation, pk(X|Y ) is the

conditional probability of base X appearing given that base Y appears k positions
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away, pk(XY ) is the joint probability of bases X and Y appearing k positions apart,

and p(Y ) is the marginal probability of base Y .

pk(X|Y ) =
pk(XY )

p(Y )
(2.1)

Once the conditional probabilities are calculated for each base of interest, the

ML and MAP estimates can be found by finding the base with the maximum

probability mass in the corresponding conditional PMF. As described in [4], the ML

estimator relies on the likelihood conditional probability distribution, P (Y |X),

which is the probability that some measurements Y would occur given an associated

state X. In contrast, the MAP estimator relies on the posterior conditional

probability distribution, P (X|Y ), which is the probability that the state X would

exist given the measurements Y occurred. For bases in a DNA sequence, the

missing base is treated as the “state,” which is unknown and needs to be estimated,

and the surrounding known bases are treated as the “measurements” since they are

known and are the basis for the estimation.

Specifically, the likelihood conditional probability used in the ML estimator is

the probability of the occurrence of the surrounding bases given the unknown base.

For example, in the short sequence GAG CAT, the likelihood conditional

probability is the probability that G occurs three positions away from the unknown

base given that the unknown base is A. This is considered for all four possible base

values (A, C, G, and T) for the unknown base to form the discrete likelihood

conditional PMF. The posterior conditional probability used in the MAP estimator

is the probability of the unknown base given the surrounding bases. For example, in

the same short sequence GAG CAT as before, the posterior conditional probability

is the probability that the unknown base is A given that G is three positions away.
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Unknown Base ML PMF3 MAP PMF3

A p3(G|A) p3(A|G)
C p3(G|C) p3(C|G)
G p3(G|G) p3(G|G)
T p3(G|T ) p3(T |G)

Table 2.1: Summary of the construction of the PMFs for both the ML and MAP
estimators for an unknown base, the state, given that the base G, the measurement,
is three positions away.

This is also considered for all four possible base values for the unknown base to form

the discrete posterior conditional PMF. A summary of the construction of these

PMFs for the ML and MAP estimators according to the example used can be seen

in Table 2.1.

Since there is more than one known base surrounding any given unknown base,

the ML estimate and MAP estimate can be computed in one of two ways. First,

each surrounding base can be considered an individual estimator, and thus each

base would produce an estimate for the unknown base from its specific,

position-dependent conditional PMF. To determine the final estimate for that

position, each surrounding base casts one “vote” for its prediction, and the winner

with the most votes is selected as the prediction representing all the surrounding

bases. This will be called the “individual” method of estimation. (As a tie-breaker

in case of two estimates receiving equal votes, the base with the higher marginal

probability is selected.) Second, all surrounding bases can be considered together to

be one estimator. In this case, the appearance of each surrounding base is

considered a probabilistically independent event, and so the conditional PMFs for

each surrounding base are multiplied together to obtain a joint conditional PMF for

all surrounding bases. For example, with the short GAG CAT sequence from before,

this joint conditional PMF for the ML estimator represents the probability that
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GAG and CAT surrounds the unknown base given that it is A. For the MAP

estimator with the same sequence, this joint conditional PMF represents the

probability that the unknown base is A given that GAG and CAT surround it. The

ML and MAP estimates are then determined to be the base with the maximum

probability mass in their respective joint conditional PMFs. This will be called the

“collective” method of estimation.

To test the accuracy of the ML and MAP estimators in both the individual and

collective implementations, they were applied to several human chromosomes.

Sequences of 500 bases in length, taken from each of these chromosomes, were used

for each test; thus, the probabilities were calculated specifically from these

500-base-long sequences, not for the chromosome as a whole, as this can better

encapsulate local information and provide for better estimates. The ML and MAP

estimators were tested to predict each base in the sequence, as each base was

removed one-by-one and a specific number of surrounding bases (called the “window

length”) was used to predict the one missing base. The window length was

measured reflectively about the unknown base, so a window length of 10 means that

10 bases before and 10 bases after the unknown base (if the ends of the sequence

permitted) were included in the determination of the ML and MAP estimators.

Both the individual and collective implementations of the ML and MAP estimators

were tested over varying window lengths, from 1 to 100 bases on either side of the

unknown base. Once all bases in the sequence had been predicted, the “predicted

sequence” was compared with the original, actual sequence, and an accuracy value

(from 0 to 1) was determined. Finally, to obtain results that were representative of

the chromosome as a whole, the accuracy values for each type of ML or MAP

estimator were averaged over 25 different 500-base sequences from different locations

on the chromosome.
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2.3 Estimator Prediction Performance

The ML and MAP estimators were tested on DNA sequences from several

chromosomes in the human genome (obtained from the GRCh38.p13 Primary

Assembly in the RefSeq database of NCBI). These chromosomes were somewhat

arbitrarily selected: chromosome 9 (NC 000009.12), chromosome 15

(NC 000015.10), the X chromosome (NC 000023.11), and the mitochondrial DNA

sequence (NC 012920.1). An additional “randomly generated” DNA sequence was

created by selecting from each base (A, C, G, or T) at random with equal

probability. This sequence was thus designed to have no underlying information

structure since the order of its bases was random. All ML and MAP estimators were

also tested on this randomly generated sequence as a control in order to

demonstrate that the ML and MAP estimators were capturing some underlying

structure in the DNA data. The results on the randomly generated sequence can be

seen in Figure 2.1, and the results for the real human chromosomes can be seen in

Figures 2.2 through 2.5. These results show that both the ML (with the exception

of the mitochondrial DNA) and the MAP estimators outperform random guessing of

bases, which should result in an average accuracy of 25%.

Figure 2.1 demonstrates that, when applied to a random DNA sequence that

contains no real information and no structure, both the ML and MAP estimators

only attain at or slightly over a 25% accuracy, which is expected, indicating that

there are probably no measurable biases or other anomalies associated with the

estimation process itself. By comparison with the results from the human

chromosomes, it also shows that the real DNA has underlying information structure

that the ML and MAP estimators are capturing when they have average accuracy

values greater than 25% for the real human chromosomes.
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Figure 2.1: Average accuracy for the individual and collective methods of both the
ML and MAP estimators over varied window lengths for randomly-generated DNA-
like sequences.

The results for the chromosomes in Figures 2.2 through 2.5 show similar trends

for both estimators. It can be seen that a window length of about 20-30 bases on

either side of the unknown base is sufficient to obtain the highest accuracy possible

for each estimator. For the ML estimator, regardless of the chromosome studied, the

collective method, where the maximum of the joint conditional probability of all

bases in the window was used, performed better than the individual method by

about 1-4% accuracy. For the MAP estimator, however, the results for the

individual and collective methods were almost identical, and neither produced more

accurate results on any chromosome tested. It can be speculated that this is due to

the fact that, with the MAP estimator, the bases surrounding the unknown base are

treated as given in its definition of the conditional probability; thus, the estimation

of the unknown base varies little for either the individual or collective methods.

Considered another way, the fact that the surrounding bases are already known

when using the MAP estimator precludes the mechanism by which the maximum
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Figure 2.2: Average accuracy for the individual and collective methods of both the
ML and MAP estimators over varied window lengths for human chromosome 9.

probability and thus the estimate is calculated from varying widely since that

mechanism uses the surrounding bases to make its determination. For the ML

estimator, however, since the surrounding bases are probabilistically considered

based on their conditional probability given the unknown base, the method for

calculating the maximum conditional probability can greatly affect the prediction of

the unknown base. In other words, the collective method intuitively makes more

sense when considering the probability that the surrounding bases, taken together,

appear given the unknown base rather than considering how each individual

surrounding base would appear by itself, to the exclusion of the others, given the

unknown base.

In all cases studied, the MAP estimator always outperformed the ML estimator,

which was expected. The MAP estimator achieved greater than 32% accuracy on all

tests, and its greatest performance was on the X chromosome, which averaged about

a 36.5% accuracy. In comparison, the ML estimator only reached a maximum of
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Figure 2.3: Average accuracy for the individual and collective methods of both the
ML and MAP estimators over varied window lengths for human chromosome 15.

32% for the X chromosome, and sometimes averaged no better than random

guessing at 25% accuracy. Therefore, since the highest observed accuracy of the ML

estimator was the lowest accuracy observed for the MAP estimator, the MAP

estimator can be considered superior to the ML estimator in this application as in

many others. However, accuracies of no greater than 36.5% on average (with some

individual, unaveraged test results reaching as high as 48%) for the MAP estimator

do not provide accurate enough recovery for a compression and recovery scheme to

be successful by itself using only the MAP estimator. It can be said that while the

results of both the ML and MAP estimators are insufficient for full compression and

recovery, their best accuracy can serve as a threshold for more sophisticated

methods of prediction to be measured against if they are to be deemed more

successful than simple estimators.
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Figure 2.4: Average accuracy for the individual and collective methods of both the
ML and MAP estimators over varied window lengths for the human X chromosome.

2.4 Future Work

Some future work in this area could potentially include incorporating the MAP

estimator method with other approaches such as those discussed later which use the

AMI profile in order to achieve improved accuracy. More future work could entail a

deeper study of some of the actual predictions and the response of these estimator

methods to high marginal probability, as some results produced predictions of the

same base for the entire sequence if the marginal probability of one base was

exceedingly high for a part of the sequence. There is also a chance that these

estimation methods could inform the first part of the information-structure model,

the choice of bases to keep in a compression set, rather than just affecting the

recovery phase, which could lead to further study. Finally, conditional probabilities

that take into account the order of the bases could be studied in addition to the

directionless ones addressed in this study. In other words, this chapter only

examined the probability that specific bases occurred a certain distance apart, e.g.,
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Figure 2.5: Average accuracy for the individual and collective methods of both the
ML and MAP estimators over varied window lengths for human mitochondrial DNA.

whether an A was three spaces away from a G, but it did not examine whether the

additional information about where bases occur affected the results, e.g., whether an

A appeared either three before a G or three after a G.

2.5 Conclusion

The purpose of this study of ML and MAP estimators was to determine if these

common methods of estimation could predict missing DNA bases accurately such

that they could form the basis of a model for compression of DNA sequences. If an

accurate model for compression and recovery could be found, then knowledge of the

information structure of DNA could be obtained as a byproduct. It was found that

both the ML and MAP estimators performed better than random, meaning they

captured some probability-based information structure in the DNA sequences, and

it was also found that the MAP estimator always outperformed the ML estimator.

However, although the ML and MAP estimators tested do expose some of the
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information structure within the DNA sequences, their accuracy was not sufficient

to be used as the sole recovery method for missing DNA bases. At minimum, since

ML and MAP estimators represent very basic models of prediction, these results

could be used as a baseline to evaluate the results of other, more complex models in

justifying their increased complexity.
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Chapter 3

Base Prediction Using the AMI Profile

3.1 Introduction

Inspired by a compression method for images called “inpainting” developed by

Galić, Weickert, et al. and described in [5], which was able to use partial differential

equations to predict regions of missing pixels in an image based on retained pixels, a

prediction mechanism for missing DNA bases was developed that used the AMI

profile in place of partial differential equations. This method was tested to

determine whether the AMI profile of a DNA sequence alone could predict missing

bases in that same sequence based on certain bases which were retained. If this

could be done, then DNA could be compressed and recovered accurately. In order to

perform recoverable compression of anything, its underlying structure has to be

understood. If the information structure of DNA was being quantified by the AMI

profile in a manner suitable for compression, then that knowledge of the structure

could possibly be exploited to discover the locations of informationally significant

regions of the DNA sequence.

When conceptualizing this approach to predict missing bases of a DNA sequence

based on strategically retained bases, the problem of selecting which bases to retain

and which to discard is evident. The methods employed by [5] were specifically
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tailored to the problem of image compression, such as retaining pixels in regions

around definite features and points of high contrast within the image and discarding

pixels in regions without much variation. In the realm of DNA, however, the ideal

method for selecting which bases to retain and which bases to discard was not

inherently evident. Thus, two methods were attempted: one method simply selected

groups of bases to retain and to leave out arbitrarily. The other method attempted

to quantify which bases would be the best at predicting other bases in order to

retain the best predictors and discard the worst predictors.

3.2 Ad Hoc Prediction Method

Without any method readily suggested by the AMI itself for selecting bases to

discard and bases to retain, an “ad hoc” method was employed which arbitrarily

selected bases to be retained and bases to be discarded based on regular increments

of bases. These two increments of bases were referred to as “groups” and “gaps,”

which consisted of a certain number of bases in each that repeated regularly for the

length of the DNA sequence in question. These two arbitrary parameters, the group

length and the gap length (in terms of the number of bases in each), were fixed at

the beginning of a prediction test. The group length determined how many bases in

a row would be retained on the DNA sequence before a gap was encountered.

Consequently, the gap length determined how many bases in a row would be left out

on the DNA sequence between two groups which were retained. In the end, this

resulted in a DNA sequence with alternating groups and gaps of fixed lengths

sequentially alternating as one moves along the DNA sequence. All the bases in the

group regions were retained and thus became part of the compression set. An

algorithm was then employed to predict the values of the bases in the gap regions
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from the bases remaining in the group regions using the joint probabilities and the

AMI profile.

3.2.1 Process and Methods

In order to perform base prediction testing, first a DNA sequence was selected for

analysis. The probability of each base’s occurrence in the sequence was determined

for each base according to Equation (1.7). Using this, the joint probabilities of the

occurrence of each base type with respect to every other base type k positions away

were determined according to Equation (1.9). Finally, using these probabilities, the

AMI profile was calculated for this sequence according to Equation (1.11). In

performing these calculations, all bases in the sequence were known. (In other

words, no bases had yet been excluded for the purposes of prediction.)

Once the AMI profile had been determined, the group length (X) and gap length

(Y) were fixed. The retained bases on the DNA sequence would be constructed as

follows: starting at the beginning of the sequence, X number of bases (a group)

would be retained, and then the next Y bases (a gap) would be omitted. Then

another X would be retained, another Y omitted, and so on for the whole sequence.

The retained bases formed the set upon which recovery of the missing bases would

be attempted using the AMI profile and the joint probabilities between all bases.

Several methods for determining the missing bases in each gap were tested. To

begin, each empty base position in the gap would be considered individually. For a

particular empty base position, both the bases in the group immediately before the

base position in question and the bases in the group immediately after the base

position in question would be used to determine the missing base. The joint

probabilities of each base with respect to another base k positions away were used

to make guesses about what the base in the gap position in question should be.
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Every base in both the precedent and subsequent groups made a guess based on its

own joint probability with the empty base position in question by distance k (which

would be different for each base in each group). Finally, once each base in both

groups had made its “guess,” then these guesses would be analyzed to determine the

final prediction for that base position. If the joint probabilities of two bases with

respect to the base in question k positions away were equal, the marginal

probabilities of each single base would be used as a tie breaker. (In other words, the

base with the highest appearance in the sequence was chosen as the prediction.)

For example, consider the sequence fragment GAG CAT, which contains a

group length of three bases and a gap length of five bases. In this whole sequence,

there are three bases retained before a gap and three bases retained after it. To

begin making predictions, the first empty base position in the gap of five bases

would be considered. The first base in the preceding group would make a guess at

the empty base. Since the group in this example is size 3 and the first base position

in the gap is being considered, the joint probability of the base G with all other base

types three positions away would be considered. The base out of the set A, C, G, T

which had the highest joint probability with base G at three positions away (k = 3)

would be chosen as the “guess” from base G. Next, the base A from the preceding

group would be considered. The joint probability of base A with a base that is now

two positions away from the base position in question would be used to make its

guess. Thus, the base out of the set A, C, G, T which had the highest joint

probability with base A at two positions away (k = 2) would be chosen as the

“guess” from base A. The same process would be followed for the second base G in

the preceding group with k = 1.

A similar backward-looking process would then be followed for each base in the

succeeding group for the same base position in question (the first position in the gap
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in this example). First, the joint probabilities of base C with another base that is 5

positions away (k = 5) would be considered, and the base out of the set {A, C, G,

T} which had the highest joint probability with base C at 5 positions away would

be chosen as its “guess” for the empty base position in question. The same process

would be followed for bases A and T in the succeeding group.

Once all of the bases in the groups both before and after the base position in

question have made their guesses, these guesses are then compared and a single

prediction for that base position is offered. The contribution of each bases’ guess is

weighted by the AMI profile value for how far away that base is from the empty

base position in question. Two prediction modes were tested: (1) The “weighted

vote” prediction mode had each base in the surrounding set of retained bases “cast

a vote” for the base that it guessed, with each “vote” weighted by the AMI profile

for the position of the base relative to the empty base position in question. The

base receiving the highest score as a sum of the weighted votes was made the

prediction for that empty base position. (2) The “highest weight” prediction mode

simply made the guess of the base with the highest AMI weight the prediction for

the empty base position in question.

The ad hoc prediction method would use this process to predict a base for every

empty base position on the sequence. Once all bases were predicted, each empty

base position was compared to the known bases from those positions, and an

accuracy value was determined. Many tests were performed combining various

values for the group and gap lengths.

3.2.2 Prediction Results

This ad hoc method yielded mixed results when tested on various DNA sequences.

Assuming that guessing bases randomly would be met with a 25% success rate, the
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ad hoc method performed better than random guessing, meaning that it was

detecting “something” in the data, but the accuracy of the predictions rarely

exceeded 50% for any sequence no matter what combination of group and gap

values were tested. Prediction accuracy rates of 30-35% were very common. As a

control, is was observed that, if instead of using an actual human DNA sequence, a

randomly generated string of the letters A, C, G, and T was used, the prediction

levels never exceeded 25-27%. Thus, there was some structure within the

information being exploited by the prediction methods tested, because accuracy

levels were above that for trying to predict a sequence with no structure. However,

not enough information was obtained to determine exactly what that structure was,

how to improve it, or how to use it effectively and reliably (in other words, employ

this method of prediction method repeatedly with confidence in the results).

To analyze the accuracy of these prediction methods, human chromosome 9

(NC 000009.12 Homo sapiens, GRch38.p13) and chromosome 15 (NC 000015.10

Homo sapiens, GRCh38.p13) were arbitrarily chosen to be analyzed. On each

chromosome, 20 different sequences consisting of 1,000 bases each were chosen, and

the accuracy results obtained from predicting bases on each of these sequences were

averaged together to get a final average accuracy. For chromosome 9, in order to

avoid the telomere region where bases in the human genome assembly are often

undetermined, the starting offset was set to 1,000,000 bases from the start of the

chromosome. Each 1,000-base sequence was then selected at 1,000,000-base

intervals, thus selecting sequences from position 1,000,000, 2,000,000, 3,000,000, etc.

For chromosome 15, since close to 17,000,000 bases at the start of the chromosome

are currently undetermined, the starting position for the selection of its 1,000-base

regions was at position 18,000,000; starting there, regions were selected similarly to

those for chromosome 9.
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The results on chromosome 9 when using prediction mode (1), where each vote

is weighted by its AMI profile value, are given in Figure 3.1. The highest average

accuracy for any region on chromosome 9 using this base-prediction method was

33% for a group length of 6 and a gap length of 1. This is almost a trivial case,

since 6 bases are retained for every one base discarded, which makes the achievable

compression very low, even if close to 100% accuracy could be obtained. Intuitively,

it can be seen that slightly greater accuracies result when there are fewer gap

positions and more bases retained. Beyond that, however, it turns out that the

group and gap length combination has an almost negligible effect on the average

accuracy that can be obtained.

Figure 3.1: Heat map showing the average accuracy of predicting missing bases with
varying group and gap lengths for 20 regions on human chromosome 9 using the
weighted-voting prediction mode.

The results on chromosome 9 when using prediction mode (2), where only the

guess with the highest AMI-profile value is chosen as the prediction, are given in

Figure 3.2. These outcomes are extremely similar to those for prediction mode (1)

with only a slightly lower maximum average accuracy of 32.6% for all regions tested.

Once again, the intuitive result that regions with fewer gaps and more bases

retained have higher prediction accuracies. However, no substantial improvement or

deterioration in accuracy is observed depending on which prediction mode was
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employed. These accuracy values for this prediction algorithm, while performing

better than random guessing, which should be expected to achieve a 25% accuracy,

fare hardly better than the results for the best estimators studied in Chapter 2.

Figure 3.2: Heat map showing the average accuracy of predicting missing bases with
varying group and gap lengths for 20 regions on human chromosome 9 using the
highest-weight prediction mode.

It can be noted, however, that these accuracies are averages over several regions

on chromosome 9. If an optimistic lens is used, the maximum accuracy for any trial

in any particular region can be noted to see if the performance of any trial shows

promise as a potential compression technique. The maximum accuracy for any trial

conducted in any particular region for each group- and gap-length combination can

be seen in Figure 3.3. (Since the weighted-voting prediction mode had slightly

better accuracy, only its results are shown.) It can be seen that, while these

accuracy values are generally higher, representing somewhere between 40% and 50%

accuracy, a 50.5% accuracy is still the highest accuracy that could be obtained for

this ad hoc prediction method anywhere in the trials on human chromosome 9,

which is not significant enough to form the basis of a compression technique.

Trials on human chromosome 15 displayed highly similar results to those of

chromosome 9. The average accuracies for all trials performed on chromosome 15

using prediction mode (1) can be seen in Figure 3.4, while the average accuracies
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Figure 3.3: Heat map showing the maximum accuracy obtained predicting missing
bases with varying group and gap lengths for any of the 20 regions on human chro-
mosome 9 using the weighted-voting prediction mode.

using prediction mode (2) are shown in Figure 3.5. Once again, the average

accuracies all fall within a close range of about 28-33% regardless of the group and

gap lengths employed. However, for chromosome 15, prediction mode (2) performed

slightly better than prediction mode (1), just about reversing the results obtained

from chromosome 9. As can be seen in Figure 3.6, the maximum accuracies observed

for any trial on any region of chromosome 15 were still almost always below 50%, as

observed for chromosome 9, with the exception of some values that exceeded 50%,

the maximum being 56.9% for a group length of 13 and a gap length of 1. Again, it

can be reiterated that this “best” result is an edge case—a trivial situation in which

only one base can be discarded for every 13 bases retained, which simply will not

form a feasible foundation for any type of consequential compression technique.

3.2.3 Prediction Results with Single-Base AMI Profiles

Due to the relatively low accuracy results obtained for the ad hoc base-prediction

method explored so far, it was assumed that more knowledge of the information

structure of a DNA sequence could yield higher prediction accuracies. The only

active components of the prediction algorithm quantifying the relatedness of the
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Figure 3.4: Heat map showing the average accuracy of predicting missing bases with
varying group and gap lengths for 20 regions on human chromosome 15 using the
weighted-voting prediction mode.

Figure 3.5: Heat map showing the average accuracy of predicting missing bases with
varying group and gap lengths for 20 regions on human chromosome 15 using the
highest-weight prediction mode.

information contained in each sequence were the joint probabilities between bases

and the AMI profile. It was postulated that, if the AMI profile could contain a more

granular description of the information content of the DNA sequence, it might be

better at guessing which bases should be predicted.

The AMI profile, as defined in Equation (1.11), is an average measure which

quantifies the mutual information between two base positions only—without regard

to the particular bases involved in this relationship. Thus, the AMI profile doesn’t

contain any description of the relatedness of particular bases to other particular

bases. Rather, it only contains a general description of how likely one base is to be
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Figure 3.6: Heat map showing the maximum accuracy obtained predicting missing
bases with varying group and gap lengths for any of the 20 regions on human chro-
mosome 15 using the weighted-voting prediction mode.

related to any other base k base positions away. However, another type of

“single-base” AMI profile can be defined which does take into account the mutual

information shared between particular bases. This is accomplished by simply

removing one of the averages from Equation (1.11). Thus, a single-base AMI profile

is defined in Equation (3.1) for any particular base Z.

ZAMIk =
∑
Y ∈B

pk(ZY )iMk(ZY ) =
∑
Y ∈B

pk(ZY ) log2
pk(ZY )

p(Z)p(Y )
(3.1)

Thus, using single-base AMI profiles, there are now four different AMI profiles

that could be used for any base-position separation k, one profile for each of A, C,

G, and T. For the purposes of the prediction algorithm, the particular base of these

single-base AMI profiles would represent the known base in the relationship that

was being ascertained. It was hoped that single-base AMI profiles would provide a

way to describe more specific elements of the information structure of the DNA

sequences, leading to higher accuracy values. This was, however, not the case.

Identical trials to those performed previously were performed on human

chromosomes 9 and 15 with the exception that single-base AMI profiles instead of
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the standard AMI profile were used in making final base predictions. The resulting

average accuracies for predictions using single-base AMI profiles can be seen in

Figure 3.7 for prediction mode (1) and in Figure 3.8 for prediction mode (2).

Similarly, the same results for chromosome 15 can be seen in Figure 3.9 and Figure

3.10. Once again, average accuracies within the range of 26-32% were common. The

highest average accuracies for chromosome 9 were 31.8% and 30.5% for prediction

modes (1) and (2), respectively. For chromosome 15, the highest average accuracies

reported were 32.5% and 30.1% for prediction modes (1) and (2), respectively.

This showed, similar to the results using the full AMI profiles, that prediction

mode (1) was slightly better than prediction mode (2). That observation is of little

import, however, as neither prediction mode substantially distanced itself from the

other in terms of accuracy. Furthermore, the truly surprising result of this

permutation of trials was that using single-base AMI profiles, on average, regardless

of the chromosome or prediction method employed, scored worse in terms of

accuracy than using the more general, standard AMI profiles. This was contrary to

the intuition which was the impetus for exploring single-base AMI profiles to begin

with. Thus, the exploration of single-base AMI profiles proved to be futile, as no

gains in accuracy of prediction were observed; rather, on average, it had the

opposite effect.

3.2.4 Summary

The ad hoc prediction algorithm produced lackluster results for accuracy in

predicting missing bases in DNA sequences, and it did not show any promise for

being the basis of a compression technique for DNA sequences. A summary of the

highest average accuracy results and the highest accuracy results that could be

obtained from any particular trial can be found in Table 3.1. This clearly
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Figure 3.7: Heat map showing the average accuracy of predicting missing bases with
varying group and gap lengths for 20 regions on human chromosome 9 using the
weighted-voting prediction mode and single-base AMI profiles.

Figure 3.8: Heat map showing the average accuracy of predicting missing bases with
varying group and gap lengths for 20 regions on human chromosome 9 using the
highest-weight prediction mode and single-base AMI profiles.

demonstrates that the best accuracy values that could be expected on average were

only around 30-34%, while the highest accuracy ever observed for any trial

performed never exceeded 57%.

Upon closer examination of the prediction results, some sequences which were

tested tended to display atypical results. For instance, in some sequences the

appearance of one particular base was very high. This would cause the joint

probabilities calculated for the sequence to skew heavily in favor of the base which

appeared frequently. The result of this is that these high joint probabilities would

influence the prediction algorithm such that every base in the sequence was
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Figure 3.9: Heat map showing the average accuracy of predicting missing bases with
varying group and gap lengths for 20 regions on human chromosome 15 using the
weighted-voting prediction mode and single-base AMI profiles.

Figure 3.10: Heat map showing the average accuracy of predicting missing bases with
varying group and gap lengths for 20 regions on human chromosome 15 using the
highest-weight prediction mode and single-base AMI profiles.

predicted to be this most frequently appearing base. Sometimes this effect could

occur for a particular pair of bases as well, such as A and T, where the probability

for A and T was so high that it skewed the joint probabilities in such a way that C

or G were never predicted for an empty position.

Another element of the prediction algorithm that was thought to perhaps skew

prediction results was the fact that the AMI profile values for short distances (e.g.

lags k = 1 to k = 5) tend to be very large compared to other AMI values and dwarf

the effect of the other mutual information relationships present for longer distances,

as can be seen in Figure 3.11. Thus, other attempts were made to test the results of
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Prediction Mode 1 Prediction Mode 2
Max. Avg. All Max. Max. Avg. All Max.

Chromosome 9
Full AMI 33.08% 50.55% 32.55% 55.22%

Single AMIs 31.78% 48.47% 30.52% 48.61%
Chromosome 15

Full AMI 32.58% 56.94% 33.63% 51.59%
Single AMIs 32.46% 57.14% 30.14% 56.94%

Table 3.1: Summary table of best results for each prediction mode attempted. The
maximum value from among the averages over each position on the chromosome is
presented as “Max Avg.,” and the maximum result from any individual trial per-
formed on an individual sequence is presented as “All Max.”

prediction using AMI profiles that had the beginning lag values either eliminated

entirely or set to an average value of the rest of the AMI profile. The results of

these trials did not indicate any substantial improvement over results that had

already been observed.

Yet another aspect of AMI profiles as related to their ability to predict DNA

bases was explored. When the joint probabilities of the bases in DNA sequences

were calculated, these tables were maintained asymmetrically. In other words, order

mattered. Different joint probabilities were calculated for the case when, for

instance, a G and then an A appeared or an A appeared and then a G, k base

positions apart. Since the probability tables were maintained asymmetrically (if A

came 3 bases after G, that was tabulated separately than if G came 3 bases after

A), this asymmetry was utilized in the forwards and backwards predictions.

However, another symmetric test was run where this was not the case, but it had no

noticeably different results.
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Figure 3.11: AMI profile for human chromosomes 9 and 15 showing the large AMI-
profile values for low base lags (k values).

3.3 Best Predictor Analysis Method

Due to the unimpressive results obtained in the attempt to arbitrarily retain and

discard bases in a DNA sequence for the purposes of prediction, a new method was

sought that could perhaps help determine which bases are more likely or more

suited to predict other bases more accurately. A method which could evaluate the

prediction performance of a base would more closely approximate the method

related to the original inspiration for this project—the inpainting methods described

in [5]. In the algorithm that selects which pixels to retain and which to discard, the

pixels retained are in strategic locations, such as near sharp features.

Thus, a second, less “ad hoc” method was devised for choosing a reduced

compression set and seeing how missing bases could be predicted using this reduced

set. This was done by first attempting to assign a score to all known bases on a
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strand by how good of a “predictor” each base was. Then, only the bases that were

scored as the best predictors were retained in the compression set, and the bases

which were scored as the worst predictors were removed from the sequence. These

were the bases to be predicted by the retained bases.

3.3.1 Process and Methods

To perform the best predictor analysis, again a completely known DNA sequence

was considered. As before, the probability of each base’s occurrence in the sequence

was determined for each base according to Equation (1.7). Using this, the joint

probabilities of the occurrence of each base with respect to every other base k

positions away were determined according to Equation (1.9). Finally, using these

probabilities, the AMI profile was calculated for this sequence according to

Equation (1.11).

The prediction ability of each base was determined within a predefined

“window” around its position. (For example, its ability to accurately predict bases

up to 10 positions before and 10 positions after its position was considered.) Using

the joint probabilities calculated for the entire sequence, the base in question would

attempt to “predict” each base in its surrounding window. The prediction made by

this base was simply the base with the maximum joint probability value for a base k

positions away from the base in question. For example, if the base in question was

A, and it was predicting a base three positions after its position, the prediction

would be the base from the set {A, C, G, T} which had the highest joint probability

with A for a distance of k = 3.

Once the base in question had “predicted” all bases around itself within the

window, these predictions would be compared to the actual bases in those positions

on the sequence to determine a score for how accurately the base in question could
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predict all those around it using only the sequence’s joint probabilities. Two

methods were used for computing this “best predictor” score: (1) The “simple

method” simply counted the number of correct bases which were predicted. For

example, if the window was 10 bases before and after, and the base in question

predicted 14 of those 20 bases correctly, then its score would be 14. (2) The “AMI

method” computed the score in such a way that a correct prediction was weighted

by the AMI-profile value for how many positions away from the base in question the

correct prediction was. Thus, the final score was the sum of the associated

AMI-profile values.

These “predictor scores” were then calculated for each base on the sequence.

Once a predictor score for each base on the sequence was determined, only bases

that had a high score were retained in the reduced compression set. This was also

done in one of two ways: (1) To determine which bases to keep in the compression

set, a static cutoff value was defined heuristically for the whole DNA sequence.

Bases scoring above this cutoff threshold would be retained as good predictors and

other bases below it would be discarded in order to be predicted by the good

predictors. (2) The other way to do this was to use a moving average of predictor

scores. Thus, instead of a static value for the whole sequence, each base was

retained if it could beat the moving average of the scores of the bases around it,

making the bases retained the best local predictors.

Once the bases with the lowest predictor scores were discarded, the bases with

the higher scores would be used to predict the missing bases. However, in this

scenario, due to the way bases were selected to be retained, these bases were

scattered in positions throughout the DNA sequence. Thus, the prediction of bases

would also need to be done using the same window length that was used to build

the prediction scores. In a similar manner to how missing bases were predicted with
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the ad hoc “group and gap” method, empty base positions were predicted by using

all the retained bases within the window length surrounding the missing base.

These bases all made a guess as to which base should be in the missing position,

and their guesses were weighted by the AMI profile value for how far away they

were from the empty base position in question. The base predicted with the best

weighted score from all surrounding retained bases was chosen as the prediction for

that empty base position.

3.3.2 Prediction Accuracy Results

Once again, the best predictor analysis was tested on DNA sequences obtained from

human chromosomes 9 and 15. Best-predictor scores could be calculated for every

base in a DNA sequence, and plots could be generated showing the relationship of

predictor score to the base position on the chromosome. When examining the “lay

of the land,” so to speak, for best predictor scores over regions of 10,000 to 50,000

bases, it was noticed that these predictor scores did not maintain the same average

over the whole region. Rather, they seemed to exhibit trends. In other words, the

predictor-score values would rise or fall as one moved along the chromosome. Some

regions of the chromosomes just seemed harder to predict in general, while bases in

other regions had higher predictor scores. This could have been due to repeats or

the frequent recurrence of a single base in a certain region. Nonetheless, scores for

all bases in particular regions seemed to trend higher or lower together. Thus, the

“moving average” method for determining which bases to retain and which bases to

discard quickly proved itself to be superior. Trying to beat a moving average in

order to be retained was better than a static threshold value, because in the case of

a static value, it would end up that lots of bases would be retained in the

compression set in one region and virtually none in another region.
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As for the results of this method of prediction, the accuracy results when

comparing predicted bases to known bases which had been discarded were virtually

indistinguishable from the average accuracy results for the ad hoc “group and gap”

method presented previously, and thus they are not reproduced here. It was still

very difficult to break 50% accuracy with any regularity throughout the regions

tested. However, it did raise the accuracy slightly over the ad hoc “groups and

gaps” method. That method usually predicted with about 30-35% accuracy on

average. This method usually predicted with about 35-40% accuracy on average, so

that represented marginal but not significant improvement.

In order to better ascertain the effectiveness of this best-predictor score method,

an approach was devised to rank the “confidence” that could be expected for a

certain base prediction. In other words, can this prediction algorithm know the

quality of its predictions by quantifying how good its predictions are likely to be?

As described previously, during the process of determining which bases to retain

and which to discard, a predictor score was used to score the bases on how many

surrounding bases they could correctly predict. During the base prediction phase,

the confidence score was then calculated based on how “sure” each base was in

predicting the bases that it predicted. When a base in the retained set predicted

another base, the value of its weight in the voting was added to the confidence score

of the base predicted only if its guess was chosen as the final base prediction. For

example, in predicting a missing base with AC GT, the confidence score for

prediction of a base in the empty position would be determined from the

surrounding bases. Thus, if it is assumed that A, C, and G all guessed the missing

base to be C, but T guessed it to be A, then C would be chosen as the prediction for

that empty position (assuming the weight of T’s vote didn’t substantially outweigh
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the other three bases), and the value of the weighted votes of A, C, and G (but not

T) would be added together to obtain the confidence score of the prediction.

The hypothesis was that base predictions which had a higher confidence score

would hopefully be more accurate predictions. If this were to be the case, it was

surmised that an iterative method could be developed wherein a DNA sequence

with scattered missing bases would undergo a first phrase of prediction, but only

base predictions with a high enough confidence score would be retained. Then, a

second phase of prediction would occur, now using the “highly confident”

predictions as predictors for the base positions that remained empty. Doing this

iteratively until all positions were filled could increase accuracy if the confidence in

base predictions could be shown to be correlated with correct predictions.

Figure 3.12: Histogram showing the numbers of right base predictions and wrong
base predictions for values of the confidence score for a DNA sequence from human
chromosome 9.

However, this was found not to be the case. Rather, predicted bases that had

higher confidence scores were only found to be slightly more likely to be a correct

prediction. A histogram containing the confidence scores for bases predicted
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Figure 3.13: Gaussian fit showing the relative distributions of right and wrong base
predictions over the resulting confidence score for a DNA sequence from human chro-
mosome 9.

correctly and incorrectly on chromosome 9 is shown in Figure 3.12. A Gaussian fit

to the normal distributions present in this histogram is shown in Figure 3.13. As it

can be seen from these figures, the distribution of correct predictions has a slightly

higher confidence-score mean than the distribution for incorrect predictions;

however, the overlap of distributions for right and wrong predictions is clearly too

significant, indicating that right and wrong predictions cannot be clearly

differentiated from each other based on confidence score alone.

These same results are confirmed again with chromosome 15. Both the

histogram in Figure 3.14 and its Gaussian fit in Figure 3.15 reveal that the

separation that would be needed between the right and wrong prediction

distributions is not present in the result. This indicates that, not only can the best

predictor algorithm not predict DNA bases with significant accuracy, it also cannot

differentiate between the predictions that it has made, as to whether they are more

likely to be correct or incorrect predictions.
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Figure 3.14: Histogram showing the numbers of right base predictions and wrong
base predictions for values of the confidence score for a DNA sequence from human
chromosome 15.

3.4 Coding Region Prediction

As a final way to truly ascertain whether using the AMI profile to predict DNA

bases will be of any substantial benefit to developing a compression technique, a few

more focused experiments were conducted. Since the prior analysis focused on

arbitrarily selected regions of human chromosomes, it was thought that an analysis

should focus on regions which, through prior biological knowledge, are known to

contain highly structured and functional information. It was hypothesized that

regions of this type would have the highest chance of correct predictions being

possible using methods heretofore explored. The obvious candidates for this

criterion are coding regions. Two well-attested genes were selected: the human beta

globin gene (BGLT3 beta globin locus transcript 3: NC 000011.10:c5245546-5244554

Homo sapiens chromosome 11, GRCh38.p13) and the polymerase III beta gene from

Staphylococcus aureus (SAOUHSC 00002 DNA polymerase III subunit beta).
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Figure 3.15: Gaussian fit showing the relative distributions of right and wrong base
predictions over the resulting confidence score for a DNA sequence from human chro-
mosome 15.

The best predictor analysis method was used to both decide which bases to

retain in the compression set for each of these sequences and then to predict the

missing bases using a window length of 25 bases surrounding each missing base.

Instead of simply using the AMI profile, three different types of weighting methods

were employed to determine how each surrounding base’s guess was to be weighted

in making the prediction. First, simply the raw joint probability was used for each

base to make its guess for the overall prediction. The guess of the surrounding base

for the empty position k spaces away was simply the base that had the highest joint

probability k positions away with the surrounding base. Second, as defined before in

Equation (3.1), the single-base AMI profile value was used. Third, a new metric was

explored to quantify the strength of the association between two base positions.

This was the log odds ratio, and it was calculated as shown in Equation (3.2) for

bases X and Y that are k positions apart. (This is equivalent to the simple mutual

information defined in Equation (1.10).) Once each surrounding base had made its



56

guess for the empty position in question using one of the three prior methods, these

results were combined using either unweighted voting (i.e., each base gets a single

vote) or weighted voting (i.e., each base’s vote is also weighted by its resulting guess

metric, whether joint probability, single-base AMI, or log odds ratio).

LORk(XY ) = log2

(
pk(XY )

p(X)p(Y )

)
(3.2)

The results for these trials can be found in Table 3.2. It can be seen that all of

the accuracy values observed are mostly within the same range (30% - 50%) as

those previously observed for prior experiments. Thus, none of these adjustments

nor the fact that the DNA sequences were specifically selected from coding regions

significantly increased the accuracy of the predictions made. It can be seen that the

log odds ratio was not helpful in correctly quantifying the DNA sequence

information structure and was, in fact, detrimental, producing some results which

were worse than random guessing (25%). Applying the log odds ratio in this context

was not useful. Furthermore, the single-base AMI profile values still performed the

best when compared with simply the raw joint probabilities, indicating that the

AMI profile does add at least a slight measure of usefulness in quantifying the

information structure of DNA sequences. In the end, nothing was found with these

additional trials to warrant any further investigation of these prediction techniques.

3.5 Conclusion

As the explorations in this chapter have repeatedly shown, models of the

information structure contained in DNA sequences extracted from human

chromosomes which rely on pure probability-based calculations are not sufficient to

quantify the information structure to a degree that would make compression



57

Prediction Function Human S. aureus
Weighted Voting

Raw Joint Probabilities 35.35% 36.16%
Single-base AMI Values 38.07% 38.98%

Log Odds Ratio 29.31% 21.25%
Unweighted Voting

Raw Joint Probabilities 35.95% 36.16%
Single-base AMI Values 37.16% 42.33%

Log Odds Ratio 32.62% 24.78%

Table 3.2: Summary table of average accuracy results for using the best predictor
analysis method to predict bases on the human beta globin gene and the S. aureus
polymerase III subunit beta gene using three different types of prediction methods:
raw joint probabilities, single-base-AMI-profile values, and the log odds ratio.

possible. Solely relying on the joint probabilities between bases as well as various

information metrics related to those probabilities (chiefly the AMI profile and its

derivative single-base AMI profiles) cannot sustain the level of accuracy needed to

indicate a deep understanding of the sequence’s information structure. From this

point forward in this investigation of DNA’s information structure, other facets of

DNA sequences, such as triplet codes and the difference between coding and

noncoding regions, which are known from biological techniques, will be employed in

order to determine whether the information structure of DNA sequences can be

better described using a combination of probability-based models and these known

entities.
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Chapter 4

Analysis of Triplet Code Features

4.1 Introduction

DNA is structured as a sequence of bases that constitutes a code which bears

information relevant to the biological processes of an organism. It is well known

that one of the main ways in which this information is exposed and made usable is

through the processes of transcription and translation. These processes are how the

cell uses DNA to create proteins, and they are based upon interpreting DNA as a

triplet code. For coding regions of the DNA sequence, each group of three bases (a

triplet) corresponds to a single amino acid. These amino acids are then linked

end-to-end in a polypeptide chain which becomes the “building block” of a protein.

While it is known that coding regions of DNA operate in this manner,

noncoding regions may or may not. Since noncoding regions are generally expressed

with less frequency than are coding regions, their interpretation and structure are

harder to assess. However, if the assumption is made that noncoding regions operate

in like manner to coding regions, with a triplet code, those regions can be analyzed

together with coding regions to explore how their information content is related.
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4.2 AMI Profiles Based on Triplet Codes

As described in Chapter 1, AMI profiles as described in [1] are calculated with

regard to single bases. In other words, the AMI profile uses the joint probabilities of

each base encountering another base k positions apart. The AMI profile then

averages over these joint probabilities for the four letters in the DNA alphabet to

discern a relationship based solely on the distance between bases (k).

A similar metric can be formulated that calculates the relationship not between

bases separated by k base positions but rather between triplets of bases which are

separated by k base positions. Thus, each triplet in the DNA sequence is considered

a unique “letter” in this alphabet, and thus these triplet AMI profiles are calculated

by averaging over 64 possible triplets to obtain the relationship of triplets with

respect to the distances between triplets only. The triplet AMI profile can be

calculated in two ways: (1) An “overlapping” triplet AMI profile can be calculated

that moves along the DNA sequences base-by-base and thus considers each triplet

as existing one base apart. This means that each triplet overlaps with two others,

the ones before and after it. (2) A “non-overlapping” triplet AMI profile can be

calculated that moves along the DNA sequence triplet-by-triplet and thus considers

each triplet as existing three bases apart. This means that triplets do not overlap

with other triplets. It also means that this formulation is subject to a reading

frame. Since DNA is read by a triplet code, the position at which the reading begins

is very important. A reading that starts one base later than another will produce

very different triplet results.

For example, in the DNA sequence GAGACATTACGTACC, the overlapping

triplet AMI would analyze the triplets in the sequence as follows: GAG, AGA,

GAC, ACA, CAT, ATT, TTA, and so on. This AMI profile is indexed by each base
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position (the first base in the triplet) and thus has the same indexing as the

standard AMI profiles discussed in Chapter 1. Using the same example sequence, a

non-overlapping triplet AMI would analyze the triplets in the sequence as follows:

GAG, ACA, TTA, CGT, ACC. However, this is only one of the possible reading

frames for this sequence. If a reading frame starting at the second base in this

sequence is used, then the result is as follows: AGA, CAT, TAC, GTA, CC

(whatever the next base in this sequence is). Obviously, then, the last possible

reading frame would begin at the third base position in the sequence: GAC, ATT,

ACG, TAC, C (whatever the next two bases in this sequence are).

When studying the effects of the reading frame on the resulting triplet AMI

profile, it was discovered that reading frame had no effect on the resulting triplet

AMI profile. Though the reading frame is critical for protein translation (and thus a

frameshift can be catastrophic for decoding the correct amino acids in the

polypeptide chain), the general information structure of DNA, even when studied

with respect to triplets, is the same. This can be seen demonstrated on human

chromosome 9 in Figure 4.1 and Figure 4.2 (which is just a close up of the first 40

AMI-profile lags of Figure 4.1). Despite extremely small differences, the resulting

triplet AMI profiles are virtually indistinguishable regardless of the reading frame

employed. Thus, for non-overlapping AMI profiles, different reading frames were not

tested and were not taken into account.

4.2.1 Triplet AMI Profiles in the Chromosomes of Humans and Other

Similar Species

As demonstrated thoroughly in [1], the AMI profile calculated from any piece of

genetic material (such as a full chromosome or even a fragment of DNA) resembles a

“common shape” for all the genetic material from a single species; however, that
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Figure 4.1: Non-overlapping triplet AMI profile for human chromosome 9 with 200
triplet positions (600 base positions) of lag for all three reading frames.

shape is different from species to species, leading to the conclusion that the AMI

profile can be used as a reliable “species signature” to differentiate between different

species. Thus, when the standard AMI profile (as described in Chapter 1) is

calculated for all the chromosomes in the human genome, they all exhibit similar

shapes, as can be seen in Figure 4.3.

Calculating the non-overlapping triplet AMI profiles for all the chromosomes in

the human genome produced similar results to the standard AMI profiles in that the

non-overlapping triplet AMI profiles calculated for each chromosome were all similar

in shape. These results are shown in Figure 4.4. However, it can be seen that, when

compared to the standard AMI profiles, fewer features are observed. The only

major features that appear are at triplet position 8 and triplet position 57. The

very strong feature present at triplet position 57 is somewhat striking in how it

uniformly stands out on all human chromosomes. Overlapping triplet AMI profiles

were also calculated for all human chromosomes, and the results were largely the

same for non-overlapping triplet AMI profiles. These results can be seen in Figure
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Figure 4.2: Non-overlapping triplet AMI profile for human chromosome 9 with 40
triplet positions (120 base positions) of lag for all three reading frames.

4.5. Note that overlapping triplet AMI profiles are indexed according to base

position rather than triplet position, and thus the feature seen at base position 24

corresponds to the one seen at triplet position 8, and the feature seen at base

positions 169-171 corresponds to triplet position 57.

The appearance of this type of feature at around base position 171 is not

something that would naturally be expected. It means that, on averages, bases that

are 171 positions away from each other, and similarly triplets that are 57 triplets

away from each other, share mutual information, on average, more than most other

bases, even those only 40 base positions away. To be sure, this feature can be seen

within the standard AMI profiles, but it is only the triplet profiles that really

accentuate its presence, while most other features seen in the standard AMI profile

are muted when triplet relationships are considered. (Compare base positions where

features appear at places like 56 and 135 in the standard AMI profile shown in
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Figure 4.3: Standard AMI profiles for all 23 chromosomes of the human genome.

Figure 4.3 to the corresponding positions in the triplet AMI profiles shown in

Figures 4.4 and 4.5.)

To ascertain whether considering the AMI profile using triplet pairs had any

effect in identifying the feature, another type of AMI profile was created that would

test for “duplets” (pairs of two bases). These duplet AMI profiles were constructed

as a control, since bases are not known, biologically, to function in pairs. Rather, the

goal was to see whether calculating the AMI in terms of triplets was contributing to

the presence of the sharp feature at base position 171 or whether this was feature of

the information structure was unrelated to DNA’s triplet structure. Duplet AMI

profiles, with a 16-letter alphabet, were calculated for all chromosomes in the

human genome. Like triplet AMI profiles, these have both non-overlapping and

overlapping versions. The results are shown in Figures 4.6 and 4.7.

The results obtained from the duplet AMI profile analysis were both expected

and unexpected. When considering the bases as pairs, all distinct features in the
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Figure 4.4: Non-overlapping triplet AMI profiles for all 23 chromosomes of the human
genome.

AMI profiles vanished except for the one noted at base position 171. Even though

this feature can be clearly seen in both the overlapping and non-overlapping duplet

AMI profiles, its presence is muted and not as pronounced as it appears in the triplet

AMI profiles. The other surprising result was that the feature did not appear in the

expected location for the non-overlapping duplet AMI profiles. It was assumed that

the feature would be present around duplet position 85, which would correspond to

base position 171 (85 ∗ 2 = 170). However, the feature still manages to appear

around base position 171. It can be inferred, at least, that, though the feature

appears amongst duplet AMI profiles, it is more accentuated in triplet AMI profiles,

and thus considering DNA in triplets is relevant to the appearance of this feature.

Lastly, the relationship of this feature of the human genome was explored as it

relates to the genomes of other similar species. The question of whether this feature

was unique to the human genome seemed pertinent. Since the non-overlapping and

overlapping methods of calculating the triplet AMI profiles for human chromosomes
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Figure 4.5: Overlapping triplet AMI profiles for all 23 chromosomes of the human
genome.

seemed similar, only non-overlapping triplet AMI profiles were used to explore the

genomes of other species. As a control, the triplet AMI profiles were calculated on

the mouse (Mus musculus) genome, a mammal whose genome is sufficiently

different from that of human beings. Those results can be seen in Figure 4.8. As

expected if this feature is indeed unique to the human genome, no discernible

features are observed in the triplet AMI profile calculated for the mouse DNA.

Next, triplet AMI profiles were calculated for all the chromosomes of the

genomes of four species similar to human beings: the chimpanzee (Pan troglodytes),

the gorilla (Gorilla gorilla), the orangutan (Pongo abelii), and the macaque

(Macaca fascicularis). These results can be seen in Figures 4.9 to 4.12. All of these

results show that features corresponding to those of the human genome at triplet

positions 8 and 57 can be seen. However, the expression of these features in these

genomes was weaker in each case than the strong feature present in the triplet AMI

profiles of the human genome. Although an attempt was made to find any type of
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Figure 4.6: Non-overlapping duplet AMI profiles for all 23 chromosomes of the human
genome.

Figure 4.7: Overlapping duplet AMI profiles for all 23 chromosomes of the human
genome.

reconstructed genome of extinct hominid species, no complete assemblies could be

found which would allow sufficient triplet AMI profiles to be calculated to serve as a

basis for comparison.
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Figure 4.8: Non-overlapping triplet AMI profiles for all 20 chromosomes of the mouse
genome.

4.2.2 An Analysis of the Base Repetition within Human Chromosomes

The answer to the question of what explains the appearance of this strong feature at

base position 171, its sole relationship to triplet analysis, and its uniqueness to the

human genome was elusive. An attempt was made to study the nature of repetition

of base sequences in human DNA with a special focus on bases that are 171

positions apart. Knowing what actual repeats of DNA sequences can be found and

how prevalent they were could help answer this question.

To accomplish this, a rather brute-force method was employed. Selected human

chromosomes were searched for sequences which occurred at fixed distances apart

that either matched or were close to matching. As is well-attested for algorithms

such as BLAST which search for DNA sequences that match other DNA sequences,

sometimes matches are not always exact. Sometimes a handful of bases are either

missing, added, or substituted for other bases. This is generally due to the various

types of mutation. Thus, a flexible definition of what constitutes a matching
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Figure 4.9: Non-overlapping triplet AMI profiles for all 23 chromosomes of the chim-
panzee genome.

sequence for purposes of this exploration was developed. Since the length of

matching DNA sequences was pertinent to this analysis, this was critical in

determining when a discovered matching sequence was ended.

Different error tolerances were built into searching for repeats, allowing the

algorithm to find repeats that were very close but not exact. Two types of error

tolerance were tested. The first type of error tolerance defined a threshold value X,

and when a sequence was being examined for a match, if X number of deviations

were encountered, then the sequence was considered no longer a match. The second

type of error tolerance defined a threshold value Y, and when a sequence was being

examined for a match, if Y number of deviation were encountered in a row, then the

sequence was considered no longer a match. The first method only allowed a fixed

number of errors in a sequence regardless of size, whereas the second method

allowed any number of errors as long as those errors were not sufficiently close. The

drawback of the first approach was that a sequence that matched in large sections
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Figure 4.10: Non-overlapping triplet AMI profiles for all 23 chromosomes of the gorilla
genome.

except for X+1 minor errors which were sufficiently far away from each other would

not count as a match. The drawback of the second approach was that sequences that

had many errors, as long as they were not adjoining, would count as a match. (For

example, a sequence of AGAGAGAGAGAG and ACACACACACAC with even a Y

tolerance of 2 would count as a match under the definition of the second approach.)

To avoid these difficulties, a mixed approach was devised which combined both

error tolerance methods. The total error tolerance was eventually set to 10, and the

tolerance for errors in a row was varied between 0 and 5. Thus, a repeated sequence

would terminate if it totaled more than 5 errors in a row or more than 10 errors

total. Arbitrarily chosen base separation distances of 135 and 225 were chosen as

control groups by which to measure how many repeated sequences at 171 bases

apart could be considered “more” than what is to be expected, when compared with

135 and 225. When testing for how many sequences separated by 171 bases could be

identified that exhibited base repetition, only sequences that totaled more than 100
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Figure 4.11: Non-overlapping triplet AMI profiles for all 23 chromosomes of the
orangutan genome.

Chrom. 0 Err. 1 Err. 2 Err. 3 Err. 4 Err. 5 Err. 135-Base 225-Base
Chr. 1 4 32 41 43 45 47 29 52
Chr. 19 2 47 81 76 72 69 30 18
Chr. 22 8 142 172 183 186 188 45 14

Table 4.1: Number of sequences on each chromosome that were shown to correspond
to a repeated sequence on the same chromosome 171 bases away for “in a row” error
tolerances between 0 and 5. The average results for sequence repeats given base
position separations of 135 and 225 are shown for comparison.

bases in length were considered so as to exclude trivial sequences from the results.

These results are shown in Table 4.1. Human chromosome 1 is shown to indicate

that some chromosomes did not have as much of a strong presence of repeated

sequences separated by 171 bases, while chromosomes 19 and 22 are shown because

these are the ones that exhibited the highest spikes in their triplet AMI profiles at

the 57-triplet, 171-base position and, consequently, have the highest amount of

repeated sequences separated by 171 bases.
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Figure 4.12: Non-overlapping triplet AMI profiles for all 23 chromosomes of the
macaque genome.

These results indicated that a higher than incidental number of repeated

sequences did occur for bases that were 171 positions apart. (“Higher than

incidental” means that, when choosing some arbitrary length of bases, the number

of repeats found were greater with a 171-base separation than with other arbitrary

separation distances.) In fact, many repeated sequences longer than 171 bases were

found, indicating that these repeats had to be “cyclical” or evidence of frequent

tandem repeats. In other words, if a repeated sequence ended up being longer than

171 bases in length, that means that the sequence extended for 171 bases and then

reached its repeated sequence while still counting the repeated base distance. For

example, chromosome 22 had the longest length of repeated sequence found, which

was 483 bases long no matter the error tolerance used.
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4.3 Conclusion

While the observations that emerged from the study of triplet AMI profiles proved

intriguing, no firm conclusions were reached as to the cause of these effects. Triplet

AMI profiles were similar to standard AMI profiles, but they showed strongly that

triplets which exist 57 triplet positions (171 bases) apart share more information

than do other triplets much closer. Triplet AMI profiles were shown to be invariant

under the reading frame selected, and the effects seen in the triplet AMI profiles

were not observed to the same acute degree as in “duplet” AMI profiles calculated

on base pairs, indicating the triplet nature of the code was contributing to the

detection of these anomalous features. Additionally, these strong features were only

present in studies of the human genome, and similar results were unobserved in any

other genomes to the same degree, although weaker indications of the same feature

did appear in similar primate genomes.

Of course, the source of these unique features is the presence of repeated

sequences that occur 171 bases apart, some of these consisting of tandem repeats.

The reason that such repeats are found was not evident. One possibility is that

these frequent repeated sections could be due to the insertion of viral DNA into the

human genome at regular intervals, similar in concept to what was identified by

Mojica et. al. in prokaryotic organisms.[6] Future work to explore this question

could consist of using more sophisticated sequence alignment techniques that could

find the specific instances of repeated sequences causing these features. This work

would then involve searching through annotations on the human chromosome to

attempt to discover a connection between the exact location of repeats the presence

of specific biological entities at those locations.
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Additionally, if the triplet AMI profiles proved to be more indicative of the

information structure of DNA than standard AMI profiles, they could be employed

as an extension of the work of Chapter 3 to determine whether triplet AMI profiles

could form the basis of a reliable DNA compression and recovery technique. Though

some preliminary tests were attempted to that end, no significant deviation from

the results reported in Chapter 3 were observed, and the results of that chapter

along with this one don’t indicate a strong possibility that a significant

improvement in compression would be obtained.
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Chapter 5

Prediction of Coding and Noncoding Regions via Machine

Learning

5.1 Introduction

The DNA code contains the blueprint to construct every protein that is used by the

cells of an organism. For this purpose, the sequences of DNA bases contain highly

organized information, but not all sequences found on chromosomes are used to

code for specific proteins. Some regions of DNA, referred to as noncoding regions,

have other functions or no apparent function at all. It is postulated that these two

types of DNA regions, coding and noncoding regions, may have different underlying

structures present with regard to the information they contain. The aim of this

chapter is to examine whether the AMI profile has a substantial relationship to one

of the most basic facts about a DNA sequence: whether it is a coding or noncoding

sequence. Through biological “wet-lab” experimentation, the locations and length of

coding and noncoding segments are well known and catalogued for many organisms;

however, for these purposes of investigation, it needs to be determined if this

classification can be ascertained only with reference to the information structure of

the DNA strand itself, modeled by the AMI profile alone, without reference to a

direct observation of its related biological processes.
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This chapter seeks to answer four main questions about the ability of the AMI

profile to differentiate between coding and noncoding regions. First, can the AMI

profile be used to make predictions about the coding structure of a DNA sequence?

In other words, is the amount of structure-related information that the AMI profile

is able to quantify about DNA sequences sufficient for making this determination?

Second, if the AMI profile does contain enough information to make moderately

accurate predictions about DNA sequences, how much information must the AMI

profile contain to make these predictions with reasonable accuracy? AMI profiles

can be calculated to contain mutual information about bases that are separated by

a large distance, but how much of this mutual information is actually needed to

make reasonably accurate predictions? For example, is mutual information about

bases separated by 100 or more base positions relevant enough to the structure of a

coding region that its inclusion would improve the accuracy of the prediction

methods? Third, how does the prediction of coding regions compare to noncoding

regions? Specifically, it needs to be known if noncoding regions, which presumably

have less overall structure than highly structured coding regions, have enough

discernible structure to allow for accurate classification when compared to coding

regions. Finally, if the AMI profile is sufficient for DNA-sequence classification,

which binary classification implementation is the best suited for this purpose? This

study will determine whether a multilayer perceptron neural network (MLPNN) or

a support vector machine (SVM) is a better classifier for predicting the coding

status of a DNA sequence based solely on its AMI profile.
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5.2 Classifiers and Data Sets Used

This chapter examines whether two commonly used binary classifiers, a MLPNN

and a SVM, can predict whether a DNA sequence is from a coding or noncoding

region based solely on its AMI profile. The results of both of these methods are

compared, and it is determined which method is best suited to this situation. The

success of both of these methods is evaluated to determine whether the AMI profile

of a DNA sequence contains sufficient information about the structure of its

information to make this determination.

To train both of these classifiers, a training data set and a testing data set were

developed. For this evaluation, the genome of the bacterium Escherichia coli (E.

coli) was used to develop these data sets on which to evaluate the classifier

implementations. The E. coli genome (NC 000913.3) was selected because of its

simplicity; since E. coli is prokaryotic, it only contains coding and noncoding

regions, as opposed to most eukaryotic organisms that have more complex

segmentation in their genomes (such as the presence of introns, which are sub-units

of coding regions that are removed before translation and are not used directly for

protein coding). The E. coli genome was also selected because it is well-known and

commonly used to evaluate numerous bioinformatics methods, such as in [1].

A set of training data and a set of testing data were developed as follows:

Coding and noncoding regions were selected in order from the beginning of the E.

coli genome with the stipulation that each region had to include at least 100 bases.

This restriction was implemented to ensure that the AMI profiles calculated from

these regions were truly representative of their information structure and not

affected by anomalies. It was determined that each AMI profile would be calculated

with a maximum lag of 50 bases, based on a visual inspection of typical AMI profiles
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of the E. coli genome, which showed that the AMI values beyond about 50 bases of

lag were generally redundant of what was already present in the first 50 bases of lag.

By selecting only regions that contained 100 or more bases, it was ensured that the

AMI profile would at least be averaging over one whole “window-shift” in each

coding and noncoding region, since the AMI of bases up to 50 positions apart was

included in the AMI profile calculations. The AMI profile for each of the first 400

suitable regions in the E. coli genome was included in the training set and labeled

either “coding” or “noncoding,” and the next 400 suitable regions in the E. coli

genome were included in the testing set and also appropriately labeled. Due to the

abundance of coding regions in the E. coli genome compared to noncoding regions,

each data set contained approximately 70% coding and 30% noncoding regions.

The MLPNN implementation used was the default MATLAB implementation

for a shallow, feed-forward neural network, using the function feedforwardnet(). The

MLPNN was given the AMI-profile vector as its input, produced a single output,

and contained one layer of hidden neurons with sigmoidal activation functions. The

Levenberg-Marquardt optimization algorithm was used to train the weights and bias

terms of the MLPNN because it was recommended by the MATLAB package

documentation and because it performed more efficiently than the traditional

gradient-descent method in preliminary tests. The MLPNN training was conducted

by introducing the training data set to the MLPNN repeatedly in epochs of

randomized pattern order until one of the following three conditions was met: the

number of epochs reached a maximum of 4,000, the Levenberg-Marquardt gradient

value reached a minimum of 1e-10, or the number of successive iterations without a

validation failure reached 200. Since the output of a general MLPNN is a real

number, and the classification required is binary, coding regions were mapped to a

value of 1 and noncoding regions to a value of 0. To determine the prediction of the
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MLPNN, its output was passed through a unit step function centered at 0.5. Thus,

all outputs greater than 0.5 were considered predictions of coding regions, and those

less than 0.5 were considered predictions of noncoding regions. The range of values

[0.4, 0.6] was considered a “window of uncertainty” where predictions may not be as

accurate, and the effects of this are discussed below.

The SVM implementation used was also the default MATLAB implementation

for an SVM using the fitcsvm() function. The SVM was given the AMI-profile

vector as its input and produced a single, binary output. The default MATLAB

standardization algorithm for SVM inputs was used to standardize the input

predictors by their mean and standard deviation as was recommended by the

MATLAB reference documentation to make the SVM less sensitive to the scale on

which the input vectors were measured. Multiple kernel functions for the SVM were

tested, including a linear, a quadratic, and a Gaussian kernel function. The results

of the linear and quadratic kernels are presented below, but the Gaussian results

were abnormal, and the Gaussian kernel did not seem to be well-suited to this

classification problem, so the Gaussian kernel results are omitted.

5.3 Classifier Results

Both the MLPNN and SVM classifiers were evaluated with both the training data

set and the testing data set. Various parameters of each classifier as well as the

length of the AMI-profile input vectors (i.e. the maximum AMI-profile lag) were

varied to observe their effect on the classification results. The results of each of these

adjustments in terms of the errors produced in the classification are presented below.
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5.3.1 AMI Profile Size

The size of the AMI-profile input vector provided to the classifier intuitively bears

some relationship to the expected accuracy of that classifier, as having only a one-

or two-length AMI vector does not provide enough overlap to predict the structure

of an entire 100+ base region of a DNA sequence. Conversely, AMI-profile values

tend to decrease as the lag increases, meaning that as bases become more separated

on the sequence, they contain, in general, less mutual information about each other,

such that bases sufficiently far away will not affect the determination of information

structure. The amount of AMI lag needed in order to make predictions with

reasonable accuracy was studied for both classifiers. The size of the AMI-profile

input vector was varied between 3 (the size of one triplet in a DNA code) and 50

(the maximum AMI-profile vector length contained in the training data set) to train

both the MLPNN and SVM. The accuracy of the MLPNN and the SVM trained

with only the corresponding amount of lag in terms of absolute errors was examined.

For the MLPNN, a nominal value of 100 neurons was selected for evaluation due

to the maximum size of 50 for the AMI-profile input vectors. Initially for the

MLPNN, AMI-profile lag values were tested in multiples of 5, as can be seen in

Figure 5.1. However, the results of these tests indicated little variation for both the

training and testing data sets on the MLPNN prediction accuracy. A second test

was conducted which tested AMI-profile lag values in multiples of 3, since it is

known that DNA is structured as a triplet code. These results, seen in Figure 5.2,

produced a slight indication that at least an AMI-profile lag of 12 was needed to be

able to predict the training data set well. In other words, AMI-profile lags greater

than 12 did not have any noticeable effect on the accuracy of the MLPNN results.

It can be seen from the results in Figures 5.1 and 5.2 that the accuracy of the
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MLPNN for predicting the coding or noncoding nature of DNA segments based on

the AMI profile is reasonably accurate regardless of the AMI-profile lag value used,

as the MLPNN results for the training data set never exceeded 15% error for 400

predictions (excluding the single high-error result for an AMI lag of only 3, which is

intuitively nonideal). Likewise, the MLPNN results for the testing data set never

exceeded 27% error for 400 predictions. Overall, the MLPNN seemed to be fairly

invariant for changes in the size of the input AMI-profile vector.

Figure 5.1: Total errors out of 400 input patterns while varying the input AMI-profile
lag by multiples of 5 for a 100-neuron MLPNN shown for both training and testing
data sets.

The SVM implementation was more sensitive in terms of prediction accuracy to

the length of the input AMI-profile vector. It can be seen from Figure 5.3 that the

SVM with a linear kernel produced its best results with a minimum AMI lag
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Figure 5.2: Total errors out of 400 input patterns while varying the input AMI-profile
lag by multiples of 3 for a 100-neuron MLPNN shown for both training and testing
data sets.

between about 15-21, especially for the training data set but also roughly for the

testing data set. In fact, as more AMI lag is included, the prediction accuracy for

the testing data set increases slightly, showing that having “too much” AMI-profile

lag possibly overfits the training-set data and makes the prediction of the testing set

slightly less accurate. When evaluating the SVM with the quadratic kernel, it was

found that the quadratic-kernel SVM greatly outperforms the linear-kernel SVM for

the training data set but underperforms the linear-kernel SVM for the testing data

set, as the results in Figure 5.4 show. This is a clear indicator that the SVM with a

quadratic kernel for sufficiently large values of AMI lag (around 33 and above)

overfits the training data set, thus making it less accurate to predict sequences not
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found in the training data set. On average, the linear-kernel SVM with AMI lag

greater than 18 had an error rate of 9.5% for 400 predictions of the training data set

and an error rate of about 21.5% for 400 predictions of the testing data set. By

comparison, the quadratic-kernel SVM with AMI-lag greater than 18 had an

average error rate between 1% and 2.5% for the training data set depending on how

many AMI-profile lags were used. However, it had an average error rate of about

24.8% for the testing data set. Since the linear-kernel SVM performs best on the

testing data set and avoids overfitting for AMI-profile lags between 15-21, it was

determined that the SVM with a linear kernel produces the best results compared

to both the quadratic-kernel SVM and the MLPNN classifier with a reasonable

AMI-profile lag of about 18 base positions necessary for optimal accuracy.

5.3.2 Prediction of Noncoding Errors

It is known that DNA has a highly organized triplet structure that is used by the

cell’s translation mechanism to convert the coding regions of DNA into proteins.

Because of this, it is postulated that DNA has a more highly ordered structure in

coding regions than noncoding regions, and it is hypothesized, then, that more

errors should occur when predicting noncoding regions than coding regions. Thus,

the number of noncoding-region errors (NCREs) resulting from a noncoding region

being incorrectly predicted as a coding region were examined.

As can be seen from the results for the MLPNN in Figure 5.5 and the SVM in

Figure 5.6, NCREs certainly account for more of the total errors than do errors in

coding regions. It can be seen that, on any particular test, the number of NCREs is

always between 55% and 95% of the total number of errors; it always exceeds 50%

of the total errors, even if only slightly. It can also be seen from these results that

NCREs are overrepresented regardless of the AMI-profile lag at the input, as the
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Figure 5.3: Total errors out of 400 input patterns while varying the input AMI-profile
lag for the SVM with a linear kernel shown for both training and testing data sets.

results are mostly invariant over many AMI-profile vector lengths. However, the

results of Figure 5.6 do provide another piece of evidence to confirm that an

AMI-profile lag of about 18 is ideal for the SVM classifier, because having a

sufficiently large AMI-profile lag reduced the number of NCREs relative to the total

number of errors. When a sufficiently high AMI-profile lag of 18 was used with the

SVM, the number of NCREs versus coding-region errors was closer to even. When

comparing the MLPNN and the SVM, it can be seen that, for the testing data set,

the MLPNN averages about 67% NCREs, while the SVM with a sufficient

AMI-profile lag of greater than 18 averages about 61% NCREs.
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Figure 5.4: Total errors out of 400 input patterns while varying the input AMI-profile
lag for the SVM with a quadratic kernel shown for both training and testing data
sets.

In general, for both the MLPNN and SVM, the testing data results represent a

lower percentage of NCREs than the training data set does, regardless of AMI lag.

This is due to the fact that, when testing a classifier on a testing data set that it has

not seen before, more errors will result, and thus when the MLPNN and SVM were

applied to the testing data set, more coding errors were encountered than with the

training data, and thus the number of NCREs represented a lower percentage of the

total number of errors due to the increased number of coding-region errors.

There are three significant reasons that can explain the higher percentage of

NCREs compared to coding-region errors. The first is that noncoding regions are

less represented on the E. coli genome, and this was reflected in the construction of
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Figure 5.5: Percentage of total errors with the 100-neuron MLPNN that accounted
for results where a noncoding region was incorrectly predicted as a coding region,
shown for both training and testing data sets.

the training and testing data sets as discussed previously. Because of the

underrepresentation of noncoding regions in the training data, the classifiers may

not have predicted noncoding regions as well as coding regions since they had more

coding regions on which to train than noncoding regions. Secondly, DNA is

structured in a double-helix structure, meaning that for every DNA sequence there

are two strands, one of which contains a sequence of bases and the other contains its

opposite. However, only one side of a strand is used for protein coding, so while one

side of the DNA strand may be noncoding, it could be the case that this noncoding

region is actually the reflection of a coding region, meaning that its structure would

be highly similar to that of the coding region it reflects. However, it is assumed that
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Figure 5.6: Percentage of total errors with the linear-kernel SVM that accounted for
results where a noncoding region was incorrectly predicted as a coding region, shown
for both training and testing data sets.

this specific factor plays little role in the results of the classifiers since the annotated

E. coli data set used to construct the training and testing data sets was organized

in such a way as to minimize this possibility. Finally, the hypothesis mentioned

previously, that noncoding regions are overall less structured and exhibit more

“random” characteristics as compared to coding regions, is consistent with these

results and could explain why coding regions are easier for both the MLPNN and

SVM classifiers to predict.
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5.3.3 Tuning the MLPNN

Lastly, a brief examination was made of MLPNN parameters to observe whether or

not the number of neurons affected the error rate and how much of the error rate for

the MLPNN was caused by predictions falling into the “uncertainty window” of [0.4,

0.6]. It can be seen from Figure 5.7 that only about 25% of total errors resulted

from the uncertainty window for the training data set and only about 19% of total

errors resulted from the uncertainty window for the testing data set. This result

shows that predictions of the MLPNN that fell within the uncertainty window did

not have an out-sized detrimental effect on the resulting accuracy of the MLPNN,

regardless of the size of the AMI lag. From Figure 5.8, it can be seen that the

number of neurons of the MLPNN does not largely affect its accuracy. In fact, for

the testing data set, more neurons appear to slightly increase the total number of

errors. Therefore, the nominal value of 100 neurons used for the evaluations above

was sufficient for judging the performance of the MLPNN and appears to be the

best balance between accuracy and unnecessary computational complexity. Thus,

these two minor concerns for the MLPNN were shown to not have affected the

results in a major way that would drastically alter the conclusions should the

MLPNN be instantiated slightly differently. Overall, the results above are

indicative, in general, of the performance of an MLPNN in this context.

5.3.4 Which Classifier is Better?

When all results are taken into consideration regarding the percentage of total

errors produced on the unseen data in the testing data set, the size of the

AMI-profile lag required, and the mitigation of high relative numbers of

noncoding-region errors, the linear-kernel SVM implementation appears to be the
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Figure 5.7: Percentage of total errors that accounted for prediction results that fell
within the “window of uncertainty” for the 100-neuron MLPNN shown for both train-
ing and testing data sets.

best suited for classifying DNA sequences by their AMI profiles. The linear-kernel

SVM outperforms the quadratic-kernel SVM and all instances of the MLPNN. For

the MLPNN, 100 neurons was a reasonable balance between accuracy and

computational complexity that represented the general performance of an MLPNN

for classifying AMI-profile vectors. On average, regardless of the maximum

AMI-profile lag, the MLPNN exhibited around a 24% error rate where NCREs were

67% of the total errors on average. The SVM, though, exhibited a lower rate of

errors, about 21.5% on average over the value of AMI-profile lag used, where

NCREs were 61% of the total errors on average. Thus, the linear-kernel SVM is

more accurate, on average, than the MLPNN regardless of the length of AMI-profile
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Figure 5.8: Total errors out of 400 input patterns when varying the number of neurons
in the MLPNN using the ideal input size of 18 AMI lags.

vector used as input, and the linear-kernel SVM is slightly closer to an even balance

between coding and noncoding errors than the MLPNN as regards the total

percentage of NCREs to total errors when an AMI-profile lag of about 18 is used.

For the problem of predicting coding and noncoding regions of the DNA sequence,

the SVM appears slightly better suited based on the results from the genome of the

bacterium E. coli. Based on these results, it seems that the AMI profile does

contain sufficient information to make a reasonably accurate prediction about the

structure of the information present in a DNA sequence, as the reasonable success of

both the MLPNN and SVM implementations demonstrate.
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5.4 Conclusion

In this chapter, two types of common binary classifiers, an MLPNN and an SVM,

were implemented and used to test the hypothesis that the AMI profile for a DNA

sequence can be used to predict whether the sequence is coding or a noncoding. In

broader terms, this was used to verify whether the AMI profile is sufficient to

quantify the underlying information structure of DNA sequences and whether this

can be related to biologically relevant features of such sequences. As a result, the

AMI profile seems to be a sufficient metric to quantify the information structure of

DNA sequences in that it can predict at least a basic fact about its biologically

relevant structure. It was also discovered that, for the two classifiers implemented,

the minimum length of the AMI-profile vector needed to produce the most accurate

results was a lag of about 18 base positions. Thus, the AMI profiles that performed

the best consisted of mutual information of bases up to 18 bases away; more mutual

information content than that did not seem to improve accuracy in any substantial

sense. It was observed that errors predicting sequences from noncoding regions, in

general, accounted for a higher percentage of total errors than errors for sequences

from coding regions. Finally, since it was confirmed that the AMI profile can be

used to predict whether a DNA sequence is from a coding or noncoding region with

reasonable accuracy, it was determined based on the accuracy of results that a SVM

with a linear kernel was the best-suited classifier for this context.
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Chapter 6

Classification of DNA Sequence Regions via Principal

Component Analysis

6.1 Introduction

The theory that has driven this investigation from the start has relied on the

assumption that DNA sequences can be divided or segmented into informationally

significant regions. Since DNA can be compared analogously to a language, the

bases can be likened to letters in an alphabet, triplet codes to words, and larger

segments to paragraphs. It was the search for these “paragraphs” which engendered

this exploration.

As has been previously stated, chromosomes contain regions which are known as

“coding regions,” those which are responsible for protein coding within the cell, and

“noncoding regions,” those which fall outside of coding regions which have either

another function, an unknown function, or no function at all. The attempt to

predict missing bases was an attempt to discover which bases may be more

informationally significant than others in the hope that this would reveal which

bases could serve as “hinge points” for dividing the DNA sequence into natural

regions. Instead of searching for informationally significant regions from a

microscopic perspective, by considering the qualities of individual bases and using
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those to try to determine informationally significant regions, an alternative

approach was attempted. In this approach, regions of the DNA sequence are

considered qua regions and are analyzed on the basis of their qualities determined

for the entire region. The AMI profile was again used as a tool to quantify the

properties of various regions of a DNA sequence.

6.2 Principal Component Analysis

In order to ascertain whether the AMI profile contains information specific enough

about a region in order to allow it to be quantified, and furthermore whether those

regions were differentiable from each other, Principal Component Analysis (PCA)

was used to see if certain regions would cluster together based on their AMI profiles.

PCA is a method of dimensional reduction, meaning that it is used to take

highly dimensional vector data and project it into a lower dimensional space. Doing

this can yield a projection of the original data that emphasizes its most important

components, i.e., the components of the data exhibiting the highest variance. These

components are identified first by finding the covariance matrix between all vector

components and then by computing the eigenvectors of the covariance matrix.

Projecting data into a lower-dimensional space will inevitably result in the loss of

some information contained in the data, but the method of PCA which chooses to

retain the components exhibiting the highest variance seeks to preserve as much

critical information as possible about the data set. In other words, PCA preserves

the strongest signals present in the data set.

When using PCA to compare the AMI profiles of various DNA regions,

preserving their most significant information and hopefully reducing noise, the

hypothesis was that informationally similar regions of the DNA sequence might
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appear closer together in a lower dimensional space, indicating similarities between

the information content of the bases contained in those DNA segments.

6.3 Arbitrarily Selected Human Chromosome Regions

6.3.1 Process

Telomeres are the regions on the end of chromosomes, and they can be known for

containing DNA that is variant from the DNA contained in other, more central

regions of chromosomes. Additionally, such as with human chromosome 9, telomeres

can be hard to sequence, and thus several chromosomes in various assemblies of the

human genome do not record bases for lengthy segments within the telomeres. (In

human chromosome 9, for instance, the first 10,000 bases in the chromosome are

undetermined.) Thus, when selecting regions in which to extract segments for PCA,

telomeres were avoided. To accomplish this, a starting position of 17,360,000 bases

within each chromosome was chosen at which to start collecting regions for analysis.

(This number was ascertained by trial and error after examining various

chromosomes.)

The AMI profile of successive regions on a chromosome of an arbitrary number

of bases were used as vectors on which PCA was performed. Initially, PCA was

performed with 250 AMI-profile vectors that came from 2,000-base-long segments,

with 30 elements of lag in the AMI-profile vector. Stating with the previously

determined starting position that was well within the chromosome being considered,

a group of 2,000 sequential bases was selected as a region, and its AMI profile was

calculated. This was continued moving sequentially down the chromosome until 250

regions has been selected and their AMI profiles calculated. The AMI profiles of

each region were supplied to the PCA algorithm, which projected them down to a
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two-dimensional space, preserving the two most significant components of the

AMI-profile data. Longer regions consisting of 10,000 bases each, for which a single

AMI profile was calculated, and 50,000 bases each, for which also a single AMI

profile was calculated, were also tested. The longest 50,000-base regions were also

tested with AMI profiles that extended to a lag of 200. A total of 500 regions, and

thus 500 AMI-profile vectors, were generated for these experiments.

6.3.2 Results

The PCA that was performed with AMI-profile vectors obtained from DNA regions

consisting of 2,000 bases showed almost no clustering or other identifiable data

features for any human chromosomes. The behavior of the PCA even varied for

each chromosome, yielding no identifiable consistency between results either.

Figures 6.1 to 6.5 show these PCA results on a representative sample of five

chromosomes from the human genome. Only one general “cluster” is seen in each of

these results; some chromosomes show all of their representative regional vectors as

being tightly clustered (such as chromosome 15 in Figure 6.3) while others show

relatively loose clusters (chromosome 22 in Figure 6.4) and yet others exhibit a

cluster with several outlier vectors. The values on the axes of the plots for all PCA

results represent projected values of AMI profiles into two dimensions and thus do

not carry substantial meaning as specific quantities. Rather, the relevant behavior

of each PCA result is qualitative.

Since no discernible clustering or other unique behavior was observed for regions

that only consisted of 2,000 bases, longer regions consisting of 10,000 bases per

region were examined. Most chromosomes still did not exhibit any clustering

behavior. However, human chromosomes 13, 14, and 15 produced PCA results that
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Figure 6.1: Two-dimensional PCA results for human chromosome 1 with AMI-profile
vectors of size 30 calculated on DNA sequence regions of a 2,000-base length.

seemed to show some slight resemblance to clustering behavior. Figures 6.6 to 6.8

demonstrate this development.

Focusing on these chromosomes (13, 14, and 15), the parameters of the PCA

were then varied to determine if the slight clustering effect seen in the results could

be accentuated. This included increasing the base length of the regions, increasing

the among of lag included in each AMI profile (and thus the dimensionality of the

PCA input vectors), and the number of data points considered. The combination of

parameters that seemed to exhibit the most noticeable clustering effect were found

to be regions of 50,000 bases in length, AMI-profile vectors with a lag of 200, and

500 total vectors in the input dataset for the PCA. Other chromosomes were then

also tested with these parameters, and chromosomes 13, 15, and 19 showed the most

promising results. These can be seen in Figures 6.9 to 6.11. However, other
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Figure 6.2: Two-dimensional PCA results for human chromosome 9 with AMI-profile
vectors of size 30 calculated on DNA sequence regions of a 2,000-base length.

chromosomes did not necessarily exhibit any correlative or unique behavior with

their PCA results, as seen in Figure 6.12. PCAs were also examined with regard to

the chromosomes of species who have similar genomes to that of human beings:

gorillas and chimpanzees. However, no discernible clustering or other unique

behavior was observed, as can be seen in Figure 6.13 for gorillas and Figure 6.14 for

chimpanzees.

6.3.3 Analysis

The explanation for the increase in clustering on certain human chromosomes under

certain parameters of PCA experiments was elusive. Various attributes of the

arbitrarily chosen regions were examined to determine if these were correlated with

the clustering results in any way. After examining the area of the chromosome from
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Figure 6.3: Two-dimensional PCA results for human chromosome 15 with AMI-profile
vectors of size 30 calculated on DNA sequence regions of a 2,000-base length.

which the regions were selected, it was discovered that chromosomes 13, 14, and 15

had one thing in common with regard to the regions that were selected for the PCA:

these regions were taken from the area of the chromosome existing around its

centromere.

All human chromosomes come in pairs (with the exception of the X and Y

chromosomes in a male, which are their own pair despite containing different genetic

information). They exist as strands which are connected at a central point along

each copy of the chromosome, referred to as the centromere. This is why visual

representations of whole chromosomes often show an “X” shape, the center of the X

being the centromere where both copies of the chromosome connect.

Recall that the clustering was observed for human chromosomes 13, 14, 15, and

19 but not for chromosomes like 1, 2, 5, etc. By convention, chromosomes (with the
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Figure 6.4: Two-dimensional PCA results for human chromosome 22 with AMI-profile
vectors of size 30 calculated on DNA sequence regions of a 2,000-base length.

exception of X and Y sex chromosomes) are numbered according to length, with 1

being the longest chromosome and 22 being the shortest. Thus, chromosomes of a

certain length exhibited this affect while longer ones did not. This was because the

region selected for analysis (which was determined by the previously chosen starting

point to avoid the telomeres) was sufficiently close to the centromere for shorter

chromosomes such as 13 but was not close to the centromere for longer

chromosomes such as 1, meaning that none of the material in the regions analyzed

by the PCA for these longer chromosomes came from the centromere area.

Using the UCSC Genome Browser (UGB), these results can be examined on a

more granular level. The results of the PCA for several chromosomes were

regenerated with regions selected specifically to surround the centromere of the

chromosome in question. These PCA results can be seen in Figure 6.15 for
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Figure 6.5: Two-dimensional PCA results for the human X chromosome with AMI-
profile vectors of size 30 calculated on DNA sequence regions of a 2,000-base length.

chromosome 15. Roughly four distinct clusters can be seen. There is a left one

(X < 0), a right one (X > 0.3), a bottom one (Y < −0.1), and a middle one

(X > 0.1, −0.1 < Y < −0.5). These AMI-profile vectors were taken in 50,000-base

regions from positions 17,000,000 to 24,950,000. It turns out that the clusters on the

graph correspond to distinct areas of the chromosome. The AMI-profile vectors that

fall in the middle cluster are from regions at base positions 17,050,000 to 17,500,000.

The vectors that fall within the bottom cluster come from base positions 17,500,000

to 18,350,000. The vectors that fall within the right cluster are from regions in base

positions 18,350,000 to 19,800,000. The vectors that fall within the left cluster are,

finally, from regions that come from base positions 19,850,000 to 24,950,000.

According to the UGB, the centromere region begins at base position 17,499,052,

the centromere occurs at position 18,355,008, and the centromere region ends at
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Figure 6.6: Two-dimensional PCA results for human chromosome 13 with AMI-profile
vectors of size 30 calculated on DNA sequence regions of a 10,000-base length.

19,725,254 (see Figure 6.16). As can be noted, these regions are almost exactly

mapped by the clusters. The first “part” before the centromere which is marked on

the UGB is from 17,083,674-17,498,951, which corresponds to the middle cluster.

The second “part” before the centromere is from 17,499,052-18,355,008 which

corresponds to the bottom cluster. The part after the centromere is from

18,355,109-19,725,254 which corresponds to the right cluster. The left cluster falls

outside the region of the centromere, after 19,725,254.

To demonstrate the uniqueness of this centromere material, the PCA was once

again repeated for chromosome 15, this time including both results that were close

to the centromere region and far away from the centromere region. This produces

the results shown in Figure 6.17. It can be noted that any AMI-profile vector that

does not fall within one of the centromere clusters tends to fall close to the origin of
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Figure 6.7: Two-dimensional PCA results for human chromosome 14 with AMI-profile
vectors of size 30 calculated on DNA sequence regions of a 10,000-base length.

this plot in a “blob.” This is essentially what was observed for the PCA of other

chromosomes that were analyzed that did not include regions close to the

centromere. Since it appears that DNA segments from regions not close to the

centromere don’t fall into distinct clusters, that seems to indicate that the DNA

sequences existing around the centromere exhibit some type of special

differentiation.

This same analysis can be repeated for human chromosome 13, yielding similar

results which can be seen in Figure 6.18. In this figure, three distinct clusters can be

seen. There is the left cluster, the middle cluster, and the right cluster. The

AMI-profile vectors within the right cluster correspond to base positions 16,300,000

to 17,400,000 on chromosome 13. Those in the middle cluster correspond to

positions 17,450,000 to 18,150,000. Finally, those in the left cluster correspond to
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Figure 6.8: Two-dimensional PCA results for human chromosome 15 with AMI-profile
vectors of size 30 calculated on DNA sequence regions of a 10,000-base length.

positions 18,150,000 to 40,950,000. According to the UGB, the centromere region

starts at position 16,282,174, the centromere occurs at 17,416,384, and the

centromere region ends at 18,051,248. Again, it can be noted that the right cluster

corresponds to the first part of the centromere, the middle cluster corresponds to

the second part of the centromere, and the left cluster (closest to the origin) is

everything else. As a control, if PCA is performed on chromosome 13 in a region

(base positions 18,200,000 to 43,150,000) that does not include the centromere

region, the result in Figure 6.20 can be seen, where no clustering seems apparent.

Finally, revisiting one of the longer chromosomes that, under the initial

conditions of this experiment, did not exhibit any clustering, confirms the results so

far. Human chromosome 1 was originally tested in regions that occur after base

position 17,360,000, which is nowhere near its centromere, which occurs at base
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Figure 6.9: Two-dimensional PCA results for human chromosome 13 with AMI-profile
vectors of size 200 calculated on DNA sequence regions of a 50,000-base length.

position 122,503,248. Producing a PCA for chromosome 1 around its centromere

gives the results seen in Figure 6.21. There are roughly two clusters. One is below

Y = 0 and the other above Y = 0 and to the left of X = 0.5. Those clusters

correspond to the chromosome’s base positions as follows: the vectors appearing in

the bottom cluster come from base positions 119,563,100 to 121,563,100 and also

143,163,100 to 144,513,100. The vectors in the top cluster come from positions

122,013,100 to 125,013,100. Once again, if the UGB annotation is examined from

Figure 6.22, it corresponds to this result: the centromere region begins at

122,026,460, the centromere occurs at 122,503,248, and the centromere region ends

at 124,785,432. So, even though the clustering here didn’t identify the centromere

point exactly, it can still be seen that at least the entire centromere region is

represented by the top cluster, which extends from roughly the beginning to the end
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Figure 6.10: Two-dimensional PCA results for human chromosome 15 with AMI-
profile vectors of size 200 calculated on DNA sequence regions of a 50,000-base length.

of the centromere. The other cluster records vectors that come from regions that fall

outside the centromere area.

6.3.4 Explanation

These results were interesting in that they showed definite correlation; however, the

question of why the DNA sequences found around the centromere were different still

remained a mystery. The answer was eventually found in the documentation for the

human chromosome assembly found on the UGB. This documentation reveals that

the DNA bases represented in the centromere regions are not sequenced from the

actual human genome:

Centromeres are specialized chromatin structures that are required for

cell division. These genomic regions are normally defined by long tracts
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Figure 6.11: Two-dimensional PCA results for human chromosome 19 with AMI-
profile vectors of size 200 calculated on DNA sequence regions of a 50,000-base length.

of tandem repeats, or satellite DNA, that contain a limited number of

sequence differences to distinguish the linear order of repeat copies. The

size and repetitive nature of these regions mean they are typically not

represented in reference assemblies. Unlike all previous versions of the

human reference assembly, where the centromere regions have been

represented by a multi-megabase gap, GRCh38 incorporates centromere

reference models that provide an initial genomic description derived

from chromosome-assigned whole genome shotgun (WGS) read libraries

of alpha satellite.

Each reference model provides an approximation of the true array

sequence organization. Although the long-range repeat ordering is not

expected to represent the true organization, the submissions are

expected to provide a biologically rich description of array variants and



106

Figure 6.12: Two-dimensional PCA results for human chromosome 1 with AMI-profile
vectors of size 200 calculated on DNA sequence regions of a 50,000-base length.

local-monomer organization as observed in the initial WGS read dataset.

As a result, these sequences serve as a useful mapping target to extend

sequence-based studies to sites previously omitted from the human

reference genome.[10]

In other words, DNA that occurs in the region around the centromere is difficult

to sequence, and thus the bases which appear in those positions in the human

genome assembly studied do not represent actual data sequenced from the human

genome; rather, the bases in those positions in the assembly represent a model that

is created to simulate the base patterns in the centromere region. Thus, the

correlations that the PCA discovered were real effects of the data that was being

analyzed. However, the reason that centromere-region DNA segments were

differentiated from non-centromere-region DNA segments by their AMI profiles was
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Figure 6.13: Two-dimensional PCA results for gorilla chromosome 15 with AMI-
profile vectors of size 200 calculated on DNA sequence regions of a 50,000-base length.

because the DNA found in the centromere regions was not real human DNA; it was

“synthetic.” It is therefore the case that the PCA was able to identify which DNA

segments belonged properly to the human genome from those which were synthetic

interpolations; however, it was not able to differentiate between different regions of

true human DNA. This would be consistent also with the results from the

chimpanzee and gorilla DNA that was analyzed which showed no clustering. Those

DNA assemblies did not contain synthetic, interpolated centromere-region

components, and thus did not cause the PCA to detect any difference in the “type”

of DNA it was encountering.

While this result does not confirm the original objective of this exploration,

which was to discover a method to segment different types of human DNA, it did

devise a method by which DNA which is foreign to the human genome can be

detected through use of a PCA of various regions of the area in question. Since the
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Figure 6.14: Two-dimensional PCA results for chimpanzee chromosome 15 with AMI-
profile vectors of size 200 calculated on DNA sequence regions of a 50,000-base length.

PCA method was able to differentiate between these types of DNA, it is conceivable

that it could, given the right input parameters, differentiate between different types

of human DNA (or, more broadly, different types of DNA within a single species),

but those conditions were not discovered. The result reconfirmed the analysis of [1],

that the AMI profile, upon which the PCA vectors were based, is useful for

differentiating between DNA that is native to a species’ genome and DNA which is

foreign to it.

6.4 Coding versus Noncoding Bacterial Regions

One final exploration with regard to the use of PCA to differentiate between various

regions of DNA attempted to shift the paradigm being assumed. In the prior PCA

results, DNA regions were chosen arbitrarily and were all of the same length. In
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Figure 6.15: Two-dimensional PCA results for human chromosome 15 with AMI-
profile vectors of size 200 calculated on DNA sequence regions of a 50,000-base length,
selected to surround the chromosome centromere.

Figure 6.16: Excerpt from the UCSC Genome Browser showing the centromere area
of human chromosome 15.[7]

other words, DNA regions were chosen without regard to any properties that the

DNA they contained might be known to possess. However, due to the results

showing that coding and noncoding regions could be successfully differentiated using

various machine learning methods from Chapter 5, it was thought that perhaps the

status of a DNA region as coding or noncoding could be predicted using a PCA.

Because coding and noncoding regions are more apparent and easier to identify on a

bacterial genome, Staphylococcus aureus was used. Bacterial genomes generally do
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Figure 6.17: Two-dimensional PCA results for human chromosome 15 with AMI-
profile vectors of size 200 calculated on DNA sequence regions of a 50,000-base length,
selected to include both regions that surround the chromosome centromere and regions
that do not.

not have multiple chromosomes, and their chromosome does not contain a

centromere.

To perform this analysis, coding and noncoding regions from the Staphylococcus

aureus genome were identified. Coding regions can be found on the annotated

reference files associated with the genomic assembly. Any DNA regions not

annotated as a “coding region” were considered a noncoding region. To avoid any

influence from potentially aberrant behavior at the extremities of the chromosome,

noncoding and coding segments which were not within the first 100 identifiable

segments (coding or noncoding) of the chromosome were selected. Coding and

noncoding regions were only chosen for this analysis if they consisted of at least two

hundred bases, and enough segments were sequentially selected such that there were

at least 200 of each type of segment. In the first experiment, there were 200
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Figure 6.18: Two-dimensional PCA results for human chromosome 13 with AMI-
profile vectors of size 200 calculated on DNA sequence regions of a 50,000-base length,
selected to surround the chromosome centromere.

Figure 6.19: Excerpt from the UCSC Genome Browser showing the centromere area
of human chromosome 13.[8]

noncoding segments and 609 coding segments. This was due to the fact that coding

segments were much more plentiful, and thus 609 coding segments had to be

encountered sequentially before at least 200 noncoding segments of size 200 bases or

more were encountered.

When the AMI profiles (with 200 base positions of lag) of these 809 sequences

were supplied as vectors to a PCA, the results were insignificant. The PCA did not

reveal an identifiable clustering of coding and noncoding regions with respect to

each other. This can be seen in Figure 6.23 where coding and noncoding regions
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Figure 6.20: Two-dimensional PCA results for human chromosome 13 with AMI-
profile vectors of size 200 calculated on DNA sequence regions of a 50,000-base length,
selected to exclude regions around the chromosome centromere.

overlap each other close to the origin of the graph. This same experiment was

repeated with different coding and noncoding regions that were chosen by starting

after the first 500 identifiable segments instead of the first 100. The results shown in

Figure 6.24 are virtually indistinguisable from those of Figure 6.23.

Finally, coding and noncoding sequences of at least 500 bases in length were

considered without regard to their location on the S. aureus genome and with the

stipulation that at least 150 of each type of sequence be included. This resulted in a

total of 150 noncoding sequences and 1,841 coding sequences being considered in

the PCA. As the results in Figure 6.25 show, once again, the coding and noncoding

sequences cannot be differentiated. It can be observed that the noncoding sequences

all lie to one side of the projected area; however, this is uninteresting since the

noncoding sequences are intermingled with and therefore not separable from the

coding sequences.
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Figure 6.21: Two-dimensional PCA results for human chromosome 1 with AMI-
profile vectors of size 200 calculated on DNA sequence regions of a 50,000-base length,
selected to surround the chromosome centromere.

Figure 6.22: Excerpt from the UCSC Genome Browser showing the centromere area
of human chromosome 1.[9]

6.5 Conclusion

This foray into the use of PCA to assess the relatedness of regions of DNA sequences

proved only successful in an unintended way. In general, PCA based upon the AMI

profile was unable to differentiate between differing regions of DNA sequences,

whether or not those sequences came from the human genome or a bacterial
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Figure 6.23: Two-dimensional PCA results for S. aureus with AMI-profile vectors of
size 200 calculated on coding and noncoding DNA sequences of at least a 200-base
length, selected from after the first 100 sequences encountered.

genome. This was even the case when preexisting knowledge of the various regions

(whether coding or noncoding) was taken into consideration with the selection of

the regions tested. It was discovered that PCA was useful at differentiating real

human DNA sequenced from the human genome from approximated human DNA

generated from models, particularly for the centromere region. Since it was

demonstrated that PCA can differentiate between human and nonhuman DNA, it is

likely that it would be able to differentiate between DNA sequences from differing

species, similar to the results reported by Bauer, Schuster, and Sayood.[1]

Future work in this area could include a study of other types of known regions

to see if using qualities that are already known can result in a differentiation. Other

metrics related to the standard AMI profile could also be employed in producing the

input vectors for the PCA analysis, such as the single-base AMI profiles discussed in

Chapter 3 and the triplet AMI profiles explored in Chapter 4. Additionally, the

PCA could be extended to three or four dimensions and more quantitative
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Figure 6.24: Two-dimensional PCA results for S. aureus with AMI-profile vectors of
size 200 calculated on coding and noncoding DNA sequences of at least a 200-base
length, selected from after the first 500 sequences encountered.

clustering methods, rather than the qualitative observations used in this analysis,

could be employed to ascertain if regions can be differentiated.
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Figure 6.25: Two-dimensional PCA results for S. aureus with AMI-profile vectors of
size 200 calculated on coding and noncoding DNA sequences of at least a 500-base
length.
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Chapter 7

Arithmetic Coding as a Means of DNA Sequence

Compression

7.1 Introduction

In every preceding chapter of this investigation with the exception of the

preliminary explorations in Chapter 2, the AMI profile or a variant of it has been

used to help quantify the information structure of any DNA sequence under

examination. However, for purposes of the material in this chapter, the AMI profile,

the thread that has been tying every one of these experiments together, will be

abandoned as a metric by which to quantify the content of DNA sequences. The

original aim for the use of the AMI profile was for it to aid in the formulation of a

compression technique for DNA sequences.

Instead, this chapter will approach compression more directly, and the relative

frequency with which groups of bases appear in a particular DNA sequence will be

used to facilitate the compression. Groups of bases in a DNA sequence are generally

known as “k-mers,” denoting a group of k bases in a row. In order to compress

data, something about the structure of the data must be known. For several data

compression techniques, the encoding of an entity relies on the “context” in which

that entity occurs. In terms of DNA sequences, the order of bases in a sequence is
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highly significant, and thus it can be noted that data compression techniques that

use context-based approaches could be made to encode DNA bases based on the

context in which they appear. In other words, the context would consist of the

k-mer preceding the base being encoded.

7.2 Arithmetic Coding

Arithmetic coding is a data compression technique whose encoding and decoding

algorithms do not require unique binary codes to be generated for each symbol that

could be encountered. Arithmetic coding relies on the skewed nature of the

probability distributions of the symbols which will be encountered relative to each

other, and it partitions an interval into segments whose width is based on their

relative probability of appearance.[3] Thus, arithmetic coding generally works well if

some symbols encountered are very common whereas others are very rare.

Context-based arithmetic coding extends this idea by not only considering the

probability that a symbol will appear, but rather it considers the probability that a

symbol will appear in a given context.

For DNA sequences, as the size of k-mers increases, certain k-mers become fairly

commonly encountered, while other k-mers are are almost never encountered if at

all. This makes arithmetic coding an ideal data compression technique for this

situation since arithmetic coding does not require that codes be generated for all

k-mers which could be encountered, rather only considering the ones which actually

are encountered.

There are two types of arithmetic coding which were explored. The first type

was adaptive arithmetic coding. With an adaptive approach, the frequency of

occurrence of each base in the context of a particular k-mer is generated as the



119

encoding algorithm progresses. Thus, nothing is known about the frequency of

occurrence of any k-mers within the DNA sequence at the outset of the encoding

process. Contrary to that, the second type of arithmetic coding implemented was

omniscient arithmetic coding. With the omniscient approach, the frequency of

occurrence of every k-mer of a particular size is calculated up front, so that the

probability distributions for encountering a particular base in the context of a

particular k-mer are known.

The major benefit of an adaptive approach is that the context tables can be

learned as both the encoding and decoding algorithms progress, and thus the

context tables do not have to be stored within the compressed output in order for

decoding to work correctly. For the omniscient approach, by contrast, since the

context tables are determined up front before the encoding process begins and are

thus fully known by the encoder, they must be somehow stored with the compressed

output because the decoder must also have access to those same context tables in

order to accurately decode the compressed content. However, the major benefit of

an omniscient approach is that it can know whether certain bases will ever be

encountered in certain contexts with certainty, and thus it does not have to allot any

of its compression “space” to the possibility that such a base in such a context might

occur. Thus, an omniscient approach can more beneficially distribute its intervals

such that greater compression is possible. Adaptive approaches, on the other hand,

must assume that any base could be encountered in any context, and thus the

leeway the algorithm has to partition its intervals in a beneficial manner becomes

more limited, thus reducing the amount of compression that can be achieved.
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7.3 k-mer Analysis

It was hypothesized that context-based arithmetic coding using k-mers of various

sizes in DNA sequences would be able to sufficiently describe the information

structure within these sequences and would thus be amenable to arithmetic coding.

This hypothesis was based on an analysis of the frequency of k-mer occurrences in

various DNA sequences. When calculating what would serve as the context tables

for an arithmetic approach, it was observed visually that these tables exhibited a

type of periodicity with respect to which k-mers occurred. In other words, the

sparsity in these context tables was not randomly distributed but was rather

“structured” in how it appeared.

For the analysis contained in this chapter, bacterial genomes were studied for

several reasons. Among these were that bacterial genomes consist of a single

chromosome, meaning that a genome-level compression can be attempted. Further,

bacterial DNA is generally regarded as simpler than the DNA of other more

complex organisms. Various features of human chromosomes that became relevant

factors of the experiments performed in previous chapters could be avoided by using

bacterial genomes. These included the aberrant behavior of the DNA contained in

chromosome telomeres along with the interpolated DNA around the centromeres as

well as the fact that not all DNA in more complex organisms can be sequenced,

leading to regions of various chromosomes where the bases are undetermined (and

thus represented by an “N” in the genome assemblies). In bacterial genomes, it was

observed that the frequency of undetermined bases is very low, and this made these

types of sequences more desirable in that such complexity-increasing nonidealities

could be avoided.
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The bacterial sequences studied in this analysis were chosen simply if they

appeared to be well-studied and well-represented in the NCBI databases. The

genomes studied included the following: (Each species name is listed along with its

NCBI accession number and its abbreviation in the tables that follow.)

• Staphylococcus aureus [NC 007795.1] (“S. aur.”)

• Escherichia coli [NC 000913.3] (“E. coli”)

• Mycobacterium tuberculosis [NC 000962.3] (“M. tub.”)

• Porphyromonas gingivalis [NZ CP011995.1] (“P. gin.”)

• Pseudomonas aeruginosa [NC 002516.2] (“P. aer.”)

• Streptococcus pyogenes [NZ LS483338.1] (“S. pyo.”)

• Thermus thermophilus [NZ AP019794.1] (“T the.”)

• Acaryochloris marina [NZ AP026075.1] (“A. mar.”)

Figures 7.1, 7.2, 7.3, and 7.4 show a sampling of the periodicity observed with

regard to the frequency of appearance of each k-mer. Each image represents a

visualization of the context “space.” Each pixel in the image represents a particular

k-mer of size 12. Exactly enough pixels are allocated to each image to display

exhaustively all the possible k-mers. The k-mers are displayed with the order of

preference of bases being A, C, G, T and beginning in the upper left corner of each

image then moving right and then down. Thus the top left pixel represents the

12-mer AAAAAAAAAAAA, the next pixel to its right represents

AAAAAAAAAAAC, and so on. A purely black pixel represents a k-mer that does

not appear at all, and a purely white pixel represents a k-mer that appears most
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frequently compared to all the others in the genome under consideration. Pixels are

graded from black to white based on the frequency with which its corresponding

k-mer occurs. Surprisingly periodic, non-random patterns can be readily observed in

the distribution of the frequency of these k-mers.

Figure 7.1: Image of the context space showing the relative frequency of the ap-
pearance of k-mers of size 12 for Staphylococcus aureus. Black pixels represent no
appearance of a particular k-mer; white pixels represent frequent appearance of a
particular k-mer.

7.4 Adaptive Arithmetic Coding Results

An adaptive arithmetic coder was designed to use a k-mer of specified length as its

context and to encode bases encountered in the sequence in light of that k-mer
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Figure 7.2: Image of the context space showing the relative frequency of the appear-
ance of k-mers of size 12 for Escherichia coli. Black pixels represent no appearance of
a particular k-mer; white pixels represent frequent appearance of a particular k-mer.

context. To start, each k-mer in the context space had to be given a nominal count

of 1 in order to allow for the possible appearance of any k-mer.

The compressed sequence produced by the arithmetic coder was given in terms

of bits. To store a DNA sequence directly in terms of bits, without any compression,

only two bits per base are required since DNA is only a four-letter alphabet and a

basic code can be employed as follows: A - 00, C - 01, G - 10, T - 11. Thus, in order

to be successful with compression, the arithmetic coder must be able to improve

over this two-bit-per-base metric. Thus, compression results are given in terms of a

“bit rate,” which is the number of bits in the compressed sequence divided by the

number of bits that would be required by the uncompressed sequence just described.
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Figure 7.3: Image of the context space showing the relative frequency of the appear-
ance of k-mers of size 12 for Porphyromonas gingivalis. Black pixels represent no
appearance of a particular k-mer; white pixels represent frequent appearance of a
particular k-mer.

Although undetermined (“N”) bases were rare in the bacterial genomes studied,

when an occasional undetermined base was encountered, it was simply replaced

with A in order to reduce the complexity of the algorithm designed. In practice,

undetermined bases would either have to be considered as an additional “base” and

added to the k-mer context tables (which would increase their size by a whole

dimension) or the positions of undetermined bases would have to be simply recorded

by the encoder and re-added manually by the decoder.

Applying the adaptive approach to the S. aureus genome for k-mers of sizes 2 to

12 produced the results displayed in Table 7.1. As can be seen, the best compression
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Figure 7.4: Image of the context space showing the relative frequency of the ap-
pearance of k-mers of size 12 for Thermus thermophilus. Black pixels represent no
appearance of a particular k-mer; white pixels represent frequent appearance of a
particular k-mer.

bit rate was 0.95 bits per bit, and the best compression ratio observed was 5.56%.

Overall, these do not represent high rates of compression. The reason compression

results were lackluster is likely due to the main drawback of the adaptive approach

itself: since every possible k-mer might possibly appear, the context tables have to

allow for every possible k-mer and thus cannot use any knowledge of k-mers that are

completely absent to “widen” the compression interval. This is why the compression

actually degrades as the k-mer size is increased. While the sparsity of the context

tables for large k-mers would initially seem to help the compression, it actually

becomes a liability for the adaptive method since the context space increases
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k-mer Size Bits Ratio Bit Rate
2 4,468,573 4.92% 0.95
3 4,451,363 5.29% 0.95
4 4,444,904 5.43% 0.95
5 4,443,557 5.46% 0.95
6 4,451,192 5.29% 0.95
7 4,491,571 4.44% 0.96
8 4,566,318 2.84% 0.97
9 4,645,616 1.16% 0.99
10 4,691,660 0.18% 1.00
11 4,692,439 0.16% 1.00
12 4,677,597 0.48% 1.00

Table 7.1: Results of adaptive arithmetic coding for k-mers of size 2 to 12 on the
major portion of the S. aureus genome before the first ‘N’ base is encountered, which
consisted of 2,350,011 bases, requiring 4,700,022 bits uncompressed.

four-fold when the k-mer size adds an additional base, making many more k-mer

possibilities which need to be accounted for.

7.5 Omniscient Arithmetic Coding Results

An omniscient arithmetic coder was also designed to use a k-mer of specified length

as its context and to encode bases encountered in the sequence in light of that

k-mer context. However, before encoding began, the k-mer context tables were fully

generated. Besides this adjustment, the omniscient arithmetic coder worked

identically to the adaptive arithmetic coder, and the same methods used to evaluate

the compression results of the adaptive arithmetic coder (bit rate, etc.) were also

used to evaluate the results of the omniscient approach.

The performance of the omniscient approach, as can be expected, was drastically

improved. The results of omniscient arithmetic compression for all eight bacterial

genomes examined can be seen in Table 7.2. As the size of the k-mers increases, so
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k S. aur. E. coli M. tub. P. gin. P. aer. S. pyo. T. the. A. mar.
2 0.95 0.98 0.95 0.99 0.94 0.97 0.9 0.99
3 0.95 0.98 0.94 0.98 0.93 0.97 0.89 0.99
4 0.95 0.97 0.94 0.98 0.92 0.96 0.88 0.98
5 0.94 0.97 0.93 0.98 0.91 0.96 0.87 0.98
6 0.94 0.96 0.93 0.97 0.9 0.96 0.85 0.98
7 0.93 0.96 0.92 0.96 0.89 0.95 0.84 0.98
8 0.91 0.94 0.91 0.93 0.88 0.91 0.81 0.97
9 0.83 0.89 0.86 0.82 0.84 0.78 0.75 0.93
10 0.66 0.72 0.72 0.55 0.75 0.53 0.64 0.8
11 0.41 0.42 0.5 0.25 0.6 0.26 0.5 0.5
12 0.2 0.18 0.28 0.08 0.4 0.1 0.33 0.21

Table 7.2: Bit rate results of omniscient arithmetic coding for k-mers of size 2 to 12
on the eight bacterial genomes.

does the sparsity of the k-mer context tables (because large numbers of possible

k-mers do not appear on the sequences being compressed), and thus the compression

as quantified by the bit-per-bit rates is impressive. For k-mers of size 12, the best

sequence compression is exhibited by S. pyogenes at 0.1 compressed bit per raw bit.

All bacterial genomes tested exhibited basically the same behavior in this regard.

However, these excellent compression results obtained with the omniscient

approach are not directly comparable to the results obtained for the adaptive

approach. There is a bit of a “sleight of hand” going on here. Because the

omniscient approach assumes that the context table is known up front, the

information contained within that table is not stored in the compressed result and

thus is not reflected in the bit rates reported in Table 7.2. Thus, it will take extra

storage (more bits) to transmit both the compressed sequence and the k-mer

context tables to the decoder. This is not something the adaptive approach has to

worry about as its k-mer context tables are “baked into” its compressed sequence.

Methods for storing the k-mer context tables and recovering them for the

decoder were explored. One of those involved simply saving the k-mer count tables
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as compressed image files similar to those shown in Figures 7.1 to 7.4. The difficulty

in doing this was that storing images that contain the exact k-mer context tables

needed to be lossless, and thus .png files were used. However, this wiped out the

gains made in the compression algorithm. The more compression that could be

obtained in the encoding phase meant a larger k-mer context table that had to be

stored and transmitted to the decoder.

While, in order to recover the sequence accurately, the k-mer context tables

used by the encoder must be the exact same ones used by the decoder, the k-mer

context tables did not have to precisely match the sequence data when used by the

encoder. This insight led to an attempt to compress the k-mer context tables using

a lossy image compression technique such as .jpg. The idea here was that, before

encoding even began, k-mer context tables would be determined and then saved as a

.jpg image. This .jpg image would then be immediately converted back into the

k-mer context tables. However, these reconverted tables were not exactly equal to

and were only an approximation of the original k-mer context tables due to the

lossy nature of .jpg compression. However, as long as the encoder used these

recovered tables from the .jpg image to compress the DNA sequence, the .jpg

format, which was more compressed than .png, could then be used to store the

k-mer context tables since the decoder would use the same recovery process from

the .jpg image as used by the encoder. This ensured exactly matching k-mer context

tables at both the encoder and the decoder. However, in practice, it was observed

that compression of the .jpg image beyond that of the .png image was traded off in

degraded compression performance of the sequence itself because the k-mer context

tables were not as “fine tuned” as they originally were.

Another way to overcome the storage problem for the k-mer context tables used

by the encoder was the idea of “cross pollination.” In other words, perhaps the
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k-mer context tables could be standardized for all sequences (or at least all

sequences of a certain classification) that are encountered by the encoder. If this

could be successfully done, then the k-mer context tables could just be considered

part of the compression algorithm itself and would thus not have to be compressed

and stored with the compressed sequence output.

This idea was tested by applying the k-mer context tables taken from one

bacterium genome to all the other ones. The results of this approach can be seen in

Table 7.3, where the k-mer context tables from S. aureus were applied to all the

bacterial genomes, and Table 7.4, where the tables from P. gingivalis were used. As

can be seen from these results, the compression quality in doing this degrades

considerably and seems to actually make matters worse in many cases when the

P. gingivalis tables are used. The best bit rate encountered by any cross-pollination

attempt was 0.98 bits per bit. These results seem to be close to those obtained with

the adaptive approach, and that is because a similar problem is here lurking in the

background. Even though an omniscient approach is utilized when doing cross

pollination, the k-mer context tables can no longer be as precisely fitted to the

sequence which they are used to compress. For example, if the tables of S. aureus

are used as the standard, they may not contain k-mers that will be encountered

when trying to encode T. thermophilus, and thus the assumption must be made

once again that any possible k-mer might be encountered during encoding. As with

the adaptive approach before, this limits the amount of compression that can be

achieved because now any k-mer can be expected and cannot necessarily be ruled

out from the start.
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k S. aur. E. coli M. tub. P. gin. P. aer. S. pyo. T. the. A. mar.
2 0.95 1.04 1.13 1.04 1.14 0.98 1.18 1.03
3 0.95 1.04 1.12 1.04 1.12 0.98 1.16 1.03
4 0.95 1.04 1.13 1.04 1.13 0.98 1.16 1.03
5 0.94 1.05 1.15 1.05 1.15 0.98 1.18 1.04
6 0.94 1.05 1.14 1.05 1.14 0.98 1.17 1.04
7 0.93 1.07 1.17 1.07 1.17 0.99 1.2 1.06
8 0.91 1.09 1.15 1.09 1.15 1.01 1.15 1.08
9 0.88 1.06 1.06 1.07 1.05 1.03 1.05 1.06
10 0.86 1.03 1.01 1.03 1.01 1.02 1.01 1.03
11 0.88 1.01 1 1.01 1 1.01 1 1.01
12 0.93 1 1 1 1 1 1 1

Table 7.3: Bit rate results of omniscient arithmetic coding for k-mers of size 2 to
12 on the eight bacterial genomes using only the k-mer context tables obtained from
S. aureus to compress all bacterial genomes. (The S. aureus results do not match
those from Table 7.2 because these results represent context tables where S. aureus
was “cross-pollinated” with itself since every k-mer now had to be treated as possibly
encounterable by the encoder.)

k S. aur. E. coli M. tub. P. gin. P. aer. S. pyo. T. the. A. mar.
2 1 1 1.01 0.99 1.01 1 1.01 1
3 1.01 1 1.01 0.98 1.01 1 1.02 1.01
4 1.01 1.01 1.02 0.98 1.02 1.01 1.04 1.01
5 1.01 1.01 1.03 0.98 1.02 1.01 1.05 1.01
6 1.01 1.01 1.03 0.97 1.02 1.01 1.05 1.02
7 1.02 1.02 1.04 0.96 1.03 1.02 1.06 1.03
8 1.06 1.05 1.07 0.93 1.06 1.05 1.09 1.06
9 1.07 1.07 1.07 0.87 1.06 1.07 1.07 1.07
10 1.03 1.03 1.02 0.85 1.02 1.03 1.02 1.03
11 1 1 1 0.9 1 1 1 1
12 1 1 1 0.94 1 1 1 1

Table 7.4: Bit rate results of omniscient arithmetic coding for k-mers of size 2 to
12 on the eight bacterial genomes using only the k-mer context tables obtained from
P. gingivalis to compress all bacterial genomes. (The P. gingivalis results do not
match those from Table 7.2 because these results represent context tables where
P. gingivalis was “cross-pollinated” with itself since every k-mer now had to be treated
as possibly encounterable by the encoder.)
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7.6 Conclusion

As with almost every data compression technique, the context-based arithmetic

coders explored here came with trade-offs. While the k-mer context tables, which

quantify the frequency with which certain k-mers occur in a sequence, do likely

represent some key part of the information structure of a DNA sequence, k-mer

counts alone could not seem to provide an avenue for significant compression. Every

method and variation attempted came with trade-offs that seemed to limit any

potential gains those variations might have offered. For the omniscient approach,

the drawbacks of any one adjustment made to increase compressibility ended up

undercutting the benefits of the omniscient approach as a whole. While some degree

of compression can be achieved, and this is not insignificant, something more needs

to be added to the mix, to the known information given to the encoder, which will

describe the information structure of DNA accurately enough to allow it to be

exploited for the benefit of substantial compression results.
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Chapter 8

Conclusion

This thesis represents an exploration. It is known that DNA contains information.

This information is used by every cell in every living organism to function properly.

Due to advances in communication systems and data compression, many methods

for quantifying information have been discovered and used to great benefit. It would

be logically assumed, therefore, that these methods could be used to quantify and

understand the information contained in DNA sequences. The major question

explored in this thesis, then, was this: how?

There are many fundamentally biological means to understand what DNA

contains. The endless annotation files provided with any genome attest to the fact

that there are ways to discover components of the information contained in DNA.

The question pursued was whether methods which relied only upon mathematical

models—models of probability and correlation—could be used to quantify and

understand the way that DNA’s information was structured without recourse to

biological methods and techniques.

When constructing the models by which to quantify the information in DNA, it

was quickly realized that there were simply too many variables which could be

adjusted and tuned such that an exhaustive search would be impossible. At times it

was difficult to know which dials to turn and which could result in the most
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beneficial outcomes. Therefore, this investigation took on a meandering nature,

trying this technique and this model and that technique and that model, usually

guided by past knowledge and intuition, in a attempt to see what the results would

yield and whether anything of significance would be observed. This study leaves

many stones unturned, from which much future work could be derived.

One particular observation does rise to the top when considering the results that

have been obtained throughout this investigation: the biological information stored

in DNA is not simple. Though biology has made great strides in understanding the

nature and function of the DNA found in the genomes of many organisms, DNA

remains a complex entity with a difficult structure to identify. The key to unlock

the secrets to its information structure remains elusive.

This investigation did demonstrate, however, that some inroads, minor though

they may be, could be made. As a baseline, estimation theory showed that even

basic probability models could predict bases in DNA sequences with a nominal

accuracy that was better than random guessing. Though basic estimation theory

models were not successful at accurately predicting DNA bases, they showed that

some level of correlation between bases in DNA sequences was quantifiable and

exploitable. Attempts to predict DNA bases using the AMI profile, a technique

shown to be relevant in analyzing DNA sequences, showed again that some

quantifiable structure was present in DNA sequences, and with more sophisticated

means, this structure could be exploited, but models based purely on joint

probabilities, regardless of the sophistication, were not enough to substantially

quantify the behavior of the information stored in DNA’s sequences.

Employing some information known from the biological study of DNA

sequences was shown to be useful. Since it is known that DNA is biologically

interpreted in triplets, when the analysis takes account of the DNA code qua
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triplets, the AMI profile can identify some unique features and correlations not

detected by other means. Furthermore, using various machine learning methods,

coding and noncoding regions could be differentiated, indicating that the AMI

profile, as a probabilistic model, does capture enough of the information pattern to

be able to indicate the coding or noncoding function of a segment of DNA. The

AMI profile, along with principal component analysis, was also useful for identifying

which DNA segments were naturally part of the human genome and which were

created by various models. The AMI profile as a metric has the potential, when

combined with other machine learning techniques and some biologically relevant

information, to expose correlations that are due to the structure of the information

contained in the various sequences.

Finally, using arithmetic coding as a method of quantifying the information

structure of DNA sequences absent the use of the AMI profile demonstrated that

DNA sequences contain structure that is quantifiable by the grouping of particular

bases (k-mers) and which can be minimally exploited to form a compression

technique for DNA sequences. This showed that, while DNA sequences generally

contain features and redundancy that can be exploited, their complexity is such

that merely considering the order of bases in k-mer groups was not sufficient in and

of itself to provide the catalyst for significant compression and thus, by extension,

significant grounds for thinking that the information structure of DNA sequences

has been deeply grasped.

The results of this investigation leave ripe opportunities for future work. As

previously discussed, the results based on estimation theory and the results from

prediction of bases using the AMI profile could be further examined to determine the

effect that the distribution of bases within a sequence has on prediction ability. This

could include examination of regions where the high marginal probability of a single
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base causes these methods to be unable to predict any other base. These results

could also be further extended to explore the potential directional relationships

between the positions of bases, where the specific order is taken into account as

opposed to merely the separation distance between bases. The estimation theory,

base prediction, and triplet AMI profile results could also be studied in combination

to assess the effectiveness of a multiple-model approach to base prediction, rather

than testing each method in isolation. Using all of these metrics together may

increase the chances for accuracy in base prediction. Additionally, the reasons for

the presence of unique features in the triplet AMI profiles for human chromosomes

could be examined using more sophisticated sequence alignment techniques.

The results stemming from machine-learning techniques could also be further

explored. Certainly, the sophistication of the machine-learning methods could be

increased. Neural networks that contain more layers of neurons, support vector

machines that have different kernels, and more dimensions in the principal

component analysis as well as other machine-learning methods such as so-called

“deep learning” could be employed to study whether more sophistication in these

techniques can capture the correlation necessary to describe the information

structure of DNA and differentiate between its various types of regions. This could

be applied to coding and noncoding regions, as was done extensively in this study,

but other types of regions (e.g., exons and introns in eukaryotic coding regions)

could be explored as well. Other types of AMI profiles besides the standard one,

such as the single-base and triplet AMI profiles, could also be used as inputs to all

of these methods to see if extra information and model complexity yields more in

terms of accuracy.

Lastly, the arithmetic coding procedure could be supplemented by studying

more creative means to compress the k-mer context tables. Since context-based
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arithmetic coding is highly successful for compressing a DNA sequence given the

sparsity present in k-mer tables, means to exploit that sparsity in compressing them

would be valuable. This could include an investigation of whether a type of

run-length coding could compress the k-mer tables. Furthermore, not only were the

k-mer context tables sparse, but it was also observed that they exhibited a

periodicity upon visual inspection. The existence of this periodicity could be further

explored as to both explaining its cause and also exploiting its presence for

compression and recovery of the k-mer context tables. Finally, all the studies

contained in this thesis could always be tested on more DNA sequences from other

organisms to determine whether or not the results presented in this investigation,

mostly focused on human and bacterial DNA, are representative of other known

genomes.

As mentioned, despite the results that indicated that the mathematical and

probabilistic models employed in this thesis did capture at least some measurable

amount of the structure of the information contained in DNA sequences, the key to

deeply unlock the information structure of DNA remains elusive. The conclusions of

this investigation are but hints pointing in that direction.
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